1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx
*, void *);
42 static void set_of_1 (rtx
, rtx
, void *);
43 static bool covers_regno_p (rtx
, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx
, unsigned int);
45 static int rtx_referenced_p_1 (rtx
*, void *);
46 static int computed_jump_p_1 (rtx
);
47 static void parms_set (rtx
, rtx
, void *);
49 static unsigned HOST_WIDE_INT
cached_nonzero_bits (rtx
, enum machine_mode
,
50 rtx
, enum machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned HOST_WIDE_INT
nonzero_bits1 (rtx
, enum machine_mode
, rtx
,
54 unsigned HOST_WIDE_INT
);
55 static unsigned int cached_num_sign_bit_copies (rtx
, enum machine_mode
, rtx
,
58 static unsigned int num_sign_bit_copies1 (rtx
, enum machine_mode
, rtx
,
59 enum machine_mode
, unsigned int);
61 /* Bit flags that specify the machine subtype we are compiling for.
62 Bits are tested using macros TARGET_... defined in the tm.h file
63 and set by `-m...' switches. Must be defined in rtlanal.c. */
67 /* Return 1 if the value of X is unstable
68 (would be different at a different point in the program).
69 The frame pointer, arg pointer, etc. are considered stable
70 (within one function) and so is anything marked `unchanging'. */
73 rtx_unstable_p (rtx x
)
75 RTX_CODE code
= GET_CODE (x
);
82 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
93 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
94 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
95 /* The arg pointer varies if it is not a fixed register. */
96 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
98 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
99 /* ??? When call-clobbered, the value is stable modulo the restore
100 that must happen after a call. This currently screws up local-alloc
101 into believing that the restore is not needed. */
102 if (x
== pic_offset_table_rtx
)
108 if (MEM_VOLATILE_P (x
))
117 fmt
= GET_RTX_FORMAT (code
);
118 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
121 if (rtx_unstable_p (XEXP (x
, i
)))
124 else if (fmt
[i
] == 'E')
127 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
128 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
135 /* Return 1 if X has a value that can vary even between two
136 executions of the program. 0 means X can be compared reliably
137 against certain constants or near-constants.
138 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
139 zero, we are slightly more conservative.
140 The frame pointer and the arg pointer are considered constant. */
143 rtx_varies_p (rtx x
, int for_alias
)
156 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
167 /* Note that we have to test for the actual rtx used for the frame
168 and arg pointers and not just the register number in case we have
169 eliminated the frame and/or arg pointer and are using it
171 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
172 /* The arg pointer varies if it is not a fixed register. */
173 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
175 if (x
== pic_offset_table_rtx
176 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
177 /* ??? When call-clobbered, the value is stable modulo the restore
178 that must happen after a call. This currently screws up
179 local-alloc into believing that the restore is not needed, so we
180 must return 0 only if we are called from alias analysis. */
188 /* The operand 0 of a LO_SUM is considered constant
189 (in fact it is related specifically to operand 1)
190 during alias analysis. */
191 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
192 || rtx_varies_p (XEXP (x
, 1), for_alias
);
195 if (MEM_VOLATILE_P (x
))
204 fmt
= GET_RTX_FORMAT (code
);
205 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
208 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
211 else if (fmt
[i
] == 'E')
214 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
215 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
222 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
225 rtx_addr_can_trap_p (rtx x
)
227 enum rtx_code code
= GET_CODE (x
);
232 return SYMBOL_REF_WEAK (x
);
238 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
239 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
240 || x
== stack_pointer_rtx
241 /* The arg pointer varies if it is not a fixed register. */
242 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
244 /* All of the virtual frame registers are stack references. */
245 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
246 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
251 return rtx_addr_can_trap_p (XEXP (x
, 0));
254 /* An address is assumed not to trap if it is an address that can't
255 trap plus a constant integer or it is the pic register plus a
257 return ! ((! rtx_addr_can_trap_p (XEXP (x
, 0))
258 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
259 || (XEXP (x
, 0) == pic_offset_table_rtx
260 && CONSTANT_P (XEXP (x
, 1))));
264 return rtx_addr_can_trap_p (XEXP (x
, 1));
271 return rtx_addr_can_trap_p (XEXP (x
, 0));
277 /* If it isn't one of the case above, it can cause a trap. */
281 /* Return true if X is an address that is known to not be zero. */
284 nonzero_address_p (rtx x
)
286 enum rtx_code code
= GET_CODE (x
);
291 return !SYMBOL_REF_WEAK (x
);
297 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
298 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
299 || x
== stack_pointer_rtx
300 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
302 /* All of the virtual frame registers are stack references. */
303 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
304 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
309 return nonzero_address_p (XEXP (x
, 0));
312 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
314 /* Pointers aren't allowed to wrap. If we've got a register
315 that is known to be a pointer, and a positive offset, then
316 the composite can't be zero. */
317 if (INTVAL (XEXP (x
, 1)) > 0
318 && REG_P (XEXP (x
, 0))
319 && REG_POINTER (XEXP (x
, 0)))
322 return nonzero_address_p (XEXP (x
, 0));
324 /* Handle PIC references. */
325 else if (XEXP (x
, 0) == pic_offset_table_rtx
326 && CONSTANT_P (XEXP (x
, 1)))
331 /* Similar to the above; allow positive offsets. Further, since
332 auto-inc is only allowed in memories, the register must be a
334 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
335 && INTVAL (XEXP (x
, 1)) > 0)
337 return nonzero_address_p (XEXP (x
, 0));
340 /* Similarly. Further, the offset is always positive. */
347 return nonzero_address_p (XEXP (x
, 0));
350 return nonzero_address_p (XEXP (x
, 1));
356 /* If it isn't one of the case above, might be zero. */
360 /* Return 1 if X refers to a memory location whose address
361 cannot be compared reliably with constant addresses,
362 or if X refers to a BLKmode memory object.
363 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
364 zero, we are slightly more conservative. */
367 rtx_addr_varies_p (rtx x
, int for_alias
)
378 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
380 fmt
= GET_RTX_FORMAT (code
);
381 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
384 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
387 else if (fmt
[i
] == 'E')
390 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
391 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
397 /* Return the value of the integer term in X, if one is apparent;
399 Only obvious integer terms are detected.
400 This is used in cse.c with the `related_value' field. */
403 get_integer_term (rtx x
)
405 if (GET_CODE (x
) == CONST
)
408 if (GET_CODE (x
) == MINUS
409 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
410 return - INTVAL (XEXP (x
, 1));
411 if (GET_CODE (x
) == PLUS
412 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
413 return INTVAL (XEXP (x
, 1));
417 /* If X is a constant, return the value sans apparent integer term;
419 Only obvious integer terms are detected. */
422 get_related_value (rtx x
)
424 if (GET_CODE (x
) != CONST
)
427 if (GET_CODE (x
) == PLUS
428 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
430 else if (GET_CODE (x
) == MINUS
431 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
436 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
437 a global register. */
440 global_reg_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
448 switch (GET_CODE (x
))
451 if (REG_P (SUBREG_REG (x
)))
453 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
454 && global_regs
[subreg_regno (x
)])
462 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
476 /* A non-constant call might use a global register. */
486 /* Returns nonzero if X mentions a global register. */
489 global_reg_mentioned_p (rtx x
)
495 if (! CONST_OR_PURE_CALL_P (x
))
497 x
= CALL_INSN_FUNCTION_USAGE (x
);
505 return for_each_rtx (&x
, global_reg_mentioned_p_1
, NULL
);
508 /* Return the number of places FIND appears within X. If COUNT_DEST is
509 zero, we do not count occurrences inside the destination of a SET. */
512 count_occurrences (rtx x
, rtx find
, int count_dest
)
516 const char *format_ptr
;
537 if (MEM_P (find
) && rtx_equal_p (x
, find
))
542 if (SET_DEST (x
) == find
&& ! count_dest
)
543 return count_occurrences (SET_SRC (x
), find
, count_dest
);
550 format_ptr
= GET_RTX_FORMAT (code
);
553 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
555 switch (*format_ptr
++)
558 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
562 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
563 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
570 /* Nonzero if register REG appears somewhere within IN.
571 Also works if REG is not a register; in this case it checks
572 for a subexpression of IN that is Lisp "equal" to REG. */
575 reg_mentioned_p (rtx reg
, rtx in
)
587 if (GET_CODE (in
) == LABEL_REF
)
588 return reg
== XEXP (in
, 0);
590 code
= GET_CODE (in
);
594 /* Compare registers by number. */
596 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
598 /* These codes have no constituent expressions
608 /* These are kept unique for a given value. */
615 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
618 fmt
= GET_RTX_FORMAT (code
);
620 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
625 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
626 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
629 else if (fmt
[i
] == 'e'
630 && reg_mentioned_p (reg
, XEXP (in
, i
)))
636 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
637 no CODE_LABEL insn. */
640 no_labels_between_p (rtx beg
, rtx end
)
645 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
651 /* Nonzero if register REG is used in an insn between
652 FROM_INSN and TO_INSN (exclusive of those two). */
655 reg_used_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
659 if (from_insn
== to_insn
)
662 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
664 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
666 && (find_reg_fusage (insn
, USE
, reg
)
667 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
672 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
673 is entirely replaced by a new value and the only use is as a SET_DEST,
674 we do not consider it a reference. */
677 reg_referenced_p (rtx x
, rtx body
)
681 switch (GET_CODE (body
))
684 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
687 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
688 of a REG that occupies all of the REG, the insn references X if
689 it is mentioned in the destination. */
690 if (GET_CODE (SET_DEST (body
)) != CC0
691 && GET_CODE (SET_DEST (body
)) != PC
692 && !REG_P (SET_DEST (body
))
693 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
694 && REG_P (SUBREG_REG (SET_DEST (body
)))
695 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
696 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
697 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
698 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
699 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
704 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
705 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
712 return reg_overlap_mentioned_p (x
, body
);
715 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
718 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
721 case UNSPEC_VOLATILE
:
722 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
723 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
728 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
729 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
734 if (MEM_P (XEXP (body
, 0)))
735 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
740 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
742 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
749 /* Nonzero if register REG is set or clobbered in an insn between
750 FROM_INSN and TO_INSN (exclusive of those two). */
753 reg_set_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
757 if (from_insn
== to_insn
)
760 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
761 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
766 /* Internals of reg_set_between_p. */
768 reg_set_p (rtx reg
, rtx insn
)
770 /* We can be passed an insn or part of one. If we are passed an insn,
771 check if a side-effect of the insn clobbers REG. */
773 && (FIND_REG_INC_NOTE (insn
, reg
)
776 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
777 && TEST_HARD_REG_BIT (regs_invalidated_by_call
,
780 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
783 return set_of (reg
, insn
) != NULL_RTX
;
786 /* Similar to reg_set_between_p, but check all registers in X. Return 0
787 only if none of them are modified between START and END. Do not
788 consider non-registers one way or the other. */
791 regs_set_between_p (rtx x
, rtx start
, rtx end
)
793 enum rtx_code code
= GET_CODE (x
);
810 return reg_set_between_p (x
, start
, end
);
816 fmt
= GET_RTX_FORMAT (code
);
817 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
819 if (fmt
[i
] == 'e' && regs_set_between_p (XEXP (x
, i
), start
, end
))
822 else if (fmt
[i
] == 'E')
823 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
824 if (regs_set_between_p (XVECEXP (x
, i
, j
), start
, end
))
831 /* Similar to reg_set_between_p, but check all registers in X. Return 0
832 only if none of them are modified between START and END. Return 1 if
833 X contains a MEM; this routine does usememory aliasing. */
836 modified_between_p (rtx x
, rtx start
, rtx end
)
838 enum rtx_code code
= GET_CODE (x
);
861 if (MEM_READONLY_P (x
))
863 if (modified_between_p (XEXP (x
, 0), start
, end
))
865 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
866 if (memory_modified_in_insn_p (x
, insn
))
872 return reg_set_between_p (x
, start
, end
);
878 fmt
= GET_RTX_FORMAT (code
);
879 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
881 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
884 else if (fmt
[i
] == 'E')
885 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
886 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
893 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
894 of them are modified in INSN. Return 1 if X contains a MEM; this routine
895 does use memory aliasing. */
898 modified_in_p (rtx x
, rtx insn
)
900 enum rtx_code code
= GET_CODE (x
);
919 if (MEM_READONLY_P (x
))
921 if (modified_in_p (XEXP (x
, 0), insn
))
923 if (memory_modified_in_insn_p (x
, insn
))
929 return reg_set_p (x
, insn
);
935 fmt
= GET_RTX_FORMAT (code
);
936 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
938 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
941 else if (fmt
[i
] == 'E')
942 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
943 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
950 /* Helper function for set_of. */
958 set_of_1 (rtx x
, rtx pat
, void *data1
)
960 struct set_of_data
*data
= (struct set_of_data
*) (data1
);
961 if (rtx_equal_p (x
, data
->pat
)
962 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
966 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
967 (either directly or via STRICT_LOW_PART and similar modifiers). */
969 set_of (rtx pat
, rtx insn
)
971 struct set_of_data data
;
972 data
.found
= NULL_RTX
;
974 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
978 /* Given an INSN, return a SET expression if this insn has only a single SET.
979 It may also have CLOBBERs, USEs, or SET whose output
980 will not be used, which we ignore. */
983 single_set_2 (rtx insn
, rtx pat
)
986 int set_verified
= 1;
989 if (GET_CODE (pat
) == PARALLEL
)
991 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
993 rtx sub
= XVECEXP (pat
, 0, i
);
994 switch (GET_CODE (sub
))
1001 /* We can consider insns having multiple sets, where all
1002 but one are dead as single set insns. In common case
1003 only single set is present in the pattern so we want
1004 to avoid checking for REG_UNUSED notes unless necessary.
1006 When we reach set first time, we just expect this is
1007 the single set we are looking for and only when more
1008 sets are found in the insn, we check them. */
1011 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1012 && !side_effects_p (set
))
1018 set
= sub
, set_verified
= 0;
1019 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1020 || side_effects_p (sub
))
1032 /* Given an INSN, return nonzero if it has more than one SET, else return
1036 multiple_sets (rtx insn
)
1041 /* INSN must be an insn. */
1042 if (! INSN_P (insn
))
1045 /* Only a PARALLEL can have multiple SETs. */
1046 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1048 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1049 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1051 /* If we have already found a SET, then return now. */
1059 /* Either zero or one SET. */
1063 /* Return nonzero if the destination of SET equals the source
1064 and there are no side effects. */
1067 set_noop_p (rtx set
)
1069 rtx src
= SET_SRC (set
);
1070 rtx dst
= SET_DEST (set
);
1072 if (dst
== pc_rtx
&& src
== pc_rtx
)
1075 if (MEM_P (dst
) && MEM_P (src
))
1076 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1078 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1079 return rtx_equal_p (XEXP (dst
, 0), src
)
1080 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1081 && !side_effects_p (src
);
1083 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1084 dst
= XEXP (dst
, 0);
1086 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1088 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1090 src
= SUBREG_REG (src
);
1091 dst
= SUBREG_REG (dst
);
1094 return (REG_P (src
) && REG_P (dst
)
1095 && REGNO (src
) == REGNO (dst
));
1098 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1102 noop_move_p (rtx insn
)
1104 rtx pat
= PATTERN (insn
);
1106 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1109 /* Insns carrying these notes are useful later on. */
1110 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1113 /* For now treat an insn with a REG_RETVAL note as a
1114 a special insn which should not be considered a no-op. */
1115 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
1118 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1121 if (GET_CODE (pat
) == PARALLEL
)
1124 /* If nothing but SETs of registers to themselves,
1125 this insn can also be deleted. */
1126 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1128 rtx tem
= XVECEXP (pat
, 0, i
);
1130 if (GET_CODE (tem
) == USE
1131 || GET_CODE (tem
) == CLOBBER
)
1134 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1144 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1145 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1146 If the object was modified, if we hit a partial assignment to X, or hit a
1147 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1148 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1152 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1156 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1160 rtx set
= single_set (p
);
1161 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1163 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1165 rtx src
= SET_SRC (set
);
1167 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1168 src
= XEXP (note
, 0);
1170 if ((valid_to
== NULL_RTX
1171 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1172 /* Reject hard registers because we don't usually want
1173 to use them; we'd rather use a pseudo. */
1175 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1182 /* If set in non-simple way, we don't have a value. */
1183 if (reg_set_p (x
, p
))
1190 /* Return nonzero if register in range [REGNO, ENDREGNO)
1191 appears either explicitly or implicitly in X
1192 other than being stored into.
1194 References contained within the substructure at LOC do not count.
1195 LOC may be zero, meaning don't ignore anything. */
1198 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, rtx x
,
1202 unsigned int x_regno
;
1207 /* The contents of a REG_NONNEG note is always zero, so we must come here
1208 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1212 code
= GET_CODE (x
);
1217 x_regno
= REGNO (x
);
1219 /* If we modifying the stack, frame, or argument pointer, it will
1220 clobber a virtual register. In fact, we could be more precise,
1221 but it isn't worth it. */
1222 if ((x_regno
== STACK_POINTER_REGNUM
1223 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1224 || x_regno
== ARG_POINTER_REGNUM
1226 || x_regno
== FRAME_POINTER_REGNUM
)
1227 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1230 return (endregno
> x_regno
1231 && regno
< x_regno
+ (x_regno
< FIRST_PSEUDO_REGISTER
1232 ? hard_regno_nregs
[x_regno
][GET_MODE (x
)]
1236 /* If this is a SUBREG of a hard reg, we can see exactly which
1237 registers are being modified. Otherwise, handle normally. */
1238 if (REG_P (SUBREG_REG (x
))
1239 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1241 unsigned int inner_regno
= subreg_regno (x
);
1242 unsigned int inner_endregno
1243 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1244 ? hard_regno_nregs
[inner_regno
][GET_MODE (x
)] : 1);
1246 return endregno
> inner_regno
&& regno
< inner_endregno
;
1252 if (&SET_DEST (x
) != loc
1253 /* Note setting a SUBREG counts as referring to the REG it is in for
1254 a pseudo but not for hard registers since we can
1255 treat each word individually. */
1256 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1257 && loc
!= &SUBREG_REG (SET_DEST (x
))
1258 && REG_P (SUBREG_REG (SET_DEST (x
)))
1259 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1260 && refers_to_regno_p (regno
, endregno
,
1261 SUBREG_REG (SET_DEST (x
)), loc
))
1262 || (!REG_P (SET_DEST (x
))
1263 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1266 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1275 /* X does not match, so try its subexpressions. */
1277 fmt
= GET_RTX_FORMAT (code
);
1278 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1280 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1288 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1291 else if (fmt
[i
] == 'E')
1294 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1295 if (loc
!= &XVECEXP (x
, i
, j
)
1296 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1303 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1304 we check if any register number in X conflicts with the relevant register
1305 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1306 contains a MEM (we don't bother checking for memory addresses that can't
1307 conflict because we expect this to be a rare case. */
1310 reg_overlap_mentioned_p (rtx x
, rtx in
)
1312 unsigned int regno
, endregno
;
1314 /* If either argument is a constant, then modifying X can not
1315 affect IN. Here we look at IN, we can profitably combine
1316 CONSTANT_P (x) with the switch statement below. */
1317 if (CONSTANT_P (in
))
1321 switch (GET_CODE (x
))
1323 case STRICT_LOW_PART
:
1326 /* Overly conservative. */
1331 regno
= REGNO (SUBREG_REG (x
));
1332 if (regno
< FIRST_PSEUDO_REGISTER
)
1333 regno
= subreg_regno (x
);
1339 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1340 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
1341 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1351 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1352 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1353 if (fmt
[i
] == 'e' && reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1362 return reg_mentioned_p (x
, in
);
1368 /* If any register in here refers to it we return true. */
1369 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1370 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1371 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1377 gcc_assert (CONSTANT_P (x
));
1382 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1383 (X would be the pattern of an insn).
1384 FUN receives two arguments:
1385 the REG, MEM, CC0 or PC being stored in or clobbered,
1386 the SET or CLOBBER rtx that does the store.
1388 If the item being stored in or clobbered is a SUBREG of a hard register,
1389 the SUBREG will be passed. */
1392 note_stores (rtx x
, void (*fun
) (rtx
, rtx
, void *), void *data
)
1396 if (GET_CODE (x
) == COND_EXEC
)
1397 x
= COND_EXEC_CODE (x
);
1399 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1401 rtx dest
= SET_DEST (x
);
1403 while ((GET_CODE (dest
) == SUBREG
1404 && (!REG_P (SUBREG_REG (dest
))
1405 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1406 || GET_CODE (dest
) == ZERO_EXTRACT
1407 || GET_CODE (dest
) == STRICT_LOW_PART
)
1408 dest
= XEXP (dest
, 0);
1410 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1411 each of whose first operand is a register. */
1412 if (GET_CODE (dest
) == PARALLEL
)
1414 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1415 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1416 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1419 (*fun
) (dest
, x
, data
);
1422 else if (GET_CODE (x
) == PARALLEL
)
1423 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1424 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1427 /* Like notes_stores, but call FUN for each expression that is being
1428 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1429 FUN for each expression, not any interior subexpressions. FUN receives a
1430 pointer to the expression and the DATA passed to this function.
1432 Note that this is not quite the same test as that done in reg_referenced_p
1433 since that considers something as being referenced if it is being
1434 partially set, while we do not. */
1437 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1442 switch (GET_CODE (body
))
1445 (*fun
) (&COND_EXEC_TEST (body
), data
);
1446 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1450 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1451 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1455 (*fun
) (&XEXP (body
, 0), data
);
1459 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1460 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1464 (*fun
) (&TRAP_CONDITION (body
), data
);
1468 (*fun
) (&XEXP (body
, 0), data
);
1472 case UNSPEC_VOLATILE
:
1473 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1474 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1478 if (MEM_P (XEXP (body
, 0)))
1479 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1484 rtx dest
= SET_DEST (body
);
1486 /* For sets we replace everything in source plus registers in memory
1487 expression in store and operands of a ZERO_EXTRACT. */
1488 (*fun
) (&SET_SRC (body
), data
);
1490 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1492 (*fun
) (&XEXP (dest
, 1), data
);
1493 (*fun
) (&XEXP (dest
, 2), data
);
1496 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1497 dest
= XEXP (dest
, 0);
1500 (*fun
) (&XEXP (dest
, 0), data
);
1505 /* All the other possibilities never store. */
1506 (*fun
) (pbody
, data
);
1511 /* Return nonzero if X's old contents don't survive after INSN.
1512 This will be true if X is (cc0) or if X is a register and
1513 X dies in INSN or because INSN entirely sets X.
1515 "Entirely set" means set directly and not through a SUBREG, or
1516 ZERO_EXTRACT, so no trace of the old contents remains.
1517 Likewise, REG_INC does not count.
1519 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1520 but for this use that makes no difference, since regs don't overlap
1521 during their lifetimes. Therefore, this function may be used
1522 at any time after deaths have been computed (in flow.c).
1524 If REG is a hard reg that occupies multiple machine registers, this
1525 function will only return 1 if each of those registers will be replaced
1529 dead_or_set_p (rtx insn
, rtx x
)
1531 unsigned int regno
, last_regno
;
1534 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1535 if (GET_CODE (x
) == CC0
)
1538 gcc_assert (REG_P (x
));
1541 last_regno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
1542 : regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)] - 1);
1544 for (i
= regno
; i
<= last_regno
; i
++)
1545 if (! dead_or_set_regno_p (insn
, i
))
1551 /* Return TRUE iff DEST is a register or subreg of a register and
1552 doesn't change the number of words of the inner register, and any
1553 part of the register is TEST_REGNO. */
1556 covers_regno_no_parallel_p (rtx dest
, unsigned int test_regno
)
1558 unsigned int regno
, endregno
;
1560 if (GET_CODE (dest
) == SUBREG
1561 && (((GET_MODE_SIZE (GET_MODE (dest
))
1562 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1563 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1564 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1565 dest
= SUBREG_REG (dest
);
1570 regno
= REGNO (dest
);
1571 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1572 : regno
+ hard_regno_nregs
[regno
][GET_MODE (dest
)]);
1573 return (test_regno
>= regno
&& test_regno
< endregno
);
1576 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1577 any member matches the covers_regno_no_parallel_p criteria. */
1580 covers_regno_p (rtx dest
, unsigned int test_regno
)
1582 if (GET_CODE (dest
) == PARALLEL
)
1584 /* Some targets place small structures in registers for return
1585 values of functions, and those registers are wrapped in
1586 PARALLELs that we may see as the destination of a SET. */
1589 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1591 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1592 if (inner
!= NULL_RTX
1593 && covers_regno_no_parallel_p (inner
, test_regno
))
1600 return covers_regno_no_parallel_p (dest
, test_regno
);
1603 /* Utility function for dead_or_set_p to check an individual register. Also
1604 called from flow.c. */
1607 dead_or_set_regno_p (rtx insn
, unsigned int test_regno
)
1611 /* See if there is a death note for something that includes TEST_REGNO. */
1612 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1616 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1619 pattern
= PATTERN (insn
);
1621 if (GET_CODE (pattern
) == COND_EXEC
)
1622 pattern
= COND_EXEC_CODE (pattern
);
1624 if (GET_CODE (pattern
) == SET
)
1625 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1626 else if (GET_CODE (pattern
) == PARALLEL
)
1630 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1632 rtx body
= XVECEXP (pattern
, 0, i
);
1634 if (GET_CODE (body
) == COND_EXEC
)
1635 body
= COND_EXEC_CODE (body
);
1637 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1638 && covers_regno_p (SET_DEST (body
), test_regno
))
1646 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1647 If DATUM is nonzero, look for one whose datum is DATUM. */
1650 find_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1654 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1655 if (! INSN_P (insn
))
1659 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1660 if (REG_NOTE_KIND (link
) == kind
)
1665 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1666 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1671 /* Return the reg-note of kind KIND in insn INSN which applies to register
1672 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1673 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1674 it might be the case that the note overlaps REGNO. */
1677 find_regno_note (rtx insn
, enum reg_note kind
, unsigned int regno
)
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn
))
1685 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1686 if (REG_NOTE_KIND (link
) == kind
1687 /* Verify that it is a register, so that scratch and MEM won't cause a
1689 && REG_P (XEXP (link
, 0))
1690 && REGNO (XEXP (link
, 0)) <= regno
1691 && ((REGNO (XEXP (link
, 0))
1692 + (REGNO (XEXP (link
, 0)) >= FIRST_PSEUDO_REGISTER
? 1
1693 : hard_regno_nregs
[REGNO (XEXP (link
, 0))]
1694 [GET_MODE (XEXP (link
, 0))]))
1700 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1704 find_reg_equal_equiv_note (rtx insn
)
1710 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1711 if (REG_NOTE_KIND (link
) == REG_EQUAL
1712 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1714 if (single_set (insn
) == 0)
1721 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1722 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1725 find_reg_fusage (rtx insn
, enum rtx_code code
, rtx datum
)
1727 /* If it's not a CALL_INSN, it can't possibly have a
1728 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1738 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1740 link
= XEXP (link
, 1))
1741 if (GET_CODE (XEXP (link
, 0)) == code
1742 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1747 unsigned int regno
= REGNO (datum
);
1749 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1750 to pseudo registers, so don't bother checking. */
1752 if (regno
< FIRST_PSEUDO_REGISTER
)
1754 unsigned int end_regno
1755 = regno
+ hard_regno_nregs
[regno
][GET_MODE (datum
)];
1758 for (i
= regno
; i
< end_regno
; i
++)
1759 if (find_regno_fusage (insn
, code
, i
))
1767 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1768 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1771 find_regno_fusage (rtx insn
, enum rtx_code code
, unsigned int regno
)
1775 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1776 to pseudo registers, so don't bother checking. */
1778 if (regno
>= FIRST_PSEUDO_REGISTER
1782 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1784 unsigned int regnote
;
1787 if (GET_CODE (op
= XEXP (link
, 0)) == code
1788 && REG_P (reg
= XEXP (op
, 0))
1789 && (regnote
= REGNO (reg
)) <= regno
1790 && regnote
+ hard_regno_nregs
[regnote
][GET_MODE (reg
)] > regno
)
1797 /* Return true if INSN is a call to a pure function. */
1800 pure_call_p (rtx insn
)
1804 if (!CALL_P (insn
) || ! CONST_OR_PURE_CALL_P (insn
))
1807 /* Look for the note that differentiates const and pure functions. */
1808 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1812 if (GET_CODE (u
= XEXP (link
, 0)) == USE
1813 && MEM_P (m
= XEXP (u
, 0)) && GET_MODE (m
) == BLKmode
1814 && GET_CODE (XEXP (m
, 0)) == SCRATCH
)
1821 /* Remove register note NOTE from the REG_NOTES of INSN. */
1824 remove_note (rtx insn
, rtx note
)
1828 if (note
== NULL_RTX
)
1831 if (REG_NOTES (insn
) == note
)
1833 REG_NOTES (insn
) = XEXP (note
, 1);
1837 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1838 if (XEXP (link
, 1) == note
)
1840 XEXP (link
, 1) = XEXP (note
, 1);
1847 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1848 return 1 if it is found. A simple equality test is used to determine if
1852 in_expr_list_p (rtx listp
, rtx node
)
1856 for (x
= listp
; x
; x
= XEXP (x
, 1))
1857 if (node
== XEXP (x
, 0))
1863 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1864 remove that entry from the list if it is found.
1866 A simple equality test is used to determine if NODE matches. */
1869 remove_node_from_expr_list (rtx node
, rtx
*listp
)
1872 rtx prev
= NULL_RTX
;
1876 if (node
== XEXP (temp
, 0))
1878 /* Splice the node out of the list. */
1880 XEXP (prev
, 1) = XEXP (temp
, 1);
1882 *listp
= XEXP (temp
, 1);
1888 temp
= XEXP (temp
, 1);
1892 /* Nonzero if X contains any volatile instructions. These are instructions
1893 which may cause unpredictable machine state instructions, and thus no
1894 instructions should be moved or combined across them. This includes
1895 only volatile asms and UNSPEC_VOLATILE instructions. */
1898 volatile_insn_p (rtx x
)
1902 code
= GET_CODE (x
);
1922 case UNSPEC_VOLATILE
:
1923 /* case TRAP_IF: This isn't clear yet. */
1928 if (MEM_VOLATILE_P (x
))
1935 /* Recursively scan the operands of this expression. */
1938 const char *fmt
= GET_RTX_FORMAT (code
);
1941 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1945 if (volatile_insn_p (XEXP (x
, i
)))
1948 else if (fmt
[i
] == 'E')
1951 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1952 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
1960 /* Nonzero if X contains any volatile memory references
1961 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1964 volatile_refs_p (rtx x
)
1968 code
= GET_CODE (x
);
1986 case UNSPEC_VOLATILE
:
1992 if (MEM_VOLATILE_P (x
))
1999 /* Recursively scan the operands of this expression. */
2002 const char *fmt
= GET_RTX_FORMAT (code
);
2005 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2009 if (volatile_refs_p (XEXP (x
, i
)))
2012 else if (fmt
[i
] == 'E')
2015 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2016 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2024 /* Similar to above, except that it also rejects register pre- and post-
2028 side_effects_p (rtx x
)
2032 code
= GET_CODE (x
);
2050 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2051 when some combination can't be done. If we see one, don't think
2052 that we can simplify the expression. */
2053 return (GET_MODE (x
) != VOIDmode
);
2062 case UNSPEC_VOLATILE
:
2063 /* case TRAP_IF: This isn't clear yet. */
2069 if (MEM_VOLATILE_P (x
))
2076 /* Recursively scan the operands of this expression. */
2079 const char *fmt
= GET_RTX_FORMAT (code
);
2082 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2086 if (side_effects_p (XEXP (x
, i
)))
2089 else if (fmt
[i
] == 'E')
2092 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2093 if (side_effects_p (XVECEXP (x
, i
, j
)))
2101 /* Return nonzero if evaluating rtx X might cause a trap. */
2112 code
= GET_CODE (x
);
2115 /* Handle these cases quickly. */
2129 case UNSPEC_VOLATILE
:
2134 return MEM_VOLATILE_P (x
);
2136 /* Memory ref can trap unless it's a static var or a stack slot. */
2138 if (MEM_NOTRAP_P (x
))
2140 return rtx_addr_can_trap_p (XEXP (x
, 0));
2142 /* Division by a non-constant might trap. */
2147 if (HONOR_SNANS (GET_MODE (x
)))
2149 if (! CONSTANT_P (XEXP (x
, 1))
2150 || (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2151 && flag_trapping_math
))
2153 if (XEXP (x
, 1) == const0_rtx
)
2158 /* An EXPR_LIST is used to represent a function call. This
2159 certainly may trap. */
2168 /* Some floating point comparisons may trap. */
2169 if (!flag_trapping_math
)
2171 /* ??? There is no machine independent way to check for tests that trap
2172 when COMPARE is used, though many targets do make this distinction.
2173 For instance, sparc uses CCFPE for compares which generate exceptions
2174 and CCFP for compares which do not generate exceptions. */
2175 if (HONOR_NANS (GET_MODE (x
)))
2177 /* But often the compare has some CC mode, so check operand
2179 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2180 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2186 if (HONOR_SNANS (GET_MODE (x
)))
2188 /* Often comparison is CC mode, so check operand modes. */
2189 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2190 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2195 /* Conversion of floating point might trap. */
2196 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2202 /* These operations don't trap even with floating point. */
2206 /* Any floating arithmetic may trap. */
2207 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
2208 && flag_trapping_math
)
2212 fmt
= GET_RTX_FORMAT (code
);
2213 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2217 if (may_trap_p (XEXP (x
, i
)))
2220 else if (fmt
[i
] == 'E')
2223 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2224 if (may_trap_p (XVECEXP (x
, i
, j
)))
2231 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2232 i.e., an inequality. */
2235 inequality_comparisons_p (rtx x
)
2239 enum rtx_code code
= GET_CODE (x
);
2269 len
= GET_RTX_LENGTH (code
);
2270 fmt
= GET_RTX_FORMAT (code
);
2272 for (i
= 0; i
< len
; i
++)
2276 if (inequality_comparisons_p (XEXP (x
, i
)))
2279 else if (fmt
[i
] == 'E')
2282 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2283 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2291 /* Replace any occurrence of FROM in X with TO. The function does
2292 not enter into CONST_DOUBLE for the replace.
2294 Note that copying is not done so X must not be shared unless all copies
2295 are to be modified. */
2298 replace_rtx (rtx x
, rtx from
, rtx to
)
2303 /* The following prevents loops occurrence when we change MEM in
2304 CONST_DOUBLE onto the same CONST_DOUBLE. */
2305 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2311 /* Allow this function to make replacements in EXPR_LISTs. */
2315 if (GET_CODE (x
) == SUBREG
)
2317 rtx
new = replace_rtx (SUBREG_REG (x
), from
, to
);
2319 if (GET_CODE (new) == CONST_INT
)
2321 x
= simplify_subreg (GET_MODE (x
), new,
2322 GET_MODE (SUBREG_REG (x
)),
2327 SUBREG_REG (x
) = new;
2331 else if (GET_CODE (x
) == ZERO_EXTEND
)
2333 rtx
new = replace_rtx (XEXP (x
, 0), from
, to
);
2335 if (GET_CODE (new) == CONST_INT
)
2337 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2338 new, GET_MODE (XEXP (x
, 0)));
2347 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2348 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2351 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2352 else if (fmt
[i
] == 'E')
2353 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2354 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2360 /* Throughout the rtx X, replace many registers according to REG_MAP.
2361 Return the replacement for X (which may be X with altered contents).
2362 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2363 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2365 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2366 should not be mapped to pseudos or vice versa since validate_change
2369 If REPLACE_DEST is 1, replacements are also done in destinations;
2370 otherwise, only sources are replaced. */
2373 replace_regs (rtx x
, rtx
*reg_map
, unsigned int nregs
, int replace_dest
)
2382 code
= GET_CODE (x
);
2397 /* Verify that the register has an entry before trying to access it. */
2398 if (REGNO (x
) < nregs
&& reg_map
[REGNO (x
)] != 0)
2400 /* SUBREGs can't be shared. Always return a copy to ensure that if
2401 this replacement occurs more than once then each instance will
2402 get distinct rtx. */
2403 if (GET_CODE (reg_map
[REGNO (x
)]) == SUBREG
)
2404 return copy_rtx (reg_map
[REGNO (x
)]);
2405 return reg_map
[REGNO (x
)];
2410 /* Prevent making nested SUBREGs. */
2411 if (REG_P (SUBREG_REG (x
)) && REGNO (SUBREG_REG (x
)) < nregs
2412 && reg_map
[REGNO (SUBREG_REG (x
))] != 0
2413 && GET_CODE (reg_map
[REGNO (SUBREG_REG (x
))]) == SUBREG
)
2415 rtx map_val
= reg_map
[REGNO (SUBREG_REG (x
))];
2416 return simplify_gen_subreg (GET_MODE (x
), map_val
,
2417 GET_MODE (SUBREG_REG (x
)),
2424 SET_DEST (x
) = replace_regs (SET_DEST (x
), reg_map
, nregs
, 0);
2426 else if (MEM_P (SET_DEST (x
))
2427 || GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2428 /* Even if we are not to replace destinations, replace register if it
2429 is CONTAINED in destination (destination is memory or
2430 STRICT_LOW_PART). */
2431 XEXP (SET_DEST (x
), 0) = replace_regs (XEXP (SET_DEST (x
), 0),
2433 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2434 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2437 SET_SRC (x
) = replace_regs (SET_SRC (x
), reg_map
, nregs
, 0);
2444 fmt
= GET_RTX_FORMAT (code
);
2445 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2448 XEXP (x
, i
) = replace_regs (XEXP (x
, i
), reg_map
, nregs
, replace_dest
);
2449 else if (fmt
[i
] == 'E')
2452 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2453 XVECEXP (x
, i
, j
) = replace_regs (XVECEXP (x
, i
, j
), reg_map
,
2454 nregs
, replace_dest
);
2460 /* Replace occurrences of the old label in *X with the new one.
2461 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2464 replace_label (rtx
*x
, void *data
)
2467 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2468 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2469 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2474 if (GET_CODE (l
) == SYMBOL_REF
2475 && CONSTANT_POOL_ADDRESS_P (l
))
2477 rtx c
= get_pool_constant (l
);
2478 if (rtx_referenced_p (old_label
, c
))
2481 replace_label_data
*d
= (replace_label_data
*) data
;
2483 /* Create a copy of constant C; replace the label inside
2484 but do not update LABEL_NUSES because uses in constant pool
2486 new_c
= copy_rtx (c
);
2487 d
->update_label_nuses
= false;
2488 for_each_rtx (&new_c
, replace_label
, data
);
2489 d
->update_label_nuses
= update_label_nuses
;
2491 /* Add the new constant NEW_C to constant pool and replace
2492 the old reference to constant by new reference. */
2493 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2494 *x
= replace_rtx (l
, l
, new_l
);
2499 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2500 field. This is not handled by for_each_rtx because it doesn't
2501 handle unprinted ('0') fields. */
2502 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2503 JUMP_LABEL (l
) = new_label
;
2505 if ((GET_CODE (l
) == LABEL_REF
2506 || GET_CODE (l
) == INSN_LIST
)
2507 && XEXP (l
, 0) == old_label
)
2509 XEXP (l
, 0) = new_label
;
2510 if (update_label_nuses
)
2512 ++LABEL_NUSES (new_label
);
2513 --LABEL_NUSES (old_label
);
2521 /* When *BODY is equal to X or X is directly referenced by *BODY
2522 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2523 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2526 rtx_referenced_p_1 (rtx
*body
, void *x
)
2530 if (*body
== NULL_RTX
)
2531 return y
== NULL_RTX
;
2533 /* Return true if a label_ref *BODY refers to label Y. */
2534 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2535 return XEXP (*body
, 0) == y
;
2537 /* If *BODY is a reference to pool constant traverse the constant. */
2538 if (GET_CODE (*body
) == SYMBOL_REF
2539 && CONSTANT_POOL_ADDRESS_P (*body
))
2540 return rtx_referenced_p (y
, get_pool_constant (*body
));
2542 /* By default, compare the RTL expressions. */
2543 return rtx_equal_p (*body
, y
);
2546 /* Return true if X is referenced in BODY. */
2549 rtx_referenced_p (rtx x
, rtx body
)
2551 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2554 /* If INSN is a tablejump return true and store the label (before jump table) to
2555 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2558 tablejump_p (rtx insn
, rtx
*labelp
, rtx
*tablep
)
2563 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2564 && (table
= next_active_insn (label
)) != NULL_RTX
2566 && (GET_CODE (PATTERN (table
)) == ADDR_VEC
2567 || GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
))
2578 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2579 constant that is not in the constant pool and not in the condition
2580 of an IF_THEN_ELSE. */
2583 computed_jump_p_1 (rtx x
)
2585 enum rtx_code code
= GET_CODE (x
);
2604 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2605 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2608 return (computed_jump_p_1 (XEXP (x
, 1))
2609 || computed_jump_p_1 (XEXP (x
, 2)));
2615 fmt
= GET_RTX_FORMAT (code
);
2616 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2619 && computed_jump_p_1 (XEXP (x
, i
)))
2622 else if (fmt
[i
] == 'E')
2623 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2624 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2631 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2633 Tablejumps and casesi insns are not considered indirect jumps;
2634 we can recognize them by a (use (label_ref)). */
2637 computed_jump_p (rtx insn
)
2642 rtx pat
= PATTERN (insn
);
2644 if (find_reg_note (insn
, REG_LABEL
, NULL_RTX
))
2646 else if (GET_CODE (pat
) == PARALLEL
)
2648 int len
= XVECLEN (pat
, 0);
2649 int has_use_labelref
= 0;
2651 for (i
= len
- 1; i
>= 0; i
--)
2652 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2653 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2655 has_use_labelref
= 1;
2657 if (! has_use_labelref
)
2658 for (i
= len
- 1; i
>= 0; i
--)
2659 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2660 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2661 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2664 else if (GET_CODE (pat
) == SET
2665 && SET_DEST (pat
) == pc_rtx
2666 && computed_jump_p_1 (SET_SRC (pat
)))
2672 /* Traverse X via depth-first search, calling F for each
2673 sub-expression (including X itself). F is also passed the DATA.
2674 If F returns -1, do not traverse sub-expressions, but continue
2675 traversing the rest of the tree. If F ever returns any other
2676 nonzero value, stop the traversal, and return the value returned
2677 by F. Otherwise, return 0. This function does not traverse inside
2678 tree structure that contains RTX_EXPRs, or into sub-expressions
2679 whose format code is `0' since it is not known whether or not those
2680 codes are actually RTL.
2682 This routine is very general, and could (should?) be used to
2683 implement many of the other routines in this file. */
2686 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2694 result
= (*f
) (x
, data
);
2696 /* Do not traverse sub-expressions. */
2698 else if (result
!= 0)
2699 /* Stop the traversal. */
2703 /* There are no sub-expressions. */
2706 length
= GET_RTX_LENGTH (GET_CODE (*x
));
2707 format
= GET_RTX_FORMAT (GET_CODE (*x
));
2709 for (i
= 0; i
< length
; ++i
)
2714 result
= for_each_rtx (&XEXP (*x
, i
), f
, data
);
2721 if (XVEC (*x
, i
) != 0)
2724 for (j
= 0; j
< XVECLEN (*x
, i
); ++j
)
2726 result
= for_each_rtx (&XVECEXP (*x
, i
, j
), f
, data
);
2734 /* Nothing to do. */
2743 /* Searches X for any reference to REGNO, returning the rtx of the
2744 reference found if any. Otherwise, returns NULL_RTX. */
2747 regno_use_in (unsigned int regno
, rtx x
)
2753 if (REG_P (x
) && REGNO (x
) == regno
)
2756 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2757 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2761 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2764 else if (fmt
[i
] == 'E')
2765 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2766 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2773 /* Return a value indicating whether OP, an operand of a commutative
2774 operation, is preferred as the first or second operand. The higher
2775 the value, the stronger the preference for being the first operand.
2776 We use negative values to indicate a preference for the first operand
2777 and positive values for the second operand. */
2780 commutative_operand_precedence (rtx op
)
2782 enum rtx_code code
= GET_CODE (op
);
2784 /* Constants always come the second operand. Prefer "nice" constants. */
2785 if (code
== CONST_INT
)
2787 if (code
== CONST_DOUBLE
)
2789 op
= avoid_constant_pool_reference (op
);
2790 code
= GET_CODE (op
);
2792 switch (GET_RTX_CLASS (code
))
2795 if (code
== CONST_INT
)
2797 if (code
== CONST_DOUBLE
)
2802 /* SUBREGs of objects should come second. */
2803 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2806 if (!CONSTANT_P (op
))
2809 /* As for RTX_CONST_OBJ. */
2813 /* Complex expressions should be the first, so decrease priority
2817 case RTX_COMM_ARITH
:
2818 /* Prefer operands that are themselves commutative to be first.
2819 This helps to make things linear. In particular,
2820 (and (and (reg) (reg)) (not (reg))) is canonical. */
2824 /* If only one operand is a binary expression, it will be the first
2825 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2826 is canonical, although it will usually be further simplified. */
2830 /* Then prefer NEG and NOT. */
2831 if (code
== NEG
|| code
== NOT
)
2839 /* Return 1 iff it is necessary to swap operands of commutative operation
2840 in order to canonicalize expression. */
2843 swap_commutative_operands_p (rtx x
, rtx y
)
2845 return (commutative_operand_precedence (x
)
2846 < commutative_operand_precedence (y
));
2849 /* Return 1 if X is an autoincrement side effect and the register is
2850 not the stack pointer. */
2854 switch (GET_CODE (x
))
2862 /* There are no REG_INC notes for SP. */
2863 if (XEXP (x
, 0) != stack_pointer_rtx
)
2871 /* Return 1 if the sequence of instructions beginning with FROM and up
2872 to and including TO is safe to move. If NEW_TO is non-NULL, and
2873 the sequence is not already safe to move, but can be easily
2874 extended to a sequence which is safe, then NEW_TO will point to the
2875 end of the extended sequence.
2877 For now, this function only checks that the region contains whole
2878 exception regions, but it could be extended to check additional
2879 conditions as well. */
2882 insns_safe_to_move_p (rtx from
, rtx to
, rtx
*new_to
)
2884 int eh_region_count
= 0;
2888 /* By default, assume the end of the region will be what was
2897 switch (NOTE_LINE_NUMBER (r
))
2899 case NOTE_INSN_EH_REGION_BEG
:
2903 case NOTE_INSN_EH_REGION_END
:
2904 if (eh_region_count
== 0)
2905 /* This sequence of instructions contains the end of
2906 an exception region, but not he beginning. Moving
2907 it will cause chaos. */
2918 /* If we've passed TO, and we see a non-note instruction, we
2919 can't extend the sequence to a movable sequence. */
2925 /* It's OK to move the sequence if there were matched sets of
2926 exception region notes. */
2927 return eh_region_count
== 0;
2932 /* It's OK to move the sequence if there were matched sets of
2933 exception region notes. */
2934 if (past_to_p
&& eh_region_count
== 0)
2940 /* Go to the next instruction. */
2947 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2949 loc_mentioned_in_p (rtx
*loc
, rtx in
)
2951 enum rtx_code code
= GET_CODE (in
);
2952 const char *fmt
= GET_RTX_FORMAT (code
);
2955 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2957 if (loc
== &in
->u
.fld
[i
].rt_rtx
)
2961 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
2964 else if (fmt
[i
] == 'E')
2965 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
2966 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
2972 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2973 and SUBREG_BYTE, return the bit offset where the subreg begins
2974 (counting from the least significant bit of the operand). */
2977 subreg_lsb_1 (enum machine_mode outer_mode
,
2978 enum machine_mode inner_mode
,
2979 unsigned int subreg_byte
)
2981 unsigned int bitpos
;
2985 /* A paradoxical subreg begins at bit position 0. */
2986 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
2989 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
2990 /* If the subreg crosses a word boundary ensure that
2991 it also begins and ends on a word boundary. */
2992 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
2993 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
2994 && (subreg_byte
% UNITS_PER_WORD
2995 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
2997 if (WORDS_BIG_ENDIAN
)
2998 word
= (GET_MODE_SIZE (inner_mode
)
2999 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3001 word
= subreg_byte
/ UNITS_PER_WORD
;
3002 bitpos
= word
* BITS_PER_WORD
;
3004 if (BYTES_BIG_ENDIAN
)
3005 byte
= (GET_MODE_SIZE (inner_mode
)
3006 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3008 byte
= subreg_byte
% UNITS_PER_WORD
;
3009 bitpos
+= byte
* BITS_PER_UNIT
;
3014 /* Given a subreg X, return the bit offset where the subreg begins
3015 (counting from the least significant bit of the reg). */
3020 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3024 /* This function returns the regno offset of a subreg expression.
3025 xregno - A regno of an inner hard subreg_reg (or what will become one).
3026 xmode - The mode of xregno.
3027 offset - The byte offset.
3028 ymode - The mode of a top level SUBREG (or what may become one).
3029 RETURN - The regno offset which would be used. */
3031 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3032 unsigned int offset
, enum machine_mode ymode
)
3034 int nregs_xmode
, nregs_ymode
;
3035 int mode_multiple
, nregs_multiple
;
3038 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3040 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3041 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3043 /* If this is a big endian paradoxical subreg, which uses more actual
3044 hard registers than the original register, we must return a negative
3045 offset so that we find the proper highpart of the register. */
3047 && nregs_ymode
> nregs_xmode
3048 && (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3049 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
3050 return nregs_xmode
- nregs_ymode
;
3052 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3055 /* size of ymode must not be greater than the size of xmode. */
3056 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3057 gcc_assert (mode_multiple
!= 0);
3059 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3060 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3061 return (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3064 /* This function returns true when the offset is representable via
3065 subreg_offset in the given regno.
3066 xregno - A regno of an inner hard subreg_reg (or what will become one).
3067 xmode - The mode of xregno.
3068 offset - The byte offset.
3069 ymode - The mode of a top level SUBREG (or what may become one).
3070 RETURN - The regno offset which would be used. */
3072 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3073 unsigned int offset
, enum machine_mode ymode
)
3075 int nregs_xmode
, nregs_ymode
;
3076 int mode_multiple
, nregs_multiple
;
3079 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3081 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3082 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3084 /* Paradoxical subregs are always valid. */
3086 && nregs_ymode
> nregs_xmode
3087 && (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3088 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
3091 /* Lowpart subregs are always valid. */
3092 if (offset
== subreg_lowpart_offset (ymode
, xmode
))
3095 /* This should always pass, otherwise we don't know how to verify the
3096 constraint. These conditions may be relaxed but subreg_offset would
3097 need to be redesigned. */
3098 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3099 gcc_assert ((GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0);
3100 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3102 /* The XMODE value can be seen as a vector of NREGS_XMODE
3103 values. The subreg must represent a lowpart of given field.
3104 Compute what field it is. */
3105 offset
-= subreg_lowpart_offset (ymode
,
3106 mode_for_size (GET_MODE_BITSIZE (xmode
)
3110 /* size of ymode must not be greater than the size of xmode. */
3111 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3112 gcc_assert (mode_multiple
!= 0);
3114 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3115 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3117 gcc_assert ((offset
% GET_MODE_SIZE (ymode
)) == 0);
3118 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3120 return (!(y_offset
% (mode_multiple
/ nregs_multiple
)));
3123 /* Return the final regno that a subreg expression refers to. */
3125 subreg_regno (rtx x
)
3128 rtx subreg
= SUBREG_REG (x
);
3129 int regno
= REGNO (subreg
);
3131 ret
= regno
+ subreg_regno_offset (regno
,
3138 struct parms_set_data
3144 /* Helper function for noticing stores to parameter registers. */
3146 parms_set (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3148 struct parms_set_data
*d
= data
;
3149 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3150 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3152 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3157 /* Look backward for first parameter to be loaded.
3158 Do not skip BOUNDARY. */
3160 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3162 struct parms_set_data parm
;
3165 /* Since different machines initialize their parameter registers
3166 in different orders, assume nothing. Collect the set of all
3167 parameter registers. */
3168 CLEAR_HARD_REG_SET (parm
.regs
);
3170 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3171 if (GET_CODE (XEXP (p
, 0)) == USE
3172 && REG_P (XEXP (XEXP (p
, 0), 0)))
3174 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3176 /* We only care about registers which can hold function
3178 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3181 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3186 /* Search backward for the first set of a register in this set. */
3187 while (parm
.nregs
&& before
!= boundary
)
3189 before
= PREV_INSN (before
);
3191 /* It is possible that some loads got CSEed from one call to
3192 another. Stop in that case. */
3193 if (CALL_P (before
))
3196 /* Our caller needs either ensure that we will find all sets
3197 (in case code has not been optimized yet), or take care
3198 for possible labels in a way by setting boundary to preceding
3200 if (LABEL_P (before
))
3202 gcc_assert (before
== boundary
);
3206 if (INSN_P (before
))
3207 note_stores (PATTERN (before
), parms_set
, &parm
);
3212 /* Return true if we should avoid inserting code between INSN and preceding
3213 call instruction. */
3216 keep_with_call_p (rtx insn
)
3220 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3222 if (REG_P (SET_DEST (set
))
3223 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3224 && fixed_regs
[REGNO (SET_DEST (set
))]
3225 && general_operand (SET_SRC (set
), VOIDmode
))
3227 if (REG_P (SET_SRC (set
))
3228 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3229 && REG_P (SET_DEST (set
))
3230 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3232 /* There may be a stack pop just after the call and before the store
3233 of the return register. Search for the actual store when deciding
3234 if we can break or not. */
3235 if (SET_DEST (set
) == stack_pointer_rtx
)
3237 rtx i2
= next_nonnote_insn (insn
);
3238 if (i2
&& keep_with_call_p (i2
))
3245 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3246 to non-complex jumps. That is, direct unconditional, conditional,
3247 and tablejumps, but not computed jumps or returns. It also does
3248 not apply to the fallthru case of a conditional jump. */
3251 label_is_jump_target_p (rtx label
, rtx jump_insn
)
3253 rtx tmp
= JUMP_LABEL (jump_insn
);
3258 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3260 rtvec vec
= XVEC (PATTERN (tmp
),
3261 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3262 int i
, veclen
= GET_NUM_ELEM (vec
);
3264 for (i
= 0; i
< veclen
; ++i
)
3265 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3273 /* Return an estimate of the cost of computing rtx X.
3274 One use is in cse, to decide which expression to keep in the hash table.
3275 Another is in rtl generation, to pick the cheapest way to multiply.
3276 Other uses like the latter are expected in the future. */
3279 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
)
3289 /* Compute the default costs of certain things.
3290 Note that targetm.rtx_costs can override the defaults. */
3292 code
= GET_CODE (x
);
3296 total
= COSTS_N_INSNS (5);
3302 total
= COSTS_N_INSNS (7);
3305 /* Used in loop.c and combine.c as a marker. */
3309 total
= COSTS_N_INSNS (1);
3318 /* If we can't tie these modes, make this expensive. The larger
3319 the mode, the more expensive it is. */
3320 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3321 return COSTS_N_INSNS (2
3322 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3326 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
))
3331 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3332 which is already in total. */
3334 fmt
= GET_RTX_FORMAT (code
);
3335 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3337 total
+= rtx_cost (XEXP (x
, i
), code
);
3338 else if (fmt
[i
] == 'E')
3339 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3340 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
3345 /* Return cost of address expression X.
3346 Expect that X is properly formed address reference. */
3349 address_cost (rtx x
, enum machine_mode mode
)
3351 /* We may be asked for cost of various unusual addresses, such as operands
3352 of push instruction. It is not worthwhile to complicate writing
3353 of the target hook by such cases. */
3355 if (!memory_address_p (mode
, x
))
3358 return targetm
.address_cost (x
);
3361 /* If the target doesn't override, compute the cost as with arithmetic. */
3364 default_address_cost (rtx x
)
3366 return rtx_cost (x
, MEM
);
3370 unsigned HOST_WIDE_INT
3371 nonzero_bits (rtx x
, enum machine_mode mode
)
3373 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3377 num_sign_bit_copies (rtx x
, enum machine_mode mode
)
3379 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3382 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3383 It avoids exponential behavior in nonzero_bits1 when X has
3384 identical subexpressions on the first or the second level. */
3386 static unsigned HOST_WIDE_INT
3387 cached_nonzero_bits (rtx x
, enum machine_mode mode
, rtx known_x
,
3388 enum machine_mode known_mode
,
3389 unsigned HOST_WIDE_INT known_ret
)
3391 if (x
== known_x
&& mode
== known_mode
)
3394 /* Try to find identical subexpressions. If found call
3395 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3396 precomputed value for the subexpression as KNOWN_RET. */
3398 if (ARITHMETIC_P (x
))
3400 rtx x0
= XEXP (x
, 0);
3401 rtx x1
= XEXP (x
, 1);
3403 /* Check the first level. */
3405 return nonzero_bits1 (x
, mode
, x0
, mode
,
3406 cached_nonzero_bits (x0
, mode
, known_x
,
3407 known_mode
, known_ret
));
3409 /* Check the second level. */
3410 if (ARITHMETIC_P (x0
)
3411 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3412 return nonzero_bits1 (x
, mode
, x1
, mode
,
3413 cached_nonzero_bits (x1
, mode
, known_x
,
3414 known_mode
, known_ret
));
3416 if (ARITHMETIC_P (x1
)
3417 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3418 return nonzero_bits1 (x
, mode
, x0
, mode
,
3419 cached_nonzero_bits (x0
, mode
, known_x
,
3420 known_mode
, known_ret
));
3423 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3426 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3427 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3428 is less useful. We can't allow both, because that results in exponential
3429 run time recursion. There is a nullstone testcase that triggered
3430 this. This macro avoids accidental uses of num_sign_bit_copies. */
3431 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3433 /* Given an expression, X, compute which bits in X can be nonzero.
3434 We don't care about bits outside of those defined in MODE.
3436 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3437 an arithmetic operation, we can do better. */
3439 static unsigned HOST_WIDE_INT
3440 nonzero_bits1 (rtx x
, enum machine_mode mode
, rtx known_x
,
3441 enum machine_mode known_mode
,
3442 unsigned HOST_WIDE_INT known_ret
)
3444 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3445 unsigned HOST_WIDE_INT inner_nz
;
3447 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3449 /* For floating-point values, assume all bits are needed. */
3450 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
3453 /* If X is wider than MODE, use its mode instead. */
3454 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3456 mode
= GET_MODE (x
);
3457 nonzero
= GET_MODE_MASK (mode
);
3458 mode_width
= GET_MODE_BITSIZE (mode
);
3461 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3462 /* Our only callers in this case look for single bit values. So
3463 just return the mode mask. Those tests will then be false. */
3466 #ifndef WORD_REGISTER_OPERATIONS
3467 /* If MODE is wider than X, but both are a single word for both the host
3468 and target machines, we can compute this from which bits of the
3469 object might be nonzero in its own mode, taking into account the fact
3470 that on many CISC machines, accessing an object in a wider mode
3471 causes the high-order bits to become undefined. So they are
3472 not known to be zero. */
3474 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3475 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3476 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3477 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3479 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3480 known_x
, known_mode
, known_ret
);
3481 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3486 code
= GET_CODE (x
);
3490 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3491 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3492 all the bits above ptr_mode are known to be zero. */
3493 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3495 nonzero
&= GET_MODE_MASK (ptr_mode
);
3498 /* Include declared information about alignment of pointers. */
3499 /* ??? We don't properly preserve REG_POINTER changes across
3500 pointer-to-integer casts, so we can't trust it except for
3501 things that we know must be pointers. See execute/960116-1.c. */
3502 if ((x
== stack_pointer_rtx
3503 || x
== frame_pointer_rtx
3504 || x
== arg_pointer_rtx
)
3505 && REGNO_POINTER_ALIGN (REGNO (x
)))
3507 unsigned HOST_WIDE_INT alignment
3508 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3510 #ifdef PUSH_ROUNDING
3511 /* If PUSH_ROUNDING is defined, it is possible for the
3512 stack to be momentarily aligned only to that amount,
3513 so we pick the least alignment. */
3514 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3515 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3519 nonzero
&= ~(alignment
- 1);
3523 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3524 rtx
new = rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3525 known_mode
, known_ret
,
3529 nonzero_for_hook
&= cached_nonzero_bits (new, mode
, known_x
,
3530 known_mode
, known_ret
);
3532 return nonzero_for_hook
;
3536 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3537 /* If X is negative in MODE, sign-extend the value. */
3538 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
3539 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
3540 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
3546 #ifdef LOAD_EXTEND_OP
3547 /* In many, if not most, RISC machines, reading a byte from memory
3548 zeros the rest of the register. Noticing that fact saves a lot
3549 of extra zero-extends. */
3550 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3551 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3556 case UNEQ
: case LTGT
:
3557 case GT
: case GTU
: case UNGT
:
3558 case LT
: case LTU
: case UNLT
:
3559 case GE
: case GEU
: case UNGE
:
3560 case LE
: case LEU
: case UNLE
:
3561 case UNORDERED
: case ORDERED
:
3563 /* If this produces an integer result, we know which bits are set.
3564 Code here used to clear bits outside the mode of X, but that is
3567 if (GET_MODE_CLASS (mode
) == MODE_INT
3568 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3569 nonzero
= STORE_FLAG_VALUE
;
3574 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3575 and num_sign_bit_copies. */
3576 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3577 == GET_MODE_BITSIZE (GET_MODE (x
)))
3581 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3582 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3587 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3588 and num_sign_bit_copies. */
3589 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3590 == GET_MODE_BITSIZE (GET_MODE (x
)))
3596 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3597 known_x
, known_mode
, known_ret
)
3598 & GET_MODE_MASK (mode
));
3602 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3603 known_x
, known_mode
, known_ret
);
3604 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3605 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3609 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3610 Otherwise, show all the bits in the outer mode but not the inner
3612 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3613 known_x
, known_mode
, known_ret
);
3614 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3616 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3618 & (((HOST_WIDE_INT
) 1
3619 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3620 inner_nz
|= (GET_MODE_MASK (mode
)
3621 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3624 nonzero
&= inner_nz
;
3628 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3629 known_x
, known_mode
, known_ret
)
3630 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3631 known_x
, known_mode
, known_ret
);
3635 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3637 unsigned HOST_WIDE_INT nonzero0
=
3638 cached_nonzero_bits (XEXP (x
, 0), mode
,
3639 known_x
, known_mode
, known_ret
);
3641 /* Don't call nonzero_bits for the second time if it cannot change
3643 if ((nonzero
& nonzero0
) != nonzero
)
3645 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3646 known_x
, known_mode
, known_ret
);
3650 case PLUS
: case MINUS
:
3652 case DIV
: case UDIV
:
3653 case MOD
: case UMOD
:
3654 /* We can apply the rules of arithmetic to compute the number of
3655 high- and low-order zero bits of these operations. We start by
3656 computing the width (position of the highest-order nonzero bit)
3657 and the number of low-order zero bits for each value. */
3659 unsigned HOST_WIDE_INT nz0
=
3660 cached_nonzero_bits (XEXP (x
, 0), mode
,
3661 known_x
, known_mode
, known_ret
);
3662 unsigned HOST_WIDE_INT nz1
=
3663 cached_nonzero_bits (XEXP (x
, 1), mode
,
3664 known_x
, known_mode
, known_ret
);
3665 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3666 int width0
= floor_log2 (nz0
) + 1;
3667 int width1
= floor_log2 (nz1
) + 1;
3668 int low0
= floor_log2 (nz0
& -nz0
);
3669 int low1
= floor_log2 (nz1
& -nz1
);
3670 HOST_WIDE_INT op0_maybe_minusp
3671 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
3672 HOST_WIDE_INT op1_maybe_minusp
3673 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
3674 unsigned int result_width
= mode_width
;
3680 result_width
= MAX (width0
, width1
) + 1;
3681 result_low
= MIN (low0
, low1
);
3684 result_low
= MIN (low0
, low1
);
3687 result_width
= width0
+ width1
;
3688 result_low
= low0
+ low1
;
3693 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3694 result_width
= width0
;
3699 result_width
= width0
;
3704 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3705 result_width
= MIN (width0
, width1
);
3706 result_low
= MIN (low0
, low1
);
3711 result_width
= MIN (width0
, width1
);
3712 result_low
= MIN (low0
, low1
);
3718 if (result_width
< mode_width
)
3719 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
3722 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
3724 #ifdef POINTERS_EXTEND_UNSIGNED
3725 /* If pointers extend unsigned and this is an addition or subtraction
3726 to a pointer in Pmode, all the bits above ptr_mode are known to be
3728 if (POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
3729 && (code
== PLUS
|| code
== MINUS
)
3730 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
3731 nonzero
&= GET_MODE_MASK (ptr_mode
);
3737 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3738 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3739 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
3743 /* If this is a SUBREG formed for a promoted variable that has
3744 been zero-extended, we know that at least the high-order bits
3745 are zero, though others might be too. */
3747 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
3748 nonzero
= GET_MODE_MASK (GET_MODE (x
))
3749 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
3750 known_x
, known_mode
, known_ret
);
3752 /* If the inner mode is a single word for both the host and target
3753 machines, we can compute this from which bits of the inner
3754 object might be nonzero. */
3755 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
3756 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
3757 <= HOST_BITS_PER_WIDE_INT
))
3759 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
3760 known_x
, known_mode
, known_ret
);
3762 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3763 /* If this is a typical RISC machine, we only have to worry
3764 about the way loads are extended. */
3765 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
3767 & (((unsigned HOST_WIDE_INT
) 1
3768 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
3770 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
3771 || !MEM_P (SUBREG_REG (x
)))
3774 /* On many CISC machines, accessing an object in a wider mode
3775 causes the high-order bits to become undefined. So they are
3776 not known to be zero. */
3777 if (GET_MODE_SIZE (GET_MODE (x
))
3778 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3779 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
3780 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
3789 /* The nonzero bits are in two classes: any bits within MODE
3790 that aren't in GET_MODE (x) are always significant. The rest of the
3791 nonzero bits are those that are significant in the operand of
3792 the shift when shifted the appropriate number of bits. This
3793 shows that high-order bits are cleared by the right shift and
3794 low-order bits by left shifts. */
3795 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3796 && INTVAL (XEXP (x
, 1)) >= 0
3797 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3799 enum machine_mode inner_mode
= GET_MODE (x
);
3800 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
3801 int count
= INTVAL (XEXP (x
, 1));
3802 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
3803 unsigned HOST_WIDE_INT op_nonzero
=
3804 cached_nonzero_bits (XEXP (x
, 0), mode
,
3805 known_x
, known_mode
, known_ret
);
3806 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
3807 unsigned HOST_WIDE_INT outer
= 0;
3809 if (mode_width
> width
)
3810 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
3812 if (code
== LSHIFTRT
)
3814 else if (code
== ASHIFTRT
)
3818 /* If the sign bit may have been nonzero before the shift, we
3819 need to mark all the places it could have been copied to
3820 by the shift as possibly nonzero. */
3821 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
3822 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
3824 else if (code
== ASHIFT
)
3827 inner
= ((inner
<< (count
% width
)
3828 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
3830 nonzero
&= (outer
| inner
);
3836 /* This is at most the number of bits in the mode. */
3837 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
3841 /* If CLZ has a known value at zero, then the nonzero bits are
3842 that value, plus the number of bits in the mode minus one. */
3843 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
3844 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
3850 /* If CTZ has a known value at zero, then the nonzero bits are
3851 that value, plus the number of bits in the mode minus one. */
3852 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
3853 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
3864 unsigned HOST_WIDE_INT nonzero_true
=
3865 cached_nonzero_bits (XEXP (x
, 1), mode
,
3866 known_x
, known_mode
, known_ret
);
3868 /* Don't call nonzero_bits for the second time if it cannot change
3870 if ((nonzero
& nonzero_true
) != nonzero
)
3871 nonzero
&= nonzero_true
3872 | cached_nonzero_bits (XEXP (x
, 2), mode
,
3873 known_x
, known_mode
, known_ret
);
3884 /* See the macro definition above. */
3885 #undef cached_num_sign_bit_copies
3888 /* The function cached_num_sign_bit_copies is a wrapper around
3889 num_sign_bit_copies1. It avoids exponential behavior in
3890 num_sign_bit_copies1 when X has identical subexpressions on the
3891 first or the second level. */
3894 cached_num_sign_bit_copies (rtx x
, enum machine_mode mode
, rtx known_x
,
3895 enum machine_mode known_mode
,
3896 unsigned int known_ret
)
3898 if (x
== known_x
&& mode
== known_mode
)
3901 /* Try to find identical subexpressions. If found call
3902 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3903 the precomputed value for the subexpression as KNOWN_RET. */
3905 if (ARITHMETIC_P (x
))
3907 rtx x0
= XEXP (x
, 0);
3908 rtx x1
= XEXP (x
, 1);
3910 /* Check the first level. */
3913 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
3914 cached_num_sign_bit_copies (x0
, mode
, known_x
,
3918 /* Check the second level. */
3919 if (ARITHMETIC_P (x0
)
3920 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3922 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
3923 cached_num_sign_bit_copies (x1
, mode
, known_x
,
3927 if (ARITHMETIC_P (x1
)
3928 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3930 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
3931 cached_num_sign_bit_copies (x0
, mode
, known_x
,
3936 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
3939 /* Return the number of bits at the high-order end of X that are known to
3940 be equal to the sign bit. X will be used in mode MODE; if MODE is
3941 VOIDmode, X will be used in its own mode. The returned value will always
3942 be between 1 and the number of bits in MODE. */
3945 num_sign_bit_copies1 (rtx x
, enum machine_mode mode
, rtx known_x
,
3946 enum machine_mode known_mode
,
3947 unsigned int known_ret
)
3949 enum rtx_code code
= GET_CODE (x
);
3950 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
3951 int num0
, num1
, result
;
3952 unsigned HOST_WIDE_INT nonzero
;
3954 /* If we weren't given a mode, use the mode of X. If the mode is still
3955 VOIDmode, we don't know anything. Likewise if one of the modes is
3958 if (mode
== VOIDmode
)
3959 mode
= GET_MODE (x
);
3961 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
3964 /* For a smaller object, just ignore the high bits. */
3965 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
3967 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
3968 known_x
, known_mode
, known_ret
);
3970 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
3973 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
3975 #ifndef WORD_REGISTER_OPERATIONS
3976 /* If this machine does not do all register operations on the entire
3977 register and MODE is wider than the mode of X, we can say nothing
3978 at all about the high-order bits. */
3981 /* Likewise on machines that do, if the mode of the object is smaller
3982 than a word and loads of that size don't sign extend, we can say
3983 nothing about the high order bits. */
3984 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
3985 #ifdef LOAD_EXTEND_OP
3986 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
3997 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3998 /* If pointers extend signed and this is a pointer in Pmode, say that
3999 all the bits above ptr_mode are known to be sign bit copies. */
4000 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
4002 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4006 unsigned int copies_for_hook
= 1, copies
= 1;
4007 rtx
new = rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4008 known_mode
, known_ret
,
4012 copies
= cached_num_sign_bit_copies (new, mode
, known_x
,
4013 known_mode
, known_ret
);
4015 if (copies
> 1 || copies_for_hook
> 1)
4016 return MAX (copies
, copies_for_hook
);
4018 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4023 #ifdef LOAD_EXTEND_OP
4024 /* Some RISC machines sign-extend all loads of smaller than a word. */
4025 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4026 return MAX (1, ((int) bitwidth
4027 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4032 /* If the constant is negative, take its 1's complement and remask.
4033 Then see how many zero bits we have. */
4034 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
4035 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4036 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4037 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4039 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4042 /* If this is a SUBREG for a promoted object that is sign-extended
4043 and we are looking at it in a wider mode, we know that at least the
4044 high-order bits are known to be sign bit copies. */
4046 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4048 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4049 known_x
, known_mode
, known_ret
);
4050 return MAX ((int) bitwidth
4051 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4055 /* For a smaller object, just ignore the high bits. */
4056 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4058 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4059 known_x
, known_mode
, known_ret
);
4060 return MAX (1, (num0
4061 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4065 #ifdef WORD_REGISTER_OPERATIONS
4066 #ifdef LOAD_EXTEND_OP
4067 /* For paradoxical SUBREGs on machines where all register operations
4068 affect the entire register, just look inside. Note that we are
4069 passing MODE to the recursive call, so the number of sign bit copies
4070 will remain relative to that mode, not the inner mode. */
4072 /* This works only if loads sign extend. Otherwise, if we get a
4073 reload for the inner part, it may be loaded from the stack, and
4074 then we lose all sign bit copies that existed before the store
4077 if ((GET_MODE_SIZE (GET_MODE (x
))
4078 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4079 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4080 && MEM_P (SUBREG_REG (x
)))
4081 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4082 known_x
, known_mode
, known_ret
);
4088 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4089 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4093 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4094 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4095 known_x
, known_mode
, known_ret
));
4098 /* For a smaller object, just ignore the high bits. */
4099 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4100 known_x
, known_mode
, known_ret
);
4101 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4105 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4106 known_x
, known_mode
, known_ret
);
4108 case ROTATE
: case ROTATERT
:
4109 /* If we are rotating left by a number of bits less than the number
4110 of sign bit copies, we can just subtract that amount from the
4112 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4113 && INTVAL (XEXP (x
, 1)) >= 0
4114 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4116 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4117 known_x
, known_mode
, known_ret
);
4118 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4119 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4124 /* In general, this subtracts one sign bit copy. But if the value
4125 is known to be positive, the number of sign bit copies is the
4126 same as that of the input. Finally, if the input has just one bit
4127 that might be nonzero, all the bits are copies of the sign bit. */
4128 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4129 known_x
, known_mode
, known_ret
);
4130 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4131 return num0
> 1 ? num0
- 1 : 1;
4133 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4138 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4143 case IOR
: case AND
: case XOR
:
4144 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4145 /* Logical operations will preserve the number of sign-bit copies.
4146 MIN and MAX operations always return one of the operands. */
4147 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4148 known_x
, known_mode
, known_ret
);
4149 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4150 known_x
, known_mode
, known_ret
);
4151 return MIN (num0
, num1
);
4153 case PLUS
: case MINUS
:
4154 /* For addition and subtraction, we can have a 1-bit carry. However,
4155 if we are subtracting 1 from a positive number, there will not
4156 be such a carry. Furthermore, if the positive number is known to
4157 be 0 or 1, we know the result is either -1 or 0. */
4159 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4160 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4162 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4163 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4164 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4165 : bitwidth
- floor_log2 (nonzero
) - 1);
4168 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4169 known_x
, known_mode
, known_ret
);
4170 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4171 known_x
, known_mode
, known_ret
);
4172 result
= MAX (1, MIN (num0
, num1
) - 1);
4174 #ifdef POINTERS_EXTEND_UNSIGNED
4175 /* If pointers extend signed and this is an addition or subtraction
4176 to a pointer in Pmode, all the bits above ptr_mode are known to be
4178 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4179 && (code
== PLUS
|| code
== MINUS
)
4180 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4181 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4182 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4188 /* The number of bits of the product is the sum of the number of
4189 bits of both terms. However, unless one of the terms if known
4190 to be positive, we must allow for an additional bit since negating
4191 a negative number can remove one sign bit copy. */
4193 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4194 known_x
, known_mode
, known_ret
);
4195 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4196 known_x
, known_mode
, known_ret
);
4198 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4200 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4201 || (((nonzero_bits (XEXP (x
, 0), mode
)
4202 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4203 && ((nonzero_bits (XEXP (x
, 1), mode
)
4204 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
4207 return MAX (1, result
);
4210 /* The result must be <= the first operand. If the first operand
4211 has the high bit set, we know nothing about the number of sign
4213 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4215 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4216 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4219 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4220 known_x
, known_mode
, known_ret
);
4223 /* The result must be <= the second operand. */
4224 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4225 known_x
, known_mode
, known_ret
);
4228 /* Similar to unsigned division, except that we have to worry about
4229 the case where the divisor is negative, in which case we have
4231 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4232 known_x
, known_mode
, known_ret
);
4234 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4235 || (nonzero_bits (XEXP (x
, 1), mode
)
4236 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4242 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4243 known_x
, known_mode
, known_ret
);
4245 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4246 || (nonzero_bits (XEXP (x
, 1), mode
)
4247 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4253 /* Shifts by a constant add to the number of bits equal to the
4255 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4256 known_x
, known_mode
, known_ret
);
4257 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4258 && INTVAL (XEXP (x
, 1)) > 0)
4259 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4264 /* Left shifts destroy copies. */
4265 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
4266 || INTVAL (XEXP (x
, 1)) < 0
4267 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
)
4270 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4271 known_x
, known_mode
, known_ret
);
4272 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4275 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4276 known_x
, known_mode
, known_ret
);
4277 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4278 known_x
, known_mode
, known_ret
);
4279 return MIN (num0
, num1
);
4281 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4282 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4283 case GEU
: case GTU
: case LEU
: case LTU
:
4284 case UNORDERED
: case ORDERED
:
4285 /* If the constant is negative, take its 1's complement and remask.
4286 Then see how many zero bits we have. */
4287 nonzero
= STORE_FLAG_VALUE
;
4288 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4289 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4290 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4292 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4298 /* If we haven't been able to figure it out by one of the above rules,
4299 see if some of the high-order bits are known to be zero. If so,
4300 count those bits and return one less than that amount. If we can't
4301 safely compute the mask for this mode, always return BITWIDTH. */
4303 bitwidth
= GET_MODE_BITSIZE (mode
);
4304 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4307 nonzero
= nonzero_bits (x
, mode
);
4308 return nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4309 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4312 /* Calculate the rtx_cost of a single instruction. A return value of
4313 zero indicates an instruction pattern without a known cost. */
4316 insn_rtx_cost (rtx pat
)
4321 /* Extract the single set rtx from the instruction pattern.
4322 We can't use single_set since we only have the pattern. */
4323 if (GET_CODE (pat
) == SET
)
4325 else if (GET_CODE (pat
) == PARALLEL
)
4328 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4330 rtx x
= XVECEXP (pat
, 0, i
);
4331 if (GET_CODE (x
) == SET
)
4344 cost
= rtx_cost (SET_SRC (set
), SET
);
4345 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4348 /* Given an insn INSN and condition COND, return the condition in a
4349 canonical form to simplify testing by callers. Specifically:
4351 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4352 (2) Both operands will be machine operands; (cc0) will have been replaced.
4353 (3) If an operand is a constant, it will be the second operand.
4354 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4355 for GE, GEU, and LEU.
4357 If the condition cannot be understood, or is an inequality floating-point
4358 comparison which needs to be reversed, 0 will be returned.
4360 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4362 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4363 insn used in locating the condition was found. If a replacement test
4364 of the condition is desired, it should be placed in front of that
4365 insn and we will be sure that the inputs are still valid.
4367 If WANT_REG is nonzero, we wish the condition to be relative to that
4368 register, if possible. Therefore, do not canonicalize the condition
4369 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4370 to be a compare to a CC mode register.
4372 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4376 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4377 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4384 int reverse_code
= 0;
4385 enum machine_mode mode
;
4387 code
= GET_CODE (cond
);
4388 mode
= GET_MODE (cond
);
4389 op0
= XEXP (cond
, 0);
4390 op1
= XEXP (cond
, 1);
4393 code
= reversed_comparison_code (cond
, insn
);
4394 if (code
== UNKNOWN
)
4400 /* If we are comparing a register with zero, see if the register is set
4401 in the previous insn to a COMPARE or a comparison operation. Perform
4402 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4405 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4406 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4407 && op1
== CONST0_RTX (GET_MODE (op0
))
4410 /* Set nonzero when we find something of interest. */
4414 /* If comparison with cc0, import actual comparison from compare
4418 if ((prev
= prev_nonnote_insn (prev
)) == 0
4419 || !NONJUMP_INSN_P (prev
)
4420 || (set
= single_set (prev
)) == 0
4421 || SET_DEST (set
) != cc0_rtx
)
4424 op0
= SET_SRC (set
);
4425 op1
= CONST0_RTX (GET_MODE (op0
));
4431 /* If this is a COMPARE, pick up the two things being compared. */
4432 if (GET_CODE (op0
) == COMPARE
)
4434 op1
= XEXP (op0
, 1);
4435 op0
= XEXP (op0
, 0);
4438 else if (!REG_P (op0
))
4441 /* Go back to the previous insn. Stop if it is not an INSN. We also
4442 stop if it isn't a single set or if it has a REG_INC note because
4443 we don't want to bother dealing with it. */
4445 if ((prev
= prev_nonnote_insn (prev
)) == 0
4446 || !NONJUMP_INSN_P (prev
)
4447 || FIND_REG_INC_NOTE (prev
, NULL_RTX
))
4450 set
= set_of (op0
, prev
);
4453 && (GET_CODE (set
) != SET
4454 || !rtx_equal_p (SET_DEST (set
), op0
)))
4457 /* If this is setting OP0, get what it sets it to if it looks
4461 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4462 #ifdef FLOAT_STORE_FLAG_VALUE
4463 REAL_VALUE_TYPE fsfv
;
4466 /* ??? We may not combine comparisons done in a CCmode with
4467 comparisons not done in a CCmode. This is to aid targets
4468 like Alpha that have an IEEE compliant EQ instruction, and
4469 a non-IEEE compliant BEQ instruction. The use of CCmode is
4470 actually artificial, simply to prevent the combination, but
4471 should not affect other platforms.
4473 However, we must allow VOIDmode comparisons to match either
4474 CCmode or non-CCmode comparison, because some ports have
4475 modeless comparisons inside branch patterns.
4477 ??? This mode check should perhaps look more like the mode check
4478 in simplify_comparison in combine. */
4480 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4483 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4484 && (GET_MODE_BITSIZE (inner_mode
)
4485 <= HOST_BITS_PER_WIDE_INT
)
4486 && (STORE_FLAG_VALUE
4487 & ((HOST_WIDE_INT
) 1
4488 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4489 #ifdef FLOAT_STORE_FLAG_VALUE
4491 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
4492 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4493 REAL_VALUE_NEGATIVE (fsfv
)))
4496 && COMPARISON_P (SET_SRC (set
))))
4497 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4498 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4499 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4501 else if (((code
== EQ
4503 && (GET_MODE_BITSIZE (inner_mode
)
4504 <= HOST_BITS_PER_WIDE_INT
)
4505 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4506 && (STORE_FLAG_VALUE
4507 & ((HOST_WIDE_INT
) 1
4508 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4509 #ifdef FLOAT_STORE_FLAG_VALUE
4511 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
4512 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4513 REAL_VALUE_NEGATIVE (fsfv
)))
4516 && COMPARISON_P (SET_SRC (set
))
4517 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4518 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4519 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4529 else if (reg_set_p (op0
, prev
))
4530 /* If this sets OP0, but not directly, we have to give up. */
4535 /* If the caller is expecting the condition to be valid at INSN,
4536 make sure X doesn't change before INSN. */
4537 if (valid_at_insn_p
)
4538 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4540 if (COMPARISON_P (x
))
4541 code
= GET_CODE (x
);
4544 code
= reversed_comparison_code (x
, prev
);
4545 if (code
== UNKNOWN
)
4550 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4556 /* If constant is first, put it last. */
4557 if (CONSTANT_P (op0
))
4558 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4560 /* If OP0 is the result of a comparison, we weren't able to find what
4561 was really being compared, so fail. */
4563 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4566 /* Canonicalize any ordered comparison with integers involving equality
4567 if we can do computations in the relevant mode and we do not
4570 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4571 && GET_CODE (op1
) == CONST_INT
4572 && GET_MODE (op0
) != VOIDmode
4573 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4575 HOST_WIDE_INT const_val
= INTVAL (op1
);
4576 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4577 unsigned HOST_WIDE_INT max_val
4578 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4583 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4584 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4587 /* When cross-compiling, const_val might be sign-extended from
4588 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4590 if ((HOST_WIDE_INT
) (const_val
& max_val
)
4591 != (((HOST_WIDE_INT
) 1
4592 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
4593 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4597 if (uconst_val
< max_val
)
4598 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4602 if (uconst_val
!= 0)
4603 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4611 /* Never return CC0; return zero instead. */
4615 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4618 /* Given a jump insn JUMP, return the condition that will cause it to branch
4619 to its JUMP_LABEL. If the condition cannot be understood, or is an
4620 inequality floating-point comparison which needs to be reversed, 0 will
4623 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4624 insn used in locating the condition was found. If a replacement test
4625 of the condition is desired, it should be placed in front of that
4626 insn and we will be sure that the inputs are still valid. If EARLIEST
4627 is null, the returned condition will be valid at INSN.
4629 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4630 compare CC mode register.
4632 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4635 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4641 /* If this is not a standard conditional jump, we can't parse it. */
4643 || ! any_condjump_p (jump
))
4645 set
= pc_set (jump
);
4647 cond
= XEXP (SET_SRC (set
), 0);
4649 /* If this branches to JUMP_LABEL when the condition is false, reverse
4652 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4653 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4655 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4656 allow_cc_mode
, valid_at_insn_p
);