[NDS32] Provide TARGET_CMODEL_[SMALL|MEDIUM|LARGE] to check which code model is speci...
[official-gcc.git] / gcc / config / nds32 / nds32.h
blobac6cf429a761d8deb3e7d888ffcf0305707e82e9
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* ------------------------------------------------------------------------ */
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
28 /* Computing the Length of an Insn. */
29 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
30 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
32 /* Check instruction LS-37-FP-implied form.
33 Note: actually its immediate range is imm9u
34 since it is used for lwi37/swi37 instructions. */
35 #define NDS32_LS_37_FP_P(rt, ra, imm) \
36 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
37 && REGNO (ra) == FP_REGNUM \
38 && satisfies_constraint_Iu09 (imm))
40 /* Check instruction LS-37-SP-implied form.
41 Note: actually its immediate range is imm9u
42 since it is used for lwi37/swi37 instructions. */
43 #define NDS32_LS_37_SP_P(rt, ra, imm) \
44 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
45 && REGNO (ra) == SP_REGNUM \
46 && satisfies_constraint_Iu09 (imm))
49 /* Check load/store instruction form : Rt3, Ra3, imm3u. */
50 #define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
52 /* Check load/store instruction form : Rt4, Ra5, const_int_0.
53 Note: no need to check ra because Ra5 means it covers all registers. */
54 #define NDS32_LS_450_P(rt, ra, imm) \
55 ((imm == const0_rtx) \
56 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
57 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
59 /* Check instruction RRI-333-form. */
60 #define NDS32_RRI_333_P(rt, ra, imm) \
61 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
62 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
63 && satisfies_constraint_Iu03 (imm))
65 /* Check instruction RI-45-form. */
66 #define NDS32_RI_45_P(rt, ra, imm) \
67 (REGNO (rt) == REGNO (ra) \
68 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
69 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
70 && satisfies_constraint_Iu05 (imm))
73 /* Check instruction RR-33-form. */
74 #define NDS32_RR_33_P(rt, ra) \
75 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
76 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
78 /* Check instruction RRR-333-form. */
79 #define NDS32_RRR_333_P(rt, ra, rb) \
80 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
81 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
82 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
84 /* Check instruction RR-45-form.
85 Note: no need to check rb because Rb5 means it covers all registers. */
86 #define NDS32_RR_45_P(rt, ra, rb) \
87 (REGNO (rt) == REGNO (ra) \
88 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
89 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
91 /* Classifies address type to distinguish 16-bit/32-bit format. */
92 enum nds32_16bit_address_type
94 /* [reg]: 45 format address. */
95 ADDRESS_REG,
96 /* [lo_reg + imm3u]: 333 format address. */
97 ADDRESS_LO_REG_IMM3U,
98 /* post_inc [lo_reg + imm3u]: 333 format address. */
99 ADDRESS_POST_INC_LO_REG_IMM3U,
100 /* [$fp + imm7u]: fp imply address. */
101 ADDRESS_FP_IMM7U,
102 /* [$sp + imm7u]: sp imply address. */
103 ADDRESS_SP_IMM7U,
104 /* Other address format. */
105 ADDRESS_NOT_16BIT_FORMAT
109 /* ------------------------------------------------------------------------ */
111 /* Define maximum numbers of registers for passing arguments. */
112 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
114 /* Define the register number for first argument. */
115 #define NDS32_GPR_ARG_FIRST_REGNUM 0
117 /* Define the register number for return value. */
118 #define NDS32_GPR_RET_FIRST_REGNUM 0
120 /* Define the first integer register number. */
121 #define NDS32_FIRST_GPR_REGNUM 0
122 /* Define the last integer register number. */
123 #define NDS32_LAST_GPR_REGNUM 31
125 /* Define double word alignment bits. */
126 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
128 /* Define alignment checking macros for convenience. */
129 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
130 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
131 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
133 /* Get alignment according to mode or type information.
134 When 'type' is nonnull, there is no need to look at 'mode'. */
135 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
136 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
138 /* Round X up to the nearest double word. */
139 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
142 /* This macro is used to calculate the numbers of registers for
143 containing 'size' bytes of the argument.
144 The size of a register is a word in nds32 target.
145 So we use UNITS_PER_WORD to do the calculation. */
146 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
147 ((mode == BLKmode) \
148 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
149 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
151 /* This macro is used to return the register number for passing argument.
152 We need to obey the following rules:
153 1. If it is required MORE THAN one register,
154 we need to further check if it really needs to be
155 aligned on double words.
156 a) If double word alignment is necessary,
157 the register number must be even value.
158 b) Otherwise, the register number can be odd or even value.
159 2. If it is required ONLY one register,
160 the register number can be odd or even value. */
161 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
162 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
163 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
164 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
165 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
166 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
168 /* This macro is to check if there are still available registers
169 for passing argument, which must be entirely in registers. */
170 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
171 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
172 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
173 <= (NDS32_GPR_ARG_FIRST_REGNUM \
174 + NDS32_MAX_GPR_REGS_FOR_ARGS))
176 /* This macro is to check if there are still available registers
177 for passing argument, either entirely in registers or partially
178 in registers. */
179 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
180 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
181 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
183 /* This macro is to check if the register is required to be saved on stack.
184 If call_used_regs[regno] == 0, regno is the callee-saved register.
185 If df_regs_ever_live_p(regno) == true, it is used in the current function.
186 As long as the register satisfies both criteria above,
187 it is required to be saved. */
188 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
189 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
191 /* ------------------------------------------------------------------------ */
193 /* A C structure for machine-specific, per-function data.
194 This is added to the cfun structure. */
195 struct GTY(()) machine_function
197 /* Number of bytes allocated on the stack for variadic args
198 if we want to push them into stack as pretend arguments by ourself. */
199 int va_args_size;
200 /* Number of bytes reserved on the stack for
201 local and temporary variables. */
202 int local_size;
203 /* Number of bytes allocated on the stack for outgoing arguments. */
204 int out_args_size;
206 /* Number of bytes on the stack for saving $fp. */
207 int fp_size;
208 /* Number of bytes on the stack for saving $gp. */
209 int gp_size;
210 /* Number of bytes on the stack for saving $lp. */
211 int lp_size;
213 /* Number of bytes on the stack for saving callee-saved registers. */
214 int callee_saved_regs_size;
215 /* The padding bytes in callee-saved area may be required. */
216 int callee_saved_area_padding_bytes;
218 /* The first required callee-saved register. */
219 int callee_saved_regs_first_regno;
220 /* The last required callee-saved register. */
221 int callee_saved_regs_last_regno;
223 /* The padding bytes in varargs area may be required. */
224 int va_args_area_padding_bytes;
226 /* The first required register that should be saved on stack for va_args. */
227 int va_args_first_regno;
228 /* The last required register that should be saved on stack for va_args. */
229 int va_args_last_regno;
231 /* Indicate that whether this function needs
232 prologue/epilogue code generation. */
233 int naked_p;
234 /* Indicate that whether this function
235 uses fp_as_gp optimization. */
236 int fp_as_gp_p;
239 /* A C structure that contains the arguments information. */
240 typedef struct
242 unsigned int gpr_offset;
243 } nds32_cumulative_args;
245 /* ------------------------------------------------------------------------ */
247 /* The following we define C-ISR related stuff.
248 In nds32 architecture, we have 73 vectors for interrupt/exception.
249 For each vector (except for vector 0, which is used for reset behavior),
250 we allow users to set its register saving scheme and interrupt level. */
252 /* There are 73 vectors in nds32 architecture.
253 0 for reset handler,
254 1-8 for exception handler,
255 and 9-72 for interrupt handler.
256 We use an array, which is defined in nds32.c, to record
257 essential information for each vector. */
258 #define NDS32_N_ISR_VECTORS 73
260 /* Define possible isr category. */
261 enum nds32_isr_category
263 NDS32_ISR_NONE,
264 NDS32_ISR_INTERRUPT,
265 NDS32_ISR_EXCEPTION,
266 NDS32_ISR_RESET
269 /* Define isr register saving scheme. */
270 enum nds32_isr_save_reg
272 NDS32_SAVE_ALL,
273 NDS32_PARTIAL_SAVE
276 /* Define isr nested type. */
277 enum nds32_isr_nested_type
279 NDS32_NESTED,
280 NDS32_NOT_NESTED,
281 NDS32_NESTED_READY
284 /* Define structure to record isr information.
285 The isr vector array 'isr_vectors[]' with this structure
286 is defined in nds32.c. */
287 struct nds32_isr_info
289 /* The field to identify isr category.
290 It should be set to NDS32_ISR_NONE by default.
291 If user specifies a function as isr by using attribute,
292 this field will be set accordingly. */
293 enum nds32_isr_category category;
295 /* A string for the applied function name.
296 It should be set to empty string by default. */
297 char func_name[100];
299 /* The register saving scheme.
300 It should be set to NDS32_PARTIAL_SAVE by default
301 unless user specifies attribute to change it. */
302 enum nds32_isr_save_reg save_reg;
304 /* The nested type.
305 It should be set to NDS32_NOT_NESTED by default
306 unless user specifies attribute to change it. */
307 enum nds32_isr_nested_type nested_type;
309 /* Total vectors.
310 The total vectors = interrupt + exception numbers + reset.
311 It should be set to 0 by default.
312 This field is ONLY used in NDS32_ISR_RESET category. */
313 unsigned int total_n_vectors;
315 /* A string for nmi handler name.
316 It should be set to empty string by default.
317 This field is ONLY used in NDS32_ISR_RESET category. */
318 char nmi_name[100];
320 /* A string for warm handler name.
321 It should be set to empty string by default.
322 This field is ONLY used in NDS32_ISR_RESET category. */
323 char warm_name[100];
326 /* ------------------------------------------------------------------------ */
328 /* Define code for all nds32 builtins. */
329 enum nds32_builtins
331 NDS32_BUILTIN_ISYNC,
332 NDS32_BUILTIN_ISB,
333 NDS32_BUILTIN_MFSR,
334 NDS32_BUILTIN_MFUSR,
335 NDS32_BUILTIN_MTSR,
336 NDS32_BUILTIN_MTUSR,
337 NDS32_BUILTIN_SETGIE_EN,
338 NDS32_BUILTIN_SETGIE_DIS
341 /* ------------------------------------------------------------------------ */
343 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
344 #define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
345 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
347 #define TARGET_CMODEL_SMALL \
348 (nds32_cmodel_option == CMODEL_SMALL)
349 #define TARGET_CMODEL_MEDIUM \
350 (nds32_cmodel_option == CMODEL_MEDIUM)
351 #define TARGET_CMODEL_LARGE \
352 (nds32_cmodel_option == CMODEL_LARGE)
354 /* When -mcmodel=small or -mcmodel=medium,
355 compiler may generate gp-base instruction directly. */
356 #define TARGET_GP_DIRECT \
357 (nds32_cmodel_option == CMODEL_SMALL\
358 || nds32_cmodel_option == CMODEL_MEDIUM)
360 #define TARGET_SOFT_FLOAT 1
361 #define TARGET_HARD_FLOAT 0
363 /* ------------------------------------------------------------------------ */
365 /* Controlling the Compilation Driver. */
367 #define OPTION_DEFAULT_SPECS \
368 {"arch", "%{!march=*:-march=%(VALUE)}" }
370 #define CC1_SPEC \
373 #define ASM_SPEC \
374 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
376 /* If user issues -mrelax, -mforce-fp-as-gp, or -mex9,
377 we need to pass '--relax' to linker.
378 Besides, for -mex9, we need to further pass '--mex9'. */
379 #define LINK_SPEC \
380 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
381 " %{mrelax|mforce-fp-as-gp|mex9:--relax}" \
382 " %{mex9:--mex9}"
384 #define LIB_SPEC \
385 " -lc -lgloss"
387 /* The option -mno-ctor-dtor can disable constructor/destructor feature
388 by applying different crt stuff. In the convention, crt0.o is the
389 startup file without constructor/destructor;
390 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
391 startup files with constructor/destructor.
392 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
393 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
394 currently provided by GCC for nds32 target.
396 For nds32 target so far:
397 If -mno-ctor-dtor, we are going to link
398 "crt0.o [user objects]".
399 If general cases, we are going to link
400 "crt1.o crtbegin1.o [user objects] crtend1.o". */
401 #define STARTFILE_SPEC \
402 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
403 " %{!mno-ctor-dtor:crtbegin1.o%s}"
404 #define ENDFILE_SPEC \
405 " %{!mno-ctor-dtor:crtend1.o%s}"
407 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
408 configure gcc with --target=nds32be-* setting.
409 Check gcc/config.gcc for more information. */
410 #ifdef TARGET_BIG_ENDIAN_DEFAULT
411 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
412 #else
413 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
414 #endif
416 /* Currently we only have elf toolchain,
417 where -mcmodel=medium is always the default. */
418 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
420 #define MULTILIB_DEFAULTS \
421 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
424 /* Run-time Target Specification. */
426 #define TARGET_CPU_CPP_BUILTINS() \
427 do \
429 builtin_define ("__nds32__"); \
431 if (TARGET_ISA_V2) \
432 builtin_define ("__NDS32_ISA_V2__"); \
433 if (TARGET_ISA_V3) \
434 builtin_define ("__NDS32_ISA_V3__"); \
435 if (TARGET_ISA_V3M) \
436 builtin_define ("__NDS32_ISA_V3M__"); \
438 if (TARGET_BIG_ENDIAN) \
439 builtin_define ("__big_endian__"); \
440 if (TARGET_REDUCED_REGS) \
441 builtin_define ("__NDS32_REDUCED_REGS__"); \
442 if (TARGET_CMOV) \
443 builtin_define ("__NDS32_CMOV__"); \
444 if (TARGET_PERF_EXT) \
445 builtin_define ("__NDS32_PERF_EXT__"); \
446 if (TARGET_16_BIT) \
447 builtin_define ("__NDS32_16_BIT__"); \
448 if (TARGET_GP_DIRECT) \
449 builtin_define ("__NDS32_GP_DIRECT__"); \
451 builtin_assert ("cpu=nds32"); \
452 builtin_assert ("machine=nds32"); \
453 } while (0)
456 /* Defining Data Structures for Per-function Information. */
458 /* This macro is called once per function,
459 before generation of any RTL has begun. */
460 #define INIT_EXPANDERS nds32_init_expanders ()
463 /* Storage Layout. */
465 #define BITS_BIG_ENDIAN 0
467 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
469 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
471 #define UNITS_PER_WORD 4
473 #define PROMOTE_MODE(m, unsignedp, type) \
474 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
476 (m) = SImode; \
479 #define PARM_BOUNDARY 32
481 #define STACK_BOUNDARY 64
483 #define FUNCTION_BOUNDARY 32
485 #define BIGGEST_ALIGNMENT 64
487 #define EMPTY_FIELD_BOUNDARY 32
489 #define STRUCTURE_SIZE_BOUNDARY 8
491 #define STRICT_ALIGNMENT 1
493 #define PCC_BITFIELD_TYPE_MATTERS 1
496 /* Layout of Source Language Data Types. */
498 #define INT_TYPE_SIZE 32
499 #define SHORT_TYPE_SIZE 16
500 #define LONG_TYPE_SIZE 32
501 #define LONG_LONG_TYPE_SIZE 64
503 #define FLOAT_TYPE_SIZE 32
504 #define DOUBLE_TYPE_SIZE 64
505 #define LONG_DOUBLE_TYPE_SIZE 64
507 #define DEFAULT_SIGNED_CHAR 1
509 #define SIZE_TYPE "long unsigned int"
510 #define PTRDIFF_TYPE "long int"
511 #define WCHAR_TYPE "short unsigned int"
512 #define WCHAR_TYPE_SIZE 16
515 /* Register Usage. */
517 /* Number of actual hardware registers.
518 The hardware registers are assigned numbers for the compiler
519 from 0 to just below FIRST_PSEUDO_REGISTER.
520 All registers that the compiler knows about must be given numbers,
521 even those that are not normally considered general registers. */
522 #define FIRST_PSEUDO_REGISTER 34
524 /* An initializer that says which registers are used for fixed
525 purposes all throughout the compiled code and are therefore
526 not available for general allocation.
528 $r28 : $fp
529 $r29 : $gp
530 $r30 : $lp
531 $r31 : $sp
533 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
534 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
536 reserved for assembler : $r15
537 reserved for other use : $r24, $r25, $r26, $r27 */
538 #define FIXED_REGISTERS \
539 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
540 0, 0, 0, 0, 0, 0, 0, 0, \
541 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
542 0, 0, 0, 0, 0, 0, 0, 1, \
543 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
544 0, 0, 0, 0, 0, 0, 0, 0, \
545 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
546 1, 1, 1, 1, 0, 1, 0, 1, \
547 /* ARG_POINTER:32 */ \
548 1, \
549 /* FRAME_POINTER:33 */ \
553 /* Identifies the registers that are not available for
554 general allocation of values that must live across
555 function calls -- so they are caller-save registers.
557 0 : callee-save registers
558 1 : caller-save registers */
559 #define CALL_USED_REGISTERS \
560 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
561 1, 1, 1, 1, 1, 1, 0, 0, \
562 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
563 0, 0, 0, 0, 0, 0, 0, 1, \
564 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
565 1, 1, 1, 1, 1, 1, 1, 1, \
566 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
567 1, 1, 1, 1, 0, 1, 0, 1, \
568 /* ARG_POINTER:32 */ \
569 1, \
570 /* FRAME_POINTER:33 */ \
574 /* In nds32 target, we have three levels of registers:
575 LOW_COST_REGS : $r0 ~ $r7
576 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
577 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
578 #define REG_ALLOC_ORDER \
580 0, 1, 2, 3, 4, 5, 6, 7, \
581 8, 9, 10, 11, 16, 17, 18, 19, \
582 12, 13, 14, 15, 20, 21, 22, 23, \
583 24, 25, 26, 27, 28, 29, 30, 31, \
584 32, \
585 33 \
588 /* Tell IRA to use the order we define rather than messing it up with its
589 own cost calculations. */
590 #define HONOR_REG_ALLOC_ORDER optimize_size
592 /* The number of consecutive hard regs needed starting at
593 reg "regno" for holding a value of mode "mode". */
594 #define HARD_REGNO_NREGS(regno, mode) nds32_hard_regno_nregs (regno, mode)
596 /* Value is 1 if hard register "regno" can hold a value
597 of machine-mode "mode". */
598 #define HARD_REGNO_MODE_OK(regno, mode) nds32_hard_regno_mode_ok (regno, mode)
600 /* A C expression that is nonzero if a value of mode1
601 is accessible in mode2 without copying.
602 Define this macro to return nonzero in as many cases as possible
603 since doing so will allow GCC to perform better register allocation.
604 We can use general registers to tie QI/HI/SI modes together. */
605 #define MODES_TIEABLE_P(mode1, mode2) \
606 (GET_MODE_CLASS (mode1) == MODE_INT \
607 && GET_MODE_CLASS (mode2) == MODE_INT \
608 && GET_MODE_SIZE (mode1) <= UNITS_PER_WORD \
609 && GET_MODE_SIZE (mode2) <= UNITS_PER_WORD)
612 /* Register Classes. */
614 /* In nds32 target, we have three levels of registers:
615 Low cost regsiters : $r0 ~ $r7
616 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
617 High cost registers : $r12 ~ $r14, $r20 ~ $r31
619 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
620 so that it provides more chance to use low cost registers. */
621 enum reg_class
623 NO_REGS,
624 R15_TA_REG,
625 STACK_REG,
626 LOW_REGS,
627 MIDDLE_REGS,
628 HIGH_REGS,
629 GENERAL_REGS,
630 FRAME_REGS,
631 ALL_REGS,
632 LIM_REG_CLASSES
635 #define N_REG_CLASSES (int) LIM_REG_CLASSES
637 #define REG_CLASS_NAMES \
639 "NO_REGS", \
640 "R15_TA_REG", \
641 "STACK_REG", \
642 "LOW_REGS", \
643 "MIDDLE_REGS", \
644 "HIGH_REGS", \
645 "GENERAL_REGS", \
646 "FRAME_REGS", \
647 "ALL_REGS" \
650 #define REG_CLASS_CONTENTS \
652 {0x00000000, 0x00000000}, /* NO_REGS : */ \
653 {0x00008000, 0x00000000}, /* R15_TA_REG : 15 */ \
654 {0x80000000, 0x00000000}, /* STACK_REG : 31 */ \
655 {0x000000ff, 0x00000000}, /* LOW_REGS : 0-7 */ \
656 {0x000f0fff, 0x00000000}, /* MIDDLE_REGS : 0-11, 16-19 */ \
657 {0xfff07000, 0x00000000}, /* HIGH_REGS : 12-14, 20-31 */ \
658 {0xffffffff, 0x00000000}, /* GENERAL_REGS: 0-31 */ \
659 {0x00000000, 0x00000003}, /* FRAME_REGS : 32, 33 */ \
660 {0xffffffff, 0x00000003} /* ALL_REGS : 0-31, 32, 33 */ \
663 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
665 #define BASE_REG_CLASS GENERAL_REGS
666 #define INDEX_REG_CLASS GENERAL_REGS
668 /* Return nonzero if it is suitable for use as a
669 base register in operand addresses.
670 So far, we return nonzero only if "num" is a hard reg
671 of the suitable class or a pseudo register which is
672 allocated to a suitable hard reg. */
673 #define REGNO_OK_FOR_BASE_P(num) \
674 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
676 /* Return nonzero if it is suitable for use as a
677 index register in operand addresses.
678 So far, we return nonzero only if "num" is a hard reg
679 of the suitable class or a pseudo register which is
680 allocated to a suitable hard reg.
681 The difference between an index register and a base register is that
682 the index register may be scaled. */
683 #define REGNO_OK_FOR_INDEX_P(num) \
684 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
687 /* Obsolete Macros for Defining Constraints. */
690 /* Stack Layout and Calling Conventions. */
692 #define STACK_GROWS_DOWNWARD
694 #define FRAME_GROWS_DOWNWARD 1
696 #define STARTING_FRAME_OFFSET 0
698 #define STACK_POINTER_OFFSET 0
700 #define FIRST_PARM_OFFSET(fundecl) \
701 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
703 #define RETURN_ADDR_RTX(count, frameaddr) \
704 nds32_return_addr_rtx (count, frameaddr)
706 /* A C expression whose value is RTL representing the location
707 of the incoming return address at the beginning of any function
708 before the prologue.
709 If this RTL is REG, you should also define
710 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
711 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
712 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
714 #define STACK_POINTER_REGNUM SP_REGNUM
716 #define FRAME_POINTER_REGNUM 33
718 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
720 #define ARG_POINTER_REGNUM 32
722 #define STATIC_CHAIN_REGNUM 16
724 #define ELIMINABLE_REGS \
725 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
726 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
727 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
728 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
730 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
731 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
733 #define ACCUMULATE_OUTGOING_ARGS 1
735 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
737 #define CUMULATIVE_ARGS nds32_cumulative_args
739 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
740 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
742 /* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
743 We better cast REGNO into signed integer so that we can avoid
744 'comparison of unsigned expression >= 0 is always true' warning. */
745 #define FUNCTION_ARG_REGNO_P(regno) \
746 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
747 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
749 #define DEFAULT_PCC_STRUCT_RETURN 0
751 /* EXIT_IGNORE_STACK should be nonzero if, when returning
752 from a function, the stack pointer does not matter.
753 The value is tested only in functions that have frame pointers.
754 In nds32 target, the function epilogue recovers the
755 stack pointer from the frame. */
756 #define EXIT_IGNORE_STACK 1
758 #define FUNCTION_PROFILER(file, labelno) \
759 fprintf (file, "/* profiler %d */", (labelno))
762 /* Implementing the Varargs Macros. */
765 /* Trampolines for Nested Functions. */
767 /* Giving A-function and B-function,
768 if B-function wants to call A-function's nested function,
769 we need to fill trampoline code into A-function's stack
770 so that B-function can execute the code in stack to indirectly
771 jump to (like 'trampoline' action) desired nested function.
773 The trampoline code for nds32 target must contains following parts:
775 1. instructions (4 * 4 = 16 bytes):
776 get $pc first
777 load chain_value to static chain register via $pc
778 load nested function address to $r15 via $pc
779 jump to desired nested function via $r15
780 2. data (4 * 2 = 8 bytes):
781 chain_value
782 nested function address
784 Please check nds32.c implementation for more information. */
785 #define TRAMPOLINE_SIZE 24
787 /* Because all instructions/data in trampoline template are 4-byte size,
788 we set trampoline alignment 8*4=32 bits. */
789 #define TRAMPOLINE_ALIGNMENT 32
792 /* Implicit Calls to Library Routines. */
795 /* Addressing Modes. */
797 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
798 #define HAVE_POST_INCREMENT 1
799 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
800 #define HAVE_POST_DECREMENT 1
802 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
803 #define HAVE_POST_MODIFY_DISP 1
804 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
805 #define HAVE_POST_MODIFY_REG 1
807 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
809 #define MAX_REGS_PER_ADDRESS 2
812 /* Anchored Addresses. */
815 /* Condition Code Status. */
818 /* Describing Relative Costs of Operations. */
820 /* A C expression for the cost of a branch instruction.
821 A value of 1 is the default;
822 other values are interpreted relative to that. */
823 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 0)
825 #define SLOW_BYTE_ACCESS 1
827 #define NO_FUNCTION_CSE
830 /* Adjusting the Instruction Scheduler. */
833 /* Dividing the Output into Sections (Texts, Data, . . . ). */
835 #define TEXT_SECTION_ASM_OP "\t.text"
836 #define DATA_SECTION_ASM_OP "\t.data"
838 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
839 So we use '.section .bss' alternatively. */
840 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
842 /* Define this macro to be an expression with a nonzero value if jump tables
843 (for tablejump insns) should be output in the text section,
844 along with the assembler instructions.
845 Otherwise, the readonly data section is used. */
846 #define JUMP_TABLES_IN_TEXT_SECTION 1
849 /* Position Independent Code. */
851 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
854 /* Defining the Output Assembler Language. */
856 #define ASM_COMMENT_START "!"
858 #define ASM_APP_ON "! #APP"
860 #define ASM_APP_OFF "! #NO_APP\n"
862 #define ASM_OUTPUT_LABELREF(stream, name) \
863 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
865 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
866 assemble_name (stream, XSTR (sym, 0))
868 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
869 assemble_name (stream, buf)
871 #define LOCAL_LABEL_PREFIX "."
873 #define REGISTER_NAMES \
875 "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
876 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
877 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
878 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
879 "$AP", \
880 "$SFP" \
883 /* Output normal jump table entry. */
884 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
885 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
887 /* Output pc relative jump table entry. */
888 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
889 do \
891 switch (GET_MODE (body)) \
893 case QImode: \
894 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
895 break; \
896 case HImode: \
897 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
898 break; \
899 case SImode: \
900 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
901 break; \
902 default: \
903 gcc_unreachable(); \
905 } while (0)
907 /* We have to undef it first because elfos.h formerly define it
908 check gcc/config.gcc and gcc/config/elfos.h for more information. */
909 #undef ASM_OUTPUT_CASE_LABEL
910 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
911 do \
913 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
914 (*targetm.asm_out.internal_label) (stream, prefix, num); \
915 } while (0)
917 #define ASM_OUTPUT_CASE_END(stream, num, table) \
918 do \
920 /* Because our jump table is in text section, \
921 we need to make sure 2-byte alignment after \
922 the jump table for instructions fetch. */ \
923 if (GET_MODE (PATTERN (table)) == QImode) \
924 ASM_OUTPUT_ALIGN (stream, 1); \
925 asm_fprintf (stream, "\t! Jump Table End\n"); \
926 } while (0)
928 /* This macro is not documented yet.
929 But we do need it to make jump table vector aligned. */
930 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
932 #define DWARF2_UNWIND_INFO 1
934 #define JUMP_ALIGN(x) \
935 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
937 #define LOOP_ALIGN(x) \
938 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
940 #define LABEL_ALIGN(x) \
941 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
943 #define ASM_OUTPUT_ALIGN(stream, power) \
944 fprintf (stream, "\t.align\t%d\n", power)
947 /* Controlling Debugging Information Format. */
949 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
951 #define DWARF2_DEBUGGING_INFO 1
953 #define DWARF2_ASM_LINE_DEBUG_INFO 1
956 /* Cross Compilation and Floating Point. */
959 /* Mode Switching Instructions. */
962 /* Defining target-specific uses of __attribute__. */
965 /* Emulating TLS. */
968 /* Defining coprocessor specifics for MIPS targets. */
971 /* Parameters for Precompiled Header Validity Checking. */
974 /* C++ ABI parameters. */
977 /* Adding support for named address spaces. */
980 /* Miscellaneous Parameters. */
982 /* This is the machine mode that elements of a jump-table should have. */
983 #define CASE_VECTOR_MODE Pmode
985 /* Return the preferred mode for and addr_diff_vec when the mininum
986 and maximum offset are known. */
987 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
988 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
989 : (max_offset >= 100) ? HImode \
990 : QImode)
992 /* Generate pc relative jump table when -fpic or -Os. */
993 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
995 /* Define this macro if operations between registers with integral mode
996 smaller than a word are always performed on the entire register. */
997 #define WORD_REGISTER_OPERATIONS
999 /* A C expression indicating when insns that read memory in mem_mode,
1000 an integral mode narrower than a word, set the bits outside of mem_mode
1001 to be either the sign-extension or the zero-extension of the data read. */
1002 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1004 /* The maximum number of bytes that a single instruction can move quickly
1005 between memory and registers or between two memory locations. */
1006 #define MOVE_MAX 4
1008 /* A C expression that is nonzero if on this machine the number of bits
1009 actually used for the count of a shift operation is equal to the number
1010 of bits needed to represent the size of the object being shifted. */
1011 #define SHIFT_COUNT_TRUNCATED 1
1013 /* A C expression which is nonzero if on this machine it is safe to "convert"
1014 an integer of 'inprec' bits to one of 'outprec' bits by merely operating
1015 on it as if it had only 'outprec' bits. */
1016 #define TRULY_NOOP_TRUNCATION(outprec, inprec) 1
1018 /* A C expression describing the value returned by a comparison operator with
1019 an integral mode and stored by a store-flag instruction ('cstoremode4')
1020 when the condition is true. */
1021 #define STORE_FLAG_VALUE 1
1023 /* An alias for the machine mode for pointers. */
1024 #define Pmode SImode
1026 /* An alias for the machine mode used for memory references to functions
1027 being called, in call RTL expressions. */
1028 #define FUNCTION_MODE SImode
1030 /* ------------------------------------------------------------------------ */