2013-06-20 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-into-ssa.c
blob4c630a3130ee1bde71b59819717a91221004456d
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "bitmap.h"
33 #include "tree-flow.h"
34 #include "gimple.h"
35 #include "tree-inline.h"
36 #include "hash-table.h"
37 #include "tree-pass.h"
38 #include "cfgloop.h"
39 #include "domwalk.h"
40 #include "params.h"
41 #include "diagnostic-core.h"
44 /* This file builds the SSA form for a function as described in:
45 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
46 Computing Static Single Assignment Form and the Control Dependence
47 Graph. ACM Transactions on Programming Languages and Systems,
48 13(4):451-490, October 1991. */
50 /* Structure to map a variable VAR to the set of blocks that contain
51 definitions for VAR. */
52 struct def_blocks_d
54 /* Blocks that contain definitions of VAR. Bit I will be set if the
55 Ith block contains a definition of VAR. */
56 bitmap def_blocks;
58 /* Blocks that contain a PHI node for VAR. */
59 bitmap phi_blocks;
61 /* Blocks where VAR is live-on-entry. Similar semantics as
62 DEF_BLOCKS. */
63 bitmap livein_blocks;
66 typedef struct def_blocks_d *def_blocks_p;
69 /* Stack of trees used to restore the global currdefs to its original
70 state after completing rewriting of a block and its dominator
71 children. Its elements have the following properties:
73 - An SSA_NAME (N) indicates that the current definition of the
74 underlying variable should be set to the given SSA_NAME. If the
75 symbol associated with the SSA_NAME is not a GIMPLE register, the
76 next slot in the stack must be a _DECL node (SYM). In this case,
77 the name N in the previous slot is the current reaching
78 definition for SYM.
80 - A _DECL node indicates that the underlying variable has no
81 current definition.
83 - A NULL node at the top entry is used to mark the last slot
84 associated with the current block. */
85 static vec<tree> block_defs_stack;
88 /* Set of existing SSA names being replaced by update_ssa. */
89 static sbitmap old_ssa_names;
91 /* Set of new SSA names being added by update_ssa. Note that both
92 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
93 the operations done on them are presence tests. */
94 static sbitmap new_ssa_names;
96 static sbitmap interesting_blocks;
98 /* Set of SSA names that have been marked to be released after they
99 were registered in the replacement table. They will be finally
100 released after we finish updating the SSA web. */
101 static bitmap names_to_release;
103 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
104 the to basic block with index I. Allocated once per compilation, *not*
105 released between different functions. */
106 static vec<gimple_vec> phis_to_rewrite;
108 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
109 static bitmap blocks_with_phis_to_rewrite;
111 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
112 to grow as the callers to create_new_def_for will create new names on
113 the fly.
114 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
115 need to find a reasonable growth strategy. */
116 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
119 /* The function the SSA updating data structures have been initialized for.
120 NULL if they need to be initialized by create_new_def_for. */
121 static struct function *update_ssa_initialized_fn = NULL;
123 /* Global data to attach to the main dominator walk structure. */
124 struct mark_def_sites_global_data
126 /* This bitmap contains the variables which are set before they
127 are used in a basic block. */
128 bitmap kills;
131 /* Information stored for both SSA names and decls. */
132 struct common_info_d
134 /* This field indicates whether or not the variable may need PHI nodes.
135 See the enum's definition for more detailed information about the
136 states. */
137 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
139 /* The current reaching definition replacing this var. */
140 tree current_def;
142 /* Definitions for this var. */
143 struct def_blocks_d def_blocks;
146 /* The information associated with decls and SSA names. */
147 typedef struct common_info_d *common_info_p;
149 /* Information stored for decls. */
150 struct var_info_d
152 /* The variable. */
153 tree var;
155 /* Information stored for both SSA names and decls. */
156 struct common_info_d info;
159 /* The information associated with decls. */
160 typedef struct var_info_d *var_info_p;
163 /* VAR_INFOS hashtable helpers. */
165 struct var_info_hasher : typed_free_remove <var_info_d>
167 typedef var_info_d value_type;
168 typedef var_info_d compare_type;
169 static inline hashval_t hash (const value_type *);
170 static inline bool equal (const value_type *, const compare_type *);
173 inline hashval_t
174 var_info_hasher::hash (const value_type *p)
176 return DECL_UID (p->var);
179 inline bool
180 var_info_hasher::equal (const value_type *p1, const compare_type *p2)
182 return p1->var == p2->var;
186 /* Each entry in VAR_INFOS contains an element of type STRUCT
187 VAR_INFO_D. */
188 static hash_table <var_info_hasher> var_infos;
191 /* Information stored for SSA names. */
192 struct ssa_name_info
194 /* Age of this record (so that info_for_ssa_name table can be cleared
195 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
196 are assumed to be null. */
197 unsigned age;
199 /* Replacement mappings, allocated from update_ssa_obstack. */
200 bitmap repl_set;
202 /* Information stored for both SSA names and decls. */
203 struct common_info_d info;
206 /* The information associated with names. */
207 typedef struct ssa_name_info *ssa_name_info_p;
209 static vec<ssa_name_info_p> info_for_ssa_name;
210 static unsigned current_info_for_ssa_name_age;
212 static bitmap_obstack update_ssa_obstack;
214 /* The set of blocks affected by update_ssa. */
215 static bitmap blocks_to_update;
217 /* The main entry point to the SSA renamer (rewrite_blocks) may be
218 called several times to do different, but related, tasks.
219 Initially, we need it to rename the whole program into SSA form.
220 At other times, we may need it to only rename into SSA newly
221 exposed symbols. Finally, we can also call it to incrementally fix
222 an already built SSA web. */
223 enum rewrite_mode {
224 /* Convert the whole function into SSA form. */
225 REWRITE_ALL,
227 /* Incrementally update the SSA web by replacing existing SSA
228 names with new ones. See update_ssa for details. */
229 REWRITE_UPDATE
235 /* Prototypes for debugging functions. */
236 extern void dump_tree_ssa (FILE *);
237 extern void debug_tree_ssa (void);
238 extern void debug_def_blocks (void);
239 extern void dump_tree_ssa_stats (FILE *);
240 extern void debug_tree_ssa_stats (void);
241 extern void dump_update_ssa (FILE *);
242 extern void debug_update_ssa (void);
243 extern void dump_names_replaced_by (FILE *, tree);
244 extern void debug_names_replaced_by (tree);
245 extern void dump_var_infos (FILE *);
246 extern void debug_var_infos (void);
247 extern void dump_defs_stack (FILE *, int);
248 extern void debug_defs_stack (int);
249 extern void dump_currdefs (FILE *);
250 extern void debug_currdefs (void);
253 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
254 static bitmap symbols_to_rename_set;
255 static vec<tree> symbols_to_rename;
257 /* Mark SYM for renaming. */
259 static void
260 mark_for_renaming (tree sym)
262 if (!symbols_to_rename_set)
263 symbols_to_rename_set = BITMAP_ALLOC (NULL);
264 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
265 symbols_to_rename.safe_push (sym);
268 /* Return true if SYM is marked for renaming. */
270 static bool
271 marked_for_renaming (tree sym)
273 if (!symbols_to_rename_set || sym == NULL_TREE)
274 return false;
275 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
279 /* Return true if STMT needs to be rewritten. When renaming a subset
280 of the variables, not all statements will be processed. This is
281 decided in mark_def_sites. */
283 static inline bool
284 rewrite_uses_p (gimple stmt)
286 return gimple_visited_p (stmt);
290 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
292 static inline void
293 set_rewrite_uses (gimple stmt, bool rewrite_p)
295 gimple_set_visited (stmt, rewrite_p);
299 /* Return true if the DEFs created by statement STMT should be
300 registered when marking new definition sites. This is slightly
301 different than rewrite_uses_p: it's used by update_ssa to
302 distinguish statements that need to have both uses and defs
303 processed from those that only need to have their defs processed.
304 Statements that define new SSA names only need to have their defs
305 registered, but they don't need to have their uses renamed. */
307 static inline bool
308 register_defs_p (gimple stmt)
310 return gimple_plf (stmt, GF_PLF_1) != 0;
314 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
316 static inline void
317 set_register_defs (gimple stmt, bool register_defs_p)
319 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
323 /* Get the information associated with NAME. */
325 static inline ssa_name_info_p
326 get_ssa_name_ann (tree name)
328 unsigned ver = SSA_NAME_VERSION (name);
329 unsigned len = info_for_ssa_name.length ();
330 struct ssa_name_info *info;
332 /* Re-allocate the vector at most once per update/into-SSA. */
333 if (ver >= len)
334 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
336 /* But allocate infos lazily. */
337 info = info_for_ssa_name[ver];
338 if (!info)
340 info = XCNEW (struct ssa_name_info);
341 info->age = current_info_for_ssa_name_age;
342 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
343 info_for_ssa_name[ver] = info;
346 if (info->age < current_info_for_ssa_name_age)
348 info->age = current_info_for_ssa_name_age;
349 info->repl_set = NULL;
350 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
351 info->info.current_def = NULL_TREE;
352 info->info.def_blocks.def_blocks = NULL;
353 info->info.def_blocks.phi_blocks = NULL;
354 info->info.def_blocks.livein_blocks = NULL;
357 return info;
360 /* Return and allocate the auxiliar information for DECL. */
362 static inline var_info_p
363 get_var_info (tree decl)
365 struct var_info_d vi;
366 var_info_d **slot;
367 vi.var = decl;
368 slot = var_infos.find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
369 if (*slot == NULL)
371 var_info_p v = XCNEW (struct var_info_d);
372 v->var = decl;
373 *slot = v;
374 return v;
376 return *slot;
380 /* Clears info for SSA names. */
382 static void
383 clear_ssa_name_info (void)
385 current_info_for_ssa_name_age++;
387 /* If current_info_for_ssa_name_age wraps we use stale information.
388 Asser that this does not happen. */
389 gcc_assert (current_info_for_ssa_name_age != 0);
393 /* Get access to the auxiliar information stored per SSA name or decl. */
395 static inline common_info_p
396 get_common_info (tree var)
398 if (TREE_CODE (var) == SSA_NAME)
399 return &get_ssa_name_ann (var)->info;
400 else
401 return &get_var_info (var)->info;
405 /* Return the current definition for VAR. */
407 tree
408 get_current_def (tree var)
410 return get_common_info (var)->current_def;
414 /* Sets current definition of VAR to DEF. */
416 void
417 set_current_def (tree var, tree def)
419 get_common_info (var)->current_def = def;
422 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
423 all statements in basic block BB. */
425 static void
426 initialize_flags_in_bb (basic_block bb)
428 gimple stmt;
429 gimple_stmt_iterator gsi;
431 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
433 gimple phi = gsi_stmt (gsi);
434 set_rewrite_uses (phi, false);
435 set_register_defs (phi, false);
438 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
440 stmt = gsi_stmt (gsi);
442 /* We are going to use the operand cache API, such as
443 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
444 cache for each statement should be up-to-date. */
445 gcc_checking_assert (!gimple_modified_p (stmt));
446 set_rewrite_uses (stmt, false);
447 set_register_defs (stmt, false);
451 /* Mark block BB as interesting for update_ssa. */
453 static void
454 mark_block_for_update (basic_block bb)
456 gcc_checking_assert (blocks_to_update != NULL);
457 if (!bitmap_set_bit (blocks_to_update, bb->index))
458 return;
459 initialize_flags_in_bb (bb);
462 /* Return the set of blocks where variable VAR is defined and the blocks
463 where VAR is live on entry (livein). If no entry is found in
464 DEF_BLOCKS, a new one is created and returned. */
466 static inline struct def_blocks_d *
467 get_def_blocks_for (common_info_p info)
469 struct def_blocks_d *db_p = &info->def_blocks;
470 if (!db_p->def_blocks)
472 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
473 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
474 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
477 return db_p;
481 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
482 VAR is defined by a PHI node. */
484 static void
485 set_def_block (tree var, basic_block bb, bool phi_p)
487 struct def_blocks_d *db_p;
488 common_info_p info;
490 info = get_common_info (var);
491 db_p = get_def_blocks_for (info);
493 /* Set the bit corresponding to the block where VAR is defined. */
494 bitmap_set_bit (db_p->def_blocks, bb->index);
495 if (phi_p)
496 bitmap_set_bit (db_p->phi_blocks, bb->index);
498 /* Keep track of whether or not we may need to insert PHI nodes.
500 If we are in the UNKNOWN state, then this is the first definition
501 of VAR. Additionally, we have not seen any uses of VAR yet, so
502 we do not need a PHI node for this variable at this time (i.e.,
503 transition to NEED_PHI_STATE_NO).
505 If we are in any other state, then we either have multiple definitions
506 of this variable occurring in different blocks or we saw a use of the
507 variable which was not dominated by the block containing the
508 definition(s). In this case we may need a PHI node, so enter
509 state NEED_PHI_STATE_MAYBE. */
510 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
511 info->need_phi_state = NEED_PHI_STATE_NO;
512 else
513 info->need_phi_state = NEED_PHI_STATE_MAYBE;
517 /* Mark block BB as having VAR live at the entry to BB. */
519 static void
520 set_livein_block (tree var, basic_block bb)
522 common_info_p info;
523 struct def_blocks_d *db_p;
525 info = get_common_info (var);
526 db_p = get_def_blocks_for (info);
528 /* Set the bit corresponding to the block where VAR is live in. */
529 bitmap_set_bit (db_p->livein_blocks, bb->index);
531 /* Keep track of whether or not we may need to insert PHI nodes.
533 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
534 by the single block containing the definition(s) of this variable. If
535 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
536 NEED_PHI_STATE_MAYBE. */
537 if (info->need_phi_state == NEED_PHI_STATE_NO)
539 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
541 if (def_block_index == -1
542 || ! dominated_by_p (CDI_DOMINATORS, bb,
543 BASIC_BLOCK (def_block_index)))
544 info->need_phi_state = NEED_PHI_STATE_MAYBE;
546 else
547 info->need_phi_state = NEED_PHI_STATE_MAYBE;
551 /* Return true if NAME is in OLD_SSA_NAMES. */
553 static inline bool
554 is_old_name (tree name)
556 unsigned ver = SSA_NAME_VERSION (name);
557 if (!new_ssa_names)
558 return false;
559 return (ver < SBITMAP_SIZE (new_ssa_names)
560 && bitmap_bit_p (old_ssa_names, ver));
564 /* Return true if NAME is in NEW_SSA_NAMES. */
566 static inline bool
567 is_new_name (tree name)
569 unsigned ver = SSA_NAME_VERSION (name);
570 if (!new_ssa_names)
571 return false;
572 return (ver < SBITMAP_SIZE (new_ssa_names)
573 && bitmap_bit_p (new_ssa_names, ver));
577 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
579 static inline bitmap
580 names_replaced_by (tree new_tree)
582 return get_ssa_name_ann (new_tree)->repl_set;
586 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
588 static inline void
589 add_to_repl_tbl (tree new_tree, tree old)
591 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
592 if (!*set)
593 *set = BITMAP_ALLOC (&update_ssa_obstack);
594 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
598 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
599 represents the set of names O_1 ... O_j replaced by N_i. This is
600 used by update_ssa and its helpers to introduce new SSA names in an
601 already formed SSA web. */
603 static void
604 add_new_name_mapping (tree new_tree, tree old)
606 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
607 gcc_checking_assert (new_tree != old
608 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
610 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
611 caller may have created new names since the set was created. */
612 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
614 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
615 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
616 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
619 /* Update the REPL_TBL table. */
620 add_to_repl_tbl (new_tree, old);
622 /* If OLD had already been registered as a new name, then all the
623 names that OLD replaces should also be replaced by NEW_TREE. */
624 if (is_new_name (old))
625 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
627 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
628 respectively. */
629 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
630 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
634 /* Call back for walk_dominator_tree used to collect definition sites
635 for every variable in the function. For every statement S in block
638 1- Variables defined by S in the DEFS of S are marked in the bitmap
639 KILLS.
641 2- If S uses a variable VAR and there is no preceding kill of VAR,
642 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
644 This information is used to determine which variables are live
645 across block boundaries to reduce the number of PHI nodes
646 we create. */
648 static void
649 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
651 tree def;
652 use_operand_p use_p;
653 ssa_op_iter iter;
655 /* Since this is the first time that we rewrite the program into SSA
656 form, force an operand scan on every statement. */
657 update_stmt (stmt);
659 gcc_checking_assert (blocks_to_update == NULL);
660 set_register_defs (stmt, false);
661 set_rewrite_uses (stmt, false);
663 if (is_gimple_debug (stmt))
665 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
667 tree sym = USE_FROM_PTR (use_p);
668 gcc_checking_assert (DECL_P (sym));
669 set_rewrite_uses (stmt, true);
671 if (rewrite_uses_p (stmt))
672 bitmap_set_bit (interesting_blocks, bb->index);
673 return;
676 /* If a variable is used before being set, then the variable is live
677 across a block boundary, so mark it live-on-entry to BB. */
678 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
680 tree sym = USE_FROM_PTR (use_p);
681 gcc_checking_assert (DECL_P (sym));
682 if (!bitmap_bit_p (kills, DECL_UID (sym)))
683 set_livein_block (sym, bb);
684 set_rewrite_uses (stmt, true);
687 /* Now process the defs. Mark BB as the definition block and add
688 each def to the set of killed symbols. */
689 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
691 gcc_checking_assert (DECL_P (def));
692 set_def_block (def, bb, false);
693 bitmap_set_bit (kills, DECL_UID (def));
694 set_register_defs (stmt, true);
697 /* If we found the statement interesting then also mark the block BB
698 as interesting. */
699 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
700 bitmap_set_bit (interesting_blocks, bb->index);
703 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
704 in the dfs numbering of the dominance tree. */
706 struct dom_dfsnum
708 /* Basic block whose index this entry corresponds to. */
709 unsigned bb_index;
711 /* The dfs number of this node. */
712 unsigned dfs_num;
715 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
716 for qsort. */
718 static int
719 cmp_dfsnum (const void *a, const void *b)
721 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
722 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
724 return (int) da->dfs_num - (int) db->dfs_num;
727 /* Among the intervals starting at the N points specified in DEFS, find
728 the one that contains S, and return its bb_index. */
730 static unsigned
731 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
733 unsigned f = 0, t = n, m;
735 while (t > f + 1)
737 m = (f + t) / 2;
738 if (defs[m].dfs_num <= s)
739 f = m;
740 else
741 t = m;
744 return defs[f].bb_index;
747 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
748 KILLS is a bitmap of blocks where the value is defined before any use. */
750 static void
751 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
753 vec<int> worklist;
754 bitmap_iterator bi;
755 unsigned i, b, p, u, top;
756 bitmap live_phis;
757 basic_block def_bb, use_bb;
758 edge e;
759 edge_iterator ei;
760 bitmap to_remove;
761 struct dom_dfsnum *defs;
762 unsigned n_defs, adef;
764 if (bitmap_empty_p (uses))
766 bitmap_clear (phis);
767 return;
770 /* The phi must dominate a use, or an argument of a live phi. Also, we
771 do not create any phi nodes in def blocks, unless they are also livein. */
772 to_remove = BITMAP_ALLOC (NULL);
773 bitmap_and_compl (to_remove, kills, uses);
774 bitmap_and_compl_into (phis, to_remove);
775 if (bitmap_empty_p (phis))
777 BITMAP_FREE (to_remove);
778 return;
781 /* We want to remove the unnecessary phi nodes, but we do not want to compute
782 liveness information, as that may be linear in the size of CFG, and if
783 there are lot of different variables to rewrite, this may lead to quadratic
784 behavior.
786 Instead, we basically emulate standard dce. We put all uses to worklist,
787 then for each of them find the nearest def that dominates them. If this
788 def is a phi node, we mark it live, and if it was not live before, we
789 add the predecessors of its basic block to the worklist.
791 To quickly locate the nearest def that dominates use, we use dfs numbering
792 of the dominance tree (that is already available in order to speed up
793 queries). For each def, we have the interval given by the dfs number on
794 entry to and on exit from the corresponding subtree in the dominance tree.
795 The nearest dominator for a given use is the smallest of these intervals
796 that contains entry and exit dfs numbers for the basic block with the use.
797 If we store the bounds for all the uses to an array and sort it, we can
798 locate the nearest dominating def in logarithmic time by binary search.*/
799 bitmap_ior (to_remove, kills, phis);
800 n_defs = bitmap_count_bits (to_remove);
801 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
802 defs[0].bb_index = 1;
803 defs[0].dfs_num = 0;
804 adef = 1;
805 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
807 def_bb = BASIC_BLOCK (i);
808 defs[adef].bb_index = i;
809 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
810 defs[adef + 1].bb_index = i;
811 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
812 adef += 2;
814 BITMAP_FREE (to_remove);
815 gcc_assert (adef == 2 * n_defs + 1);
816 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
817 gcc_assert (defs[0].bb_index == 1);
819 /* Now each DEFS entry contains the number of the basic block to that the
820 dfs number corresponds. Change them to the number of basic block that
821 corresponds to the interval following the dfs number. Also, for the
822 dfs_out numbers, increase the dfs number by one (so that it corresponds
823 to the start of the following interval, not to the end of the current
824 one). We use WORKLIST as a stack. */
825 worklist.create (n_defs + 1);
826 worklist.quick_push (1);
827 top = 1;
828 n_defs = 1;
829 for (i = 1; i < adef; i++)
831 b = defs[i].bb_index;
832 if (b == top)
834 /* This is a closing element. Interval corresponding to the top
835 of the stack after removing it follows. */
836 worklist.pop ();
837 top = worklist[worklist.length () - 1];
838 defs[n_defs].bb_index = top;
839 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
841 else
843 /* Opening element. Nothing to do, just push it to the stack and move
844 it to the correct position. */
845 defs[n_defs].bb_index = defs[i].bb_index;
846 defs[n_defs].dfs_num = defs[i].dfs_num;
847 worklist.quick_push (b);
848 top = b;
851 /* If this interval starts at the same point as the previous one, cancel
852 the previous one. */
853 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
854 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
855 else
856 n_defs++;
858 worklist.pop ();
859 gcc_assert (worklist.is_empty ());
861 /* Now process the uses. */
862 live_phis = BITMAP_ALLOC (NULL);
863 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
865 worklist.safe_push (i);
868 while (!worklist.is_empty ())
870 b = worklist.pop ();
871 if (b == ENTRY_BLOCK)
872 continue;
874 /* If there is a phi node in USE_BB, it is made live. Otherwise,
875 find the def that dominates the immediate dominator of USE_BB
876 (the kill in USE_BB does not dominate the use). */
877 if (bitmap_bit_p (phis, b))
878 p = b;
879 else
881 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
882 p = find_dfsnum_interval (defs, n_defs,
883 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
884 if (!bitmap_bit_p (phis, p))
885 continue;
888 /* If the phi node is already live, there is nothing to do. */
889 if (!bitmap_set_bit (live_phis, p))
890 continue;
892 /* Add the new uses to the worklist. */
893 def_bb = BASIC_BLOCK (p);
894 FOR_EACH_EDGE (e, ei, def_bb->preds)
896 u = e->src->index;
897 if (bitmap_bit_p (uses, u))
898 continue;
900 /* In case there is a kill directly in the use block, do not record
901 the use (this is also necessary for correctness, as we assume that
902 uses dominated by a def directly in their block have been filtered
903 out before). */
904 if (bitmap_bit_p (kills, u))
905 continue;
907 bitmap_set_bit (uses, u);
908 worklist.safe_push (u);
912 worklist.release ();
913 bitmap_copy (phis, live_phis);
914 BITMAP_FREE (live_phis);
915 free (defs);
918 /* Return the set of blocks where variable VAR is defined and the blocks
919 where VAR is live on entry (livein). Return NULL, if no entry is
920 found in DEF_BLOCKS. */
922 static inline struct def_blocks_d *
923 find_def_blocks_for (tree var)
925 def_blocks_p p = &get_common_info (var)->def_blocks;
926 if (!p->def_blocks)
927 return NULL;
928 return p;
932 /* Marks phi node PHI in basic block BB for rewrite. */
934 static void
935 mark_phi_for_rewrite (basic_block bb, gimple phi)
937 gimple_vec phis;
938 unsigned n, idx = bb->index;
940 if (rewrite_uses_p (phi))
941 return;
943 set_rewrite_uses (phi, true);
945 if (!blocks_with_phis_to_rewrite)
946 return;
948 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
950 n = (unsigned) last_basic_block + 1;
951 if (phis_to_rewrite.length () < n)
952 phis_to_rewrite.safe_grow_cleared (n);
954 phis = phis_to_rewrite[idx];
955 phis.reserve (10);
957 phis.safe_push (phi);
958 phis_to_rewrite[idx] = phis;
961 /* Insert PHI nodes for variable VAR using the iterated dominance
962 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
963 function assumes that the caller is incrementally updating the
964 existing SSA form, in which case VAR may be an SSA name instead of
965 a symbol.
967 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
968 PHI node for VAR. On exit, only the nodes that received a PHI node
969 for VAR will be present in PHI_INSERTION_POINTS. */
971 static void
972 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
974 unsigned bb_index;
975 edge e;
976 gimple phi;
977 basic_block bb;
978 bitmap_iterator bi;
979 struct def_blocks_d *def_map = find_def_blocks_for (var);
981 /* Remove the blocks where we already have PHI nodes for VAR. */
982 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
984 /* Remove obviously useless phi nodes. */
985 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
986 def_map->livein_blocks);
988 /* And insert the PHI nodes. */
989 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
991 bb = BASIC_BLOCK (bb_index);
992 if (update_p)
993 mark_block_for_update (bb);
995 if (dump_file && (dump_flags & TDF_DETAILS))
997 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
998 print_generic_expr (dump_file, var, TDF_SLIM);
999 fprintf (dump_file, "\n");
1001 phi = NULL;
1003 if (TREE_CODE (var) == SSA_NAME)
1005 /* If we are rewriting SSA names, create the LHS of the PHI
1006 node by duplicating VAR. This is useful in the case of
1007 pointers, to also duplicate pointer attributes (alias
1008 information, in particular). */
1009 edge_iterator ei;
1010 tree new_lhs;
1012 gcc_checking_assert (update_p);
1013 new_lhs = duplicate_ssa_name (var, NULL);
1014 phi = create_phi_node (new_lhs, bb);
1015 add_new_name_mapping (new_lhs, var);
1017 /* Add VAR to every argument slot of PHI. We need VAR in
1018 every argument so that rewrite_update_phi_arguments knows
1019 which name is this PHI node replacing. If VAR is a
1020 symbol marked for renaming, this is not necessary, the
1021 renamer will use the symbol on the LHS to get its
1022 reaching definition. */
1023 FOR_EACH_EDGE (e, ei, bb->preds)
1024 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1026 else
1028 tree tracked_var;
1030 gcc_checking_assert (DECL_P (var));
1031 phi = create_phi_node (var, bb);
1033 tracked_var = target_for_debug_bind (var);
1034 if (tracked_var)
1036 gimple note = gimple_build_debug_bind (tracked_var,
1037 PHI_RESULT (phi),
1038 phi);
1039 gimple_stmt_iterator si = gsi_after_labels (bb);
1040 gsi_insert_before (&si, note, GSI_SAME_STMT);
1044 /* Mark this PHI node as interesting for update_ssa. */
1045 set_register_defs (phi, true);
1046 mark_phi_for_rewrite (bb, phi);
1050 /* Sort var_infos after DECL_UID of their var. */
1052 static int
1053 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1055 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1056 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1057 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1058 return -1;
1059 else
1060 return 1;
1063 /* Insert PHI nodes at the dominance frontier of blocks with variable
1064 definitions. DFS contains the dominance frontier information for
1065 the flowgraph. */
1067 static void
1068 insert_phi_nodes (bitmap_head *dfs)
1070 hash_table <var_info_hasher>::iterator hi;
1071 unsigned i;
1072 var_info_p info;
1073 vec<var_info_p> vars;
1075 timevar_push (TV_TREE_INSERT_PHI_NODES);
1077 vars.create (var_infos.elements ());
1078 FOR_EACH_HASH_TABLE_ELEMENT (var_infos, info, var_info_p, hi)
1079 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1080 vars.quick_push (info);
1082 /* Do two stages to avoid code generation differences for UID
1083 differences but no UID ordering differences. */
1084 vars.qsort (insert_phi_nodes_compare_var_infos);
1086 FOR_EACH_VEC_ELT (vars, i, info)
1088 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1089 insert_phi_nodes_for (info->var, idf, false);
1090 BITMAP_FREE (idf);
1093 vars.release ();
1095 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1099 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1100 register DEF (an SSA_NAME) to be a new definition for SYM. */
1102 static void
1103 register_new_def (tree def, tree sym)
1105 common_info_p info = get_common_info (sym);
1106 tree currdef;
1108 /* If this variable is set in a single basic block and all uses are
1109 dominated by the set(s) in that single basic block, then there is
1110 no reason to record anything for this variable in the block local
1111 definition stacks. Doing so just wastes time and memory.
1113 This is the same test to prune the set of variables which may
1114 need PHI nodes. So we just use that information since it's already
1115 computed and available for us to use. */
1116 if (info->need_phi_state == NEED_PHI_STATE_NO)
1118 info->current_def = def;
1119 return;
1122 currdef = info->current_def;
1124 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1125 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1126 in the stack so that we know which symbol is being defined by
1127 this SSA name when we unwind the stack. */
1128 if (currdef && !is_gimple_reg (sym))
1129 block_defs_stack.safe_push (sym);
1131 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1132 stack is later used by the dominator tree callbacks to restore
1133 the reaching definitions for all the variables defined in the
1134 block after a recursive visit to all its immediately dominated
1135 blocks. If there is no current reaching definition, then just
1136 record the underlying _DECL node. */
1137 block_defs_stack.safe_push (currdef ? currdef : sym);
1139 /* Set the current reaching definition for SYM to be DEF. */
1140 info->current_def = def;
1144 /* Perform a depth-first traversal of the dominator tree looking for
1145 variables to rename. BB is the block where to start searching.
1146 Renaming is a five step process:
1148 1- Every definition made by PHI nodes at the start of the blocks is
1149 registered as the current definition for the corresponding variable.
1151 2- Every statement in BB is rewritten. USE and VUSE operands are
1152 rewritten with their corresponding reaching definition. DEF and
1153 VDEF targets are registered as new definitions.
1155 3- All the PHI nodes in successor blocks of BB are visited. The
1156 argument corresponding to BB is replaced with its current reaching
1157 definition.
1159 4- Recursively rewrite every dominator child block of BB.
1161 5- Restore (in reverse order) the current reaching definition for every
1162 new definition introduced in this block. This is done so that when
1163 we return from the recursive call, all the current reaching
1164 definitions are restored to the names that were valid in the
1165 dominator parent of BB. */
1167 /* Return the current definition for variable VAR. If none is found,
1168 create a new SSA name to act as the zeroth definition for VAR. */
1170 static tree
1171 get_reaching_def (tree var)
1173 common_info_p info = get_common_info (var);
1174 tree currdef;
1176 /* Lookup the current reaching definition for VAR. */
1177 currdef = info->current_def;
1179 /* If there is no reaching definition for VAR, create and register a
1180 default definition for it (if needed). */
1181 if (currdef == NULL_TREE)
1183 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1184 currdef = get_or_create_ssa_default_def (cfun, sym);
1187 /* Return the current reaching definition for VAR, or the default
1188 definition, if we had to create one. */
1189 return currdef;
1193 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1195 static void
1196 rewrite_debug_stmt_uses (gimple stmt)
1198 use_operand_p use_p;
1199 ssa_op_iter iter;
1200 bool update = false;
1202 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1204 tree var = USE_FROM_PTR (use_p), def;
1205 common_info_p info = get_common_info (var);
1206 gcc_checking_assert (DECL_P (var));
1207 def = info->current_def;
1208 if (!def)
1210 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1212 gimple_stmt_iterator gsi
1213 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1214 int lim;
1215 /* Search a few source bind stmts at the start of first bb to
1216 see if a DEBUG_EXPR_DECL can't be reused. */
1217 for (lim = 32;
1218 !gsi_end_p (gsi) && lim > 0;
1219 gsi_next (&gsi), lim--)
1221 gimple gstmt = gsi_stmt (gsi);
1222 if (!gimple_debug_source_bind_p (gstmt))
1223 break;
1224 if (gimple_debug_source_bind_get_value (gstmt) == var)
1226 def = gimple_debug_source_bind_get_var (gstmt);
1227 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1228 break;
1229 else
1230 def = NULL_TREE;
1233 /* If not, add a new source bind stmt. */
1234 if (def == NULL_TREE)
1236 gimple def_temp;
1237 def = make_node (DEBUG_EXPR_DECL);
1238 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1239 DECL_ARTIFICIAL (def) = 1;
1240 TREE_TYPE (def) = TREE_TYPE (var);
1241 DECL_MODE (def) = DECL_MODE (var);
1242 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1243 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1245 update = true;
1248 else
1250 /* Check if info->current_def can be trusted. */
1251 basic_block bb = gimple_bb (stmt);
1252 basic_block def_bb
1253 = SSA_NAME_IS_DEFAULT_DEF (def)
1254 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1256 /* If definition is in current bb, it is fine. */
1257 if (bb == def_bb)
1259 /* If definition bb doesn't dominate the current bb,
1260 it can't be used. */
1261 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1262 def = NULL;
1263 /* If there is just one definition and dominates the current
1264 bb, it is fine. */
1265 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1267 else
1269 struct def_blocks_d *db_p = get_def_blocks_for (info);
1271 /* If there are some non-debug uses in the current bb,
1272 it is fine. */
1273 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1275 /* Otherwise give up for now. */
1276 else
1277 def = NULL;
1280 if (def == NULL)
1282 gimple_debug_bind_reset_value (stmt);
1283 update_stmt (stmt);
1284 return;
1286 SET_USE (use_p, def);
1288 if (update)
1289 update_stmt (stmt);
1292 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1293 the block with its immediate reaching definitions. Update the current
1294 definition of a variable when a new real or virtual definition is found. */
1296 static void
1297 rewrite_stmt (gimple_stmt_iterator *si)
1299 use_operand_p use_p;
1300 def_operand_p def_p;
1301 ssa_op_iter iter;
1302 gimple stmt = gsi_stmt (*si);
1304 /* If mark_def_sites decided that we don't need to rewrite this
1305 statement, ignore it. */
1306 gcc_assert (blocks_to_update == NULL);
1307 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1308 return;
1310 if (dump_file && (dump_flags & TDF_DETAILS))
1312 fprintf (dump_file, "Renaming statement ");
1313 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1314 fprintf (dump_file, "\n");
1317 /* Step 1. Rewrite USES in the statement. */
1318 if (rewrite_uses_p (stmt))
1320 if (is_gimple_debug (stmt))
1321 rewrite_debug_stmt_uses (stmt);
1322 else
1323 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1325 tree var = USE_FROM_PTR (use_p);
1326 gcc_checking_assert (DECL_P (var));
1327 SET_USE (use_p, get_reaching_def (var));
1331 /* Step 2. Register the statement's DEF operands. */
1332 if (register_defs_p (stmt))
1333 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1335 tree var = DEF_FROM_PTR (def_p);
1336 tree name;
1337 tree tracked_var;
1339 gcc_checking_assert (DECL_P (var));
1341 if (gimple_clobber_p (stmt)
1342 && is_gimple_reg (var))
1344 /* If we rewrite a DECL into SSA form then drop its
1345 clobber stmts and replace uses with a new default def. */
1346 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1347 && !gimple_vdef (stmt));
1348 gsi_replace (si, gimple_build_nop (), true);
1349 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1350 break;
1353 name = make_ssa_name (var, stmt);
1354 SET_DEF (def_p, name);
1355 register_new_def (DEF_FROM_PTR (def_p), var);
1357 tracked_var = target_for_debug_bind (var);
1358 if (tracked_var)
1360 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1361 gsi_insert_after (si, note, GSI_SAME_STMT);
1367 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1368 PHI nodes. For every PHI node found, add a new argument containing the
1369 current reaching definition for the variable and the edge through which
1370 that definition is reaching the PHI node. */
1372 static void
1373 rewrite_add_phi_arguments (basic_block bb)
1375 edge e;
1376 edge_iterator ei;
1378 FOR_EACH_EDGE (e, ei, bb->succs)
1380 gimple phi;
1381 gimple_stmt_iterator gsi;
1383 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1384 gsi_next (&gsi))
1386 tree currdef, res;
1387 location_t loc;
1389 phi = gsi_stmt (gsi);
1390 res = gimple_phi_result (phi);
1391 currdef = get_reaching_def (SSA_NAME_VAR (res));
1392 /* Virtual operand PHI args do not need a location. */
1393 if (virtual_operand_p (res))
1394 loc = UNKNOWN_LOCATION;
1395 else
1396 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1397 add_phi_arg (phi, currdef, e, loc);
1402 /* SSA Rewriting Step 1. Initialization, create a block local stack
1403 of reaching definitions for new SSA names produced in this block
1404 (BLOCK_DEFS). Register new definitions for every PHI node in the
1405 block. */
1407 static void
1408 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1409 basic_block bb)
1411 gimple_stmt_iterator gsi;
1413 if (dump_file && (dump_flags & TDF_DETAILS))
1414 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1416 /* Mark the unwind point for this block. */
1417 block_defs_stack.safe_push (NULL_TREE);
1419 /* Step 1. Register new definitions for every PHI node in the block.
1420 Conceptually, all the PHI nodes are executed in parallel and each PHI
1421 node introduces a new version for the associated variable. */
1422 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1424 tree result = gimple_phi_result (gsi_stmt (gsi));
1425 register_new_def (result, SSA_NAME_VAR (result));
1428 /* Step 2. Rewrite every variable used in each statement in the block
1429 with its immediate reaching definitions. Update the current definition
1430 of a variable when a new real or virtual definition is found. */
1431 if (bitmap_bit_p (interesting_blocks, bb->index))
1432 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1433 rewrite_stmt (&gsi);
1435 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1436 For every PHI node found, add a new argument containing the current
1437 reaching definition for the variable and the edge through which that
1438 definition is reaching the PHI node. */
1439 rewrite_add_phi_arguments (bb);
1444 /* Called after visiting all the statements in basic block BB and all
1445 of its dominator children. Restore CURRDEFS to its original value. */
1447 static void
1448 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1449 basic_block bb ATTRIBUTE_UNUSED)
1451 /* Restore CURRDEFS to its original state. */
1452 while (block_defs_stack.length () > 0)
1454 tree tmp = block_defs_stack.pop ();
1455 tree saved_def, var;
1457 if (tmp == NULL_TREE)
1458 break;
1460 if (TREE_CODE (tmp) == SSA_NAME)
1462 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1463 current definition of its underlying variable. Note that
1464 if the SSA_NAME is not for a GIMPLE register, the symbol
1465 being defined is stored in the next slot in the stack.
1466 This mechanism is needed because an SSA name for a
1467 non-register symbol may be the definition for more than
1468 one symbol (e.g., SFTs, aliased variables, etc). */
1469 saved_def = tmp;
1470 var = SSA_NAME_VAR (saved_def);
1471 if (!is_gimple_reg (var))
1472 var = block_defs_stack.pop ();
1474 else
1476 /* If we recorded anything else, it must have been a _DECL
1477 node and its current reaching definition must have been
1478 NULL. */
1479 saved_def = NULL;
1480 var = tmp;
1483 get_common_info (var)->current_def = saved_def;
1488 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1490 void
1491 dump_decl_set (FILE *file, bitmap set)
1493 if (set)
1495 bitmap_iterator bi;
1496 unsigned i;
1498 fprintf (file, "{ ");
1500 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1502 fprintf (file, "D.%u", i);
1503 fprintf (file, " ");
1506 fprintf (file, "}");
1508 else
1509 fprintf (file, "NIL");
1513 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1515 DEBUG_FUNCTION void
1516 debug_decl_set (bitmap set)
1518 dump_decl_set (stderr, set);
1519 fprintf (stderr, "\n");
1523 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1524 stack up to a maximum of N levels. If N is -1, the whole stack is
1525 dumped. New levels are created when the dominator tree traversal
1526 used for renaming enters a new sub-tree. */
1528 void
1529 dump_defs_stack (FILE *file, int n)
1531 int i, j;
1533 fprintf (file, "\n\nRenaming stack");
1534 if (n > 0)
1535 fprintf (file, " (up to %d levels)", n);
1536 fprintf (file, "\n\n");
1538 i = 1;
1539 fprintf (file, "Level %d (current level)\n", i);
1540 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1542 tree name, var;
1544 name = block_defs_stack[j];
1545 if (name == NULL_TREE)
1547 i++;
1548 if (n > 0 && i > n)
1549 break;
1550 fprintf (file, "\nLevel %d\n", i);
1551 continue;
1554 if (DECL_P (name))
1556 var = name;
1557 name = NULL_TREE;
1559 else
1561 var = SSA_NAME_VAR (name);
1562 if (!is_gimple_reg (var))
1564 j--;
1565 var = block_defs_stack[j];
1569 fprintf (file, " Previous CURRDEF (");
1570 print_generic_expr (file, var, 0);
1571 fprintf (file, ") = ");
1572 if (name)
1573 print_generic_expr (file, name, 0);
1574 else
1575 fprintf (file, "<NIL>");
1576 fprintf (file, "\n");
1581 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1582 stack up to a maximum of N levels. If N is -1, the whole stack is
1583 dumped. New levels are created when the dominator tree traversal
1584 used for renaming enters a new sub-tree. */
1586 DEBUG_FUNCTION void
1587 debug_defs_stack (int n)
1589 dump_defs_stack (stderr, n);
1593 /* Dump the current reaching definition of every symbol to FILE. */
1595 void
1596 dump_currdefs (FILE *file)
1598 unsigned i;
1599 tree var;
1601 if (symbols_to_rename.is_empty ())
1602 return;
1604 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1605 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1607 common_info_p info = get_common_info (var);
1608 fprintf (file, "CURRDEF (");
1609 print_generic_expr (file, var, 0);
1610 fprintf (file, ") = ");
1611 if (info->current_def)
1612 print_generic_expr (file, info->current_def, 0);
1613 else
1614 fprintf (file, "<NIL>");
1615 fprintf (file, "\n");
1620 /* Dump the current reaching definition of every symbol to stderr. */
1622 DEBUG_FUNCTION void
1623 debug_currdefs (void)
1625 dump_currdefs (stderr);
1629 /* Dump SSA information to FILE. */
1631 void
1632 dump_tree_ssa (FILE *file)
1634 const char *funcname
1635 = lang_hooks.decl_printable_name (current_function_decl, 2);
1637 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1639 dump_var_infos (file);
1640 dump_defs_stack (file, -1);
1641 dump_currdefs (file);
1642 dump_tree_ssa_stats (file);
1646 /* Dump SSA information to stderr. */
1648 DEBUG_FUNCTION void
1649 debug_tree_ssa (void)
1651 dump_tree_ssa (stderr);
1655 /* Dump statistics for the hash table HTAB. */
1657 static void
1658 htab_statistics (FILE *file, hash_table <var_info_hasher> htab)
1660 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1661 (long) htab.size (),
1662 (long) htab.elements (),
1663 htab.collisions ());
1667 /* Dump SSA statistics on FILE. */
1669 void
1670 dump_tree_ssa_stats (FILE *file)
1672 if (var_infos.is_created ())
1674 fprintf (file, "\nHash table statistics:\n");
1675 fprintf (file, " var_infos: ");
1676 htab_statistics (file, var_infos);
1677 fprintf (file, "\n");
1682 /* Dump SSA statistics on stderr. */
1684 DEBUG_FUNCTION void
1685 debug_tree_ssa_stats (void)
1687 dump_tree_ssa_stats (stderr);
1691 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1694 debug_var_infos_r (var_info_d **slot, FILE *file)
1696 struct var_info_d *info = *slot;
1698 fprintf (file, "VAR: ");
1699 print_generic_expr (file, info->var, dump_flags);
1700 bitmap_print (file, info->info.def_blocks.def_blocks,
1701 ", DEF_BLOCKS: { ", "}");
1702 bitmap_print (file, info->info.def_blocks.livein_blocks,
1703 ", LIVEIN_BLOCKS: { ", "}");
1704 bitmap_print (file, info->info.def_blocks.phi_blocks,
1705 ", PHI_BLOCKS: { ", "}\n");
1707 return 1;
1711 /* Dump the VAR_INFOS hash table on FILE. */
1713 void
1714 dump_var_infos (FILE *file)
1716 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1717 if (var_infos.is_created ())
1718 var_infos.traverse <FILE *, debug_var_infos_r> (file);
1722 /* Dump the VAR_INFOS hash table on stderr. */
1724 DEBUG_FUNCTION void
1725 debug_var_infos (void)
1727 dump_var_infos (stderr);
1731 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1733 static inline void
1734 register_new_update_single (tree new_name, tree old_name)
1736 common_info_p info = get_common_info (old_name);
1737 tree currdef = info->current_def;
1739 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1740 This stack is later used by the dominator tree callbacks to
1741 restore the reaching definitions for all the variables
1742 defined in the block after a recursive visit to all its
1743 immediately dominated blocks. */
1744 block_defs_stack.reserve (2);
1745 block_defs_stack.quick_push (currdef);
1746 block_defs_stack.quick_push (old_name);
1748 /* Set the current reaching definition for OLD_NAME to be
1749 NEW_NAME. */
1750 info->current_def = new_name;
1754 /* Register NEW_NAME to be the new reaching definition for all the
1755 names in OLD_NAMES. Used by the incremental SSA update routines to
1756 replace old SSA names with new ones. */
1758 static inline void
1759 register_new_update_set (tree new_name, bitmap old_names)
1761 bitmap_iterator bi;
1762 unsigned i;
1764 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1765 register_new_update_single (new_name, ssa_name (i));
1770 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1771 it is a symbol marked for renaming, replace it with USE_P's current
1772 reaching definition. */
1774 static inline void
1775 maybe_replace_use (use_operand_p use_p)
1777 tree rdef = NULL_TREE;
1778 tree use = USE_FROM_PTR (use_p);
1779 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1781 if (marked_for_renaming (sym))
1782 rdef = get_reaching_def (sym);
1783 else if (is_old_name (use))
1784 rdef = get_reaching_def (use);
1786 if (rdef && rdef != use)
1787 SET_USE (use_p, rdef);
1791 /* Same as maybe_replace_use, but without introducing default stmts,
1792 returning false to indicate a need to do so. */
1794 static inline bool
1795 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1797 tree rdef = NULL_TREE;
1798 tree use = USE_FROM_PTR (use_p);
1799 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1801 if (marked_for_renaming (sym))
1802 rdef = get_var_info (sym)->info.current_def;
1803 else if (is_old_name (use))
1805 rdef = get_ssa_name_ann (use)->info.current_def;
1806 /* We can't assume that, if there's no current definition, the
1807 default one should be used. It could be the case that we've
1808 rearranged blocks so that the earlier definition no longer
1809 dominates the use. */
1810 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1811 rdef = use;
1813 else
1814 rdef = use;
1816 if (rdef && rdef != use)
1817 SET_USE (use_p, rdef);
1819 return rdef != NULL_TREE;
1823 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1824 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1825 register it as the current definition for the names replaced by
1826 DEF_P. */
1828 static inline void
1829 maybe_register_def (def_operand_p def_p, gimple stmt,
1830 gimple_stmt_iterator gsi)
1832 tree def = DEF_FROM_PTR (def_p);
1833 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1835 /* If DEF is a naked symbol that needs renaming, create a new
1836 name for it. */
1837 if (marked_for_renaming (sym))
1839 if (DECL_P (def))
1841 tree tracked_var;
1843 def = make_ssa_name (def, stmt);
1844 SET_DEF (def_p, def);
1846 tracked_var = target_for_debug_bind (sym);
1847 if (tracked_var)
1849 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1850 /* If stmt ends the bb, insert the debug stmt on the single
1851 non-EH edge from the stmt. */
1852 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1854 basic_block bb = gsi_bb (gsi);
1855 edge_iterator ei;
1856 edge e, ef = NULL;
1857 FOR_EACH_EDGE (e, ei, bb->succs)
1858 if (!(e->flags & EDGE_EH))
1860 gcc_checking_assert (!ef);
1861 ef = e;
1863 /* If there are other predecessors to ef->dest, then
1864 there must be PHI nodes for the modified
1865 variable, and therefore there will be debug bind
1866 stmts after the PHI nodes. The debug bind notes
1867 we'd insert would force the creation of a new
1868 block (diverging codegen) and be redundant with
1869 the post-PHI bind stmts, so don't add them.
1871 As for the exit edge, there wouldn't be redundant
1872 bind stmts, but there wouldn't be a PC to bind
1873 them to either, so avoid diverging the CFG. */
1874 if (ef && single_pred_p (ef->dest)
1875 && ef->dest != EXIT_BLOCK_PTR)
1877 /* If there were PHI nodes in the node, we'd
1878 have to make sure the value we're binding
1879 doesn't need rewriting. But there shouldn't
1880 be PHI nodes in a single-predecessor block,
1881 so we just add the note. */
1882 gsi_insert_on_edge_immediate (ef, note);
1885 else
1886 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1890 register_new_update_single (def, sym);
1892 else
1894 /* If DEF is a new name, register it as a new definition
1895 for all the names replaced by DEF. */
1896 if (is_new_name (def))
1897 register_new_update_set (def, names_replaced_by (def));
1899 /* If DEF is an old name, register DEF as a new
1900 definition for itself. */
1901 if (is_old_name (def))
1902 register_new_update_single (def, def);
1907 /* Update every variable used in the statement pointed-to by SI. The
1908 statement is assumed to be in SSA form already. Names in
1909 OLD_SSA_NAMES used by SI will be updated to their current reaching
1910 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1911 will be registered as a new definition for their corresponding name
1912 in OLD_SSA_NAMES. */
1914 static void
1915 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1917 use_operand_p use_p;
1918 def_operand_p def_p;
1919 ssa_op_iter iter;
1921 /* Only update marked statements. */
1922 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1923 return;
1925 if (dump_file && (dump_flags & TDF_DETAILS))
1927 fprintf (dump_file, "Updating SSA information for statement ");
1928 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1931 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1932 symbol is marked for renaming. */
1933 if (rewrite_uses_p (stmt))
1935 if (is_gimple_debug (stmt))
1937 bool failed = false;
1939 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1940 if (!maybe_replace_use_in_debug_stmt (use_p))
1942 failed = true;
1943 break;
1946 if (failed)
1948 /* DOM sometimes threads jumps in such a way that a
1949 debug stmt ends up referencing a SSA variable that no
1950 longer dominates the debug stmt, but such that all
1951 incoming definitions refer to the same definition in
1952 an earlier dominator. We could try to recover that
1953 definition somehow, but this will have to do for now.
1955 Introducing a default definition, which is what
1956 maybe_replace_use() would do in such cases, may
1957 modify code generation, for the otherwise-unused
1958 default definition would never go away, modifying SSA
1959 version numbers all over. */
1960 gimple_debug_bind_reset_value (stmt);
1961 update_stmt (stmt);
1964 else
1966 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1967 maybe_replace_use (use_p);
1971 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1972 Also register definitions for names whose underlying symbol is
1973 marked for renaming. */
1974 if (register_defs_p (stmt))
1975 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1976 maybe_register_def (def_p, stmt, gsi);
1980 /* Visit all the successor blocks of BB looking for PHI nodes. For
1981 every PHI node found, check if any of its arguments is in
1982 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1983 definition, replace it. */
1985 static void
1986 rewrite_update_phi_arguments (basic_block bb)
1988 edge e;
1989 edge_iterator ei;
1990 unsigned i;
1992 FOR_EACH_EDGE (e, ei, bb->succs)
1994 gimple phi;
1995 gimple_vec phis;
1997 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1998 continue;
2000 phis = phis_to_rewrite[e->dest->index];
2001 FOR_EACH_VEC_ELT (phis, i, phi)
2003 tree arg, lhs_sym, reaching_def = NULL;
2004 use_operand_p arg_p;
2006 gcc_checking_assert (rewrite_uses_p (phi));
2008 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2009 arg = USE_FROM_PTR (arg_p);
2011 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2012 continue;
2014 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2016 if (arg == NULL_TREE)
2018 /* When updating a PHI node for a recently introduced
2019 symbol we may find NULL arguments. That's why we
2020 take the symbol from the LHS of the PHI node. */
2021 reaching_def = get_reaching_def (lhs_sym);
2024 else
2026 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2028 if (marked_for_renaming (sym))
2029 reaching_def = get_reaching_def (sym);
2030 else if (is_old_name (arg))
2031 reaching_def = get_reaching_def (arg);
2034 /* Update the argument if there is a reaching def. */
2035 if (reaching_def)
2037 source_location locus;
2038 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2040 SET_USE (arg_p, reaching_def);
2042 /* Virtual operands do not need a location. */
2043 if (virtual_operand_p (reaching_def))
2044 locus = UNKNOWN_LOCATION;
2045 else
2047 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2049 /* Single element PHI nodes behave like copies, so get the
2050 location from the phi argument. */
2051 if (gimple_code (stmt) == GIMPLE_PHI
2052 && gimple_phi_num_args (stmt) == 1)
2053 locus = gimple_phi_arg_location (stmt, 0);
2054 else
2055 locus = gimple_location (stmt);
2058 gimple_phi_arg_set_location (phi, arg_i, locus);
2062 if (e->flags & EDGE_ABNORMAL)
2063 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2069 /* Initialization of block data structures for the incremental SSA
2070 update pass. Create a block local stack of reaching definitions
2071 for new SSA names produced in this block (BLOCK_DEFS). Register
2072 new definitions for every PHI node in the block. */
2074 static void
2075 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2076 basic_block bb)
2078 bool is_abnormal_phi;
2079 gimple_stmt_iterator gsi;
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2083 bb->index);
2085 /* Mark the unwind point for this block. */
2086 block_defs_stack.safe_push (NULL_TREE);
2088 if (!bitmap_bit_p (blocks_to_update, bb->index))
2089 return;
2091 /* Mark the LHS if any of the arguments flows through an abnormal
2092 edge. */
2093 is_abnormal_phi = bb_has_abnormal_pred (bb);
2095 /* If any of the PHI nodes is a replacement for a name in
2096 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2097 register it as a new definition for its corresponding name. Also
2098 register definitions for names whose underlying symbols are
2099 marked for renaming. */
2100 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2102 tree lhs, lhs_sym;
2103 gimple phi = gsi_stmt (gsi);
2105 if (!register_defs_p (phi))
2106 continue;
2108 lhs = gimple_phi_result (phi);
2109 lhs_sym = SSA_NAME_VAR (lhs);
2111 if (marked_for_renaming (lhs_sym))
2112 register_new_update_single (lhs, lhs_sym);
2113 else
2116 /* If LHS is a new name, register a new definition for all
2117 the names replaced by LHS. */
2118 if (is_new_name (lhs))
2119 register_new_update_set (lhs, names_replaced_by (lhs));
2121 /* If LHS is an OLD name, register it as a new definition
2122 for itself. */
2123 if (is_old_name (lhs))
2124 register_new_update_single (lhs, lhs);
2127 if (is_abnormal_phi)
2128 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2131 /* Step 2. Rewrite every variable used in each statement in the block. */
2132 if (bitmap_bit_p (interesting_blocks, bb->index))
2134 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2135 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2136 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2139 /* Step 3. Update PHI nodes. */
2140 rewrite_update_phi_arguments (bb);
2143 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2144 the current reaching definition of every name re-written in BB to
2145 the original reaching definition before visiting BB. This
2146 unwinding must be done in the opposite order to what is done in
2147 register_new_update_set. */
2149 static void
2150 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2151 basic_block bb ATTRIBUTE_UNUSED)
2153 while (block_defs_stack.length () > 0)
2155 tree var = block_defs_stack.pop ();
2156 tree saved_def;
2158 /* NULL indicates the unwind stop point for this block (see
2159 rewrite_update_enter_block). */
2160 if (var == NULL)
2161 return;
2163 saved_def = block_defs_stack.pop ();
2164 get_common_info (var)->current_def = saved_def;
2169 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2170 form.
2172 ENTRY indicates the block where to start. Every block dominated by
2173 ENTRY will be rewritten.
2175 WHAT indicates what actions will be taken by the renamer (see enum
2176 rewrite_mode).
2178 BLOCKS are the set of interesting blocks for the dominator walker
2179 to process. If this set is NULL, then all the nodes dominated
2180 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2181 are not present in BLOCKS are ignored. */
2183 static void
2184 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2186 struct dom_walk_data walk_data;
2188 /* Rewrite all the basic blocks in the program. */
2189 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2191 /* Setup callbacks for the generic dominator tree walker. */
2192 memset (&walk_data, 0, sizeof (walk_data));
2194 walk_data.dom_direction = CDI_DOMINATORS;
2196 if (what == REWRITE_ALL)
2198 walk_data.before_dom_children = rewrite_enter_block;
2199 walk_data.after_dom_children = rewrite_leave_block;
2201 else if (what == REWRITE_UPDATE)
2203 walk_data.before_dom_children = rewrite_update_enter_block;
2204 walk_data.after_dom_children = rewrite_update_leave_block;
2206 else
2207 gcc_unreachable ();
2209 block_defs_stack.create (10);
2211 /* Initialize the dominator walker. */
2212 init_walk_dominator_tree (&walk_data);
2214 /* Recursively walk the dominator tree rewriting each statement in
2215 each basic block. */
2216 walk_dominator_tree (&walk_data, entry);
2218 /* Finalize the dominator walker. */
2219 fini_walk_dominator_tree (&walk_data);
2221 /* Debugging dumps. */
2222 if (dump_file && (dump_flags & TDF_STATS))
2224 dump_dfa_stats (dump_file);
2225 if (var_infos.is_created ())
2226 dump_tree_ssa_stats (dump_file);
2229 block_defs_stack.release ();
2231 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2235 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2236 at the start of each block, and call mark_def_sites for each statement. */
2238 static void
2239 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2241 struct mark_def_sites_global_data *gd;
2242 bitmap kills;
2243 gimple_stmt_iterator gsi;
2245 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2246 kills = gd->kills;
2248 bitmap_clear (kills);
2249 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2250 mark_def_sites (bb, gsi_stmt (gsi), kills);
2254 /* Mark the definition site blocks for each variable, so that we know
2255 where the variable is actually live.
2257 The INTERESTING_BLOCKS global will be filled in with all the blocks
2258 that should be processed by the renamer. It is assumed that the
2259 caller has already initialized and zeroed it. */
2261 static void
2262 mark_def_site_blocks (void)
2264 struct dom_walk_data walk_data;
2265 struct mark_def_sites_global_data mark_def_sites_global_data;
2267 /* Setup callbacks for the generic dominator tree walker to find and
2268 mark definition sites. */
2269 walk_data.dom_direction = CDI_DOMINATORS;
2270 walk_data.initialize_block_local_data = NULL;
2271 walk_data.before_dom_children = mark_def_sites_block;
2272 walk_data.after_dom_children = NULL;
2274 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2275 large enough to accommodate all the variables referenced in the
2276 function, not just the ones we are renaming. */
2277 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2278 walk_data.global_data = &mark_def_sites_global_data;
2280 /* We do not have any local data. */
2281 walk_data.block_local_data_size = 0;
2283 /* Initialize the dominator walker. */
2284 init_walk_dominator_tree (&walk_data);
2286 /* Recursively walk the dominator tree. */
2287 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2289 /* Finalize the dominator walker. */
2290 fini_walk_dominator_tree (&walk_data);
2292 /* We no longer need this bitmap, clear and free it. */
2293 BITMAP_FREE (mark_def_sites_global_data.kills);
2297 /* Initialize internal data needed during renaming. */
2299 static void
2300 init_ssa_renamer (void)
2302 cfun->gimple_df->in_ssa_p = false;
2304 /* Allocate memory for the DEF_BLOCKS hash table. */
2305 gcc_assert (!var_infos.is_created ());
2306 var_infos.create (vec_safe_length (cfun->local_decls));
2308 bitmap_obstack_initialize (&update_ssa_obstack);
2312 /* Deallocate internal data structures used by the renamer. */
2314 static void
2315 fini_ssa_renamer (void)
2317 if (var_infos.is_created ())
2318 var_infos.dispose ();
2320 bitmap_obstack_release (&update_ssa_obstack);
2322 cfun->gimple_df->ssa_renaming_needed = 0;
2323 cfun->gimple_df->rename_vops = 0;
2324 cfun->gimple_df->in_ssa_p = true;
2327 /* Main entry point into the SSA builder. The renaming process
2328 proceeds in four main phases:
2330 1- Compute dominance frontier and immediate dominators, needed to
2331 insert PHI nodes and rename the function in dominator tree
2332 order.
2334 2- Find and mark all the blocks that define variables
2335 (mark_def_site_blocks).
2337 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2339 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2341 Steps 3 and 4 are done using the dominator tree walker
2342 (walk_dominator_tree). */
2344 static unsigned int
2345 rewrite_into_ssa (void)
2347 bitmap_head *dfs;
2348 basic_block bb;
2349 unsigned i;
2351 /* Initialize operand data structures. */
2352 init_ssa_operands (cfun);
2354 /* Initialize internal data needed by the renamer. */
2355 init_ssa_renamer ();
2357 /* Initialize the set of interesting blocks. The callback
2358 mark_def_sites will add to this set those blocks that the renamer
2359 should process. */
2360 interesting_blocks = sbitmap_alloc (last_basic_block);
2361 bitmap_clear (interesting_blocks);
2363 /* Initialize dominance frontier. */
2364 dfs = XNEWVEC (bitmap_head, last_basic_block);
2365 FOR_EACH_BB (bb)
2366 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2368 /* 1- Compute dominance frontiers. */
2369 calculate_dominance_info (CDI_DOMINATORS);
2370 compute_dominance_frontiers (dfs);
2372 /* 2- Find and mark definition sites. */
2373 mark_def_site_blocks ();
2375 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2376 insert_phi_nodes (dfs);
2378 /* 4- Rename all the blocks. */
2379 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2381 /* Free allocated memory. */
2382 FOR_EACH_BB (bb)
2383 bitmap_clear (&dfs[bb->index]);
2384 free (dfs);
2386 sbitmap_free (interesting_blocks);
2388 fini_ssa_renamer ();
2390 /* Try to get rid of all gimplifier generated temporaries by making
2391 its SSA names anonymous. This way we can garbage collect them
2392 all after removing unused locals which we do in our TODO. */
2393 for (i = 1; i < num_ssa_names; ++i)
2395 tree decl, name = ssa_name (i);
2396 if (!name
2397 || SSA_NAME_IS_DEFAULT_DEF (name))
2398 continue;
2399 decl = SSA_NAME_VAR (name);
2400 if (decl
2401 && TREE_CODE (decl) == VAR_DECL
2402 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2403 && DECL_ARTIFICIAL (decl)
2404 && DECL_IGNORED_P (decl)
2405 && !DECL_NAME (decl))
2406 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2409 return 0;
2413 struct gimple_opt_pass pass_build_ssa =
2416 GIMPLE_PASS,
2417 "ssa", /* name */
2418 OPTGROUP_NONE, /* optinfo_flags */
2419 NULL, /* gate */
2420 rewrite_into_ssa, /* execute */
2421 NULL, /* sub */
2422 NULL, /* next */
2423 0, /* static_pass_number */
2424 TV_TREE_SSA_OTHER, /* tv_id */
2425 PROP_cfg, /* properties_required */
2426 PROP_ssa, /* properties_provided */
2427 0, /* properties_destroyed */
2428 0, /* todo_flags_start */
2429 TODO_verify_ssa
2430 | TODO_remove_unused_locals /* todo_flags_finish */
2435 /* Mark the definition of VAR at STMT and BB as interesting for the
2436 renamer. BLOCKS is the set of blocks that need updating. */
2438 static void
2439 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2441 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2442 set_register_defs (stmt, true);
2444 if (insert_phi_p)
2446 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2448 set_def_block (var, bb, is_phi_p);
2450 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2451 site for both itself and all the old names replaced by it. */
2452 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2454 bitmap_iterator bi;
2455 unsigned i;
2456 bitmap set = names_replaced_by (var);
2457 if (set)
2458 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2459 set_def_block (ssa_name (i), bb, is_phi_p);
2465 /* Mark the use of VAR at STMT and BB as interesting for the
2466 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2467 nodes. */
2469 static inline void
2470 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2472 basic_block def_bb = gimple_bb (stmt);
2474 mark_block_for_update (def_bb);
2475 mark_block_for_update (bb);
2477 if (gimple_code (stmt) == GIMPLE_PHI)
2478 mark_phi_for_rewrite (def_bb, stmt);
2479 else
2481 set_rewrite_uses (stmt, true);
2483 if (is_gimple_debug (stmt))
2484 return;
2487 /* If VAR has not been defined in BB, then it is live-on-entry
2488 to BB. Note that we cannot just use the block holding VAR's
2489 definition because if VAR is one of the names in OLD_SSA_NAMES,
2490 it will have several definitions (itself and all the names that
2491 replace it). */
2492 if (insert_phi_p)
2494 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2495 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2496 set_livein_block (var, bb);
2501 /* Do a dominator walk starting at BB processing statements that
2502 reference symbols in SSA operands. This is very similar to
2503 mark_def_sites, but the scan handles statements whose operands may
2504 already be SSA names.
2506 If INSERT_PHI_P is true, mark those uses as live in the
2507 corresponding block. This is later used by the PHI placement
2508 algorithm to make PHI pruning decisions.
2510 FIXME. Most of this would be unnecessary if we could associate a
2511 symbol to all the SSA names that reference it. But that
2512 sounds like it would be expensive to maintain. Still, it
2513 would be interesting to see if it makes better sense to do
2514 that. */
2516 static void
2517 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2519 basic_block son;
2520 gimple_stmt_iterator si;
2521 edge e;
2522 edge_iterator ei;
2524 mark_block_for_update (bb);
2526 /* Process PHI nodes marking interesting those that define or use
2527 the symbols that we are interested in. */
2528 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2530 gimple phi = gsi_stmt (si);
2531 tree lhs_sym, lhs = gimple_phi_result (phi);
2533 if (TREE_CODE (lhs) == SSA_NAME
2534 && (! virtual_operand_p (lhs)
2535 || ! cfun->gimple_df->rename_vops))
2536 continue;
2538 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2539 mark_for_renaming (lhs_sym);
2540 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2542 /* Mark the uses in phi nodes as interesting. It would be more correct
2543 to process the arguments of the phi nodes of the successor edges of
2544 BB at the end of prepare_block_for_update, however, that turns out
2545 to be significantly more expensive. Doing it here is conservatively
2546 correct -- it may only cause us to believe a value to be live in a
2547 block that also contains its definition, and thus insert a few more
2548 phi nodes for it. */
2549 FOR_EACH_EDGE (e, ei, bb->preds)
2550 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2553 /* Process the statements. */
2554 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2556 gimple stmt;
2557 ssa_op_iter i;
2558 use_operand_p use_p;
2559 def_operand_p def_p;
2561 stmt = gsi_stmt (si);
2563 if (cfun->gimple_df->rename_vops
2564 && gimple_vuse (stmt))
2566 tree use = gimple_vuse (stmt);
2567 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2568 mark_for_renaming (sym);
2569 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2572 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2574 tree use = USE_FROM_PTR (use_p);
2575 if (!DECL_P (use))
2576 continue;
2577 mark_for_renaming (use);
2578 mark_use_interesting (use, stmt, bb, insert_phi_p);
2581 if (cfun->gimple_df->rename_vops
2582 && gimple_vdef (stmt))
2584 tree def = gimple_vdef (stmt);
2585 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2586 mark_for_renaming (sym);
2587 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2590 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2592 tree def = DEF_FROM_PTR (def_p);
2593 if (!DECL_P (def))
2594 continue;
2595 mark_for_renaming (def);
2596 mark_def_interesting (def, stmt, bb, insert_phi_p);
2600 /* Now visit all the blocks dominated by BB. */
2601 for (son = first_dom_son (CDI_DOMINATORS, bb);
2602 son;
2603 son = next_dom_son (CDI_DOMINATORS, son))
2604 prepare_block_for_update (son, insert_phi_p);
2608 /* Helper for prepare_names_to_update. Mark all the use sites for
2609 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2610 prepare_names_to_update. */
2612 static void
2613 prepare_use_sites_for (tree name, bool insert_phi_p)
2615 use_operand_p use_p;
2616 imm_use_iterator iter;
2618 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2620 gimple stmt = USE_STMT (use_p);
2621 basic_block bb = gimple_bb (stmt);
2623 if (gimple_code (stmt) == GIMPLE_PHI)
2625 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2626 edge e = gimple_phi_arg_edge (stmt, ix);
2627 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2629 else
2631 /* For regular statements, mark this as an interesting use
2632 for NAME. */
2633 mark_use_interesting (name, stmt, bb, insert_phi_p);
2639 /* Helper for prepare_names_to_update. Mark the definition site for
2640 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2641 prepare_names_to_update. */
2643 static void
2644 prepare_def_site_for (tree name, bool insert_phi_p)
2646 gimple stmt;
2647 basic_block bb;
2649 gcc_checking_assert (names_to_release == NULL
2650 || !bitmap_bit_p (names_to_release,
2651 SSA_NAME_VERSION (name)));
2653 stmt = SSA_NAME_DEF_STMT (name);
2654 bb = gimple_bb (stmt);
2655 if (bb)
2657 gcc_checking_assert (bb->index < last_basic_block);
2658 mark_block_for_update (bb);
2659 mark_def_interesting (name, stmt, bb, insert_phi_p);
2664 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2665 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2666 PHI nodes for newly created names. */
2668 static void
2669 prepare_names_to_update (bool insert_phi_p)
2671 unsigned i = 0;
2672 bitmap_iterator bi;
2673 sbitmap_iterator sbi;
2675 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2676 remove it from NEW_SSA_NAMES so that we don't try to visit its
2677 defining basic block (which most likely doesn't exist). Notice
2678 that we cannot do the same with names in OLD_SSA_NAMES because we
2679 want to replace existing instances. */
2680 if (names_to_release)
2681 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2682 bitmap_clear_bit (new_ssa_names, i);
2684 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2685 names may be considered to be live-in on blocks that contain
2686 definitions for their replacements. */
2687 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2688 prepare_def_site_for (ssa_name (i), insert_phi_p);
2690 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2691 OLD_SSA_NAMES, but we have to ignore its definition site. */
2692 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2694 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2695 prepare_def_site_for (ssa_name (i), insert_phi_p);
2696 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2701 /* Dump all the names replaced by NAME to FILE. */
2703 void
2704 dump_names_replaced_by (FILE *file, tree name)
2706 unsigned i;
2707 bitmap old_set;
2708 bitmap_iterator bi;
2710 print_generic_expr (file, name, 0);
2711 fprintf (file, " -> { ");
2713 old_set = names_replaced_by (name);
2714 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2716 print_generic_expr (file, ssa_name (i), 0);
2717 fprintf (file, " ");
2720 fprintf (file, "}\n");
2724 /* Dump all the names replaced by NAME to stderr. */
2726 DEBUG_FUNCTION void
2727 debug_names_replaced_by (tree name)
2729 dump_names_replaced_by (stderr, name);
2733 /* Dump SSA update information to FILE. */
2735 void
2736 dump_update_ssa (FILE *file)
2738 unsigned i = 0;
2739 bitmap_iterator bi;
2741 if (!need_ssa_update_p (cfun))
2742 return;
2744 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2746 sbitmap_iterator sbi;
2748 fprintf (file, "\nSSA replacement table\n");
2749 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2750 "O_1, ..., O_j\n\n");
2752 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2753 dump_names_replaced_by (file, ssa_name (i));
2756 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2758 fprintf (file, "\nSymbols to be put in SSA form\n");
2759 dump_decl_set (file, symbols_to_rename_set);
2760 fprintf (file, "\n");
2763 if (names_to_release && !bitmap_empty_p (names_to_release))
2765 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2766 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2768 print_generic_expr (file, ssa_name (i), 0);
2769 fprintf (file, " ");
2771 fprintf (file, "\n");
2776 /* Dump SSA update information to stderr. */
2778 DEBUG_FUNCTION void
2779 debug_update_ssa (void)
2781 dump_update_ssa (stderr);
2785 /* Initialize data structures used for incremental SSA updates. */
2787 static void
2788 init_update_ssa (struct function *fn)
2790 /* Reserve more space than the current number of names. The calls to
2791 add_new_name_mapping are typically done after creating new SSA
2792 names, so we'll need to reallocate these arrays. */
2793 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2794 bitmap_clear (old_ssa_names);
2796 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2797 bitmap_clear (new_ssa_names);
2799 bitmap_obstack_initialize (&update_ssa_obstack);
2801 names_to_release = NULL;
2802 update_ssa_initialized_fn = fn;
2806 /* Deallocate data structures used for incremental SSA updates. */
2808 void
2809 delete_update_ssa (void)
2811 unsigned i;
2812 bitmap_iterator bi;
2814 sbitmap_free (old_ssa_names);
2815 old_ssa_names = NULL;
2817 sbitmap_free (new_ssa_names);
2818 new_ssa_names = NULL;
2820 BITMAP_FREE (symbols_to_rename_set);
2821 symbols_to_rename_set = NULL;
2822 symbols_to_rename.release ();
2824 if (names_to_release)
2826 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2827 release_ssa_name (ssa_name (i));
2828 BITMAP_FREE (names_to_release);
2831 clear_ssa_name_info ();
2833 fini_ssa_renamer ();
2835 if (blocks_with_phis_to_rewrite)
2836 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2838 gimple_vec phis = phis_to_rewrite[i];
2839 phis.release ();
2840 phis_to_rewrite[i].create (0);
2843 BITMAP_FREE (blocks_with_phis_to_rewrite);
2844 BITMAP_FREE (blocks_to_update);
2846 update_ssa_initialized_fn = NULL;
2850 /* Create a new name for OLD_NAME in statement STMT and replace the
2851 operand pointed to by DEF_P with the newly created name. If DEF_P
2852 is NULL then STMT should be a GIMPLE assignment.
2853 Return the new name and register the replacement mapping <NEW, OLD> in
2854 update_ssa's tables. */
2856 tree
2857 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2859 tree new_name;
2861 timevar_push (TV_TREE_SSA_INCREMENTAL);
2863 if (!update_ssa_initialized_fn)
2864 init_update_ssa (cfun);
2866 gcc_assert (update_ssa_initialized_fn == cfun);
2868 new_name = duplicate_ssa_name (old_name, stmt);
2869 if (def)
2870 SET_DEF (def, new_name);
2871 else
2872 gimple_assign_set_lhs (stmt, new_name);
2874 if (gimple_code (stmt) == GIMPLE_PHI)
2876 basic_block bb = gimple_bb (stmt);
2878 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2879 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2882 add_new_name_mapping (new_name, old_name);
2884 /* For the benefit of passes that will be updating the SSA form on
2885 their own, set the current reaching definition of OLD_NAME to be
2886 NEW_NAME. */
2887 get_ssa_name_ann (old_name)->info.current_def = new_name;
2889 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2891 return new_name;
2895 /* Mark virtual operands of FN for renaming by update_ssa. */
2897 void
2898 mark_virtual_operands_for_renaming (struct function *fn)
2900 fn->gimple_df->ssa_renaming_needed = 1;
2901 fn->gimple_df->rename_vops = 1;
2905 /* Return true if there is any work to be done by update_ssa
2906 for function FN. */
2908 bool
2909 need_ssa_update_p (struct function *fn)
2911 gcc_assert (fn != NULL);
2912 return (update_ssa_initialized_fn == fn
2913 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2916 /* Return true if name N has been registered in the replacement table. */
2918 bool
2919 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2921 if (!update_ssa_initialized_fn)
2922 return false;
2924 gcc_assert (update_ssa_initialized_fn == cfun);
2926 return is_new_name (n) || is_old_name (n);
2930 /* Mark NAME to be released after update_ssa has finished. */
2932 void
2933 release_ssa_name_after_update_ssa (tree name)
2935 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2937 if (names_to_release == NULL)
2938 names_to_release = BITMAP_ALLOC (NULL);
2940 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2944 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2945 frontier information. BLOCKS is the set of blocks to be updated.
2947 This is slightly different than the regular PHI insertion
2948 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2949 real names (i.e., GIMPLE registers) are inserted:
2951 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2952 nodes inside the region affected by the block that defines VAR
2953 and the blocks that define all its replacements. All these
2954 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2956 First, we compute the entry point to the region (ENTRY). This is
2957 given by the nearest common dominator to all the definition
2958 blocks. When computing the iterated dominance frontier (IDF), any
2959 block not strictly dominated by ENTRY is ignored.
2961 We then call the standard PHI insertion algorithm with the pruned
2962 IDF.
2964 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2965 names is not pruned. PHI nodes are inserted at every IDF block. */
2967 static void
2968 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2969 unsigned update_flags)
2971 basic_block entry;
2972 struct def_blocks_d *db;
2973 bitmap idf, pruned_idf;
2974 bitmap_iterator bi;
2975 unsigned i;
2977 if (TREE_CODE (var) == SSA_NAME)
2978 gcc_checking_assert (is_old_name (var));
2979 else
2980 gcc_checking_assert (marked_for_renaming (var));
2982 /* Get all the definition sites for VAR. */
2983 db = find_def_blocks_for (var);
2985 /* No need to do anything if there were no definitions to VAR. */
2986 if (db == NULL || bitmap_empty_p (db->def_blocks))
2987 return;
2989 /* Compute the initial iterated dominance frontier. */
2990 idf = compute_idf (db->def_blocks, dfs);
2991 pruned_idf = BITMAP_ALLOC (NULL);
2993 if (TREE_CODE (var) == SSA_NAME)
2995 if (update_flags == TODO_update_ssa)
2997 /* If doing regular SSA updates for GIMPLE registers, we are
2998 only interested in IDF blocks dominated by the nearest
2999 common dominator of all the definition blocks. */
3000 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3001 db->def_blocks);
3002 if (entry != ENTRY_BLOCK_PTR)
3003 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3004 if (BASIC_BLOCK (i) != entry
3005 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3006 bitmap_set_bit (pruned_idf, i);
3008 else
3010 /* Otherwise, do not prune the IDF for VAR. */
3011 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3012 bitmap_copy (pruned_idf, idf);
3015 else
3017 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3018 for the first time, so we need to compute the full IDF for
3019 it. */
3020 bitmap_copy (pruned_idf, idf);
3023 if (!bitmap_empty_p (pruned_idf))
3025 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3026 are included in the region to be updated. The feeding blocks
3027 are important to guarantee that the PHI arguments are renamed
3028 properly. */
3030 /* FIXME, this is not needed if we are updating symbols. We are
3031 already starting at the ENTRY block anyway. */
3032 bitmap_ior_into (blocks, pruned_idf);
3033 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3035 edge e;
3036 edge_iterator ei;
3037 basic_block bb = BASIC_BLOCK (i);
3039 FOR_EACH_EDGE (e, ei, bb->preds)
3040 if (e->src->index >= 0)
3041 bitmap_set_bit (blocks, e->src->index);
3044 insert_phi_nodes_for (var, pruned_idf, true);
3047 BITMAP_FREE (pruned_idf);
3048 BITMAP_FREE (idf);
3051 /* Sort symbols_to_rename after their DECL_UID. */
3053 static int
3054 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3056 const_tree syma = *(const const_tree *)a;
3057 const_tree symb = *(const const_tree *)b;
3058 if (DECL_UID (syma) == DECL_UID (symb))
3059 return 0;
3060 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3063 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3064 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3066 1- The names in OLD_SSA_NAMES dominated by the definitions of
3067 NEW_SSA_NAMES are all re-written to be reached by the
3068 appropriate definition from NEW_SSA_NAMES.
3070 2- If needed, new PHI nodes are added to the iterated dominance
3071 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3073 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3074 calling create_new_def_for to create new defs for names that the
3075 caller wants to replace.
3077 The caller cretaes the new names to be inserted and the names that need
3078 to be replaced by calling create_new_def_for for each old definition
3079 to be replaced. Note that the function assumes that the
3080 new defining statement has already been inserted in the IL.
3082 For instance, given the following code:
3084 1 L0:
3085 2 x_1 = PHI (0, x_5)
3086 3 if (x_1 < 10)
3087 4 if (x_1 > 7)
3088 5 y_2 = 0
3089 6 else
3090 7 y_3 = x_1 + x_7
3091 8 endif
3092 9 x_5 = x_1 + 1
3093 10 goto L0;
3094 11 endif
3096 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3098 1 L0:
3099 2 x_1 = PHI (0, x_5)
3100 3 if (x_1 < 10)
3101 4 x_10 = ...
3102 5 if (x_1 > 7)
3103 6 y_2 = 0
3104 7 else
3105 8 x_11 = ...
3106 9 y_3 = x_1 + x_7
3107 10 endif
3108 11 x_5 = x_1 + 1
3109 12 goto L0;
3110 13 endif
3112 We want to replace all the uses of x_1 with the new definitions of
3113 x_10 and x_11. Note that the only uses that should be replaced are
3114 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3115 *not* be replaced (this is why we cannot just mark symbol 'x' for
3116 renaming).
3118 Additionally, we may need to insert a PHI node at line 11 because
3119 that is a merge point for x_10 and x_11. So the use of x_1 at line
3120 11 will be replaced with the new PHI node. The insertion of PHI
3121 nodes is optional. They are not strictly necessary to preserve the
3122 SSA form, and depending on what the caller inserted, they may not
3123 even be useful for the optimizers. UPDATE_FLAGS controls various
3124 aspects of how update_ssa operates, see the documentation for
3125 TODO_update_ssa*. */
3127 void
3128 update_ssa (unsigned update_flags)
3130 basic_block bb, start_bb;
3131 bitmap_iterator bi;
3132 unsigned i = 0;
3133 bool insert_phi_p;
3134 sbitmap_iterator sbi;
3135 tree sym;
3137 /* Only one update flag should be set. */
3138 gcc_assert (update_flags == TODO_update_ssa
3139 || update_flags == TODO_update_ssa_no_phi
3140 || update_flags == TODO_update_ssa_full_phi
3141 || update_flags == TODO_update_ssa_only_virtuals);
3143 if (!need_ssa_update_p (cfun))
3144 return;
3146 timevar_push (TV_TREE_SSA_INCREMENTAL);
3148 if (dump_file && (dump_flags & TDF_DETAILS))
3149 fprintf (dump_file, "\nUpdating SSA:\n");
3151 if (!update_ssa_initialized_fn)
3152 init_update_ssa (cfun);
3153 else if (update_flags == TODO_update_ssa_only_virtuals)
3155 /* If we only need to update virtuals, remove all the mappings for
3156 real names before proceeding. The caller is responsible for
3157 having dealt with the name mappings before calling update_ssa. */
3158 bitmap_clear (old_ssa_names);
3159 bitmap_clear (new_ssa_names);
3162 gcc_assert (update_ssa_initialized_fn == cfun);
3164 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3165 if (!phis_to_rewrite.exists ())
3166 phis_to_rewrite.create (last_basic_block + 1);
3167 blocks_to_update = BITMAP_ALLOC (NULL);
3169 /* Ensure that the dominance information is up-to-date. */
3170 calculate_dominance_info (CDI_DOMINATORS);
3172 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3174 /* If there are names defined in the replacement table, prepare
3175 definition and use sites for all the names in NEW_SSA_NAMES and
3176 OLD_SSA_NAMES. */
3177 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3179 prepare_names_to_update (insert_phi_p);
3181 /* If all the names in NEW_SSA_NAMES had been marked for
3182 removal, and there are no symbols to rename, then there's
3183 nothing else to do. */
3184 if (bitmap_first_set_bit (new_ssa_names) < 0
3185 && !cfun->gimple_df->ssa_renaming_needed)
3186 goto done;
3189 /* Next, determine the block at which to start the renaming process. */
3190 if (cfun->gimple_df->ssa_renaming_needed)
3192 /* If we rename bare symbols initialize the mapping to
3193 auxiliar info we need to keep track of. */
3194 var_infos.create (47);
3196 /* If we have to rename some symbols from scratch, we need to
3197 start the process at the root of the CFG. FIXME, it should
3198 be possible to determine the nearest block that had a
3199 definition for each of the symbols that are marked for
3200 updating. For now this seems more work than it's worth. */
3201 start_bb = ENTRY_BLOCK_PTR;
3203 /* Traverse the CFG looking for existing definitions and uses of
3204 symbols in SSA operands. Mark interesting blocks and
3205 statements and set local live-in information for the PHI
3206 placement heuristics. */
3207 prepare_block_for_update (start_bb, insert_phi_p);
3209 #ifdef ENABLE_CHECKING
3210 for (i = 1; i < num_ssa_names; ++i)
3212 tree name = ssa_name (i);
3213 if (!name
3214 || virtual_operand_p (name))
3215 continue;
3217 /* For all but virtual operands, which do not have SSA names
3218 with overlapping life ranges, ensure that symbols marked
3219 for renaming do not have existing SSA names associated with
3220 them as we do not re-write them out-of-SSA before going
3221 into SSA for the remaining symbol uses. */
3222 if (marked_for_renaming (SSA_NAME_VAR (name)))
3224 fprintf (stderr, "Existing SSA name for symbol marked for "
3225 "renaming: ");
3226 print_generic_expr (stderr, name, TDF_SLIM);
3227 fprintf (stderr, "\n");
3228 internal_error ("SSA corruption");
3231 #endif
3233 else
3235 /* Otherwise, the entry block to the region is the nearest
3236 common dominator for the blocks in BLOCKS. */
3237 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3238 blocks_to_update);
3241 /* If requested, insert PHI nodes at the iterated dominance frontier
3242 of every block, creating new definitions for names in OLD_SSA_NAMES
3243 and for symbols found. */
3244 if (insert_phi_p)
3246 bitmap_head *dfs;
3248 /* If the caller requested PHI nodes to be added, compute
3249 dominance frontiers. */
3250 dfs = XNEWVEC (bitmap_head, last_basic_block);
3251 FOR_EACH_BB (bb)
3252 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3253 compute_dominance_frontiers (dfs);
3255 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3257 sbitmap_iterator sbi;
3259 /* insert_update_phi_nodes_for will call add_new_name_mapping
3260 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3261 will grow while we are traversing it (but it will not
3262 gain any new members). Copy OLD_SSA_NAMES to a temporary
3263 for traversal. */
3264 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3265 bitmap_copy (tmp, old_ssa_names);
3266 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3267 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3268 update_flags);
3269 sbitmap_free (tmp);
3272 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3273 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3274 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3275 update_flags);
3277 FOR_EACH_BB (bb)
3278 bitmap_clear (&dfs[bb->index]);
3279 free (dfs);
3281 /* Insertion of PHI nodes may have added blocks to the region.
3282 We need to re-compute START_BB to include the newly added
3283 blocks. */
3284 if (start_bb != ENTRY_BLOCK_PTR)
3285 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3286 blocks_to_update);
3289 /* Reset the current definition for name and symbol before renaming
3290 the sub-graph. */
3291 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3292 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3294 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3295 get_var_info (sym)->info.current_def = NULL_TREE;
3297 /* Now start the renaming process at START_BB. */
3298 interesting_blocks = sbitmap_alloc (last_basic_block);
3299 bitmap_clear (interesting_blocks);
3300 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3301 bitmap_set_bit (interesting_blocks, i);
3303 rewrite_blocks (start_bb, REWRITE_UPDATE);
3305 sbitmap_free (interesting_blocks);
3307 /* Debugging dumps. */
3308 if (dump_file)
3310 int c;
3311 unsigned i;
3313 dump_update_ssa (dump_file);
3315 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3316 start_bb->index);
3318 c = 0;
3319 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3320 c++;
3321 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3322 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3323 c, PERCENT (c, last_basic_block));
3325 if (dump_flags & TDF_DETAILS)
3327 fprintf (dump_file, "Affected blocks:");
3328 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3329 fprintf (dump_file, " %u", i);
3330 fprintf (dump_file, "\n");
3333 fprintf (dump_file, "\n\n");
3336 /* Free allocated memory. */
3337 done:
3338 delete_update_ssa ();
3340 timevar_pop (TV_TREE_SSA_INCREMENTAL);