PR bootstrap/18033
[official-gcc.git] / gcc / rtlanal.c
blob98a284324e41509f6b0d0c5015fca2b935f5176d
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx *, void *);
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Bit flags that specify the machine subtype we are compiling for.
62 Bits are tested using macros TARGET_... defined in the tm.h file
63 and set by `-m...' switches. Must be defined in rtlanal.c. */
65 int target_flags;
67 /* Return 1 if the value of X is unstable
68 (would be different at a different point in the program).
69 The frame pointer, arg pointer, etc. are considered stable
70 (within one function) and so is anything marked `unchanging'. */
72 int
73 rtx_unstable_p (rtx x)
75 RTX_CODE code = GET_CODE (x);
76 int i;
77 const char *fmt;
79 switch (code)
81 case MEM:
82 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
84 case CONST:
85 case CONST_INT:
86 case CONST_DOUBLE:
87 case CONST_VECTOR:
88 case SYMBOL_REF:
89 case LABEL_REF:
90 return 0;
92 case REG:
93 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
94 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
95 /* The arg pointer varies if it is not a fixed register. */
96 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
97 return 0;
98 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
99 /* ??? When call-clobbered, the value is stable modulo the restore
100 that must happen after a call. This currently screws up local-alloc
101 into believing that the restore is not needed. */
102 if (x == pic_offset_table_rtx)
103 return 0;
104 #endif
105 return 1;
107 case ASM_OPERANDS:
108 if (MEM_VOLATILE_P (x))
109 return 1;
111 /* Fall through. */
113 default:
114 break;
117 fmt = GET_RTX_FORMAT (code);
118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
119 if (fmt[i] == 'e')
121 if (rtx_unstable_p (XEXP (x, i)))
122 return 1;
124 else if (fmt[i] == 'E')
126 int j;
127 for (j = 0; j < XVECLEN (x, i); j++)
128 if (rtx_unstable_p (XVECEXP (x, i, j)))
129 return 1;
132 return 0;
135 /* Return 1 if X has a value that can vary even between two
136 executions of the program. 0 means X can be compared reliably
137 against certain constants or near-constants.
138 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
139 zero, we are slightly more conservative.
140 The frame pointer and the arg pointer are considered constant. */
143 rtx_varies_p (rtx x, int for_alias)
145 RTX_CODE code;
146 int i;
147 const char *fmt;
149 if (!x)
150 return 0;
152 code = GET_CODE (x);
153 switch (code)
155 case MEM:
156 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
158 case CONST:
159 case CONST_INT:
160 case CONST_DOUBLE:
161 case CONST_VECTOR:
162 case SYMBOL_REF:
163 case LABEL_REF:
164 return 0;
166 case REG:
167 /* Note that we have to test for the actual rtx used for the frame
168 and arg pointers and not just the register number in case we have
169 eliminated the frame and/or arg pointer and are using it
170 for pseudos. */
171 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
172 /* The arg pointer varies if it is not a fixed register. */
173 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
174 return 0;
175 if (x == pic_offset_table_rtx
176 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
177 /* ??? When call-clobbered, the value is stable modulo the restore
178 that must happen after a call. This currently screws up
179 local-alloc into believing that the restore is not needed, so we
180 must return 0 only if we are called from alias analysis. */
181 && for_alias
182 #endif
184 return 0;
185 return 1;
187 case LO_SUM:
188 /* The operand 0 of a LO_SUM is considered constant
189 (in fact it is related specifically to operand 1)
190 during alias analysis. */
191 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
192 || rtx_varies_p (XEXP (x, 1), for_alias);
194 case ASM_OPERANDS:
195 if (MEM_VOLATILE_P (x))
196 return 1;
198 /* Fall through. */
200 default:
201 break;
204 fmt = GET_RTX_FORMAT (code);
205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
206 if (fmt[i] == 'e')
208 if (rtx_varies_p (XEXP (x, i), for_alias))
209 return 1;
211 else if (fmt[i] == 'E')
213 int j;
214 for (j = 0; j < XVECLEN (x, i); j++)
215 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
216 return 1;
219 return 0;
222 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
225 rtx_addr_can_trap_p (rtx x)
227 enum rtx_code code = GET_CODE (x);
229 switch (code)
231 case SYMBOL_REF:
232 return SYMBOL_REF_WEAK (x);
234 case LABEL_REF:
235 return 0;
237 case REG:
238 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
239 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
240 || x == stack_pointer_rtx
241 /* The arg pointer varies if it is not a fixed register. */
242 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
243 return 0;
244 /* All of the virtual frame registers are stack references. */
245 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
246 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
247 return 0;
248 return 1;
250 case CONST:
251 return rtx_addr_can_trap_p (XEXP (x, 0));
253 case PLUS:
254 /* An address is assumed not to trap if it is an address that can't
255 trap plus a constant integer or it is the pic register plus a
256 constant. */
257 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
258 && GET_CODE (XEXP (x, 1)) == CONST_INT)
259 || (XEXP (x, 0) == pic_offset_table_rtx
260 && CONSTANT_P (XEXP (x, 1))));
262 case LO_SUM:
263 case PRE_MODIFY:
264 return rtx_addr_can_trap_p (XEXP (x, 1));
266 case PRE_DEC:
267 case PRE_INC:
268 case POST_DEC:
269 case POST_INC:
270 case POST_MODIFY:
271 return rtx_addr_can_trap_p (XEXP (x, 0));
273 default:
274 break;
277 /* If it isn't one of the case above, it can cause a trap. */
278 return 1;
281 /* Return true if X is an address that is known to not be zero. */
283 bool
284 nonzero_address_p (rtx x)
286 enum rtx_code code = GET_CODE (x);
288 switch (code)
290 case SYMBOL_REF:
291 return !SYMBOL_REF_WEAK (x);
293 case LABEL_REF:
294 return true;
296 case REG:
297 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
298 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
299 || x == stack_pointer_rtx
300 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
301 return true;
302 /* All of the virtual frame registers are stack references. */
303 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
304 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
305 return true;
306 return false;
308 case CONST:
309 return nonzero_address_p (XEXP (x, 0));
311 case PLUS:
312 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
314 /* Pointers aren't allowed to wrap. If we've got a register
315 that is known to be a pointer, and a positive offset, then
316 the composite can't be zero. */
317 if (INTVAL (XEXP (x, 1)) > 0
318 && REG_P (XEXP (x, 0))
319 && REG_POINTER (XEXP (x, 0)))
320 return true;
322 return nonzero_address_p (XEXP (x, 0));
324 /* Handle PIC references. */
325 else if (XEXP (x, 0) == pic_offset_table_rtx
326 && CONSTANT_P (XEXP (x, 1)))
327 return true;
328 return false;
330 case PRE_MODIFY:
331 /* Similar to the above; allow positive offsets. Further, since
332 auto-inc is only allowed in memories, the register must be a
333 pointer. */
334 if (GET_CODE (XEXP (x, 1)) == CONST_INT
335 && INTVAL (XEXP (x, 1)) > 0)
336 return true;
337 return nonzero_address_p (XEXP (x, 0));
339 case PRE_INC:
340 /* Similarly. Further, the offset is always positive. */
341 return true;
343 case PRE_DEC:
344 case POST_DEC:
345 case POST_INC:
346 case POST_MODIFY:
347 return nonzero_address_p (XEXP (x, 0));
349 case LO_SUM:
350 return nonzero_address_p (XEXP (x, 1));
352 default:
353 break;
356 /* If it isn't one of the case above, might be zero. */
357 return false;
360 /* Return 1 if X refers to a memory location whose address
361 cannot be compared reliably with constant addresses,
362 or if X refers to a BLKmode memory object.
363 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
364 zero, we are slightly more conservative. */
367 rtx_addr_varies_p (rtx x, int for_alias)
369 enum rtx_code code;
370 int i;
371 const char *fmt;
373 if (x == 0)
374 return 0;
376 code = GET_CODE (x);
377 if (code == MEM)
378 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
380 fmt = GET_RTX_FORMAT (code);
381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
382 if (fmt[i] == 'e')
384 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
385 return 1;
387 else if (fmt[i] == 'E')
389 int j;
390 for (j = 0; j < XVECLEN (x, i); j++)
391 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
392 return 1;
394 return 0;
397 /* Return the value of the integer term in X, if one is apparent;
398 otherwise return 0.
399 Only obvious integer terms are detected.
400 This is used in cse.c with the `related_value' field. */
402 HOST_WIDE_INT
403 get_integer_term (rtx x)
405 if (GET_CODE (x) == CONST)
406 x = XEXP (x, 0);
408 if (GET_CODE (x) == MINUS
409 && GET_CODE (XEXP (x, 1)) == CONST_INT)
410 return - INTVAL (XEXP (x, 1));
411 if (GET_CODE (x) == PLUS
412 && GET_CODE (XEXP (x, 1)) == CONST_INT)
413 return INTVAL (XEXP (x, 1));
414 return 0;
417 /* If X is a constant, return the value sans apparent integer term;
418 otherwise return 0.
419 Only obvious integer terms are detected. */
422 get_related_value (rtx x)
424 if (GET_CODE (x) != CONST)
425 return 0;
426 x = XEXP (x, 0);
427 if (GET_CODE (x) == PLUS
428 && GET_CODE (XEXP (x, 1)) == CONST_INT)
429 return XEXP (x, 0);
430 else if (GET_CODE (x) == MINUS
431 && GET_CODE (XEXP (x, 1)) == CONST_INT)
432 return XEXP (x, 0);
433 return 0;
436 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
437 a global register. */
439 static int
440 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
442 int regno;
443 rtx x = *loc;
445 if (! x)
446 return 0;
448 switch (GET_CODE (x))
450 case SUBREG:
451 if (REG_P (SUBREG_REG (x)))
453 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
454 && global_regs[subreg_regno (x)])
455 return 1;
456 return 0;
458 break;
460 case REG:
461 regno = REGNO (x);
462 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
463 return 1;
464 return 0;
466 case SCRATCH:
467 case PC:
468 case CC0:
469 case CONST_INT:
470 case CONST_DOUBLE:
471 case CONST:
472 case LABEL_REF:
473 return 0;
475 case CALL:
476 /* A non-constant call might use a global register. */
477 return 1;
479 default:
480 break;
483 return 0;
486 /* Returns nonzero if X mentions a global register. */
489 global_reg_mentioned_p (rtx x)
491 if (INSN_P (x))
493 if (CALL_P (x))
495 if (! CONST_OR_PURE_CALL_P (x))
496 return 1;
497 x = CALL_INSN_FUNCTION_USAGE (x);
498 if (x == 0)
499 return 0;
501 else
502 x = PATTERN (x);
505 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
508 /* Return the number of places FIND appears within X. If COUNT_DEST is
509 zero, we do not count occurrences inside the destination of a SET. */
512 count_occurrences (rtx x, rtx find, int count_dest)
514 int i, j;
515 enum rtx_code code;
516 const char *format_ptr;
517 int count;
519 if (x == find)
520 return 1;
522 code = GET_CODE (x);
524 switch (code)
526 case REG:
527 case CONST_INT:
528 case CONST_DOUBLE:
529 case CONST_VECTOR:
530 case SYMBOL_REF:
531 case CODE_LABEL:
532 case PC:
533 case CC0:
534 return 0;
536 case MEM:
537 if (MEM_P (find) && rtx_equal_p (x, find))
538 return 1;
539 break;
541 case SET:
542 if (SET_DEST (x) == find && ! count_dest)
543 return count_occurrences (SET_SRC (x), find, count_dest);
544 break;
546 default:
547 break;
550 format_ptr = GET_RTX_FORMAT (code);
551 count = 0;
553 for (i = 0; i < GET_RTX_LENGTH (code); i++)
555 switch (*format_ptr++)
557 case 'e':
558 count += count_occurrences (XEXP (x, i), find, count_dest);
559 break;
561 case 'E':
562 for (j = 0; j < XVECLEN (x, i); j++)
563 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
564 break;
567 return count;
570 /* Nonzero if register REG appears somewhere within IN.
571 Also works if REG is not a register; in this case it checks
572 for a subexpression of IN that is Lisp "equal" to REG. */
575 reg_mentioned_p (rtx reg, rtx in)
577 const char *fmt;
578 int i;
579 enum rtx_code code;
581 if (in == 0)
582 return 0;
584 if (reg == in)
585 return 1;
587 if (GET_CODE (in) == LABEL_REF)
588 return reg == XEXP (in, 0);
590 code = GET_CODE (in);
592 switch (code)
594 /* Compare registers by number. */
595 case REG:
596 return REG_P (reg) && REGNO (in) == REGNO (reg);
598 /* These codes have no constituent expressions
599 and are unique. */
600 case SCRATCH:
601 case CC0:
602 case PC:
603 return 0;
605 case CONST_INT:
606 case CONST_VECTOR:
607 case CONST_DOUBLE:
608 /* These are kept unique for a given value. */
609 return 0;
611 default:
612 break;
615 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
616 return 1;
618 fmt = GET_RTX_FORMAT (code);
620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
622 if (fmt[i] == 'E')
624 int j;
625 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
626 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
627 return 1;
629 else if (fmt[i] == 'e'
630 && reg_mentioned_p (reg, XEXP (in, i)))
631 return 1;
633 return 0;
636 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
637 no CODE_LABEL insn. */
640 no_labels_between_p (rtx beg, rtx end)
642 rtx p;
643 if (beg == end)
644 return 0;
645 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
646 if (LABEL_P (p))
647 return 0;
648 return 1;
651 /* Nonzero if register REG is used in an insn between
652 FROM_INSN and TO_INSN (exclusive of those two). */
655 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
657 rtx insn;
659 if (from_insn == to_insn)
660 return 0;
662 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
663 if (INSN_P (insn)
664 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
665 || (CALL_P (insn)
666 && (find_reg_fusage (insn, USE, reg)
667 || find_reg_fusage (insn, CLOBBER, reg)))))
668 return 1;
669 return 0;
672 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
673 is entirely replaced by a new value and the only use is as a SET_DEST,
674 we do not consider it a reference. */
677 reg_referenced_p (rtx x, rtx body)
679 int i;
681 switch (GET_CODE (body))
683 case SET:
684 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
685 return 1;
687 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
688 of a REG that occupies all of the REG, the insn references X if
689 it is mentioned in the destination. */
690 if (GET_CODE (SET_DEST (body)) != CC0
691 && GET_CODE (SET_DEST (body)) != PC
692 && !REG_P (SET_DEST (body))
693 && ! (GET_CODE (SET_DEST (body)) == SUBREG
694 && REG_P (SUBREG_REG (SET_DEST (body)))
695 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
696 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
697 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
698 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
699 && reg_overlap_mentioned_p (x, SET_DEST (body)))
700 return 1;
701 return 0;
703 case ASM_OPERANDS:
704 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
705 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
706 return 1;
707 return 0;
709 case CALL:
710 case USE:
711 case IF_THEN_ELSE:
712 return reg_overlap_mentioned_p (x, body);
714 case TRAP_IF:
715 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
717 case PREFETCH:
718 return reg_overlap_mentioned_p (x, XEXP (body, 0));
720 case UNSPEC:
721 case UNSPEC_VOLATILE:
722 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
723 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
724 return 1;
725 return 0;
727 case PARALLEL:
728 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
729 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
730 return 1;
731 return 0;
733 case CLOBBER:
734 if (MEM_P (XEXP (body, 0)))
735 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
736 return 1;
737 return 0;
739 case COND_EXEC:
740 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
741 return 1;
742 return reg_referenced_p (x, COND_EXEC_CODE (body));
744 default:
745 return 0;
749 /* Nonzero if register REG is set or clobbered in an insn between
750 FROM_INSN and TO_INSN (exclusive of those two). */
753 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
755 rtx insn;
757 if (from_insn == to_insn)
758 return 0;
760 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
761 if (INSN_P (insn) && reg_set_p (reg, insn))
762 return 1;
763 return 0;
766 /* Internals of reg_set_between_p. */
768 reg_set_p (rtx reg, rtx insn)
770 /* We can be passed an insn or part of one. If we are passed an insn,
771 check if a side-effect of the insn clobbers REG. */
772 if (INSN_P (insn)
773 && (FIND_REG_INC_NOTE (insn, reg)
774 || (CALL_P (insn)
775 && ((REG_P (reg)
776 && REGNO (reg) < FIRST_PSEUDO_REGISTER
777 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
778 REGNO (reg)))
779 || MEM_P (reg)
780 || find_reg_fusage (insn, CLOBBER, reg)))))
781 return 1;
783 return set_of (reg, insn) != NULL_RTX;
786 /* Similar to reg_set_between_p, but check all registers in X. Return 0
787 only if none of them are modified between START and END. Do not
788 consider non-registers one way or the other. */
791 regs_set_between_p (rtx x, rtx start, rtx end)
793 enum rtx_code code = GET_CODE (x);
794 const char *fmt;
795 int i, j;
797 switch (code)
799 case CONST_INT:
800 case CONST_DOUBLE:
801 case CONST_VECTOR:
802 case CONST:
803 case SYMBOL_REF:
804 case LABEL_REF:
805 case PC:
806 case CC0:
807 return 0;
809 case REG:
810 return reg_set_between_p (x, start, end);
812 default:
813 break;
816 fmt = GET_RTX_FORMAT (code);
817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
819 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
820 return 1;
822 else if (fmt[i] == 'E')
823 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
824 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
825 return 1;
828 return 0;
831 /* Similar to reg_set_between_p, but check all registers in X. Return 0
832 only if none of them are modified between START and END. Return 1 if
833 X contains a MEM; this routine does usememory aliasing. */
836 modified_between_p (rtx x, rtx start, rtx end)
838 enum rtx_code code = GET_CODE (x);
839 const char *fmt;
840 int i, j;
841 rtx insn;
843 if (start == end)
844 return 0;
846 switch (code)
848 case CONST_INT:
849 case CONST_DOUBLE:
850 case CONST_VECTOR:
851 case CONST:
852 case SYMBOL_REF:
853 case LABEL_REF:
854 return 0;
856 case PC:
857 case CC0:
858 return 1;
860 case MEM:
861 if (MEM_READONLY_P (x))
862 return 0;
863 if (modified_between_p (XEXP (x, 0), start, end))
864 return 1;
865 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
866 if (memory_modified_in_insn_p (x, insn))
867 return 1;
868 return 0;
869 break;
871 case REG:
872 return reg_set_between_p (x, start, end);
874 default:
875 break;
878 fmt = GET_RTX_FORMAT (code);
879 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
881 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
882 return 1;
884 else if (fmt[i] == 'E')
885 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
886 if (modified_between_p (XVECEXP (x, i, j), start, end))
887 return 1;
890 return 0;
893 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
894 of them are modified in INSN. Return 1 if X contains a MEM; this routine
895 does use memory aliasing. */
898 modified_in_p (rtx x, rtx insn)
900 enum rtx_code code = GET_CODE (x);
901 const char *fmt;
902 int i, j;
904 switch (code)
906 case CONST_INT:
907 case CONST_DOUBLE:
908 case CONST_VECTOR:
909 case CONST:
910 case SYMBOL_REF:
911 case LABEL_REF:
912 return 0;
914 case PC:
915 case CC0:
916 return 1;
918 case MEM:
919 if (MEM_READONLY_P (x))
920 return 0;
921 if (modified_in_p (XEXP (x, 0), insn))
922 return 1;
923 if (memory_modified_in_insn_p (x, insn))
924 return 1;
925 return 0;
926 break;
928 case REG:
929 return reg_set_p (x, insn);
931 default:
932 break;
935 fmt = GET_RTX_FORMAT (code);
936 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
938 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
939 return 1;
941 else if (fmt[i] == 'E')
942 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
943 if (modified_in_p (XVECEXP (x, i, j), insn))
944 return 1;
947 return 0;
950 /* Helper function for set_of. */
951 struct set_of_data
953 rtx found;
954 rtx pat;
957 static void
958 set_of_1 (rtx x, rtx pat, void *data1)
960 struct set_of_data *data = (struct set_of_data *) (data1);
961 if (rtx_equal_p (x, data->pat)
962 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
963 data->found = pat;
966 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
967 (either directly or via STRICT_LOW_PART and similar modifiers). */
969 set_of (rtx pat, rtx insn)
971 struct set_of_data data;
972 data.found = NULL_RTX;
973 data.pat = pat;
974 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
975 return data.found;
978 /* Given an INSN, return a SET expression if this insn has only a single SET.
979 It may also have CLOBBERs, USEs, or SET whose output
980 will not be used, which we ignore. */
983 single_set_2 (rtx insn, rtx pat)
985 rtx set = NULL;
986 int set_verified = 1;
987 int i;
989 if (GET_CODE (pat) == PARALLEL)
991 for (i = 0; i < XVECLEN (pat, 0); i++)
993 rtx sub = XVECEXP (pat, 0, i);
994 switch (GET_CODE (sub))
996 case USE:
997 case CLOBBER:
998 break;
1000 case SET:
1001 /* We can consider insns having multiple sets, where all
1002 but one are dead as single set insns. In common case
1003 only single set is present in the pattern so we want
1004 to avoid checking for REG_UNUSED notes unless necessary.
1006 When we reach set first time, we just expect this is
1007 the single set we are looking for and only when more
1008 sets are found in the insn, we check them. */
1009 if (!set_verified)
1011 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1012 && !side_effects_p (set))
1013 set = NULL;
1014 else
1015 set_verified = 1;
1017 if (!set)
1018 set = sub, set_verified = 0;
1019 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1020 || side_effects_p (sub))
1021 return NULL_RTX;
1022 break;
1024 default:
1025 return NULL_RTX;
1029 return set;
1032 /* Given an INSN, return nonzero if it has more than one SET, else return
1033 zero. */
1036 multiple_sets (rtx insn)
1038 int found;
1039 int i;
1041 /* INSN must be an insn. */
1042 if (! INSN_P (insn))
1043 return 0;
1045 /* Only a PARALLEL can have multiple SETs. */
1046 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1048 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1049 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1051 /* If we have already found a SET, then return now. */
1052 if (found)
1053 return 1;
1054 else
1055 found = 1;
1059 /* Either zero or one SET. */
1060 return 0;
1063 /* Return nonzero if the destination of SET equals the source
1064 and there are no side effects. */
1067 set_noop_p (rtx set)
1069 rtx src = SET_SRC (set);
1070 rtx dst = SET_DEST (set);
1072 if (dst == pc_rtx && src == pc_rtx)
1073 return 1;
1075 if (MEM_P (dst) && MEM_P (src))
1076 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1078 if (GET_CODE (dst) == ZERO_EXTRACT)
1079 return rtx_equal_p (XEXP (dst, 0), src)
1080 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1081 && !side_effects_p (src);
1083 if (GET_CODE (dst) == STRICT_LOW_PART)
1084 dst = XEXP (dst, 0);
1086 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1088 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1089 return 0;
1090 src = SUBREG_REG (src);
1091 dst = SUBREG_REG (dst);
1094 return (REG_P (src) && REG_P (dst)
1095 && REGNO (src) == REGNO (dst));
1098 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1099 value to itself. */
1102 noop_move_p (rtx insn)
1104 rtx pat = PATTERN (insn);
1106 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1107 return 1;
1109 /* Insns carrying these notes are useful later on. */
1110 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1111 return 0;
1113 /* For now treat an insn with a REG_RETVAL note as a
1114 a special insn which should not be considered a no-op. */
1115 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1116 return 0;
1118 if (GET_CODE (pat) == SET && set_noop_p (pat))
1119 return 1;
1121 if (GET_CODE (pat) == PARALLEL)
1123 int i;
1124 /* If nothing but SETs of registers to themselves,
1125 this insn can also be deleted. */
1126 for (i = 0; i < XVECLEN (pat, 0); i++)
1128 rtx tem = XVECEXP (pat, 0, i);
1130 if (GET_CODE (tem) == USE
1131 || GET_CODE (tem) == CLOBBER)
1132 continue;
1134 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1135 return 0;
1138 return 1;
1140 return 0;
1144 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1145 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1146 If the object was modified, if we hit a partial assignment to X, or hit a
1147 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1148 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1149 be the src. */
1152 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1154 rtx p;
1156 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1157 p = PREV_INSN (p))
1158 if (INSN_P (p))
1160 rtx set = single_set (p);
1161 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1163 if (set && rtx_equal_p (x, SET_DEST (set)))
1165 rtx src = SET_SRC (set);
1167 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1168 src = XEXP (note, 0);
1170 if ((valid_to == NULL_RTX
1171 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1172 /* Reject hard registers because we don't usually want
1173 to use them; we'd rather use a pseudo. */
1174 && (! (REG_P (src)
1175 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1177 *pinsn = p;
1178 return src;
1182 /* If set in non-simple way, we don't have a value. */
1183 if (reg_set_p (x, p))
1184 break;
1187 return x;
1190 /* Return nonzero if register in range [REGNO, ENDREGNO)
1191 appears either explicitly or implicitly in X
1192 other than being stored into.
1194 References contained within the substructure at LOC do not count.
1195 LOC may be zero, meaning don't ignore anything. */
1198 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1199 rtx *loc)
1201 int i;
1202 unsigned int x_regno;
1203 RTX_CODE code;
1204 const char *fmt;
1206 repeat:
1207 /* The contents of a REG_NONNEG note is always zero, so we must come here
1208 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1209 if (x == 0)
1210 return 0;
1212 code = GET_CODE (x);
1214 switch (code)
1216 case REG:
1217 x_regno = REGNO (x);
1219 /* If we modifying the stack, frame, or argument pointer, it will
1220 clobber a virtual register. In fact, we could be more precise,
1221 but it isn't worth it. */
1222 if ((x_regno == STACK_POINTER_REGNUM
1223 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1224 || x_regno == ARG_POINTER_REGNUM
1225 #endif
1226 || x_regno == FRAME_POINTER_REGNUM)
1227 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1228 return 1;
1230 return (endregno > x_regno
1231 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1232 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1233 : 1));
1235 case SUBREG:
1236 /* If this is a SUBREG of a hard reg, we can see exactly which
1237 registers are being modified. Otherwise, handle normally. */
1238 if (REG_P (SUBREG_REG (x))
1239 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1241 unsigned int inner_regno = subreg_regno (x);
1242 unsigned int inner_endregno
1243 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1244 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1246 return endregno > inner_regno && regno < inner_endregno;
1248 break;
1250 case CLOBBER:
1251 case SET:
1252 if (&SET_DEST (x) != loc
1253 /* Note setting a SUBREG counts as referring to the REG it is in for
1254 a pseudo but not for hard registers since we can
1255 treat each word individually. */
1256 && ((GET_CODE (SET_DEST (x)) == SUBREG
1257 && loc != &SUBREG_REG (SET_DEST (x))
1258 && REG_P (SUBREG_REG (SET_DEST (x)))
1259 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1260 && refers_to_regno_p (regno, endregno,
1261 SUBREG_REG (SET_DEST (x)), loc))
1262 || (!REG_P (SET_DEST (x))
1263 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1264 return 1;
1266 if (code == CLOBBER || loc == &SET_SRC (x))
1267 return 0;
1268 x = SET_SRC (x);
1269 goto repeat;
1271 default:
1272 break;
1275 /* X does not match, so try its subexpressions. */
1277 fmt = GET_RTX_FORMAT (code);
1278 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1280 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1282 if (i == 0)
1284 x = XEXP (x, 0);
1285 goto repeat;
1287 else
1288 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1289 return 1;
1291 else if (fmt[i] == 'E')
1293 int j;
1294 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1295 if (loc != &XVECEXP (x, i, j)
1296 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1297 return 1;
1300 return 0;
1303 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1304 we check if any register number in X conflicts with the relevant register
1305 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1306 contains a MEM (we don't bother checking for memory addresses that can't
1307 conflict because we expect this to be a rare case. */
1310 reg_overlap_mentioned_p (rtx x, rtx in)
1312 unsigned int regno, endregno;
1314 /* If either argument is a constant, then modifying X can not
1315 affect IN. Here we look at IN, we can profitably combine
1316 CONSTANT_P (x) with the switch statement below. */
1317 if (CONSTANT_P (in))
1318 return 0;
1320 recurse:
1321 switch (GET_CODE (x))
1323 case STRICT_LOW_PART:
1324 case ZERO_EXTRACT:
1325 case SIGN_EXTRACT:
1326 /* Overly conservative. */
1327 x = XEXP (x, 0);
1328 goto recurse;
1330 case SUBREG:
1331 regno = REGNO (SUBREG_REG (x));
1332 if (regno < FIRST_PSEUDO_REGISTER)
1333 regno = subreg_regno (x);
1334 goto do_reg;
1336 case REG:
1337 regno = REGNO (x);
1338 do_reg:
1339 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1340 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1341 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1343 case MEM:
1345 const char *fmt;
1346 int i;
1348 if (MEM_P (in))
1349 return 1;
1351 fmt = GET_RTX_FORMAT (GET_CODE (in));
1352 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1353 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1354 return 1;
1356 return 0;
1359 case SCRATCH:
1360 case PC:
1361 case CC0:
1362 return reg_mentioned_p (x, in);
1364 case PARALLEL:
1366 int i;
1368 /* If any register in here refers to it we return true. */
1369 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1370 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1371 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1372 return 1;
1373 return 0;
1376 default:
1377 gcc_assert (CONSTANT_P (x));
1378 return 0;
1382 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1383 (X would be the pattern of an insn).
1384 FUN receives two arguments:
1385 the REG, MEM, CC0 or PC being stored in or clobbered,
1386 the SET or CLOBBER rtx that does the store.
1388 If the item being stored in or clobbered is a SUBREG of a hard register,
1389 the SUBREG will be passed. */
1391 void
1392 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1394 int i;
1396 if (GET_CODE (x) == COND_EXEC)
1397 x = COND_EXEC_CODE (x);
1399 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1401 rtx dest = SET_DEST (x);
1403 while ((GET_CODE (dest) == SUBREG
1404 && (!REG_P (SUBREG_REG (dest))
1405 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1406 || GET_CODE (dest) == ZERO_EXTRACT
1407 || GET_CODE (dest) == STRICT_LOW_PART)
1408 dest = XEXP (dest, 0);
1410 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1411 each of whose first operand is a register. */
1412 if (GET_CODE (dest) == PARALLEL)
1414 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1415 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1416 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1418 else
1419 (*fun) (dest, x, data);
1422 else if (GET_CODE (x) == PARALLEL)
1423 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1424 note_stores (XVECEXP (x, 0, i), fun, data);
1427 /* Like notes_stores, but call FUN for each expression that is being
1428 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1429 FUN for each expression, not any interior subexpressions. FUN receives a
1430 pointer to the expression and the DATA passed to this function.
1432 Note that this is not quite the same test as that done in reg_referenced_p
1433 since that considers something as being referenced if it is being
1434 partially set, while we do not. */
1436 void
1437 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1439 rtx body = *pbody;
1440 int i;
1442 switch (GET_CODE (body))
1444 case COND_EXEC:
1445 (*fun) (&COND_EXEC_TEST (body), data);
1446 note_uses (&COND_EXEC_CODE (body), fun, data);
1447 return;
1449 case PARALLEL:
1450 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1451 note_uses (&XVECEXP (body, 0, i), fun, data);
1452 return;
1454 case USE:
1455 (*fun) (&XEXP (body, 0), data);
1456 return;
1458 case ASM_OPERANDS:
1459 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1460 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1461 return;
1463 case TRAP_IF:
1464 (*fun) (&TRAP_CONDITION (body), data);
1465 return;
1467 case PREFETCH:
1468 (*fun) (&XEXP (body, 0), data);
1469 return;
1471 case UNSPEC:
1472 case UNSPEC_VOLATILE:
1473 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1474 (*fun) (&XVECEXP (body, 0, i), data);
1475 return;
1477 case CLOBBER:
1478 if (MEM_P (XEXP (body, 0)))
1479 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1480 return;
1482 case SET:
1484 rtx dest = SET_DEST (body);
1486 /* For sets we replace everything in source plus registers in memory
1487 expression in store and operands of a ZERO_EXTRACT. */
1488 (*fun) (&SET_SRC (body), data);
1490 if (GET_CODE (dest) == ZERO_EXTRACT)
1492 (*fun) (&XEXP (dest, 1), data);
1493 (*fun) (&XEXP (dest, 2), data);
1496 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1497 dest = XEXP (dest, 0);
1499 if (MEM_P (dest))
1500 (*fun) (&XEXP (dest, 0), data);
1502 return;
1504 default:
1505 /* All the other possibilities never store. */
1506 (*fun) (pbody, data);
1507 return;
1511 /* Return nonzero if X's old contents don't survive after INSN.
1512 This will be true if X is (cc0) or if X is a register and
1513 X dies in INSN or because INSN entirely sets X.
1515 "Entirely set" means set directly and not through a SUBREG, or
1516 ZERO_EXTRACT, so no trace of the old contents remains.
1517 Likewise, REG_INC does not count.
1519 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1520 but for this use that makes no difference, since regs don't overlap
1521 during their lifetimes. Therefore, this function may be used
1522 at any time after deaths have been computed (in flow.c).
1524 If REG is a hard reg that occupies multiple machine registers, this
1525 function will only return 1 if each of those registers will be replaced
1526 by INSN. */
1529 dead_or_set_p (rtx insn, rtx x)
1531 unsigned int regno, last_regno;
1532 unsigned int i;
1534 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1535 if (GET_CODE (x) == CC0)
1536 return 1;
1538 gcc_assert (REG_P (x));
1540 regno = REGNO (x);
1541 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1542 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1544 for (i = regno; i <= last_regno; i++)
1545 if (! dead_or_set_regno_p (insn, i))
1546 return 0;
1548 return 1;
1551 /* Return TRUE iff DEST is a register or subreg of a register and
1552 doesn't change the number of words of the inner register, and any
1553 part of the register is TEST_REGNO. */
1555 static bool
1556 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1558 unsigned int regno, endregno;
1560 if (GET_CODE (dest) == SUBREG
1561 && (((GET_MODE_SIZE (GET_MODE (dest))
1562 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1563 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1564 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1565 dest = SUBREG_REG (dest);
1567 if (!REG_P (dest))
1568 return false;
1570 regno = REGNO (dest);
1571 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1572 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1573 return (test_regno >= regno && test_regno < endregno);
1576 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1577 any member matches the covers_regno_no_parallel_p criteria. */
1579 static bool
1580 covers_regno_p (rtx dest, unsigned int test_regno)
1582 if (GET_CODE (dest) == PARALLEL)
1584 /* Some targets place small structures in registers for return
1585 values of functions, and those registers are wrapped in
1586 PARALLELs that we may see as the destination of a SET. */
1587 int i;
1589 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1591 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1592 if (inner != NULL_RTX
1593 && covers_regno_no_parallel_p (inner, test_regno))
1594 return true;
1597 return false;
1599 else
1600 return covers_regno_no_parallel_p (dest, test_regno);
1603 /* Utility function for dead_or_set_p to check an individual register. Also
1604 called from flow.c. */
1607 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1609 rtx pattern;
1611 /* See if there is a death note for something that includes TEST_REGNO. */
1612 if (find_regno_note (insn, REG_DEAD, test_regno))
1613 return 1;
1615 if (CALL_P (insn)
1616 && find_regno_fusage (insn, CLOBBER, test_regno))
1617 return 1;
1619 pattern = PATTERN (insn);
1621 if (GET_CODE (pattern) == COND_EXEC)
1622 pattern = COND_EXEC_CODE (pattern);
1624 if (GET_CODE (pattern) == SET)
1625 return covers_regno_p (SET_DEST (pattern), test_regno);
1626 else if (GET_CODE (pattern) == PARALLEL)
1628 int i;
1630 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1632 rtx body = XVECEXP (pattern, 0, i);
1634 if (GET_CODE (body) == COND_EXEC)
1635 body = COND_EXEC_CODE (body);
1637 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1638 && covers_regno_p (SET_DEST (body), test_regno))
1639 return 1;
1643 return 0;
1646 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1647 If DATUM is nonzero, look for one whose datum is DATUM. */
1650 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1652 rtx link;
1654 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1655 if (! INSN_P (insn))
1656 return 0;
1657 if (datum == 0)
1659 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1660 if (REG_NOTE_KIND (link) == kind)
1661 return link;
1662 return 0;
1665 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1666 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1667 return link;
1668 return 0;
1671 /* Return the reg-note of kind KIND in insn INSN which applies to register
1672 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1673 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1674 it might be the case that the note overlaps REGNO. */
1677 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1679 rtx link;
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1685 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1686 if (REG_NOTE_KIND (link) == kind
1687 /* Verify that it is a register, so that scratch and MEM won't cause a
1688 problem here. */
1689 && REG_P (XEXP (link, 0))
1690 && REGNO (XEXP (link, 0)) <= regno
1691 && ((REGNO (XEXP (link, 0))
1692 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1693 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1694 [GET_MODE (XEXP (link, 0))]))
1695 > regno))
1696 return link;
1697 return 0;
1700 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1701 has such a note. */
1704 find_reg_equal_equiv_note (rtx insn)
1706 rtx link;
1708 if (!INSN_P (insn))
1709 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == REG_EQUAL
1712 || REG_NOTE_KIND (link) == REG_EQUIV)
1714 if (single_set (insn) == 0)
1715 return 0;
1716 return link;
1718 return NULL;
1721 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1722 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1725 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1727 /* If it's not a CALL_INSN, it can't possibly have a
1728 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1729 if (!CALL_P (insn))
1730 return 0;
1732 gcc_assert (datum);
1734 if (!REG_P (datum))
1736 rtx link;
1738 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1739 link;
1740 link = XEXP (link, 1))
1741 if (GET_CODE (XEXP (link, 0)) == code
1742 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1743 return 1;
1745 else
1747 unsigned int regno = REGNO (datum);
1749 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1750 to pseudo registers, so don't bother checking. */
1752 if (regno < FIRST_PSEUDO_REGISTER)
1754 unsigned int end_regno
1755 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1756 unsigned int i;
1758 for (i = regno; i < end_regno; i++)
1759 if (find_regno_fusage (insn, code, i))
1760 return 1;
1764 return 0;
1767 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1768 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1771 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1773 rtx link;
1775 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1776 to pseudo registers, so don't bother checking. */
1778 if (regno >= FIRST_PSEUDO_REGISTER
1779 || !CALL_P (insn) )
1780 return 0;
1782 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1784 unsigned int regnote;
1785 rtx op, reg;
1787 if (GET_CODE (op = XEXP (link, 0)) == code
1788 && REG_P (reg = XEXP (op, 0))
1789 && (regnote = REGNO (reg)) <= regno
1790 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1791 return 1;
1794 return 0;
1797 /* Return true if INSN is a call to a pure function. */
1800 pure_call_p (rtx insn)
1802 rtx link;
1804 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1805 return 0;
1807 /* Look for the note that differentiates const and pure functions. */
1808 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1810 rtx u, m;
1812 if (GET_CODE (u = XEXP (link, 0)) == USE
1813 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1814 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1815 return 1;
1818 return 0;
1821 /* Remove register note NOTE from the REG_NOTES of INSN. */
1823 void
1824 remove_note (rtx insn, rtx note)
1826 rtx link;
1828 if (note == NULL_RTX)
1829 return;
1831 if (REG_NOTES (insn) == note)
1833 REG_NOTES (insn) = XEXP (note, 1);
1834 return;
1837 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1838 if (XEXP (link, 1) == note)
1840 XEXP (link, 1) = XEXP (note, 1);
1841 return;
1844 gcc_unreachable ();
1847 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1848 return 1 if it is found. A simple equality test is used to determine if
1849 NODE matches. */
1852 in_expr_list_p (rtx listp, rtx node)
1854 rtx x;
1856 for (x = listp; x; x = XEXP (x, 1))
1857 if (node == XEXP (x, 0))
1858 return 1;
1860 return 0;
1863 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1864 remove that entry from the list if it is found.
1866 A simple equality test is used to determine if NODE matches. */
1868 void
1869 remove_node_from_expr_list (rtx node, rtx *listp)
1871 rtx temp = *listp;
1872 rtx prev = NULL_RTX;
1874 while (temp)
1876 if (node == XEXP (temp, 0))
1878 /* Splice the node out of the list. */
1879 if (prev)
1880 XEXP (prev, 1) = XEXP (temp, 1);
1881 else
1882 *listp = XEXP (temp, 1);
1884 return;
1887 prev = temp;
1888 temp = XEXP (temp, 1);
1892 /* Nonzero if X contains any volatile instructions. These are instructions
1893 which may cause unpredictable machine state instructions, and thus no
1894 instructions should be moved or combined across them. This includes
1895 only volatile asms and UNSPEC_VOLATILE instructions. */
1898 volatile_insn_p (rtx x)
1900 RTX_CODE code;
1902 code = GET_CODE (x);
1903 switch (code)
1905 case LABEL_REF:
1906 case SYMBOL_REF:
1907 case CONST_INT:
1908 case CONST:
1909 case CONST_DOUBLE:
1910 case CONST_VECTOR:
1911 case CC0:
1912 case PC:
1913 case REG:
1914 case SCRATCH:
1915 case CLOBBER:
1916 case ADDR_VEC:
1917 case ADDR_DIFF_VEC:
1918 case CALL:
1919 case MEM:
1920 return 0;
1922 case UNSPEC_VOLATILE:
1923 /* case TRAP_IF: This isn't clear yet. */
1924 return 1;
1926 case ASM_INPUT:
1927 case ASM_OPERANDS:
1928 if (MEM_VOLATILE_P (x))
1929 return 1;
1931 default:
1932 break;
1935 /* Recursively scan the operands of this expression. */
1938 const char *fmt = GET_RTX_FORMAT (code);
1939 int i;
1941 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1943 if (fmt[i] == 'e')
1945 if (volatile_insn_p (XEXP (x, i)))
1946 return 1;
1948 else if (fmt[i] == 'E')
1950 int j;
1951 for (j = 0; j < XVECLEN (x, i); j++)
1952 if (volatile_insn_p (XVECEXP (x, i, j)))
1953 return 1;
1957 return 0;
1960 /* Nonzero if X contains any volatile memory references
1961 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1964 volatile_refs_p (rtx x)
1966 RTX_CODE code;
1968 code = GET_CODE (x);
1969 switch (code)
1971 case LABEL_REF:
1972 case SYMBOL_REF:
1973 case CONST_INT:
1974 case CONST:
1975 case CONST_DOUBLE:
1976 case CONST_VECTOR:
1977 case CC0:
1978 case PC:
1979 case REG:
1980 case SCRATCH:
1981 case CLOBBER:
1982 case ADDR_VEC:
1983 case ADDR_DIFF_VEC:
1984 return 0;
1986 case UNSPEC_VOLATILE:
1987 return 1;
1989 case MEM:
1990 case ASM_INPUT:
1991 case ASM_OPERANDS:
1992 if (MEM_VOLATILE_P (x))
1993 return 1;
1995 default:
1996 break;
1999 /* Recursively scan the operands of this expression. */
2002 const char *fmt = GET_RTX_FORMAT (code);
2003 int i;
2005 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2007 if (fmt[i] == 'e')
2009 if (volatile_refs_p (XEXP (x, i)))
2010 return 1;
2012 else if (fmt[i] == 'E')
2014 int j;
2015 for (j = 0; j < XVECLEN (x, i); j++)
2016 if (volatile_refs_p (XVECEXP (x, i, j)))
2017 return 1;
2021 return 0;
2024 /* Similar to above, except that it also rejects register pre- and post-
2025 incrementing. */
2028 side_effects_p (rtx x)
2030 RTX_CODE code;
2032 code = GET_CODE (x);
2033 switch (code)
2035 case LABEL_REF:
2036 case SYMBOL_REF:
2037 case CONST_INT:
2038 case CONST:
2039 case CONST_DOUBLE:
2040 case CONST_VECTOR:
2041 case CC0:
2042 case PC:
2043 case REG:
2044 case SCRATCH:
2045 case ADDR_VEC:
2046 case ADDR_DIFF_VEC:
2047 return 0;
2049 case CLOBBER:
2050 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2051 when some combination can't be done. If we see one, don't think
2052 that we can simplify the expression. */
2053 return (GET_MODE (x) != VOIDmode);
2055 case PRE_INC:
2056 case PRE_DEC:
2057 case POST_INC:
2058 case POST_DEC:
2059 case PRE_MODIFY:
2060 case POST_MODIFY:
2061 case CALL:
2062 case UNSPEC_VOLATILE:
2063 /* case TRAP_IF: This isn't clear yet. */
2064 return 1;
2066 case MEM:
2067 case ASM_INPUT:
2068 case ASM_OPERANDS:
2069 if (MEM_VOLATILE_P (x))
2070 return 1;
2072 default:
2073 break;
2076 /* Recursively scan the operands of this expression. */
2079 const char *fmt = GET_RTX_FORMAT (code);
2080 int i;
2082 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2084 if (fmt[i] == 'e')
2086 if (side_effects_p (XEXP (x, i)))
2087 return 1;
2089 else if (fmt[i] == 'E')
2091 int j;
2092 for (j = 0; j < XVECLEN (x, i); j++)
2093 if (side_effects_p (XVECEXP (x, i, j)))
2094 return 1;
2098 return 0;
2101 /* Return nonzero if evaluating rtx X might cause a trap. */
2104 may_trap_p (rtx x)
2106 int i;
2107 enum rtx_code code;
2108 const char *fmt;
2110 if (x == 0)
2111 return 0;
2112 code = GET_CODE (x);
2113 switch (code)
2115 /* Handle these cases quickly. */
2116 case CONST_INT:
2117 case CONST_DOUBLE:
2118 case CONST_VECTOR:
2119 case SYMBOL_REF:
2120 case LABEL_REF:
2121 case CONST:
2122 case PC:
2123 case CC0:
2124 case REG:
2125 case SCRATCH:
2126 return 0;
2128 case ASM_INPUT:
2129 case UNSPEC_VOLATILE:
2130 case TRAP_IF:
2131 return 1;
2133 case ASM_OPERANDS:
2134 return MEM_VOLATILE_P (x);
2136 /* Memory ref can trap unless it's a static var or a stack slot. */
2137 case MEM:
2138 if (MEM_NOTRAP_P (x))
2139 return 0;
2140 return rtx_addr_can_trap_p (XEXP (x, 0));
2142 /* Division by a non-constant might trap. */
2143 case DIV:
2144 case MOD:
2145 case UDIV:
2146 case UMOD:
2147 if (HONOR_SNANS (GET_MODE (x)))
2148 return 1;
2149 if (! CONSTANT_P (XEXP (x, 1))
2150 || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2151 && flag_trapping_math))
2152 return 1;
2153 if (XEXP (x, 1) == const0_rtx)
2154 return 1;
2155 break;
2157 case EXPR_LIST:
2158 /* An EXPR_LIST is used to represent a function call. This
2159 certainly may trap. */
2160 return 1;
2162 case GE:
2163 case GT:
2164 case LE:
2165 case LT:
2166 case LTGT:
2167 case COMPARE:
2168 /* Some floating point comparisons may trap. */
2169 if (!flag_trapping_math)
2170 break;
2171 /* ??? There is no machine independent way to check for tests that trap
2172 when COMPARE is used, though many targets do make this distinction.
2173 For instance, sparc uses CCFPE for compares which generate exceptions
2174 and CCFP for compares which do not generate exceptions. */
2175 if (HONOR_NANS (GET_MODE (x)))
2176 return 1;
2177 /* But often the compare has some CC mode, so check operand
2178 modes as well. */
2179 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2180 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2181 return 1;
2182 break;
2184 case EQ:
2185 case NE:
2186 if (HONOR_SNANS (GET_MODE (x)))
2187 return 1;
2188 /* Often comparison is CC mode, so check operand modes. */
2189 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2190 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2191 return 1;
2192 break;
2194 case FIX:
2195 /* Conversion of floating point might trap. */
2196 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2197 return 1;
2198 break;
2200 case NEG:
2201 case ABS:
2202 /* These operations don't trap even with floating point. */
2203 break;
2205 default:
2206 /* Any floating arithmetic may trap. */
2207 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2208 && flag_trapping_math)
2209 return 1;
2212 fmt = GET_RTX_FORMAT (code);
2213 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2215 if (fmt[i] == 'e')
2217 if (may_trap_p (XEXP (x, i)))
2218 return 1;
2220 else if (fmt[i] == 'E')
2222 int j;
2223 for (j = 0; j < XVECLEN (x, i); j++)
2224 if (may_trap_p (XVECEXP (x, i, j)))
2225 return 1;
2228 return 0;
2231 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2232 i.e., an inequality. */
2235 inequality_comparisons_p (rtx x)
2237 const char *fmt;
2238 int len, i;
2239 enum rtx_code code = GET_CODE (x);
2241 switch (code)
2243 case REG:
2244 case SCRATCH:
2245 case PC:
2246 case CC0:
2247 case CONST_INT:
2248 case CONST_DOUBLE:
2249 case CONST_VECTOR:
2250 case CONST:
2251 case LABEL_REF:
2252 case SYMBOL_REF:
2253 return 0;
2255 case LT:
2256 case LTU:
2257 case GT:
2258 case GTU:
2259 case LE:
2260 case LEU:
2261 case GE:
2262 case GEU:
2263 return 1;
2265 default:
2266 break;
2269 len = GET_RTX_LENGTH (code);
2270 fmt = GET_RTX_FORMAT (code);
2272 for (i = 0; i < len; i++)
2274 if (fmt[i] == 'e')
2276 if (inequality_comparisons_p (XEXP (x, i)))
2277 return 1;
2279 else if (fmt[i] == 'E')
2281 int j;
2282 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2283 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2284 return 1;
2288 return 0;
2291 /* Replace any occurrence of FROM in X with TO. The function does
2292 not enter into CONST_DOUBLE for the replace.
2294 Note that copying is not done so X must not be shared unless all copies
2295 are to be modified. */
2298 replace_rtx (rtx x, rtx from, rtx to)
2300 int i, j;
2301 const char *fmt;
2303 /* The following prevents loops occurrence when we change MEM in
2304 CONST_DOUBLE onto the same CONST_DOUBLE. */
2305 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2306 return x;
2308 if (x == from)
2309 return to;
2311 /* Allow this function to make replacements in EXPR_LISTs. */
2312 if (x == 0)
2313 return 0;
2315 if (GET_CODE (x) == SUBREG)
2317 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2319 if (GET_CODE (new) == CONST_INT)
2321 x = simplify_subreg (GET_MODE (x), new,
2322 GET_MODE (SUBREG_REG (x)),
2323 SUBREG_BYTE (x));
2324 gcc_assert (x);
2326 else
2327 SUBREG_REG (x) = new;
2329 return x;
2331 else if (GET_CODE (x) == ZERO_EXTEND)
2333 rtx new = replace_rtx (XEXP (x, 0), from, to);
2335 if (GET_CODE (new) == CONST_INT)
2337 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2338 new, GET_MODE (XEXP (x, 0)));
2339 gcc_assert (x);
2341 else
2342 XEXP (x, 0) = new;
2344 return x;
2347 fmt = GET_RTX_FORMAT (GET_CODE (x));
2348 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2350 if (fmt[i] == 'e')
2351 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2352 else if (fmt[i] == 'E')
2353 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2354 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2357 return x;
2360 /* Throughout the rtx X, replace many registers according to REG_MAP.
2361 Return the replacement for X (which may be X with altered contents).
2362 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2363 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2365 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2366 should not be mapped to pseudos or vice versa since validate_change
2367 is not called.
2369 If REPLACE_DEST is 1, replacements are also done in destinations;
2370 otherwise, only sources are replaced. */
2373 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2375 enum rtx_code code;
2376 int i;
2377 const char *fmt;
2379 if (x == 0)
2380 return x;
2382 code = GET_CODE (x);
2383 switch (code)
2385 case SCRATCH:
2386 case PC:
2387 case CC0:
2388 case CONST_INT:
2389 case CONST_DOUBLE:
2390 case CONST_VECTOR:
2391 case CONST:
2392 case SYMBOL_REF:
2393 case LABEL_REF:
2394 return x;
2396 case REG:
2397 /* Verify that the register has an entry before trying to access it. */
2398 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2400 /* SUBREGs can't be shared. Always return a copy to ensure that if
2401 this replacement occurs more than once then each instance will
2402 get distinct rtx. */
2403 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2404 return copy_rtx (reg_map[REGNO (x)]);
2405 return reg_map[REGNO (x)];
2407 return x;
2409 case SUBREG:
2410 /* Prevent making nested SUBREGs. */
2411 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2412 && reg_map[REGNO (SUBREG_REG (x))] != 0
2413 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2415 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2416 return simplify_gen_subreg (GET_MODE (x), map_val,
2417 GET_MODE (SUBREG_REG (x)),
2418 SUBREG_BYTE (x));
2420 break;
2422 case SET:
2423 if (replace_dest)
2424 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2426 else if (MEM_P (SET_DEST (x))
2427 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2428 /* Even if we are not to replace destinations, replace register if it
2429 is CONTAINED in destination (destination is memory or
2430 STRICT_LOW_PART). */
2431 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2432 reg_map, nregs, 0);
2433 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2434 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2435 break;
2437 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2438 return x;
2440 default:
2441 break;
2444 fmt = GET_RTX_FORMAT (code);
2445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2447 if (fmt[i] == 'e')
2448 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2449 else if (fmt[i] == 'E')
2451 int j;
2452 for (j = 0; j < XVECLEN (x, i); j++)
2453 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2454 nregs, replace_dest);
2457 return x;
2460 /* Replace occurrences of the old label in *X with the new one.
2461 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2464 replace_label (rtx *x, void *data)
2466 rtx l = *x;
2467 rtx old_label = ((replace_label_data *) data)->r1;
2468 rtx new_label = ((replace_label_data *) data)->r2;
2469 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2471 if (l == NULL_RTX)
2472 return 0;
2474 if (GET_CODE (l) == SYMBOL_REF
2475 && CONSTANT_POOL_ADDRESS_P (l))
2477 rtx c = get_pool_constant (l);
2478 if (rtx_referenced_p (old_label, c))
2480 rtx new_c, new_l;
2481 replace_label_data *d = (replace_label_data *) data;
2483 /* Create a copy of constant C; replace the label inside
2484 but do not update LABEL_NUSES because uses in constant pool
2485 are not counted. */
2486 new_c = copy_rtx (c);
2487 d->update_label_nuses = false;
2488 for_each_rtx (&new_c, replace_label, data);
2489 d->update_label_nuses = update_label_nuses;
2491 /* Add the new constant NEW_C to constant pool and replace
2492 the old reference to constant by new reference. */
2493 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2494 *x = replace_rtx (l, l, new_l);
2496 return 0;
2499 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2500 field. This is not handled by for_each_rtx because it doesn't
2501 handle unprinted ('0') fields. */
2502 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2503 JUMP_LABEL (l) = new_label;
2505 if ((GET_CODE (l) == LABEL_REF
2506 || GET_CODE (l) == INSN_LIST)
2507 && XEXP (l, 0) == old_label)
2509 XEXP (l, 0) = new_label;
2510 if (update_label_nuses)
2512 ++LABEL_NUSES (new_label);
2513 --LABEL_NUSES (old_label);
2515 return 0;
2518 return 0;
2521 /* When *BODY is equal to X or X is directly referenced by *BODY
2522 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2523 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2525 static int
2526 rtx_referenced_p_1 (rtx *body, void *x)
2528 rtx y = (rtx) x;
2530 if (*body == NULL_RTX)
2531 return y == NULL_RTX;
2533 /* Return true if a label_ref *BODY refers to label Y. */
2534 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2535 return XEXP (*body, 0) == y;
2537 /* If *BODY is a reference to pool constant traverse the constant. */
2538 if (GET_CODE (*body) == SYMBOL_REF
2539 && CONSTANT_POOL_ADDRESS_P (*body))
2540 return rtx_referenced_p (y, get_pool_constant (*body));
2542 /* By default, compare the RTL expressions. */
2543 return rtx_equal_p (*body, y);
2546 /* Return true if X is referenced in BODY. */
2549 rtx_referenced_p (rtx x, rtx body)
2551 return for_each_rtx (&body, rtx_referenced_p_1, x);
2554 /* If INSN is a tablejump return true and store the label (before jump table) to
2555 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2557 bool
2558 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2560 rtx label, table;
2562 if (JUMP_P (insn)
2563 && (label = JUMP_LABEL (insn)) != NULL_RTX
2564 && (table = next_active_insn (label)) != NULL_RTX
2565 && JUMP_P (table)
2566 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2567 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2569 if (labelp)
2570 *labelp = label;
2571 if (tablep)
2572 *tablep = table;
2573 return true;
2575 return false;
2578 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2579 constant that is not in the constant pool and not in the condition
2580 of an IF_THEN_ELSE. */
2582 static int
2583 computed_jump_p_1 (rtx x)
2585 enum rtx_code code = GET_CODE (x);
2586 int i, j;
2587 const char *fmt;
2589 switch (code)
2591 case LABEL_REF:
2592 case PC:
2593 return 0;
2595 case CONST:
2596 case CONST_INT:
2597 case CONST_DOUBLE:
2598 case CONST_VECTOR:
2599 case SYMBOL_REF:
2600 case REG:
2601 return 1;
2603 case MEM:
2604 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2605 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2607 case IF_THEN_ELSE:
2608 return (computed_jump_p_1 (XEXP (x, 1))
2609 || computed_jump_p_1 (XEXP (x, 2)));
2611 default:
2612 break;
2615 fmt = GET_RTX_FORMAT (code);
2616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2618 if (fmt[i] == 'e'
2619 && computed_jump_p_1 (XEXP (x, i)))
2620 return 1;
2622 else if (fmt[i] == 'E')
2623 for (j = 0; j < XVECLEN (x, i); j++)
2624 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2625 return 1;
2628 return 0;
2631 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2633 Tablejumps and casesi insns are not considered indirect jumps;
2634 we can recognize them by a (use (label_ref)). */
2637 computed_jump_p (rtx insn)
2639 int i;
2640 if (JUMP_P (insn))
2642 rtx pat = PATTERN (insn);
2644 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2645 return 0;
2646 else if (GET_CODE (pat) == PARALLEL)
2648 int len = XVECLEN (pat, 0);
2649 int has_use_labelref = 0;
2651 for (i = len - 1; i >= 0; i--)
2652 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2653 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2654 == LABEL_REF))
2655 has_use_labelref = 1;
2657 if (! has_use_labelref)
2658 for (i = len - 1; i >= 0; i--)
2659 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2660 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2661 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2662 return 1;
2664 else if (GET_CODE (pat) == SET
2665 && SET_DEST (pat) == pc_rtx
2666 && computed_jump_p_1 (SET_SRC (pat)))
2667 return 1;
2669 return 0;
2672 /* Traverse X via depth-first search, calling F for each
2673 sub-expression (including X itself). F is also passed the DATA.
2674 If F returns -1, do not traverse sub-expressions, but continue
2675 traversing the rest of the tree. If F ever returns any other
2676 nonzero value, stop the traversal, and return the value returned
2677 by F. Otherwise, return 0. This function does not traverse inside
2678 tree structure that contains RTX_EXPRs, or into sub-expressions
2679 whose format code is `0' since it is not known whether or not those
2680 codes are actually RTL.
2682 This routine is very general, and could (should?) be used to
2683 implement many of the other routines in this file. */
2686 for_each_rtx (rtx *x, rtx_function f, void *data)
2688 int result;
2689 int length;
2690 const char *format;
2691 int i;
2693 /* Call F on X. */
2694 result = (*f) (x, data);
2695 if (result == -1)
2696 /* Do not traverse sub-expressions. */
2697 return 0;
2698 else if (result != 0)
2699 /* Stop the traversal. */
2700 return result;
2702 if (*x == NULL_RTX)
2703 /* There are no sub-expressions. */
2704 return 0;
2706 length = GET_RTX_LENGTH (GET_CODE (*x));
2707 format = GET_RTX_FORMAT (GET_CODE (*x));
2709 for (i = 0; i < length; ++i)
2711 switch (format[i])
2713 case 'e':
2714 result = for_each_rtx (&XEXP (*x, i), f, data);
2715 if (result != 0)
2716 return result;
2717 break;
2719 case 'V':
2720 case 'E':
2721 if (XVEC (*x, i) != 0)
2723 int j;
2724 for (j = 0; j < XVECLEN (*x, i); ++j)
2726 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2727 if (result != 0)
2728 return result;
2731 break;
2733 default:
2734 /* Nothing to do. */
2735 break;
2740 return 0;
2743 /* Searches X for any reference to REGNO, returning the rtx of the
2744 reference found if any. Otherwise, returns NULL_RTX. */
2747 regno_use_in (unsigned int regno, rtx x)
2749 const char *fmt;
2750 int i, j;
2751 rtx tem;
2753 if (REG_P (x) && REGNO (x) == regno)
2754 return x;
2756 fmt = GET_RTX_FORMAT (GET_CODE (x));
2757 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2759 if (fmt[i] == 'e')
2761 if ((tem = regno_use_in (regno, XEXP (x, i))))
2762 return tem;
2764 else if (fmt[i] == 'E')
2765 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2766 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2767 return tem;
2770 return NULL_RTX;
2773 /* Return a value indicating whether OP, an operand of a commutative
2774 operation, is preferred as the first or second operand. The higher
2775 the value, the stronger the preference for being the first operand.
2776 We use negative values to indicate a preference for the first operand
2777 and positive values for the second operand. */
2780 commutative_operand_precedence (rtx op)
2782 enum rtx_code code = GET_CODE (op);
2784 /* Constants always come the second operand. Prefer "nice" constants. */
2785 if (code == CONST_INT)
2786 return -7;
2787 if (code == CONST_DOUBLE)
2788 return -6;
2789 op = avoid_constant_pool_reference (op);
2790 code = GET_CODE (op);
2792 switch (GET_RTX_CLASS (code))
2794 case RTX_CONST_OBJ:
2795 if (code == CONST_INT)
2796 return -5;
2797 if (code == CONST_DOUBLE)
2798 return -4;
2799 return -3;
2801 case RTX_EXTRA:
2802 /* SUBREGs of objects should come second. */
2803 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2804 return -2;
2806 if (!CONSTANT_P (op))
2807 return 0;
2808 else
2809 /* As for RTX_CONST_OBJ. */
2810 return -3;
2812 case RTX_OBJ:
2813 /* Complex expressions should be the first, so decrease priority
2814 of objects. */
2815 return -1;
2817 case RTX_COMM_ARITH:
2818 /* Prefer operands that are themselves commutative to be first.
2819 This helps to make things linear. In particular,
2820 (and (and (reg) (reg)) (not (reg))) is canonical. */
2821 return 4;
2823 case RTX_BIN_ARITH:
2824 /* If only one operand is a binary expression, it will be the first
2825 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2826 is canonical, although it will usually be further simplified. */
2827 return 2;
2829 case RTX_UNARY:
2830 /* Then prefer NEG and NOT. */
2831 if (code == NEG || code == NOT)
2832 return 1;
2834 default:
2835 return 0;
2839 /* Return 1 iff it is necessary to swap operands of commutative operation
2840 in order to canonicalize expression. */
2843 swap_commutative_operands_p (rtx x, rtx y)
2845 return (commutative_operand_precedence (x)
2846 < commutative_operand_precedence (y));
2849 /* Return 1 if X is an autoincrement side effect and the register is
2850 not the stack pointer. */
2852 auto_inc_p (rtx x)
2854 switch (GET_CODE (x))
2856 case PRE_INC:
2857 case POST_INC:
2858 case PRE_DEC:
2859 case POST_DEC:
2860 case PRE_MODIFY:
2861 case POST_MODIFY:
2862 /* There are no REG_INC notes for SP. */
2863 if (XEXP (x, 0) != stack_pointer_rtx)
2864 return 1;
2865 default:
2866 break;
2868 return 0;
2871 /* Return 1 if the sequence of instructions beginning with FROM and up
2872 to and including TO is safe to move. If NEW_TO is non-NULL, and
2873 the sequence is not already safe to move, but can be easily
2874 extended to a sequence which is safe, then NEW_TO will point to the
2875 end of the extended sequence.
2877 For now, this function only checks that the region contains whole
2878 exception regions, but it could be extended to check additional
2879 conditions as well. */
2882 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2884 int eh_region_count = 0;
2885 int past_to_p = 0;
2886 rtx r = from;
2888 /* By default, assume the end of the region will be what was
2889 suggested. */
2890 if (new_to)
2891 *new_to = to;
2893 while (r)
2895 if (NOTE_P (r))
2897 switch (NOTE_LINE_NUMBER (r))
2899 case NOTE_INSN_EH_REGION_BEG:
2900 ++eh_region_count;
2901 break;
2903 case NOTE_INSN_EH_REGION_END:
2904 if (eh_region_count == 0)
2905 /* This sequence of instructions contains the end of
2906 an exception region, but not he beginning. Moving
2907 it will cause chaos. */
2908 return 0;
2910 --eh_region_count;
2911 break;
2913 default:
2914 break;
2917 else if (past_to_p)
2918 /* If we've passed TO, and we see a non-note instruction, we
2919 can't extend the sequence to a movable sequence. */
2920 return 0;
2922 if (r == to)
2924 if (!new_to)
2925 /* It's OK to move the sequence if there were matched sets of
2926 exception region notes. */
2927 return eh_region_count == 0;
2929 past_to_p = 1;
2932 /* It's OK to move the sequence if there were matched sets of
2933 exception region notes. */
2934 if (past_to_p && eh_region_count == 0)
2936 *new_to = r;
2937 return 1;
2940 /* Go to the next instruction. */
2941 r = NEXT_INSN (r);
2944 return 0;
2947 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2949 loc_mentioned_in_p (rtx *loc, rtx in)
2951 enum rtx_code code = GET_CODE (in);
2952 const char *fmt = GET_RTX_FORMAT (code);
2953 int i, j;
2955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2957 if (loc == &in->u.fld[i].rt_rtx)
2958 return 1;
2959 if (fmt[i] == 'e')
2961 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2962 return 1;
2964 else if (fmt[i] == 'E')
2965 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2966 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2967 return 1;
2969 return 0;
2972 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2973 and SUBREG_BYTE, return the bit offset where the subreg begins
2974 (counting from the least significant bit of the operand). */
2976 unsigned int
2977 subreg_lsb_1 (enum machine_mode outer_mode,
2978 enum machine_mode inner_mode,
2979 unsigned int subreg_byte)
2981 unsigned int bitpos;
2982 unsigned int byte;
2983 unsigned int word;
2985 /* A paradoxical subreg begins at bit position 0. */
2986 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2987 return 0;
2989 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2990 /* If the subreg crosses a word boundary ensure that
2991 it also begins and ends on a word boundary. */
2992 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2993 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2994 && (subreg_byte % UNITS_PER_WORD
2995 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2997 if (WORDS_BIG_ENDIAN)
2998 word = (GET_MODE_SIZE (inner_mode)
2999 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3000 else
3001 word = subreg_byte / UNITS_PER_WORD;
3002 bitpos = word * BITS_PER_WORD;
3004 if (BYTES_BIG_ENDIAN)
3005 byte = (GET_MODE_SIZE (inner_mode)
3006 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3007 else
3008 byte = subreg_byte % UNITS_PER_WORD;
3009 bitpos += byte * BITS_PER_UNIT;
3011 return bitpos;
3014 /* Given a subreg X, return the bit offset where the subreg begins
3015 (counting from the least significant bit of the reg). */
3017 unsigned int
3018 subreg_lsb (rtx x)
3020 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3021 SUBREG_BYTE (x));
3024 /* This function returns the regno offset of a subreg expression.
3025 xregno - A regno of an inner hard subreg_reg (or what will become one).
3026 xmode - The mode of xregno.
3027 offset - The byte offset.
3028 ymode - The mode of a top level SUBREG (or what may become one).
3029 RETURN - The regno offset which would be used. */
3030 unsigned int
3031 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3032 unsigned int offset, enum machine_mode ymode)
3034 int nregs_xmode, nregs_ymode;
3035 int mode_multiple, nregs_multiple;
3036 int y_offset;
3038 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3040 nregs_xmode = hard_regno_nregs[xregno][xmode];
3041 nregs_ymode = hard_regno_nregs[xregno][ymode];
3043 /* If this is a big endian paradoxical subreg, which uses more actual
3044 hard registers than the original register, we must return a negative
3045 offset so that we find the proper highpart of the register. */
3046 if (offset == 0
3047 && nregs_ymode > nregs_xmode
3048 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3049 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3050 return nregs_xmode - nregs_ymode;
3052 if (offset == 0 || nregs_xmode == nregs_ymode)
3053 return 0;
3055 /* size of ymode must not be greater than the size of xmode. */
3056 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3057 gcc_assert (mode_multiple != 0);
3059 y_offset = offset / GET_MODE_SIZE (ymode);
3060 nregs_multiple = nregs_xmode / nregs_ymode;
3061 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3064 /* This function returns true when the offset is representable via
3065 subreg_offset in the given regno.
3066 xregno - A regno of an inner hard subreg_reg (or what will become one).
3067 xmode - The mode of xregno.
3068 offset - The byte offset.
3069 ymode - The mode of a top level SUBREG (or what may become one).
3070 RETURN - The regno offset which would be used. */
3071 bool
3072 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3073 unsigned int offset, enum machine_mode ymode)
3075 int nregs_xmode, nregs_ymode;
3076 int mode_multiple, nregs_multiple;
3077 int y_offset;
3079 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3081 nregs_xmode = hard_regno_nregs[xregno][xmode];
3082 nregs_ymode = hard_regno_nregs[xregno][ymode];
3084 /* Paradoxical subregs are always valid. */
3085 if (offset == 0
3086 && nregs_ymode > nregs_xmode
3087 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3088 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3089 return true;
3091 /* Lowpart subregs are always valid. */
3092 if (offset == subreg_lowpart_offset (ymode, xmode))
3093 return true;
3095 /* This should always pass, otherwise we don't know how to verify the
3096 constraint. These conditions may be relaxed but subreg_offset would
3097 need to be redesigned. */
3098 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3099 gcc_assert ((GET_MODE_SIZE (ymode) % nregs_ymode) == 0);
3100 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3102 /* The XMODE value can be seen as a vector of NREGS_XMODE
3103 values. The subreg must represent a lowpart of given field.
3104 Compute what field it is. */
3105 offset -= subreg_lowpart_offset (ymode,
3106 mode_for_size (GET_MODE_BITSIZE (xmode)
3107 / nregs_xmode,
3108 MODE_INT, 0));
3110 /* size of ymode must not be greater than the size of xmode. */
3111 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3112 gcc_assert (mode_multiple != 0);
3114 y_offset = offset / GET_MODE_SIZE (ymode);
3115 nregs_multiple = nregs_xmode / nregs_ymode;
3117 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3118 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3120 return (!(y_offset % (mode_multiple / nregs_multiple)));
3123 /* Return the final regno that a subreg expression refers to. */
3124 unsigned int
3125 subreg_regno (rtx x)
3127 unsigned int ret;
3128 rtx subreg = SUBREG_REG (x);
3129 int regno = REGNO (subreg);
3131 ret = regno + subreg_regno_offset (regno,
3132 GET_MODE (subreg),
3133 SUBREG_BYTE (x),
3134 GET_MODE (x));
3135 return ret;
3138 struct parms_set_data
3140 int nregs;
3141 HARD_REG_SET regs;
3144 /* Helper function for noticing stores to parameter registers. */
3145 static void
3146 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3148 struct parms_set_data *d = data;
3149 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3150 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3152 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3153 d->nregs--;
3157 /* Look backward for first parameter to be loaded.
3158 Do not skip BOUNDARY. */
3160 find_first_parameter_load (rtx call_insn, rtx boundary)
3162 struct parms_set_data parm;
3163 rtx p, before;
3165 /* Since different machines initialize their parameter registers
3166 in different orders, assume nothing. Collect the set of all
3167 parameter registers. */
3168 CLEAR_HARD_REG_SET (parm.regs);
3169 parm.nregs = 0;
3170 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3171 if (GET_CODE (XEXP (p, 0)) == USE
3172 && REG_P (XEXP (XEXP (p, 0), 0)))
3174 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3176 /* We only care about registers which can hold function
3177 arguments. */
3178 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3179 continue;
3181 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3182 parm.nregs++;
3184 before = call_insn;
3186 /* Search backward for the first set of a register in this set. */
3187 while (parm.nregs && before != boundary)
3189 before = PREV_INSN (before);
3191 /* It is possible that some loads got CSEed from one call to
3192 another. Stop in that case. */
3193 if (CALL_P (before))
3194 break;
3196 /* Our caller needs either ensure that we will find all sets
3197 (in case code has not been optimized yet), or take care
3198 for possible labels in a way by setting boundary to preceding
3199 CODE_LABEL. */
3200 if (LABEL_P (before))
3202 gcc_assert (before == boundary);
3203 break;
3206 if (INSN_P (before))
3207 note_stores (PATTERN (before), parms_set, &parm);
3209 return before;
3212 /* Return true if we should avoid inserting code between INSN and preceding
3213 call instruction. */
3215 bool
3216 keep_with_call_p (rtx insn)
3218 rtx set;
3220 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3222 if (REG_P (SET_DEST (set))
3223 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3224 && fixed_regs[REGNO (SET_DEST (set))]
3225 && general_operand (SET_SRC (set), VOIDmode))
3226 return true;
3227 if (REG_P (SET_SRC (set))
3228 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3229 && REG_P (SET_DEST (set))
3230 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3231 return true;
3232 /* There may be a stack pop just after the call and before the store
3233 of the return register. Search for the actual store when deciding
3234 if we can break or not. */
3235 if (SET_DEST (set) == stack_pointer_rtx)
3237 rtx i2 = next_nonnote_insn (insn);
3238 if (i2 && keep_with_call_p (i2))
3239 return true;
3242 return false;
3245 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3246 to non-complex jumps. That is, direct unconditional, conditional,
3247 and tablejumps, but not computed jumps or returns. It also does
3248 not apply to the fallthru case of a conditional jump. */
3250 bool
3251 label_is_jump_target_p (rtx label, rtx jump_insn)
3253 rtx tmp = JUMP_LABEL (jump_insn);
3255 if (label == tmp)
3256 return true;
3258 if (tablejump_p (jump_insn, NULL, &tmp))
3260 rtvec vec = XVEC (PATTERN (tmp),
3261 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3262 int i, veclen = GET_NUM_ELEM (vec);
3264 for (i = 0; i < veclen; ++i)
3265 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3266 return true;
3269 return false;
3273 /* Return an estimate of the cost of computing rtx X.
3274 One use is in cse, to decide which expression to keep in the hash table.
3275 Another is in rtl generation, to pick the cheapest way to multiply.
3276 Other uses like the latter are expected in the future. */
3279 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3281 int i, j;
3282 enum rtx_code code;
3283 const char *fmt;
3284 int total;
3286 if (x == 0)
3287 return 0;
3289 /* Compute the default costs of certain things.
3290 Note that targetm.rtx_costs can override the defaults. */
3292 code = GET_CODE (x);
3293 switch (code)
3295 case MULT:
3296 total = COSTS_N_INSNS (5);
3297 break;
3298 case DIV:
3299 case UDIV:
3300 case MOD:
3301 case UMOD:
3302 total = COSTS_N_INSNS (7);
3303 break;
3304 case USE:
3305 /* Used in loop.c and combine.c as a marker. */
3306 total = 0;
3307 break;
3308 default:
3309 total = COSTS_N_INSNS (1);
3312 switch (code)
3314 case REG:
3315 return 0;
3317 case SUBREG:
3318 /* If we can't tie these modes, make this expensive. The larger
3319 the mode, the more expensive it is. */
3320 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3321 return COSTS_N_INSNS (2
3322 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3323 break;
3325 default:
3326 if (targetm.rtx_costs (x, code, outer_code, &total))
3327 return total;
3328 break;
3331 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3332 which is already in total. */
3334 fmt = GET_RTX_FORMAT (code);
3335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3336 if (fmt[i] == 'e')
3337 total += rtx_cost (XEXP (x, i), code);
3338 else if (fmt[i] == 'E')
3339 for (j = 0; j < XVECLEN (x, i); j++)
3340 total += rtx_cost (XVECEXP (x, i, j), code);
3342 return total;
3345 /* Return cost of address expression X.
3346 Expect that X is properly formed address reference. */
3349 address_cost (rtx x, enum machine_mode mode)
3351 /* We may be asked for cost of various unusual addresses, such as operands
3352 of push instruction. It is not worthwhile to complicate writing
3353 of the target hook by such cases. */
3355 if (!memory_address_p (mode, x))
3356 return 1000;
3358 return targetm.address_cost (x);
3361 /* If the target doesn't override, compute the cost as with arithmetic. */
3364 default_address_cost (rtx x)
3366 return rtx_cost (x, MEM);
3370 unsigned HOST_WIDE_INT
3371 nonzero_bits (rtx x, enum machine_mode mode)
3373 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3376 unsigned int
3377 num_sign_bit_copies (rtx x, enum machine_mode mode)
3379 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3382 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3383 It avoids exponential behavior in nonzero_bits1 when X has
3384 identical subexpressions on the first or the second level. */
3386 static unsigned HOST_WIDE_INT
3387 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3388 enum machine_mode known_mode,
3389 unsigned HOST_WIDE_INT known_ret)
3391 if (x == known_x && mode == known_mode)
3392 return known_ret;
3394 /* Try to find identical subexpressions. If found call
3395 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3396 precomputed value for the subexpression as KNOWN_RET. */
3398 if (ARITHMETIC_P (x))
3400 rtx x0 = XEXP (x, 0);
3401 rtx x1 = XEXP (x, 1);
3403 /* Check the first level. */
3404 if (x0 == x1)
3405 return nonzero_bits1 (x, mode, x0, mode,
3406 cached_nonzero_bits (x0, mode, known_x,
3407 known_mode, known_ret));
3409 /* Check the second level. */
3410 if (ARITHMETIC_P (x0)
3411 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3412 return nonzero_bits1 (x, mode, x1, mode,
3413 cached_nonzero_bits (x1, mode, known_x,
3414 known_mode, known_ret));
3416 if (ARITHMETIC_P (x1)
3417 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3418 return nonzero_bits1 (x, mode, x0, mode,
3419 cached_nonzero_bits (x0, mode, known_x,
3420 known_mode, known_ret));
3423 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3426 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3427 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3428 is less useful. We can't allow both, because that results in exponential
3429 run time recursion. There is a nullstone testcase that triggered
3430 this. This macro avoids accidental uses of num_sign_bit_copies. */
3431 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3433 /* Given an expression, X, compute which bits in X can be nonzero.
3434 We don't care about bits outside of those defined in MODE.
3436 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3437 an arithmetic operation, we can do better. */
3439 static unsigned HOST_WIDE_INT
3440 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3441 enum machine_mode known_mode,
3442 unsigned HOST_WIDE_INT known_ret)
3444 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3445 unsigned HOST_WIDE_INT inner_nz;
3446 enum rtx_code code;
3447 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3449 /* For floating-point values, assume all bits are needed. */
3450 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3451 return nonzero;
3453 /* If X is wider than MODE, use its mode instead. */
3454 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3456 mode = GET_MODE (x);
3457 nonzero = GET_MODE_MASK (mode);
3458 mode_width = GET_MODE_BITSIZE (mode);
3461 if (mode_width > HOST_BITS_PER_WIDE_INT)
3462 /* Our only callers in this case look for single bit values. So
3463 just return the mode mask. Those tests will then be false. */
3464 return nonzero;
3466 #ifndef WORD_REGISTER_OPERATIONS
3467 /* If MODE is wider than X, but both are a single word for both the host
3468 and target machines, we can compute this from which bits of the
3469 object might be nonzero in its own mode, taking into account the fact
3470 that on many CISC machines, accessing an object in a wider mode
3471 causes the high-order bits to become undefined. So they are
3472 not known to be zero. */
3474 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3475 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3476 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3477 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3479 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3480 known_x, known_mode, known_ret);
3481 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3482 return nonzero;
3484 #endif
3486 code = GET_CODE (x);
3487 switch (code)
3489 case REG:
3490 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3491 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3492 all the bits above ptr_mode are known to be zero. */
3493 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3494 && REG_POINTER (x))
3495 nonzero &= GET_MODE_MASK (ptr_mode);
3496 #endif
3498 /* Include declared information about alignment of pointers. */
3499 /* ??? We don't properly preserve REG_POINTER changes across
3500 pointer-to-integer casts, so we can't trust it except for
3501 things that we know must be pointers. See execute/960116-1.c. */
3502 if ((x == stack_pointer_rtx
3503 || x == frame_pointer_rtx
3504 || x == arg_pointer_rtx)
3505 && REGNO_POINTER_ALIGN (REGNO (x)))
3507 unsigned HOST_WIDE_INT alignment
3508 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3510 #ifdef PUSH_ROUNDING
3511 /* If PUSH_ROUNDING is defined, it is possible for the
3512 stack to be momentarily aligned only to that amount,
3513 so we pick the least alignment. */
3514 if (x == stack_pointer_rtx && PUSH_ARGS)
3515 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3516 alignment);
3517 #endif
3519 nonzero &= ~(alignment - 1);
3523 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3524 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3525 known_mode, known_ret,
3526 &nonzero_for_hook);
3528 if (new)
3529 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3530 known_mode, known_ret);
3532 return nonzero_for_hook;
3535 case CONST_INT:
3536 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3537 /* If X is negative in MODE, sign-extend the value. */
3538 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3539 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3540 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3541 #endif
3543 return INTVAL (x);
3545 case MEM:
3546 #ifdef LOAD_EXTEND_OP
3547 /* In many, if not most, RISC machines, reading a byte from memory
3548 zeros the rest of the register. Noticing that fact saves a lot
3549 of extra zero-extends. */
3550 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3551 nonzero &= GET_MODE_MASK (GET_MODE (x));
3552 #endif
3553 break;
3555 case EQ: case NE:
3556 case UNEQ: case LTGT:
3557 case GT: case GTU: case UNGT:
3558 case LT: case LTU: case UNLT:
3559 case GE: case GEU: case UNGE:
3560 case LE: case LEU: case UNLE:
3561 case UNORDERED: case ORDERED:
3563 /* If this produces an integer result, we know which bits are set.
3564 Code here used to clear bits outside the mode of X, but that is
3565 now done above. */
3567 if (GET_MODE_CLASS (mode) == MODE_INT
3568 && mode_width <= HOST_BITS_PER_WIDE_INT)
3569 nonzero = STORE_FLAG_VALUE;
3570 break;
3572 case NEG:
3573 #if 0
3574 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3575 and num_sign_bit_copies. */
3576 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3577 == GET_MODE_BITSIZE (GET_MODE (x)))
3578 nonzero = 1;
3579 #endif
3581 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3582 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3583 break;
3585 case ABS:
3586 #if 0
3587 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3588 and num_sign_bit_copies. */
3589 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3590 == GET_MODE_BITSIZE (GET_MODE (x)))
3591 nonzero = 1;
3592 #endif
3593 break;
3595 case TRUNCATE:
3596 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3597 known_x, known_mode, known_ret)
3598 & GET_MODE_MASK (mode));
3599 break;
3601 case ZERO_EXTEND:
3602 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3603 known_x, known_mode, known_ret);
3604 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3605 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3606 break;
3608 case SIGN_EXTEND:
3609 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3610 Otherwise, show all the bits in the outer mode but not the inner
3611 may be nonzero. */
3612 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3613 known_x, known_mode, known_ret);
3614 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3616 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3617 if (inner_nz
3618 & (((HOST_WIDE_INT) 1
3619 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3620 inner_nz |= (GET_MODE_MASK (mode)
3621 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3624 nonzero &= inner_nz;
3625 break;
3627 case AND:
3628 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3629 known_x, known_mode, known_ret)
3630 & cached_nonzero_bits (XEXP (x, 1), mode,
3631 known_x, known_mode, known_ret);
3632 break;
3634 case XOR: case IOR:
3635 case UMIN: case UMAX: case SMIN: case SMAX:
3637 unsigned HOST_WIDE_INT nonzero0 =
3638 cached_nonzero_bits (XEXP (x, 0), mode,
3639 known_x, known_mode, known_ret);
3641 /* Don't call nonzero_bits for the second time if it cannot change
3642 anything. */
3643 if ((nonzero & nonzero0) != nonzero)
3644 nonzero &= nonzero0
3645 | cached_nonzero_bits (XEXP (x, 1), mode,
3646 known_x, known_mode, known_ret);
3648 break;
3650 case PLUS: case MINUS:
3651 case MULT:
3652 case DIV: case UDIV:
3653 case MOD: case UMOD:
3654 /* We can apply the rules of arithmetic to compute the number of
3655 high- and low-order zero bits of these operations. We start by
3656 computing the width (position of the highest-order nonzero bit)
3657 and the number of low-order zero bits for each value. */
3659 unsigned HOST_WIDE_INT nz0 =
3660 cached_nonzero_bits (XEXP (x, 0), mode,
3661 known_x, known_mode, known_ret);
3662 unsigned HOST_WIDE_INT nz1 =
3663 cached_nonzero_bits (XEXP (x, 1), mode,
3664 known_x, known_mode, known_ret);
3665 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3666 int width0 = floor_log2 (nz0) + 1;
3667 int width1 = floor_log2 (nz1) + 1;
3668 int low0 = floor_log2 (nz0 & -nz0);
3669 int low1 = floor_log2 (nz1 & -nz1);
3670 HOST_WIDE_INT op0_maybe_minusp
3671 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3672 HOST_WIDE_INT op1_maybe_minusp
3673 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3674 unsigned int result_width = mode_width;
3675 int result_low = 0;
3677 switch (code)
3679 case PLUS:
3680 result_width = MAX (width0, width1) + 1;
3681 result_low = MIN (low0, low1);
3682 break;
3683 case MINUS:
3684 result_low = MIN (low0, low1);
3685 break;
3686 case MULT:
3687 result_width = width0 + width1;
3688 result_low = low0 + low1;
3689 break;
3690 case DIV:
3691 if (width1 == 0)
3692 break;
3693 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3694 result_width = width0;
3695 break;
3696 case UDIV:
3697 if (width1 == 0)
3698 break;
3699 result_width = width0;
3700 break;
3701 case MOD:
3702 if (width1 == 0)
3703 break;
3704 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3705 result_width = MIN (width0, width1);
3706 result_low = MIN (low0, low1);
3707 break;
3708 case UMOD:
3709 if (width1 == 0)
3710 break;
3711 result_width = MIN (width0, width1);
3712 result_low = MIN (low0, low1);
3713 break;
3714 default:
3715 gcc_unreachable ();
3718 if (result_width < mode_width)
3719 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3721 if (result_low > 0)
3722 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3724 #ifdef POINTERS_EXTEND_UNSIGNED
3725 /* If pointers extend unsigned and this is an addition or subtraction
3726 to a pointer in Pmode, all the bits above ptr_mode are known to be
3727 zero. */
3728 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3729 && (code == PLUS || code == MINUS)
3730 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3731 nonzero &= GET_MODE_MASK (ptr_mode);
3732 #endif
3734 break;
3736 case ZERO_EXTRACT:
3737 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3738 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3739 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3740 break;
3742 case SUBREG:
3743 /* If this is a SUBREG formed for a promoted variable that has
3744 been zero-extended, we know that at least the high-order bits
3745 are zero, though others might be too. */
3747 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3748 nonzero = GET_MODE_MASK (GET_MODE (x))
3749 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3750 known_x, known_mode, known_ret);
3752 /* If the inner mode is a single word for both the host and target
3753 machines, we can compute this from which bits of the inner
3754 object might be nonzero. */
3755 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3756 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3757 <= HOST_BITS_PER_WIDE_INT))
3759 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3760 known_x, known_mode, known_ret);
3762 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3763 /* If this is a typical RISC machine, we only have to worry
3764 about the way loads are extended. */
3765 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3766 ? (((nonzero
3767 & (((unsigned HOST_WIDE_INT) 1
3768 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3769 != 0))
3770 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3771 || !MEM_P (SUBREG_REG (x)))
3772 #endif
3774 /* On many CISC machines, accessing an object in a wider mode
3775 causes the high-order bits to become undefined. So they are
3776 not known to be zero. */
3777 if (GET_MODE_SIZE (GET_MODE (x))
3778 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3779 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3780 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3783 break;
3785 case ASHIFTRT:
3786 case LSHIFTRT:
3787 case ASHIFT:
3788 case ROTATE:
3789 /* The nonzero bits are in two classes: any bits within MODE
3790 that aren't in GET_MODE (x) are always significant. The rest of the
3791 nonzero bits are those that are significant in the operand of
3792 the shift when shifted the appropriate number of bits. This
3793 shows that high-order bits are cleared by the right shift and
3794 low-order bits by left shifts. */
3795 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3796 && INTVAL (XEXP (x, 1)) >= 0
3797 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3799 enum machine_mode inner_mode = GET_MODE (x);
3800 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3801 int count = INTVAL (XEXP (x, 1));
3802 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3803 unsigned HOST_WIDE_INT op_nonzero =
3804 cached_nonzero_bits (XEXP (x, 0), mode,
3805 known_x, known_mode, known_ret);
3806 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3807 unsigned HOST_WIDE_INT outer = 0;
3809 if (mode_width > width)
3810 outer = (op_nonzero & nonzero & ~mode_mask);
3812 if (code == LSHIFTRT)
3813 inner >>= count;
3814 else if (code == ASHIFTRT)
3816 inner >>= count;
3818 /* If the sign bit may have been nonzero before the shift, we
3819 need to mark all the places it could have been copied to
3820 by the shift as possibly nonzero. */
3821 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3822 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3824 else if (code == ASHIFT)
3825 inner <<= count;
3826 else
3827 inner = ((inner << (count % width)
3828 | (inner >> (width - (count % width)))) & mode_mask);
3830 nonzero &= (outer | inner);
3832 break;
3834 case FFS:
3835 case POPCOUNT:
3836 /* This is at most the number of bits in the mode. */
3837 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3838 break;
3840 case CLZ:
3841 /* If CLZ has a known value at zero, then the nonzero bits are
3842 that value, plus the number of bits in the mode minus one. */
3843 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3844 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3845 else
3846 nonzero = -1;
3847 break;
3849 case CTZ:
3850 /* If CTZ has a known value at zero, then the nonzero bits are
3851 that value, plus the number of bits in the mode minus one. */
3852 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3853 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3854 else
3855 nonzero = -1;
3856 break;
3858 case PARITY:
3859 nonzero = 1;
3860 break;
3862 case IF_THEN_ELSE:
3864 unsigned HOST_WIDE_INT nonzero_true =
3865 cached_nonzero_bits (XEXP (x, 1), mode,
3866 known_x, known_mode, known_ret);
3868 /* Don't call nonzero_bits for the second time if it cannot change
3869 anything. */
3870 if ((nonzero & nonzero_true) != nonzero)
3871 nonzero &= nonzero_true
3872 | cached_nonzero_bits (XEXP (x, 2), mode,
3873 known_x, known_mode, known_ret);
3875 break;
3877 default:
3878 break;
3881 return nonzero;
3884 /* See the macro definition above. */
3885 #undef cached_num_sign_bit_copies
3888 /* The function cached_num_sign_bit_copies is a wrapper around
3889 num_sign_bit_copies1. It avoids exponential behavior in
3890 num_sign_bit_copies1 when X has identical subexpressions on the
3891 first or the second level. */
3893 static unsigned int
3894 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3895 enum machine_mode known_mode,
3896 unsigned int known_ret)
3898 if (x == known_x && mode == known_mode)
3899 return known_ret;
3901 /* Try to find identical subexpressions. If found call
3902 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3903 the precomputed value for the subexpression as KNOWN_RET. */
3905 if (ARITHMETIC_P (x))
3907 rtx x0 = XEXP (x, 0);
3908 rtx x1 = XEXP (x, 1);
3910 /* Check the first level. */
3911 if (x0 == x1)
3912 return
3913 num_sign_bit_copies1 (x, mode, x0, mode,
3914 cached_num_sign_bit_copies (x0, mode, known_x,
3915 known_mode,
3916 known_ret));
3918 /* Check the second level. */
3919 if (ARITHMETIC_P (x0)
3920 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3921 return
3922 num_sign_bit_copies1 (x, mode, x1, mode,
3923 cached_num_sign_bit_copies (x1, mode, known_x,
3924 known_mode,
3925 known_ret));
3927 if (ARITHMETIC_P (x1)
3928 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3929 return
3930 num_sign_bit_copies1 (x, mode, x0, mode,
3931 cached_num_sign_bit_copies (x0, mode, known_x,
3932 known_mode,
3933 known_ret));
3936 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3939 /* Return the number of bits at the high-order end of X that are known to
3940 be equal to the sign bit. X will be used in mode MODE; if MODE is
3941 VOIDmode, X will be used in its own mode. The returned value will always
3942 be between 1 and the number of bits in MODE. */
3944 static unsigned int
3945 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3946 enum machine_mode known_mode,
3947 unsigned int known_ret)
3949 enum rtx_code code = GET_CODE (x);
3950 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3951 int num0, num1, result;
3952 unsigned HOST_WIDE_INT nonzero;
3954 /* If we weren't given a mode, use the mode of X. If the mode is still
3955 VOIDmode, we don't know anything. Likewise if one of the modes is
3956 floating-point. */
3958 if (mode == VOIDmode)
3959 mode = GET_MODE (x);
3961 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
3962 return 1;
3964 /* For a smaller object, just ignore the high bits. */
3965 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
3967 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
3968 known_x, known_mode, known_ret);
3969 return MAX (1,
3970 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
3973 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
3975 #ifndef WORD_REGISTER_OPERATIONS
3976 /* If this machine does not do all register operations on the entire
3977 register and MODE is wider than the mode of X, we can say nothing
3978 at all about the high-order bits. */
3979 return 1;
3980 #else
3981 /* Likewise on machines that do, if the mode of the object is smaller
3982 than a word and loads of that size don't sign extend, we can say
3983 nothing about the high order bits. */
3984 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
3985 #ifdef LOAD_EXTEND_OP
3986 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
3987 #endif
3989 return 1;
3990 #endif
3993 switch (code)
3995 case REG:
3997 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3998 /* If pointers extend signed and this is a pointer in Pmode, say that
3999 all the bits above ptr_mode are known to be sign bit copies. */
4000 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4001 && REG_POINTER (x))
4002 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4003 #endif
4006 unsigned int copies_for_hook = 1, copies = 1;
4007 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4008 known_mode, known_ret,
4009 &copies_for_hook);
4011 if (new)
4012 copies = cached_num_sign_bit_copies (new, mode, known_x,
4013 known_mode, known_ret);
4015 if (copies > 1 || copies_for_hook > 1)
4016 return MAX (copies, copies_for_hook);
4018 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4020 break;
4022 case MEM:
4023 #ifdef LOAD_EXTEND_OP
4024 /* Some RISC machines sign-extend all loads of smaller than a word. */
4025 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4026 return MAX (1, ((int) bitwidth
4027 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4028 #endif
4029 break;
4031 case CONST_INT:
4032 /* If the constant is negative, take its 1's complement and remask.
4033 Then see how many zero bits we have. */
4034 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4035 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4036 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4037 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4039 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4041 case SUBREG:
4042 /* If this is a SUBREG for a promoted object that is sign-extended
4043 and we are looking at it in a wider mode, we know that at least the
4044 high-order bits are known to be sign bit copies. */
4046 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4048 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4049 known_x, known_mode, known_ret);
4050 return MAX ((int) bitwidth
4051 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4052 num0);
4055 /* For a smaller object, just ignore the high bits. */
4056 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4058 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4059 known_x, known_mode, known_ret);
4060 return MAX (1, (num0
4061 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4062 - bitwidth)));
4065 #ifdef WORD_REGISTER_OPERATIONS
4066 #ifdef LOAD_EXTEND_OP
4067 /* For paradoxical SUBREGs on machines where all register operations
4068 affect the entire register, just look inside. Note that we are
4069 passing MODE to the recursive call, so the number of sign bit copies
4070 will remain relative to that mode, not the inner mode. */
4072 /* This works only if loads sign extend. Otherwise, if we get a
4073 reload for the inner part, it may be loaded from the stack, and
4074 then we lose all sign bit copies that existed before the store
4075 to the stack. */
4077 if ((GET_MODE_SIZE (GET_MODE (x))
4078 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4079 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4080 && MEM_P (SUBREG_REG (x)))
4081 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4082 known_x, known_mode, known_ret);
4083 #endif
4084 #endif
4085 break;
4087 case SIGN_EXTRACT:
4088 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4089 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4090 break;
4092 case SIGN_EXTEND:
4093 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4094 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4095 known_x, known_mode, known_ret));
4097 case TRUNCATE:
4098 /* For a smaller object, just ignore the high bits. */
4099 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4100 known_x, known_mode, known_ret);
4101 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4102 - bitwidth)));
4104 case NOT:
4105 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4106 known_x, known_mode, known_ret);
4108 case ROTATE: case ROTATERT:
4109 /* If we are rotating left by a number of bits less than the number
4110 of sign bit copies, we can just subtract that amount from the
4111 number. */
4112 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4113 && INTVAL (XEXP (x, 1)) >= 0
4114 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4116 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4117 known_x, known_mode, known_ret);
4118 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4119 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4121 break;
4123 case NEG:
4124 /* In general, this subtracts one sign bit copy. But if the value
4125 is known to be positive, the number of sign bit copies is the
4126 same as that of the input. Finally, if the input has just one bit
4127 that might be nonzero, all the bits are copies of the sign bit. */
4128 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4129 known_x, known_mode, known_ret);
4130 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4131 return num0 > 1 ? num0 - 1 : 1;
4133 nonzero = nonzero_bits (XEXP (x, 0), mode);
4134 if (nonzero == 1)
4135 return bitwidth;
4137 if (num0 > 1
4138 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4139 num0--;
4141 return num0;
4143 case IOR: case AND: case XOR:
4144 case SMIN: case SMAX: case UMIN: case UMAX:
4145 /* Logical operations will preserve the number of sign-bit copies.
4146 MIN and MAX operations always return one of the operands. */
4147 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4148 known_x, known_mode, known_ret);
4149 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4150 known_x, known_mode, known_ret);
4151 return MIN (num0, num1);
4153 case PLUS: case MINUS:
4154 /* For addition and subtraction, we can have a 1-bit carry. However,
4155 if we are subtracting 1 from a positive number, there will not
4156 be such a carry. Furthermore, if the positive number is known to
4157 be 0 or 1, we know the result is either -1 or 0. */
4159 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4160 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4162 nonzero = nonzero_bits (XEXP (x, 0), mode);
4163 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4164 return (nonzero == 1 || nonzero == 0 ? bitwidth
4165 : bitwidth - floor_log2 (nonzero) - 1);
4168 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4169 known_x, known_mode, known_ret);
4170 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4171 known_x, known_mode, known_ret);
4172 result = MAX (1, MIN (num0, num1) - 1);
4174 #ifdef POINTERS_EXTEND_UNSIGNED
4175 /* If pointers extend signed and this is an addition or subtraction
4176 to a pointer in Pmode, all the bits above ptr_mode are known to be
4177 sign bit copies. */
4178 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4179 && (code == PLUS || code == MINUS)
4180 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4181 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4182 - GET_MODE_BITSIZE (ptr_mode) + 1),
4183 result);
4184 #endif
4185 return result;
4187 case MULT:
4188 /* The number of bits of the product is the sum of the number of
4189 bits of both terms. However, unless one of the terms if known
4190 to be positive, we must allow for an additional bit since negating
4191 a negative number can remove one sign bit copy. */
4193 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4194 known_x, known_mode, known_ret);
4195 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4196 known_x, known_mode, known_ret);
4198 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4199 if (result > 0
4200 && (bitwidth > HOST_BITS_PER_WIDE_INT
4201 || (((nonzero_bits (XEXP (x, 0), mode)
4202 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4203 && ((nonzero_bits (XEXP (x, 1), mode)
4204 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4205 result--;
4207 return MAX (1, result);
4209 case UDIV:
4210 /* The result must be <= the first operand. If the first operand
4211 has the high bit set, we know nothing about the number of sign
4212 bit copies. */
4213 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4214 return 1;
4215 else if ((nonzero_bits (XEXP (x, 0), mode)
4216 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4217 return 1;
4218 else
4219 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4220 known_x, known_mode, known_ret);
4222 case UMOD:
4223 /* The result must be <= the second operand. */
4224 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4225 known_x, known_mode, known_ret);
4227 case DIV:
4228 /* Similar to unsigned division, except that we have to worry about
4229 the case where the divisor is negative, in which case we have
4230 to add 1. */
4231 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4232 known_x, known_mode, known_ret);
4233 if (result > 1
4234 && (bitwidth > HOST_BITS_PER_WIDE_INT
4235 || (nonzero_bits (XEXP (x, 1), mode)
4236 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4237 result--;
4239 return result;
4241 case MOD:
4242 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4243 known_x, known_mode, known_ret);
4244 if (result > 1
4245 && (bitwidth > HOST_BITS_PER_WIDE_INT
4246 || (nonzero_bits (XEXP (x, 1), mode)
4247 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4248 result--;
4250 return result;
4252 case ASHIFTRT:
4253 /* Shifts by a constant add to the number of bits equal to the
4254 sign bit. */
4255 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4256 known_x, known_mode, known_ret);
4257 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4258 && INTVAL (XEXP (x, 1)) > 0)
4259 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4261 return num0;
4263 case ASHIFT:
4264 /* Left shifts destroy copies. */
4265 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4266 || INTVAL (XEXP (x, 1)) < 0
4267 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4268 return 1;
4270 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4271 known_x, known_mode, known_ret);
4272 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4274 case IF_THEN_ELSE:
4275 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4276 known_x, known_mode, known_ret);
4277 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4278 known_x, known_mode, known_ret);
4279 return MIN (num0, num1);
4281 case EQ: case NE: case GE: case GT: case LE: case LT:
4282 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4283 case GEU: case GTU: case LEU: case LTU:
4284 case UNORDERED: case ORDERED:
4285 /* If the constant is negative, take its 1's complement and remask.
4286 Then see how many zero bits we have. */
4287 nonzero = STORE_FLAG_VALUE;
4288 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4289 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4290 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4292 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4294 default:
4295 break;
4298 /* If we haven't been able to figure it out by one of the above rules,
4299 see if some of the high-order bits are known to be zero. If so,
4300 count those bits and return one less than that amount. If we can't
4301 safely compute the mask for this mode, always return BITWIDTH. */
4303 bitwidth = GET_MODE_BITSIZE (mode);
4304 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4305 return 1;
4307 nonzero = nonzero_bits (x, mode);
4308 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4309 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4312 /* Calculate the rtx_cost of a single instruction. A return value of
4313 zero indicates an instruction pattern without a known cost. */
4316 insn_rtx_cost (rtx pat)
4318 int i, cost;
4319 rtx set;
4321 /* Extract the single set rtx from the instruction pattern.
4322 We can't use single_set since we only have the pattern. */
4323 if (GET_CODE (pat) == SET)
4324 set = pat;
4325 else if (GET_CODE (pat) == PARALLEL)
4327 set = NULL_RTX;
4328 for (i = 0; i < XVECLEN (pat, 0); i++)
4330 rtx x = XVECEXP (pat, 0, i);
4331 if (GET_CODE (x) == SET)
4333 if (set)
4334 return 0;
4335 set = x;
4338 if (!set)
4339 return 0;
4341 else
4342 return 0;
4344 cost = rtx_cost (SET_SRC (set), SET);
4345 return cost > 0 ? cost : COSTS_N_INSNS (1);
4348 /* Given an insn INSN and condition COND, return the condition in a
4349 canonical form to simplify testing by callers. Specifically:
4351 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4352 (2) Both operands will be machine operands; (cc0) will have been replaced.
4353 (3) If an operand is a constant, it will be the second operand.
4354 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4355 for GE, GEU, and LEU.
4357 If the condition cannot be understood, or is an inequality floating-point
4358 comparison which needs to be reversed, 0 will be returned.
4360 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4362 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4363 insn used in locating the condition was found. If a replacement test
4364 of the condition is desired, it should be placed in front of that
4365 insn and we will be sure that the inputs are still valid.
4367 If WANT_REG is nonzero, we wish the condition to be relative to that
4368 register, if possible. Therefore, do not canonicalize the condition
4369 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4370 to be a compare to a CC mode register.
4372 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4373 and at INSN. */
4376 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4377 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4379 enum rtx_code code;
4380 rtx prev = insn;
4381 rtx set;
4382 rtx tem;
4383 rtx op0, op1;
4384 int reverse_code = 0;
4385 enum machine_mode mode;
4387 code = GET_CODE (cond);
4388 mode = GET_MODE (cond);
4389 op0 = XEXP (cond, 0);
4390 op1 = XEXP (cond, 1);
4392 if (reverse)
4393 code = reversed_comparison_code (cond, insn);
4394 if (code == UNKNOWN)
4395 return 0;
4397 if (earliest)
4398 *earliest = insn;
4400 /* If we are comparing a register with zero, see if the register is set
4401 in the previous insn to a COMPARE or a comparison operation. Perform
4402 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4403 in cse.c */
4405 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4406 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4407 && op1 == CONST0_RTX (GET_MODE (op0))
4408 && op0 != want_reg)
4410 /* Set nonzero when we find something of interest. */
4411 rtx x = 0;
4413 #ifdef HAVE_cc0
4414 /* If comparison with cc0, import actual comparison from compare
4415 insn. */
4416 if (op0 == cc0_rtx)
4418 if ((prev = prev_nonnote_insn (prev)) == 0
4419 || !NONJUMP_INSN_P (prev)
4420 || (set = single_set (prev)) == 0
4421 || SET_DEST (set) != cc0_rtx)
4422 return 0;
4424 op0 = SET_SRC (set);
4425 op1 = CONST0_RTX (GET_MODE (op0));
4426 if (earliest)
4427 *earliest = prev;
4429 #endif
4431 /* If this is a COMPARE, pick up the two things being compared. */
4432 if (GET_CODE (op0) == COMPARE)
4434 op1 = XEXP (op0, 1);
4435 op0 = XEXP (op0, 0);
4436 continue;
4438 else if (!REG_P (op0))
4439 break;
4441 /* Go back to the previous insn. Stop if it is not an INSN. We also
4442 stop if it isn't a single set or if it has a REG_INC note because
4443 we don't want to bother dealing with it. */
4445 if ((prev = prev_nonnote_insn (prev)) == 0
4446 || !NONJUMP_INSN_P (prev)
4447 || FIND_REG_INC_NOTE (prev, NULL_RTX))
4448 break;
4450 set = set_of (op0, prev);
4452 if (set
4453 && (GET_CODE (set) != SET
4454 || !rtx_equal_p (SET_DEST (set), op0)))
4455 break;
4457 /* If this is setting OP0, get what it sets it to if it looks
4458 relevant. */
4459 if (set)
4461 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4462 #ifdef FLOAT_STORE_FLAG_VALUE
4463 REAL_VALUE_TYPE fsfv;
4464 #endif
4466 /* ??? We may not combine comparisons done in a CCmode with
4467 comparisons not done in a CCmode. This is to aid targets
4468 like Alpha that have an IEEE compliant EQ instruction, and
4469 a non-IEEE compliant BEQ instruction. The use of CCmode is
4470 actually artificial, simply to prevent the combination, but
4471 should not affect other platforms.
4473 However, we must allow VOIDmode comparisons to match either
4474 CCmode or non-CCmode comparison, because some ports have
4475 modeless comparisons inside branch patterns.
4477 ??? This mode check should perhaps look more like the mode check
4478 in simplify_comparison in combine. */
4480 if ((GET_CODE (SET_SRC (set)) == COMPARE
4481 || (((code == NE
4482 || (code == LT
4483 && GET_MODE_CLASS (inner_mode) == MODE_INT
4484 && (GET_MODE_BITSIZE (inner_mode)
4485 <= HOST_BITS_PER_WIDE_INT)
4486 && (STORE_FLAG_VALUE
4487 & ((HOST_WIDE_INT) 1
4488 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4489 #ifdef FLOAT_STORE_FLAG_VALUE
4490 || (code == LT
4491 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4492 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4493 REAL_VALUE_NEGATIVE (fsfv)))
4494 #endif
4496 && COMPARISON_P (SET_SRC (set))))
4497 && (((GET_MODE_CLASS (mode) == MODE_CC)
4498 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4499 || mode == VOIDmode || inner_mode == VOIDmode))
4500 x = SET_SRC (set);
4501 else if (((code == EQ
4502 || (code == GE
4503 && (GET_MODE_BITSIZE (inner_mode)
4504 <= HOST_BITS_PER_WIDE_INT)
4505 && GET_MODE_CLASS (inner_mode) == MODE_INT
4506 && (STORE_FLAG_VALUE
4507 & ((HOST_WIDE_INT) 1
4508 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4509 #ifdef FLOAT_STORE_FLAG_VALUE
4510 || (code == GE
4511 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4512 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4513 REAL_VALUE_NEGATIVE (fsfv)))
4514 #endif
4516 && COMPARISON_P (SET_SRC (set))
4517 && (((GET_MODE_CLASS (mode) == MODE_CC)
4518 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4519 || mode == VOIDmode || inner_mode == VOIDmode))
4522 reverse_code = 1;
4523 x = SET_SRC (set);
4525 else
4526 break;
4529 else if (reg_set_p (op0, prev))
4530 /* If this sets OP0, but not directly, we have to give up. */
4531 break;
4533 if (x)
4535 /* If the caller is expecting the condition to be valid at INSN,
4536 make sure X doesn't change before INSN. */
4537 if (valid_at_insn_p)
4538 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4539 break;
4540 if (COMPARISON_P (x))
4541 code = GET_CODE (x);
4542 if (reverse_code)
4544 code = reversed_comparison_code (x, prev);
4545 if (code == UNKNOWN)
4546 return 0;
4547 reverse_code = 0;
4550 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4551 if (earliest)
4552 *earliest = prev;
4556 /* If constant is first, put it last. */
4557 if (CONSTANT_P (op0))
4558 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4560 /* If OP0 is the result of a comparison, we weren't able to find what
4561 was really being compared, so fail. */
4562 if (!allow_cc_mode
4563 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4564 return 0;
4566 /* Canonicalize any ordered comparison with integers involving equality
4567 if we can do computations in the relevant mode and we do not
4568 overflow. */
4570 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4571 && GET_CODE (op1) == CONST_INT
4572 && GET_MODE (op0) != VOIDmode
4573 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4575 HOST_WIDE_INT const_val = INTVAL (op1);
4576 unsigned HOST_WIDE_INT uconst_val = const_val;
4577 unsigned HOST_WIDE_INT max_val
4578 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4580 switch (code)
4582 case LE:
4583 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4584 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4585 break;
4587 /* When cross-compiling, const_val might be sign-extended from
4588 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4589 case GE:
4590 if ((HOST_WIDE_INT) (const_val & max_val)
4591 != (((HOST_WIDE_INT) 1
4592 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4593 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4594 break;
4596 case LEU:
4597 if (uconst_val < max_val)
4598 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4599 break;
4601 case GEU:
4602 if (uconst_val != 0)
4603 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4604 break;
4606 default:
4607 break;
4611 /* Never return CC0; return zero instead. */
4612 if (CC0_P (op0))
4613 return 0;
4615 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4618 /* Given a jump insn JUMP, return the condition that will cause it to branch
4619 to its JUMP_LABEL. If the condition cannot be understood, or is an
4620 inequality floating-point comparison which needs to be reversed, 0 will
4621 be returned.
4623 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4624 insn used in locating the condition was found. If a replacement test
4625 of the condition is desired, it should be placed in front of that
4626 insn and we will be sure that the inputs are still valid. If EARLIEST
4627 is null, the returned condition will be valid at INSN.
4629 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4630 compare CC mode register.
4632 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4635 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4637 rtx cond;
4638 int reverse;
4639 rtx set;
4641 /* If this is not a standard conditional jump, we can't parse it. */
4642 if (!JUMP_P (jump)
4643 || ! any_condjump_p (jump))
4644 return 0;
4645 set = pc_set (jump);
4647 cond = XEXP (SET_SRC (set), 0);
4649 /* If this branches to JUMP_LABEL when the condition is false, reverse
4650 the condition. */
4651 reverse
4652 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4653 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4655 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4656 allow_cc_mode, valid_at_insn_p);