PR c++/65554
[official-gcc.git] / gcc / recog.c
bloba9d3b1f779b50fd9ac42d82bb5ec33518a433f15
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "rtl-error.h"
36 #include "tm_p.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "hard-reg-set.h"
40 #include "recog.h"
41 #include "regs.h"
42 #include "addresses.h"
43 #include "hashtab.h"
44 #include "function.h"
45 #include "rtl.h"
46 #include "flags.h"
47 #include "statistics.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "expmed.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "calls.h"
54 #include "emit-rtl.h"
55 #include "varasm.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "predict.h"
59 #include "dominance.h"
60 #include "cfg.h"
61 #include "cfgrtl.h"
62 #include "cfgbuild.h"
63 #include "cfgcleanup.h"
64 #include "basic-block.h"
65 #include "reload.h"
66 #include "target.h"
67 #include "tree-pass.h"
68 #include "df.h"
69 #include "insn-codes.h"
71 #ifndef STACK_PUSH_CODE
72 #ifdef STACK_GROWS_DOWNWARD
73 #define STACK_PUSH_CODE PRE_DEC
74 #else
75 #define STACK_PUSH_CODE PRE_INC
76 #endif
77 #endif
79 #ifndef STACK_POP_CODE
80 #ifdef STACK_GROWS_DOWNWARD
81 #define STACK_POP_CODE POST_INC
82 #else
83 #define STACK_POP_CODE POST_DEC
84 #endif
85 #endif
87 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
88 static void validate_replace_src_1 (rtx *, void *);
89 static rtx split_insn (rtx_insn *);
91 struct target_recog default_target_recog;
92 #if SWITCHABLE_TARGET
93 struct target_recog *this_target_recog = &default_target_recog;
94 #endif
96 /* Nonzero means allow operands to be volatile.
97 This should be 0 if you are generating rtl, such as if you are calling
98 the functions in optabs.c and expmed.c (most of the time).
99 This should be 1 if all valid insns need to be recognized,
100 such as in reginfo.c and final.c and reload.c.
102 init_recog and init_recog_no_volatile are responsible for setting this. */
104 int volatile_ok;
106 struct recog_data_d recog_data;
108 /* Contains a vector of operand_alternative structures, such that
109 operand OP of alternative A is at index A * n_operands + OP.
110 Set up by preprocess_constraints. */
111 const operand_alternative *recog_op_alt;
113 /* Used to provide recog_op_alt for asms. */
114 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
115 * MAX_RECOG_ALTERNATIVES];
117 /* On return from `constrain_operands', indicate which alternative
118 was satisfied. */
120 int which_alternative;
122 /* Nonzero after end of reload pass.
123 Set to 1 or 0 by toplev.c.
124 Controls the significance of (SUBREG (MEM)). */
126 int reload_completed;
128 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
129 int epilogue_completed;
131 /* Initialize data used by the function `recog'.
132 This must be called once in the compilation of a function
133 before any insn recognition may be done in the function. */
135 void
136 init_recog_no_volatile (void)
138 volatile_ok = 0;
141 void
142 init_recog (void)
144 volatile_ok = 1;
148 /* Return true if labels in asm operands BODY are LABEL_REFs. */
150 static bool
151 asm_labels_ok (rtx body)
153 rtx asmop;
154 int i;
156 asmop = extract_asm_operands (body);
157 if (asmop == NULL_RTX)
158 return true;
160 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
161 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
162 return false;
164 return true;
167 /* Check that X is an insn-body for an `asm' with operands
168 and that the operands mentioned in it are legitimate. */
171 check_asm_operands (rtx x)
173 int noperands;
174 rtx *operands;
175 const char **constraints;
176 int i;
178 if (!asm_labels_ok (x))
179 return 0;
181 /* Post-reload, be more strict with things. */
182 if (reload_completed)
184 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
185 rtx_insn *insn = make_insn_raw (x);
186 extract_insn (insn);
187 constrain_operands (1, get_enabled_alternatives (insn));
188 return which_alternative >= 0;
191 noperands = asm_noperands (x);
192 if (noperands < 0)
193 return 0;
194 if (noperands == 0)
195 return 1;
197 operands = XALLOCAVEC (rtx, noperands);
198 constraints = XALLOCAVEC (const char *, noperands);
200 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
202 for (i = 0; i < noperands; i++)
204 const char *c = constraints[i];
205 if (c[0] == '%')
206 c++;
207 if (! asm_operand_ok (operands[i], c, constraints))
208 return 0;
211 return 1;
214 /* Static data for the next two routines. */
216 typedef struct change_t
218 rtx object;
219 int old_code;
220 rtx *loc;
221 rtx old;
222 bool unshare;
223 } change_t;
225 static change_t *changes;
226 static int changes_allocated;
228 static int num_changes = 0;
230 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
231 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
232 the change is simply made.
234 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
235 will be called with the address and mode as parameters. If OBJECT is
236 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
237 the change in place.
239 IN_GROUP is nonzero if this is part of a group of changes that must be
240 performed as a group. In that case, the changes will be stored. The
241 function `apply_change_group' will validate and apply the changes.
243 If IN_GROUP is zero, this is a single change. Try to recognize the insn
244 or validate the memory reference with the change applied. If the result
245 is not valid for the machine, suppress the change and return zero.
246 Otherwise, perform the change and return 1. */
248 static bool
249 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
251 rtx old = *loc;
253 if (old == new_rtx || rtx_equal_p (old, new_rtx))
254 return 1;
256 gcc_assert (in_group != 0 || num_changes == 0);
258 *loc = new_rtx;
260 /* Save the information describing this change. */
261 if (num_changes >= changes_allocated)
263 if (changes_allocated == 0)
264 /* This value allows for repeated substitutions inside complex
265 indexed addresses, or changes in up to 5 insns. */
266 changes_allocated = MAX_RECOG_OPERANDS * 5;
267 else
268 changes_allocated *= 2;
270 changes = XRESIZEVEC (change_t, changes, changes_allocated);
273 changes[num_changes].object = object;
274 changes[num_changes].loc = loc;
275 changes[num_changes].old = old;
276 changes[num_changes].unshare = unshare;
278 if (object && !MEM_P (object))
280 /* Set INSN_CODE to force rerecognition of insn. Save old code in
281 case invalid. */
282 changes[num_changes].old_code = INSN_CODE (object);
283 INSN_CODE (object) = -1;
286 num_changes++;
288 /* If we are making a group of changes, return 1. Otherwise, validate the
289 change group we made. */
291 if (in_group)
292 return 1;
293 else
294 return apply_change_group ();
297 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
298 UNSHARE to false. */
300 bool
301 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
303 return validate_change_1 (object, loc, new_rtx, in_group, false);
306 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
307 UNSHARE to true. */
309 bool
310 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
312 return validate_change_1 (object, loc, new_rtx, in_group, true);
316 /* Keep X canonicalized if some changes have made it non-canonical; only
317 modifies the operands of X, not (for example) its code. Simplifications
318 are not the job of this routine.
320 Return true if anything was changed. */
321 bool
322 canonicalize_change_group (rtx insn, rtx x)
324 if (COMMUTATIVE_P (x)
325 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
327 /* Oops, the caller has made X no longer canonical.
328 Let's redo the changes in the correct order. */
329 rtx tem = XEXP (x, 0);
330 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
331 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
332 return true;
334 else
335 return false;
339 /* This subroutine of apply_change_group verifies whether the changes to INSN
340 were valid; i.e. whether INSN can still be recognized.
342 If IN_GROUP is true clobbers which have to be added in order to
343 match the instructions will be added to the current change group.
344 Otherwise the changes will take effect immediately. */
347 insn_invalid_p (rtx_insn *insn, bool in_group)
349 rtx pat = PATTERN (insn);
350 int num_clobbers = 0;
351 /* If we are before reload and the pattern is a SET, see if we can add
352 clobbers. */
353 int icode = recog (pat, insn,
354 (GET_CODE (pat) == SET
355 && ! reload_completed
356 && ! reload_in_progress)
357 ? &num_clobbers : 0);
358 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
361 /* If this is an asm and the operand aren't legal, then fail. Likewise if
362 this is not an asm and the insn wasn't recognized. */
363 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
364 || (!is_asm && icode < 0))
365 return 1;
367 /* If we have to add CLOBBERs, fail if we have to add ones that reference
368 hard registers since our callers can't know if they are live or not.
369 Otherwise, add them. */
370 if (num_clobbers > 0)
372 rtx newpat;
374 if (added_clobbers_hard_reg_p (icode))
375 return 1;
377 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
378 XVECEXP (newpat, 0, 0) = pat;
379 add_clobbers (newpat, icode);
380 if (in_group)
381 validate_change (insn, &PATTERN (insn), newpat, 1);
382 else
383 PATTERN (insn) = pat = newpat;
386 /* After reload, verify that all constraints are satisfied. */
387 if (reload_completed)
389 extract_insn (insn);
391 if (! constrain_operands (1, get_preferred_alternatives (insn)))
392 return 1;
395 INSN_CODE (insn) = icode;
396 return 0;
399 /* Return number of changes made and not validated yet. */
401 num_changes_pending (void)
403 return num_changes;
406 /* Tentatively apply the changes numbered NUM and up.
407 Return 1 if all changes are valid, zero otherwise. */
410 verify_changes (int num)
412 int i;
413 rtx last_validated = NULL_RTX;
415 /* The changes have been applied and all INSN_CODEs have been reset to force
416 rerecognition.
418 The changes are valid if we aren't given an object, or if we are
419 given a MEM and it still is a valid address, or if this is in insn
420 and it is recognized. In the latter case, if reload has completed,
421 we also require that the operands meet the constraints for
422 the insn. */
424 for (i = num; i < num_changes; i++)
426 rtx object = changes[i].object;
428 /* If there is no object to test or if it is the same as the one we
429 already tested, ignore it. */
430 if (object == 0 || object == last_validated)
431 continue;
433 if (MEM_P (object))
435 if (! memory_address_addr_space_p (GET_MODE (object),
436 XEXP (object, 0),
437 MEM_ADDR_SPACE (object)))
438 break;
440 else if (/* changes[i].old might be zero, e.g. when putting a
441 REG_FRAME_RELATED_EXPR into a previously empty list. */
442 changes[i].old
443 && REG_P (changes[i].old)
444 && asm_noperands (PATTERN (object)) > 0
445 && REG_EXPR (changes[i].old) != NULL_TREE
446 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
447 && DECL_REGISTER (REG_EXPR (changes[i].old)))
449 /* Don't allow changes of hard register operands to inline
450 assemblies if they have been defined as register asm ("x"). */
451 break;
453 else if (DEBUG_INSN_P (object))
454 continue;
455 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
457 rtx pat = PATTERN (object);
459 /* Perhaps we couldn't recognize the insn because there were
460 extra CLOBBERs at the end. If so, try to re-recognize
461 without the last CLOBBER (later iterations will cause each of
462 them to be eliminated, in turn). But don't do this if we
463 have an ASM_OPERAND. */
464 if (GET_CODE (pat) == PARALLEL
465 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
466 && asm_noperands (PATTERN (object)) < 0)
468 rtx newpat;
470 if (XVECLEN (pat, 0) == 2)
471 newpat = XVECEXP (pat, 0, 0);
472 else
474 int j;
476 newpat
477 = gen_rtx_PARALLEL (VOIDmode,
478 rtvec_alloc (XVECLEN (pat, 0) - 1));
479 for (j = 0; j < XVECLEN (newpat, 0); j++)
480 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
483 /* Add a new change to this group to replace the pattern
484 with this new pattern. Then consider this change
485 as having succeeded. The change we added will
486 cause the entire call to fail if things remain invalid.
488 Note that this can lose if a later change than the one
489 we are processing specified &XVECEXP (PATTERN (object), 0, X)
490 but this shouldn't occur. */
492 validate_change (object, &PATTERN (object), newpat, 1);
493 continue;
495 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
496 || GET_CODE (pat) == VAR_LOCATION)
497 /* If this insn is a CLOBBER or USE, it is always valid, but is
498 never recognized. */
499 continue;
500 else
501 break;
503 last_validated = object;
506 return (i == num_changes);
509 /* A group of changes has previously been issued with validate_change
510 and verified with verify_changes. Call df_insn_rescan for each of
511 the insn changed and clear num_changes. */
513 void
514 confirm_change_group (void)
516 int i;
517 rtx last_object = NULL;
519 for (i = 0; i < num_changes; i++)
521 rtx object = changes[i].object;
523 if (changes[i].unshare)
524 *changes[i].loc = copy_rtx (*changes[i].loc);
526 /* Avoid unnecessary rescanning when multiple changes to same instruction
527 are made. */
528 if (object)
530 if (object != last_object && last_object && INSN_P (last_object))
531 df_insn_rescan (as_a <rtx_insn *> (last_object));
532 last_object = object;
536 if (last_object && INSN_P (last_object))
537 df_insn_rescan (as_a <rtx_insn *> (last_object));
538 num_changes = 0;
541 /* Apply a group of changes previously issued with `validate_change'.
542 If all changes are valid, call confirm_change_group and return 1,
543 otherwise, call cancel_changes and return 0. */
546 apply_change_group (void)
548 if (verify_changes (0))
550 confirm_change_group ();
551 return 1;
553 else
555 cancel_changes (0);
556 return 0;
561 /* Return the number of changes so far in the current group. */
564 num_validated_changes (void)
566 return num_changes;
569 /* Retract the changes numbered NUM and up. */
571 void
572 cancel_changes (int num)
574 int i;
576 /* Back out all the changes. Do this in the opposite order in which
577 they were made. */
578 for (i = num_changes - 1; i >= num; i--)
580 *changes[i].loc = changes[i].old;
581 if (changes[i].object && !MEM_P (changes[i].object))
582 INSN_CODE (changes[i].object) = changes[i].old_code;
584 num_changes = num;
587 /* Reduce conditional compilation elsewhere. */
588 #ifndef HAVE_extv
589 #define HAVE_extv 0
590 #define CODE_FOR_extv CODE_FOR_nothing
591 #endif
592 #ifndef HAVE_extzv
593 #define HAVE_extzv 0
594 #define CODE_FOR_extzv CODE_FOR_nothing
595 #endif
597 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
598 rtx. */
600 static void
601 simplify_while_replacing (rtx *loc, rtx to, rtx object,
602 machine_mode op0_mode)
604 rtx x = *loc;
605 enum rtx_code code = GET_CODE (x);
606 rtx new_rtx = NULL_RTX;
608 if (SWAPPABLE_OPERANDS_P (x)
609 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
611 validate_unshare_change (object, loc,
612 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
613 : swap_condition (code),
614 GET_MODE (x), XEXP (x, 1),
615 XEXP (x, 0)), 1);
616 x = *loc;
617 code = GET_CODE (x);
620 /* Canonicalize arithmetics with all constant operands. */
621 switch (GET_RTX_CLASS (code))
623 case RTX_UNARY:
624 if (CONSTANT_P (XEXP (x, 0)))
625 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
626 op0_mode);
627 break;
628 case RTX_COMM_ARITH:
629 case RTX_BIN_ARITH:
630 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
631 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
632 XEXP (x, 1));
633 break;
634 case RTX_COMPARE:
635 case RTX_COMM_COMPARE:
636 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
637 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
638 XEXP (x, 0), XEXP (x, 1));
639 break;
640 default:
641 break;
643 if (new_rtx)
645 validate_change (object, loc, new_rtx, 1);
646 return;
649 switch (code)
651 case PLUS:
652 /* If we have a PLUS whose second operand is now a CONST_INT, use
653 simplify_gen_binary to try to simplify it.
654 ??? We may want later to remove this, once simplification is
655 separated from this function. */
656 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
657 validate_change (object, loc,
658 simplify_gen_binary
659 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
660 break;
661 case MINUS:
662 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
663 validate_change (object, loc,
664 simplify_gen_binary
665 (PLUS, GET_MODE (x), XEXP (x, 0),
666 simplify_gen_unary (NEG,
667 GET_MODE (x), XEXP (x, 1),
668 GET_MODE (x))), 1);
669 break;
670 case ZERO_EXTEND:
671 case SIGN_EXTEND:
672 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
674 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
675 op0_mode);
676 /* If any of the above failed, substitute in something that
677 we know won't be recognized. */
678 if (!new_rtx)
679 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
680 validate_change (object, loc, new_rtx, 1);
682 break;
683 case SUBREG:
684 /* All subregs possible to simplify should be simplified. */
685 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
686 SUBREG_BYTE (x));
688 /* Subregs of VOIDmode operands are incorrect. */
689 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
690 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
691 if (new_rtx)
692 validate_change (object, loc, new_rtx, 1);
693 break;
694 case ZERO_EXTRACT:
695 case SIGN_EXTRACT:
696 /* If we are replacing a register with memory, try to change the memory
697 to be the mode required for memory in extract operations (this isn't
698 likely to be an insertion operation; if it was, nothing bad will
699 happen, we might just fail in some cases). */
701 if (MEM_P (XEXP (x, 0))
702 && CONST_INT_P (XEXP (x, 1))
703 && CONST_INT_P (XEXP (x, 2))
704 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
705 MEM_ADDR_SPACE (XEXP (x, 0)))
706 && !MEM_VOLATILE_P (XEXP (x, 0)))
708 machine_mode wanted_mode = VOIDmode;
709 machine_mode is_mode = GET_MODE (XEXP (x, 0));
710 int pos = INTVAL (XEXP (x, 2));
712 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
714 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
715 if (wanted_mode == VOIDmode)
716 wanted_mode = word_mode;
718 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
720 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
721 if (wanted_mode == VOIDmode)
722 wanted_mode = word_mode;
725 /* If we have a narrower mode, we can do something. */
726 if (wanted_mode != VOIDmode
727 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
729 int offset = pos / BITS_PER_UNIT;
730 rtx newmem;
732 /* If the bytes and bits are counted differently, we
733 must adjust the offset. */
734 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
735 offset =
736 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
737 offset);
739 gcc_assert (GET_MODE_PRECISION (wanted_mode)
740 == GET_MODE_BITSIZE (wanted_mode));
741 pos %= GET_MODE_BITSIZE (wanted_mode);
743 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
745 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
746 validate_change (object, &XEXP (x, 0), newmem, 1);
750 break;
752 default:
753 break;
757 /* Replace every occurrence of FROM in X with TO. Mark each change with
758 validate_change passing OBJECT. */
760 static void
761 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
762 bool simplify)
764 int i, j;
765 const char *fmt;
766 rtx x = *loc;
767 enum rtx_code code;
768 machine_mode op0_mode = VOIDmode;
769 int prev_changes = num_changes;
771 if (!x)
772 return;
774 code = GET_CODE (x);
775 fmt = GET_RTX_FORMAT (code);
776 if (fmt[0] == 'e')
777 op0_mode = GET_MODE (XEXP (x, 0));
779 /* X matches FROM if it is the same rtx or they are both referring to the
780 same register in the same mode. Avoid calling rtx_equal_p unless the
781 operands look similar. */
783 if (x == from
784 || (REG_P (x) && REG_P (from)
785 && GET_MODE (x) == GET_MODE (from)
786 && REGNO (x) == REGNO (from))
787 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
788 && rtx_equal_p (x, from)))
790 validate_unshare_change (object, loc, to, 1);
791 return;
794 /* Call ourself recursively to perform the replacements.
795 We must not replace inside already replaced expression, otherwise we
796 get infinite recursion for replacements like (reg X)->(subreg (reg X))
797 so we must special case shared ASM_OPERANDS. */
799 if (GET_CODE (x) == PARALLEL)
801 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
803 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
804 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
806 /* Verify that operands are really shared. */
807 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
808 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
809 (x, 0, j))));
810 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
811 from, to, object, simplify);
813 else
814 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
815 simplify);
818 else
819 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
821 if (fmt[i] == 'e')
822 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
823 else if (fmt[i] == 'E')
824 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
825 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
826 simplify);
829 /* If we didn't substitute, there is nothing more to do. */
830 if (num_changes == prev_changes)
831 return;
833 /* ??? The regmove is no more, so is this aberration still necessary? */
834 /* Allow substituted expression to have different mode. This is used by
835 regmove to change mode of pseudo register. */
836 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
837 op0_mode = GET_MODE (XEXP (x, 0));
839 /* Do changes needed to keep rtx consistent. Don't do any other
840 simplifications, as it is not our job. */
841 if (simplify)
842 simplify_while_replacing (loc, to, object, op0_mode);
845 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
846 with TO. After all changes have been made, validate by seeing
847 if INSN is still valid. */
850 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
852 validate_replace_rtx_1 (loc, from, to, insn, true);
853 return apply_change_group ();
856 /* Try replacing every occurrence of FROM in INSN with TO. After all
857 changes have been made, validate by seeing if INSN is still valid. */
860 validate_replace_rtx (rtx from, rtx to, rtx insn)
862 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
863 return apply_change_group ();
866 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
867 is a part of INSN. After all changes have been made, validate by seeing if
868 INSN is still valid.
869 validate_replace_rtx (from, to, insn) is equivalent to
870 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
873 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
875 validate_replace_rtx_1 (where, from, to, insn, true);
876 return apply_change_group ();
879 /* Same as above, but do not simplify rtx afterwards. */
881 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
882 rtx insn)
884 validate_replace_rtx_1 (where, from, to, insn, false);
885 return apply_change_group ();
889 /* Try replacing every occurrence of FROM in INSN with TO. This also
890 will replace in REG_EQUAL and REG_EQUIV notes. */
892 void
893 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
895 rtx note;
896 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
897 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
898 if (REG_NOTE_KIND (note) == REG_EQUAL
899 || REG_NOTE_KIND (note) == REG_EQUIV)
900 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
903 /* Function called by note_uses to replace used subexpressions. */
904 struct validate_replace_src_data
906 rtx from; /* Old RTX */
907 rtx to; /* New RTX */
908 rtx insn; /* Insn in which substitution is occurring. */
911 static void
912 validate_replace_src_1 (rtx *x, void *data)
914 struct validate_replace_src_data *d
915 = (struct validate_replace_src_data *) data;
917 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
920 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
921 SET_DESTs. */
923 void
924 validate_replace_src_group (rtx from, rtx to, rtx insn)
926 struct validate_replace_src_data d;
928 d.from = from;
929 d.to = to;
930 d.insn = insn;
931 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
934 /* Try simplify INSN.
935 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
936 pattern and return true if something was simplified. */
938 bool
939 validate_simplify_insn (rtx insn)
941 int i;
942 rtx pat = NULL;
943 rtx newpat = NULL;
945 pat = PATTERN (insn);
947 if (GET_CODE (pat) == SET)
949 newpat = simplify_rtx (SET_SRC (pat));
950 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
951 validate_change (insn, &SET_SRC (pat), newpat, 1);
952 newpat = simplify_rtx (SET_DEST (pat));
953 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
954 validate_change (insn, &SET_DEST (pat), newpat, 1);
956 else if (GET_CODE (pat) == PARALLEL)
957 for (i = 0; i < XVECLEN (pat, 0); i++)
959 rtx s = XVECEXP (pat, 0, i);
961 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
963 newpat = simplify_rtx (SET_SRC (s));
964 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
965 validate_change (insn, &SET_SRC (s), newpat, 1);
966 newpat = simplify_rtx (SET_DEST (s));
967 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
968 validate_change (insn, &SET_DEST (s), newpat, 1);
971 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
974 #ifdef HAVE_cc0
975 /* Return 1 if the insn using CC0 set by INSN does not contain
976 any ordered tests applied to the condition codes.
977 EQ and NE tests do not count. */
980 next_insn_tests_no_inequality (rtx insn)
982 rtx next = next_cc0_user (insn);
984 /* If there is no next insn, we have to take the conservative choice. */
985 if (next == 0)
986 return 0;
988 return (INSN_P (next)
989 && ! inequality_comparisons_p (PATTERN (next)));
991 #endif
993 /* Return 1 if OP is a valid general operand for machine mode MODE.
994 This is either a register reference, a memory reference,
995 or a constant. In the case of a memory reference, the address
996 is checked for general validity for the target machine.
998 Register and memory references must have mode MODE in order to be valid,
999 but some constants have no machine mode and are valid for any mode.
1001 If MODE is VOIDmode, OP is checked for validity for whatever mode
1002 it has.
1004 The main use of this function is as a predicate in match_operand
1005 expressions in the machine description. */
1008 general_operand (rtx op, machine_mode mode)
1010 enum rtx_code code = GET_CODE (op);
1012 if (mode == VOIDmode)
1013 mode = GET_MODE (op);
1015 /* Don't accept CONST_INT or anything similar
1016 if the caller wants something floating. */
1017 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1018 && GET_MODE_CLASS (mode) != MODE_INT
1019 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1020 return 0;
1022 if (CONST_INT_P (op)
1023 && mode != VOIDmode
1024 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1025 return 0;
1027 if (CONSTANT_P (op))
1028 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1029 || mode == VOIDmode)
1030 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1031 && targetm.legitimate_constant_p (mode == VOIDmode
1032 ? GET_MODE (op)
1033 : mode, op));
1035 /* Except for certain constants with VOIDmode, already checked for,
1036 OP's mode must match MODE if MODE specifies a mode. */
1038 if (GET_MODE (op) != mode)
1039 return 0;
1041 if (code == SUBREG)
1043 rtx sub = SUBREG_REG (op);
1045 #ifdef INSN_SCHEDULING
1046 /* On machines that have insn scheduling, we want all memory
1047 reference to be explicit, so outlaw paradoxical SUBREGs.
1048 However, we must allow them after reload so that they can
1049 get cleaned up by cleanup_subreg_operands. */
1050 if (!reload_completed && MEM_P (sub)
1051 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1052 return 0;
1053 #endif
1054 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1055 may result in incorrect reference. We should simplify all valid
1056 subregs of MEM anyway. But allow this after reload because we
1057 might be called from cleanup_subreg_operands.
1059 ??? This is a kludge. */
1060 if (!reload_completed && SUBREG_BYTE (op) != 0
1061 && MEM_P (sub))
1062 return 0;
1064 #ifdef CANNOT_CHANGE_MODE_CLASS
1065 if (REG_P (sub)
1066 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1067 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1068 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1069 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1070 /* LRA can generate some invalid SUBREGS just for matched
1071 operand reload presentation. LRA needs to treat them as
1072 valid. */
1073 && ! LRA_SUBREG_P (op))
1074 return 0;
1075 #endif
1077 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1078 create such rtl, and we must reject it. */
1079 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1080 /* LRA can use subreg to store a floating point value in an
1081 integer mode. Although the floating point and the
1082 integer modes need the same number of hard registers, the
1083 size of floating point mode can be less than the integer
1084 mode. */
1085 && ! lra_in_progress
1086 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1087 return 0;
1089 op = sub;
1090 code = GET_CODE (op);
1093 if (code == REG)
1094 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1095 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1097 if (code == MEM)
1099 rtx y = XEXP (op, 0);
1101 if (! volatile_ok && MEM_VOLATILE_P (op))
1102 return 0;
1104 /* Use the mem's mode, since it will be reloaded thus. LRA can
1105 generate move insn with invalid addresses which is made valid
1106 and efficiently calculated by LRA through further numerous
1107 transformations. */
1108 if (lra_in_progress
1109 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1110 return 1;
1113 return 0;
1116 /* Return 1 if OP is a valid memory address for a memory reference
1117 of mode MODE.
1119 The main use of this function is as a predicate in match_operand
1120 expressions in the machine description. */
1123 address_operand (rtx op, machine_mode mode)
1125 return memory_address_p (mode, op);
1128 /* Return 1 if OP is a register reference of mode MODE.
1129 If MODE is VOIDmode, accept a register in any mode.
1131 The main use of this function is as a predicate in match_operand
1132 expressions in the machine description. */
1135 register_operand (rtx op, machine_mode mode)
1137 if (GET_CODE (op) == SUBREG)
1139 rtx sub = SUBREG_REG (op);
1141 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1142 because it is guaranteed to be reloaded into one.
1143 Just make sure the MEM is valid in itself.
1144 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1145 but currently it does result from (SUBREG (REG)...) where the
1146 reg went on the stack.) */
1147 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1148 return 0;
1150 else if (!REG_P (op))
1151 return 0;
1152 return general_operand (op, mode);
1155 /* Return 1 for a register in Pmode; ignore the tested mode. */
1158 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1160 return register_operand (op, Pmode);
1163 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1164 or a hard register. */
1167 scratch_operand (rtx op, machine_mode mode)
1169 if (GET_MODE (op) != mode && mode != VOIDmode)
1170 return 0;
1172 return (GET_CODE (op) == SCRATCH
1173 || (REG_P (op)
1174 && (lra_in_progress
1175 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1176 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1179 /* Return 1 if OP is a valid immediate operand for mode MODE.
1181 The main use of this function is as a predicate in match_operand
1182 expressions in the machine description. */
1185 immediate_operand (rtx op, machine_mode mode)
1187 /* Don't accept CONST_INT or anything similar
1188 if the caller wants something floating. */
1189 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1190 && GET_MODE_CLASS (mode) != MODE_INT
1191 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1192 return 0;
1194 if (CONST_INT_P (op)
1195 && mode != VOIDmode
1196 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1197 return 0;
1199 return (CONSTANT_P (op)
1200 && (GET_MODE (op) == mode || mode == VOIDmode
1201 || GET_MODE (op) == VOIDmode)
1202 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1203 && targetm.legitimate_constant_p (mode == VOIDmode
1204 ? GET_MODE (op)
1205 : mode, op));
1208 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1211 const_int_operand (rtx op, machine_mode mode)
1213 if (!CONST_INT_P (op))
1214 return 0;
1216 if (mode != VOIDmode
1217 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1218 return 0;
1220 return 1;
1223 #if TARGET_SUPPORTS_WIDE_INT
1224 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1225 of mode MODE. */
1227 const_scalar_int_operand (rtx op, machine_mode mode)
1229 if (!CONST_SCALAR_INT_P (op))
1230 return 0;
1232 if (CONST_INT_P (op))
1233 return const_int_operand (op, mode);
1235 if (mode != VOIDmode)
1237 int prec = GET_MODE_PRECISION (mode);
1238 int bitsize = GET_MODE_BITSIZE (mode);
1240 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1241 return 0;
1243 if (prec == bitsize)
1244 return 1;
1245 else
1247 /* Multiword partial int. */
1248 HOST_WIDE_INT x
1249 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1250 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1253 return 1;
1256 /* Returns 1 if OP is an operand that is a constant integer or constant
1257 floating-point number of MODE. */
1260 const_double_operand (rtx op, machine_mode mode)
1262 return (GET_CODE (op) == CONST_DOUBLE)
1263 && (GET_MODE (op) == mode || mode == VOIDmode);
1265 #else
1266 /* Returns 1 if OP is an operand that is a constant integer or constant
1267 floating-point number of MODE. */
1270 const_double_operand (rtx op, machine_mode mode)
1272 /* Don't accept CONST_INT or anything similar
1273 if the caller wants something floating. */
1274 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1275 && GET_MODE_CLASS (mode) != MODE_INT
1276 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1277 return 0;
1279 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1280 && (mode == VOIDmode || GET_MODE (op) == mode
1281 || GET_MODE (op) == VOIDmode));
1283 #endif
1284 /* Return 1 if OP is a general operand that is not an immediate
1285 operand of mode MODE. */
1288 nonimmediate_operand (rtx op, machine_mode mode)
1290 return (general_operand (op, mode) && ! CONSTANT_P (op));
1293 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1296 nonmemory_operand (rtx op, machine_mode mode)
1298 if (CONSTANT_P (op))
1299 return immediate_operand (op, mode);
1300 return register_operand (op, mode);
1303 /* Return 1 if OP is a valid operand that stands for pushing a
1304 value of mode MODE onto the stack.
1306 The main use of this function is as a predicate in match_operand
1307 expressions in the machine description. */
1310 push_operand (rtx op, machine_mode mode)
1312 unsigned int rounded_size = GET_MODE_SIZE (mode);
1314 #ifdef PUSH_ROUNDING
1315 rounded_size = PUSH_ROUNDING (rounded_size);
1316 #endif
1318 if (!MEM_P (op))
1319 return 0;
1321 if (mode != VOIDmode && GET_MODE (op) != mode)
1322 return 0;
1324 op = XEXP (op, 0);
1326 if (rounded_size == GET_MODE_SIZE (mode))
1328 if (GET_CODE (op) != STACK_PUSH_CODE)
1329 return 0;
1331 else
1333 if (GET_CODE (op) != PRE_MODIFY
1334 || GET_CODE (XEXP (op, 1)) != PLUS
1335 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1336 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1337 #ifdef STACK_GROWS_DOWNWARD
1338 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1339 #else
1340 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1341 #endif
1343 return 0;
1346 return XEXP (op, 0) == stack_pointer_rtx;
1349 /* Return 1 if OP is a valid operand that stands for popping a
1350 value of mode MODE off the stack.
1352 The main use of this function is as a predicate in match_operand
1353 expressions in the machine description. */
1356 pop_operand (rtx op, machine_mode mode)
1358 if (!MEM_P (op))
1359 return 0;
1361 if (mode != VOIDmode && GET_MODE (op) != mode)
1362 return 0;
1364 op = XEXP (op, 0);
1366 if (GET_CODE (op) != STACK_POP_CODE)
1367 return 0;
1369 return XEXP (op, 0) == stack_pointer_rtx;
1372 /* Return 1 if ADDR is a valid memory address
1373 for mode MODE in address space AS. */
1376 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1377 rtx addr, addr_space_t as)
1379 #ifdef GO_IF_LEGITIMATE_ADDRESS
1380 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1381 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1382 return 0;
1384 win:
1385 return 1;
1386 #else
1387 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1388 #endif
1391 /* Return 1 if OP is a valid memory reference with mode MODE,
1392 including a valid address.
1394 The main use of this function is as a predicate in match_operand
1395 expressions in the machine description. */
1398 memory_operand (rtx op, machine_mode mode)
1400 rtx inner;
1402 if (! reload_completed)
1403 /* Note that no SUBREG is a memory operand before end of reload pass,
1404 because (SUBREG (MEM...)) forces reloading into a register. */
1405 return MEM_P (op) && general_operand (op, mode);
1407 if (mode != VOIDmode && GET_MODE (op) != mode)
1408 return 0;
1410 inner = op;
1411 if (GET_CODE (inner) == SUBREG)
1412 inner = SUBREG_REG (inner);
1414 return (MEM_P (inner) && general_operand (op, mode));
1417 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1418 that is, a memory reference whose address is a general_operand. */
1421 indirect_operand (rtx op, machine_mode mode)
1423 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1424 if (! reload_completed
1425 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1427 int offset = SUBREG_BYTE (op);
1428 rtx inner = SUBREG_REG (op);
1430 if (mode != VOIDmode && GET_MODE (op) != mode)
1431 return 0;
1433 /* The only way that we can have a general_operand as the resulting
1434 address is if OFFSET is zero and the address already is an operand
1435 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1436 operand. */
1438 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1439 || (GET_CODE (XEXP (inner, 0)) == PLUS
1440 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1441 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1442 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1445 return (MEM_P (op)
1446 && memory_operand (op, mode)
1447 && general_operand (XEXP (op, 0), Pmode));
1450 /* Return 1 if this is an ordered comparison operator (not including
1451 ORDERED and UNORDERED). */
1454 ordered_comparison_operator (rtx op, machine_mode mode)
1456 if (mode != VOIDmode && GET_MODE (op) != mode)
1457 return false;
1458 switch (GET_CODE (op))
1460 case EQ:
1461 case NE:
1462 case LT:
1463 case LTU:
1464 case LE:
1465 case LEU:
1466 case GT:
1467 case GTU:
1468 case GE:
1469 case GEU:
1470 return true;
1471 default:
1472 return false;
1476 /* Return 1 if this is a comparison operator. This allows the use of
1477 MATCH_OPERATOR to recognize all the branch insns. */
1480 comparison_operator (rtx op, machine_mode mode)
1482 return ((mode == VOIDmode || GET_MODE (op) == mode)
1483 && COMPARISON_P (op));
1486 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1489 extract_asm_operands (rtx body)
1491 rtx tmp;
1492 switch (GET_CODE (body))
1494 case ASM_OPERANDS:
1495 return body;
1497 case SET:
1498 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1499 tmp = SET_SRC (body);
1500 if (GET_CODE (tmp) == ASM_OPERANDS)
1501 return tmp;
1502 break;
1504 case PARALLEL:
1505 tmp = XVECEXP (body, 0, 0);
1506 if (GET_CODE (tmp) == ASM_OPERANDS)
1507 return tmp;
1508 if (GET_CODE (tmp) == SET)
1510 tmp = SET_SRC (tmp);
1511 if (GET_CODE (tmp) == ASM_OPERANDS)
1512 return tmp;
1514 break;
1516 default:
1517 break;
1519 return NULL;
1522 /* If BODY is an insn body that uses ASM_OPERANDS,
1523 return the number of operands (both input and output) in the insn.
1524 Otherwise return -1. */
1527 asm_noperands (const_rtx body)
1529 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1530 int n_sets = 0;
1532 if (asm_op == NULL)
1533 return -1;
1535 if (GET_CODE (body) == SET)
1536 n_sets = 1;
1537 else if (GET_CODE (body) == PARALLEL)
1539 int i;
1540 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1542 /* Multiple output operands, or 1 output plus some clobbers:
1543 body is
1544 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1545 /* Count backwards through CLOBBERs to determine number of SETs. */
1546 for (i = XVECLEN (body, 0); i > 0; i--)
1548 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1549 break;
1550 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1551 return -1;
1554 /* N_SETS is now number of output operands. */
1555 n_sets = i;
1557 /* Verify that all the SETs we have
1558 came from a single original asm_operands insn
1559 (so that invalid combinations are blocked). */
1560 for (i = 0; i < n_sets; i++)
1562 rtx elt = XVECEXP (body, 0, i);
1563 if (GET_CODE (elt) != SET)
1564 return -1;
1565 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1566 return -1;
1567 /* If these ASM_OPERANDS rtx's came from different original insns
1568 then they aren't allowed together. */
1569 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1570 != ASM_OPERANDS_INPUT_VEC (asm_op))
1571 return -1;
1574 else
1576 /* 0 outputs, but some clobbers:
1577 body is [(asm_operands ...) (clobber (reg ...))...]. */
1578 /* Make sure all the other parallel things really are clobbers. */
1579 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1580 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1581 return -1;
1585 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1586 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1589 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1590 copy its operands (both input and output) into the vector OPERANDS,
1591 the locations of the operands within the insn into the vector OPERAND_LOCS,
1592 and the constraints for the operands into CONSTRAINTS.
1593 Write the modes of the operands into MODES.
1594 Return the assembler-template.
1596 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1597 we don't store that info. */
1599 const char *
1600 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1601 const char **constraints, machine_mode *modes,
1602 location_t *loc)
1604 int nbase = 0, n, i;
1605 rtx asmop;
1607 switch (GET_CODE (body))
1609 case ASM_OPERANDS:
1610 /* Zero output asm: BODY is (asm_operands ...). */
1611 asmop = body;
1612 break;
1614 case SET:
1615 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1616 asmop = SET_SRC (body);
1618 /* The output is in the SET.
1619 Its constraint is in the ASM_OPERANDS itself. */
1620 if (operands)
1621 operands[0] = SET_DEST (body);
1622 if (operand_locs)
1623 operand_locs[0] = &SET_DEST (body);
1624 if (constraints)
1625 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1626 if (modes)
1627 modes[0] = GET_MODE (SET_DEST (body));
1628 nbase = 1;
1629 break;
1631 case PARALLEL:
1633 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1635 asmop = XVECEXP (body, 0, 0);
1636 if (GET_CODE (asmop) == SET)
1638 asmop = SET_SRC (asmop);
1640 /* At least one output, plus some CLOBBERs. The outputs are in
1641 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1642 for (i = 0; i < nparallel; i++)
1644 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1645 break; /* Past last SET */
1646 if (operands)
1647 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1648 if (operand_locs)
1649 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1650 if (constraints)
1651 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1652 if (modes)
1653 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1655 nbase = i;
1657 break;
1660 default:
1661 gcc_unreachable ();
1664 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1665 for (i = 0; i < n; i++)
1667 if (operand_locs)
1668 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1669 if (operands)
1670 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1671 if (constraints)
1672 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1673 if (modes)
1674 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1676 nbase += n;
1678 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1679 for (i = 0; i < n; i++)
1681 if (operand_locs)
1682 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1683 if (operands)
1684 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1685 if (constraints)
1686 constraints[nbase + i] = "";
1687 if (modes)
1688 modes[nbase + i] = Pmode;
1691 if (loc)
1692 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1694 return ASM_OPERANDS_TEMPLATE (asmop);
1697 /* Parse inline assembly string STRING and determine which operands are
1698 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1699 to true if operand I is referenced.
1701 This is intended to distinguish barrier-like asms such as:
1703 asm ("" : "=m" (...));
1705 from real references such as:
1707 asm ("sw\t$0, %0" : "=m" (...)); */
1709 void
1710 get_referenced_operands (const char *string, bool *used,
1711 unsigned int noperands)
1713 memset (used, 0, sizeof (bool) * noperands);
1714 const char *p = string;
1715 while (*p)
1716 switch (*p)
1718 case '%':
1719 p += 1;
1720 /* A letter followed by a digit indicates an operand number. */
1721 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1722 p += 1;
1723 if (ISDIGIT (*p))
1725 char *endptr;
1726 unsigned long opnum = strtoul (p, &endptr, 10);
1727 if (endptr != p && opnum < noperands)
1728 used[opnum] = true;
1729 p = endptr;
1731 else
1732 p += 1;
1733 break;
1735 default:
1736 p++;
1737 break;
1741 /* Check if an asm_operand matches its constraints.
1742 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1745 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1747 int result = 0;
1748 #ifdef AUTO_INC_DEC
1749 bool incdec_ok = false;
1750 #endif
1752 /* Use constrain_operands after reload. */
1753 gcc_assert (!reload_completed);
1755 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1756 many alternatives as required to match the other operands. */
1757 if (*constraint == '\0')
1758 result = 1;
1760 while (*constraint)
1762 enum constraint_num cn;
1763 char c = *constraint;
1764 int len;
1765 switch (c)
1767 case ',':
1768 constraint++;
1769 continue;
1771 case '0': case '1': case '2': case '3': case '4':
1772 case '5': case '6': case '7': case '8': case '9':
1773 /* If caller provided constraints pointer, look up
1774 the matching constraint. Otherwise, our caller should have
1775 given us the proper matching constraint, but we can't
1776 actually fail the check if they didn't. Indicate that
1777 results are inconclusive. */
1778 if (constraints)
1780 char *end;
1781 unsigned long match;
1783 match = strtoul (constraint, &end, 10);
1784 if (!result)
1785 result = asm_operand_ok (op, constraints[match], NULL);
1786 constraint = (const char *) end;
1788 else
1791 constraint++;
1792 while (ISDIGIT (*constraint));
1793 if (! result)
1794 result = -1;
1796 continue;
1798 /* The rest of the compiler assumes that reloading the address
1799 of a MEM into a register will make it fit an 'o' constraint.
1800 That is, if it sees a MEM operand for an 'o' constraint,
1801 it assumes that (mem (base-reg)) will fit.
1803 That assumption fails on targets that don't have offsettable
1804 addresses at all. We therefore need to treat 'o' asm
1805 constraints as a special case and only accept operands that
1806 are already offsettable, thus proving that at least one
1807 offsettable address exists. */
1808 case 'o': /* offsettable */
1809 if (offsettable_nonstrict_memref_p (op))
1810 result = 1;
1811 break;
1813 case 'g':
1814 if (general_operand (op, VOIDmode))
1815 result = 1;
1816 break;
1818 #ifdef AUTO_INC_DEC
1819 case '<':
1820 case '>':
1821 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1822 to exist, excepting those that expand_call created. Further,
1823 on some machines which do not have generalized auto inc/dec,
1824 an inc/dec is not a memory_operand.
1826 Match any memory and hope things are resolved after reload. */
1827 incdec_ok = true;
1828 #endif
1829 default:
1830 cn = lookup_constraint (constraint);
1831 switch (get_constraint_type (cn))
1833 case CT_REGISTER:
1834 if (!result
1835 && reg_class_for_constraint (cn) != NO_REGS
1836 && GET_MODE (op) != BLKmode
1837 && register_operand (op, VOIDmode))
1838 result = 1;
1839 break;
1841 case CT_CONST_INT:
1842 if (!result
1843 && CONST_INT_P (op)
1844 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1845 result = 1;
1846 break;
1848 case CT_MEMORY:
1849 /* Every memory operand can be reloaded to fit. */
1850 result = result || memory_operand (op, VOIDmode);
1851 break;
1853 case CT_ADDRESS:
1854 /* Every address operand can be reloaded to fit. */
1855 result = result || address_operand (op, VOIDmode);
1856 break;
1858 case CT_FIXED_FORM:
1859 result = result || constraint_satisfied_p (op, cn);
1860 break;
1862 break;
1864 len = CONSTRAINT_LEN (c, constraint);
1866 constraint++;
1867 while (--len && *constraint);
1868 if (len)
1869 return 0;
1872 #ifdef AUTO_INC_DEC
1873 /* For operands without < or > constraints reject side-effects. */
1874 if (!incdec_ok && result && MEM_P (op))
1875 switch (GET_CODE (XEXP (op, 0)))
1877 case PRE_INC:
1878 case POST_INC:
1879 case PRE_DEC:
1880 case POST_DEC:
1881 case PRE_MODIFY:
1882 case POST_MODIFY:
1883 return 0;
1884 default:
1885 break;
1887 #endif
1889 return result;
1892 /* Given an rtx *P, if it is a sum containing an integer constant term,
1893 return the location (type rtx *) of the pointer to that constant term.
1894 Otherwise, return a null pointer. */
1896 rtx *
1897 find_constant_term_loc (rtx *p)
1899 rtx *tem;
1900 enum rtx_code code = GET_CODE (*p);
1902 /* If *P IS such a constant term, P is its location. */
1904 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1905 || code == CONST)
1906 return p;
1908 /* Otherwise, if not a sum, it has no constant term. */
1910 if (GET_CODE (*p) != PLUS)
1911 return 0;
1913 /* If one of the summands is constant, return its location. */
1915 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1916 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1917 return p;
1919 /* Otherwise, check each summand for containing a constant term. */
1921 if (XEXP (*p, 0) != 0)
1923 tem = find_constant_term_loc (&XEXP (*p, 0));
1924 if (tem != 0)
1925 return tem;
1928 if (XEXP (*p, 1) != 0)
1930 tem = find_constant_term_loc (&XEXP (*p, 1));
1931 if (tem != 0)
1932 return tem;
1935 return 0;
1938 /* Return 1 if OP is a memory reference
1939 whose address contains no side effects
1940 and remains valid after the addition
1941 of a positive integer less than the
1942 size of the object being referenced.
1944 We assume that the original address is valid and do not check it.
1946 This uses strict_memory_address_p as a subroutine, so
1947 don't use it before reload. */
1950 offsettable_memref_p (rtx op)
1952 return ((MEM_P (op))
1953 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1954 MEM_ADDR_SPACE (op)));
1957 /* Similar, but don't require a strictly valid mem ref:
1958 consider pseudo-regs valid as index or base regs. */
1961 offsettable_nonstrict_memref_p (rtx op)
1963 return ((MEM_P (op))
1964 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1965 MEM_ADDR_SPACE (op)));
1968 /* Return 1 if Y is a memory address which contains no side effects
1969 and would remain valid for address space AS after the addition of
1970 a positive integer less than the size of that mode.
1972 We assume that the original address is valid and do not check it.
1973 We do check that it is valid for narrower modes.
1975 If STRICTP is nonzero, we require a strictly valid address,
1976 for the sake of use in reload.c. */
1979 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1980 addr_space_t as)
1982 enum rtx_code ycode = GET_CODE (y);
1983 rtx z;
1984 rtx y1 = y;
1985 rtx *y2;
1986 int (*addressp) (machine_mode, rtx, addr_space_t) =
1987 (strictp ? strict_memory_address_addr_space_p
1988 : memory_address_addr_space_p);
1989 unsigned int mode_sz = GET_MODE_SIZE (mode);
1991 if (CONSTANT_ADDRESS_P (y))
1992 return 1;
1994 /* Adjusting an offsettable address involves changing to a narrower mode.
1995 Make sure that's OK. */
1997 if (mode_dependent_address_p (y, as))
1998 return 0;
2000 machine_mode address_mode = GET_MODE (y);
2001 if (address_mode == VOIDmode)
2002 address_mode = targetm.addr_space.address_mode (as);
2003 #ifdef POINTERS_EXTEND_UNSIGNED
2004 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
2005 #endif
2007 /* ??? How much offset does an offsettable BLKmode reference need?
2008 Clearly that depends on the situation in which it's being used.
2009 However, the current situation in which we test 0xffffffff is
2010 less than ideal. Caveat user. */
2011 if (mode_sz == 0)
2012 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2014 /* If the expression contains a constant term,
2015 see if it remains valid when max possible offset is added. */
2017 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
2019 int good;
2021 y1 = *y2;
2022 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
2023 /* Use QImode because an odd displacement may be automatically invalid
2024 for any wider mode. But it should be valid for a single byte. */
2025 good = (*addressp) (QImode, y, as);
2027 /* In any case, restore old contents of memory. */
2028 *y2 = y1;
2029 return good;
2032 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2033 return 0;
2035 /* The offset added here is chosen as the maximum offset that
2036 any instruction could need to add when operating on something
2037 of the specified mode. We assume that if Y and Y+c are
2038 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2039 go inside a LO_SUM here, so we do so as well. */
2040 if (GET_CODE (y) == LO_SUM
2041 && mode != BLKmode
2042 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2043 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2044 plus_constant (address_mode, XEXP (y, 1),
2045 mode_sz - 1));
2046 #ifdef POINTERS_EXTEND_UNSIGNED
2047 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2048 else if (POINTERS_EXTEND_UNSIGNED > 0
2049 && GET_CODE (y) == ZERO_EXTEND
2050 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2051 z = gen_rtx_ZERO_EXTEND (address_mode,
2052 plus_constant (pointer_mode, XEXP (y, 0),
2053 mode_sz - 1));
2054 #endif
2055 else
2056 z = plus_constant (address_mode, y, mode_sz - 1);
2058 /* Use QImode because an odd displacement may be automatically invalid
2059 for any wider mode. But it should be valid for a single byte. */
2060 return (*addressp) (QImode, z, as);
2063 /* Return 1 if ADDR is an address-expression whose effect depends
2064 on the mode of the memory reference it is used in.
2066 ADDRSPACE is the address space associated with the address.
2068 Autoincrement addressing is a typical example of mode-dependence
2069 because the amount of the increment depends on the mode. */
2071 bool
2072 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2074 /* Auto-increment addressing with anything other than post_modify
2075 or pre_modify always introduces a mode dependency. Catch such
2076 cases now instead of deferring to the target. */
2077 if (GET_CODE (addr) == PRE_INC
2078 || GET_CODE (addr) == POST_INC
2079 || GET_CODE (addr) == PRE_DEC
2080 || GET_CODE (addr) == POST_DEC)
2081 return true;
2083 return targetm.mode_dependent_address_p (addr, addrspace);
2086 /* Return true if boolean attribute ATTR is supported. */
2088 static bool
2089 have_bool_attr (bool_attr attr)
2091 switch (attr)
2093 case BA_ENABLED:
2094 return HAVE_ATTR_enabled;
2095 case BA_PREFERRED_FOR_SIZE:
2096 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2097 case BA_PREFERRED_FOR_SPEED:
2098 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2100 gcc_unreachable ();
2103 /* Return the value of ATTR for instruction INSN. */
2105 static bool
2106 get_bool_attr (rtx_insn *insn, bool_attr attr)
2108 switch (attr)
2110 case BA_ENABLED:
2111 return get_attr_enabled (insn);
2112 case BA_PREFERRED_FOR_SIZE:
2113 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2114 case BA_PREFERRED_FOR_SPEED:
2115 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2117 gcc_unreachable ();
2120 /* Like get_bool_attr_mask, but don't use the cache. */
2122 static alternative_mask
2123 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2125 /* Temporarily install enough information for get_attr_<foo> to assume
2126 that the insn operands are already cached. As above, the attribute
2127 mustn't depend on the values of operands, so we don't provide their
2128 real values here. */
2129 rtx old_insn = recog_data.insn;
2130 int old_alternative = which_alternative;
2132 recog_data.insn = insn;
2133 alternative_mask mask = ALL_ALTERNATIVES;
2134 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2135 for (int i = 0; i < n_alternatives; i++)
2137 which_alternative = i;
2138 if (!get_bool_attr (insn, attr))
2139 mask &= ~ALTERNATIVE_BIT (i);
2142 recog_data.insn = old_insn;
2143 which_alternative = old_alternative;
2144 return mask;
2147 /* Return the mask of operand alternatives that are allowed for INSN
2148 by boolean attribute ATTR. This mask depends only on INSN and on
2149 the current target; it does not depend on things like the values of
2150 operands. */
2152 static alternative_mask
2153 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2155 /* Quick exit for asms and for targets that don't use these attributes. */
2156 int code = INSN_CODE (insn);
2157 if (code < 0 || !have_bool_attr (attr))
2158 return ALL_ALTERNATIVES;
2160 /* Calling get_attr_<foo> can be expensive, so cache the mask
2161 for speed. */
2162 if (!this_target_recog->x_bool_attr_masks[code][attr])
2163 this_target_recog->x_bool_attr_masks[code][attr]
2164 = get_bool_attr_mask_uncached (insn, attr);
2165 return this_target_recog->x_bool_attr_masks[code][attr];
2168 /* Return the set of alternatives of INSN that are allowed by the current
2169 target. */
2171 alternative_mask
2172 get_enabled_alternatives (rtx_insn *insn)
2174 return get_bool_attr_mask (insn, BA_ENABLED);
2177 /* Return the set of alternatives of INSN that are allowed by the current
2178 target and are preferred for the current size/speed optimization
2179 choice. */
2181 alternative_mask
2182 get_preferred_alternatives (rtx_insn *insn)
2184 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2185 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2186 else
2187 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2190 /* Return the set of alternatives of INSN that are allowed by the current
2191 target and are preferred for the size/speed optimization choice
2192 associated with BB. Passing a separate BB is useful if INSN has not
2193 been emitted yet or if we are considering moving it to a different
2194 block. */
2196 alternative_mask
2197 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2199 if (optimize_bb_for_speed_p (bb))
2200 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2201 else
2202 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2205 /* Assert that the cached boolean attributes for INSN are still accurate.
2206 The backend is required to define these attributes in a way that only
2207 depends on the current target (rather than operands, compiler phase,
2208 etc.). */
2210 bool
2211 check_bool_attrs (rtx_insn *insn)
2213 int code = INSN_CODE (insn);
2214 if (code >= 0)
2215 for (int i = 0; i <= BA_LAST; ++i)
2217 enum bool_attr attr = (enum bool_attr) i;
2218 if (this_target_recog->x_bool_attr_masks[code][attr])
2219 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2220 == get_bool_attr_mask_uncached (insn, attr));
2222 return true;
2225 /* Like extract_insn, but save insn extracted and don't extract again, when
2226 called again for the same insn expecting that recog_data still contain the
2227 valid information. This is used primary by gen_attr infrastructure that
2228 often does extract insn again and again. */
2229 void
2230 extract_insn_cached (rtx_insn *insn)
2232 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2233 return;
2234 extract_insn (insn);
2235 recog_data.insn = insn;
2238 /* Do uncached extract_insn, constrain_operands and complain about failures.
2239 This should be used when extracting a pre-existing constrained instruction
2240 if the caller wants to know which alternative was chosen. */
2241 void
2242 extract_constrain_insn (rtx_insn *insn)
2244 extract_insn (insn);
2245 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2246 fatal_insn_not_found (insn);
2249 /* Do cached extract_insn, constrain_operands and complain about failures.
2250 Used by insn_attrtab. */
2251 void
2252 extract_constrain_insn_cached (rtx_insn *insn)
2254 extract_insn_cached (insn);
2255 if (which_alternative == -1
2256 && !constrain_operands (reload_completed,
2257 get_enabled_alternatives (insn)))
2258 fatal_insn_not_found (insn);
2261 /* Do cached constrain_operands on INSN and complain about failures. */
2263 constrain_operands_cached (rtx_insn *insn, int strict)
2265 if (which_alternative == -1)
2266 return constrain_operands (strict, get_enabled_alternatives (insn));
2267 else
2268 return 1;
2271 /* Analyze INSN and fill in recog_data. */
2273 void
2274 extract_insn (rtx_insn *insn)
2276 int i;
2277 int icode;
2278 int noperands;
2279 rtx body = PATTERN (insn);
2281 recog_data.n_operands = 0;
2282 recog_data.n_alternatives = 0;
2283 recog_data.n_dups = 0;
2284 recog_data.is_asm = false;
2286 switch (GET_CODE (body))
2288 case USE:
2289 case CLOBBER:
2290 case ASM_INPUT:
2291 case ADDR_VEC:
2292 case ADDR_DIFF_VEC:
2293 case VAR_LOCATION:
2294 return;
2296 case SET:
2297 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2298 goto asm_insn;
2299 else
2300 goto normal_insn;
2301 case PARALLEL:
2302 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2303 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2304 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2305 goto asm_insn;
2306 else
2307 goto normal_insn;
2308 case ASM_OPERANDS:
2309 asm_insn:
2310 recog_data.n_operands = noperands = asm_noperands (body);
2311 if (noperands >= 0)
2313 /* This insn is an `asm' with operands. */
2315 /* expand_asm_operands makes sure there aren't too many operands. */
2316 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2318 /* Now get the operand values and constraints out of the insn. */
2319 decode_asm_operands (body, recog_data.operand,
2320 recog_data.operand_loc,
2321 recog_data.constraints,
2322 recog_data.operand_mode, NULL);
2323 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2324 if (noperands > 0)
2326 const char *p = recog_data.constraints[0];
2327 recog_data.n_alternatives = 1;
2328 while (*p)
2329 recog_data.n_alternatives += (*p++ == ',');
2331 recog_data.is_asm = true;
2332 break;
2334 fatal_insn_not_found (insn);
2336 default:
2337 normal_insn:
2338 /* Ordinary insn: recognize it, get the operands via insn_extract
2339 and get the constraints. */
2341 icode = recog_memoized (insn);
2342 if (icode < 0)
2343 fatal_insn_not_found (insn);
2345 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2346 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2347 recog_data.n_dups = insn_data[icode].n_dups;
2349 insn_extract (insn);
2351 for (i = 0; i < noperands; i++)
2353 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2354 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2355 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2356 /* VOIDmode match_operands gets mode from their real operand. */
2357 if (recog_data.operand_mode[i] == VOIDmode)
2358 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2361 for (i = 0; i < noperands; i++)
2362 recog_data.operand_type[i]
2363 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2364 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2365 : OP_IN);
2367 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2369 recog_data.insn = NULL;
2370 which_alternative = -1;
2373 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2374 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2375 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2376 has N_OPERANDS entries. */
2378 void
2379 preprocess_constraints (int n_operands, int n_alternatives,
2380 const char **constraints,
2381 operand_alternative *op_alt_base)
2383 for (int i = 0; i < n_operands; i++)
2385 int j;
2386 struct operand_alternative *op_alt;
2387 const char *p = constraints[i];
2389 op_alt = op_alt_base;
2391 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2393 op_alt[i].cl = NO_REGS;
2394 op_alt[i].constraint = p;
2395 op_alt[i].matches = -1;
2396 op_alt[i].matched = -1;
2398 if (*p == '\0' || *p == ',')
2400 op_alt[i].anything_ok = 1;
2401 continue;
2404 for (;;)
2406 char c = *p;
2407 if (c == '#')
2409 c = *++p;
2410 while (c != ',' && c != '\0');
2411 if (c == ',' || c == '\0')
2413 p++;
2414 break;
2417 switch (c)
2419 case '?':
2420 op_alt[i].reject += 6;
2421 break;
2422 case '!':
2423 op_alt[i].reject += 600;
2424 break;
2425 case '&':
2426 op_alt[i].earlyclobber = 1;
2427 break;
2429 case '0': case '1': case '2': case '3': case '4':
2430 case '5': case '6': case '7': case '8': case '9':
2432 char *end;
2433 op_alt[i].matches = strtoul (p, &end, 10);
2434 op_alt[op_alt[i].matches].matched = i;
2435 p = end;
2437 continue;
2439 case 'X':
2440 op_alt[i].anything_ok = 1;
2441 break;
2443 case 'g':
2444 op_alt[i].cl =
2445 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2446 break;
2448 default:
2449 enum constraint_num cn = lookup_constraint (p);
2450 enum reg_class cl;
2451 switch (get_constraint_type (cn))
2453 case CT_REGISTER:
2454 cl = reg_class_for_constraint (cn);
2455 if (cl != NO_REGS)
2456 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2457 break;
2459 case CT_CONST_INT:
2460 break;
2462 case CT_MEMORY:
2463 op_alt[i].memory_ok = 1;
2464 break;
2466 case CT_ADDRESS:
2467 op_alt[i].is_address = 1;
2468 op_alt[i].cl
2469 = (reg_class_subunion
2470 [(int) op_alt[i].cl]
2471 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2472 ADDRESS, SCRATCH)]);
2473 break;
2475 case CT_FIXED_FORM:
2476 break;
2478 break;
2480 p += CONSTRAINT_LEN (c, p);
2486 /* Return an array of operand_alternative instructions for
2487 instruction ICODE. */
2489 const operand_alternative *
2490 preprocess_insn_constraints (int icode)
2492 gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
2493 if (this_target_recog->x_op_alt[icode])
2494 return this_target_recog->x_op_alt[icode];
2496 int n_operands = insn_data[icode].n_operands;
2497 if (n_operands == 0)
2498 return 0;
2499 /* Always provide at least one alternative so that which_op_alt ()
2500 works correctly. If the instruction has 0 alternatives (i.e. all
2501 constraint strings are empty) then each operand in this alternative
2502 will have anything_ok set. */
2503 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2504 int n_entries = n_operands * n_alternatives;
2506 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2507 const char **constraints = XALLOCAVEC (const char *, n_operands);
2509 for (int i = 0; i < n_operands; ++i)
2510 constraints[i] = insn_data[icode].operand[i].constraint;
2511 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2513 this_target_recog->x_op_alt[icode] = op_alt;
2514 return op_alt;
2517 /* After calling extract_insn, you can use this function to extract some
2518 information from the constraint strings into a more usable form.
2519 The collected data is stored in recog_op_alt. */
2521 void
2522 preprocess_constraints (rtx insn)
2524 int icode = INSN_CODE (insn);
2525 if (icode >= 0)
2526 recog_op_alt = preprocess_insn_constraints (icode);
2527 else
2529 int n_operands = recog_data.n_operands;
2530 int n_alternatives = recog_data.n_alternatives;
2531 int n_entries = n_operands * n_alternatives;
2532 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2533 preprocess_constraints (n_operands, n_alternatives,
2534 recog_data.constraints, asm_op_alt);
2535 recog_op_alt = asm_op_alt;
2539 /* Check the operands of an insn against the insn's operand constraints
2540 and return 1 if they match any of the alternatives in ALTERNATIVES.
2542 The information about the insn's operands, constraints, operand modes
2543 etc. is obtained from the global variables set up by extract_insn.
2545 WHICH_ALTERNATIVE is set to a number which indicates which
2546 alternative of constraints was matched: 0 for the first alternative,
2547 1 for the next, etc.
2549 In addition, when two operands are required to match
2550 and it happens that the output operand is (reg) while the
2551 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2552 make the output operand look like the input.
2553 This is because the output operand is the one the template will print.
2555 This is used in final, just before printing the assembler code and by
2556 the routines that determine an insn's attribute.
2558 If STRICT is a positive nonzero value, it means that we have been
2559 called after reload has been completed. In that case, we must
2560 do all checks strictly. If it is zero, it means that we have been called
2561 before reload has completed. In that case, we first try to see if we can
2562 find an alternative that matches strictly. If not, we try again, this
2563 time assuming that reload will fix up the insn. This provides a "best
2564 guess" for the alternative and is used to compute attributes of insns prior
2565 to reload. A negative value of STRICT is used for this internal call. */
2567 struct funny_match
2569 int this_op, other;
2573 constrain_operands (int strict, alternative_mask alternatives)
2575 const char *constraints[MAX_RECOG_OPERANDS];
2576 int matching_operands[MAX_RECOG_OPERANDS];
2577 int earlyclobber[MAX_RECOG_OPERANDS];
2578 int c;
2580 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2581 int funny_match_index;
2583 which_alternative = 0;
2584 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2585 return 1;
2587 for (c = 0; c < recog_data.n_operands; c++)
2589 constraints[c] = recog_data.constraints[c];
2590 matching_operands[c] = -1;
2595 int seen_earlyclobber_at = -1;
2596 int opno;
2597 int lose = 0;
2598 funny_match_index = 0;
2600 if (!TEST_BIT (alternatives, which_alternative))
2602 int i;
2604 for (i = 0; i < recog_data.n_operands; i++)
2605 constraints[i] = skip_alternative (constraints[i]);
2607 which_alternative++;
2608 continue;
2611 for (opno = 0; opno < recog_data.n_operands; opno++)
2613 rtx op = recog_data.operand[opno];
2614 machine_mode mode = GET_MODE (op);
2615 const char *p = constraints[opno];
2616 int offset = 0;
2617 int win = 0;
2618 int val;
2619 int len;
2621 earlyclobber[opno] = 0;
2623 /* A unary operator may be accepted by the predicate, but it
2624 is irrelevant for matching constraints. */
2625 if (UNARY_P (op))
2626 op = XEXP (op, 0);
2628 if (GET_CODE (op) == SUBREG)
2630 if (REG_P (SUBREG_REG (op))
2631 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2632 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2633 GET_MODE (SUBREG_REG (op)),
2634 SUBREG_BYTE (op),
2635 GET_MODE (op));
2636 op = SUBREG_REG (op);
2639 /* An empty constraint or empty alternative
2640 allows anything which matched the pattern. */
2641 if (*p == 0 || *p == ',')
2642 win = 1;
2645 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2647 case '\0':
2648 len = 0;
2649 break;
2650 case ',':
2651 c = '\0';
2652 break;
2654 case '#':
2655 /* Ignore rest of this alternative as far as
2656 constraint checking is concerned. */
2658 p++;
2659 while (*p && *p != ',');
2660 len = 0;
2661 break;
2663 case '&':
2664 earlyclobber[opno] = 1;
2665 if (seen_earlyclobber_at < 0)
2666 seen_earlyclobber_at = opno;
2667 break;
2669 case '0': case '1': case '2': case '3': case '4':
2670 case '5': case '6': case '7': case '8': case '9':
2672 /* This operand must be the same as a previous one.
2673 This kind of constraint is used for instructions such
2674 as add when they take only two operands.
2676 Note that the lower-numbered operand is passed first.
2678 If we are not testing strictly, assume that this
2679 constraint will be satisfied. */
2681 char *end;
2682 int match;
2684 match = strtoul (p, &end, 10);
2685 p = end;
2687 if (strict < 0)
2688 val = 1;
2689 else
2691 rtx op1 = recog_data.operand[match];
2692 rtx op2 = recog_data.operand[opno];
2694 /* A unary operator may be accepted by the predicate,
2695 but it is irrelevant for matching constraints. */
2696 if (UNARY_P (op1))
2697 op1 = XEXP (op1, 0);
2698 if (UNARY_P (op2))
2699 op2 = XEXP (op2, 0);
2701 val = operands_match_p (op1, op2);
2704 matching_operands[opno] = match;
2705 matching_operands[match] = opno;
2707 if (val != 0)
2708 win = 1;
2710 /* If output is *x and input is *--x, arrange later
2711 to change the output to *--x as well, since the
2712 output op is the one that will be printed. */
2713 if (val == 2 && strict > 0)
2715 funny_match[funny_match_index].this_op = opno;
2716 funny_match[funny_match_index++].other = match;
2719 len = 0;
2720 break;
2722 case 'p':
2723 /* p is used for address_operands. When we are called by
2724 gen_reload, no one will have checked that the address is
2725 strictly valid, i.e., that all pseudos requiring hard regs
2726 have gotten them. */
2727 if (strict <= 0
2728 || (strict_memory_address_p (recog_data.operand_mode[opno],
2729 op)))
2730 win = 1;
2731 break;
2733 /* No need to check general_operand again;
2734 it was done in insn-recog.c. Well, except that reload
2735 doesn't check the validity of its replacements, but
2736 that should only matter when there's a bug. */
2737 case 'g':
2738 /* Anything goes unless it is a REG and really has a hard reg
2739 but the hard reg is not in the class GENERAL_REGS. */
2740 if (REG_P (op))
2742 if (strict < 0
2743 || GENERAL_REGS == ALL_REGS
2744 || (reload_in_progress
2745 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2746 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2747 win = 1;
2749 else if (strict < 0 || general_operand (op, mode))
2750 win = 1;
2751 break;
2753 default:
2755 enum constraint_num cn = lookup_constraint (p);
2756 enum reg_class cl = reg_class_for_constraint (cn);
2757 if (cl != NO_REGS)
2759 if (strict < 0
2760 || (strict == 0
2761 && REG_P (op)
2762 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2763 || (strict == 0 && GET_CODE (op) == SCRATCH)
2764 || (REG_P (op)
2765 && reg_fits_class_p (op, cl, offset, mode)))
2766 win = 1;
2769 else if (constraint_satisfied_p (op, cn))
2770 win = 1;
2772 else if (insn_extra_memory_constraint (cn)
2773 /* Every memory operand can be reloaded to fit. */
2774 && ((strict < 0 && MEM_P (op))
2775 /* Before reload, accept what reload can turn
2776 into a mem. */
2777 || (strict < 0 && CONSTANT_P (op))
2778 /* Before reload, accept a pseudo,
2779 since LRA can turn it into a mem. */
2780 || (strict < 0 && targetm.lra_p () && REG_P (op)
2781 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2782 /* During reload, accept a pseudo */
2783 || (reload_in_progress && REG_P (op)
2784 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2785 win = 1;
2786 else if (insn_extra_address_constraint (cn)
2787 /* Every address operand can be reloaded to fit. */
2788 && strict < 0)
2789 win = 1;
2790 /* Cater to architectures like IA-64 that define extra memory
2791 constraints without using define_memory_constraint. */
2792 else if (reload_in_progress
2793 && REG_P (op)
2794 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2795 && reg_renumber[REGNO (op)] < 0
2796 && reg_equiv_mem (REGNO (op)) != 0
2797 && constraint_satisfied_p
2798 (reg_equiv_mem (REGNO (op)), cn))
2799 win = 1;
2800 break;
2803 while (p += len, c);
2805 constraints[opno] = p;
2806 /* If this operand did not win somehow,
2807 this alternative loses. */
2808 if (! win)
2809 lose = 1;
2811 /* This alternative won; the operands are ok.
2812 Change whichever operands this alternative says to change. */
2813 if (! lose)
2815 int opno, eopno;
2817 /* See if any earlyclobber operand conflicts with some other
2818 operand. */
2820 if (strict > 0 && seen_earlyclobber_at >= 0)
2821 for (eopno = seen_earlyclobber_at;
2822 eopno < recog_data.n_operands;
2823 eopno++)
2824 /* Ignore earlyclobber operands now in memory,
2825 because we would often report failure when we have
2826 two memory operands, one of which was formerly a REG. */
2827 if (earlyclobber[eopno]
2828 && REG_P (recog_data.operand[eopno]))
2829 for (opno = 0; opno < recog_data.n_operands; opno++)
2830 if ((MEM_P (recog_data.operand[opno])
2831 || recog_data.operand_type[opno] != OP_OUT)
2832 && opno != eopno
2833 /* Ignore things like match_operator operands. */
2834 && *recog_data.constraints[opno] != 0
2835 && ! (matching_operands[opno] == eopno
2836 && operands_match_p (recog_data.operand[opno],
2837 recog_data.operand[eopno]))
2838 && ! safe_from_earlyclobber (recog_data.operand[opno],
2839 recog_data.operand[eopno]))
2840 lose = 1;
2842 if (! lose)
2844 while (--funny_match_index >= 0)
2846 recog_data.operand[funny_match[funny_match_index].other]
2847 = recog_data.operand[funny_match[funny_match_index].this_op];
2850 #ifdef AUTO_INC_DEC
2851 /* For operands without < or > constraints reject side-effects. */
2852 if (recog_data.is_asm)
2854 for (opno = 0; opno < recog_data.n_operands; opno++)
2855 if (MEM_P (recog_data.operand[opno]))
2856 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2858 case PRE_INC:
2859 case POST_INC:
2860 case PRE_DEC:
2861 case POST_DEC:
2862 case PRE_MODIFY:
2863 case POST_MODIFY:
2864 if (strchr (recog_data.constraints[opno], '<') == NULL
2865 && strchr (recog_data.constraints[opno], '>')
2866 == NULL)
2867 return 0;
2868 break;
2869 default:
2870 break;
2873 #endif
2874 return 1;
2878 which_alternative++;
2880 while (which_alternative < recog_data.n_alternatives);
2882 which_alternative = -1;
2883 /* If we are about to reject this, but we are not to test strictly,
2884 try a very loose test. Only return failure if it fails also. */
2885 if (strict == 0)
2886 return constrain_operands (-1, alternatives);
2887 else
2888 return 0;
2891 /* Return true iff OPERAND (assumed to be a REG rtx)
2892 is a hard reg in class CLASS when its regno is offset by OFFSET
2893 and changed to mode MODE.
2894 If REG occupies multiple hard regs, all of them must be in CLASS. */
2896 bool
2897 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2898 machine_mode mode)
2900 unsigned int regno = REGNO (operand);
2902 if (cl == NO_REGS)
2903 return false;
2905 /* Regno must not be a pseudo register. Offset may be negative. */
2906 return (HARD_REGISTER_NUM_P (regno)
2907 && HARD_REGISTER_NUM_P (regno + offset)
2908 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2909 regno + offset));
2912 /* Split single instruction. Helper function for split_all_insns and
2913 split_all_insns_noflow. Return last insn in the sequence if successful,
2914 or NULL if unsuccessful. */
2916 static rtx
2917 split_insn (rtx_insn *insn)
2919 /* Split insns here to get max fine-grain parallelism. */
2920 rtx_insn *first = PREV_INSN (insn);
2921 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2922 rtx insn_set, last_set, note;
2924 if (last == insn)
2925 return NULL_RTX;
2927 /* If the original instruction was a single set that was known to be
2928 equivalent to a constant, see if we can say the same about the last
2929 instruction in the split sequence. The two instructions must set
2930 the same destination. */
2931 insn_set = single_set (insn);
2932 if (insn_set)
2934 last_set = single_set (last);
2935 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2937 note = find_reg_equal_equiv_note (insn);
2938 if (note && CONSTANT_P (XEXP (note, 0)))
2939 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2940 else if (CONSTANT_P (SET_SRC (insn_set)))
2941 set_unique_reg_note (last, REG_EQUAL,
2942 copy_rtx (SET_SRC (insn_set)));
2946 /* try_split returns the NOTE that INSN became. */
2947 SET_INSN_DELETED (insn);
2949 /* ??? Coddle to md files that generate subregs in post-reload
2950 splitters instead of computing the proper hard register. */
2951 if (reload_completed && first != last)
2953 first = NEXT_INSN (first);
2954 for (;;)
2956 if (INSN_P (first))
2957 cleanup_subreg_operands (first);
2958 if (first == last)
2959 break;
2960 first = NEXT_INSN (first);
2964 return last;
2967 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2969 void
2970 split_all_insns (void)
2972 sbitmap blocks;
2973 bool changed;
2974 basic_block bb;
2976 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2977 bitmap_clear (blocks);
2978 changed = false;
2980 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2982 rtx_insn *insn, *next;
2983 bool finish = false;
2985 rtl_profile_for_bb (bb);
2986 for (insn = BB_HEAD (bb); !finish ; insn = next)
2988 /* Can't use `next_real_insn' because that might go across
2989 CODE_LABELS and short-out basic blocks. */
2990 next = NEXT_INSN (insn);
2991 finish = (insn == BB_END (bb));
2992 if (INSN_P (insn))
2994 rtx set = single_set (insn);
2996 /* Don't split no-op move insns. These should silently
2997 disappear later in final. Splitting such insns would
2998 break the code that handles LIBCALL blocks. */
2999 if (set && set_noop_p (set))
3001 /* Nops get in the way while scheduling, so delete them
3002 now if register allocation has already been done. It
3003 is too risky to try to do this before register
3004 allocation, and there are unlikely to be very many
3005 nops then anyways. */
3006 if (reload_completed)
3007 delete_insn_and_edges (insn);
3009 else
3011 if (split_insn (insn))
3013 bitmap_set_bit (blocks, bb->index);
3014 changed = true;
3021 default_rtl_profile ();
3022 if (changed)
3023 find_many_sub_basic_blocks (blocks);
3025 #ifdef ENABLE_CHECKING
3026 verify_flow_info ();
3027 #endif
3029 sbitmap_free (blocks);
3032 /* Same as split_all_insns, but do not expect CFG to be available.
3033 Used by machine dependent reorg passes. */
3035 unsigned int
3036 split_all_insns_noflow (void)
3038 rtx_insn *next, *insn;
3040 for (insn = get_insns (); insn; insn = next)
3042 next = NEXT_INSN (insn);
3043 if (INSN_P (insn))
3045 /* Don't split no-op move insns. These should silently
3046 disappear later in final. Splitting such insns would
3047 break the code that handles LIBCALL blocks. */
3048 rtx set = single_set (insn);
3049 if (set && set_noop_p (set))
3051 /* Nops get in the way while scheduling, so delete them
3052 now if register allocation has already been done. It
3053 is too risky to try to do this before register
3054 allocation, and there are unlikely to be very many
3055 nops then anyways.
3057 ??? Should we use delete_insn when the CFG isn't valid? */
3058 if (reload_completed)
3059 delete_insn_and_edges (insn);
3061 else
3062 split_insn (insn);
3065 return 0;
3068 #ifdef HAVE_peephole2
3069 struct peep2_insn_data
3071 rtx insn;
3072 regset live_before;
3075 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3076 static int peep2_current;
3078 static bool peep2_do_rebuild_jump_labels;
3079 static bool peep2_do_cleanup_cfg;
3081 /* The number of instructions available to match a peep2. */
3082 int peep2_current_count;
3084 /* A non-insn marker indicating the last insn of the block.
3085 The live_before regset for this element is correct, indicating
3086 DF_LIVE_OUT for the block. */
3087 #define PEEP2_EOB pc_rtx
3089 /* Wrap N to fit into the peep2_insn_data buffer. */
3091 static int
3092 peep2_buf_position (int n)
3094 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3095 n -= MAX_INSNS_PER_PEEP2 + 1;
3096 return n;
3099 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3100 does not exist. Used by the recognizer to find the next insn to match
3101 in a multi-insn pattern. */
3104 peep2_next_insn (int n)
3106 gcc_assert (n <= peep2_current_count);
3108 n = peep2_buf_position (peep2_current + n);
3110 return peep2_insn_data[n].insn;
3113 /* Return true if REGNO is dead before the Nth non-note insn
3114 after `current'. */
3117 peep2_regno_dead_p (int ofs, int regno)
3119 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3121 ofs = peep2_buf_position (peep2_current + ofs);
3123 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3125 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3128 /* Similarly for a REG. */
3131 peep2_reg_dead_p (int ofs, rtx reg)
3133 int regno, n;
3135 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3137 ofs = peep2_buf_position (peep2_current + ofs);
3139 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3141 regno = REGNO (reg);
3142 n = hard_regno_nregs[regno][GET_MODE (reg)];
3143 while (--n >= 0)
3144 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3145 return 0;
3146 return 1;
3149 /* Regno offset to be used in the register search. */
3150 static int search_ofs;
3152 /* Try to find a hard register of mode MODE, matching the register class in
3153 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3154 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3155 in which case the only condition is that the register must be available
3156 before CURRENT_INSN.
3157 Registers that already have bits set in REG_SET will not be considered.
3159 If an appropriate register is available, it will be returned and the
3160 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3161 returned. */
3164 peep2_find_free_register (int from, int to, const char *class_str,
3165 machine_mode mode, HARD_REG_SET *reg_set)
3167 enum reg_class cl;
3168 HARD_REG_SET live;
3169 df_ref def;
3170 int i;
3172 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3173 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3175 from = peep2_buf_position (peep2_current + from);
3176 to = peep2_buf_position (peep2_current + to);
3178 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3179 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3181 while (from != to)
3183 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3185 /* Don't use registers set or clobbered by the insn. */
3186 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3187 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3189 from = peep2_buf_position (from + 1);
3192 cl = reg_class_for_constraint (lookup_constraint (class_str));
3194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3196 int raw_regno, regno, success, j;
3198 /* Distribute the free registers as much as possible. */
3199 raw_regno = search_ofs + i;
3200 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3201 raw_regno -= FIRST_PSEUDO_REGISTER;
3202 #ifdef REG_ALLOC_ORDER
3203 regno = reg_alloc_order[raw_regno];
3204 #else
3205 regno = raw_regno;
3206 #endif
3208 /* Can it support the mode we need? */
3209 if (! HARD_REGNO_MODE_OK (regno, mode))
3210 continue;
3212 success = 1;
3213 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3215 /* Don't allocate fixed registers. */
3216 if (fixed_regs[regno + j])
3218 success = 0;
3219 break;
3221 /* Don't allocate global registers. */
3222 if (global_regs[regno + j])
3224 success = 0;
3225 break;
3227 /* Make sure the register is of the right class. */
3228 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3230 success = 0;
3231 break;
3233 /* And that we don't create an extra save/restore. */
3234 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3236 success = 0;
3237 break;
3240 if (! targetm.hard_regno_scratch_ok (regno + j))
3242 success = 0;
3243 break;
3246 /* And we don't clobber traceback for noreturn functions. */
3247 if ((regno + j == FRAME_POINTER_REGNUM
3248 || regno + j == HARD_FRAME_POINTER_REGNUM)
3249 && (! reload_completed || frame_pointer_needed))
3251 success = 0;
3252 break;
3255 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3256 || TEST_HARD_REG_BIT (live, regno + j))
3258 success = 0;
3259 break;
3263 if (success)
3265 add_to_hard_reg_set (reg_set, mode, regno);
3267 /* Start the next search with the next register. */
3268 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3269 raw_regno = 0;
3270 search_ofs = raw_regno;
3272 return gen_rtx_REG (mode, regno);
3276 search_ofs = 0;
3277 return NULL_RTX;
3280 /* Forget all currently tracked instructions, only remember current
3281 LIVE regset. */
3283 static void
3284 peep2_reinit_state (regset live)
3286 int i;
3288 /* Indicate that all slots except the last holds invalid data. */
3289 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3290 peep2_insn_data[i].insn = NULL_RTX;
3291 peep2_current_count = 0;
3293 /* Indicate that the last slot contains live_after data. */
3294 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3295 peep2_current = MAX_INSNS_PER_PEEP2;
3297 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3300 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3301 starting at INSN. Perform the replacement, removing the old insns and
3302 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3303 if the replacement is rejected. */
3305 static rtx_insn *
3306 peep2_attempt (basic_block bb, rtx uncast_insn, int match_len, rtx_insn *attempt)
3308 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3309 int i;
3310 rtx_insn *last, *before_try, *x;
3311 rtx eh_note, as_note;
3312 rtx_insn *old_insn;
3313 rtx_insn *new_insn;
3314 bool was_call = false;
3316 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3317 match more than one insn, or to be split into more than one insn. */
3318 old_insn = as_a <rtx_insn *> (peep2_insn_data[peep2_current].insn);
3319 if (RTX_FRAME_RELATED_P (old_insn))
3321 bool any_note = false;
3322 rtx note;
3324 if (match_len != 0)
3325 return NULL;
3327 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3328 may be in the stream for the purpose of register allocation. */
3329 if (active_insn_p (attempt))
3330 new_insn = attempt;
3331 else
3332 new_insn = next_active_insn (attempt);
3333 if (next_active_insn (new_insn))
3334 return NULL;
3336 /* We have a 1-1 replacement. Copy over any frame-related info. */
3337 RTX_FRAME_RELATED_P (new_insn) = 1;
3339 /* Allow the backend to fill in a note during the split. */
3340 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3341 switch (REG_NOTE_KIND (note))
3343 case REG_FRAME_RELATED_EXPR:
3344 case REG_CFA_DEF_CFA:
3345 case REG_CFA_ADJUST_CFA:
3346 case REG_CFA_OFFSET:
3347 case REG_CFA_REGISTER:
3348 case REG_CFA_EXPRESSION:
3349 case REG_CFA_RESTORE:
3350 case REG_CFA_SET_VDRAP:
3351 any_note = true;
3352 break;
3353 default:
3354 break;
3357 /* If the backend didn't supply a note, copy one over. */
3358 if (!any_note)
3359 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3360 switch (REG_NOTE_KIND (note))
3362 case REG_FRAME_RELATED_EXPR:
3363 case REG_CFA_DEF_CFA:
3364 case REG_CFA_ADJUST_CFA:
3365 case REG_CFA_OFFSET:
3366 case REG_CFA_REGISTER:
3367 case REG_CFA_EXPRESSION:
3368 case REG_CFA_RESTORE:
3369 case REG_CFA_SET_VDRAP:
3370 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3371 any_note = true;
3372 break;
3373 default:
3374 break;
3377 /* If there still isn't a note, make sure the unwind info sees the
3378 same expression as before the split. */
3379 if (!any_note)
3381 rtx old_set, new_set;
3383 /* The old insn had better have been simple, or annotated. */
3384 old_set = single_set (old_insn);
3385 gcc_assert (old_set != NULL);
3387 new_set = single_set (new_insn);
3388 if (!new_set || !rtx_equal_p (new_set, old_set))
3389 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3392 /* Copy prologue/epilogue status. This is required in order to keep
3393 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3394 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3397 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3398 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3399 cfg-related call notes. */
3400 for (i = 0; i <= match_len; ++i)
3402 int j;
3403 rtx note;
3405 j = peep2_buf_position (peep2_current + i);
3406 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3407 if (!CALL_P (old_insn))
3408 continue;
3409 was_call = true;
3411 new_insn = attempt;
3412 while (new_insn != NULL_RTX)
3414 if (CALL_P (new_insn))
3415 break;
3416 new_insn = NEXT_INSN (new_insn);
3419 gcc_assert (new_insn != NULL_RTX);
3421 CALL_INSN_FUNCTION_USAGE (new_insn)
3422 = CALL_INSN_FUNCTION_USAGE (old_insn);
3423 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3425 for (note = REG_NOTES (old_insn);
3426 note;
3427 note = XEXP (note, 1))
3428 switch (REG_NOTE_KIND (note))
3430 case REG_NORETURN:
3431 case REG_SETJMP:
3432 case REG_TM:
3433 add_reg_note (new_insn, REG_NOTE_KIND (note),
3434 XEXP (note, 0));
3435 break;
3436 default:
3437 /* Discard all other reg notes. */
3438 break;
3441 /* Croak if there is another call in the sequence. */
3442 while (++i <= match_len)
3444 j = peep2_buf_position (peep2_current + i);
3445 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3446 gcc_assert (!CALL_P (old_insn));
3448 break;
3451 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3452 move those notes over to the new sequence. */
3453 as_note = NULL;
3454 for (i = match_len; i >= 0; --i)
3456 int j = peep2_buf_position (peep2_current + i);
3457 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3459 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3460 if (as_note)
3461 break;
3464 i = peep2_buf_position (peep2_current + match_len);
3465 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3467 /* Replace the old sequence with the new. */
3468 rtx_insn *peepinsn = as_a <rtx_insn *> (peep2_insn_data[i].insn);
3469 last = emit_insn_after_setloc (attempt,
3470 peep2_insn_data[i].insn,
3471 INSN_LOCATION (peepinsn));
3472 before_try = PREV_INSN (insn);
3473 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3475 /* Re-insert the EH_REGION notes. */
3476 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3478 edge eh_edge;
3479 edge_iterator ei;
3481 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3482 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3483 break;
3485 if (eh_note)
3486 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3488 if (eh_edge)
3489 for (x = last; x != before_try; x = PREV_INSN (x))
3490 if (x != BB_END (bb)
3491 && (can_throw_internal (x)
3492 || can_nonlocal_goto (x)))
3494 edge nfte, nehe;
3495 int flags;
3497 nfte = split_block (bb, x);
3498 flags = (eh_edge->flags
3499 & (EDGE_EH | EDGE_ABNORMAL));
3500 if (CALL_P (x))
3501 flags |= EDGE_ABNORMAL_CALL;
3502 nehe = make_edge (nfte->src, eh_edge->dest,
3503 flags);
3505 nehe->probability = eh_edge->probability;
3506 nfte->probability
3507 = REG_BR_PROB_BASE - nehe->probability;
3509 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3510 bb = nfte->src;
3511 eh_edge = nehe;
3514 /* Converting possibly trapping insn to non-trapping is
3515 possible. Zap dummy outgoing edges. */
3516 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3519 /* Re-insert the ARGS_SIZE notes. */
3520 if (as_note)
3521 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3523 /* If we generated a jump instruction, it won't have
3524 JUMP_LABEL set. Recompute after we're done. */
3525 for (x = last; x != before_try; x = PREV_INSN (x))
3526 if (JUMP_P (x))
3528 peep2_do_rebuild_jump_labels = true;
3529 break;
3532 return last;
3535 /* After performing a replacement in basic block BB, fix up the life
3536 information in our buffer. LAST is the last of the insns that we
3537 emitted as a replacement. PREV is the insn before the start of
3538 the replacement. MATCH_LEN is the number of instructions that were
3539 matched, and which now need to be replaced in the buffer. */
3541 static void
3542 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3543 rtx_insn *prev)
3545 int i = peep2_buf_position (peep2_current + match_len + 1);
3546 rtx_insn *x;
3547 regset_head live;
3549 INIT_REG_SET (&live);
3550 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3552 gcc_assert (peep2_current_count >= match_len + 1);
3553 peep2_current_count -= match_len + 1;
3555 x = last;
3558 if (INSN_P (x))
3560 df_insn_rescan (x);
3561 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3563 peep2_current_count++;
3564 if (--i < 0)
3565 i = MAX_INSNS_PER_PEEP2;
3566 peep2_insn_data[i].insn = x;
3567 df_simulate_one_insn_backwards (bb, x, &live);
3568 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3571 x = PREV_INSN (x);
3573 while (x != prev);
3574 CLEAR_REG_SET (&live);
3576 peep2_current = i;
3579 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3580 Return true if we added it, false otherwise. The caller will try to match
3581 peepholes against the buffer if we return false; otherwise it will try to
3582 add more instructions to the buffer. */
3584 static bool
3585 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3587 int pos;
3589 /* Once we have filled the maximum number of insns the buffer can hold,
3590 allow the caller to match the insns against peepholes. We wait until
3591 the buffer is full in case the target has similar peepholes of different
3592 length; we always want to match the longest if possible. */
3593 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3594 return false;
3596 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3597 any other pattern, lest it change the semantics of the frame info. */
3598 if (RTX_FRAME_RELATED_P (insn))
3600 /* Let the buffer drain first. */
3601 if (peep2_current_count > 0)
3602 return false;
3603 /* Now the insn will be the only thing in the buffer. */
3606 pos = peep2_buf_position (peep2_current + peep2_current_count);
3607 peep2_insn_data[pos].insn = insn;
3608 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3609 peep2_current_count++;
3611 df_simulate_one_insn_forwards (bb, as_a <rtx_insn *> (insn), live);
3612 return true;
3615 /* Perform the peephole2 optimization pass. */
3617 static void
3618 peephole2_optimize (void)
3620 rtx_insn *insn;
3621 bitmap live;
3622 int i;
3623 basic_block bb;
3625 peep2_do_cleanup_cfg = false;
3626 peep2_do_rebuild_jump_labels = false;
3628 df_set_flags (DF_LR_RUN_DCE);
3629 df_note_add_problem ();
3630 df_analyze ();
3632 /* Initialize the regsets we're going to use. */
3633 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3634 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3635 search_ofs = 0;
3636 live = BITMAP_ALLOC (&reg_obstack);
3638 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3640 bool past_end = false;
3641 int pos;
3643 rtl_profile_for_bb (bb);
3645 /* Start up propagation. */
3646 bitmap_copy (live, DF_LR_IN (bb));
3647 df_simulate_initialize_forwards (bb, live);
3648 peep2_reinit_state (live);
3650 insn = BB_HEAD (bb);
3651 for (;;)
3653 rtx_insn *attempt;
3654 rtx head;
3655 int match_len;
3657 if (!past_end && !NONDEBUG_INSN_P (insn))
3659 next_insn:
3660 insn = NEXT_INSN (insn);
3661 if (insn == NEXT_INSN (BB_END (bb)))
3662 past_end = true;
3663 continue;
3665 if (!past_end && peep2_fill_buffer (bb, insn, live))
3666 goto next_insn;
3668 /* If we did not fill an empty buffer, it signals the end of the
3669 block. */
3670 if (peep2_current_count == 0)
3671 break;
3673 /* The buffer filled to the current maximum, so try to match. */
3675 pos = peep2_buf_position (peep2_current + peep2_current_count);
3676 peep2_insn_data[pos].insn = PEEP2_EOB;
3677 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3679 /* Match the peephole. */
3680 head = peep2_insn_data[peep2_current].insn;
3681 attempt = safe_as_a <rtx_insn *> (
3682 peephole2_insns (PATTERN (head), head, &match_len));
3683 if (attempt != NULL)
3685 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3686 if (last)
3688 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3689 continue;
3693 /* No match: advance the buffer by one insn. */
3694 peep2_current = peep2_buf_position (peep2_current + 1);
3695 peep2_current_count--;
3699 default_rtl_profile ();
3700 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3701 BITMAP_FREE (peep2_insn_data[i].live_before);
3702 BITMAP_FREE (live);
3703 if (peep2_do_rebuild_jump_labels)
3704 rebuild_jump_labels (get_insns ());
3705 if (peep2_do_cleanup_cfg)
3706 cleanup_cfg (CLEANUP_CFG_CHANGED);
3708 #endif /* HAVE_peephole2 */
3710 /* Common predicates for use with define_bypass. */
3712 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3713 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3714 must be either a single_set or a PARALLEL with SETs inside. */
3717 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3719 rtx out_set, in_set;
3720 rtx out_pat, in_pat;
3721 rtx out_exp, in_exp;
3722 int i, j;
3724 in_set = single_set (in_insn);
3725 if (in_set)
3727 if (!MEM_P (SET_DEST (in_set)))
3728 return false;
3730 out_set = single_set (out_insn);
3731 if (out_set)
3733 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3734 return false;
3736 else
3738 out_pat = PATTERN (out_insn);
3740 if (GET_CODE (out_pat) != PARALLEL)
3741 return false;
3743 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3745 out_exp = XVECEXP (out_pat, 0, i);
3747 if (GET_CODE (out_exp) == CLOBBER)
3748 continue;
3750 gcc_assert (GET_CODE (out_exp) == SET);
3752 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3753 return false;
3757 else
3759 in_pat = PATTERN (in_insn);
3760 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3762 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3764 in_exp = XVECEXP (in_pat, 0, i);
3766 if (GET_CODE (in_exp) == CLOBBER)
3767 continue;
3769 gcc_assert (GET_CODE (in_exp) == SET);
3771 if (!MEM_P (SET_DEST (in_exp)))
3772 return false;
3774 out_set = single_set (out_insn);
3775 if (out_set)
3777 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3778 return false;
3780 else
3782 out_pat = PATTERN (out_insn);
3783 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3785 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3787 out_exp = XVECEXP (out_pat, 0, j);
3789 if (GET_CODE (out_exp) == CLOBBER)
3790 continue;
3792 gcc_assert (GET_CODE (out_exp) == SET);
3794 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3795 return false;
3801 return true;
3804 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3805 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3806 or multiple set; IN_INSN should be single_set for truth, but for convenience
3807 of insn categorization may be any JUMP or CALL insn. */
3810 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3812 rtx out_set, in_set;
3814 in_set = single_set (in_insn);
3815 if (! in_set)
3817 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3818 return false;
3821 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3822 return false;
3823 in_set = SET_SRC (in_set);
3825 out_set = single_set (out_insn);
3826 if (out_set)
3828 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3829 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3830 return false;
3832 else
3834 rtx out_pat;
3835 int i;
3837 out_pat = PATTERN (out_insn);
3838 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3840 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3842 rtx exp = XVECEXP (out_pat, 0, i);
3844 if (GET_CODE (exp) == CLOBBER)
3845 continue;
3847 gcc_assert (GET_CODE (exp) == SET);
3849 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3850 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3851 return false;
3855 return true;
3858 static unsigned int
3859 rest_of_handle_peephole2 (void)
3861 #ifdef HAVE_peephole2
3862 peephole2_optimize ();
3863 #endif
3864 return 0;
3867 namespace {
3869 const pass_data pass_data_peephole2 =
3871 RTL_PASS, /* type */
3872 "peephole2", /* name */
3873 OPTGROUP_NONE, /* optinfo_flags */
3874 TV_PEEPHOLE2, /* tv_id */
3875 0, /* properties_required */
3876 0, /* properties_provided */
3877 0, /* properties_destroyed */
3878 0, /* todo_flags_start */
3879 TODO_df_finish, /* todo_flags_finish */
3882 class pass_peephole2 : public rtl_opt_pass
3884 public:
3885 pass_peephole2 (gcc::context *ctxt)
3886 : rtl_opt_pass (pass_data_peephole2, ctxt)
3889 /* opt_pass methods: */
3890 /* The epiphany backend creates a second instance of this pass, so we need
3891 a clone method. */
3892 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3893 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3894 virtual unsigned int execute (function *)
3896 return rest_of_handle_peephole2 ();
3899 }; // class pass_peephole2
3901 } // anon namespace
3903 rtl_opt_pass *
3904 make_pass_peephole2 (gcc::context *ctxt)
3906 return new pass_peephole2 (ctxt);
3909 namespace {
3911 const pass_data pass_data_split_all_insns =
3913 RTL_PASS, /* type */
3914 "split1", /* name */
3915 OPTGROUP_NONE, /* optinfo_flags */
3916 TV_NONE, /* tv_id */
3917 0, /* properties_required */
3918 0, /* properties_provided */
3919 0, /* properties_destroyed */
3920 0, /* todo_flags_start */
3921 0, /* todo_flags_finish */
3924 class pass_split_all_insns : public rtl_opt_pass
3926 public:
3927 pass_split_all_insns (gcc::context *ctxt)
3928 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3931 /* opt_pass methods: */
3932 /* The epiphany backend creates a second instance of this pass, so
3933 we need a clone method. */
3934 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3935 virtual unsigned int execute (function *)
3937 split_all_insns ();
3938 return 0;
3941 }; // class pass_split_all_insns
3943 } // anon namespace
3945 rtl_opt_pass *
3946 make_pass_split_all_insns (gcc::context *ctxt)
3948 return new pass_split_all_insns (ctxt);
3951 static unsigned int
3952 rest_of_handle_split_after_reload (void)
3954 /* If optimizing, then go ahead and split insns now. */
3955 #ifndef STACK_REGS
3956 if (optimize > 0)
3957 #endif
3958 split_all_insns ();
3959 return 0;
3962 namespace {
3964 const pass_data pass_data_split_after_reload =
3966 RTL_PASS, /* type */
3967 "split2", /* name */
3968 OPTGROUP_NONE, /* optinfo_flags */
3969 TV_NONE, /* tv_id */
3970 0, /* properties_required */
3971 0, /* properties_provided */
3972 0, /* properties_destroyed */
3973 0, /* todo_flags_start */
3974 0, /* todo_flags_finish */
3977 class pass_split_after_reload : public rtl_opt_pass
3979 public:
3980 pass_split_after_reload (gcc::context *ctxt)
3981 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3984 /* opt_pass methods: */
3985 virtual unsigned int execute (function *)
3987 return rest_of_handle_split_after_reload ();
3990 }; // class pass_split_after_reload
3992 } // anon namespace
3994 rtl_opt_pass *
3995 make_pass_split_after_reload (gcc::context *ctxt)
3997 return new pass_split_after_reload (ctxt);
4000 namespace {
4002 const pass_data pass_data_split_before_regstack =
4004 RTL_PASS, /* type */
4005 "split3", /* name */
4006 OPTGROUP_NONE, /* optinfo_flags */
4007 TV_NONE, /* tv_id */
4008 0, /* properties_required */
4009 0, /* properties_provided */
4010 0, /* properties_destroyed */
4011 0, /* todo_flags_start */
4012 0, /* todo_flags_finish */
4015 class pass_split_before_regstack : public rtl_opt_pass
4017 public:
4018 pass_split_before_regstack (gcc::context *ctxt)
4019 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4022 /* opt_pass methods: */
4023 virtual bool gate (function *);
4024 virtual unsigned int execute (function *)
4026 split_all_insns ();
4027 return 0;
4030 }; // class pass_split_before_regstack
4032 bool
4033 pass_split_before_regstack::gate (function *)
4035 #if HAVE_ATTR_length && defined (STACK_REGS)
4036 /* If flow2 creates new instructions which need splitting
4037 and scheduling after reload is not done, they might not be
4038 split until final which doesn't allow splitting
4039 if HAVE_ATTR_length. */
4040 # ifdef INSN_SCHEDULING
4041 return (optimize && !flag_schedule_insns_after_reload);
4042 # else
4043 return (optimize);
4044 # endif
4045 #else
4046 return 0;
4047 #endif
4050 } // anon namespace
4052 rtl_opt_pass *
4053 make_pass_split_before_regstack (gcc::context *ctxt)
4055 return new pass_split_before_regstack (ctxt);
4058 static unsigned int
4059 rest_of_handle_split_before_sched2 (void)
4061 #ifdef INSN_SCHEDULING
4062 split_all_insns ();
4063 #endif
4064 return 0;
4067 namespace {
4069 const pass_data pass_data_split_before_sched2 =
4071 RTL_PASS, /* type */
4072 "split4", /* name */
4073 OPTGROUP_NONE, /* optinfo_flags */
4074 TV_NONE, /* tv_id */
4075 0, /* properties_required */
4076 0, /* properties_provided */
4077 0, /* properties_destroyed */
4078 0, /* todo_flags_start */
4079 0, /* todo_flags_finish */
4082 class pass_split_before_sched2 : public rtl_opt_pass
4084 public:
4085 pass_split_before_sched2 (gcc::context *ctxt)
4086 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4089 /* opt_pass methods: */
4090 virtual bool gate (function *)
4092 #ifdef INSN_SCHEDULING
4093 return optimize > 0 && flag_schedule_insns_after_reload;
4094 #else
4095 return false;
4096 #endif
4099 virtual unsigned int execute (function *)
4101 return rest_of_handle_split_before_sched2 ();
4104 }; // class pass_split_before_sched2
4106 } // anon namespace
4108 rtl_opt_pass *
4109 make_pass_split_before_sched2 (gcc::context *ctxt)
4111 return new pass_split_before_sched2 (ctxt);
4114 namespace {
4116 const pass_data pass_data_split_for_shorten_branches =
4118 RTL_PASS, /* type */
4119 "split5", /* name */
4120 OPTGROUP_NONE, /* optinfo_flags */
4121 TV_NONE, /* tv_id */
4122 0, /* properties_required */
4123 0, /* properties_provided */
4124 0, /* properties_destroyed */
4125 0, /* todo_flags_start */
4126 0, /* todo_flags_finish */
4129 class pass_split_for_shorten_branches : public rtl_opt_pass
4131 public:
4132 pass_split_for_shorten_branches (gcc::context *ctxt)
4133 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4136 /* opt_pass methods: */
4137 virtual bool gate (function *)
4139 /* The placement of the splitting that we do for shorten_branches
4140 depends on whether regstack is used by the target or not. */
4141 #if HAVE_ATTR_length && !defined (STACK_REGS)
4142 return true;
4143 #else
4144 return false;
4145 #endif
4148 virtual unsigned int execute (function *)
4150 return split_all_insns_noflow ();
4153 }; // class pass_split_for_shorten_branches
4155 } // anon namespace
4157 rtl_opt_pass *
4158 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4160 return new pass_split_for_shorten_branches (ctxt);
4163 /* (Re)initialize the target information after a change in target. */
4165 void
4166 recog_init ()
4168 /* The information is zero-initialized, so we don't need to do anything
4169 first time round. */
4170 if (!this_target_recog->x_initialized)
4172 this_target_recog->x_initialized = true;
4173 return;
4175 memset (this_target_recog->x_bool_attr_masks, 0,
4176 sizeof (this_target_recog->x_bool_attr_masks));
4177 for (int i = 0; i < LAST_INSN_CODE; ++i)
4178 if (this_target_recog->x_op_alt[i])
4180 free (this_target_recog->x_op_alt[i]);
4181 this_target_recog->x_op_alt[i] = 0;