1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS
{
39 /* stack for backtracking during the algorithm */
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks
;
49 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
54 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
,
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
57 static bool flow_active_insn_p (rtx
);
59 /* Like active_insn_p, except keep the return value clobber around
63 flow_active_insn_p (rtx insn
)
65 if (active_insn_p (insn
))
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register livetime aborts. */
73 if (GET_CODE (PATTERN (insn
)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn
), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
85 forwarder_block_p (basic_block bb
)
89 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
90 || EDGE_COUNT (bb
->succs
) != 1)
93 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
94 if (INSN_P (insn
) && flow_active_insn_p (insn
))
97 return (!INSN_P (insn
)
98 || (JUMP_P (insn
) && simplejump_p (insn
))
99 || !flow_active_insn_p (insn
));
102 /* Return nonzero if we can reach target from src by falling through. */
105 can_fallthru (basic_block src
, basic_block target
)
107 rtx insn
= BB_END (src
);
112 if (target
== EXIT_BLOCK_PTR
)
114 if (src
->next_bb
!= target
)
116 FOR_EACH_EDGE (e
, ei
, src
->succs
)
117 if (e
->dest
== EXIT_BLOCK_PTR
118 && e
->flags
& EDGE_FALLTHRU
)
121 insn2
= BB_HEAD (target
);
122 if (insn2
&& !active_insn_p (insn2
))
123 insn2
= next_active_insn (insn2
);
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn
) == insn2
;
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
133 could_fall_through (basic_block src
, basic_block target
)
138 if (target
== EXIT_BLOCK_PTR
)
140 FOR_EACH_EDGE (e
, ei
, src
->succs
)
141 if (e
->dest
== EXIT_BLOCK_PTR
142 && e
->flags
& EDGE_FALLTHRU
)
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
151 Advanced Compiler Design and Implementation
153 Morgan Kaufmann, 1997
155 and heavily borrowed from flow_depth_first_order_compute. */
158 mark_dfs_back_edges (void)
160 edge_iterator
*stack
;
169 /* Allocate the preorder and postorder number arrays. */
170 pre
= xcalloc (last_basic_block
, sizeof (int));
171 post
= xcalloc (last_basic_block
, sizeof (int));
173 /* Allocate stack for back-tracking up CFG. */
174 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge_iterator
));
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited
= sbitmap_alloc (last_basic_block
);
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited
);
183 /* Push the first edge on to the stack. */
184 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
192 /* Look at the edge on the top of the stack. */
194 src
= ei_edge (ei
)->src
;
195 dest
= ei_edge (ei
)->dest
;
196 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
198 /* Check if the edge destination has been visited yet. */
199 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited
, dest
->index
);
204 pre
[dest
->index
] = prenum
++;
205 if (EDGE_COUNT (dest
->succs
) > 0)
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack
[sp
++] = ei_start (dest
->succs
);
212 post
[dest
->index
] = postnum
++;
216 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
217 && pre
[src
->index
] >= pre
[dest
->index
]
218 && post
[dest
->index
] == 0)
219 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
221 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
222 post
[src
->index
] = postnum
++;
224 if (!ei_one_before_end_p (ei
))
225 ei_next (&stack
[sp
- 1]);
234 sbitmap_free (visited
);
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
242 set_edge_can_fallthru_flag (void)
251 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
253 e
->flags
&= ~EDGE_CAN_FALLTHRU
;
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e
->flags
& EDGE_FALLTHRU
)
257 e
->flags
|= EDGE_CAN_FALLTHRU
;
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb
->succs
) != 2)
264 if (!any_condjump_p (BB_END (bb
)))
266 if (!invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0))
268 invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0);
269 EDGE_SUCC (bb
, 0)->flags
|= EDGE_CAN_FALLTHRU
;
270 EDGE_SUCC (bb
, 1)->flags
|= EDGE_CAN_FALLTHRU
;
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
279 find_unreachable_blocks (void)
283 basic_block
*tos
, *worklist
, bb
;
285 tos
= worklist
= xmalloc (sizeof (basic_block
) * n_basic_blocks
);
287 /* Clear all the reachability flags. */
290 bb
->flags
&= ~BB_REACHABLE
;
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
296 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
300 /* Mark the block reachable. */
301 e
->dest
->flags
|= BB_REACHABLE
;
304 /* Iterate: find everything reachable from what we've already seen. */
306 while (tos
!= worklist
)
308 basic_block b
= *--tos
;
310 FOR_EACH_EDGE (e
, ei
, b
->succs
)
311 if (!(e
->dest
->flags
& BB_REACHABLE
))
314 e
->dest
->flags
|= BB_REACHABLE
;
321 /* Functions to access an edge list with a vector representation.
322 Enough data is kept such that given an index number, the
323 pred and succ that edge represents can be determined, or
324 given a pred and a succ, its index number can be returned.
325 This allows algorithms which consume a lot of memory to
326 represent the normally full matrix of edge (pred,succ) with a
327 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
328 wasted space in the client code due to sparse flow graphs. */
330 /* This functions initializes the edge list. Basically the entire
331 flowgraph is processed, and all edges are assigned a number,
332 and the data structure is filled in. */
335 create_edge_list (void)
337 struct edge_list
*elist
;
344 block_count
= n_basic_blocks
+ 2; /* Include the entry and exit blocks. */
348 /* Determine the number of edges in the flow graph by counting successor
349 edges on each basic block. */
350 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
352 num_edges
+= EDGE_COUNT (bb
->succs
);
355 elist
= xmalloc (sizeof (struct edge_list
));
356 elist
->num_blocks
= block_count
;
357 elist
->num_edges
= num_edges
;
358 elist
->index_to_edge
= xmalloc (sizeof (edge
) * num_edges
);
362 /* Follow successors of blocks, and register these edges. */
363 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
364 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
365 elist
->index_to_edge
[num_edges
++] = e
;
370 /* This function free's memory associated with an edge list. */
373 free_edge_list (struct edge_list
*elist
)
377 free (elist
->index_to_edge
);
382 /* This function provides debug output showing an edge list. */
385 print_edge_list (FILE *f
, struct edge_list
*elist
)
389 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
390 elist
->num_blocks
- 2, elist
->num_edges
);
392 for (x
= 0; x
< elist
->num_edges
; x
++)
394 fprintf (f
, " %-4d - edge(", x
);
395 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
396 fprintf (f
, "entry,");
398 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
400 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
401 fprintf (f
, "exit)\n");
403 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
407 /* This function provides an internal consistency check of an edge list,
408 verifying that all edges are present, and that there are no
412 verify_edge_list (FILE *f
, struct edge_list
*elist
)
414 int pred
, succ
, index
;
416 basic_block bb
, p
, s
;
419 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
421 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
423 pred
= e
->src
->index
;
424 succ
= e
->dest
->index
;
425 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
426 if (index
== EDGE_INDEX_NO_EDGE
)
428 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
432 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
433 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
434 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
435 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
436 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
437 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
441 /* We've verified that all the edges are in the list, now lets make sure
442 there are no spurious edges in the list. */
444 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
445 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
449 FOR_EACH_EDGE (e
, ei
, p
->succs
)
456 FOR_EACH_EDGE (e
, ei
, s
->preds
)
463 if (EDGE_INDEX (elist
, p
, s
)
464 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
465 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
467 if (EDGE_INDEX (elist
, p
, s
)
468 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
469 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
470 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
474 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
475 If no such edge exists, return NULL. */
478 find_edge (basic_block pred
, basic_block succ
)
483 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
485 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
491 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
499 /* This routine will determine what, if any, edge there is between
500 a specified predecessor and successor. */
503 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
507 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
508 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
509 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
512 return (EDGE_INDEX_NO_EDGE
);
515 /* Dump the list of basic blocks in the bitmap NODES. */
518 flow_nodes_print (const char *str
, const sbitmap nodes
, FILE *file
)
525 fprintf (file
, "%s { ", str
);
526 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {fprintf (file
, "%d ", node
);});
530 /* Dump the list of edges in the array EDGE_LIST. */
533 flow_edge_list_print (const char *str
, const edge
*edge_list
, int num_edges
, FILE *file
)
540 fprintf (file
, "%s { ", str
);
541 for (i
= 0; i
< num_edges
; i
++)
542 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
543 edge_list
[i
]->dest
->index
);
549 /* This routine will remove any fake predecessor edges for a basic block.
550 When the edge is removed, it is also removed from whatever successor
554 remove_fake_predecessors (basic_block bb
)
559 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
561 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
568 /* This routine will remove all fake edges from the flow graph. If
569 we remove all fake successors, it will automatically remove all
570 fake predecessors. */
573 remove_fake_edges (void)
577 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
578 remove_fake_predecessors (bb
);
581 /* This routine will remove all fake edges to the EXIT_BLOCK. */
584 remove_fake_exit_edges (void)
586 remove_fake_predecessors (EXIT_BLOCK_PTR
);
590 /* This function will add a fake edge between any block which has no
591 successors, and the exit block. Some data flow equations require these
595 add_noreturn_fake_exit_edges (void)
600 if (EDGE_COUNT (bb
->succs
) == 0)
601 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
604 /* This function adds a fake edge between any infinite loops to the
605 exit block. Some optimizations require a path from each node to
608 See also Morgan, Figure 3.10, pp. 82-83.
610 The current implementation is ugly, not attempting to minimize the
611 number of inserted fake edges. To reduce the number of fake edges
612 to insert, add fake edges from _innermost_ loops containing only
613 nodes not reachable from the exit block. */
616 connect_infinite_loops_to_exit (void)
618 basic_block unvisited_block
= EXIT_BLOCK_PTR
;
619 struct depth_first_search_dsS dfs_ds
;
621 /* Perform depth-first search in the reverse graph to find nodes
622 reachable from the exit block. */
623 flow_dfs_compute_reverse_init (&dfs_ds
);
624 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
626 /* Repeatedly add fake edges, updating the unreachable nodes. */
629 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
631 if (!unvisited_block
)
634 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
635 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
638 flow_dfs_compute_reverse_finish (&dfs_ds
);
642 /* Compute reverse top sort order. */
645 flow_reverse_top_sort_order_compute (int *rts_order
)
647 edge_iterator
*stack
;
652 /* Allocate stack for back-tracking up CFG. */
653 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge_iterator
));
656 /* Allocate bitmap to track nodes that have been visited. */
657 visited
= sbitmap_alloc (last_basic_block
);
659 /* None of the nodes in the CFG have been visited yet. */
660 sbitmap_zero (visited
);
662 /* Push the first edge on to the stack. */
663 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
671 /* Look at the edge on the top of the stack. */
673 src
= ei_edge (ei
)->src
;
674 dest
= ei_edge (ei
)->dest
;
676 /* Check if the edge destination has been visited yet. */
677 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
679 /* Mark that we have visited the destination. */
680 SET_BIT (visited
, dest
->index
);
682 if (EDGE_COUNT (dest
->succs
) > 0)
683 /* Since the DEST node has been visited for the first
684 time, check its successors. */
685 stack
[sp
++] = ei_start (dest
->succs
);
687 rts_order
[postnum
++] = dest
->index
;
691 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
692 rts_order
[postnum
++] = src
->index
;
694 if (!ei_one_before_end_p (ei
))
695 ei_next (&stack
[sp
- 1]);
702 sbitmap_free (visited
);
705 /* Compute the depth first search order and store in the array
706 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
707 RC_ORDER is nonzero, return the reverse completion number for each
708 node. Returns the number of nodes visited. A depth first search
709 tries to get as far away from the starting point as quickly as
713 flow_depth_first_order_compute (int *dfs_order
, int *rc_order
)
715 edge_iterator
*stack
;
718 int rcnum
= n_basic_blocks
- 1;
721 /* Allocate stack for back-tracking up CFG. */
722 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge_iterator
));
725 /* Allocate bitmap to track nodes that have been visited. */
726 visited
= sbitmap_alloc (last_basic_block
);
728 /* None of the nodes in the CFG have been visited yet. */
729 sbitmap_zero (visited
);
731 /* Push the first edge on to the stack. */
732 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
740 /* Look at the edge on the top of the stack. */
742 src
= ei_edge (ei
)->src
;
743 dest
= ei_edge (ei
)->dest
;
745 /* Check if the edge destination has been visited yet. */
746 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
748 /* Mark that we have visited the destination. */
749 SET_BIT (visited
, dest
->index
);
752 dfs_order
[dfsnum
] = dest
->index
;
756 if (EDGE_COUNT (dest
->succs
) > 0)
757 /* Since the DEST node has been visited for the first
758 time, check its successors. */
759 stack
[sp
++] = ei_start (dest
->succs
);
761 /* There are no successors for the DEST node so assign
762 its reverse completion number. */
763 rc_order
[rcnum
--] = dest
->index
;
767 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
769 /* There are no more successors for the SRC node
770 so assign its reverse completion number. */
771 rc_order
[rcnum
--] = src
->index
;
773 if (!ei_one_before_end_p (ei
))
774 ei_next (&stack
[sp
- 1]);
781 sbitmap_free (visited
);
783 /* The number of nodes visited should be the number of blocks. */
784 gcc_assert (dfsnum
== n_basic_blocks
);
789 /* Compute the depth first search order on the _reverse_ graph and
790 store in the array DFS_ORDER, marking the nodes visited in VISITED.
791 Returns the number of nodes visited.
793 The computation is split into three pieces:
795 flow_dfs_compute_reverse_init () creates the necessary data
798 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
799 structures. The block will start the search.
801 flow_dfs_compute_reverse_execute () continues (or starts) the
802 search using the block on the top of the stack, stopping when the
805 flow_dfs_compute_reverse_finish () destroys the necessary data
808 Thus, the user will probably call ..._init(), call ..._add_bb() to
809 add a beginning basic block to the stack, call ..._execute(),
810 possibly add another bb to the stack and again call ..._execute(),
811 ..., and finally call _finish(). */
813 /* Initialize the data structures used for depth-first search on the
814 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
815 added to the basic block stack. DATA is the current depth-first
816 search context. If INITIALIZE_STACK is nonzero, there is an
817 element on the stack. */
820 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
822 /* Allocate stack for back-tracking up CFG. */
823 data
->stack
= xmalloc ((n_basic_blocks
- (INVALID_BLOCK
+ 1))
824 * sizeof (basic_block
));
827 /* Allocate bitmap to track nodes that have been visited. */
828 data
->visited_blocks
= sbitmap_alloc (last_basic_block
- (INVALID_BLOCK
+ 1));
830 /* None of the nodes in the CFG have been visited yet. */
831 sbitmap_zero (data
->visited_blocks
);
836 /* Add the specified basic block to the top of the dfs data
837 structures. When the search continues, it will start at the
841 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
843 data
->stack
[data
->sp
++] = bb
;
844 SET_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1));
847 /* Continue the depth-first search through the reverse graph starting with the
848 block at the stack's top and ending when the stack is empty. Visited nodes
849 are marked. Returns an unvisited basic block, or NULL if there is none
853 flow_dfs_compute_reverse_execute (depth_first_search_ds data
,
854 basic_block last_unvisited
)
862 bb
= data
->stack
[--data
->sp
];
864 /* Perform depth-first search on adjacent vertices. */
865 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
866 if (!TEST_BIT (data
->visited_blocks
,
867 e
->src
->index
- (INVALID_BLOCK
+ 1)))
868 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
871 /* Determine if there are unvisited basic blocks. */
872 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
873 if (!TEST_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1)))
879 /* Destroy the data structures needed for depth-first search on the
883 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
886 sbitmap_free (data
->visited_blocks
);
889 /* Performs dfs search from BB over vertices satisfying PREDICATE;
890 if REVERSE, go against direction of edges. Returns number of blocks
891 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
893 dfs_enumerate_from (basic_block bb
, int reverse
,
894 bool (*predicate
) (basic_block
, void *),
895 basic_block
*rslt
, int rslt_max
, void *data
)
897 basic_block
*st
, lbb
;
900 st
= xcalloc (rslt_max
, sizeof (basic_block
));
901 rslt
[tv
++] = st
[sp
++] = bb
;
902 bb
->flags
|= BB_VISITED
;
910 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
911 if (!(e
->src
->flags
& BB_VISITED
) && predicate (e
->src
, data
))
913 gcc_assert (tv
!= rslt_max
);
914 rslt
[tv
++] = st
[sp
++] = e
->src
;
915 e
->src
->flags
|= BB_VISITED
;
920 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
921 if (!(e
->dest
->flags
& BB_VISITED
) && predicate (e
->dest
, data
))
923 gcc_assert (tv
!= rslt_max
);
924 rslt
[tv
++] = st
[sp
++] = e
->dest
;
925 e
->dest
->flags
|= BB_VISITED
;
930 for (sp
= 0; sp
< tv
; sp
++)
931 rslt
[sp
]->flags
&= ~BB_VISITED
;
936 /* Computing the Dominance Frontier:
938 As described in Morgan, section 3.5, this may be done simply by
939 walking the dominator tree bottom-up, computing the frontier for
940 the children before the parent. When considering a block B,
943 (1) A flow graph edge leaving B that does not lead to a child
944 of B in the dominator tree must be a block that is either equal
945 to B or not dominated by B. Such blocks belong in the frontier
948 (2) Consider a block X in the frontier of one of the children C
949 of B. If X is not equal to B and is not dominated by B, it
950 is in the frontier of B. */
953 compute_dominance_frontiers_1 (bitmap
*frontiers
, basic_block bb
, sbitmap done
)
959 SET_BIT (done
, bb
->index
);
961 /* Do the frontier of the children first. Not all children in the
962 dominator tree (blocks dominated by this one) are children in the
963 CFG, so check all blocks. */
964 for (c
= first_dom_son (CDI_DOMINATORS
, bb
);
966 c
= next_dom_son (CDI_DOMINATORS
, c
))
968 if (! TEST_BIT (done
, c
->index
))
969 compute_dominance_frontiers_1 (frontiers
, c
, done
);
972 /* Find blocks conforming to rule (1) above. */
973 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
975 if (e
->dest
== EXIT_BLOCK_PTR
)
977 if (get_immediate_dominator (CDI_DOMINATORS
, e
->dest
) != bb
)
978 bitmap_set_bit (frontiers
[bb
->index
], e
->dest
->index
);
981 /* Find blocks conforming to rule (2). */
982 for (c
= first_dom_son (CDI_DOMINATORS
, bb
);
984 c
= next_dom_son (CDI_DOMINATORS
, c
))
989 EXECUTE_IF_SET_IN_BITMAP (frontiers
[c
->index
], 0, x
, bi
)
991 if (get_immediate_dominator (CDI_DOMINATORS
, BASIC_BLOCK (x
)) != bb
)
992 bitmap_set_bit (frontiers
[bb
->index
], x
);
999 compute_dominance_frontiers (bitmap
*frontiers
)
1001 sbitmap done
= sbitmap_alloc (last_basic_block
);
1003 timevar_push (TV_DOM_FRONTIERS
);
1005 sbitmap_zero (done
);
1007 compute_dominance_frontiers_1 (frontiers
, EDGE_SUCC (ENTRY_BLOCK_PTR
, 0)->dest
, done
);
1009 sbitmap_free (done
);
1011 timevar_pop (TV_DOM_FRONTIERS
);