1 /* Predictive commoning.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
194 #include "basic-block.h"
195 #include "tree-ssa-alias.h"
196 #include "internal-fn.h"
198 #include "gimple-expr.h"
201 #include "gimplify.h"
202 #include "gimple-iterator.h"
203 #include "gimplify-me.h"
204 #include "gimple-ssa.h"
205 #include "tree-phinodes.h"
206 #include "ssa-iterators.h"
207 #include "stringpool.h"
208 #include "tree-ssanames.h"
209 #include "tree-ssa-loop-ivopts.h"
210 #include "tree-ssa-loop-manip.h"
211 #include "tree-ssa-loop-niter.h"
212 #include "tree-ssa-loop.h"
213 #include "tree-into-ssa.h"
215 #include "tree-dfa.h"
216 #include "tree-ssa.h"
217 #include "tree-data-ref.h"
218 #include "tree-scalar-evolution.h"
219 #include "tree-chrec.h"
221 #include "gimple-pretty-print.h"
222 #include "tree-pass.h"
223 #include "tree-affine.h"
224 #include "tree-inline.h"
226 /* The maximum number of iterations between the considered memory
229 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
231 /* Data references (or phi nodes that carry data reference values across
234 typedef struct dref_d
236 /* The reference itself. */
237 struct data_reference
*ref
;
239 /* The statement in that the reference appears. */
242 /* In case that STMT is a phi node, this field is set to the SSA name
243 defined by it in replace_phis_by_defined_names (in order to avoid
244 pointing to phi node that got reallocated in the meantime). */
245 tree name_defined_by_phi
;
247 /* Distance of the reference from the root of the chain (in number of
248 iterations of the loop). */
251 /* Number of iterations offset from the first reference in the component. */
254 /* Number of the reference in a component, in dominance ordering. */
257 /* True if the memory reference is always accessed when the loop is
259 unsigned always_accessed
: 1;
263 /* Type of the chain of the references. */
267 /* The addresses of the references in the chain are constant. */
270 /* There are only loads in the chain. */
273 /* Root of the chain is store, the rest are loads. */
276 /* A combination of two chains. */
280 /* Chains of data references. */
284 /* Type of the chain. */
285 enum chain_type type
;
287 /* For combination chains, the operator and the two chains that are
288 combined, and the type of the result. */
291 struct chain
*ch1
, *ch2
;
293 /* The references in the chain. */
296 /* The maximum distance of the reference in the chain from the root. */
299 /* The variables used to copy the value throughout iterations. */
302 /* Initializers for the variables. */
305 /* True if there is a use of a variable with the maximal distance
306 that comes after the root in the loop. */
307 unsigned has_max_use_after
: 1;
309 /* True if all the memory references in the chain are always accessed. */
310 unsigned all_always_accessed
: 1;
312 /* True if this chain was combined together with some other chain. */
313 unsigned combined
: 1;
317 /* Describes the knowledge about the step of the memory references in
322 /* The step is zero. */
325 /* The step is nonzero. */
328 /* The step may or may not be nonzero. */
332 /* Components of the data dependence graph. */
336 /* The references in the component. */
339 /* What we know about the step of the references in the component. */
340 enum ref_step_type comp_step
;
342 /* Next component in the list. */
343 struct component
*next
;
346 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
348 static bitmap looparound_phis
;
350 /* Cache used by tree_to_aff_combination_expand. */
352 static struct pointer_map_t
*name_expansions
;
354 /* Dumps data reference REF to FILE. */
356 extern void dump_dref (FILE *, dref
);
358 dump_dref (FILE *file
, dref ref
)
363 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
364 fprintf (file
, " (id %u%s)\n", ref
->pos
,
365 DR_IS_READ (ref
->ref
) ? "" : ", write");
367 fprintf (file
, " offset ");
368 dump_double_int (file
, ref
->offset
, false);
369 fprintf (file
, "\n");
371 fprintf (file
, " distance %u\n", ref
->distance
);
375 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
376 fprintf (file
, " looparound ref\n");
378 fprintf (file
, " combination ref\n");
379 fprintf (file
, " in statement ");
380 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
381 fprintf (file
, "\n");
382 fprintf (file
, " distance %u\n", ref
->distance
);
387 /* Dumps CHAIN to FILE. */
389 extern void dump_chain (FILE *, chain_p
);
391 dump_chain (FILE *file
, chain_p chain
)
394 const char *chain_type
;
401 chain_type
= "Load motion";
405 chain_type
= "Loads-only";
409 chain_type
= "Store-loads";
413 chain_type
= "Combination";
420 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
421 chain
->combined
? " (combined)" : "");
422 if (chain
->type
!= CT_INVARIANT
)
423 fprintf (file
, " max distance %u%s\n", chain
->length
,
424 chain
->has_max_use_after
? "" : ", may reuse first");
426 if (chain
->type
== CT_COMBINATION
)
428 fprintf (file
, " equal to %p %s %p in type ",
429 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
430 (void *) chain
->ch2
);
431 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
432 fprintf (file
, "\n");
435 if (chain
->vars
.exists ())
437 fprintf (file
, " vars");
438 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
441 print_generic_expr (file
, var
, TDF_SLIM
);
443 fprintf (file
, "\n");
446 if (chain
->inits
.exists ())
448 fprintf (file
, " inits");
449 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
452 print_generic_expr (file
, var
, TDF_SLIM
);
454 fprintf (file
, "\n");
457 fprintf (file
, " references:\n");
458 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
461 fprintf (file
, "\n");
464 /* Dumps CHAINS to FILE. */
466 extern void dump_chains (FILE *, vec
<chain_p
> );
468 dump_chains (FILE *file
, vec
<chain_p
> chains
)
473 FOR_EACH_VEC_ELT (chains
, i
, chain
)
474 dump_chain (file
, chain
);
477 /* Dumps COMP to FILE. */
479 extern void dump_component (FILE *, struct component
*);
481 dump_component (FILE *file
, struct component
*comp
)
486 fprintf (file
, "Component%s:\n",
487 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
488 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
490 fprintf (file
, "\n");
493 /* Dumps COMPS to FILE. */
495 extern void dump_components (FILE *, struct component
*);
497 dump_components (FILE *file
, struct component
*comps
)
499 struct component
*comp
;
501 for (comp
= comps
; comp
; comp
= comp
->next
)
502 dump_component (file
, comp
);
505 /* Frees a chain CHAIN. */
508 release_chain (chain_p chain
)
516 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
519 chain
->refs
.release ();
520 chain
->vars
.release ();
521 chain
->inits
.release ();
529 release_chains (vec
<chain_p
> chains
)
534 FOR_EACH_VEC_ELT (chains
, i
, chain
)
535 release_chain (chain
);
539 /* Frees a component COMP. */
542 release_component (struct component
*comp
)
544 comp
->refs
.release ();
548 /* Frees list of components COMPS. */
551 release_components (struct component
*comps
)
553 struct component
*act
, *next
;
555 for (act
= comps
; act
; act
= next
)
558 release_component (act
);
562 /* Finds a root of tree given by FATHERS containing A, and performs path
566 component_of (unsigned fathers
[], unsigned a
)
570 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
573 for (; a
!= root
; a
= n
)
582 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
583 components, A and B are components to merge. */
586 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
588 unsigned ca
= component_of (fathers
, a
);
589 unsigned cb
= component_of (fathers
, b
);
594 if (sizes
[ca
] < sizes
[cb
])
596 sizes
[cb
] += sizes
[ca
];
601 sizes
[ca
] += sizes
[cb
];
606 /* Returns true if A is a reference that is suitable for predictive commoning
607 in the innermost loop that contains it. REF_STEP is set according to the
608 step of the reference A. */
611 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
613 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
616 || TREE_THIS_VOLATILE (ref
)
617 || !is_gimple_reg_type (TREE_TYPE (ref
))
618 || tree_could_throw_p (ref
))
621 if (integer_zerop (step
))
622 *ref_step
= RS_INVARIANT
;
623 else if (integer_nonzerop (step
))
624 *ref_step
= RS_NONZERO
;
631 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
634 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
636 tree type
= TREE_TYPE (DR_OFFSET (dr
));
639 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
641 aff_combination_const (&delta
, type
, tree_to_double_int (DR_INIT (dr
)));
642 aff_combination_add (offset
, &delta
);
645 /* Determines number of iterations of the innermost enclosing loop before B
646 refers to exactly the same location as A and stores it to OFF. If A and
647 B do not have the same step, they never meet, or anything else fails,
648 returns false, otherwise returns true. Both A and B are assumed to
649 satisfy suitable_reference_p. */
652 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
655 aff_tree diff
, baseb
, step
;
658 /* Check that both the references access the location in the same type. */
659 typea
= TREE_TYPE (DR_REF (a
));
660 typeb
= TREE_TYPE (DR_REF (b
));
661 if (!useless_type_conversion_p (typeb
, typea
))
664 /* Check whether the base address and the step of both references is the
666 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
667 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
670 if (integer_zerop (DR_STEP (a
)))
672 /* If the references have loop invariant address, check that they access
673 exactly the same location. */
674 *off
= double_int_zero
;
675 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
676 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
679 /* Compare the offsets of the addresses, and check whether the difference
680 is a multiple of step. */
681 aff_combination_dr_offset (a
, &diff
);
682 aff_combination_dr_offset (b
, &baseb
);
683 aff_combination_scale (&baseb
, double_int_minus_one
);
684 aff_combination_add (&diff
, &baseb
);
686 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
687 &step
, &name_expansions
);
688 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
691 /* Returns the last basic block in LOOP for that we are sure that
692 it is executed whenever the loop is entered. */
695 last_always_executed_block (struct loop
*loop
)
698 vec
<edge
> exits
= get_loop_exit_edges (loop
);
700 basic_block last
= loop
->latch
;
702 FOR_EACH_VEC_ELT (exits
, i
, ex
)
703 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
709 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
711 static struct component
*
712 split_data_refs_to_components (struct loop
*loop
,
713 vec
<data_reference_p
> datarefs
,
716 unsigned i
, n
= datarefs
.length ();
717 unsigned ca
, ia
, ib
, bad
;
718 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
719 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
720 struct component
**comps
;
721 struct data_reference
*dr
, *dra
, *drb
;
722 struct data_dependence_relation
*ddr
;
723 struct component
*comp_list
= NULL
, *comp
;
725 basic_block last_always_executed
= last_always_executed_block (loop
);
727 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
731 /* A fake reference for call or asm_expr that may clobber memory;
735 /* predcom pass isn't prepared to handle calls with data references. */
736 if (is_gimple_call (DR_STMT (dr
)))
738 dr
->aux
= (void *) (size_t) i
;
743 /* A component reserved for the "bad" data references. */
747 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
749 enum ref_step_type dummy
;
751 if (!suitable_reference_p (dr
, &dummy
))
753 ia
= (unsigned) (size_t) dr
->aux
;
754 merge_comps (comp_father
, comp_size
, n
, ia
);
758 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
760 double_int dummy_off
;
762 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
767 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
768 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
772 bad
= component_of (comp_father
, n
);
774 /* If both A and B are reads, we may ignore unsuitable dependences. */
775 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
777 if (ia
== bad
|| ib
== bad
778 || !determine_offset (dra
, drb
, &dummy_off
))
781 /* If A is read and B write or vice versa and there is unsuitable
782 dependence, instead of merging both components into a component
783 that will certainly not pass suitable_component_p, just put the
784 read into bad component, perhaps at least the write together with
785 all the other data refs in it's component will be optimizable. */
786 else if (DR_IS_READ (dra
) && ib
!= bad
)
790 else if (!determine_offset (dra
, drb
, &dummy_off
))
792 merge_comps (comp_father
, comp_size
, bad
, ia
);
796 else if (DR_IS_READ (drb
) && ia
!= bad
)
800 else if (!determine_offset (dra
, drb
, &dummy_off
))
802 merge_comps (comp_father
, comp_size
, bad
, ib
);
807 merge_comps (comp_father
, comp_size
, ia
, ib
);
810 comps
= XCNEWVEC (struct component
*, n
);
811 bad
= component_of (comp_father
, n
);
812 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
814 ia
= (unsigned) (size_t) dr
->aux
;
815 ca
= component_of (comp_father
, ia
);
822 comp
= XCNEW (struct component
);
823 comp
->refs
.create (comp_size
[ca
]);
827 dataref
= XCNEW (struct dref_d
);
829 dataref
->stmt
= DR_STMT (dr
);
830 dataref
->offset
= double_int_zero
;
831 dataref
->distance
= 0;
833 dataref
->always_accessed
834 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
835 gimple_bb (dataref
->stmt
));
836 dataref
->pos
= comp
->refs
.length ();
837 comp
->refs
.quick_push (dataref
);
840 for (i
= 0; i
< n
; i
++)
845 comp
->next
= comp_list
;
857 /* Returns true if the component COMP satisfies the conditions
858 described in 2) at the beginning of this file. LOOP is the current
862 suitable_component_p (struct loop
*loop
, struct component
*comp
)
866 basic_block ba
, bp
= loop
->header
;
867 bool ok
, has_write
= false;
869 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
871 ba
= gimple_bb (a
->stmt
);
873 if (!just_once_each_iteration_p (loop
, ba
))
876 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
879 if (DR_IS_WRITE (a
->ref
))
883 first
= comp
->refs
[0];
884 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
886 first
->offset
= double_int_zero
;
888 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
890 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
893 #ifdef ENABLE_CHECKING
895 enum ref_step_type a_step
;
896 ok
= suitable_reference_p (a
->ref
, &a_step
);
897 gcc_assert (ok
&& a_step
== comp
->comp_step
);
902 /* If there is a write inside the component, we must know whether the
903 step is nonzero or not -- we would not otherwise be able to recognize
904 whether the value accessed by reads comes from the OFFSET-th iteration
905 or the previous one. */
906 if (has_write
&& comp
->comp_step
== RS_ANY
)
912 /* Check the conditions on references inside each of components COMPS,
913 and remove the unsuitable components from the list. The new list
914 of components is returned. The conditions are described in 2) at
915 the beginning of this file. LOOP is the current loop. */
917 static struct component
*
918 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
920 struct component
**comp
, *act
;
922 for (comp
= &comps
; *comp
; )
925 if (suitable_component_p (loop
, act
))
933 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
935 release_component (act
);
942 /* Compares two drefs A and B by their offset and position. Callback for
946 order_drefs (const void *a
, const void *b
)
948 const dref
*const da
= (const dref
*) a
;
949 const dref
*const db
= (const dref
*) b
;
950 int offcmp
= (*da
)->offset
.scmp ((*db
)->offset
);
955 return (*da
)->pos
- (*db
)->pos
;
958 /* Returns root of the CHAIN. */
961 get_chain_root (chain_p chain
)
963 return chain
->refs
[0];
966 /* Adds REF to the chain CHAIN. */
969 add_ref_to_chain (chain_p chain
, dref ref
)
971 dref root
= get_chain_root (chain
);
974 gcc_assert (root
->offset
.sle (ref
->offset
));
975 dist
= ref
->offset
- root
->offset
;
976 if (double_int::from_uhwi (MAX_DISTANCE
).ule (dist
))
981 gcc_assert (dist
.fits_uhwi ());
983 chain
->refs
.safe_push (ref
);
985 ref
->distance
= dist
.to_uhwi ();
987 if (ref
->distance
>= chain
->length
)
989 chain
->length
= ref
->distance
;
990 chain
->has_max_use_after
= false;
993 if (ref
->distance
== chain
->length
994 && ref
->pos
> root
->pos
)
995 chain
->has_max_use_after
= true;
997 chain
->all_always_accessed
&= ref
->always_accessed
;
1000 /* Returns the chain for invariant component COMP. */
1003 make_invariant_chain (struct component
*comp
)
1005 chain_p chain
= XCNEW (struct chain
);
1009 chain
->type
= CT_INVARIANT
;
1011 chain
->all_always_accessed
= true;
1013 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1015 chain
->refs
.safe_push (ref
);
1016 chain
->all_always_accessed
&= ref
->always_accessed
;
1022 /* Make a new chain rooted at REF. */
1025 make_rooted_chain (dref ref
)
1027 chain_p chain
= XCNEW (struct chain
);
1029 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1031 chain
->refs
.safe_push (ref
);
1032 chain
->all_always_accessed
= ref
->always_accessed
;
1039 /* Returns true if CHAIN is not trivial. */
1042 nontrivial_chain_p (chain_p chain
)
1044 return chain
!= NULL
&& chain
->refs
.length () > 1;
1047 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1051 name_for_ref (dref ref
)
1055 if (is_gimple_assign (ref
->stmt
))
1057 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1058 name
= gimple_assign_lhs (ref
->stmt
);
1060 name
= gimple_assign_rhs1 (ref
->stmt
);
1063 name
= PHI_RESULT (ref
->stmt
);
1065 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1068 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1069 iterations of the innermost enclosing loop). */
1072 valid_initializer_p (struct data_reference
*ref
,
1073 unsigned distance
, struct data_reference
*root
)
1075 aff_tree diff
, base
, step
;
1078 /* Both REF and ROOT must be accessing the same object. */
1079 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1082 /* The initializer is defined outside of loop, hence its address must be
1083 invariant inside the loop. */
1084 gcc_assert (integer_zerop (DR_STEP (ref
)));
1086 /* If the address of the reference is invariant, initializer must access
1087 exactly the same location. */
1088 if (integer_zerop (DR_STEP (root
)))
1089 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1090 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1092 /* Verify that this index of REF is equal to the root's index at
1093 -DISTANCE-th iteration. */
1094 aff_combination_dr_offset (root
, &diff
);
1095 aff_combination_dr_offset (ref
, &base
);
1096 aff_combination_scale (&base
, double_int_minus_one
);
1097 aff_combination_add (&diff
, &base
);
1099 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1100 &step
, &name_expansions
);
1101 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1104 if (off
!= double_int::from_uhwi (distance
))
1110 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1111 initial value is correct (equal to initial value of REF shifted by one
1112 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1113 is the root of the current chain. */
1116 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1118 tree name
, init
, init_ref
;
1119 gimple phi
= NULL
, init_stmt
;
1120 edge latch
= loop_latch_edge (loop
);
1121 struct data_reference init_dr
;
1122 gimple_stmt_iterator psi
;
1124 if (is_gimple_assign (ref
->stmt
))
1126 if (DR_IS_READ (ref
->ref
))
1127 name
= gimple_assign_lhs (ref
->stmt
);
1129 name
= gimple_assign_rhs1 (ref
->stmt
);
1132 name
= PHI_RESULT (ref
->stmt
);
1136 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1138 phi
= gsi_stmt (psi
);
1139 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1143 if (gsi_end_p (psi
))
1146 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1147 if (TREE_CODE (init
) != SSA_NAME
)
1149 init_stmt
= SSA_NAME_DEF_STMT (init
);
1150 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1152 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1154 init_ref
= gimple_assign_rhs1 (init_stmt
);
1155 if (!REFERENCE_CLASS_P (init_ref
)
1156 && !DECL_P (init_ref
))
1159 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1160 loop enclosing PHI). */
1161 memset (&init_dr
, 0, sizeof (struct data_reference
));
1162 DR_REF (&init_dr
) = init_ref
;
1163 DR_STMT (&init_dr
) = phi
;
1164 if (!dr_analyze_innermost (&init_dr
, loop
))
1167 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1173 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1176 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1178 dref nw
= XCNEW (struct dref_d
), aref
;
1182 nw
->distance
= ref
->distance
+ 1;
1183 nw
->always_accessed
= 1;
1185 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1186 if (aref
->distance
>= nw
->distance
)
1188 chain
->refs
.safe_insert (i
, nw
);
1190 if (nw
->distance
> chain
->length
)
1192 chain
->length
= nw
->distance
;
1193 chain
->has_max_use_after
= false;
1197 /* For references in CHAIN that are copied around the LOOP (created previously
1198 by PRE, or by user), add the results of such copies to the chain. This
1199 enables us to remove the copies by unrolling, and may need less registers
1200 (also, it may allow us to combine chains together). */
1203 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1206 dref ref
, root
= get_chain_root (chain
);
1209 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1211 phi
= find_looparound_phi (loop
, ref
, root
);
1215 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1216 insert_looparound_copy (chain
, ref
, phi
);
1220 /* Find roots of the values and determine distances in the component COMP.
1221 The references are redistributed into CHAINS. LOOP is the current
1225 determine_roots_comp (struct loop
*loop
,
1226 struct component
*comp
,
1227 vec
<chain_p
> *chains
)
1231 chain_p chain
= NULL
;
1232 double_int last_ofs
= double_int_zero
;
1234 /* Invariants are handled specially. */
1235 if (comp
->comp_step
== RS_INVARIANT
)
1237 chain
= make_invariant_chain (comp
);
1238 chains
->safe_push (chain
);
1242 comp
->refs
.qsort (order_drefs
);
1244 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1246 if (!chain
|| DR_IS_WRITE (a
->ref
)
1247 || double_int::from_uhwi (MAX_DISTANCE
).ule (a
->offset
- last_ofs
))
1249 if (nontrivial_chain_p (chain
))
1251 add_looparound_copies (loop
, chain
);
1252 chains
->safe_push (chain
);
1255 release_chain (chain
);
1256 chain
= make_rooted_chain (a
);
1257 last_ofs
= a
->offset
;
1261 add_ref_to_chain (chain
, a
);
1264 if (nontrivial_chain_p (chain
))
1266 add_looparound_copies (loop
, chain
);
1267 chains
->safe_push (chain
);
1270 release_chain (chain
);
1273 /* Find roots of the values and determine distances in components COMPS, and
1274 separates the references to CHAINS. LOOP is the current loop. */
1277 determine_roots (struct loop
*loop
,
1278 struct component
*comps
, vec
<chain_p
> *chains
)
1280 struct component
*comp
;
1282 for (comp
= comps
; comp
; comp
= comp
->next
)
1283 determine_roots_comp (loop
, comp
, chains
);
1286 /* Replace the reference in statement STMT with temporary variable
1287 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1288 the reference in the statement. IN_LHS is true if the reference
1289 is in the lhs of STMT, false if it is in rhs. */
1292 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1296 gimple_stmt_iterator bsi
, psi
;
1298 if (gimple_code (stmt
) == GIMPLE_PHI
)
1300 gcc_assert (!in_lhs
&& !set
);
1302 val
= PHI_RESULT (stmt
);
1303 bsi
= gsi_after_labels (gimple_bb (stmt
));
1304 psi
= gsi_for_stmt (stmt
);
1305 remove_phi_node (&psi
, false);
1307 /* Turn the phi node into GIMPLE_ASSIGN. */
1308 new_stmt
= gimple_build_assign (val
, new_tree
);
1309 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1313 /* Since the reference is of gimple_reg type, it should only
1314 appear as lhs or rhs of modify statement. */
1315 gcc_assert (is_gimple_assign (stmt
));
1317 bsi
= gsi_for_stmt (stmt
);
1319 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1322 gcc_assert (!in_lhs
);
1323 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1324 stmt
= gsi_stmt (bsi
);
1331 /* We have statement
1335 If OLD is a memory reference, then VAL is gimple_val, and we transform
1341 Otherwise, we are replacing a combination chain,
1342 VAL is the expression that performs the combination, and OLD is an
1343 SSA name. In this case, we transform the assignment to
1350 val
= gimple_assign_lhs (stmt
);
1351 if (TREE_CODE (val
) != SSA_NAME
)
1353 val
= gimple_assign_rhs1 (stmt
);
1354 gcc_assert (gimple_assign_single_p (stmt
));
1355 if (TREE_CLOBBER_P (val
))
1356 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1358 gcc_assert (gimple_assign_copy_p (stmt
));
1370 val
= gimple_assign_lhs (stmt
);
1373 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1374 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1377 /* Returns a memory reference to DR in the ITER-th iteration of
1378 the loop it was analyzed in. Append init stmts to STMTS. */
1381 ref_at_iteration (data_reference_p dr
, int iter
, gimple_seq
*stmts
)
1383 tree off
= DR_OFFSET (dr
);
1384 tree coff
= DR_INIT (dr
);
1387 else if (TREE_CODE (DR_STEP (dr
)) == INTEGER_CST
)
1388 coff
= size_binop (PLUS_EXPR
, coff
,
1389 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1391 off
= size_binop (PLUS_EXPR
, off
,
1392 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1393 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1394 addr
= force_gimple_operand_1 (addr
, stmts
, is_gimple_mem_ref_addr
,
1396 tree alias_ptr
= fold_convert (reference_alias_ptr_type (DR_REF (dr
)), coff
);
1397 /* While data-ref analysis punts on bit offsets it still handles
1398 bitfield accesses at byte boundaries. Cope with that. Note that
1399 we cannot simply re-apply the outer COMPONENT_REF because the
1400 byte-granular portion of it is already applied via DR_INIT and
1401 DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1402 start at offset zero. */
1403 if (TREE_CODE (DR_REF (dr
)) == COMPONENT_REF
1404 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr
), 1)))
1406 tree field
= TREE_OPERAND (DR_REF (dr
), 1);
1407 return build3 (BIT_FIELD_REF
, TREE_TYPE (DR_REF (dr
)),
1408 build2 (MEM_REF
, DECL_BIT_FIELD_TYPE (field
),
1410 DECL_SIZE (field
), bitsize_zero_node
);
1413 return fold_build2 (MEM_REF
, TREE_TYPE (DR_REF (dr
)), addr
, alias_ptr
);
1416 /* Get the initialization expression for the INDEX-th temporary variable
1420 get_init_expr (chain_p chain
, unsigned index
)
1422 if (chain
->type
== CT_COMBINATION
)
1424 tree e1
= get_init_expr (chain
->ch1
, index
);
1425 tree e2
= get_init_expr (chain
->ch2
, index
);
1427 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1430 return chain
->inits
[index
];
1433 /* Returns a new temporary variable used for the I-th variable carrying
1434 value of REF. The variable's uid is marked in TMP_VARS. */
1437 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1439 tree type
= TREE_TYPE (ref
);
1440 /* We never access the components of the temporary variable in predictive
1442 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1443 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1447 /* Creates the variables for CHAIN, as well as phi nodes for them and
1448 initialization on entry to LOOP. Uids of the newly created
1449 temporary variables are marked in TMP_VARS. */
1452 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1455 unsigned n
= chain
->length
;
1456 dref root
= get_chain_root (chain
);
1457 bool reuse_first
= !chain
->has_max_use_after
;
1458 tree ref
, init
, var
, next
;
1461 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1463 /* If N == 0, then all the references are within the single iteration. And
1464 since this is an nonempty chain, reuse_first cannot be true. */
1465 gcc_assert (n
> 0 || !reuse_first
);
1467 chain
->vars
.create (n
+ 1);
1469 if (chain
->type
== CT_COMBINATION
)
1470 ref
= gimple_assign_lhs (root
->stmt
);
1472 ref
= DR_REF (root
->ref
);
1474 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1476 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1477 chain
->vars
.quick_push (var
);
1480 chain
->vars
.quick_push (chain
->vars
[0]);
1482 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1483 chain
->vars
[i
] = make_ssa_name (var
, NULL
);
1485 for (i
= 0; i
< n
; i
++)
1487 var
= chain
->vars
[i
];
1488 next
= chain
->vars
[i
+ 1];
1489 init
= get_init_expr (chain
, i
);
1491 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1493 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1495 phi
= create_phi_node (var
, loop
->header
);
1496 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1497 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1501 /* Create the variables and initialization statement for root of chain
1502 CHAIN. Uids of the newly created temporary variables are marked
1506 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1508 dref root
= get_chain_root (chain
);
1509 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1510 || chain
->type
== CT_COMBINATION
);
1512 initialize_root_vars (loop
, chain
, tmp_vars
);
1513 replace_ref_with (root
->stmt
,
1514 chain
->vars
[chain
->length
],
1518 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1519 initialization on entry to LOOP if necessary. The ssa name for the variable
1520 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1521 around the loop is created. Uid of the newly created temporary variable
1522 is marked in TMP_VARS. INITS is the list containing the (single)
1526 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1527 vec
<tree
> *vars
, vec
<tree
> inits
,
1531 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1534 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1536 /* Find the initializer for the variable, and check that it cannot
1540 vars
->create (written
? 2 : 1);
1541 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1542 vars
->quick_push (var
);
1544 vars
->quick_push ((*vars
)[0]);
1546 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1547 (*vars
)[i
] = make_ssa_name (var
, NULL
);
1551 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1553 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1558 phi
= create_phi_node (var
, loop
->header
);
1559 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1560 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1564 gimple init_stmt
= gimple_build_assign (var
, init
);
1565 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1570 /* Execute load motion for references in chain CHAIN. Uids of the newly
1571 created temporary variables are marked in TMP_VARS. */
1574 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1576 auto_vec
<tree
> vars
;
1578 unsigned n_writes
= 0, ridx
, i
;
1581 gcc_assert (chain
->type
== CT_INVARIANT
);
1582 gcc_assert (!chain
->combined
);
1583 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1584 if (DR_IS_WRITE (a
->ref
))
1587 /* If there are no reads in the loop, there is nothing to do. */
1588 if (n_writes
== chain
->refs
.length ())
1591 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1592 &vars
, chain
->inits
, tmp_vars
);
1595 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1597 bool is_read
= DR_IS_READ (a
->ref
);
1599 if (DR_IS_WRITE (a
->ref
))
1605 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1612 replace_ref_with (a
->stmt
, vars
[ridx
],
1613 !is_read
, !is_read
);
1617 /* Returns the single statement in that NAME is used, excepting
1618 the looparound phi nodes contained in one of the chains. If there is no
1619 such statement, or more statements, NULL is returned. */
1622 single_nonlooparound_use (tree name
)
1625 imm_use_iterator it
;
1626 gimple stmt
, ret
= NULL
;
1628 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1630 stmt
= USE_STMT (use
);
1632 if (gimple_code (stmt
) == GIMPLE_PHI
)
1634 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1635 could not be processed anyway, so just fail for them. */
1636 if (bitmap_bit_p (looparound_phis
,
1637 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1642 else if (is_gimple_debug (stmt
))
1644 else if (ret
!= NULL
)
1653 /* Remove statement STMT, as well as the chain of assignments in that it is
1657 remove_stmt (gimple stmt
)
1661 gimple_stmt_iterator psi
;
1663 if (gimple_code (stmt
) == GIMPLE_PHI
)
1665 name
= PHI_RESULT (stmt
);
1666 next
= single_nonlooparound_use (name
);
1667 reset_debug_uses (stmt
);
1668 psi
= gsi_for_stmt (stmt
);
1669 remove_phi_node (&psi
, true);
1672 || !gimple_assign_ssa_name_copy_p (next
)
1673 || gimple_assign_rhs1 (next
) != name
)
1681 gimple_stmt_iterator bsi
;
1683 bsi
= gsi_for_stmt (stmt
);
1685 name
= gimple_assign_lhs (stmt
);
1686 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1688 next
= single_nonlooparound_use (name
);
1689 reset_debug_uses (stmt
);
1691 unlink_stmt_vdef (stmt
);
1692 gsi_remove (&bsi
, true);
1693 release_defs (stmt
);
1696 || !gimple_assign_ssa_name_copy_p (next
)
1697 || gimple_assign_rhs1 (next
) != name
)
1704 /* Perform the predictive commoning optimization for a chain CHAIN.
1705 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1708 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1715 if (chain
->combined
)
1717 /* For combined chains, just remove the statements that are used to
1718 compute the values of the expression (except for the root one). */
1719 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1720 remove_stmt (a
->stmt
);
1724 /* For non-combined chains, set up the variables that hold its value,
1725 and replace the uses of the original references by these
1727 initialize_root (loop
, chain
, tmp_vars
);
1728 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1730 var
= chain
->vars
[chain
->length
- a
->distance
];
1731 replace_ref_with (a
->stmt
, var
, false, false);
1736 /* Determines the unroll factor necessary to remove as many temporary variable
1737 copies as possible. CHAINS is the list of chains that will be
1741 determine_unroll_factor (vec
<chain_p
> chains
)
1744 unsigned factor
= 1, af
, nfactor
, i
;
1745 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1747 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1749 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1752 /* The best unroll factor for this chain is equal to the number of
1753 temporary variables that we create for it. */
1755 if (chain
->has_max_use_after
)
1758 nfactor
= factor
* af
/ gcd (factor
, af
);
1766 /* Perform the predictive commoning optimization for CHAINS.
1767 Uids of the newly created temporary variables are marked in TMP_VARS. */
1770 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
1776 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1778 if (chain
->type
== CT_INVARIANT
)
1779 execute_load_motion (loop
, chain
, tmp_vars
);
1781 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1784 update_ssa (TODO_update_ssa_only_virtuals
);
1787 /* For each reference in CHAINS, if its defining statement is
1788 phi node, record the ssa name that is defined by it. */
1791 replace_phis_by_defined_names (vec
<chain_p
> chains
)
1797 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1798 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1800 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1802 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1808 /* For each reference in CHAINS, if name_defined_by_phi is not
1809 NULL, use it to set the stmt field. */
1812 replace_names_by_phis (vec
<chain_p
> chains
)
1818 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1819 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1820 if (a
->stmt
== NULL
)
1822 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1823 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1824 a
->name_defined_by_phi
= NULL_TREE
;
1828 /* Wrapper over execute_pred_commoning, to pass it as a callback
1829 to tree_transform_and_unroll_loop. */
1833 vec
<chain_p
> chains
;
1838 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1840 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1842 /* Restore phi nodes that were replaced by ssa names before
1843 tree_transform_and_unroll_loop (see detailed description in
1844 tree_predictive_commoning_loop). */
1845 replace_names_by_phis (dta
->chains
);
1846 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1849 /* Base NAME and all the names in the chain of phi nodes that use it
1850 on variable VAR. The phi nodes are recognized by being in the copies of
1851 the header of the LOOP. */
1854 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1857 imm_use_iterator iter
;
1859 replace_ssa_name_symbol (name
, var
);
1864 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1866 if (gimple_code (stmt
) == GIMPLE_PHI
1867 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1870 BREAK_FROM_IMM_USE_STMT (iter
);
1876 name
= PHI_RESULT (phi
);
1877 replace_ssa_name_symbol (name
, var
);
1881 /* Given an unrolled LOOP after predictive commoning, remove the
1882 register copies arising from phi nodes by changing the base
1883 variables of SSA names. TMP_VARS is the set of the temporary variables
1884 for those we want to perform this. */
1887 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1891 tree name
, use
, var
;
1892 gimple_stmt_iterator psi
;
1894 e
= loop_latch_edge (loop
);
1895 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1897 phi
= gsi_stmt (psi
);
1898 name
= PHI_RESULT (phi
);
1899 var
= SSA_NAME_VAR (name
);
1900 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1902 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1903 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1905 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1906 stmt
= SSA_NAME_DEF_STMT (use
);
1907 while (gimple_code (stmt
) == GIMPLE_PHI
1908 /* In case we could not unroll the loop enough to eliminate
1909 all copies, we may reach the loop header before the defining
1910 statement (in that case, some register copies will be present
1911 in loop latch in the final code, corresponding to the newly
1912 created looparound phi nodes). */
1913 && gimple_bb (stmt
) != loop
->header
)
1915 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1916 use
= PHI_ARG_DEF (stmt
, 0);
1917 stmt
= SSA_NAME_DEF_STMT (use
);
1920 base_names_in_chain_on (loop
, use
, var
);
1924 /* Returns true if CHAIN is suitable to be combined. */
1927 chain_can_be_combined_p (chain_p chain
)
1929 return (!chain
->combined
1930 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1933 /* Returns the modify statement that uses NAME. Skips over assignment
1934 statements, NAME is replaced with the actual name used in the returned
1938 find_use_stmt (tree
*name
)
1943 /* Skip over assignments. */
1946 stmt
= single_nonlooparound_use (*name
);
1950 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1953 lhs
= gimple_assign_lhs (stmt
);
1954 if (TREE_CODE (lhs
) != SSA_NAME
)
1957 if (gimple_assign_copy_p (stmt
))
1959 rhs
= gimple_assign_rhs1 (stmt
);
1965 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1966 == GIMPLE_BINARY_RHS
)
1973 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1976 may_reassociate_p (tree type
, enum tree_code code
)
1978 if (FLOAT_TYPE_P (type
)
1979 && !flag_unsafe_math_optimizations
)
1982 return (commutative_tree_code (code
)
1983 && associative_tree_code (code
));
1986 /* If the operation used in STMT is associative and commutative, go through the
1987 tree of the same operations and returns its root. Distance to the root
1988 is stored in DISTANCE. */
1991 find_associative_operation_root (gimple stmt
, unsigned *distance
)
1995 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1996 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1999 if (!may_reassociate_p (type
, code
))
2004 lhs
= gimple_assign_lhs (stmt
);
2005 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2007 next
= find_use_stmt (&lhs
);
2009 || gimple_assign_rhs_code (next
) != code
)
2021 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2022 is no such statement, returns NULL_TREE. In case the operation used on
2023 NAME1 and NAME2 is associative and commutative, returns the root of the
2024 tree formed by this operation instead of the statement that uses NAME1 or
2028 find_common_use_stmt (tree
*name1
, tree
*name2
)
2030 gimple stmt1
, stmt2
;
2032 stmt1
= find_use_stmt (name1
);
2036 stmt2
= find_use_stmt (name2
);
2043 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2046 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2050 return (stmt1
== stmt2
? stmt1
: NULL
);
2053 /* Checks whether R1 and R2 are combined together using CODE, with the result
2054 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2055 if it is true. If CODE is ERROR_MARK, set these values instead. */
2058 combinable_refs_p (dref r1
, dref r2
,
2059 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2061 enum tree_code acode
;
2067 name1
= name_for_ref (r1
);
2068 name2
= name_for_ref (r2
);
2069 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2071 stmt
= find_common_use_stmt (&name1
, &name2
);
2074 /* A simple post-dominance check - make sure the combination
2075 is executed under the same condition as the references. */
2076 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2077 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2080 acode
= gimple_assign_rhs_code (stmt
);
2081 aswap
= (!commutative_tree_code (acode
)
2082 && gimple_assign_rhs1 (stmt
) != name1
);
2083 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2085 if (*code
== ERROR_MARK
)
2093 return (*code
== acode
2095 && *rslt_type
== atype
);
2098 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2099 an assignment of the remaining operand. */
2102 remove_name_from_operation (gimple stmt
, tree op
)
2105 gimple_stmt_iterator si
;
2107 gcc_assert (is_gimple_assign (stmt
));
2109 if (gimple_assign_rhs1 (stmt
) == op
)
2110 other_op
= gimple_assign_rhs2 (stmt
);
2112 other_op
= gimple_assign_rhs1 (stmt
);
2114 si
= gsi_for_stmt (stmt
);
2115 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2117 /* We should not have reallocated STMT. */
2118 gcc_assert (gsi_stmt (si
) == stmt
);
2123 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2124 are combined in a single statement, and returns this statement. */
2127 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2129 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2130 gimple new_stmt
, tmp_stmt
;
2131 tree new_name
, tmp_name
, var
, r1
, r2
;
2132 unsigned dist1
, dist2
;
2133 enum tree_code code
;
2134 tree type
= TREE_TYPE (name1
);
2135 gimple_stmt_iterator bsi
;
2137 stmt1
= find_use_stmt (&name1
);
2138 stmt2
= find_use_stmt (&name2
);
2139 root1
= find_associative_operation_root (stmt1
, &dist1
);
2140 root2
= find_associative_operation_root (stmt2
, &dist2
);
2141 code
= gimple_assign_rhs_code (stmt1
);
2143 gcc_assert (root1
&& root2
&& root1
== root2
2144 && code
== gimple_assign_rhs_code (stmt2
));
2146 /* Find the root of the nearest expression in that both NAME1 and NAME2
2153 while (dist1
> dist2
)
2155 s1
= find_use_stmt (&r1
);
2156 r1
= gimple_assign_lhs (s1
);
2159 while (dist2
> dist1
)
2161 s2
= find_use_stmt (&r2
);
2162 r2
= gimple_assign_lhs (s2
);
2168 s1
= find_use_stmt (&r1
);
2169 r1
= gimple_assign_lhs (s1
);
2170 s2
= find_use_stmt (&r2
);
2171 r2
= gimple_assign_lhs (s2
);
2174 /* Remove NAME1 and NAME2 from the statements in that they are used
2176 remove_name_from_operation (stmt1
, name1
);
2177 remove_name_from_operation (stmt2
, name2
);
2179 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2180 combine it with the rhs of S1. */
2181 var
= create_tmp_reg (type
, "predreastmp");
2182 new_name
= make_ssa_name (var
, NULL
);
2183 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2185 var
= create_tmp_reg (type
, "predreastmp");
2186 tmp_name
= make_ssa_name (var
, NULL
);
2188 /* Rhs of S1 may now be either a binary expression with operation
2189 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2190 so that name1 or name2 was removed from it). */
2191 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2193 gimple_assign_rhs1 (s1
),
2194 gimple_assign_rhs2 (s1
));
2196 bsi
= gsi_for_stmt (s1
);
2197 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2198 s1
= gsi_stmt (bsi
);
2201 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2202 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2207 /* Returns the statement that combines references R1 and R2. In case R1
2208 and R2 are not used in the same statement, but they are used with an
2209 associative and commutative operation in the same expression, reassociate
2210 the expression so that they are used in the same statement. */
2213 stmt_combining_refs (dref r1
, dref r2
)
2215 gimple stmt1
, stmt2
;
2216 tree name1
= name_for_ref (r1
);
2217 tree name2
= name_for_ref (r2
);
2219 stmt1
= find_use_stmt (&name1
);
2220 stmt2
= find_use_stmt (&name2
);
2224 return reassociate_to_the_same_stmt (name1
, name2
);
2227 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2228 description of the new chain is returned, otherwise we return NULL. */
2231 combine_chains (chain_p ch1
, chain_p ch2
)
2234 enum tree_code op
= ERROR_MARK
;
2239 tree rslt_type
= NULL_TREE
;
2243 if (ch1
->length
!= ch2
->length
)
2246 if (ch1
->refs
.length () != ch2
->refs
.length ())
2249 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2250 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2252 if (r1
->distance
!= r2
->distance
)
2255 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2266 new_chain
= XCNEW (struct chain
);
2267 new_chain
->type
= CT_COMBINATION
;
2269 new_chain
->ch1
= ch1
;
2270 new_chain
->ch2
= ch2
;
2271 new_chain
->rslt_type
= rslt_type
;
2272 new_chain
->length
= ch1
->length
;
2274 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2275 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2277 nw
= XCNEW (struct dref_d
);
2278 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2279 nw
->distance
= r1
->distance
;
2281 new_chain
->refs
.safe_push (nw
);
2284 new_chain
->has_max_use_after
= false;
2285 root_stmt
= get_chain_root (new_chain
)->stmt
;
2286 for (i
= 1; new_chain
->refs
.iterate (i
, &nw
); i
++)
2288 if (nw
->distance
== new_chain
->length
2289 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2291 new_chain
->has_max_use_after
= true;
2296 ch1
->combined
= true;
2297 ch2
->combined
= true;
2301 /* Try to combine the CHAINS. */
2304 try_combine_chains (vec
<chain_p
> *chains
)
2307 chain_p ch1
, ch2
, cch
;
2308 auto_vec
<chain_p
> worklist
;
2310 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2311 if (chain_can_be_combined_p (ch1
))
2312 worklist
.safe_push (ch1
);
2314 while (!worklist
.is_empty ())
2316 ch1
= worklist
.pop ();
2317 if (!chain_can_be_combined_p (ch1
))
2320 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2322 if (!chain_can_be_combined_p (ch2
))
2325 cch
= combine_chains (ch1
, ch2
);
2328 worklist
.safe_push (cch
);
2329 chains
->safe_push (cch
);
2336 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2337 impossible because one of these initializers may trap, true otherwise. */
2340 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2342 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2343 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2347 edge entry
= loop_preheader_edge (loop
);
2349 /* Find the initializers for the variables, and check that they cannot
2351 chain
->inits
.create (n
);
2352 for (i
= 0; i
< n
; i
++)
2353 chain
->inits
.quick_push (NULL_TREE
);
2355 /* If we have replaced some looparound phi nodes, use their initializers
2356 instead of creating our own. */
2357 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2359 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2362 gcc_assert (laref
->distance
> 0);
2363 chain
->inits
[n
- laref
->distance
]
2364 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
2367 for (i
= 0; i
< n
; i
++)
2369 if (chain
->inits
[i
] != NULL_TREE
)
2372 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
2373 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2377 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2379 chain
->inits
[i
] = init
;
2385 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2386 be used because the initializers might trap. */
2389 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
2394 for (i
= 0; i
< chains
.length (); )
2397 if (prepare_initializers_chain (loop
, chain
))
2401 release_chain (chain
);
2402 chains
.unordered_remove (i
);
2407 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2411 tree_predictive_commoning_loop (struct loop
*loop
)
2413 vec
<data_reference_p
> datarefs
;
2414 vec
<ddr_p
> dependences
;
2415 struct component
*components
;
2416 vec
<chain_p
> chains
= vNULL
;
2417 unsigned unroll_factor
;
2418 struct tree_niter_desc desc
;
2419 bool unroll
= false;
2423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2424 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2426 /* Find the data references and split them into components according to their
2427 dependence relations. */
2428 auto_vec
<loop_p
, 3> loop_nest
;
2429 dependences
.create (10);
2430 datarefs
.create (10);
2431 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
2434 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2435 fprintf (dump_file
, "Cannot analyze data dependencies\n");
2436 free_data_refs (datarefs
);
2437 free_dependence_relations (dependences
);
2441 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2442 dump_data_dependence_relations (dump_file
, dependences
);
2444 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2445 loop_nest
.release ();
2446 free_dependence_relations (dependences
);
2449 free_data_refs (datarefs
);
2450 free_affine_expand_cache (&name_expansions
);
2454 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2456 fprintf (dump_file
, "Initial state:\n\n");
2457 dump_components (dump_file
, components
);
2460 /* Find the suitable components and split them into chains. */
2461 components
= filter_suitable_components (loop
, components
);
2463 tmp_vars
= BITMAP_ALLOC (NULL
);
2464 looparound_phis
= BITMAP_ALLOC (NULL
);
2465 determine_roots (loop
, components
, &chains
);
2466 release_components (components
);
2468 if (!chains
.exists ())
2470 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2472 "Predictive commoning failed: no suitable chains\n");
2475 prepare_initializers (loop
, chains
);
2477 /* Try to combine the chains that are always worked with together. */
2478 try_combine_chains (&chains
);
2480 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2482 fprintf (dump_file
, "Before commoning:\n\n");
2483 dump_chains (dump_file
, chains
);
2486 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2487 that its number of iterations is divisible by the factor. */
2488 unroll_factor
= determine_unroll_factor (chains
);
2490 unroll
= (unroll_factor
> 1
2491 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2492 exit
= single_dom_exit (loop
);
2494 /* Execute the predictive commoning transformations, and possibly unroll the
2498 struct epcc_data dta
;
2500 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2501 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2503 dta
.chains
= chains
;
2504 dta
.tmp_vars
= tmp_vars
;
2506 update_ssa (TODO_update_ssa_only_virtuals
);
2508 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2509 execute_pred_commoning_cbck is called may cause phi nodes to be
2510 reallocated, which is a problem since CHAINS may point to these
2511 statements. To fix this, we store the ssa names defined by the
2512 phi nodes here instead of the phi nodes themselves, and restore
2513 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2514 replace_phis_by_defined_names (chains
);
2516 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2517 execute_pred_commoning_cbck
, &dta
);
2518 eliminate_temp_copies (loop
, tmp_vars
);
2522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2524 "Executing predictive commoning without unrolling.\n");
2525 execute_pred_commoning (loop
, chains
, tmp_vars
);
2529 release_chains (chains
);
2530 free_data_refs (datarefs
);
2531 BITMAP_FREE (tmp_vars
);
2532 BITMAP_FREE (looparound_phis
);
2534 free_affine_expand_cache (&name_expansions
);
2539 /* Runs predictive commoning. */
2542 tree_predictive_commoning (void)
2544 bool unrolled
= false;
2548 initialize_original_copy_tables ();
2549 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
2550 if (optimize_loop_for_speed_p (loop
))
2552 unrolled
|= tree_predictive_commoning_loop (loop
);
2558 ret
= TODO_cleanup_cfg
;
2560 free_original_copy_tables ();
2565 /* Predictive commoning Pass. */
2568 run_tree_predictive_commoning (void)
2573 return tree_predictive_commoning ();
2577 gate_tree_predictive_commoning (void)
2579 return flag_predictive_commoning
!= 0;
2584 const pass_data pass_data_predcom
=
2586 GIMPLE_PASS
, /* type */
2588 OPTGROUP_LOOP
, /* optinfo_flags */
2589 true, /* has_gate */
2590 true, /* has_execute */
2591 TV_PREDCOM
, /* tv_id */
2592 PROP_cfg
, /* properties_required */
2593 0, /* properties_provided */
2594 0, /* properties_destroyed */
2595 0, /* todo_flags_start */
2596 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
2599 class pass_predcom
: public gimple_opt_pass
2602 pass_predcom (gcc::context
*ctxt
)
2603 : gimple_opt_pass (pass_data_predcom
, ctxt
)
2606 /* opt_pass methods: */
2607 bool gate () { return gate_tree_predictive_commoning (); }
2608 unsigned int execute () { return run_tree_predictive_commoning (); }
2610 }; // class pass_predcom
2615 make_pass_predcom (gcc::context
*ctxt
)
2617 return new pass_predcom (ctxt
);