2014-01-30 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob6540bbf0400d59f88492cf1ff89a19aaf1e0ac51
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch9; use Sem_Ch9;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Sinput; use Sinput;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Sinfo; use Sinfo;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Ttypes; use Ttypes;
67 with Tbuild; use Tbuild;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 with GNAT.Heap_Sort_G;
73 package body Sem_Ch13 is
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
89 -- If Typ has predicates (indicated by Has_Predicates being set for Typ,
90 -- then either there are pragma Predicate entries on the rep chain for the
91 -- type (note that Predicate aspects are converted to pragma Predicate), or
92 -- there are inherited aspects from a parent type, or ancestor subtypes.
93 -- This procedure builds the spec and body for the Predicate function that
94 -- tests these predicates. N is the freeze node for the type. The spec of
95 -- the function is inserted before the freeze node, and the body of the
96 -- function is inserted after the freeze node. If the predicate expression
97 -- has at least one Raise_Expression, then this procedure also builds the
98 -- M version of the predicate function for use in membership tests.
100 procedure Build_Static_Predicate
101 (Typ : Entity_Id;
102 Expr : Node_Id;
103 Nam : Name_Id);
104 -- Given a predicated type Typ, where Typ is a discrete static subtype,
105 -- whose predicate expression is Expr, tests if Expr is a static predicate,
106 -- and if so, builds the predicate range list. Nam is the name of the one
107 -- argument to the predicate function. Occurrences of the type name in the
108 -- predicate expression have been replaced by identifier references to this
109 -- name, which is unique, so any identifier with Chars matching Nam must be
110 -- a reference to the type. If the predicate is non-static, this procedure
111 -- returns doing nothing. If the predicate is static, then the predicate
112 -- list is stored in Static_Predicate (Typ), and the Expr is rewritten as
113 -- a canonicalized membership operation.
115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item (N : Node_Id) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
137 procedure New_Stream_Subprogram
138 (N : Node_Id;
139 Ent : Entity_Id;
140 Subp : Entity_Id;
141 Nam : TSS_Name_Type);
142 -- Create a subprogram renaming of a given stream attribute to the
143 -- designated subprogram and then in the tagged case, provide this as a
144 -- primitive operation, or in the non-tagged case make an appropriate TSS
145 -- entry. This is more properly an expansion activity than just semantics,
146 -- but the presence of user-defined stream functions for limited types is a
147 -- legality check, which is why this takes place here rather than in
148 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
149 -- function to be generated.
151 -- To avoid elaboration anomalies with freeze nodes, for untagged types
152 -- we generate both a subprogram declaration and a subprogram renaming
153 -- declaration, so that the attribute specification is handled as a
154 -- renaming_as_body. For tagged types, the specification is one of the
155 -- primitive specs.
157 generic
158 with procedure Replace_Type_Reference (N : Node_Id);
159 procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
160 -- This is used to scan an expression for a predicate or invariant aspect
161 -- replacing occurrences of the name TName (the name of the subtype to
162 -- which the aspect applies) with appropriate references to the parameter
163 -- of the predicate function or invariant procedure. The procedure passed
164 -- as a generic parameter does the actual replacement of node N, which is
165 -- either a simple direct reference to TName, or a selected component that
166 -- represents an appropriately qualified occurrence of TName.
168 procedure Set_Biased
169 (E : Entity_Id;
170 N : Node_Id;
171 Msg : String;
172 Biased : Boolean := True);
173 -- If Biased is True, sets Has_Biased_Representation flag for E, and
174 -- outputs a warning message at node N if Warn_On_Biased_Representation is
175 -- is True. This warning inserts the string Msg to describe the construct
176 -- causing biasing.
178 ----------------------------------------------
179 -- Table for Validate_Unchecked_Conversions --
180 ----------------------------------------------
182 -- The following table collects unchecked conversions for validation.
183 -- Entries are made by Validate_Unchecked_Conversion and then the call
184 -- to Validate_Unchecked_Conversions does the actual error checking and
185 -- posting of warnings. The reason for this delayed processing is to take
186 -- advantage of back-annotations of size and alignment values performed by
187 -- the back end.
189 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
190 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
191 -- already have modified all Sloc values if the -gnatD option is set.
193 type UC_Entry is record
194 Eloc : Source_Ptr; -- node used for posting warnings
195 Source : Entity_Id; -- source type for unchecked conversion
196 Target : Entity_Id; -- target type for unchecked conversion
197 end record;
199 package Unchecked_Conversions is new Table.Table (
200 Table_Component_Type => UC_Entry,
201 Table_Index_Type => Int,
202 Table_Low_Bound => 1,
203 Table_Initial => 50,
204 Table_Increment => 200,
205 Table_Name => "Unchecked_Conversions");
207 ----------------------------------------
208 -- Table for Validate_Address_Clauses --
209 ----------------------------------------
211 -- If an address clause has the form
213 -- for X'Address use Expr
215 -- where Expr is of the form Y'Address or recursively is a reference to a
216 -- constant of either of these forms, and X and Y are entities of objects,
217 -- then if Y has a smaller alignment than X, that merits a warning about
218 -- possible bad alignment. The following table collects address clauses of
219 -- this kind. We put these in a table so that they can be checked after the
220 -- back end has completed annotation of the alignments of objects, since we
221 -- can catch more cases that way.
223 type Address_Clause_Check_Record is record
224 N : Node_Id;
225 -- The address clause
227 X : Entity_Id;
228 -- The entity of the object overlaying Y
230 Y : Entity_Id;
231 -- The entity of the object being overlaid
233 Off : Boolean;
234 -- Whether the address is offset within Y
235 end record;
237 package Address_Clause_Checks is new Table.Table (
238 Table_Component_Type => Address_Clause_Check_Record,
239 Table_Index_Type => Int,
240 Table_Low_Bound => 1,
241 Table_Initial => 20,
242 Table_Increment => 200,
243 Table_Name => "Address_Clause_Checks");
245 -----------------------------------------
246 -- Adjust_Record_For_Reverse_Bit_Order --
247 -----------------------------------------
249 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
250 Comp : Node_Id;
251 CC : Node_Id;
253 begin
254 -- Processing depends on version of Ada
256 -- For Ada 95, we just renumber bits within a storage unit. We do the
257 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
258 -- Ada 83, and are free to add this extension.
260 if Ada_Version < Ada_2005 then
261 Comp := First_Component_Or_Discriminant (R);
262 while Present (Comp) loop
263 CC := Component_Clause (Comp);
265 -- If component clause is present, then deal with the non-default
266 -- bit order case for Ada 95 mode.
268 -- We only do this processing for the base type, and in fact that
269 -- is important, since otherwise if there are record subtypes, we
270 -- could reverse the bits once for each subtype, which is wrong.
272 if Present (CC) and then Ekind (R) = E_Record_Type then
273 declare
274 CFB : constant Uint := Component_Bit_Offset (Comp);
275 CSZ : constant Uint := Esize (Comp);
276 CLC : constant Node_Id := Component_Clause (Comp);
277 Pos : constant Node_Id := Position (CLC);
278 FB : constant Node_Id := First_Bit (CLC);
280 Storage_Unit_Offset : constant Uint :=
281 CFB / System_Storage_Unit;
283 Start_Bit : constant Uint :=
284 CFB mod System_Storage_Unit;
286 begin
287 -- Cases where field goes over storage unit boundary
289 if Start_Bit + CSZ > System_Storage_Unit then
291 -- Allow multi-byte field but generate warning
293 if Start_Bit mod System_Storage_Unit = 0
294 and then CSZ mod System_Storage_Unit = 0
295 then
296 Error_Msg_N
297 ("multi-byte field specified with non-standard"
298 & " Bit_Order??", CLC);
300 if Bytes_Big_Endian then
301 Error_Msg_N
302 ("bytes are not reversed "
303 & "(component is big-endian)??", CLC);
304 else
305 Error_Msg_N
306 ("bytes are not reversed "
307 & "(component is little-endian)??", CLC);
308 end if;
310 -- Do not allow non-contiguous field
312 else
313 Error_Msg_N
314 ("attempt to specify non-contiguous field "
315 & "not permitted", CLC);
316 Error_Msg_N
317 ("\caused by non-standard Bit_Order "
318 & "specified", CLC);
319 Error_Msg_N
320 ("\consider possibility of using "
321 & "Ada 2005 mode here", CLC);
322 end if;
324 -- Case where field fits in one storage unit
326 else
327 -- Give warning if suspicious component clause
329 if Intval (FB) >= System_Storage_Unit
330 and then Warn_On_Reverse_Bit_Order
331 then
332 Error_Msg_N
333 ("Bit_Order clause does not affect " &
334 "byte ordering?V?", Pos);
335 Error_Msg_Uint_1 :=
336 Intval (Pos) + Intval (FB) /
337 System_Storage_Unit;
338 Error_Msg_N
339 ("position normalized to ^ before bit " &
340 "order interpreted?V?", Pos);
341 end if;
343 -- Here is where we fix up the Component_Bit_Offset value
344 -- to account for the reverse bit order. Some examples of
345 -- what needs to be done are:
347 -- First_Bit .. Last_Bit Component_Bit_Offset
348 -- old new old new
350 -- 0 .. 0 7 .. 7 0 7
351 -- 0 .. 1 6 .. 7 0 6
352 -- 0 .. 2 5 .. 7 0 5
353 -- 0 .. 7 0 .. 7 0 4
355 -- 1 .. 1 6 .. 6 1 6
356 -- 1 .. 4 3 .. 6 1 3
357 -- 4 .. 7 0 .. 3 4 0
359 -- The rule is that the first bit is is obtained by
360 -- subtracting the old ending bit from storage_unit - 1.
362 Set_Component_Bit_Offset
363 (Comp,
364 (Storage_Unit_Offset * System_Storage_Unit) +
365 (System_Storage_Unit - 1) -
366 (Start_Bit + CSZ - 1));
368 Set_Normalized_First_Bit
369 (Comp,
370 Component_Bit_Offset (Comp) mod
371 System_Storage_Unit);
372 end if;
373 end;
374 end if;
376 Next_Component_Or_Discriminant (Comp);
377 end loop;
379 -- For Ada 2005, we do machine scalar processing, as fully described In
380 -- AI-133. This involves gathering all components which start at the
381 -- same byte offset and processing them together. Same approach is still
382 -- valid in later versions including Ada 2012.
384 else
385 declare
386 Max_Machine_Scalar_Size : constant Uint :=
387 UI_From_Int
388 (Standard_Long_Long_Integer_Size);
389 -- We use this as the maximum machine scalar size
391 Num_CC : Natural;
392 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
394 begin
395 -- This first loop through components does two things. First it
396 -- deals with the case of components with component clauses whose
397 -- length is greater than the maximum machine scalar size (either
398 -- accepting them or rejecting as needed). Second, it counts the
399 -- number of components with component clauses whose length does
400 -- not exceed this maximum for later processing.
402 Num_CC := 0;
403 Comp := First_Component_Or_Discriminant (R);
404 while Present (Comp) loop
405 CC := Component_Clause (Comp);
407 if Present (CC) then
408 declare
409 Fbit : constant Uint := Static_Integer (First_Bit (CC));
410 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
412 begin
413 -- Case of component with last bit >= max machine scalar
415 if Lbit >= Max_Machine_Scalar_Size then
417 -- This is allowed only if first bit is zero, and
418 -- last bit + 1 is a multiple of storage unit size.
420 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
422 -- This is the case to give a warning if enabled
424 if Warn_On_Reverse_Bit_Order then
425 Error_Msg_N
426 ("multi-byte field specified with "
427 & " non-standard Bit_Order?V?", CC);
429 if Bytes_Big_Endian then
430 Error_Msg_N
431 ("\bytes are not reversed "
432 & "(component is big-endian)?V?", CC);
433 else
434 Error_Msg_N
435 ("\bytes are not reversed "
436 & "(component is little-endian)?V?", CC);
437 end if;
438 end if;
440 -- Give error message for RM 13.5.1(10) violation
442 else
443 Error_Msg_FE
444 ("machine scalar rules not followed for&",
445 First_Bit (CC), Comp);
447 Error_Msg_Uint_1 := Lbit;
448 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
449 Error_Msg_F
450 ("\last bit (^) exceeds maximum machine "
451 & "scalar size (^)",
452 First_Bit (CC));
454 if (Lbit + 1) mod SSU /= 0 then
455 Error_Msg_Uint_1 := SSU;
456 Error_Msg_F
457 ("\and is not a multiple of Storage_Unit (^) "
458 & "(RM 13.4.1(10))",
459 First_Bit (CC));
461 else
462 Error_Msg_Uint_1 := Fbit;
463 Error_Msg_F
464 ("\and first bit (^) is non-zero "
465 & "(RM 13.4.1(10))",
466 First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause,
471 -- For now, just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the
483 -- Position values in the clause, so we can group clauses with
484 -- the same Position. together to determine the relevant machine
485 -- scalar size.
487 Sort_CC : declare
488 Comps : array (0 .. Num_CC) of Entity_Id;
489 -- Array to collect component and discriminant entities. The
490 -- data starts at index 1, the 0'th entry is for the sort
491 -- routine.
493 function CP_Lt (Op1, Op2 : Natural) return Boolean;
494 -- Compare routine for Sort
496 procedure CP_Move (From : Natural; To : Natural);
497 -- Move routine for Sort
499 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
501 Start : Natural;
502 Stop : Natural;
503 -- Start and stop positions in the component list of the set of
504 -- components with the same starting position (that constitute
505 -- components in a single machine scalar).
507 MaxL : Uint;
508 -- Maximum last bit value of any component in this set
510 MSS : Uint;
511 -- Corresponding machine scalar size
513 -----------
514 -- CP_Lt --
515 -----------
517 function CP_Lt (Op1, Op2 : Natural) return Boolean is
518 begin
519 return Position (Component_Clause (Comps (Op1))) <
520 Position (Component_Clause (Comps (Op2)));
521 end CP_Lt;
523 -------------
524 -- CP_Move --
525 -------------
527 procedure CP_Move (From : Natural; To : Natural) is
528 begin
529 Comps (To) := Comps (From);
530 end CP_Move;
532 -- Start of processing for Sort_CC
534 begin
535 -- Collect the machine scalar relevant component clauses
537 Num_CC := 0;
538 Comp := First_Component_Or_Discriminant (R);
539 while Present (Comp) loop
540 declare
541 CC : constant Node_Id := Component_Clause (Comp);
543 begin
544 -- Collect only component clauses whose last bit is less
545 -- than machine scalar size. Any component clause whose
546 -- last bit exceeds this value does not take part in
547 -- machine scalar layout considerations. The test for
548 -- Error_Posted makes sure we exclude component clauses
549 -- for which we already posted an error.
551 if Present (CC)
552 and then not Error_Posted (Last_Bit (CC))
553 and then Static_Integer (Last_Bit (CC)) <
554 Max_Machine_Scalar_Size
555 then
556 Num_CC := Num_CC + 1;
557 Comps (Num_CC) := Comp;
558 end if;
559 end;
561 Next_Component_Or_Discriminant (Comp);
562 end loop;
564 -- Sort by ascending position number
566 Sorting.Sort (Num_CC);
568 -- We now have all the components whose size does not exceed
569 -- the max machine scalar value, sorted by starting position.
570 -- In this loop we gather groups of clauses starting at the
571 -- same position, to process them in accordance with AI-133.
573 Stop := 0;
574 while Stop < Num_CC loop
575 Start := Stop + 1;
576 Stop := Start;
577 MaxL :=
578 Static_Integer
579 (Last_Bit (Component_Clause (Comps (Start))));
580 while Stop < Num_CC loop
581 if Static_Integer
582 (Position (Component_Clause (Comps (Stop + 1)))) =
583 Static_Integer
584 (Position (Component_Clause (Comps (Stop))))
585 then
586 Stop := Stop + 1;
587 MaxL :=
588 UI_Max
589 (MaxL,
590 Static_Integer
591 (Last_Bit
592 (Component_Clause (Comps (Stop)))));
593 else
594 exit;
595 end if;
596 end loop;
598 -- Now we have a group of component clauses from Start to
599 -- Stop whose positions are identical, and MaxL is the
600 -- maximum last bit value of any of these components.
602 -- We need to determine the corresponding machine scalar
603 -- size. This loop assumes that machine scalar sizes are
604 -- even, and that each possible machine scalar has twice
605 -- as many bits as the next smaller one.
607 MSS := Max_Machine_Scalar_Size;
608 while MSS mod 2 = 0
609 and then (MSS / 2) >= SSU
610 and then (MSS / 2) > MaxL
611 loop
612 MSS := MSS / 2;
613 end loop;
615 -- Here is where we fix up the Component_Bit_Offset value
616 -- to account for the reverse bit order. Some examples of
617 -- what needs to be done for the case of a machine scalar
618 -- size of 8 are:
620 -- First_Bit .. Last_Bit Component_Bit_Offset
621 -- old new old new
623 -- 0 .. 0 7 .. 7 0 7
624 -- 0 .. 1 6 .. 7 0 6
625 -- 0 .. 2 5 .. 7 0 5
626 -- 0 .. 7 0 .. 7 0 4
628 -- 1 .. 1 6 .. 6 1 6
629 -- 1 .. 4 3 .. 6 1 3
630 -- 4 .. 7 0 .. 3 4 0
632 -- The rule is that the first bit is obtained by subtracting
633 -- the old ending bit from machine scalar size - 1.
635 for C in Start .. Stop loop
636 declare
637 Comp : constant Entity_Id := Comps (C);
638 CC : constant Node_Id := Component_Clause (Comp);
640 LB : constant Uint := Static_Integer (Last_Bit (CC));
641 NFB : constant Uint := MSS - Uint_1 - LB;
642 NLB : constant Uint := NFB + Esize (Comp) - 1;
643 Pos : constant Uint := Static_Integer (Position (CC));
645 begin
646 if Warn_On_Reverse_Bit_Order then
647 Error_Msg_Uint_1 := MSS;
648 Error_Msg_N
649 ("info: reverse bit order in machine " &
650 "scalar of length^?V?", First_Bit (CC));
651 Error_Msg_Uint_1 := NFB;
652 Error_Msg_Uint_2 := NLB;
654 if Bytes_Big_Endian then
655 Error_Msg_NE
656 ("\info: big-endian range for "
657 & "component & is ^ .. ^?V?",
658 First_Bit (CC), Comp);
659 else
660 Error_Msg_NE
661 ("\info: little-endian range "
662 & "for component & is ^ .. ^?V?",
663 First_Bit (CC), Comp);
664 end if;
665 end if;
667 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
668 Set_Normalized_First_Bit (Comp, NFB mod SSU);
669 end;
670 end loop;
671 end loop;
672 end Sort_CC;
673 end;
674 end if;
675 end Adjust_Record_For_Reverse_Bit_Order;
677 -------------------------------------
678 -- Alignment_Check_For_Size_Change --
679 -------------------------------------
681 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
682 begin
683 -- If the alignment is known, and not set by a rep clause, and is
684 -- inconsistent with the size being set, then reset it to unknown,
685 -- we assume in this case that the size overrides the inherited
686 -- alignment, and that the alignment must be recomputed.
688 if Known_Alignment (Typ)
689 and then not Has_Alignment_Clause (Typ)
690 and then Size mod (Alignment (Typ) * SSU) /= 0
691 then
692 Init_Alignment (Typ);
693 end if;
694 end Alignment_Check_For_Size_Change;
696 -------------------------------------
697 -- Analyze_Aspects_At_Freeze_Point --
698 -------------------------------------
700 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
701 ASN : Node_Id;
702 A_Id : Aspect_Id;
703 Ritem : Node_Id;
705 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
706 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
707 -- the aspect specification node ASN.
709 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
710 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
711 -- a derived type can inherit aspects from its parent which have been
712 -- specified at the time of the derivation using an aspect, as in:
714 -- type A is range 1 .. 10
715 -- with Size => Not_Defined_Yet;
716 -- ..
717 -- type B is new A;
718 -- ..
719 -- Not_Defined_Yet : constant := 64;
721 -- In this example, the Size of A is considered to be specified prior
722 -- to the derivation, and thus inherited, even though the value is not
723 -- known at the time of derivation. To deal with this, we use two entity
724 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
725 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
726 -- the derived type (B here). If this flag is set when the derived type
727 -- is frozen, then this procedure is called to ensure proper inheritance
728 -- of all delayed aspects from the parent type. The derived type is E,
729 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
730 -- aspect specification node in the Rep_Item chain for the parent type.
732 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
733 -- Given an aspect specification node ASN whose expression is an
734 -- optional Boolean, this routines creates the corresponding pragma
735 -- at the freezing point.
737 ----------------------------------
738 -- Analyze_Aspect_Default_Value --
739 ----------------------------------
741 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
742 Ent : constant Entity_Id := Entity (ASN);
743 Expr : constant Node_Id := Expression (ASN);
744 Id : constant Node_Id := Identifier (ASN);
746 begin
747 Error_Msg_Name_1 := Chars (Id);
749 if not Is_Type (Ent) then
750 Error_Msg_N ("aspect% can only apply to a type", Id);
751 return;
753 elsif not Is_First_Subtype (Ent) then
754 Error_Msg_N ("aspect% cannot apply to subtype", Id);
755 return;
757 elsif A_Id = Aspect_Default_Value
758 and then not Is_Scalar_Type (Ent)
759 then
760 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
761 return;
763 elsif A_Id = Aspect_Default_Component_Value then
764 if not Is_Array_Type (Ent) then
765 Error_Msg_N ("aspect% can only be applied to array type", Id);
766 return;
768 elsif not Is_Scalar_Type (Component_Type (Ent)) then
769 Error_Msg_N ("aspect% requires scalar components", Id);
770 return;
771 end if;
772 end if;
774 Set_Has_Default_Aspect (Base_Type (Ent));
776 if Is_Scalar_Type (Ent) then
777 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
778 else
779 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
780 end if;
781 end Analyze_Aspect_Default_Value;
783 ---------------------------------
784 -- Inherit_Delayed_Rep_Aspects --
785 ---------------------------------
787 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
788 P : constant Entity_Id := Entity (ASN);
789 -- Entithy for parent type
791 N : Node_Id;
792 -- Item from Rep_Item chain
794 A : Aspect_Id;
796 begin
797 -- Loop through delayed aspects for the parent type
799 N := ASN;
800 while Present (N) loop
801 if Nkind (N) = N_Aspect_Specification then
802 exit when Entity (N) /= P;
804 if Is_Delayed_Aspect (N) then
805 A := Get_Aspect_Id (Chars (Identifier (N)));
807 -- Process delayed rep aspect. For Boolean attributes it is
808 -- not possible to cancel an attribute once set (the attempt
809 -- to use an aspect with xxx => False is an error) for a
810 -- derived type. So for those cases, we do not have to check
811 -- if a clause has been given for the derived type, since it
812 -- is harmless to set it again if it is already set.
814 case A is
816 -- Alignment
818 when Aspect_Alignment =>
819 if not Has_Alignment_Clause (E) then
820 Set_Alignment (E, Alignment (P));
821 end if;
823 -- Atomic
825 when Aspect_Atomic =>
826 if Is_Atomic (P) then
827 Set_Is_Atomic (E);
828 end if;
830 -- Atomic_Components
832 when Aspect_Atomic_Components =>
833 if Has_Atomic_Components (P) then
834 Set_Has_Atomic_Components (Base_Type (E));
835 end if;
837 -- Bit_Order
839 when Aspect_Bit_Order =>
840 if Is_Record_Type (E)
841 and then No (Get_Attribute_Definition_Clause
842 (E, Attribute_Bit_Order))
843 and then Reverse_Bit_Order (P)
844 then
845 Set_Reverse_Bit_Order (Base_Type (E));
846 end if;
848 -- Component_Size
850 when Aspect_Component_Size =>
851 if Is_Array_Type (E)
852 and then not Has_Component_Size_Clause (E)
853 then
854 Set_Component_Size
855 (Base_Type (E), Component_Size (P));
856 end if;
858 -- Machine_Radix
860 when Aspect_Machine_Radix =>
861 if Is_Decimal_Fixed_Point_Type (E)
862 and then not Has_Machine_Radix_Clause (E)
863 then
864 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
865 end if;
867 -- Object_Size (also Size which also sets Object_Size)
869 when Aspect_Object_Size | Aspect_Size =>
870 if not Has_Size_Clause (E)
871 and then
872 No (Get_Attribute_Definition_Clause
873 (E, Attribute_Object_Size))
874 then
875 Set_Esize (E, Esize (P));
876 end if;
878 -- Pack
880 when Aspect_Pack =>
881 if not Is_Packed (E) then
882 Set_Is_Packed (Base_Type (E));
884 if Is_Bit_Packed_Array (P) then
885 Set_Is_Bit_Packed_Array (Base_Type (E));
886 Set_Packed_Array_Type (E, Packed_Array_Type (P));
887 end if;
888 end if;
890 -- Scalar_Storage_Order
892 when Aspect_Scalar_Storage_Order =>
893 if (Is_Record_Type (E) or else Is_Array_Type (E))
894 and then No (Get_Attribute_Definition_Clause
895 (E, Attribute_Scalar_Storage_Order))
896 and then Reverse_Storage_Order (P)
897 then
898 Set_Reverse_Storage_Order (Base_Type (E));
899 end if;
901 -- Small
903 when Aspect_Small =>
904 if Is_Fixed_Point_Type (E)
905 and then not Has_Small_Clause (E)
906 then
907 Set_Small_Value (E, Small_Value (P));
908 end if;
910 -- Storage_Size
912 when Aspect_Storage_Size =>
913 if (Is_Access_Type (E) or else Is_Task_Type (E))
914 and then not Has_Storage_Size_Clause (E)
915 then
916 Set_Storage_Size_Variable
917 (Base_Type (E), Storage_Size_Variable (P));
918 end if;
920 -- Value_Size
922 when Aspect_Value_Size =>
924 -- Value_Size is never inherited, it is either set by
925 -- default, or it is explicitly set for the derived
926 -- type. So nothing to do here.
928 null;
930 -- Volatile
932 when Aspect_Volatile =>
933 if Is_Volatile (P) then
934 Set_Is_Volatile (E);
935 end if;
937 -- Volatile_Components
939 when Aspect_Volatile_Components =>
940 if Has_Volatile_Components (P) then
941 Set_Has_Volatile_Components (Base_Type (E));
942 end if;
944 -- That should be all the Rep Aspects
946 when others =>
947 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
948 null;
950 end case;
951 end if;
952 end if;
954 N := Next_Rep_Item (N);
955 end loop;
956 end Inherit_Delayed_Rep_Aspects;
958 -------------------------------------
959 -- Make_Pragma_From_Boolean_Aspect --
960 -------------------------------------
962 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
963 Ident : constant Node_Id := Identifier (ASN);
964 A_Name : constant Name_Id := Chars (Ident);
965 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
966 Ent : constant Entity_Id := Entity (ASN);
967 Expr : constant Node_Id := Expression (ASN);
968 Loc : constant Source_Ptr := Sloc (ASN);
970 Prag : Node_Id;
972 procedure Check_False_Aspect_For_Derived_Type;
973 -- This procedure checks for the case of a false aspect for a derived
974 -- type, which improperly tries to cancel an aspect inherited from
975 -- the parent.
977 -----------------------------------------
978 -- Check_False_Aspect_For_Derived_Type --
979 -----------------------------------------
981 procedure Check_False_Aspect_For_Derived_Type is
982 Par : Node_Id;
984 begin
985 -- We are only checking derived types
987 if not Is_Derived_Type (E) then
988 return;
989 end if;
991 Par := Nearest_Ancestor (E);
993 case A_Id is
994 when Aspect_Atomic | Aspect_Shared =>
995 if not Is_Atomic (Par) then
996 return;
997 end if;
999 when Aspect_Atomic_Components =>
1000 if not Has_Atomic_Components (Par) then
1001 return;
1002 end if;
1004 when Aspect_Discard_Names =>
1005 if not Discard_Names (Par) then
1006 return;
1007 end if;
1009 when Aspect_Pack =>
1010 if not Is_Packed (Par) then
1011 return;
1012 end if;
1014 when Aspect_Unchecked_Union =>
1015 if not Is_Unchecked_Union (Par) then
1016 return;
1017 end if;
1019 when Aspect_Volatile =>
1020 if not Is_Volatile (Par) then
1021 return;
1022 end if;
1024 when Aspect_Volatile_Components =>
1025 if not Has_Volatile_Components (Par) then
1026 return;
1027 end if;
1029 when others =>
1030 return;
1031 end case;
1033 -- Fall through means we are canceling an inherited aspect
1035 Error_Msg_Name_1 := A_Name;
1036 Error_Msg_NE
1037 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1039 end Check_False_Aspect_For_Derived_Type;
1041 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1043 begin
1044 -- Note that we know Expr is present, because for a missing Expr
1045 -- argument, we knew it was True and did not need to delay the
1046 -- evaluation to the freeze point.
1048 if Is_False (Static_Boolean (Expr)) then
1049 Check_False_Aspect_For_Derived_Type;
1051 else
1052 Prag :=
1053 Make_Pragma (Loc,
1054 Pragma_Argument_Associations => New_List (
1055 Make_Pragma_Argument_Association (Sloc (Ident),
1056 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1058 Pragma_Identifier =>
1059 Make_Identifier (Sloc (Ident), Chars (Ident)));
1061 Set_From_Aspect_Specification (Prag, True);
1062 Set_Corresponding_Aspect (Prag, ASN);
1063 Set_Aspect_Rep_Item (ASN, Prag);
1064 Set_Is_Delayed_Aspect (Prag);
1065 Set_Parent (Prag, ASN);
1066 end if;
1067 end Make_Pragma_From_Boolean_Aspect;
1069 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1071 begin
1072 -- Must be visible in current scope
1074 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1075 return;
1076 end if;
1078 -- Look for aspect specification entries for this entity
1080 ASN := First_Rep_Item (E);
1081 while Present (ASN) loop
1082 if Nkind (ASN) = N_Aspect_Specification then
1083 exit when Entity (ASN) /= E;
1085 if Is_Delayed_Aspect (ASN) then
1086 A_Id := Get_Aspect_Id (ASN);
1088 case A_Id is
1090 -- For aspects whose expression is an optional Boolean, make
1091 -- the corresponding pragma at the freezing point.
1093 when Boolean_Aspects |
1094 Library_Unit_Aspects =>
1095 Make_Pragma_From_Boolean_Aspect (ASN);
1097 -- Special handling for aspects that don't correspond to
1098 -- pragmas/attributes.
1100 when Aspect_Default_Value |
1101 Aspect_Default_Component_Value =>
1102 Analyze_Aspect_Default_Value (ASN);
1104 -- Ditto for iterator aspects, because the corresponding
1105 -- attributes may not have been analyzed yet.
1107 when Aspect_Constant_Indexing |
1108 Aspect_Variable_Indexing |
1109 Aspect_Default_Iterator |
1110 Aspect_Iterator_Element =>
1111 Analyze (Expression (ASN));
1113 when others =>
1114 null;
1115 end case;
1117 Ritem := Aspect_Rep_Item (ASN);
1119 if Present (Ritem) then
1120 Analyze (Ritem);
1121 end if;
1122 end if;
1123 end if;
1125 Next_Rep_Item (ASN);
1126 end loop;
1128 -- This is where we inherit delayed rep aspects from our parent. Note
1129 -- that if we fell out of the above loop with ASN non-empty, it means
1130 -- we hit an aspect for an entity other than E, and it must be the
1131 -- type from which we were derived.
1133 if May_Inherit_Delayed_Rep_Aspects (E) then
1134 Inherit_Delayed_Rep_Aspects (ASN);
1135 end if;
1136 end Analyze_Aspects_At_Freeze_Point;
1138 -----------------------------------
1139 -- Analyze_Aspect_Specifications --
1140 -----------------------------------
1142 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1143 procedure Decorate_Aspect_And_Pragma
1144 (Asp : Node_Id;
1145 Prag : Node_Id;
1146 Delayed : Boolean := False);
1147 -- Establish the linkages between an aspect and its corresponding
1148 -- pragma. Flag Delayed should be set when both constructs are delayed.
1150 procedure Insert_Delayed_Pragma (Prag : Node_Id);
1151 -- Insert a postcondition-like pragma into the tree depending on the
1152 -- context. Prag must denote one of the following: Pre, Post, Depends,
1153 -- Global or Contract_Cases.
1155 --------------------------------
1156 -- Decorate_Aspect_And_Pragma --
1157 --------------------------------
1159 procedure Decorate_Aspect_And_Pragma
1160 (Asp : Node_Id;
1161 Prag : Node_Id;
1162 Delayed : Boolean := False)
1164 begin
1165 Set_Aspect_Rep_Item (Asp, Prag);
1166 Set_Corresponding_Aspect (Prag, Asp);
1167 Set_From_Aspect_Specification (Prag);
1168 Set_Is_Delayed_Aspect (Prag, Delayed);
1169 Set_Is_Delayed_Aspect (Asp, Delayed);
1170 Set_Parent (Prag, Asp);
1171 end Decorate_Aspect_And_Pragma;
1173 ---------------------------
1174 -- Insert_Delayed_Pragma --
1175 ---------------------------
1177 procedure Insert_Delayed_Pragma (Prag : Node_Id) is
1178 Aux : Node_Id;
1180 begin
1181 -- When the context is a library unit, the pragma is added to the
1182 -- Pragmas_After list.
1184 if Nkind (Parent (N)) = N_Compilation_Unit then
1185 Aux := Aux_Decls_Node (Parent (N));
1187 if No (Pragmas_After (Aux)) then
1188 Set_Pragmas_After (Aux, New_List);
1189 end if;
1191 Prepend (Prag, Pragmas_After (Aux));
1193 -- Pragmas associated with subprogram bodies are inserted in the
1194 -- declarative part.
1196 elsif Nkind (N) = N_Subprogram_Body then
1197 if No (Declarations (N)) then
1198 Set_Declarations (N, New_List (Prag));
1199 else
1200 declare
1201 D : Node_Id;
1202 begin
1204 -- There may be several aspects associated with the body;
1205 -- preserve the ordering of the corresponding pragmas.
1207 D := First (Declarations (N));
1208 while Present (D) loop
1209 exit when Nkind (D) /= N_Pragma
1210 or else not From_Aspect_Specification (D);
1211 Next (D);
1212 end loop;
1214 if No (D) then
1215 Append (Prag, Declarations (N));
1216 else
1217 Insert_Before (D, Prag);
1218 end if;
1219 end;
1220 end if;
1222 -- Default
1224 else
1225 Insert_After (N, Prag);
1227 -- Analyze the pragma before analyzing the proper body of a stub.
1228 -- This ensures that the pragma will appear on the proper contract
1229 -- list (see N_Contract).
1231 if Nkind (N) = N_Subprogram_Body_Stub then
1232 Analyze (Prag);
1233 end if;
1234 end if;
1235 end Insert_Delayed_Pragma;
1237 -- Local variables
1239 Aspect : Node_Id;
1240 Aitem : Node_Id;
1241 Ent : Node_Id;
1243 L : constant List_Id := Aspect_Specifications (N);
1245 Ins_Node : Node_Id := N;
1246 -- Insert pragmas/attribute definition clause after this node when no
1247 -- delayed analysis is required.
1249 -- Start of processing for Analyze_Aspect_Specifications
1251 -- The general processing involves building an attribute definition
1252 -- clause or a pragma node that corresponds to the aspect. Then in order
1253 -- to delay the evaluation of this aspect to the freeze point, we attach
1254 -- the corresponding pragma/attribute definition clause to the aspect
1255 -- specification node, which is then placed in the Rep Item chain. In
1256 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1257 -- and we evaluate the rep item at the freeze point. When the aspect
1258 -- doesn't have a corresponding pragma/attribute definition clause, then
1259 -- its analysis is simply delayed at the freeze point.
1261 -- Some special cases don't require delay analysis, thus the aspect is
1262 -- analyzed right now.
1264 -- Note that there is a special handling for Pre, Post, Test_Case,
1265 -- Contract_Cases aspects. In these cases, we do not have to worry
1266 -- about delay issues, since the pragmas themselves deal with delay
1267 -- of visibility for the expression analysis. Thus, we just insert
1268 -- the pragma after the node N.
1270 begin
1271 pragma Assert (Present (L));
1273 -- Loop through aspects
1275 Aspect := First (L);
1276 Aspect_Loop : while Present (Aspect) loop
1277 Analyze_One_Aspect : declare
1278 Expr : constant Node_Id := Expression (Aspect);
1279 Id : constant Node_Id := Identifier (Aspect);
1280 Loc : constant Source_Ptr := Sloc (Aspect);
1281 Nam : constant Name_Id := Chars (Id);
1282 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1283 Anod : Node_Id;
1285 Delay_Required : Boolean;
1286 -- Set False if delay is not required
1288 Eloc : Source_Ptr := No_Location;
1289 -- Source location of expression, modified when we split PPC's. It
1290 -- is set below when Expr is present.
1292 procedure Analyze_Aspect_External_Or_Link_Name;
1293 -- Perform analysis of the External_Name or Link_Name aspects
1295 procedure Analyze_Aspect_Implicit_Dereference;
1296 -- Perform analysis of the Implicit_Dereference aspects
1298 procedure Make_Aitem_Pragma
1299 (Pragma_Argument_Associations : List_Id;
1300 Pragma_Name : Name_Id);
1301 -- This is a wrapper for Make_Pragma used for converting aspects
1302 -- to pragmas. It takes care of Sloc (set from Loc) and building
1303 -- the pragma identifier from the given name. In addition the
1304 -- flags Class_Present and Split_PPC are set from the aspect
1305 -- node, as well as Is_Ignored. This routine also sets the
1306 -- From_Aspect_Specification in the resulting pragma node to
1307 -- True, and sets Corresponding_Aspect to point to the aspect.
1308 -- The resulting pragma is assigned to Aitem.
1310 ------------------------------------------
1311 -- Analyze_Aspect_External_Or_Link_Name --
1312 ------------------------------------------
1314 procedure Analyze_Aspect_External_Or_Link_Name is
1315 begin
1316 -- Verify that there is an Import/Export aspect defined for the
1317 -- entity. The processing of that aspect in turn checks that
1318 -- there is a Convention aspect declared. The pragma is
1319 -- constructed when processing the Convention aspect.
1321 declare
1322 A : Node_Id;
1324 begin
1325 A := First (L);
1326 while Present (A) loop
1327 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1328 Name_Import);
1329 Next (A);
1330 end loop;
1332 if No (A) then
1333 Error_Msg_N
1334 ("missing Import/Export for Link/External name",
1335 Aspect);
1336 end if;
1337 end;
1338 end Analyze_Aspect_External_Or_Link_Name;
1340 -----------------------------------------
1341 -- Analyze_Aspect_Implicit_Dereference --
1342 -----------------------------------------
1344 procedure Analyze_Aspect_Implicit_Dereference is
1345 begin
1346 if not Is_Type (E) or else not Has_Discriminants (E) then
1347 Error_Msg_N
1348 ("aspect must apply to a type with discriminants", N);
1350 else
1351 declare
1352 Disc : Entity_Id;
1354 begin
1355 Disc := First_Discriminant (E);
1356 while Present (Disc) loop
1357 if Chars (Expr) = Chars (Disc)
1358 and then Ekind (Etype (Disc)) =
1359 E_Anonymous_Access_Type
1360 then
1361 Set_Has_Implicit_Dereference (E);
1362 Set_Has_Implicit_Dereference (Disc);
1363 return;
1364 end if;
1366 Next_Discriminant (Disc);
1367 end loop;
1369 -- Error if no proper access discriminant.
1371 Error_Msg_NE
1372 ("not an access discriminant of&", Expr, E);
1373 end;
1374 end if;
1375 end Analyze_Aspect_Implicit_Dereference;
1377 -----------------------
1378 -- Make_Aitem_Pragma --
1379 -----------------------
1381 procedure Make_Aitem_Pragma
1382 (Pragma_Argument_Associations : List_Id;
1383 Pragma_Name : Name_Id)
1385 Args : List_Id := Pragma_Argument_Associations;
1387 begin
1388 -- We should never get here if aspect was disabled
1390 pragma Assert (not Is_Disabled (Aspect));
1392 -- Certain aspects allow for an optional name or expression. Do
1393 -- not generate a pragma with empty argument association list.
1395 if No (Args) or else No (Expression (First (Args))) then
1396 Args := No_List;
1397 end if;
1399 -- Build the pragma
1401 Aitem :=
1402 Make_Pragma (Loc,
1403 Pragma_Argument_Associations => Args,
1404 Pragma_Identifier =>
1405 Make_Identifier (Sloc (Id), Pragma_Name),
1406 Class_Present => Class_Present (Aspect),
1407 Split_PPC => Split_PPC (Aspect));
1409 -- Set additional semantic fields
1411 if Is_Ignored (Aspect) then
1412 Set_Is_Ignored (Aitem);
1413 elsif Is_Checked (Aspect) then
1414 Set_Is_Checked (Aitem);
1415 end if;
1417 Set_Corresponding_Aspect (Aitem, Aspect);
1418 Set_From_Aspect_Specification (Aitem, True);
1419 end Make_Aitem_Pragma;
1421 -- Start of processing for Analyze_One_Aspect
1423 begin
1424 -- Skip aspect if already analyzed (not clear if this is needed)
1426 if Analyzed (Aspect) then
1427 goto Continue;
1428 end if;
1430 -- Skip looking at aspect if it is totally disabled. Just mark it
1431 -- as such for later reference in the tree. This also sets the
1432 -- Is_Ignored and Is_Checked flags appropriately.
1434 Check_Applicable_Policy (Aspect);
1436 if Is_Disabled (Aspect) then
1437 goto Continue;
1438 end if;
1440 -- Set the source location of expression, used in the case of
1441 -- a failed precondition/postcondition or invariant. Note that
1442 -- the source location of the expression is not usually the best
1443 -- choice here. For example, it gets located on the last AND
1444 -- keyword in a chain of boolean expressiond AND'ed together.
1445 -- It is best to put the message on the first character of the
1446 -- assertion, which is the effect of the First_Node call here.
1448 if Present (Expr) then
1449 Eloc := Sloc (First_Node (Expr));
1450 end if;
1452 -- Check restriction No_Implementation_Aspect_Specifications
1454 if Implementation_Defined_Aspect (A_Id) then
1455 Check_Restriction
1456 (No_Implementation_Aspect_Specifications, Aspect);
1457 end if;
1459 -- Check restriction No_Specification_Of_Aspect
1461 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1463 -- Analyze this aspect (actual analysis is delayed till later)
1465 Set_Analyzed (Aspect);
1466 Set_Entity (Aspect, E);
1467 Ent := New_Occurrence_Of (E, Sloc (Id));
1469 -- Check for duplicate aspect. Note that the Comes_From_Source
1470 -- test allows duplicate Pre/Post's that we generate internally
1471 -- to escape being flagged here.
1473 if No_Duplicates_Allowed (A_Id) then
1474 Anod := First (L);
1475 while Anod /= Aspect loop
1476 if Comes_From_Source (Aspect)
1477 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1478 then
1479 Error_Msg_Name_1 := Nam;
1480 Error_Msg_Sloc := Sloc (Anod);
1482 -- Case of same aspect specified twice
1484 if Class_Present (Anod) = Class_Present (Aspect) then
1485 if not Class_Present (Anod) then
1486 Error_Msg_NE
1487 ("aspect% for & previously given#",
1488 Id, E);
1489 else
1490 Error_Msg_NE
1491 ("aspect `%''Class` for & previously given#",
1492 Id, E);
1493 end if;
1494 end if;
1495 end if;
1497 Next (Anod);
1498 end loop;
1499 end if;
1501 -- Check some general restrictions on language defined aspects
1503 if not Implementation_Defined_Aspect (A_Id) then
1504 Error_Msg_Name_1 := Nam;
1506 -- Not allowed for renaming declarations
1508 if Nkind (N) in N_Renaming_Declaration then
1509 Error_Msg_N
1510 ("aspect % not allowed for renaming declaration",
1511 Aspect);
1512 end if;
1514 -- Not allowed for formal type declarations
1516 if Nkind (N) = N_Formal_Type_Declaration then
1517 Error_Msg_N
1518 ("aspect % not allowed for formal type declaration",
1519 Aspect);
1520 end if;
1521 end if;
1523 -- Copy expression for later processing by the procedures
1524 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1526 Set_Entity (Id, New_Copy_Tree (Expr));
1528 -- Set Delay_Required as appropriate to aspect
1530 case Aspect_Delay (A_Id) is
1531 when Always_Delay =>
1532 Delay_Required := True;
1534 when Never_Delay =>
1535 Delay_Required := False;
1537 when Rep_Aspect =>
1539 -- If expression has the form of an integer literal, then
1540 -- do not delay, since we know the value cannot change.
1541 -- This optimization catches most rep clause cases.
1543 if (Present (Expr) and then Nkind (Expr) = N_Integer_Literal)
1544 or else (A_Id in Boolean_Aspects and then No (Expr))
1545 then
1546 Delay_Required := False;
1547 else
1548 Delay_Required := True;
1549 Set_Has_Delayed_Rep_Aspects (E);
1550 end if;
1551 end case;
1553 -- Processing based on specific aspect
1555 case A_Id is
1557 -- No_Aspect should be impossible
1559 when No_Aspect =>
1560 raise Program_Error;
1562 -- Case 1: Aspects corresponding to attribute definition
1563 -- clauses.
1565 when Aspect_Address |
1566 Aspect_Alignment |
1567 Aspect_Bit_Order |
1568 Aspect_Component_Size |
1569 Aspect_Constant_Indexing |
1570 Aspect_Default_Iterator |
1571 Aspect_Dispatching_Domain |
1572 Aspect_External_Tag |
1573 Aspect_Input |
1574 Aspect_Iterator_Element |
1575 Aspect_Machine_Radix |
1576 Aspect_Object_Size |
1577 Aspect_Output |
1578 Aspect_Read |
1579 Aspect_Scalar_Storage_Order |
1580 Aspect_Size |
1581 Aspect_Small |
1582 Aspect_Simple_Storage_Pool |
1583 Aspect_Storage_Pool |
1584 Aspect_Stream_Size |
1585 Aspect_Value_Size |
1586 Aspect_Variable_Indexing |
1587 Aspect_Write =>
1589 -- Indexing aspects apply only to tagged type
1591 if (A_Id = Aspect_Constant_Indexing
1592 or else
1593 A_Id = Aspect_Variable_Indexing)
1594 and then not (Is_Type (E)
1595 and then Is_Tagged_Type (E))
1596 then
1597 Error_Msg_N ("indexing applies to a tagged type", N);
1598 goto Continue;
1599 end if;
1601 -- For case of address aspect, we don't consider that we
1602 -- know the entity is never set in the source, since it is
1603 -- is likely aliasing is occurring.
1605 -- Note: one might think that the analysis of the resulting
1606 -- attribute definition clause would take care of that, but
1607 -- that's not the case since it won't be from source.
1609 if A_Id = Aspect_Address then
1610 Set_Never_Set_In_Source (E, False);
1611 end if;
1613 -- Construct the attribute definition clause
1615 Aitem :=
1616 Make_Attribute_Definition_Clause (Loc,
1617 Name => Ent,
1618 Chars => Chars (Id),
1619 Expression => Relocate_Node (Expr));
1621 -- If the address is specified, then we treat the entity as
1622 -- referenced, to avoid spurious warnings. This is analogous
1623 -- to what is done with an attribute definition clause, but
1624 -- here we don't want to generate a reference because this
1625 -- is the point of definition of the entity.
1627 if A_Id = Aspect_Address then
1628 Set_Referenced (E);
1629 end if;
1631 -- Case 2: Aspects corresponding to pragmas
1633 -- Case 2a: Aspects corresponding to pragmas with two
1634 -- arguments, where the first argument is a local name
1635 -- referring to the entity, and the second argument is the
1636 -- aspect definition expression.
1638 -- Linker_Section/Suppress/Unsuppress
1640 when Aspect_Linker_Section |
1641 Aspect_Suppress |
1642 Aspect_Unsuppress =>
1644 Make_Aitem_Pragma
1645 (Pragma_Argument_Associations => New_List (
1646 Make_Pragma_Argument_Association (Loc,
1647 Expression => New_Occurrence_Of (E, Loc)),
1648 Make_Pragma_Argument_Association (Sloc (Expr),
1649 Expression => Relocate_Node (Expr))),
1650 Pragma_Name => Chars (Id));
1652 -- Synchronization
1654 -- Corresponds to pragma Implemented, construct the pragma
1656 when Aspect_Synchronization =>
1658 Make_Aitem_Pragma
1659 (Pragma_Argument_Associations => New_List (
1660 Make_Pragma_Argument_Association (Loc,
1661 Expression => New_Occurrence_Of (E, Loc)),
1662 Make_Pragma_Argument_Association (Sloc (Expr),
1663 Expression => Relocate_Node (Expr))),
1664 Pragma_Name => Name_Implemented);
1666 -- Attach Handler
1668 when Aspect_Attach_Handler =>
1669 Make_Aitem_Pragma
1670 (Pragma_Argument_Associations => New_List (
1671 Make_Pragma_Argument_Association (Sloc (Ent),
1672 Expression => Ent),
1673 Make_Pragma_Argument_Association (Sloc (Expr),
1674 Expression => Relocate_Node (Expr))),
1675 Pragma_Name => Name_Attach_Handler);
1677 -- Dynamic_Predicate, Predicate, Static_Predicate
1679 when Aspect_Dynamic_Predicate |
1680 Aspect_Predicate |
1681 Aspect_Static_Predicate =>
1683 -- Construct the pragma (always a pragma Predicate, with
1684 -- flags recording whether it is static/dynamic). We also
1685 -- set flags recording this in the type itself.
1687 Make_Aitem_Pragma
1688 (Pragma_Argument_Associations => New_List (
1689 Make_Pragma_Argument_Association (Sloc (Ent),
1690 Expression => Ent),
1691 Make_Pragma_Argument_Association (Sloc (Expr),
1692 Expression => Relocate_Node (Expr))),
1693 Pragma_Name => Name_Predicate);
1695 -- Mark type has predicates, and remember what kind of
1696 -- aspect lead to this predicate (we need this to access
1697 -- the right set of check policies later on).
1699 Set_Has_Predicates (E);
1701 if A_Id = Aspect_Dynamic_Predicate then
1702 Set_Has_Dynamic_Predicate_Aspect (E);
1703 elsif A_Id = Aspect_Static_Predicate then
1704 Set_Has_Static_Predicate_Aspect (E);
1705 end if;
1707 -- If the type is private, indicate that its completion
1708 -- has a freeze node, because that is the one that will
1709 -- be visible at freeze time.
1711 if Is_Private_Type (E) and then Present (Full_View (E)) then
1712 Set_Has_Predicates (Full_View (E));
1714 if A_Id = Aspect_Dynamic_Predicate then
1715 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1716 elsif A_Id = Aspect_Static_Predicate then
1717 Set_Has_Static_Predicate_Aspect (Full_View (E));
1718 end if;
1720 Set_Has_Delayed_Aspects (Full_View (E));
1721 Ensure_Freeze_Node (Full_View (E));
1722 end if;
1724 -- Case 2b: Aspects corresponding to pragmas with two
1725 -- arguments, where the second argument is a local name
1726 -- referring to the entity, and the first argument is the
1727 -- aspect definition expression.
1729 -- Convention
1731 when Aspect_Convention =>
1733 -- The aspect may be part of the specification of an import
1734 -- or export pragma. Scan the aspect list to gather the
1735 -- other components, if any. The name of the generated
1736 -- pragma is one of Convention/Import/Export.
1738 declare
1739 P_Name : Name_Id;
1740 A_Name : Name_Id;
1741 A : Node_Id;
1742 Arg_List : List_Id;
1743 Found : Boolean;
1744 L_Assoc : Node_Id;
1745 E_Assoc : Node_Id;
1747 begin
1748 P_Name := Chars (Id);
1749 Found := False;
1750 Arg_List := New_List;
1751 L_Assoc := Empty;
1752 E_Assoc := Empty;
1754 A := First (L);
1755 while Present (A) loop
1756 A_Name := Chars (Identifier (A));
1758 if Nam_In (A_Name, Name_Import, Name_Export) then
1759 if Found then
1760 Error_Msg_N ("conflicting", A);
1761 else
1762 Found := True;
1763 end if;
1765 P_Name := A_Name;
1767 elsif A_Name = Name_Link_Name then
1768 L_Assoc :=
1769 Make_Pragma_Argument_Association (Loc,
1770 Chars => A_Name,
1771 Expression => Relocate_Node (Expression (A)));
1773 elsif A_Name = Name_External_Name then
1774 E_Assoc :=
1775 Make_Pragma_Argument_Association (Loc,
1776 Chars => A_Name,
1777 Expression => Relocate_Node (Expression (A)));
1778 end if;
1780 Next (A);
1781 end loop;
1783 Arg_List := New_List (
1784 Make_Pragma_Argument_Association (Sloc (Expr),
1785 Expression => Relocate_Node (Expr)),
1786 Make_Pragma_Argument_Association (Sloc (Ent),
1787 Expression => Ent));
1789 if Present (L_Assoc) then
1790 Append_To (Arg_List, L_Assoc);
1791 end if;
1793 if Present (E_Assoc) then
1794 Append_To (Arg_List, E_Assoc);
1795 end if;
1797 Make_Aitem_Pragma
1798 (Pragma_Argument_Associations => Arg_List,
1799 Pragma_Name => P_Name);
1800 end;
1802 -- CPU, Interrupt_Priority, Priority
1804 -- These three aspects can be specified for a subprogram spec
1805 -- or body, in which case we analyze the expression and export
1806 -- the value of the aspect.
1808 -- Previously, we generated an equivalent pragma for bodies
1809 -- (note that the specs cannot contain these pragmas). The
1810 -- pragma was inserted ahead of local declarations, rather than
1811 -- after the body. This leads to a certain duplication between
1812 -- the processing performed for the aspect and the pragma, but
1813 -- given the straightforward handling required it is simpler
1814 -- to duplicate than to translate the aspect in the spec into
1815 -- a pragma in the declarative part of the body.
1817 when Aspect_CPU |
1818 Aspect_Interrupt_Priority |
1819 Aspect_Priority =>
1821 if Nkind_In (N, N_Subprogram_Body,
1822 N_Subprogram_Declaration)
1823 then
1824 -- Analyze the aspect expression
1826 Analyze_And_Resolve (Expr, Standard_Integer);
1828 -- Interrupt_Priority aspect not allowed for main
1829 -- subprograms. ARM D.1 does not forbid this explicitly,
1830 -- but ARM J.15.11 (6/3) does not permit pragma
1831 -- Interrupt_Priority for subprograms.
1833 if A_Id = Aspect_Interrupt_Priority then
1834 Error_Msg_N
1835 ("Interrupt_Priority aspect cannot apply to "
1836 & "subprogram", Expr);
1838 -- The expression must be static
1840 elsif not Is_Static_Expression (Expr) then
1841 Flag_Non_Static_Expr
1842 ("aspect requires static expression!", Expr);
1844 -- Check whether this is the main subprogram. Issue a
1845 -- warning only if it is obviously not a main program
1846 -- (when it has parameters or when the subprogram is
1847 -- within a package).
1849 elsif Present (Parameter_Specifications
1850 (Specification (N)))
1851 or else not Is_Compilation_Unit (Defining_Entity (N))
1852 then
1853 -- See ARM D.1 (14/3) and D.16 (12/3)
1855 Error_Msg_N
1856 ("aspect applied to subprogram other than the "
1857 & "main subprogram has no effect??", Expr);
1859 -- Otherwise check in range and export the value
1861 -- For the CPU aspect
1863 elsif A_Id = Aspect_CPU then
1864 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
1866 -- Value is correct so we export the value to make
1867 -- it available at execution time.
1869 Set_Main_CPU
1870 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
1872 else
1873 Error_Msg_N
1874 ("main subprogram CPU is out of range", Expr);
1875 end if;
1877 -- For the Priority aspect
1879 elsif A_Id = Aspect_Priority then
1880 if Is_In_Range (Expr, RTE (RE_Priority)) then
1882 -- Value is correct so we export the value to make
1883 -- it available at execution time.
1885 Set_Main_Priority
1886 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
1888 else
1889 Error_Msg_N
1890 ("main subprogram priority is out of range",
1891 Expr);
1892 end if;
1893 end if;
1895 -- Load an arbitrary entity from System.Tasking.Stages
1896 -- or System.Tasking.Restricted.Stages (depending on
1897 -- the supported profile) to make sure that one of these
1898 -- packages is implicitly with'ed, since we need to have
1899 -- the tasking run time active for the pragma Priority to
1900 -- have any effect. Previously with with'ed the package
1901 -- System.Tasking, but this package does not trigger the
1902 -- required initialization of the run-time library.
1904 declare
1905 Discard : Entity_Id;
1906 pragma Warnings (Off, Discard);
1907 begin
1908 if Restricted_Profile then
1909 Discard := RTE (RE_Activate_Restricted_Tasks);
1910 else
1911 Discard := RTE (RE_Activate_Tasks);
1912 end if;
1913 end;
1915 -- Handling for these Aspects in subprograms is complete
1917 goto Continue;
1919 -- For tasks
1921 else
1922 -- Pass the aspect as an attribute
1924 Aitem :=
1925 Make_Attribute_Definition_Clause (Loc,
1926 Name => Ent,
1927 Chars => Chars (Id),
1928 Expression => Relocate_Node (Expr));
1929 end if;
1931 -- Warnings
1933 when Aspect_Warnings =>
1934 Make_Aitem_Pragma
1935 (Pragma_Argument_Associations => New_List (
1936 Make_Pragma_Argument_Association (Sloc (Expr),
1937 Expression => Relocate_Node (Expr)),
1938 Make_Pragma_Argument_Association (Loc,
1939 Expression => New_Occurrence_Of (E, Loc))),
1940 Pragma_Name => Chars (Id));
1942 -- Case 2c: Aspects corresponding to pragmas with three
1943 -- arguments.
1945 -- Invariant aspects have a first argument that references the
1946 -- entity, a second argument that is the expression and a third
1947 -- argument that is an appropriate message.
1949 -- Invariant, Type_Invariant
1951 when Aspect_Invariant |
1952 Aspect_Type_Invariant =>
1954 -- Analysis of the pragma will verify placement legality:
1955 -- an invariant must apply to a private type, or appear in
1956 -- the private part of a spec and apply to a completion.
1958 Make_Aitem_Pragma
1959 (Pragma_Argument_Associations => New_List (
1960 Make_Pragma_Argument_Association (Sloc (Ent),
1961 Expression => Ent),
1962 Make_Pragma_Argument_Association (Sloc (Expr),
1963 Expression => Relocate_Node (Expr))),
1964 Pragma_Name => Name_Invariant);
1966 -- Add message unless exception messages are suppressed
1968 if not Opt.Exception_Locations_Suppressed then
1969 Append_To (Pragma_Argument_Associations (Aitem),
1970 Make_Pragma_Argument_Association (Eloc,
1971 Chars => Name_Message,
1972 Expression =>
1973 Make_String_Literal (Eloc,
1974 Strval => "failed invariant from "
1975 & Build_Location_String (Eloc))));
1976 end if;
1978 -- For Invariant case, insert immediately after the entity
1979 -- declaration. We do not have to worry about delay issues
1980 -- since the pragma processing takes care of this.
1982 Delay_Required := False;
1984 -- Case 2d : Aspects that correspond to a pragma with one
1985 -- argument.
1987 -- Abstract_State
1989 -- Aspect Abstract_State introduces implicit declarations for
1990 -- all state abstraction entities it defines. To emulate this
1991 -- behavior, insert the pragma at the beginning of the visible
1992 -- declarations of the related package so that it is analyzed
1993 -- immediately.
1995 when Aspect_Abstract_State => Abstract_State : declare
1996 Decls : List_Id;
1998 begin
1999 if Nkind_In (N, N_Generic_Package_Declaration,
2000 N_Package_Declaration)
2001 then
2002 Decls := Visible_Declarations (Specification (N));
2004 Make_Aitem_Pragma
2005 (Pragma_Argument_Associations => New_List (
2006 Make_Pragma_Argument_Association (Loc,
2007 Expression => Relocate_Node (Expr))),
2008 Pragma_Name => Name_Abstract_State);
2009 Decorate_Aspect_And_Pragma (Aspect, Aitem);
2011 if No (Decls) then
2012 Decls := New_List;
2013 Set_Visible_Declarations (N, Decls);
2014 end if;
2016 Prepend_To (Decls, Aitem);
2018 else
2019 Error_Msg_NE
2020 ("aspect & must apply to a package declaration",
2021 Aspect, Id);
2022 end if;
2024 goto Continue;
2025 end Abstract_State;
2027 -- Depends
2029 -- Aspect Depends must be delayed because it mentions names
2030 -- of inputs and output that are classified by aspect Global.
2031 -- The aspect and pragma are treated the same way as a post
2032 -- condition.
2034 when Aspect_Depends =>
2035 Make_Aitem_Pragma
2036 (Pragma_Argument_Associations => New_List (
2037 Make_Pragma_Argument_Association (Loc,
2038 Expression => Relocate_Node (Expr))),
2039 Pragma_Name => Name_Depends);
2041 Decorate_Aspect_And_Pragma
2042 (Aspect, Aitem, Delayed => True);
2043 Insert_Delayed_Pragma (Aitem);
2044 goto Continue;
2046 -- Global
2048 -- Aspect Global must be delayed because it can mention names
2049 -- and benefit from the forward visibility rules applicable to
2050 -- aspects of subprograms. The aspect and pragma are treated
2051 -- the same way as a post condition.
2053 when Aspect_Global =>
2054 Make_Aitem_Pragma
2055 (Pragma_Argument_Associations => New_List (
2056 Make_Pragma_Argument_Association (Loc,
2057 Expression => Relocate_Node (Expr))),
2058 Pragma_Name => Name_Global);
2060 Decorate_Aspect_And_Pragma
2061 (Aspect, Aitem, Delayed => True);
2062 Insert_Delayed_Pragma (Aitem);
2063 goto Continue;
2065 -- Initial_Condition
2067 -- Aspect Initial_Condition covers the visible declarations of
2068 -- a package and all hidden states through functions. As such,
2069 -- it must be evaluated at the end of the said declarations.
2071 when Aspect_Initial_Condition => Initial_Condition : declare
2072 Decls : List_Id;
2074 begin
2075 if Nkind_In (N, N_Generic_Package_Declaration,
2076 N_Package_Declaration)
2077 then
2078 Decls := Visible_Declarations (Specification (N));
2080 Make_Aitem_Pragma
2081 (Pragma_Argument_Associations => New_List (
2082 Make_Pragma_Argument_Association (Loc,
2083 Expression => Relocate_Node (Expr))),
2084 Pragma_Name =>
2085 Name_Initial_Condition);
2087 Decorate_Aspect_And_Pragma
2088 (Aspect, Aitem, Delayed => True);
2090 if No (Decls) then
2091 Decls := New_List;
2092 Set_Visible_Declarations (N, Decls);
2093 end if;
2095 Prepend_To (Decls, Aitem);
2097 else
2098 Error_Msg_NE
2099 ("aspect & must apply to a package declaration",
2100 Aspect, Id);
2101 end if;
2103 goto Continue;
2104 end Initial_Condition;
2106 -- Initializes
2108 -- Aspect Initializes coverts the visible declarations of a
2109 -- package. As such, it must be evaluated at the end of the
2110 -- said declarations.
2112 when Aspect_Initializes => Initializes : declare
2113 Decls : List_Id;
2115 begin
2116 if Nkind_In (N, N_Generic_Package_Declaration,
2117 N_Package_Declaration)
2118 then
2119 Decls := Visible_Declarations (Specification (N));
2121 Make_Aitem_Pragma
2122 (Pragma_Argument_Associations => New_List (
2123 Make_Pragma_Argument_Association (Loc,
2124 Expression => Relocate_Node (Expr))),
2125 Pragma_Name => Name_Initializes);
2127 Decorate_Aspect_And_Pragma
2128 (Aspect, Aitem, Delayed => True);
2130 if No (Decls) then
2131 Decls := New_List;
2132 Set_Visible_Declarations (N, Decls);
2133 end if;
2135 Prepend_To (Decls, Aitem);
2137 else
2138 Error_Msg_NE
2139 ("aspect & must apply to a package declaration",
2140 Aspect, Id);
2141 end if;
2143 goto Continue;
2144 end Initializes;
2146 -- Part_Of
2148 when Aspect_Part_Of =>
2149 if Nkind_In (N, N_Object_Declaration,
2150 N_Package_Instantiation)
2151 then
2152 Make_Aitem_Pragma
2153 (Pragma_Argument_Associations => New_List (
2154 Make_Pragma_Argument_Association (Loc,
2155 Expression => Relocate_Node (Expr))),
2156 Pragma_Name => Name_Part_Of);
2158 else
2159 Error_Msg_NE
2160 ("aspect & must apply to a variable or package "
2161 & "instantiation", Aspect, Id);
2162 end if;
2164 -- SPARK_Mode
2166 when Aspect_SPARK_Mode => SPARK_Mode : declare
2167 Decls : List_Id;
2169 begin
2170 Make_Aitem_Pragma
2171 (Pragma_Argument_Associations => New_List (
2172 Make_Pragma_Argument_Association (Loc,
2173 Expression => Relocate_Node (Expr))),
2174 Pragma_Name => Name_SPARK_Mode);
2176 -- When the aspect appears on a package body, insert the
2177 -- generated pragma at the top of the body declarations to
2178 -- emulate the behavior of a source pragma.
2180 if Nkind (N) = N_Package_Body then
2181 Decorate_Aspect_And_Pragma (Aspect, Aitem);
2183 Decls := Declarations (N);
2185 if No (Decls) then
2186 Decls := New_List;
2187 Set_Declarations (N, Decls);
2188 end if;
2190 Prepend_To (Decls, Aitem);
2191 goto Continue;
2193 -- When the aspect is associated with package declaration,
2194 -- insert the generated pragma at the top of the visible
2195 -- declarations to emulate the behavior of a source pragma.
2197 elsif Nkind (N) = N_Package_Declaration then
2198 Decorate_Aspect_And_Pragma (Aspect, Aitem);
2200 Decls := Visible_Declarations (Specification (N));
2202 if No (Decls) then
2203 Decls := New_List;
2204 Set_Visible_Declarations (Specification (N), Decls);
2205 end if;
2207 Prepend_To (Decls, Aitem);
2208 goto Continue;
2209 end if;
2210 end SPARK_Mode;
2212 -- Refined_Depends
2214 -- Aspect Refined_Depends must be delayed because it can
2215 -- mention state refinements introduced by aspect Refined_State
2216 -- and further classified by aspect Refined_Global. Since both
2217 -- those aspects are delayed, so is Refined_Depends.
2219 when Aspect_Refined_Depends =>
2220 Make_Aitem_Pragma
2221 (Pragma_Argument_Associations => New_List (
2222 Make_Pragma_Argument_Association (Loc,
2223 Expression => Relocate_Node (Expr))),
2224 Pragma_Name => Name_Refined_Depends);
2226 Decorate_Aspect_And_Pragma
2227 (Aspect, Aitem, Delayed => True);
2228 Insert_Delayed_Pragma (Aitem);
2229 goto Continue;
2231 -- Refined_Global
2233 -- Aspect Refined_Global must be delayed because it can mention
2234 -- state refinements introduced by aspect Refined_State. Since
2235 -- Refined_State is already delayed due to forward references,
2236 -- so is Refined_Global.
2238 when Aspect_Refined_Global =>
2239 Make_Aitem_Pragma
2240 (Pragma_Argument_Associations => New_List (
2241 Make_Pragma_Argument_Association (Loc,
2242 Expression => Relocate_Node (Expr))),
2243 Pragma_Name => Name_Refined_Global);
2245 Decorate_Aspect_And_Pragma (Aspect, Aitem, Delayed => True);
2246 Insert_Delayed_Pragma (Aitem);
2247 goto Continue;
2249 -- Refined_Post
2251 when Aspect_Refined_Post =>
2252 Make_Aitem_Pragma
2253 (Pragma_Argument_Associations => New_List (
2254 Make_Pragma_Argument_Association (Loc,
2255 Expression => Relocate_Node (Expr))),
2256 Pragma_Name => Name_Refined_Post);
2258 -- Refined_State
2260 when Aspect_Refined_State => Refined_State : declare
2261 Decls : List_Id;
2263 begin
2264 -- The corresponding pragma for Refined_State is inserted in
2265 -- the declarations of the related package body. This action
2266 -- synchronizes both the source and from-aspect versions of
2267 -- the pragma.
2269 if Nkind (N) = N_Package_Body then
2270 Decls := Declarations (N);
2272 Make_Aitem_Pragma
2273 (Pragma_Argument_Associations => New_List (
2274 Make_Pragma_Argument_Association (Loc,
2275 Expression => Relocate_Node (Expr))),
2276 Pragma_Name => Name_Refined_State);
2277 Decorate_Aspect_And_Pragma (Aspect, Aitem);
2279 if No (Decls) then
2280 Decls := New_List;
2281 Set_Declarations (N, Decls);
2282 end if;
2284 Prepend_To (Decls, Aitem);
2286 else
2287 Error_Msg_NE
2288 ("aspect & must apply to a package body", Aspect, Id);
2289 end if;
2291 goto Continue;
2292 end Refined_State;
2294 -- Relative_Deadline
2296 when Aspect_Relative_Deadline =>
2297 Make_Aitem_Pragma
2298 (Pragma_Argument_Associations => New_List (
2299 Make_Pragma_Argument_Association (Loc,
2300 Expression => Relocate_Node (Expr))),
2301 Pragma_Name => Name_Relative_Deadline);
2303 -- If the aspect applies to a task, the corresponding pragma
2304 -- must appear within its declarations, not after.
2306 if Nkind (N) = N_Task_Type_Declaration then
2307 declare
2308 Def : Node_Id;
2309 V : List_Id;
2311 begin
2312 if No (Task_Definition (N)) then
2313 Set_Task_Definition (N,
2314 Make_Task_Definition (Loc,
2315 Visible_Declarations => New_List,
2316 End_Label => Empty));
2317 end if;
2319 Def := Task_Definition (N);
2320 V := Visible_Declarations (Def);
2321 if not Is_Empty_List (V) then
2322 Insert_Before (First (V), Aitem);
2324 else
2325 Set_Visible_Declarations (Def, New_List (Aitem));
2326 end if;
2328 goto Continue;
2329 end;
2330 end if;
2332 -- Case 3 : Aspects that don't correspond to pragma/attribute
2333 -- definition clause.
2335 -- Case 3a: The aspects listed below don't correspond to
2336 -- pragmas/attributes but do require delayed analysis.
2338 -- Default_Value, Default_Component_Value
2340 when Aspect_Default_Value |
2341 Aspect_Default_Component_Value =>
2342 Aitem := Empty;
2344 -- Case 3b: The aspects listed below don't correspond to
2345 -- pragmas/attributes and don't need delayed analysis.
2347 -- Implicit_Dereference
2349 -- For Implicit_Dereference, External_Name and Link_Name, only
2350 -- the legality checks are done during the analysis, thus no
2351 -- delay is required.
2353 when Aspect_Implicit_Dereference =>
2354 Analyze_Aspect_Implicit_Dereference;
2355 goto Continue;
2357 -- External_Name, Link_Name
2359 when Aspect_External_Name |
2360 Aspect_Link_Name =>
2361 Analyze_Aspect_External_Or_Link_Name;
2362 goto Continue;
2364 -- Dimension
2366 when Aspect_Dimension =>
2367 Analyze_Aspect_Dimension (N, Id, Expr);
2368 goto Continue;
2370 -- Dimension_System
2372 when Aspect_Dimension_System =>
2373 Analyze_Aspect_Dimension_System (N, Id, Expr);
2374 goto Continue;
2376 -- Case 4: Aspects requiring special handling
2378 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2379 -- pragmas take care of the delay.
2381 -- Pre/Post
2383 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2384 -- with a first argument that is the expression, and a second
2385 -- argument that is an informative message if the test fails.
2386 -- This is inserted right after the declaration, to get the
2387 -- required pragma placement. The processing for the pragmas
2388 -- takes care of the required delay.
2390 when Pre_Post_Aspects => Pre_Post : declare
2391 Pname : Name_Id;
2393 begin
2394 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
2395 Pname := Name_Precondition;
2396 else
2397 Pname := Name_Postcondition;
2398 end if;
2400 -- If the expressions is of the form A and then B, then
2401 -- we generate separate Pre/Post aspects for the separate
2402 -- clauses. Since we allow multiple pragmas, there is no
2403 -- problem in allowing multiple Pre/Post aspects internally.
2404 -- These should be treated in reverse order (B first and
2405 -- A second) since they are later inserted just after N in
2406 -- the order they are treated. This way, the pragma for A
2407 -- ends up preceding the pragma for B, which may have an
2408 -- importance for the error raised (either constraint error
2409 -- or precondition error).
2411 -- We do not do this for Pre'Class, since we have to put
2412 -- these conditions together in a complex OR expression
2414 -- We do not do this in ASIS mode, as ASIS relies on the
2415 -- original node representing the complete expression, when
2416 -- retrieving it through the source aspect table.
2418 if not ASIS_Mode
2419 and then (Pname = Name_Postcondition
2420 or else not Class_Present (Aspect))
2421 then
2422 while Nkind (Expr) = N_And_Then loop
2423 Insert_After (Aspect,
2424 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
2425 Identifier => Identifier (Aspect),
2426 Expression => Relocate_Node (Left_Opnd (Expr)),
2427 Class_Present => Class_Present (Aspect),
2428 Split_PPC => True));
2429 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
2430 Eloc := Sloc (Expr);
2431 end loop;
2432 end if;
2434 -- Build the precondition/postcondition pragma
2436 -- Add note about why we do NOT need Copy_Tree here ???
2438 Make_Aitem_Pragma
2439 (Pragma_Argument_Associations => New_List (
2440 Make_Pragma_Argument_Association (Eloc,
2441 Chars => Name_Check,
2442 Expression => Relocate_Node (Expr))),
2443 Pragma_Name => Pname);
2445 -- Add message unless exception messages are suppressed
2447 if not Opt.Exception_Locations_Suppressed then
2448 Append_To (Pragma_Argument_Associations (Aitem),
2449 Make_Pragma_Argument_Association (Eloc,
2450 Chars => Name_Message,
2451 Expression =>
2452 Make_String_Literal (Eloc,
2453 Strval => "failed "
2454 & Get_Name_String (Pname)
2455 & " from "
2456 & Build_Location_String (Eloc))));
2457 end if;
2459 Set_Is_Delayed_Aspect (Aspect);
2461 -- For Pre/Post cases, insert immediately after the entity
2462 -- declaration, since that is the required pragma placement.
2463 -- Note that for these aspects, we do not have to worry
2464 -- about delay issues, since the pragmas themselves deal
2465 -- with delay of visibility for the expression analysis.
2467 Insert_Delayed_Pragma (Aitem);
2468 goto Continue;
2469 end Pre_Post;
2471 -- Test_Case
2473 when Aspect_Test_Case => Test_Case : declare
2474 Args : List_Id;
2475 Comp_Expr : Node_Id;
2476 Comp_Assn : Node_Id;
2477 New_Expr : Node_Id;
2479 begin
2480 Args := New_List;
2482 if Nkind (Parent (N)) = N_Compilation_Unit then
2483 Error_Msg_Name_1 := Nam;
2484 Error_Msg_N ("incorrect placement of aspect `%`", E);
2485 goto Continue;
2486 end if;
2488 if Nkind (Expr) /= N_Aggregate then
2489 Error_Msg_Name_1 := Nam;
2490 Error_Msg_NE
2491 ("wrong syntax for aspect `%` for &", Id, E);
2492 goto Continue;
2493 end if;
2495 -- Make pragma expressions refer to the original aspect
2496 -- expressions through the Original_Node link. This is
2497 -- used in semantic analysis for ASIS mode, so that the
2498 -- original expression also gets analyzed.
2500 Comp_Expr := First (Expressions (Expr));
2501 while Present (Comp_Expr) loop
2502 New_Expr := Relocate_Node (Comp_Expr);
2503 Set_Original_Node (New_Expr, Comp_Expr);
2504 Append_To (Args,
2505 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
2506 Expression => New_Expr));
2507 Next (Comp_Expr);
2508 end loop;
2510 Comp_Assn := First (Component_Associations (Expr));
2511 while Present (Comp_Assn) loop
2512 if List_Length (Choices (Comp_Assn)) /= 1
2513 or else
2514 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
2515 then
2516 Error_Msg_Name_1 := Nam;
2517 Error_Msg_NE
2518 ("wrong syntax for aspect `%` for &", Id, E);
2519 goto Continue;
2520 end if;
2522 New_Expr := Relocate_Node (Expression (Comp_Assn));
2523 Set_Original_Node (New_Expr, Expression (Comp_Assn));
2524 Append_To (Args,
2525 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
2526 Chars => Chars (First (Choices (Comp_Assn))),
2527 Expression => New_Expr));
2528 Next (Comp_Assn);
2529 end loop;
2531 -- Build the test-case pragma
2533 Make_Aitem_Pragma
2534 (Pragma_Argument_Associations => Args,
2535 Pragma_Name => Nam);
2536 end Test_Case;
2538 -- Contract_Cases
2540 when Aspect_Contract_Cases =>
2541 Make_Aitem_Pragma
2542 (Pragma_Argument_Associations => New_List (
2543 Make_Pragma_Argument_Association (Loc,
2544 Expression => Relocate_Node (Expr))),
2545 Pragma_Name => Nam);
2547 Decorate_Aspect_And_Pragma
2548 (Aspect, Aitem, Delayed => True);
2549 Insert_Delayed_Pragma (Aitem);
2550 goto Continue;
2552 -- Case 5: Special handling for aspects with an optional
2553 -- boolean argument.
2555 -- In the general case, the corresponding pragma cannot be
2556 -- generated yet because the evaluation of the boolean needs
2557 -- to be delayed till the freeze point.
2559 when Boolean_Aspects |
2560 Library_Unit_Aspects =>
2562 Set_Is_Boolean_Aspect (Aspect);
2564 -- Lock_Free aspect only apply to protected objects
2566 if A_Id = Aspect_Lock_Free then
2567 if Ekind (E) /= E_Protected_Type then
2568 Error_Msg_Name_1 := Nam;
2569 Error_Msg_N
2570 ("aspect % only applies to a protected object",
2571 Aspect);
2573 else
2574 -- Set the Uses_Lock_Free flag to True if there is no
2575 -- expression or if the expression is True. The
2576 -- evaluation of this aspect should be delayed to the
2577 -- freeze point (why???)
2579 if No (Expr)
2580 or else Is_True (Static_Boolean (Expr))
2581 then
2582 Set_Uses_Lock_Free (E);
2583 end if;
2585 Record_Rep_Item (E, Aspect);
2586 end if;
2588 goto Continue;
2590 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
2592 -- Verify that there is an aspect Convention that will
2593 -- incorporate the Import/Export aspect, and eventual
2594 -- Link/External names.
2596 declare
2597 A : Node_Id;
2599 begin
2600 A := First (L);
2601 while Present (A) loop
2602 exit when Chars (Identifier (A)) = Name_Convention;
2603 Next (A);
2604 end loop;
2606 -- It is legal to specify Import for a variable, in
2607 -- order to suppress initialization for it, without
2608 -- specifying explicitly its convention. However this
2609 -- is only legal if the convention of the object type
2610 -- is Ada or similar.
2612 if No (A) then
2613 if Ekind (E) = E_Variable
2614 and then A_Id = Aspect_Import
2615 then
2616 declare
2617 C : constant Convention_Id :=
2618 Convention (Etype (E));
2619 begin
2620 if C = Convention_Ada or else
2621 C = Convention_Ada_Pass_By_Copy or else
2622 C = Convention_Ada_Pass_By_Reference
2623 then
2624 goto Continue;
2625 end if;
2626 end;
2627 end if;
2629 -- Otherwise, Convention must be specified
2631 Error_Msg_N
2632 ("missing Convention aspect for Export/Import",
2633 Aspect);
2634 end if;
2635 end;
2637 goto Continue;
2638 end if;
2640 -- Library unit aspects require special handling in the case
2641 -- of a package declaration, the pragma needs to be inserted
2642 -- in the list of declarations for the associated package.
2643 -- There is no issue of visibility delay for these aspects.
2645 if A_Id in Library_Unit_Aspects
2646 and then
2647 Nkind_In (N, N_Package_Declaration,
2648 N_Generic_Package_Declaration)
2649 and then Nkind (Parent (N)) /= N_Compilation_Unit
2650 then
2651 Error_Msg_N
2652 ("incorrect context for library unit aspect&", Id);
2653 goto Continue;
2654 end if;
2656 -- Cases where we do not delay, includes all cases where
2657 -- the expression is missing other than the above cases.
2659 if not Delay_Required or else No (Expr) then
2660 Make_Aitem_Pragma
2661 (Pragma_Argument_Associations => New_List (
2662 Make_Pragma_Argument_Association (Sloc (Ent),
2663 Expression => Ent)),
2664 Pragma_Name => Chars (Id));
2665 Delay_Required := False;
2667 -- In general cases, the corresponding pragma/attribute
2668 -- definition clause will be inserted later at the freezing
2669 -- point, and we do not need to build it now
2671 else
2672 Aitem := Empty;
2673 end if;
2675 -- Storage_Size
2677 -- This is special because for access types we need to generate
2678 -- an attribute definition clause. This also works for single
2679 -- task declarations, but it does not work for task type
2680 -- declarations, because we have the case where the expression
2681 -- references a discriminant of the task type. That can't use
2682 -- an attribute definition clause because we would not have
2683 -- visibility on the discriminant. For that case we must
2684 -- generate a pragma in the task definition.
2686 when Aspect_Storage_Size =>
2688 -- Task type case
2690 if Ekind (E) = E_Task_Type then
2691 declare
2692 Decl : constant Node_Id := Declaration_Node (E);
2694 begin
2695 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
2697 -- If no task definition, create one
2699 if No (Task_Definition (Decl)) then
2700 Set_Task_Definition (Decl,
2701 Make_Task_Definition (Loc,
2702 Visible_Declarations => Empty_List,
2703 End_Label => Empty));
2704 end if;
2706 -- Create a pragma and put it at the start of the
2707 -- task definition for the task type declaration.
2709 Make_Aitem_Pragma
2710 (Pragma_Argument_Associations => New_List (
2711 Make_Pragma_Argument_Association (Loc,
2712 Expression => Relocate_Node (Expr))),
2713 Pragma_Name => Name_Storage_Size);
2715 Prepend
2716 (Aitem,
2717 Visible_Declarations (Task_Definition (Decl)));
2718 goto Continue;
2719 end;
2721 -- All other cases, generate attribute definition
2723 else
2724 Aitem :=
2725 Make_Attribute_Definition_Clause (Loc,
2726 Name => Ent,
2727 Chars => Chars (Id),
2728 Expression => Relocate_Node (Expr));
2729 end if;
2730 end case;
2732 -- Attach the corresponding pragma/attribute definition clause to
2733 -- the aspect specification node.
2735 if Present (Aitem) then
2736 Set_From_Aspect_Specification (Aitem, True);
2737 end if;
2739 -- In the context of a compilation unit, we directly put the
2740 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
2741 -- node (no delay is required here) except for aspects on a
2742 -- subprogram body (see below) and a generic package, for which
2743 -- we need to introduce the pragma before building the generic
2744 -- copy (see sem_ch12), and for package instantiations, where
2745 -- the library unit pragmas are better handled early.
2747 if Nkind (Parent (N)) = N_Compilation_Unit
2748 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
2749 then
2750 declare
2751 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
2753 begin
2754 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
2756 -- For a Boolean aspect, create the corresponding pragma if
2757 -- no expression or if the value is True.
2759 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
2760 if Is_True (Static_Boolean (Expr)) then
2761 Make_Aitem_Pragma
2762 (Pragma_Argument_Associations => New_List (
2763 Make_Pragma_Argument_Association (Sloc (Ent),
2764 Expression => Ent)),
2765 Pragma_Name => Chars (Id));
2767 Set_From_Aspect_Specification (Aitem, True);
2768 Set_Corresponding_Aspect (Aitem, Aspect);
2770 else
2771 goto Continue;
2772 end if;
2773 end if;
2775 -- If the aspect is on a subprogram body (relevant aspect
2776 -- is Inline), add the pragma in front of the declarations.
2778 if Nkind (N) = N_Subprogram_Body then
2779 if No (Declarations (N)) then
2780 Set_Declarations (N, New_List);
2781 end if;
2783 Prepend (Aitem, Declarations (N));
2785 elsif Nkind (N) = N_Generic_Package_Declaration then
2786 if No (Visible_Declarations (Specification (N))) then
2787 Set_Visible_Declarations (Specification (N), New_List);
2788 end if;
2790 Prepend (Aitem,
2791 Visible_Declarations (Specification (N)));
2793 elsif Nkind (N) = N_Package_Instantiation then
2794 declare
2795 Spec : constant Node_Id :=
2796 Specification (Instance_Spec (N));
2797 begin
2798 if No (Visible_Declarations (Spec)) then
2799 Set_Visible_Declarations (Spec, New_List);
2800 end if;
2802 Prepend (Aitem, Visible_Declarations (Spec));
2803 end;
2805 else
2806 if No (Pragmas_After (Aux)) then
2807 Set_Pragmas_After (Aux, New_List);
2808 end if;
2810 Append (Aitem, Pragmas_After (Aux));
2811 end if;
2813 goto Continue;
2814 end;
2815 end if;
2817 -- The evaluation of the aspect is delayed to the freezing point.
2818 -- The pragma or attribute clause if there is one is then attached
2819 -- to the aspect specification which is put in the rep item list.
2821 if Delay_Required then
2822 if Present (Aitem) then
2823 Set_Is_Delayed_Aspect (Aitem);
2824 Set_Aspect_Rep_Item (Aspect, Aitem);
2825 Set_Parent (Aitem, Aspect);
2826 end if;
2828 Set_Is_Delayed_Aspect (Aspect);
2830 -- In the case of Default_Value, link the aspect to base type
2831 -- as well, even though it appears on a first subtype. This is
2832 -- mandated by the semantics of the aspect. Do not establish
2833 -- the link when processing the base type itself as this leads
2834 -- to a rep item circularity. Verify that we are dealing with
2835 -- a scalar type to prevent cascaded errors.
2837 if A_Id = Aspect_Default_Value
2838 and then Is_Scalar_Type (E)
2839 and then Base_Type (E) /= E
2840 then
2841 Set_Has_Delayed_Aspects (Base_Type (E));
2842 Record_Rep_Item (Base_Type (E), Aspect);
2843 end if;
2845 Set_Has_Delayed_Aspects (E);
2846 Record_Rep_Item (E, Aspect);
2848 -- When delay is not required and the context is a package or a
2849 -- subprogram body, insert the pragma in the body declarations.
2851 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
2852 if No (Declarations (N)) then
2853 Set_Declarations (N, New_List);
2854 end if;
2856 -- The pragma is added before source declarations
2858 Prepend_To (Declarations (N), Aitem);
2860 -- When delay is not required and the context is not a compilation
2861 -- unit, we simply insert the pragma/attribute definition clause
2862 -- in sequence.
2864 else
2865 Insert_After (Ins_Node, Aitem);
2866 Ins_Node := Aitem;
2867 end if;
2868 end Analyze_One_Aspect;
2870 <<Continue>>
2871 Next (Aspect);
2872 end loop Aspect_Loop;
2874 if Has_Delayed_Aspects (E) then
2875 Ensure_Freeze_Node (E);
2876 end if;
2877 end Analyze_Aspect_Specifications;
2879 -----------------------
2880 -- Analyze_At_Clause --
2881 -----------------------
2883 -- An at clause is replaced by the corresponding Address attribute
2884 -- definition clause that is the preferred approach in Ada 95.
2886 procedure Analyze_At_Clause (N : Node_Id) is
2887 CS : constant Boolean := Comes_From_Source (N);
2889 begin
2890 -- This is an obsolescent feature
2892 Check_Restriction (No_Obsolescent_Features, N);
2894 if Warn_On_Obsolescent_Feature then
2895 Error_Msg_N
2896 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
2897 Error_Msg_N
2898 ("\?j?use address attribute definition clause instead", N);
2899 end if;
2901 -- Rewrite as address clause
2903 Rewrite (N,
2904 Make_Attribute_Definition_Clause (Sloc (N),
2905 Name => Identifier (N),
2906 Chars => Name_Address,
2907 Expression => Expression (N)));
2909 -- We preserve Comes_From_Source, since logically the clause still comes
2910 -- from the source program even though it is changed in form.
2912 Set_Comes_From_Source (N, CS);
2914 -- Analyze rewritten clause
2916 Analyze_Attribute_Definition_Clause (N);
2917 end Analyze_At_Clause;
2919 -----------------------------------------
2920 -- Analyze_Attribute_Definition_Clause --
2921 -----------------------------------------
2923 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
2924 Loc : constant Source_Ptr := Sloc (N);
2925 Nam : constant Node_Id := Name (N);
2926 Attr : constant Name_Id := Chars (N);
2927 Expr : constant Node_Id := Expression (N);
2928 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
2930 Ent : Entity_Id;
2931 -- The entity of Nam after it is analyzed. In the case of an incomplete
2932 -- type, this is the underlying type.
2934 U_Ent : Entity_Id;
2935 -- The underlying entity to which the attribute applies. Generally this
2936 -- is the Underlying_Type of Ent, except in the case where the clause
2937 -- applies to full view of incomplete type or private type in which case
2938 -- U_Ent is just a copy of Ent.
2940 FOnly : Boolean := False;
2941 -- Reset to True for subtype specific attribute (Alignment, Size)
2942 -- and for stream attributes, i.e. those cases where in the call
2943 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
2944 -- rules are checked. Note that the case of stream attributes is not
2945 -- clear from the RM, but see AI95-00137. Also, the RM seems to
2946 -- disallow Storage_Size for derived task types, but that is also
2947 -- clearly unintentional.
2949 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
2950 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
2951 -- definition clauses.
2953 function Duplicate_Clause return Boolean;
2954 -- This routine checks if the aspect for U_Ent being given by attribute
2955 -- definition clause N is for an aspect that has already been specified,
2956 -- and if so gives an error message. If there is a duplicate, True is
2957 -- returned, otherwise if there is no error, False is returned.
2959 procedure Check_Indexing_Functions;
2960 -- Check that the function in Constant_Indexing or Variable_Indexing
2961 -- attribute has the proper type structure. If the name is overloaded,
2962 -- check that some interpretation is legal.
2964 procedure Check_Iterator_Functions;
2965 -- Check that there is a single function in Default_Iterator attribute
2966 -- has the proper type structure.
2968 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
2969 -- Common legality check for the previous two
2971 -----------------------------------
2972 -- Analyze_Stream_TSS_Definition --
2973 -----------------------------------
2975 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
2976 Subp : Entity_Id := Empty;
2977 I : Interp_Index;
2978 It : Interp;
2979 Pnam : Entity_Id;
2981 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
2982 -- True for Read attribute, false for other attributes
2984 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
2985 -- Return true if the entity is a subprogram with an appropriate
2986 -- profile for the attribute being defined.
2988 ----------------------
2989 -- Has_Good_Profile --
2990 ----------------------
2992 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
2993 F : Entity_Id;
2994 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
2995 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
2996 (False => E_Procedure, True => E_Function);
2997 Typ : Entity_Id;
2999 begin
3000 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3001 return False;
3002 end if;
3004 F := First_Formal (Subp);
3006 if No (F)
3007 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3008 or else Designated_Type (Etype (F)) /=
3009 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3010 then
3011 return False;
3012 end if;
3014 if not Is_Function then
3015 Next_Formal (F);
3017 declare
3018 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3019 (False => E_In_Parameter,
3020 True => E_Out_Parameter);
3021 begin
3022 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3023 return False;
3024 end if;
3025 end;
3027 Typ := Etype (F);
3029 else
3030 Typ := Etype (Subp);
3031 end if;
3033 return Base_Type (Typ) = Base_Type (Ent)
3034 and then No (Next_Formal (F));
3035 end Has_Good_Profile;
3037 -- Start of processing for Analyze_Stream_TSS_Definition
3039 begin
3040 FOnly := True;
3042 if not Is_Type (U_Ent) then
3043 Error_Msg_N ("local name must be a subtype", Nam);
3044 return;
3045 end if;
3047 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3049 -- If Pnam is present, it can be either inherited from an ancestor
3050 -- type (in which case it is legal to redefine it for this type), or
3051 -- be a previous definition of the attribute for the same type (in
3052 -- which case it is illegal).
3054 -- In the first case, it will have been analyzed already, and we
3055 -- can check that its profile does not match the expected profile
3056 -- for a stream attribute of U_Ent. In the second case, either Pnam
3057 -- has been analyzed (and has the expected profile), or it has not
3058 -- been analyzed yet (case of a type that has not been frozen yet
3059 -- and for which the stream attribute has been set using Set_TSS).
3061 if Present (Pnam)
3062 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3063 then
3064 Error_Msg_Sloc := Sloc (Pnam);
3065 Error_Msg_Name_1 := Attr;
3066 Error_Msg_N ("% attribute already defined #", Nam);
3067 return;
3068 end if;
3070 Analyze (Expr);
3072 if Is_Entity_Name (Expr) then
3073 if not Is_Overloaded (Expr) then
3074 if Has_Good_Profile (Entity (Expr)) then
3075 Subp := Entity (Expr);
3076 end if;
3078 else
3079 Get_First_Interp (Expr, I, It);
3080 while Present (It.Nam) loop
3081 if Has_Good_Profile (It.Nam) then
3082 Subp := It.Nam;
3083 exit;
3084 end if;
3086 Get_Next_Interp (I, It);
3087 end loop;
3088 end if;
3089 end if;
3091 if Present (Subp) then
3092 if Is_Abstract_Subprogram (Subp) then
3093 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3094 return;
3095 end if;
3097 Set_Entity (Expr, Subp);
3098 Set_Etype (Expr, Etype (Subp));
3100 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
3102 else
3103 Error_Msg_Name_1 := Attr;
3104 Error_Msg_N ("incorrect expression for% attribute", Expr);
3105 end if;
3106 end Analyze_Stream_TSS_Definition;
3108 ------------------------------
3109 -- Check_Indexing_Functions --
3110 ------------------------------
3112 procedure Check_Indexing_Functions is
3113 Indexing_Found : Boolean;
3115 procedure Check_One_Function (Subp : Entity_Id);
3116 -- Check one possible interpretation. Sets Indexing_Found True if an
3117 -- indexing function is found.
3119 ------------------------
3120 -- Check_One_Function --
3121 ------------------------
3123 procedure Check_One_Function (Subp : Entity_Id) is
3124 Default_Element : constant Node_Id :=
3125 Find_Value_Of_Aspect
3126 (Etype (First_Formal (Subp)),
3127 Aspect_Iterator_Element);
3129 begin
3130 if not Check_Primitive_Function (Subp)
3131 and then not Is_Overloaded (Expr)
3132 then
3133 Error_Msg_NE
3134 ("aspect Indexing requires a function that applies to type&",
3135 Subp, Ent);
3136 end if;
3138 -- An indexing function must return either the default element of
3139 -- the container, or a reference type. For variable indexing it
3140 -- must be the latter.
3142 if Present (Default_Element) then
3143 Analyze (Default_Element);
3145 if Is_Entity_Name (Default_Element)
3146 and then Covers (Entity (Default_Element), Etype (Subp))
3147 then
3148 Indexing_Found := True;
3149 return;
3150 end if;
3151 end if;
3153 -- For variable_indexing the return type must be a reference type
3155 if Attr = Name_Variable_Indexing
3156 and then not Has_Implicit_Dereference (Etype (Subp))
3157 then
3158 Error_Msg_N
3159 ("function for indexing must return a reference type", Subp);
3161 else
3162 Indexing_Found := True;
3163 end if;
3164 end Check_One_Function;
3166 -- Start of processing for Check_Indexing_Functions
3168 begin
3169 if In_Instance then
3170 return;
3171 end if;
3173 Analyze (Expr);
3175 if not Is_Overloaded (Expr) then
3176 Check_One_Function (Entity (Expr));
3178 else
3179 declare
3180 I : Interp_Index;
3181 It : Interp;
3183 begin
3184 Indexing_Found := False;
3185 Get_First_Interp (Expr, I, It);
3186 while Present (It.Nam) loop
3188 -- Note that analysis will have added the interpretation
3189 -- that corresponds to the dereference. We only check the
3190 -- subprogram itself.
3192 if Is_Overloadable (It.Nam) then
3193 Check_One_Function (It.Nam);
3194 end if;
3196 Get_Next_Interp (I, It);
3197 end loop;
3199 if not Indexing_Found then
3200 Error_Msg_NE
3201 ("aspect Indexing requires a function that "
3202 & "applies to type&", Expr, Ent);
3203 end if;
3204 end;
3205 end if;
3206 end Check_Indexing_Functions;
3208 ------------------------------
3209 -- Check_Iterator_Functions --
3210 ------------------------------
3212 procedure Check_Iterator_Functions is
3213 Default : Entity_Id;
3215 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
3216 -- Check one possible interpretation for validity
3218 ----------------------------
3219 -- Valid_Default_Iterator --
3220 ----------------------------
3222 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
3223 Formal : Entity_Id;
3225 begin
3226 if not Check_Primitive_Function (Subp) then
3227 return False;
3228 else
3229 Formal := First_Formal (Subp);
3230 end if;
3232 -- False if any subsequent formal has no default expression
3234 Formal := Next_Formal (Formal);
3235 while Present (Formal) loop
3236 if No (Expression (Parent (Formal))) then
3237 return False;
3238 end if;
3240 Next_Formal (Formal);
3241 end loop;
3243 -- True if all subsequent formals have default expressions
3245 return True;
3246 end Valid_Default_Iterator;
3248 -- Start of processing for Check_Iterator_Functions
3250 begin
3251 Analyze (Expr);
3253 if not Is_Entity_Name (Expr) then
3254 Error_Msg_N ("aspect Iterator must be a function name", Expr);
3255 end if;
3257 if not Is_Overloaded (Expr) then
3258 if not Check_Primitive_Function (Entity (Expr)) then
3259 Error_Msg_NE
3260 ("aspect Indexing requires a function that applies to type&",
3261 Entity (Expr), Ent);
3262 end if;
3264 if not Valid_Default_Iterator (Entity (Expr)) then
3265 Error_Msg_N ("improper function for default iterator", Expr);
3266 end if;
3268 else
3269 Default := Empty;
3270 declare
3271 I : Interp_Index;
3272 It : Interp;
3274 begin
3275 Get_First_Interp (Expr, I, It);
3276 while Present (It.Nam) loop
3277 if not Check_Primitive_Function (It.Nam)
3278 or else not Valid_Default_Iterator (It.Nam)
3279 then
3280 Remove_Interp (I);
3282 elsif Present (Default) then
3283 Error_Msg_N ("default iterator must be unique", Expr);
3285 else
3286 Default := It.Nam;
3287 end if;
3289 Get_Next_Interp (I, It);
3290 end loop;
3291 end;
3293 if Present (Default) then
3294 Set_Entity (Expr, Default);
3295 Set_Is_Overloaded (Expr, False);
3296 end if;
3297 end if;
3298 end Check_Iterator_Functions;
3300 -------------------------------
3301 -- Check_Primitive_Function --
3302 -------------------------------
3304 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
3305 Ctrl : Entity_Id;
3307 begin
3308 if Ekind (Subp) /= E_Function then
3309 return False;
3310 end if;
3312 if No (First_Formal (Subp)) then
3313 return False;
3314 else
3315 Ctrl := Etype (First_Formal (Subp));
3316 end if;
3318 if Ctrl = Ent
3319 or else Ctrl = Class_Wide_Type (Ent)
3320 or else
3321 (Ekind (Ctrl) = E_Anonymous_Access_Type
3322 and then
3323 (Designated_Type (Ctrl) = Ent
3324 or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
3325 then
3326 null;
3328 else
3329 return False;
3330 end if;
3332 return True;
3333 end Check_Primitive_Function;
3335 ----------------------
3336 -- Duplicate_Clause --
3337 ----------------------
3339 function Duplicate_Clause return Boolean is
3340 A : Node_Id;
3342 begin
3343 -- Nothing to do if this attribute definition clause comes from
3344 -- an aspect specification, since we could not be duplicating an
3345 -- explicit clause, and we dealt with the case of duplicated aspects
3346 -- in Analyze_Aspect_Specifications.
3348 if From_Aspect_Specification (N) then
3349 return False;
3350 end if;
3352 -- Otherwise current clause may duplicate previous clause, or a
3353 -- previously given pragma or aspect specification for the same
3354 -- aspect.
3356 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
3358 if Present (A) then
3359 Error_Msg_Name_1 := Chars (N);
3360 Error_Msg_Sloc := Sloc (A);
3362 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
3363 return True;
3364 end if;
3366 return False;
3367 end Duplicate_Clause;
3369 -- Start of processing for Analyze_Attribute_Definition_Clause
3371 begin
3372 -- The following code is a defense against recursion. Not clear that
3373 -- this can happen legitimately, but perhaps some error situations
3374 -- can cause it, and we did see this recursion during testing.
3376 if Analyzed (N) then
3377 return;
3378 else
3379 Set_Analyzed (N, True);
3380 end if;
3382 -- Ignore some selected attributes in CodePeer mode since they are not
3383 -- relevant in this context.
3385 if CodePeer_Mode then
3386 case Id is
3388 -- Ignore Component_Size in CodePeer mode, to avoid changing the
3389 -- internal representation of types by implicitly packing them.
3391 when Attribute_Component_Size =>
3392 Rewrite (N, Make_Null_Statement (Sloc (N)));
3393 return;
3395 when others =>
3396 null;
3397 end case;
3398 end if;
3400 -- Process Ignore_Rep_Clauses option
3402 if Ignore_Rep_Clauses then
3403 case Id is
3405 -- The following should be ignored. They do not affect legality
3406 -- and may be target dependent. The basic idea of -gnatI is to
3407 -- ignore any rep clauses that may be target dependent but do not
3408 -- affect legality (except possibly to be rejected because they
3409 -- are incompatible with the compilation target).
3411 when Attribute_Alignment |
3412 Attribute_Bit_Order |
3413 Attribute_Component_Size |
3414 Attribute_Machine_Radix |
3415 Attribute_Object_Size |
3416 Attribute_Size |
3417 Attribute_Stream_Size |
3418 Attribute_Value_Size =>
3419 Rewrite (N, Make_Null_Statement (Sloc (N)));
3420 return;
3422 -- Perhaps 'Small should not be ignored by Ignore_Rep_Clauses ???
3424 when Attribute_Small =>
3425 if Ignore_Rep_Clauses then
3426 Rewrite (N, Make_Null_Statement (Sloc (N)));
3427 return;
3428 end if;
3430 -- The following should not be ignored, because in the first place
3431 -- they are reasonably portable, and should not cause problems in
3432 -- compiling code from another target, and also they do affect
3433 -- legality, e.g. failing to provide a stream attribute for a
3434 -- type may make a program illegal.
3436 when Attribute_External_Tag |
3437 Attribute_Input |
3438 Attribute_Output |
3439 Attribute_Read |
3440 Attribute_Simple_Storage_Pool |
3441 Attribute_Storage_Pool |
3442 Attribute_Storage_Size |
3443 Attribute_Write =>
3444 null;
3446 -- Other cases are errors ("attribute& cannot be set with
3447 -- definition clause"), which will be caught below.
3449 when others =>
3450 null;
3451 end case;
3452 end if;
3454 Analyze (Nam);
3455 Ent := Entity (Nam);
3457 if Rep_Item_Too_Early (Ent, N) then
3458 return;
3459 end if;
3461 -- Rep clause applies to full view of incomplete type or private type if
3462 -- we have one (if not, this is a premature use of the type). However,
3463 -- certain semantic checks need to be done on the specified entity (i.e.
3464 -- the private view), so we save it in Ent.
3466 if Is_Private_Type (Ent)
3467 and then Is_Derived_Type (Ent)
3468 and then not Is_Tagged_Type (Ent)
3469 and then No (Full_View (Ent))
3470 then
3471 -- If this is a private type whose completion is a derivation from
3472 -- another private type, there is no full view, and the attribute
3473 -- belongs to the type itself, not its underlying parent.
3475 U_Ent := Ent;
3477 elsif Ekind (Ent) = E_Incomplete_Type then
3479 -- The attribute applies to the full view, set the entity of the
3480 -- attribute definition accordingly.
3482 Ent := Underlying_Type (Ent);
3483 U_Ent := Ent;
3484 Set_Entity (Nam, Ent);
3486 else
3487 U_Ent := Underlying_Type (Ent);
3488 end if;
3490 -- Avoid cascaded error
3492 if Etype (Nam) = Any_Type then
3493 return;
3495 -- Must be declared in current scope or in case of an aspect
3496 -- specification, must be visible in current scope.
3498 elsif Scope (Ent) /= Current_Scope
3499 and then
3500 not (From_Aspect_Specification (N)
3501 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
3502 then
3503 Error_Msg_N ("entity must be declared in this scope", Nam);
3504 return;
3506 -- Must not be a source renaming (we do have some cases where the
3507 -- expander generates a renaming, and those cases are OK, in such
3508 -- cases any attribute applies to the renamed object as well).
3510 elsif Is_Object (Ent)
3511 and then Present (Renamed_Object (Ent))
3512 then
3513 -- Case of renamed object from source, this is an error
3515 if Comes_From_Source (Renamed_Object (Ent)) then
3516 Get_Name_String (Chars (N));
3517 Error_Msg_Strlen := Name_Len;
3518 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
3519 Error_Msg_N
3520 ("~ clause not allowed for a renaming declaration "
3521 & "(RM 13.1(6))", Nam);
3522 return;
3524 -- For the case of a compiler generated renaming, the attribute
3525 -- definition clause applies to the renamed object created by the
3526 -- expander. The easiest general way to handle this is to create a
3527 -- copy of the attribute definition clause for this object.
3529 else
3530 Insert_Action (N,
3531 Make_Attribute_Definition_Clause (Loc,
3532 Name =>
3533 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
3534 Chars => Chars (N),
3535 Expression => Duplicate_Subexpr (Expression (N))));
3536 end if;
3538 -- If no underlying entity, use entity itself, applies to some
3539 -- previously detected error cases ???
3541 elsif No (U_Ent) then
3542 U_Ent := Ent;
3544 -- Cannot specify for a subtype (exception Object/Value_Size)
3546 elsif Is_Type (U_Ent)
3547 and then not Is_First_Subtype (U_Ent)
3548 and then Id /= Attribute_Object_Size
3549 and then Id /= Attribute_Value_Size
3550 and then not From_At_Mod (N)
3551 then
3552 Error_Msg_N ("cannot specify attribute for subtype", Nam);
3553 return;
3554 end if;
3556 Set_Entity (N, U_Ent);
3557 Check_Restriction_No_Use_Of_Attribute (N);
3559 -- Switch on particular attribute
3561 case Id is
3563 -------------
3564 -- Address --
3565 -------------
3567 -- Address attribute definition clause
3569 when Attribute_Address => Address : begin
3571 -- A little error check, catch for X'Address use X'Address;
3573 if Nkind (Nam) = N_Identifier
3574 and then Nkind (Expr) = N_Attribute_Reference
3575 and then Attribute_Name (Expr) = Name_Address
3576 and then Nkind (Prefix (Expr)) = N_Identifier
3577 and then Chars (Nam) = Chars (Prefix (Expr))
3578 then
3579 Error_Msg_NE
3580 ("address for & is self-referencing", Prefix (Expr), Ent);
3581 return;
3582 end if;
3584 -- Not that special case, carry on with analysis of expression
3586 Analyze_And_Resolve (Expr, RTE (RE_Address));
3588 -- Even when ignoring rep clauses we need to indicate that the
3589 -- entity has an address clause and thus it is legal to declare
3590 -- it imported.
3592 if Ignore_Rep_Clauses then
3593 if Ekind_In (U_Ent, E_Variable, E_Constant) then
3594 Record_Rep_Item (U_Ent, N);
3595 end if;
3597 return;
3598 end if;
3600 if Duplicate_Clause then
3601 null;
3603 -- Case of address clause for subprogram
3605 elsif Is_Subprogram (U_Ent) then
3606 if Has_Homonym (U_Ent) then
3607 Error_Msg_N
3608 ("address clause cannot be given " &
3609 "for overloaded subprogram",
3610 Nam);
3611 return;
3612 end if;
3614 -- For subprograms, all address clauses are permitted, and we
3615 -- mark the subprogram as having a deferred freeze so that Gigi
3616 -- will not elaborate it too soon.
3618 -- Above needs more comments, what is too soon about???
3620 Set_Has_Delayed_Freeze (U_Ent);
3622 -- Case of address clause for entry
3624 elsif Ekind (U_Ent) = E_Entry then
3625 if Nkind (Parent (N)) = N_Task_Body then
3626 Error_Msg_N
3627 ("entry address must be specified in task spec", Nam);
3628 return;
3629 end if;
3631 -- For entries, we require a constant address
3633 Check_Constant_Address_Clause (Expr, U_Ent);
3635 -- Special checks for task types
3637 if Is_Task_Type (Scope (U_Ent))
3638 and then Comes_From_Source (Scope (U_Ent))
3639 then
3640 Error_Msg_N
3641 ("??entry address declared for entry in task type", N);
3642 Error_Msg_N
3643 ("\??only one task can be declared of this type", N);
3644 end if;
3646 -- Entry address clauses are obsolescent
3648 Check_Restriction (No_Obsolescent_Features, N);
3650 if Warn_On_Obsolescent_Feature then
3651 Error_Msg_N
3652 ("?j?attaching interrupt to task entry is an " &
3653 "obsolescent feature (RM J.7.1)", N);
3654 Error_Msg_N
3655 ("\?j?use interrupt procedure instead", N);
3656 end if;
3658 -- Case of an address clause for a controlled object which we
3659 -- consider to be erroneous.
3661 elsif Is_Controlled (Etype (U_Ent))
3662 or else Has_Controlled_Component (Etype (U_Ent))
3663 then
3664 Error_Msg_NE
3665 ("??controlled object& must not be overlaid", Nam, U_Ent);
3666 Error_Msg_N
3667 ("\??Program_Error will be raised at run time", Nam);
3668 Insert_Action (Declaration_Node (U_Ent),
3669 Make_Raise_Program_Error (Loc,
3670 Reason => PE_Overlaid_Controlled_Object));
3671 return;
3673 -- Case of address clause for a (non-controlled) object
3675 elsif
3676 Ekind (U_Ent) = E_Variable
3677 or else
3678 Ekind (U_Ent) = E_Constant
3679 then
3680 declare
3681 Expr : constant Node_Id := Expression (N);
3682 O_Ent : Entity_Id;
3683 Off : Boolean;
3685 begin
3686 -- Exported variables cannot have an address clause, because
3687 -- this cancels the effect of the pragma Export.
3689 if Is_Exported (U_Ent) then
3690 Error_Msg_N
3691 ("cannot export object with address clause", Nam);
3692 return;
3693 end if;
3695 Find_Overlaid_Entity (N, O_Ent, Off);
3697 -- Overlaying controlled objects is erroneous
3699 if Present (O_Ent)
3700 and then (Has_Controlled_Component (Etype (O_Ent))
3701 or else Is_Controlled (Etype (O_Ent)))
3702 then
3703 Error_Msg_N
3704 ("??cannot overlay with controlled object", Expr);
3705 Error_Msg_N
3706 ("\??Program_Error will be raised at run time", Expr);
3707 Insert_Action (Declaration_Node (U_Ent),
3708 Make_Raise_Program_Error (Loc,
3709 Reason => PE_Overlaid_Controlled_Object));
3710 return;
3712 elsif Present (O_Ent)
3713 and then Ekind (U_Ent) = E_Constant
3714 and then not Is_Constant_Object (O_Ent)
3715 then
3716 Error_Msg_N ("??constant overlays a variable", Expr);
3718 -- Imported variables can have an address clause, but then
3719 -- the import is pretty meaningless except to suppress
3720 -- initializations, so we do not need such variables to
3721 -- be statically allocated (and in fact it causes trouble
3722 -- if the address clause is a local value).
3724 elsif Is_Imported (U_Ent) then
3725 Set_Is_Statically_Allocated (U_Ent, False);
3726 end if;
3728 -- We mark a possible modification of a variable with an
3729 -- address clause, since it is likely aliasing is occurring.
3731 Note_Possible_Modification (Nam, Sure => False);
3733 -- Here we are checking for explicit overlap of one variable
3734 -- by another, and if we find this then mark the overlapped
3735 -- variable as also being volatile to prevent unwanted
3736 -- optimizations. This is a significant pessimization so
3737 -- avoid it when there is an offset, i.e. when the object
3738 -- is composite; they cannot be optimized easily anyway.
3740 if Present (O_Ent)
3741 and then Is_Object (O_Ent)
3742 and then not Off
3744 -- The following test is an expedient solution to what
3745 -- is really a problem in CodePeer. Suppressing the
3746 -- Set_Treat_As_Volatile call here prevents later
3747 -- generation (in some cases) of trees that CodePeer
3748 -- should, but currently does not, handle correctly.
3749 -- This test should probably be removed when CodePeer
3750 -- is improved, just because we want the tree CodePeer
3751 -- analyzes to match the tree for which we generate code
3752 -- as closely as is practical. ???
3754 and then not CodePeer_Mode
3755 then
3756 -- ??? O_Ent might not be in current unit
3758 Set_Treat_As_Volatile (O_Ent);
3759 end if;
3761 -- Legality checks on the address clause for initialized
3762 -- objects is deferred until the freeze point, because
3763 -- a subsequent pragma might indicate that the object
3764 -- is imported and thus not initialized. Also, the address
3765 -- clause might involve entities that have yet to be
3766 -- elaborated.
3768 Set_Has_Delayed_Freeze (U_Ent);
3770 -- If an initialization call has been generated for this
3771 -- object, it needs to be deferred to after the freeze node
3772 -- we have just now added, otherwise GIGI will see a
3773 -- reference to the variable (as actual to the IP call)
3774 -- before its definition.
3776 declare
3777 Init_Call : constant Node_Id :=
3778 Remove_Init_Call (U_Ent, N);
3780 begin
3781 if Present (Init_Call) then
3783 -- If the init call is an expression with actions with
3784 -- null expression, just extract the actions.
3786 if Nkind (Init_Call) = N_Expression_With_Actions
3787 and then
3788 Nkind (Expression (Init_Call)) = N_Null_Statement
3789 then
3790 Append_Freeze_Actions (U_Ent, Actions (Init_Call));
3792 -- General case: move Init_Call to freeze actions
3794 else
3795 Append_Freeze_Action (U_Ent, Init_Call);
3796 end if;
3797 end if;
3798 end;
3800 if Is_Exported (U_Ent) then
3801 Error_Msg_N
3802 ("& cannot be exported if an address clause is given",
3803 Nam);
3804 Error_Msg_N
3805 ("\define and export a variable "
3806 & "that holds its address instead", Nam);
3807 end if;
3809 -- Entity has delayed freeze, so we will generate an
3810 -- alignment check at the freeze point unless suppressed.
3812 if not Range_Checks_Suppressed (U_Ent)
3813 and then not Alignment_Checks_Suppressed (U_Ent)
3814 then
3815 Set_Check_Address_Alignment (N);
3816 end if;
3818 -- Kill the size check code, since we are not allocating
3819 -- the variable, it is somewhere else.
3821 Kill_Size_Check_Code (U_Ent);
3823 -- If the address clause is of the form:
3825 -- for Y'Address use X'Address
3827 -- or
3829 -- Const : constant Address := X'Address;
3830 -- ...
3831 -- for Y'Address use Const;
3833 -- then we make an entry in the table for checking the size
3834 -- and alignment of the overlaying variable. We defer this
3835 -- check till after code generation to take full advantage
3836 -- of the annotation done by the back end.
3838 -- If the entity has a generic type, the check will be
3839 -- performed in the instance if the actual type justifies
3840 -- it, and we do not insert the clause in the table to
3841 -- prevent spurious warnings.
3843 -- Note: we used to test Comes_From_Source and only give
3844 -- this warning for source entities, but we have removed
3845 -- this test. It really seems bogus to generate overlays
3846 -- that would trigger this warning in generated code.
3847 -- Furthermore, by removing the test, we handle the
3848 -- aspect case properly.
3850 if Address_Clause_Overlay_Warnings
3851 and then Present (O_Ent)
3852 and then Is_Object (O_Ent)
3853 then
3854 if not Is_Generic_Type (Etype (U_Ent)) then
3855 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
3856 end if;
3858 -- If variable overlays a constant view, and we are
3859 -- warning on overlays, then mark the variable as
3860 -- overlaying a constant (we will give warnings later
3861 -- if this variable is assigned).
3863 if Is_Constant_Object (O_Ent)
3864 and then Ekind (U_Ent) = E_Variable
3865 then
3866 Set_Overlays_Constant (U_Ent);
3867 end if;
3868 end if;
3869 end;
3871 -- Not a valid entity for an address clause
3873 else
3874 Error_Msg_N ("address cannot be given for &", Nam);
3875 end if;
3876 end Address;
3878 ---------------
3879 -- Alignment --
3880 ---------------
3882 -- Alignment attribute definition clause
3884 when Attribute_Alignment => Alignment : declare
3885 Align : constant Uint := Get_Alignment_Value (Expr);
3886 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
3888 begin
3889 FOnly := True;
3891 if not Is_Type (U_Ent)
3892 and then Ekind (U_Ent) /= E_Variable
3893 and then Ekind (U_Ent) /= E_Constant
3894 then
3895 Error_Msg_N ("alignment cannot be given for &", Nam);
3897 elsif Duplicate_Clause then
3898 null;
3900 elsif Align /= No_Uint then
3901 Set_Has_Alignment_Clause (U_Ent);
3903 -- Tagged type case, check for attempt to set alignment to a
3904 -- value greater than Max_Align, and reset if so.
3906 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
3907 Error_Msg_N
3908 ("alignment for & set to Maximum_Aligment??", Nam);
3909 Set_Alignment (U_Ent, Max_Align);
3911 -- All other cases
3913 else
3914 Set_Alignment (U_Ent, Align);
3915 end if;
3917 -- For an array type, U_Ent is the first subtype. In that case,
3918 -- also set the alignment of the anonymous base type so that
3919 -- other subtypes (such as the itypes for aggregates of the
3920 -- type) also receive the expected alignment.
3922 if Is_Array_Type (U_Ent) then
3923 Set_Alignment (Base_Type (U_Ent), Align);
3924 end if;
3925 end if;
3926 end Alignment;
3928 ---------------
3929 -- Bit_Order --
3930 ---------------
3932 -- Bit_Order attribute definition clause
3934 when Attribute_Bit_Order => Bit_Order : declare
3935 begin
3936 if not Is_Record_Type (U_Ent) then
3937 Error_Msg_N
3938 ("Bit_Order can only be defined for record type", Nam);
3940 elsif Duplicate_Clause then
3941 null;
3943 else
3944 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
3946 if Etype (Expr) = Any_Type then
3947 return;
3949 elsif not Is_Static_Expression (Expr) then
3950 Flag_Non_Static_Expr
3951 ("Bit_Order requires static expression!", Expr);
3953 else
3954 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
3955 Set_Reverse_Bit_Order (U_Ent, True);
3956 end if;
3957 end if;
3958 end if;
3959 end Bit_Order;
3961 --------------------
3962 -- Component_Size --
3963 --------------------
3965 -- Component_Size attribute definition clause
3967 when Attribute_Component_Size => Component_Size_Case : declare
3968 Csize : constant Uint := Static_Integer (Expr);
3969 Ctyp : Entity_Id;
3970 Btype : Entity_Id;
3971 Biased : Boolean;
3972 New_Ctyp : Entity_Id;
3973 Decl : Node_Id;
3975 begin
3976 if not Is_Array_Type (U_Ent) then
3977 Error_Msg_N ("component size requires array type", Nam);
3978 return;
3979 end if;
3981 Btype := Base_Type (U_Ent);
3982 Ctyp := Component_Type (Btype);
3984 if Duplicate_Clause then
3985 null;
3987 elsif Rep_Item_Too_Early (Btype, N) then
3988 null;
3990 elsif Csize /= No_Uint then
3991 Check_Size (Expr, Ctyp, Csize, Biased);
3993 -- For the biased case, build a declaration for a subtype that
3994 -- will be used to represent the biased subtype that reflects
3995 -- the biased representation of components. We need the subtype
3996 -- to get proper conversions on referencing elements of the
3997 -- array. Note: component size clauses are ignored in VM mode.
3999 if VM_Target = No_VM then
4000 if Biased then
4001 New_Ctyp :=
4002 Make_Defining_Identifier (Loc,
4003 Chars =>
4004 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4006 Decl :=
4007 Make_Subtype_Declaration (Loc,
4008 Defining_Identifier => New_Ctyp,
4009 Subtype_Indication =>
4010 New_Occurrence_Of (Component_Type (Btype), Loc));
4012 Set_Parent (Decl, N);
4013 Analyze (Decl, Suppress => All_Checks);
4015 Set_Has_Delayed_Freeze (New_Ctyp, False);
4016 Set_Esize (New_Ctyp, Csize);
4017 Set_RM_Size (New_Ctyp, Csize);
4018 Init_Alignment (New_Ctyp);
4019 Set_Is_Itype (New_Ctyp, True);
4020 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4022 Set_Component_Type (Btype, New_Ctyp);
4023 Set_Biased (New_Ctyp, N, "component size clause");
4024 end if;
4026 Set_Component_Size (Btype, Csize);
4028 -- For VM case, we ignore component size clauses
4030 else
4031 -- Give a warning unless we are in GNAT mode, in which case
4032 -- the warning is suppressed since it is not useful.
4034 if not GNAT_Mode then
4035 Error_Msg_N
4036 ("component size ignored in this configuration??", N);
4037 end if;
4038 end if;
4040 -- Deal with warning on overridden size
4042 if Warn_On_Overridden_Size
4043 and then Has_Size_Clause (Ctyp)
4044 and then RM_Size (Ctyp) /= Csize
4045 then
4046 Error_Msg_NE
4047 ("component size overrides size clause for&?S?", N, Ctyp);
4048 end if;
4050 Set_Has_Component_Size_Clause (Btype, True);
4051 Set_Has_Non_Standard_Rep (Btype, True);
4052 end if;
4053 end Component_Size_Case;
4055 -----------------------
4056 -- Constant_Indexing --
4057 -----------------------
4059 when Attribute_Constant_Indexing =>
4060 Check_Indexing_Functions;
4062 ---------
4063 -- CPU --
4064 ---------
4066 when Attribute_CPU => CPU :
4067 begin
4068 -- CPU attribute definition clause not allowed except from aspect
4069 -- specification.
4071 if From_Aspect_Specification (N) then
4072 if not Is_Task_Type (U_Ent) then
4073 Error_Msg_N ("CPU can only be defined for task", Nam);
4075 elsif Duplicate_Clause then
4076 null;
4078 else
4079 -- The expression must be analyzed in the special manner
4080 -- described in "Handling of Default and Per-Object
4081 -- Expressions" in sem.ads.
4083 -- The visibility to the discriminants must be restored
4085 Push_Scope_And_Install_Discriminants (U_Ent);
4086 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4087 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4089 if not Is_Static_Expression (Expr) then
4090 Check_Restriction (Static_Priorities, Expr);
4091 end if;
4092 end if;
4094 else
4095 Error_Msg_N
4096 ("attribute& cannot be set with definition clause", N);
4097 end if;
4098 end CPU;
4100 ----------------------
4101 -- Default_Iterator --
4102 ----------------------
4104 when Attribute_Default_Iterator => Default_Iterator : declare
4105 Func : Entity_Id;
4107 begin
4108 if not Is_Tagged_Type (U_Ent) then
4109 Error_Msg_N
4110 ("aspect Default_Iterator applies to tagged type", Nam);
4111 end if;
4113 Check_Iterator_Functions;
4115 Analyze (Expr);
4117 if not Is_Entity_Name (Expr)
4118 or else Ekind (Entity (Expr)) /= E_Function
4119 then
4120 Error_Msg_N ("aspect Iterator must be a function", Expr);
4121 else
4122 Func := Entity (Expr);
4123 end if;
4125 if No (First_Formal (Func))
4126 or else Etype (First_Formal (Func)) /= U_Ent
4127 then
4128 Error_Msg_NE
4129 ("Default Iterator must be a primitive of&", Func, U_Ent);
4130 end if;
4131 end Default_Iterator;
4133 ------------------------
4134 -- Dispatching_Domain --
4135 ------------------------
4137 when Attribute_Dispatching_Domain => Dispatching_Domain :
4138 begin
4139 -- Dispatching_Domain attribute definition clause not allowed
4140 -- except from aspect specification.
4142 if From_Aspect_Specification (N) then
4143 if not Is_Task_Type (U_Ent) then
4144 Error_Msg_N ("Dispatching_Domain can only be defined" &
4145 "for task",
4146 Nam);
4148 elsif Duplicate_Clause then
4149 null;
4151 else
4152 -- The expression must be analyzed in the special manner
4153 -- described in "Handling of Default and Per-Object
4154 -- Expressions" in sem.ads.
4156 -- The visibility to the discriminants must be restored
4158 Push_Scope_And_Install_Discriminants (U_Ent);
4160 Preanalyze_Spec_Expression
4161 (Expr, RTE (RE_Dispatching_Domain));
4163 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4164 end if;
4166 else
4167 Error_Msg_N
4168 ("attribute& cannot be set with definition clause", N);
4169 end if;
4170 end Dispatching_Domain;
4172 ------------------
4173 -- External_Tag --
4174 ------------------
4176 when Attribute_External_Tag => External_Tag :
4177 begin
4178 if not Is_Tagged_Type (U_Ent) then
4179 Error_Msg_N ("should be a tagged type", Nam);
4180 end if;
4182 if Duplicate_Clause then
4183 null;
4185 else
4186 Analyze_And_Resolve (Expr, Standard_String);
4188 if not Is_Static_Expression (Expr) then
4189 Flag_Non_Static_Expr
4190 ("static string required for tag name!", Nam);
4191 end if;
4193 if VM_Target = No_VM then
4194 Set_Has_External_Tag_Rep_Clause (U_Ent);
4195 else
4196 Error_Msg_Name_1 := Attr;
4197 Error_Msg_N
4198 ("% attribute unsupported in this configuration", Nam);
4199 end if;
4201 if not Is_Library_Level_Entity (U_Ent) then
4202 Error_Msg_NE
4203 ("??non-unique external tag supplied for &", N, U_Ent);
4204 Error_Msg_N
4205 ("\??same external tag applies to all "
4206 & "subprogram calls", N);
4207 Error_Msg_N
4208 ("\??corresponding internal tag cannot be obtained", N);
4209 end if;
4210 end if;
4211 end External_Tag;
4213 --------------------------
4214 -- Implicit_Dereference --
4215 --------------------------
4217 when Attribute_Implicit_Dereference =>
4219 -- Legality checks already performed at the point of the type
4220 -- declaration, aspect is not delayed.
4222 null;
4224 -----------
4225 -- Input --
4226 -----------
4228 when Attribute_Input =>
4229 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
4230 Set_Has_Specified_Stream_Input (Ent);
4232 ------------------------
4233 -- Interrupt_Priority --
4234 ------------------------
4236 when Attribute_Interrupt_Priority => Interrupt_Priority :
4237 begin
4238 -- Interrupt_Priority attribute definition clause not allowed
4239 -- except from aspect specification.
4241 if From_Aspect_Specification (N) then
4242 if not (Is_Protected_Type (U_Ent)
4243 or else Is_Task_Type (U_Ent))
4244 then
4245 Error_Msg_N
4246 ("Interrupt_Priority can only be defined for task" &
4247 "and protected object",
4248 Nam);
4250 elsif Duplicate_Clause then
4251 null;
4253 else
4254 -- The expression must be analyzed in the special manner
4255 -- described in "Handling of Default and Per-Object
4256 -- Expressions" in sem.ads.
4258 -- The visibility to the discriminants must be restored
4260 Push_Scope_And_Install_Discriminants (U_Ent);
4262 Preanalyze_Spec_Expression
4263 (Expr, RTE (RE_Interrupt_Priority));
4265 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4266 end if;
4268 else
4269 Error_Msg_N
4270 ("attribute& cannot be set with definition clause", N);
4271 end if;
4272 end Interrupt_Priority;
4274 ----------------------
4275 -- Iterator_Element --
4276 ----------------------
4278 when Attribute_Iterator_Element =>
4279 Analyze (Expr);
4281 if not Is_Entity_Name (Expr)
4282 or else not Is_Type (Entity (Expr))
4283 then
4284 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
4285 end if;
4287 -------------------
4288 -- Machine_Radix --
4289 -------------------
4291 -- Machine radix attribute definition clause
4293 when Attribute_Machine_Radix => Machine_Radix : declare
4294 Radix : constant Uint := Static_Integer (Expr);
4296 begin
4297 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
4298 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
4300 elsif Duplicate_Clause then
4301 null;
4303 elsif Radix /= No_Uint then
4304 Set_Has_Machine_Radix_Clause (U_Ent);
4305 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
4307 if Radix = 2 then
4308 null;
4309 elsif Radix = 10 then
4310 Set_Machine_Radix_10 (U_Ent);
4311 else
4312 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
4313 end if;
4314 end if;
4315 end Machine_Radix;
4317 -----------------
4318 -- Object_Size --
4319 -----------------
4321 -- Object_Size attribute definition clause
4323 when Attribute_Object_Size => Object_Size : declare
4324 Size : constant Uint := Static_Integer (Expr);
4326 Biased : Boolean;
4327 pragma Warnings (Off, Biased);
4329 begin
4330 if not Is_Type (U_Ent) then
4331 Error_Msg_N ("Object_Size cannot be given for &", Nam);
4333 elsif Duplicate_Clause then
4334 null;
4336 else
4337 Check_Size (Expr, U_Ent, Size, Biased);
4339 if Size /= 8
4340 and then
4341 Size /= 16
4342 and then
4343 Size /= 32
4344 and then
4345 UI_Mod (Size, 64) /= 0
4346 then
4347 Error_Msg_N
4348 ("Object_Size must be 8, 16, 32, or multiple of 64",
4349 Expr);
4350 end if;
4352 Set_Esize (U_Ent, Size);
4353 Set_Has_Object_Size_Clause (U_Ent);
4354 Alignment_Check_For_Size_Change (U_Ent, Size);
4355 end if;
4356 end Object_Size;
4358 ------------
4359 -- Output --
4360 ------------
4362 when Attribute_Output =>
4363 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
4364 Set_Has_Specified_Stream_Output (Ent);
4366 --------------
4367 -- Priority --
4368 --------------
4370 when Attribute_Priority => Priority :
4371 begin
4372 -- Priority attribute definition clause not allowed except from
4373 -- aspect specification.
4375 if From_Aspect_Specification (N) then
4376 if not (Is_Protected_Type (U_Ent)
4377 or else Is_Task_Type (U_Ent)
4378 or else Ekind (U_Ent) = E_Procedure)
4379 then
4380 Error_Msg_N
4381 ("Priority can only be defined for task and protected " &
4382 "object",
4383 Nam);
4385 elsif Duplicate_Clause then
4386 null;
4388 else
4389 -- The expression must be analyzed in the special manner
4390 -- described in "Handling of Default and Per-Object
4391 -- Expressions" in sem.ads.
4393 -- The visibility to the discriminants must be restored
4395 Push_Scope_And_Install_Discriminants (U_Ent);
4396 Preanalyze_Spec_Expression (Expr, Standard_Integer);
4397 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4399 if not Is_Static_Expression (Expr) then
4400 Check_Restriction (Static_Priorities, Expr);
4401 end if;
4402 end if;
4404 else
4405 Error_Msg_N
4406 ("attribute& cannot be set with definition clause", N);
4407 end if;
4408 end Priority;
4410 ----------
4411 -- Read --
4412 ----------
4414 when Attribute_Read =>
4415 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
4416 Set_Has_Specified_Stream_Read (Ent);
4418 --------------------------
4419 -- Scalar_Storage_Order --
4420 --------------------------
4422 -- Scalar_Storage_Order attribute definition clause
4424 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
4425 begin
4426 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
4427 Error_Msg_N
4428 ("Scalar_Storage_Order can only be defined for "
4429 & "record or array type", Nam);
4431 elsif Duplicate_Clause then
4432 null;
4434 else
4435 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4437 if Etype (Expr) = Any_Type then
4438 return;
4440 elsif not Is_Static_Expression (Expr) then
4441 Flag_Non_Static_Expr
4442 ("Scalar_Storage_Order requires static expression!", Expr);
4444 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
4446 -- Here for the case of a non-default (i.e. non-confirming)
4447 -- Scalar_Storage_Order attribute definition.
4449 if Support_Nondefault_SSO_On_Target then
4450 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
4451 else
4452 Error_Msg_N
4453 ("non-default Scalar_Storage_Order "
4454 & "not supported on target", Expr);
4455 end if;
4456 end if;
4457 end if;
4458 end Scalar_Storage_Order;
4460 ----------
4461 -- Size --
4462 ----------
4464 -- Size attribute definition clause
4466 when Attribute_Size => Size : declare
4467 Size : constant Uint := Static_Integer (Expr);
4468 Etyp : Entity_Id;
4469 Biased : Boolean;
4471 begin
4472 FOnly := True;
4474 if Duplicate_Clause then
4475 null;
4477 elsif not Is_Type (U_Ent)
4478 and then Ekind (U_Ent) /= E_Variable
4479 and then Ekind (U_Ent) /= E_Constant
4480 then
4481 Error_Msg_N ("size cannot be given for &", Nam);
4483 elsif Is_Array_Type (U_Ent)
4484 and then not Is_Constrained (U_Ent)
4485 then
4486 Error_Msg_N
4487 ("size cannot be given for unconstrained array", Nam);
4489 elsif Size /= No_Uint then
4490 if VM_Target /= No_VM and then not GNAT_Mode then
4492 -- Size clause is not handled properly on VM targets.
4493 -- Display a warning unless we are in GNAT mode, in which
4494 -- case this is useless.
4496 Error_Msg_N
4497 ("size clauses are ignored in this configuration??", N);
4498 end if;
4500 if Is_Type (U_Ent) then
4501 Etyp := U_Ent;
4502 else
4503 Etyp := Etype (U_Ent);
4504 end if;
4506 -- Check size, note that Gigi is in charge of checking that the
4507 -- size of an array or record type is OK. Also we do not check
4508 -- the size in the ordinary fixed-point case, since it is too
4509 -- early to do so (there may be subsequent small clause that
4510 -- affects the size). We can check the size if a small clause
4511 -- has already been given.
4513 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
4514 or else Has_Small_Clause (U_Ent)
4515 then
4516 Check_Size (Expr, Etyp, Size, Biased);
4517 Set_Biased (U_Ent, N, "size clause", Biased);
4518 end if;
4520 -- For types set RM_Size and Esize if possible
4522 if Is_Type (U_Ent) then
4523 Set_RM_Size (U_Ent, Size);
4525 -- For elementary types, increase Object_Size to power of 2,
4526 -- but not less than a storage unit in any case (normally
4527 -- this means it will be byte addressable).
4529 -- For all other types, nothing else to do, we leave Esize
4530 -- (object size) unset, the back end will set it from the
4531 -- size and alignment in an appropriate manner.
4533 -- In both cases, we check whether the alignment must be
4534 -- reset in the wake of the size change.
4536 if Is_Elementary_Type (U_Ent) then
4537 if Size <= System_Storage_Unit then
4538 Init_Esize (U_Ent, System_Storage_Unit);
4539 elsif Size <= 16 then
4540 Init_Esize (U_Ent, 16);
4541 elsif Size <= 32 then
4542 Init_Esize (U_Ent, 32);
4543 else
4544 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
4545 end if;
4547 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
4548 else
4549 Alignment_Check_For_Size_Change (U_Ent, Size);
4550 end if;
4552 -- For objects, set Esize only
4554 else
4555 if Is_Elementary_Type (Etyp) then
4556 if Size /= System_Storage_Unit
4557 and then
4558 Size /= System_Storage_Unit * 2
4559 and then
4560 Size /= System_Storage_Unit * 4
4561 and then
4562 Size /= System_Storage_Unit * 8
4563 then
4564 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
4565 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
4566 Error_Msg_N
4567 ("size for primitive object must be a power of 2"
4568 & " in the range ^-^", N);
4569 end if;
4570 end if;
4572 Set_Esize (U_Ent, Size);
4573 end if;
4575 Set_Has_Size_Clause (U_Ent);
4576 end if;
4577 end Size;
4579 -----------
4580 -- Small --
4581 -----------
4583 -- Small attribute definition clause
4585 when Attribute_Small => Small : declare
4586 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
4587 Small : Ureal;
4589 begin
4590 Analyze_And_Resolve (Expr, Any_Real);
4592 if Etype (Expr) = Any_Type then
4593 return;
4595 elsif not Is_Static_Expression (Expr) then
4596 Flag_Non_Static_Expr
4597 ("small requires static expression!", Expr);
4598 return;
4600 else
4601 Small := Expr_Value_R (Expr);
4603 if Small <= Ureal_0 then
4604 Error_Msg_N ("small value must be greater than zero", Expr);
4605 return;
4606 end if;
4608 end if;
4610 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
4611 Error_Msg_N
4612 ("small requires an ordinary fixed point type", Nam);
4614 elsif Has_Small_Clause (U_Ent) then
4615 Error_Msg_N ("small already given for &", Nam);
4617 elsif Small > Delta_Value (U_Ent) then
4618 Error_Msg_N
4619 ("small value must not be greater than delta value", Nam);
4621 else
4622 Set_Small_Value (U_Ent, Small);
4623 Set_Small_Value (Implicit_Base, Small);
4624 Set_Has_Small_Clause (U_Ent);
4625 Set_Has_Small_Clause (Implicit_Base);
4626 Set_Has_Non_Standard_Rep (Implicit_Base);
4627 end if;
4628 end Small;
4630 ------------------
4631 -- Storage_Pool --
4632 ------------------
4634 -- Storage_Pool attribute definition clause
4636 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
4637 Pool : Entity_Id;
4638 T : Entity_Id;
4640 begin
4641 if Ekind (U_Ent) = E_Access_Subprogram_Type then
4642 Error_Msg_N
4643 ("storage pool cannot be given for access-to-subprogram type",
4644 Nam);
4645 return;
4647 elsif not
4648 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
4649 then
4650 Error_Msg_N
4651 ("storage pool can only be given for access types", Nam);
4652 return;
4654 elsif Is_Derived_Type (U_Ent) then
4655 Error_Msg_N
4656 ("storage pool cannot be given for a derived access type",
4657 Nam);
4659 elsif Duplicate_Clause then
4660 return;
4662 elsif Present (Associated_Storage_Pool (U_Ent)) then
4663 Error_Msg_N ("storage pool already given for &", Nam);
4664 return;
4665 end if;
4667 -- Check for Storage_Size previously given
4669 declare
4670 SS : constant Node_Id :=
4671 Get_Attribute_Definition_Clause
4672 (U_Ent, Attribute_Storage_Size);
4673 begin
4674 if Present (SS) then
4675 Check_Pool_Size_Clash (U_Ent, N, SS);
4676 end if;
4677 end;
4679 -- Storage_Pool case
4681 if Id = Attribute_Storage_Pool then
4682 Analyze_And_Resolve
4683 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
4685 -- In the Simple_Storage_Pool case, we allow a variable of any
4686 -- simple storage pool type, so we Resolve without imposing an
4687 -- expected type.
4689 else
4690 Analyze_And_Resolve (Expr);
4692 if not Present (Get_Rep_Pragma
4693 (Etype (Expr), Name_Simple_Storage_Pool_Type))
4694 then
4695 Error_Msg_N
4696 ("expression must be of a simple storage pool type", Expr);
4697 end if;
4698 end if;
4700 if not Denotes_Variable (Expr) then
4701 Error_Msg_N ("storage pool must be a variable", Expr);
4702 return;
4703 end if;
4705 if Nkind (Expr) = N_Type_Conversion then
4706 T := Etype (Expression (Expr));
4707 else
4708 T := Etype (Expr);
4709 end if;
4711 -- The Stack_Bounded_Pool is used internally for implementing
4712 -- access types with a Storage_Size. Since it only work properly
4713 -- when used on one specific type, we need to check that it is not
4714 -- hijacked improperly:
4716 -- type T is access Integer;
4717 -- for T'Storage_Size use n;
4718 -- type Q is access Float;
4719 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
4721 if RTE_Available (RE_Stack_Bounded_Pool)
4722 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
4723 then
4724 Error_Msg_N ("non-shareable internal Pool", Expr);
4725 return;
4726 end if;
4728 -- If the argument is a name that is not an entity name, then
4729 -- we construct a renaming operation to define an entity of
4730 -- type storage pool.
4732 if not Is_Entity_Name (Expr)
4733 and then Is_Object_Reference (Expr)
4734 then
4735 Pool := Make_Temporary (Loc, 'P', Expr);
4737 declare
4738 Rnode : constant Node_Id :=
4739 Make_Object_Renaming_Declaration (Loc,
4740 Defining_Identifier => Pool,
4741 Subtype_Mark =>
4742 New_Occurrence_Of (Etype (Expr), Loc),
4743 Name => Expr);
4745 begin
4746 -- If the attribute definition clause comes from an aspect
4747 -- clause, then insert the renaming before the associated
4748 -- entity's declaration, since the attribute clause has
4749 -- not yet been appended to the declaration list.
4751 if From_Aspect_Specification (N) then
4752 Insert_Before (Parent (Entity (N)), Rnode);
4753 else
4754 Insert_Before (N, Rnode);
4755 end if;
4757 Analyze (Rnode);
4758 Set_Associated_Storage_Pool (U_Ent, Pool);
4759 end;
4761 elsif Is_Entity_Name (Expr) then
4762 Pool := Entity (Expr);
4764 -- If pool is a renamed object, get original one. This can
4765 -- happen with an explicit renaming, and within instances.
4767 while Present (Renamed_Object (Pool))
4768 and then Is_Entity_Name (Renamed_Object (Pool))
4769 loop
4770 Pool := Entity (Renamed_Object (Pool));
4771 end loop;
4773 if Present (Renamed_Object (Pool))
4774 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
4775 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
4776 then
4777 Pool := Entity (Expression (Renamed_Object (Pool)));
4778 end if;
4780 Set_Associated_Storage_Pool (U_Ent, Pool);
4782 elsif Nkind (Expr) = N_Type_Conversion
4783 and then Is_Entity_Name (Expression (Expr))
4784 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
4785 then
4786 Pool := Entity (Expression (Expr));
4787 Set_Associated_Storage_Pool (U_Ent, Pool);
4789 else
4790 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
4791 return;
4792 end if;
4793 end;
4795 ------------------
4796 -- Storage_Size --
4797 ------------------
4799 -- Storage_Size attribute definition clause
4801 when Attribute_Storage_Size => Storage_Size : declare
4802 Btype : constant Entity_Id := Base_Type (U_Ent);
4804 begin
4805 if Is_Task_Type (U_Ent) then
4807 -- Check obsolescent (but never obsolescent if from aspect)
4809 if not From_Aspect_Specification (N) then
4810 Check_Restriction (No_Obsolescent_Features, N);
4812 if Warn_On_Obsolescent_Feature then
4813 Error_Msg_N
4814 ("?j?storage size clause for task is an " &
4815 "obsolescent feature (RM J.9)", N);
4816 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
4817 end if;
4818 end if;
4820 FOnly := True;
4821 end if;
4823 if not Is_Access_Type (U_Ent)
4824 and then Ekind (U_Ent) /= E_Task_Type
4825 then
4826 Error_Msg_N ("storage size cannot be given for &", Nam);
4828 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
4829 Error_Msg_N
4830 ("storage size cannot be given for a derived access type",
4831 Nam);
4833 elsif Duplicate_Clause then
4834 null;
4836 else
4837 Analyze_And_Resolve (Expr, Any_Integer);
4839 if Is_Access_Type (U_Ent) then
4841 -- Check for Storage_Pool previously given
4843 declare
4844 SP : constant Node_Id :=
4845 Get_Attribute_Definition_Clause
4846 (U_Ent, Attribute_Storage_Pool);
4848 begin
4849 if Present (SP) then
4850 Check_Pool_Size_Clash (U_Ent, SP, N);
4851 end if;
4852 end;
4854 -- Special case of for x'Storage_Size use 0
4856 if Is_OK_Static_Expression (Expr)
4857 and then Expr_Value (Expr) = 0
4858 then
4859 Set_No_Pool_Assigned (Btype);
4860 end if;
4861 end if;
4863 Set_Has_Storage_Size_Clause (Btype);
4864 end if;
4865 end Storage_Size;
4867 -----------------
4868 -- Stream_Size --
4869 -----------------
4871 when Attribute_Stream_Size => Stream_Size : declare
4872 Size : constant Uint := Static_Integer (Expr);
4874 begin
4875 if Ada_Version <= Ada_95 then
4876 Check_Restriction (No_Implementation_Attributes, N);
4877 end if;
4879 if Duplicate_Clause then
4880 null;
4882 elsif Is_Elementary_Type (U_Ent) then
4883 if Size /= System_Storage_Unit
4884 and then
4885 Size /= System_Storage_Unit * 2
4886 and then
4887 Size /= System_Storage_Unit * 4
4888 and then
4889 Size /= System_Storage_Unit * 8
4890 then
4891 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
4892 Error_Msg_N
4893 ("stream size for elementary type must be a"
4894 & " power of 2 and at least ^", N);
4896 elsif RM_Size (U_Ent) > Size then
4897 Error_Msg_Uint_1 := RM_Size (U_Ent);
4898 Error_Msg_N
4899 ("stream size for elementary type must be a"
4900 & " power of 2 and at least ^", N);
4901 end if;
4903 Set_Has_Stream_Size_Clause (U_Ent);
4905 else
4906 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
4907 end if;
4908 end Stream_Size;
4910 ----------------
4911 -- Value_Size --
4912 ----------------
4914 -- Value_Size attribute definition clause
4916 when Attribute_Value_Size => Value_Size : declare
4917 Size : constant Uint := Static_Integer (Expr);
4918 Biased : Boolean;
4920 begin
4921 if not Is_Type (U_Ent) then
4922 Error_Msg_N ("Value_Size cannot be given for &", Nam);
4924 elsif Duplicate_Clause then
4925 null;
4927 elsif Is_Array_Type (U_Ent)
4928 and then not Is_Constrained (U_Ent)
4929 then
4930 Error_Msg_N
4931 ("Value_Size cannot be given for unconstrained array", Nam);
4933 else
4934 if Is_Elementary_Type (U_Ent) then
4935 Check_Size (Expr, U_Ent, Size, Biased);
4936 Set_Biased (U_Ent, N, "value size clause", Biased);
4937 end if;
4939 Set_RM_Size (U_Ent, Size);
4940 end if;
4941 end Value_Size;
4943 -----------------------
4944 -- Variable_Indexing --
4945 -----------------------
4947 when Attribute_Variable_Indexing =>
4948 Check_Indexing_Functions;
4950 -----------
4951 -- Write --
4952 -----------
4954 when Attribute_Write =>
4955 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
4956 Set_Has_Specified_Stream_Write (Ent);
4958 -- All other attributes cannot be set
4960 when others =>
4961 Error_Msg_N
4962 ("attribute& cannot be set with definition clause", N);
4963 end case;
4965 -- The test for the type being frozen must be performed after any
4966 -- expression the clause has been analyzed since the expression itself
4967 -- might cause freezing that makes the clause illegal.
4969 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
4970 return;
4971 end if;
4972 end Analyze_Attribute_Definition_Clause;
4974 ----------------------------
4975 -- Analyze_Code_Statement --
4976 ----------------------------
4978 procedure Analyze_Code_Statement (N : Node_Id) is
4979 HSS : constant Node_Id := Parent (N);
4980 SBody : constant Node_Id := Parent (HSS);
4981 Subp : constant Entity_Id := Current_Scope;
4982 Stmt : Node_Id;
4983 Decl : Node_Id;
4984 StmtO : Node_Id;
4985 DeclO : Node_Id;
4987 begin
4988 -- Analyze and check we get right type, note that this implements the
4989 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
4990 -- is the only way that Asm_Insn could possibly be visible.
4992 Analyze_And_Resolve (Expression (N));
4994 if Etype (Expression (N)) = Any_Type then
4995 return;
4996 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
4997 Error_Msg_N ("incorrect type for code statement", N);
4998 return;
4999 end if;
5001 Check_Code_Statement (N);
5003 -- Make sure we appear in the handled statement sequence of a
5004 -- subprogram (RM 13.8(3)).
5006 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5007 or else Nkind (SBody) /= N_Subprogram_Body
5008 then
5009 Error_Msg_N
5010 ("code statement can only appear in body of subprogram", N);
5011 return;
5012 end if;
5014 -- Do remaining checks (RM 13.8(3)) if not already done
5016 if not Is_Machine_Code_Subprogram (Subp) then
5017 Set_Is_Machine_Code_Subprogram (Subp);
5019 -- No exception handlers allowed
5021 if Present (Exception_Handlers (HSS)) then
5022 Error_Msg_N
5023 ("exception handlers not permitted in machine code subprogram",
5024 First (Exception_Handlers (HSS)));
5025 end if;
5027 -- No declarations other than use clauses and pragmas (we allow
5028 -- certain internally generated declarations as well).
5030 Decl := First (Declarations (SBody));
5031 while Present (Decl) loop
5032 DeclO := Original_Node (Decl);
5033 if Comes_From_Source (DeclO)
5034 and not Nkind_In (DeclO, N_Pragma,
5035 N_Use_Package_Clause,
5036 N_Use_Type_Clause,
5037 N_Implicit_Label_Declaration)
5038 then
5039 Error_Msg_N
5040 ("this declaration not allowed in machine code subprogram",
5041 DeclO);
5042 end if;
5044 Next (Decl);
5045 end loop;
5047 -- No statements other than code statements, pragmas, and labels.
5048 -- Again we allow certain internally generated statements.
5050 -- In Ada 2012, qualified expressions are names, and the code
5051 -- statement is initially parsed as a procedure call.
5053 Stmt := First (Statements (HSS));
5054 while Present (Stmt) loop
5055 StmtO := Original_Node (Stmt);
5057 -- A procedure call transformed into a code statement is OK.
5059 if Ada_Version >= Ada_2012
5060 and then Nkind (StmtO) = N_Procedure_Call_Statement
5061 and then Nkind (Name (StmtO)) = N_Qualified_Expression
5062 then
5063 null;
5065 elsif Comes_From_Source (StmtO)
5066 and then not Nkind_In (StmtO, N_Pragma,
5067 N_Label,
5068 N_Code_Statement)
5069 then
5070 Error_Msg_N
5071 ("this statement is not allowed in machine code subprogram",
5072 StmtO);
5073 end if;
5075 Next (Stmt);
5076 end loop;
5077 end if;
5078 end Analyze_Code_Statement;
5080 -----------------------------------------------
5081 -- Analyze_Enumeration_Representation_Clause --
5082 -----------------------------------------------
5084 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
5085 Ident : constant Node_Id := Identifier (N);
5086 Aggr : constant Node_Id := Array_Aggregate (N);
5087 Enumtype : Entity_Id;
5088 Elit : Entity_Id;
5089 Expr : Node_Id;
5090 Assoc : Node_Id;
5091 Choice : Node_Id;
5092 Val : Uint;
5094 Err : Boolean := False;
5095 -- Set True to avoid cascade errors and crashes on incorrect source code
5097 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
5098 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
5099 -- Allowed range of universal integer (= allowed range of enum lit vals)
5101 Min : Uint;
5102 Max : Uint;
5103 -- Minimum and maximum values of entries
5105 Max_Node : Node_Id;
5106 -- Pointer to node for literal providing max value
5108 begin
5109 if Ignore_Rep_Clauses then
5110 return;
5111 end if;
5113 -- Ignore enumeration rep clauses by default in CodePeer mode,
5114 -- unless -gnatd.I is specified, as a work around for potential false
5115 -- positive messages.
5117 if CodePeer_Mode and not Debug_Flag_Dot_II then
5118 return;
5119 end if;
5121 -- First some basic error checks
5123 Find_Type (Ident);
5124 Enumtype := Entity (Ident);
5126 if Enumtype = Any_Type
5127 or else Rep_Item_Too_Early (Enumtype, N)
5128 then
5129 return;
5130 else
5131 Enumtype := Underlying_Type (Enumtype);
5132 end if;
5134 if not Is_Enumeration_Type (Enumtype) then
5135 Error_Msg_NE
5136 ("enumeration type required, found}",
5137 Ident, First_Subtype (Enumtype));
5138 return;
5139 end if;
5141 -- Ignore rep clause on generic actual type. This will already have
5142 -- been flagged on the template as an error, and this is the safest
5143 -- way to ensure we don't get a junk cascaded message in the instance.
5145 if Is_Generic_Actual_Type (Enumtype) then
5146 return;
5148 -- Type must be in current scope
5150 elsif Scope (Enumtype) /= Current_Scope then
5151 Error_Msg_N ("type must be declared in this scope", Ident);
5152 return;
5154 -- Type must be a first subtype
5156 elsif not Is_First_Subtype (Enumtype) then
5157 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
5158 return;
5160 -- Ignore duplicate rep clause
5162 elsif Has_Enumeration_Rep_Clause (Enumtype) then
5163 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
5164 return;
5166 -- Don't allow rep clause for standard [wide_[wide_]]character
5168 elsif Is_Standard_Character_Type (Enumtype) then
5169 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
5170 return;
5172 -- Check that the expression is a proper aggregate (no parentheses)
5174 elsif Paren_Count (Aggr) /= 0 then
5175 Error_Msg
5176 ("extra parentheses surrounding aggregate not allowed",
5177 First_Sloc (Aggr));
5178 return;
5180 -- All tests passed, so set rep clause in place
5182 else
5183 Set_Has_Enumeration_Rep_Clause (Enumtype);
5184 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
5185 end if;
5187 -- Now we process the aggregate. Note that we don't use the normal
5188 -- aggregate code for this purpose, because we don't want any of the
5189 -- normal expansion activities, and a number of special semantic
5190 -- rules apply (including the component type being any integer type)
5192 Elit := First_Literal (Enumtype);
5194 -- First the positional entries if any
5196 if Present (Expressions (Aggr)) then
5197 Expr := First (Expressions (Aggr));
5198 while Present (Expr) loop
5199 if No (Elit) then
5200 Error_Msg_N ("too many entries in aggregate", Expr);
5201 return;
5202 end if;
5204 Val := Static_Integer (Expr);
5206 -- Err signals that we found some incorrect entries processing
5207 -- the list. The final checks for completeness and ordering are
5208 -- skipped in this case.
5210 if Val = No_Uint then
5211 Err := True;
5212 elsif Val < Lo or else Hi < Val then
5213 Error_Msg_N ("value outside permitted range", Expr);
5214 Err := True;
5215 end if;
5217 Set_Enumeration_Rep (Elit, Val);
5218 Set_Enumeration_Rep_Expr (Elit, Expr);
5219 Next (Expr);
5220 Next (Elit);
5221 end loop;
5222 end if;
5224 -- Now process the named entries if present
5226 if Present (Component_Associations (Aggr)) then
5227 Assoc := First (Component_Associations (Aggr));
5228 while Present (Assoc) loop
5229 Choice := First (Choices (Assoc));
5231 if Present (Next (Choice)) then
5232 Error_Msg_N
5233 ("multiple choice not allowed here", Next (Choice));
5234 Err := True;
5235 end if;
5237 if Nkind (Choice) = N_Others_Choice then
5238 Error_Msg_N ("others choice not allowed here", Choice);
5239 Err := True;
5241 elsif Nkind (Choice) = N_Range then
5243 -- ??? should allow zero/one element range here
5245 Error_Msg_N ("range not allowed here", Choice);
5246 Err := True;
5248 else
5249 Analyze_And_Resolve (Choice, Enumtype);
5251 if Error_Posted (Choice) then
5252 Err := True;
5253 end if;
5255 if not Err then
5256 if Is_Entity_Name (Choice)
5257 and then Is_Type (Entity (Choice))
5258 then
5259 Error_Msg_N ("subtype name not allowed here", Choice);
5260 Err := True;
5262 -- ??? should allow static subtype with zero/one entry
5264 elsif Etype (Choice) = Base_Type (Enumtype) then
5265 if not Is_Static_Expression (Choice) then
5266 Flag_Non_Static_Expr
5267 ("non-static expression used for choice!", Choice);
5268 Err := True;
5270 else
5271 Elit := Expr_Value_E (Choice);
5273 if Present (Enumeration_Rep_Expr (Elit)) then
5274 Error_Msg_Sloc :=
5275 Sloc (Enumeration_Rep_Expr (Elit));
5276 Error_Msg_NE
5277 ("representation for& previously given#",
5278 Choice, Elit);
5279 Err := True;
5280 end if;
5282 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
5284 Expr := Expression (Assoc);
5285 Val := Static_Integer (Expr);
5287 if Val = No_Uint then
5288 Err := True;
5290 elsif Val < Lo or else Hi < Val then
5291 Error_Msg_N ("value outside permitted range", Expr);
5292 Err := True;
5293 end if;
5295 Set_Enumeration_Rep (Elit, Val);
5296 end if;
5297 end if;
5298 end if;
5299 end if;
5301 Next (Assoc);
5302 end loop;
5303 end if;
5305 -- Aggregate is fully processed. Now we check that a full set of
5306 -- representations was given, and that they are in range and in order.
5307 -- These checks are only done if no other errors occurred.
5309 if not Err then
5310 Min := No_Uint;
5311 Max := No_Uint;
5313 Elit := First_Literal (Enumtype);
5314 while Present (Elit) loop
5315 if No (Enumeration_Rep_Expr (Elit)) then
5316 Error_Msg_NE ("missing representation for&!", N, Elit);
5318 else
5319 Val := Enumeration_Rep (Elit);
5321 if Min = No_Uint then
5322 Min := Val;
5323 end if;
5325 if Val /= No_Uint then
5326 if Max /= No_Uint and then Val <= Max then
5327 Error_Msg_NE
5328 ("enumeration value for& not ordered!",
5329 Enumeration_Rep_Expr (Elit), Elit);
5330 end if;
5332 Max_Node := Enumeration_Rep_Expr (Elit);
5333 Max := Val;
5334 end if;
5336 -- If there is at least one literal whose representation is not
5337 -- equal to the Pos value, then note that this enumeration type
5338 -- has a non-standard representation.
5340 if Val /= Enumeration_Pos (Elit) then
5341 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
5342 end if;
5343 end if;
5345 Next (Elit);
5346 end loop;
5348 -- Now set proper size information
5350 declare
5351 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
5353 begin
5354 if Has_Size_Clause (Enumtype) then
5356 -- All OK, if size is OK now
5358 if RM_Size (Enumtype) >= Minsize then
5359 null;
5361 else
5362 -- Try if we can get by with biasing
5364 Minsize :=
5365 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
5367 -- Error message if even biasing does not work
5369 if RM_Size (Enumtype) < Minsize then
5370 Error_Msg_Uint_1 := RM_Size (Enumtype);
5371 Error_Msg_Uint_2 := Max;
5372 Error_Msg_N
5373 ("previously given size (^) is too small "
5374 & "for this value (^)", Max_Node);
5376 -- If biasing worked, indicate that we now have biased rep
5378 else
5379 Set_Biased
5380 (Enumtype, Size_Clause (Enumtype), "size clause");
5381 end if;
5382 end if;
5384 else
5385 Set_RM_Size (Enumtype, Minsize);
5386 Set_Enum_Esize (Enumtype);
5387 end if;
5389 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
5390 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
5391 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
5392 end;
5393 end if;
5395 -- We repeat the too late test in case it froze itself
5397 if Rep_Item_Too_Late (Enumtype, N) then
5398 null;
5399 end if;
5400 end Analyze_Enumeration_Representation_Clause;
5402 ----------------------------
5403 -- Analyze_Free_Statement --
5404 ----------------------------
5406 procedure Analyze_Free_Statement (N : Node_Id) is
5407 begin
5408 Analyze (Expression (N));
5409 end Analyze_Free_Statement;
5411 ---------------------------
5412 -- Analyze_Freeze_Entity --
5413 ---------------------------
5415 procedure Analyze_Freeze_Entity (N : Node_Id) is
5416 begin
5417 Freeze_Entity_Checks (N);
5418 end Analyze_Freeze_Entity;
5420 -----------------------------------
5421 -- Analyze_Freeze_Generic_Entity --
5422 -----------------------------------
5424 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
5425 begin
5426 Freeze_Entity_Checks (N);
5427 end Analyze_Freeze_Generic_Entity;
5429 ------------------------------------------
5430 -- Analyze_Record_Representation_Clause --
5431 ------------------------------------------
5433 -- Note: we check as much as we can here, but we can't do any checks
5434 -- based on the position values (e.g. overlap checks) until freeze time
5435 -- because especially in Ada 2005 (machine scalar mode), the processing
5436 -- for non-standard bit order can substantially change the positions.
5437 -- See procedure Check_Record_Representation_Clause (called from Freeze)
5438 -- for the remainder of this processing.
5440 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
5441 Ident : constant Node_Id := Identifier (N);
5442 Biased : Boolean;
5443 CC : Node_Id;
5444 Comp : Entity_Id;
5445 Fbit : Uint;
5446 Hbit : Uint := Uint_0;
5447 Lbit : Uint;
5448 Ocomp : Entity_Id;
5449 Posit : Uint;
5450 Rectype : Entity_Id;
5451 Recdef : Node_Id;
5453 function Is_Inherited (Comp : Entity_Id) return Boolean;
5454 -- True if Comp is an inherited component in a record extension
5456 ------------------
5457 -- Is_Inherited --
5458 ------------------
5460 function Is_Inherited (Comp : Entity_Id) return Boolean is
5461 Comp_Base : Entity_Id;
5463 begin
5464 if Ekind (Rectype) = E_Record_Subtype then
5465 Comp_Base := Original_Record_Component (Comp);
5466 else
5467 Comp_Base := Comp;
5468 end if;
5470 return Comp_Base /= Original_Record_Component (Comp_Base);
5471 end Is_Inherited;
5473 -- Local variables
5475 Is_Record_Extension : Boolean;
5476 -- True if Rectype is a record extension
5478 CR_Pragma : Node_Id := Empty;
5479 -- Points to N_Pragma node if Complete_Representation pragma present
5481 -- Start of processing for Analyze_Record_Representation_Clause
5483 begin
5484 if Ignore_Rep_Clauses then
5485 return;
5486 end if;
5488 Find_Type (Ident);
5489 Rectype := Entity (Ident);
5491 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
5492 return;
5493 else
5494 Rectype := Underlying_Type (Rectype);
5495 end if;
5497 -- First some basic error checks
5499 if not Is_Record_Type (Rectype) then
5500 Error_Msg_NE
5501 ("record type required, found}", Ident, First_Subtype (Rectype));
5502 return;
5504 elsif Scope (Rectype) /= Current_Scope then
5505 Error_Msg_N ("type must be declared in this scope", N);
5506 return;
5508 elsif not Is_First_Subtype (Rectype) then
5509 Error_Msg_N ("cannot give record rep clause for subtype", N);
5510 return;
5512 elsif Has_Record_Rep_Clause (Rectype) then
5513 Error_Msg_N ("duplicate record rep clause ignored", N);
5514 return;
5516 elsif Rep_Item_Too_Late (Rectype, N) then
5517 return;
5518 end if;
5520 -- We know we have a first subtype, now possibly go the the anonymous
5521 -- base type to determine whether Rectype is a record extension.
5523 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
5524 Is_Record_Extension :=
5525 Nkind (Recdef) = N_Derived_Type_Definition
5526 and then Present (Record_Extension_Part (Recdef));
5528 if Present (Mod_Clause (N)) then
5529 declare
5530 Loc : constant Source_Ptr := Sloc (N);
5531 M : constant Node_Id := Mod_Clause (N);
5532 P : constant List_Id := Pragmas_Before (M);
5533 AtM_Nod : Node_Id;
5535 Mod_Val : Uint;
5536 pragma Warnings (Off, Mod_Val);
5538 begin
5539 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
5541 if Warn_On_Obsolescent_Feature then
5542 Error_Msg_N
5543 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
5544 Error_Msg_N
5545 ("\?j?use alignment attribute definition clause instead", N);
5546 end if;
5548 if Present (P) then
5549 Analyze_List (P);
5550 end if;
5552 -- In ASIS_Mode mode, expansion is disabled, but we must convert
5553 -- the Mod clause into an alignment clause anyway, so that the
5554 -- back-end can compute and back-annotate properly the size and
5555 -- alignment of types that may include this record.
5557 -- This seems dubious, this destroys the source tree in a manner
5558 -- not detectable by ASIS ???
5560 if Operating_Mode = Check_Semantics and then ASIS_Mode then
5561 AtM_Nod :=
5562 Make_Attribute_Definition_Clause (Loc,
5563 Name => New_Reference_To (Base_Type (Rectype), Loc),
5564 Chars => Name_Alignment,
5565 Expression => Relocate_Node (Expression (M)));
5567 Set_From_At_Mod (AtM_Nod);
5568 Insert_After (N, AtM_Nod);
5569 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
5570 Set_Mod_Clause (N, Empty);
5572 else
5573 -- Get the alignment value to perform error checking
5575 Mod_Val := Get_Alignment_Value (Expression (M));
5576 end if;
5577 end;
5578 end if;
5580 -- For untagged types, clear any existing component clauses for the
5581 -- type. If the type is derived, this is what allows us to override
5582 -- a rep clause for the parent. For type extensions, the representation
5583 -- of the inherited components is inherited, so we want to keep previous
5584 -- component clauses for completeness.
5586 if not Is_Tagged_Type (Rectype) then
5587 Comp := First_Component_Or_Discriminant (Rectype);
5588 while Present (Comp) loop
5589 Set_Component_Clause (Comp, Empty);
5590 Next_Component_Or_Discriminant (Comp);
5591 end loop;
5592 end if;
5594 -- All done if no component clauses
5596 CC := First (Component_Clauses (N));
5598 if No (CC) then
5599 return;
5600 end if;
5602 -- A representation like this applies to the base type
5604 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
5605 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
5606 Set_Has_Specified_Layout (Base_Type (Rectype));
5608 -- Process the component clauses
5610 while Present (CC) loop
5612 -- Pragma
5614 if Nkind (CC) = N_Pragma then
5615 Analyze (CC);
5617 -- The only pragma of interest is Complete_Representation
5619 if Pragma_Name (CC) = Name_Complete_Representation then
5620 CR_Pragma := CC;
5621 end if;
5623 -- Processing for real component clause
5625 else
5626 Posit := Static_Integer (Position (CC));
5627 Fbit := Static_Integer (First_Bit (CC));
5628 Lbit := Static_Integer (Last_Bit (CC));
5630 if Posit /= No_Uint
5631 and then Fbit /= No_Uint
5632 and then Lbit /= No_Uint
5633 then
5634 if Posit < 0 then
5635 Error_Msg_N
5636 ("position cannot be negative", Position (CC));
5638 elsif Fbit < 0 then
5639 Error_Msg_N
5640 ("first bit cannot be negative", First_Bit (CC));
5642 -- The Last_Bit specified in a component clause must not be
5643 -- less than the First_Bit minus one (RM-13.5.1(10)).
5645 elsif Lbit < Fbit - 1 then
5646 Error_Msg_N
5647 ("last bit cannot be less than first bit minus one",
5648 Last_Bit (CC));
5650 -- Values look OK, so find the corresponding record component
5651 -- Even though the syntax allows an attribute reference for
5652 -- implementation-defined components, GNAT does not allow the
5653 -- tag to get an explicit position.
5655 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
5656 if Attribute_Name (Component_Name (CC)) = Name_Tag then
5657 Error_Msg_N ("position of tag cannot be specified", CC);
5658 else
5659 Error_Msg_N ("illegal component name", CC);
5660 end if;
5662 else
5663 Comp := First_Entity (Rectype);
5664 while Present (Comp) loop
5665 exit when Chars (Comp) = Chars (Component_Name (CC));
5666 Next_Entity (Comp);
5667 end loop;
5669 if No (Comp) then
5671 -- Maybe component of base type that is absent from
5672 -- statically constrained first subtype.
5674 Comp := First_Entity (Base_Type (Rectype));
5675 while Present (Comp) loop
5676 exit when Chars (Comp) = Chars (Component_Name (CC));
5677 Next_Entity (Comp);
5678 end loop;
5679 end if;
5681 if No (Comp) then
5682 Error_Msg_N
5683 ("component clause is for non-existent field", CC);
5685 -- Ada 2012 (AI05-0026): Any name that denotes a
5686 -- discriminant of an object of an unchecked union type
5687 -- shall not occur within a record_representation_clause.
5689 -- The general restriction of using record rep clauses on
5690 -- Unchecked_Union types has now been lifted. Since it is
5691 -- possible to introduce a record rep clause which mentions
5692 -- the discriminant of an Unchecked_Union in non-Ada 2012
5693 -- code, this check is applied to all versions of the
5694 -- language.
5696 elsif Ekind (Comp) = E_Discriminant
5697 and then Is_Unchecked_Union (Rectype)
5698 then
5699 Error_Msg_N
5700 ("cannot reference discriminant of unchecked union",
5701 Component_Name (CC));
5703 elsif Is_Record_Extension and then Is_Inherited (Comp) then
5704 Error_Msg_NE
5705 ("component clause not allowed for inherited "
5706 & "component&", CC, Comp);
5708 elsif Present (Component_Clause (Comp)) then
5710 -- Diagnose duplicate rep clause, or check consistency
5711 -- if this is an inherited component. In a double fault,
5712 -- there may be a duplicate inconsistent clause for an
5713 -- inherited component.
5715 if Scope (Original_Record_Component (Comp)) = Rectype
5716 or else Parent (Component_Clause (Comp)) = N
5717 then
5718 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
5719 Error_Msg_N ("component clause previously given#", CC);
5721 else
5722 declare
5723 Rep1 : constant Node_Id := Component_Clause (Comp);
5724 begin
5725 if Intval (Position (Rep1)) /=
5726 Intval (Position (CC))
5727 or else Intval (First_Bit (Rep1)) /=
5728 Intval (First_Bit (CC))
5729 or else Intval (Last_Bit (Rep1)) /=
5730 Intval (Last_Bit (CC))
5731 then
5732 Error_Msg_N
5733 ("component clause inconsistent "
5734 & "with representation of ancestor", CC);
5736 elsif Warn_On_Redundant_Constructs then
5737 Error_Msg_N
5738 ("?r?redundant confirming component clause "
5739 & "for component!", CC);
5740 end if;
5741 end;
5742 end if;
5744 -- Normal case where this is the first component clause we
5745 -- have seen for this entity, so set it up properly.
5747 else
5748 -- Make reference for field in record rep clause and set
5749 -- appropriate entity field in the field identifier.
5751 Generate_Reference
5752 (Comp, Component_Name (CC), Set_Ref => False);
5753 Set_Entity (Component_Name (CC), Comp);
5755 -- Update Fbit and Lbit to the actual bit number
5757 Fbit := Fbit + UI_From_Int (SSU) * Posit;
5758 Lbit := Lbit + UI_From_Int (SSU) * Posit;
5760 if Has_Size_Clause (Rectype)
5761 and then RM_Size (Rectype) <= Lbit
5762 then
5763 Error_Msg_N
5764 ("bit number out of range of specified size",
5765 Last_Bit (CC));
5766 else
5767 Set_Component_Clause (Comp, CC);
5768 Set_Component_Bit_Offset (Comp, Fbit);
5769 Set_Esize (Comp, 1 + (Lbit - Fbit));
5770 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
5771 Set_Normalized_Position (Comp, Fbit / SSU);
5773 if Warn_On_Overridden_Size
5774 and then Has_Size_Clause (Etype (Comp))
5775 and then RM_Size (Etype (Comp)) /= Esize (Comp)
5776 then
5777 Error_Msg_NE
5778 ("?S?component size overrides size clause for&",
5779 Component_Name (CC), Etype (Comp));
5780 end if;
5782 -- This information is also set in the corresponding
5783 -- component of the base type, found by accessing the
5784 -- Original_Record_Component link if it is present.
5786 Ocomp := Original_Record_Component (Comp);
5788 if Hbit < Lbit then
5789 Hbit := Lbit;
5790 end if;
5792 Check_Size
5793 (Component_Name (CC),
5794 Etype (Comp),
5795 Esize (Comp),
5796 Biased);
5798 Set_Biased
5799 (Comp, First_Node (CC), "component clause", Biased);
5801 if Present (Ocomp) then
5802 Set_Component_Clause (Ocomp, CC);
5803 Set_Component_Bit_Offset (Ocomp, Fbit);
5804 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
5805 Set_Normalized_Position (Ocomp, Fbit / SSU);
5806 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
5808 Set_Normalized_Position_Max
5809 (Ocomp, Normalized_Position (Ocomp));
5811 -- Note: we don't use Set_Biased here, because we
5812 -- already gave a warning above if needed, and we
5813 -- would get a duplicate for the same name here.
5815 Set_Has_Biased_Representation
5816 (Ocomp, Has_Biased_Representation (Comp));
5817 end if;
5819 if Esize (Comp) < 0 then
5820 Error_Msg_N ("component size is negative", CC);
5821 end if;
5822 end if;
5823 end if;
5824 end if;
5825 end if;
5826 end if;
5828 Next (CC);
5829 end loop;
5831 -- Check missing components if Complete_Representation pragma appeared
5833 if Present (CR_Pragma) then
5834 Comp := First_Component_Or_Discriminant (Rectype);
5835 while Present (Comp) loop
5836 if No (Component_Clause (Comp)) then
5837 Error_Msg_NE
5838 ("missing component clause for &", CR_Pragma, Comp);
5839 end if;
5841 Next_Component_Or_Discriminant (Comp);
5842 end loop;
5844 -- Give missing components warning if required
5846 elsif Warn_On_Unrepped_Components then
5847 declare
5848 Num_Repped_Components : Nat := 0;
5849 Num_Unrepped_Components : Nat := 0;
5851 begin
5852 -- First count number of repped and unrepped components
5854 Comp := First_Component_Or_Discriminant (Rectype);
5855 while Present (Comp) loop
5856 if Present (Component_Clause (Comp)) then
5857 Num_Repped_Components := Num_Repped_Components + 1;
5858 else
5859 Num_Unrepped_Components := Num_Unrepped_Components + 1;
5860 end if;
5862 Next_Component_Or_Discriminant (Comp);
5863 end loop;
5865 -- We are only interested in the case where there is at least one
5866 -- unrepped component, and at least half the components have rep
5867 -- clauses. We figure that if less than half have them, then the
5868 -- partial rep clause is really intentional. If the component
5869 -- type has no underlying type set at this point (as for a generic
5870 -- formal type), we don't know enough to give a warning on the
5871 -- component.
5873 if Num_Unrepped_Components > 0
5874 and then Num_Unrepped_Components < Num_Repped_Components
5875 then
5876 Comp := First_Component_Or_Discriminant (Rectype);
5877 while Present (Comp) loop
5878 if No (Component_Clause (Comp))
5879 and then Comes_From_Source (Comp)
5880 and then Present (Underlying_Type (Etype (Comp)))
5881 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
5882 or else Size_Known_At_Compile_Time
5883 (Underlying_Type (Etype (Comp))))
5884 and then not Has_Warnings_Off (Rectype)
5885 then
5886 Error_Msg_Sloc := Sloc (Comp);
5887 Error_Msg_NE
5888 ("?C?no component clause given for & declared #",
5889 N, Comp);
5890 end if;
5892 Next_Component_Or_Discriminant (Comp);
5893 end loop;
5894 end if;
5895 end;
5896 end if;
5897 end Analyze_Record_Representation_Clause;
5899 -------------------------------------------
5900 -- Build_Invariant_Procedure_Declaration --
5901 -------------------------------------------
5903 function Build_Invariant_Procedure_Declaration
5904 (Typ : Entity_Id) return Node_Id
5906 Loc : constant Source_Ptr := Sloc (Typ);
5907 Object_Entity : constant Entity_Id :=
5908 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
5909 Spec : Node_Id;
5910 SId : Entity_Id;
5912 begin
5913 Set_Etype (Object_Entity, Typ);
5915 -- Check for duplicate definiations.
5917 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
5918 return Empty;
5919 end if;
5921 SId :=
5922 Make_Defining_Identifier (Loc,
5923 Chars => New_External_Name (Chars (Typ), "Invariant"));
5924 Set_Has_Invariants (Typ);
5925 Set_Ekind (SId, E_Procedure);
5926 Set_Is_Invariant_Procedure (SId);
5927 Set_Invariant_Procedure (Typ, SId);
5929 Spec :=
5930 Make_Procedure_Specification (Loc,
5931 Defining_Unit_Name => SId,
5932 Parameter_Specifications => New_List (
5933 Make_Parameter_Specification (Loc,
5934 Defining_Identifier => Object_Entity,
5935 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
5937 return Make_Subprogram_Declaration (Loc, Specification => Spec);
5938 end Build_Invariant_Procedure_Declaration;
5940 -------------------------------
5941 -- Build_Invariant_Procedure --
5942 -------------------------------
5944 -- The procedure that is constructed here has the form
5946 -- procedure typInvariant (Ixxx : typ) is
5947 -- begin
5948 -- pragma Check (Invariant, exp, "failed invariant from xxx");
5949 -- pragma Check (Invariant, exp, "failed invariant from xxx");
5950 -- ...
5951 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
5952 -- ...
5953 -- end typInvariant;
5955 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
5956 Loc : constant Source_Ptr := Sloc (Typ);
5957 Stmts : List_Id;
5958 Spec : Node_Id;
5959 SId : Entity_Id;
5960 PDecl : Node_Id;
5961 PBody : Node_Id;
5963 Visible_Decls : constant List_Id := Visible_Declarations (N);
5964 Private_Decls : constant List_Id := Private_Declarations (N);
5966 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
5967 -- Appends statements to Stmts for any invariants in the rep item chain
5968 -- of the given type. If Inherit is False, then we only process entries
5969 -- on the chain for the type Typ. If Inherit is True, then we ignore any
5970 -- Invariant aspects, but we process all Invariant'Class aspects, adding
5971 -- "inherited" to the exception message and generating an informational
5972 -- message about the inheritance of an invariant.
5974 Object_Name : Name_Id;
5975 -- Name for argument of invariant procedure
5977 Object_Entity : Node_Id;
5978 -- The entity of the formal for the procedure
5980 --------------------
5981 -- Add_Invariants --
5982 --------------------
5984 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
5985 Ritem : Node_Id;
5986 Arg1 : Node_Id;
5987 Arg2 : Node_Id;
5988 Arg3 : Node_Id;
5989 Exp : Node_Id;
5990 Loc : Source_Ptr;
5991 Assoc : List_Id;
5992 Str : String_Id;
5994 procedure Replace_Type_Reference (N : Node_Id);
5995 -- Replace a single occurrence N of the subtype name with a reference
5996 -- to the formal of the predicate function. N can be an identifier
5997 -- referencing the subtype, or a selected component, representing an
5998 -- appropriately qualified occurrence of the subtype name.
6000 procedure Replace_Type_References is
6001 new Replace_Type_References_Generic (Replace_Type_Reference);
6002 -- Traverse an expression replacing all occurrences of the subtype
6003 -- name with appropriate references to the object that is the formal
6004 -- parameter of the predicate function. Note that we must ensure
6005 -- that the type and entity information is properly set in the
6006 -- replacement node, since we will do a Preanalyze call of this
6007 -- expression without proper visibility of the procedure argument.
6009 ----------------------------
6010 -- Replace_Type_Reference --
6011 ----------------------------
6013 -- Note: See comments in Add_Predicates.Replace_Type_Reference
6014 -- regarding handling of Sloc and Comes_From_Source.
6016 procedure Replace_Type_Reference (N : Node_Id) is
6017 begin
6019 -- Add semantic information to node to be rewritten, for ASIS
6020 -- navigation needs.
6022 if Nkind (N) = N_Identifier then
6023 Set_Entity (N, T);
6024 Set_Etype (N, T);
6026 elsif Nkind (N) = N_Selected_Component then
6027 Analyze (Prefix (N));
6028 Set_Entity (Selector_Name (N), T);
6029 Set_Etype (Selector_Name (N), T);
6030 end if;
6032 -- Invariant'Class, replace with T'Class (obj)
6034 if Class_Present (Ritem) then
6035 Rewrite (N,
6036 Make_Type_Conversion (Sloc (N),
6037 Subtype_Mark =>
6038 Make_Attribute_Reference (Sloc (N),
6039 Prefix => New_Occurrence_Of (T, Sloc (N)),
6040 Attribute_Name => Name_Class),
6041 Expression => Make_Identifier (Sloc (N), Object_Name)));
6043 Set_Entity (Expression (N), Object_Entity);
6044 Set_Etype (Expression (N), Typ);
6046 -- Invariant, replace with obj
6048 else
6049 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
6050 Set_Entity (N, Object_Entity);
6051 Set_Etype (N, Typ);
6052 end if;
6054 Set_Comes_From_Source (N, True);
6055 end Replace_Type_Reference;
6057 -- Start of processing for Add_Invariants
6059 begin
6060 Ritem := First_Rep_Item (T);
6061 while Present (Ritem) loop
6062 if Nkind (Ritem) = N_Pragma
6063 and then Pragma_Name (Ritem) = Name_Invariant
6064 then
6065 Arg1 := First (Pragma_Argument_Associations (Ritem));
6066 Arg2 := Next (Arg1);
6067 Arg3 := Next (Arg2);
6069 Arg1 := Get_Pragma_Arg (Arg1);
6070 Arg2 := Get_Pragma_Arg (Arg2);
6072 -- For Inherit case, ignore Invariant, process only Class case
6074 if Inherit then
6075 if not Class_Present (Ritem) then
6076 goto Continue;
6077 end if;
6079 -- For Inherit false, process only item for right type
6081 else
6082 if Entity (Arg1) /= Typ then
6083 goto Continue;
6084 end if;
6085 end if;
6087 if No (Stmts) then
6088 Stmts := Empty_List;
6089 end if;
6091 Exp := New_Copy_Tree (Arg2);
6093 -- Preserve sloc of original pragma Invariant
6095 Loc := Sloc (Ritem);
6097 -- We need to replace any occurrences of the name of the type
6098 -- with references to the object, converted to type'Class in
6099 -- the case of Invariant'Class aspects.
6101 Replace_Type_References (Exp, Chars (T));
6103 -- If this invariant comes from an aspect, find the aspect
6104 -- specification, and replace the saved expression because
6105 -- we need the subtype references replaced for the calls to
6106 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
6107 -- and Check_Aspect_At_End_Of_Declarations.
6109 if From_Aspect_Specification (Ritem) then
6110 declare
6111 Aitem : Node_Id;
6113 begin
6114 -- Loop to find corresponding aspect, note that this
6115 -- must be present given the pragma is marked delayed.
6117 Aitem := Next_Rep_Item (Ritem);
6118 while Present (Aitem) loop
6119 if Nkind (Aitem) = N_Aspect_Specification
6120 and then Aspect_Rep_Item (Aitem) = Ritem
6121 then
6122 Set_Entity
6123 (Identifier (Aitem), New_Copy_Tree (Exp));
6124 exit;
6125 end if;
6127 Aitem := Next_Rep_Item (Aitem);
6128 end loop;
6129 end;
6130 end if;
6132 -- Now we need to preanalyze the expression to properly capture
6133 -- the visibility in the visible part. The expression will not
6134 -- be analyzed for real until the body is analyzed, but that is
6135 -- at the end of the private part and has the wrong visibility.
6137 Set_Parent (Exp, N);
6138 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
6140 -- In ASIS mode, even if assertions are not enabled, we must
6141 -- analyze the original expression in the aspect specification
6142 -- because it is part of the original tree.
6144 if ASIS_Mode then
6145 declare
6146 Inv : constant Node_Id :=
6147 Expression (Corresponding_Aspect (Ritem));
6148 begin
6149 Replace_Type_References (Inv, Chars (T));
6150 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
6151 end;
6152 end if;
6154 -- Build first two arguments for Check pragma
6156 Assoc := New_List (
6157 Make_Pragma_Argument_Association (Loc,
6158 Expression => Make_Identifier (Loc, Name_Invariant)),
6159 Make_Pragma_Argument_Association (Loc,
6160 Expression => Exp));
6162 -- Add message if present in Invariant pragma
6164 if Present (Arg3) then
6165 Str := Strval (Get_Pragma_Arg (Arg3));
6167 -- If inherited case, and message starts "failed invariant",
6168 -- change it to be "failed inherited invariant".
6170 if Inherit then
6171 String_To_Name_Buffer (Str);
6173 if Name_Buffer (1 .. 16) = "failed invariant" then
6174 Insert_Str_In_Name_Buffer ("inherited ", 8);
6175 Str := String_From_Name_Buffer;
6176 end if;
6177 end if;
6179 Append_To (Assoc,
6180 Make_Pragma_Argument_Association (Loc,
6181 Expression => Make_String_Literal (Loc, Str)));
6182 end if;
6184 -- Add Check pragma to list of statements
6186 Append_To (Stmts,
6187 Make_Pragma (Loc,
6188 Pragma_Identifier =>
6189 Make_Identifier (Loc, Name_Check),
6190 Pragma_Argument_Associations => Assoc));
6192 -- If Inherited case and option enabled, output info msg. Note
6193 -- that we know this is a case of Invariant'Class.
6195 if Inherit and Opt.List_Inherited_Aspects then
6196 Error_Msg_Sloc := Sloc (Ritem);
6197 Error_Msg_N
6198 ("?L?info: & inherits `Invariant''Class` aspect from #",
6199 Typ);
6200 end if;
6201 end if;
6203 <<Continue>>
6204 Next_Rep_Item (Ritem);
6205 end loop;
6206 end Add_Invariants;
6208 -- Start of processing for Build_Invariant_Procedure
6210 begin
6211 Stmts := No_List;
6212 PDecl := Empty;
6213 PBody := Empty;
6214 SId := Empty;
6216 -- If the aspect specification exists for some view of the type, the
6217 -- declaration for the procedure has been created.
6219 if Has_Invariants (Typ) then
6220 SId := Invariant_Procedure (Typ);
6221 end if;
6223 if Present (SId) then
6224 PDecl := Unit_Declaration_Node (SId);
6225 else
6226 PDecl := Build_Invariant_Procedure_Declaration (Typ);
6227 end if;
6229 -- Recover formal of procedure, for use in the calls to invariant
6230 -- functions (including inherited ones).
6232 Object_Entity :=
6233 Defining_Identifier
6234 (First (Parameter_Specifications (Specification (PDecl))));
6235 Object_Name := Chars (Object_Entity);
6237 -- Add invariants for the current type
6239 Add_Invariants (Typ, Inherit => False);
6241 -- Add invariants for parent types
6243 declare
6244 Current_Typ : Entity_Id;
6245 Parent_Typ : Entity_Id;
6247 begin
6248 Current_Typ := Typ;
6249 loop
6250 Parent_Typ := Etype (Current_Typ);
6252 if Is_Private_Type (Parent_Typ)
6253 and then Present (Full_View (Base_Type (Parent_Typ)))
6254 then
6255 Parent_Typ := Full_View (Base_Type (Parent_Typ));
6256 end if;
6258 exit when Parent_Typ = Current_Typ;
6260 Current_Typ := Parent_Typ;
6261 Add_Invariants (Current_Typ, Inherit => True);
6262 end loop;
6263 end;
6265 -- Build the procedure if we generated at least one Check pragma
6267 if Stmts /= No_List then
6268 Spec := Copy_Separate_Tree (Specification (PDecl));
6270 PBody :=
6271 Make_Subprogram_Body (Loc,
6272 Specification => Spec,
6273 Declarations => Empty_List,
6274 Handled_Statement_Sequence =>
6275 Make_Handled_Sequence_Of_Statements (Loc,
6276 Statements => Stmts));
6278 -- Insert procedure declaration and spec at the appropriate points.
6279 -- If declaration is already analyzed, it was processed by the
6280 -- generated pragma.
6282 if Present (Private_Decls) then
6284 -- The spec goes at the end of visible declarations, but they have
6285 -- already been analyzed, so we need to explicitly do the analyze.
6287 if not Analyzed (PDecl) then
6288 Append_To (Visible_Decls, PDecl);
6289 Analyze (PDecl);
6290 end if;
6292 -- The body goes at the end of the private declarations, which we
6293 -- have not analyzed yet, so we do not need to perform an explicit
6294 -- analyze call. We skip this if there are no private declarations
6295 -- (this is an error that will be caught elsewhere);
6297 Append_To (Private_Decls, PBody);
6299 -- If the invariant appears on the full view of a type, the
6300 -- analysis of the private part is complete, and we must
6301 -- analyze the new body explicitly.
6303 if In_Private_Part (Current_Scope) then
6304 Analyze (PBody);
6305 end if;
6307 -- If there are no private declarations this may be an error that
6308 -- will be diagnosed elsewhere. However, if this is a non-private
6309 -- type that inherits invariants, it needs no completion and there
6310 -- may be no private part. In this case insert invariant procedure
6311 -- at end of current declarative list, and analyze at once, given
6312 -- that the type is about to be frozen.
6314 elsif not Is_Private_Type (Typ) then
6315 Append_To (Visible_Decls, PDecl);
6316 Append_To (Visible_Decls, PBody);
6317 Analyze (PDecl);
6318 Analyze (PBody);
6319 end if;
6320 end if;
6321 end Build_Invariant_Procedure;
6323 -------------------------------
6324 -- Build_Predicate_Functions --
6325 -------------------------------
6327 -- The procedures that are constructed here have the form:
6329 -- function typPredicate (Ixxx : typ) return Boolean is
6330 -- begin
6331 -- return
6332 -- exp1 and then exp2 and then ...
6333 -- and then typ1Predicate (typ1 (Ixxx))
6334 -- and then typ2Predicate (typ2 (Ixxx))
6335 -- and then ...;
6336 -- end typPredicate;
6338 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
6339 -- this is the point at which these expressions get analyzed, providing the
6340 -- required delay, and typ1, typ2, are entities from which predicates are
6341 -- inherited. Note that we do NOT generate Check pragmas, that's because we
6342 -- use this function even if checks are off, e.g. for membership tests.
6344 -- If the expression has at least one Raise_Expression, then we also build
6345 -- the typPredicateM version of the function, in which any occurrence of a
6346 -- Raise_Expression is converted to "return False".
6348 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
6349 Loc : constant Source_Ptr := Sloc (Typ);
6351 Expr : Node_Id;
6352 -- This is the expression for the result of the function. It is
6353 -- is build by connecting the component predicates with AND THEN.
6355 Expr_M : Node_Id;
6356 -- This is the corresponding return expression for the Predicate_M
6357 -- function. It differs in that raise expressions are marked for
6358 -- special expansion (see Process_REs).
6360 Object_Name : constant Name_Id := New_Internal_Name ('I');
6361 -- Name for argument of Predicate procedure. Note that we use the same
6362 -- name for both predicate procedure. That way the reference within the
6363 -- predicate expression is the same in both functions.
6365 Object_Entity : constant Entity_Id :=
6366 Make_Defining_Identifier (Loc, Chars => Object_Name);
6367 -- Entity for argument of Predicate procedure
6369 Object_Entity_M : constant Entity_Id :=
6370 Make_Defining_Identifier (Loc, Chars => Object_Name);
6371 -- Entity for argument of Predicate_M procedure
6373 Raise_Expression_Present : Boolean := False;
6374 -- Set True if Expr has at least one Raise_Expression
6376 Static_Predic : Node_Id := Empty;
6377 -- Set to N_Pragma node for a static predicate if one is encountered
6379 procedure Add_Call (T : Entity_Id);
6380 -- Includes a call to the predicate function for type T in Expr if T
6381 -- has predicates and Predicate_Function (T) is non-empty.
6383 procedure Add_Predicates;
6384 -- Appends expressions for any Predicate pragmas in the rep item chain
6385 -- Typ to Expr. Note that we look only at items for this exact entity.
6386 -- Inheritance of predicates for the parent type is done by calling the
6387 -- Predicate_Function of the parent type, using Add_Call above.
6389 function Test_RE (N : Node_Id) return Traverse_Result;
6390 -- Used in Test_REs, tests one node for being a raise expression, and if
6391 -- so sets Raise_Expression_Present True.
6393 procedure Test_REs is new Traverse_Proc (Test_RE);
6394 -- Tests to see if Expr contains any raise expressions
6396 function Process_RE (N : Node_Id) return Traverse_Result;
6397 -- Used in Process REs, tests if node N is a raise expression, and if
6398 -- so, marks it to be converted to return False.
6400 procedure Process_REs is new Traverse_Proc (Process_RE);
6401 -- Marks any raise expressions in Expr_M to return False
6403 --------------
6404 -- Add_Call --
6405 --------------
6407 procedure Add_Call (T : Entity_Id) is
6408 Exp : Node_Id;
6410 begin
6411 if Present (T) and then Present (Predicate_Function (T)) then
6412 Set_Has_Predicates (Typ);
6414 -- Build the call to the predicate function of T
6416 Exp :=
6417 Make_Predicate_Call
6418 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
6420 -- Add call to evolving expression, using AND THEN if needed
6422 if No (Expr) then
6423 Expr := Exp;
6424 else
6425 Expr :=
6426 Make_And_Then (Loc,
6427 Left_Opnd => Relocate_Node (Expr),
6428 Right_Opnd => Exp);
6429 end if;
6431 -- Output info message on inheritance if required. Note we do not
6432 -- give this information for generic actual types, since it is
6433 -- unwelcome noise in that case in instantiations. We also
6434 -- generally suppress the message in instantiations, and also
6435 -- if it involves internal names.
6437 if Opt.List_Inherited_Aspects
6438 and then not Is_Generic_Actual_Type (Typ)
6439 and then Instantiation_Depth (Sloc (Typ)) = 0
6440 and then not Is_Internal_Name (Chars (T))
6441 and then not Is_Internal_Name (Chars (Typ))
6442 then
6443 Error_Msg_Sloc := Sloc (Predicate_Function (T));
6444 Error_Msg_Node_2 := T;
6445 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
6446 end if;
6447 end if;
6448 end Add_Call;
6450 --------------------
6451 -- Add_Predicates --
6452 --------------------
6454 procedure Add_Predicates is
6455 Ritem : Node_Id;
6456 Arg1 : Node_Id;
6457 Arg2 : Node_Id;
6459 procedure Replace_Type_Reference (N : Node_Id);
6460 -- Replace a single occurrence N of the subtype name with a reference
6461 -- to the formal of the predicate function. N can be an identifier
6462 -- referencing the subtype, or a selected component, representing an
6463 -- appropriately qualified occurrence of the subtype name.
6465 procedure Replace_Type_References is
6466 new Replace_Type_References_Generic (Replace_Type_Reference);
6467 -- Traverse an expression changing every occurrence of an identifier
6468 -- whose name matches the name of the subtype with a reference to
6469 -- the formal parameter of the predicate function.
6471 ----------------------------
6472 -- Replace_Type_Reference --
6473 ----------------------------
6475 procedure Replace_Type_Reference (N : Node_Id) is
6476 begin
6477 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
6478 -- Use the Sloc of the usage name, not the defining name
6480 Set_Etype (N, Typ);
6481 Set_Entity (N, Object_Entity);
6483 -- We want to treat the node as if it comes from source, so that
6484 -- ASIS will not ignore it
6486 Set_Comes_From_Source (N, True);
6487 end Replace_Type_Reference;
6489 -- Start of processing for Add_Predicates
6491 begin
6492 Ritem := First_Rep_Item (Typ);
6493 while Present (Ritem) loop
6494 if Nkind (Ritem) = N_Pragma
6495 and then Pragma_Name (Ritem) = Name_Predicate
6496 then
6497 -- Save the static predicate of the type for diagnostics and
6498 -- error reporting purposes.
6500 if Present (Corresponding_Aspect (Ritem))
6501 and then Chars (Identifier (Corresponding_Aspect (Ritem))) =
6502 Name_Static_Predicate
6503 then
6504 Static_Predic := Ritem;
6505 end if;
6507 -- Acquire arguments
6509 Arg1 := First (Pragma_Argument_Associations (Ritem));
6510 Arg2 := Next (Arg1);
6512 Arg1 := Get_Pragma_Arg (Arg1);
6513 Arg2 := Get_Pragma_Arg (Arg2);
6515 -- See if this predicate pragma is for the current type or for
6516 -- its full view. A predicate on a private completion is placed
6517 -- on the partial view beause this is the visible entity that
6518 -- is frozen.
6520 if Entity (Arg1) = Typ
6521 or else Full_View (Entity (Arg1)) = Typ
6522 then
6523 -- We have a match, this entry is for our subtype
6525 -- We need to replace any occurrences of the name of the
6526 -- type with references to the object.
6528 Replace_Type_References (Arg2, Chars (Typ));
6530 -- If this predicate comes from an aspect, find the aspect
6531 -- specification, and replace the saved expression because
6532 -- we need the subtype references replaced for the calls to
6533 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
6534 -- and Check_Aspect_At_End_Of_Declarations.
6536 if From_Aspect_Specification (Ritem) then
6537 declare
6538 Aitem : Node_Id;
6540 begin
6541 -- Loop to find corresponding aspect, note that this
6542 -- must be present given the pragma is marked delayed.
6544 Aitem := Next_Rep_Item (Ritem);
6545 loop
6546 if Nkind (Aitem) = N_Aspect_Specification
6547 and then Aspect_Rep_Item (Aitem) = Ritem
6548 then
6549 Set_Entity
6550 (Identifier (Aitem), New_Copy_Tree (Arg2));
6551 exit;
6552 end if;
6554 Aitem := Next_Rep_Item (Aitem);
6555 end loop;
6556 end;
6557 end if;
6559 -- Now we can add the expression
6561 if No (Expr) then
6562 Expr := Relocate_Node (Arg2);
6564 -- There already was a predicate, so add to it
6566 else
6567 Expr :=
6568 Make_And_Then (Loc,
6569 Left_Opnd => Relocate_Node (Expr),
6570 Right_Opnd => Relocate_Node (Arg2));
6571 end if;
6572 end if;
6573 end if;
6575 Next_Rep_Item (Ritem);
6576 end loop;
6577 end Add_Predicates;
6579 ----------------
6580 -- Process_RE --
6581 ----------------
6583 function Process_RE (N : Node_Id) return Traverse_Result is
6584 begin
6585 if Nkind (N) = N_Raise_Expression then
6586 Set_Convert_To_Return_False (N);
6587 return Skip;
6588 else
6589 return OK;
6590 end if;
6591 end Process_RE;
6593 -------------
6594 -- Test_RE --
6595 -------------
6597 function Test_RE (N : Node_Id) return Traverse_Result is
6598 begin
6599 if Nkind (N) = N_Raise_Expression then
6600 Raise_Expression_Present := True;
6601 return Abandon;
6602 else
6603 return OK;
6604 end if;
6605 end Test_RE;
6607 -- Start of processing for Build_Predicate_Functions
6609 begin
6610 -- Return if already built or if type does not have predicates
6612 if not Has_Predicates (Typ)
6613 or else Present (Predicate_Function (Typ))
6614 then
6615 return;
6616 end if;
6618 -- Prepare to construct predicate expression
6620 Expr := Empty;
6622 -- Add Predicates for the current type
6624 Add_Predicates;
6626 -- Add predicates for ancestor if present
6628 declare
6629 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
6630 begin
6631 if Present (Atyp) then
6632 Add_Call (Atyp);
6633 end if;
6634 end;
6636 -- Case where predicates are present
6638 if Present (Expr) then
6640 -- Test for raise expression present
6642 Test_REs (Expr);
6644 -- If raise expression is present, capture a copy of Expr for use
6645 -- in building the predicateM function version later on. For this
6646 -- copy we replace references to Object_Entity by Object_Entity_M.
6648 if Raise_Expression_Present then
6649 declare
6650 Map : constant Elist_Id := New_Elmt_List;
6651 begin
6652 Append_Elmt (Object_Entity, Map);
6653 Append_Elmt (Object_Entity_M, Map);
6654 Expr_M := New_Copy_Tree (Expr, Map => Map);
6655 end;
6656 end if;
6658 -- Build the main predicate function
6660 declare
6661 SId : constant Entity_Id :=
6662 Make_Defining_Identifier (Loc,
6663 Chars => New_External_Name (Chars (Typ), "Predicate"));
6664 -- The entity for the the function spec
6666 SIdB : constant Entity_Id :=
6667 Make_Defining_Identifier (Loc,
6668 Chars => New_External_Name (Chars (Typ), "Predicate"));
6669 -- The entity for the function body
6671 Spec : Node_Id;
6672 FDecl : Node_Id;
6673 FBody : Node_Id;
6675 begin
6676 -- Build function declaration
6678 Set_Ekind (SId, E_Function);
6679 Set_Is_Predicate_Function (SId);
6680 Set_Predicate_Function (Typ, SId);
6682 -- The predicate function is shared between views of a type
6684 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
6685 Set_Predicate_Function (Full_View (Typ), SId);
6686 end if;
6688 Spec :=
6689 Make_Function_Specification (Loc,
6690 Defining_Unit_Name => SId,
6691 Parameter_Specifications => New_List (
6692 Make_Parameter_Specification (Loc,
6693 Defining_Identifier => Object_Entity,
6694 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
6695 Result_Definition =>
6696 New_Occurrence_Of (Standard_Boolean, Loc));
6698 FDecl :=
6699 Make_Subprogram_Declaration (Loc,
6700 Specification => Spec);
6702 -- Build function body
6704 Spec :=
6705 Make_Function_Specification (Loc,
6706 Defining_Unit_Name => SIdB,
6707 Parameter_Specifications => New_List (
6708 Make_Parameter_Specification (Loc,
6709 Defining_Identifier =>
6710 Make_Defining_Identifier (Loc, Object_Name),
6711 Parameter_Type =>
6712 New_Occurrence_Of (Typ, Loc))),
6713 Result_Definition =>
6714 New_Occurrence_Of (Standard_Boolean, Loc));
6716 FBody :=
6717 Make_Subprogram_Body (Loc,
6718 Specification => Spec,
6719 Declarations => Empty_List,
6720 Handled_Statement_Sequence =>
6721 Make_Handled_Sequence_Of_Statements (Loc,
6722 Statements => New_List (
6723 Make_Simple_Return_Statement (Loc,
6724 Expression => Expr))));
6726 -- Insert declaration before freeze node and body after
6728 Insert_Before_And_Analyze (N, FDecl);
6729 Insert_After_And_Analyze (N, FBody);
6730 end;
6732 -- Test for raise expressions present and if so build M version
6734 if Raise_Expression_Present then
6735 declare
6736 SId : constant Entity_Id :=
6737 Make_Defining_Identifier (Loc,
6738 Chars => New_External_Name (Chars (Typ), "PredicateM"));
6739 -- The entity for the the function spec
6741 SIdB : constant Entity_Id :=
6742 Make_Defining_Identifier (Loc,
6743 Chars => New_External_Name (Chars (Typ), "PredicateM"));
6744 -- The entity for the function body
6746 Spec : Node_Id;
6747 FDecl : Node_Id;
6748 FBody : Node_Id;
6749 BTemp : Entity_Id;
6751 begin
6752 -- Mark any raise expressions for special expansion
6754 Process_REs (Expr_M);
6756 -- Build function declaration
6758 Set_Ekind (SId, E_Function);
6759 Set_Is_Predicate_Function_M (SId);
6760 Set_Predicate_Function_M (Typ, SId);
6762 -- The predicate function is shared between views of a type
6764 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
6765 Set_Predicate_Function_M (Full_View (Typ), SId);
6766 end if;
6768 Spec :=
6769 Make_Function_Specification (Loc,
6770 Defining_Unit_Name => SId,
6771 Parameter_Specifications => New_List (
6772 Make_Parameter_Specification (Loc,
6773 Defining_Identifier => Object_Entity_M,
6774 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
6775 Result_Definition =>
6776 New_Occurrence_Of (Standard_Boolean, Loc));
6778 FDecl :=
6779 Make_Subprogram_Declaration (Loc,
6780 Specification => Spec);
6782 -- Build function body
6784 Spec :=
6785 Make_Function_Specification (Loc,
6786 Defining_Unit_Name => SIdB,
6787 Parameter_Specifications => New_List (
6788 Make_Parameter_Specification (Loc,
6789 Defining_Identifier =>
6790 Make_Defining_Identifier (Loc, Object_Name),
6791 Parameter_Type =>
6792 New_Occurrence_Of (Typ, Loc))),
6793 Result_Definition =>
6794 New_Occurrence_Of (Standard_Boolean, Loc));
6796 -- Build the body, we declare the boolean expression before
6797 -- doing the return, because we are not really confident of
6798 -- what happens if a return appears within a return.
6800 BTemp :=
6801 Make_Defining_Identifier (Loc,
6802 Chars => New_Internal_Name ('B'));
6804 FBody :=
6805 Make_Subprogram_Body (Loc,
6806 Specification => Spec,
6808 Declarations => New_List (
6809 Make_Object_Declaration (Loc,
6810 Defining_Identifier => BTemp,
6811 Constant_Present => True,
6812 Object_Definition =>
6813 New_Reference_To (Standard_Boolean, Loc),
6814 Expression => Expr_M)),
6816 Handled_Statement_Sequence =>
6817 Make_Handled_Sequence_Of_Statements (Loc,
6818 Statements => New_List (
6819 Make_Simple_Return_Statement (Loc,
6820 Expression => New_Reference_To (BTemp, Loc)))));
6822 -- Insert declaration before freeze node and body after
6824 Insert_Before_And_Analyze (N, FDecl);
6825 Insert_After_And_Analyze (N, FBody);
6826 end;
6827 end if;
6829 if Is_Scalar_Type (Typ) then
6831 -- Attempt to build a static predicate for a discrete or a real
6832 -- subtype. This action may fail because the actual expression may
6833 -- not be static. Note that the presence of an inherited or
6834 -- explicitly declared dynamic predicate is orthogonal to this
6835 -- check because we are only interested in the static predicate.
6837 if Ekind_In (Typ, E_Decimal_Fixed_Point_Subtype,
6838 E_Enumeration_Subtype,
6839 E_Floating_Point_Subtype,
6840 E_Modular_Integer_Subtype,
6841 E_Ordinary_Fixed_Point_Subtype,
6842 E_Signed_Integer_Subtype)
6843 then
6844 Build_Static_Predicate (Typ, Expr, Object_Name);
6846 -- Emit an error when the predicate is categorized as static
6847 -- but its expression is dynamic.
6849 if Present (Static_Predic)
6850 and then No (Static_Predicate (Typ))
6851 then
6852 Error_Msg_F
6853 ("expression does not have required form for "
6854 & "static predicate",
6855 Next (First (Pragma_Argument_Associations
6856 (Static_Predic))));
6857 end if;
6858 end if;
6860 -- If a static predicate applies on other types, that's an error:
6861 -- either the type is scalar but non-static, or it's not even a
6862 -- scalar type. We do not issue an error on generated types, as
6863 -- these may be duplicates of the same error on a source type.
6865 elsif Present (Static_Predic) and then Comes_From_Source (Typ) then
6866 if Is_Scalar_Type (Typ) then
6867 Error_Msg_FE
6868 ("static predicate not allowed for non-static type&",
6869 Typ, Typ);
6870 else
6871 Error_Msg_FE
6872 ("static predicate not allowed for non-scalar type&",
6873 Typ, Typ);
6874 end if;
6875 end if;
6876 end if;
6877 end Build_Predicate_Functions;
6879 ----------------------------
6880 -- Build_Static_Predicate --
6881 ----------------------------
6883 procedure Build_Static_Predicate
6884 (Typ : Entity_Id;
6885 Expr : Node_Id;
6886 Nam : Name_Id)
6888 Loc : constant Source_Ptr := Sloc (Expr);
6890 Non_Static : exception;
6891 -- Raised if something non-static is found
6893 Btyp : constant Entity_Id := Base_Type (Typ);
6895 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6896 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6897 -- Low bound and high bound value of base type of Typ
6899 TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
6900 THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
6901 -- Low bound and high bound values of static subtype Typ
6903 type REnt is record
6904 Lo, Hi : Uint;
6905 end record;
6906 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6907 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6908 -- value.
6910 type RList is array (Nat range <>) of REnt;
6911 -- A list of ranges. The ranges are sorted in increasing order, and are
6912 -- disjoint (there is a gap of at least one value between each range in
6913 -- the table). A value is in the set of ranges in Rlist if it lies
6914 -- within one of these ranges.
6916 False_Range : constant RList :=
6917 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6918 -- An empty set of ranges represents a range list that can never be
6919 -- satisfied, since there are no ranges in which the value could lie,
6920 -- so it does not lie in any of them. False_Range is a canonical value
6921 -- for this empty set, but general processing should test for an Rlist
6922 -- with length zero (see Is_False predicate), since other null ranges
6923 -- may appear which must be treated as False.
6925 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6926 -- Range representing True, value must be in the base range
6928 function "and" (Left : RList; Right : RList) return RList;
6929 -- And's together two range lists, returning a range list. This is a set
6930 -- intersection operation.
6932 function "or" (Left : RList; Right : RList) return RList;
6933 -- Or's together two range lists, returning a range list. This is a set
6934 -- union operation.
6936 function "not" (Right : RList) return RList;
6937 -- Returns complement of a given range list, i.e. a range list
6938 -- representing all the values in TLo .. THi that are not in the input
6939 -- operand Right.
6941 function Build_Val (V : Uint) return Node_Id;
6942 -- Return an analyzed N_Identifier node referencing this value, suitable
6943 -- for use as an entry in the Static_Predicate list. This node is typed
6944 -- with the base type.
6946 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6947 -- Return an analyzed N_Range node referencing this range, suitable for
6948 -- use as an entry in the Static_Predicate list. This node is typed with
6949 -- the base type.
6951 function Get_RList (Exp : Node_Id) return RList;
6952 -- This is a recursive routine that converts the given expression into a
6953 -- list of ranges, suitable for use in building the static predicate.
6955 function Is_False (R : RList) return Boolean;
6956 pragma Inline (Is_False);
6957 -- Returns True if the given range list is empty, and thus represents a
6958 -- False list of ranges that can never be satisfied.
6960 function Is_True (R : RList) return Boolean;
6961 -- Returns True if R trivially represents the True predicate by having a
6962 -- single range from BLo to BHi.
6964 function Is_Type_Ref (N : Node_Id) return Boolean;
6965 pragma Inline (Is_Type_Ref);
6966 -- Returns if True if N is a reference to the type for the predicate in
6967 -- the expression (i.e. if it is an identifier whose Chars field matches
6968 -- the Nam given in the call).
6970 function Lo_Val (N : Node_Id) return Uint;
6971 -- Given static expression or static range from a Static_Predicate list,
6972 -- gets expression value or low bound of range.
6974 function Hi_Val (N : Node_Id) return Uint;
6975 -- Given static expression or static range from a Static_Predicate list,
6976 -- gets expression value of high bound of range.
6978 function Membership_Entry (N : Node_Id) return RList;
6979 -- Given a single membership entry (range, value, or subtype), returns
6980 -- the corresponding range list. Raises Static_Error if not static.
6982 function Membership_Entries (N : Node_Id) return RList;
6983 -- Given an element on an alternatives list of a membership operation,
6984 -- returns the range list corresponding to this entry and all following
6985 -- entries (i.e. returns the "or" of this list of values).
6987 function Stat_Pred (Typ : Entity_Id) return RList;
6988 -- Given a type, if it has a static predicate, then return the predicate
6989 -- as a range list, otherwise raise Non_Static.
6991 -----------
6992 -- "and" --
6993 -----------
6995 function "and" (Left : RList; Right : RList) return RList is
6996 FEnt : REnt;
6997 -- First range of result
6999 SLeft : Nat := Left'First;
7000 -- Start of rest of left entries
7002 SRight : Nat := Right'First;
7003 -- Start of rest of right entries
7005 begin
7006 -- If either range is True, return the other
7008 if Is_True (Left) then
7009 return Right;
7010 elsif Is_True (Right) then
7011 return Left;
7012 end if;
7014 -- If either range is False, return False
7016 if Is_False (Left) or else Is_False (Right) then
7017 return False_Range;
7018 end if;
7020 -- Loop to remove entries at start that are disjoint, and thus just
7021 -- get discarded from the result entirely.
7023 loop
7024 -- If no operands left in either operand, result is false
7026 if SLeft > Left'Last or else SRight > Right'Last then
7027 return False_Range;
7029 -- Discard first left operand entry if disjoint with right
7031 elsif Left (SLeft).Hi < Right (SRight).Lo then
7032 SLeft := SLeft + 1;
7034 -- Discard first right operand entry if disjoint with left
7036 elsif Right (SRight).Hi < Left (SLeft).Lo then
7037 SRight := SRight + 1;
7039 -- Otherwise we have an overlapping entry
7041 else
7042 exit;
7043 end if;
7044 end loop;
7046 -- Now we have two non-null operands, and first entries overlap. The
7047 -- first entry in the result will be the overlapping part of these
7048 -- two entries.
7050 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7051 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7053 -- Now we can remove the entry that ended at a lower value, since its
7054 -- contribution is entirely contained in Fent.
7056 if Left (SLeft).Hi <= Right (SRight).Hi then
7057 SLeft := SLeft + 1;
7058 else
7059 SRight := SRight + 1;
7060 end if;
7062 -- Compute result by concatenating this first entry with the "and" of
7063 -- the remaining parts of the left and right operands. Note that if
7064 -- either of these is empty, "and" will yield empty, so that we will
7065 -- end up with just Fent, which is what we want in that case.
7067 return
7068 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7069 end "and";
7071 -----------
7072 -- "not" --
7073 -----------
7075 function "not" (Right : RList) return RList is
7076 begin
7077 -- Return True if False range
7079 if Is_False (Right) then
7080 return True_Range;
7081 end if;
7083 -- Return False if True range
7085 if Is_True (Right) then
7086 return False_Range;
7087 end if;
7089 -- Here if not trivial case
7091 declare
7092 Result : RList (1 .. Right'Length + 1);
7093 -- May need one more entry for gap at beginning and end
7095 Count : Nat := 0;
7096 -- Number of entries stored in Result
7098 begin
7099 -- Gap at start
7101 if Right (Right'First).Lo > TLo then
7102 Count := Count + 1;
7103 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7104 end if;
7106 -- Gaps between ranges
7108 for J in Right'First .. Right'Last - 1 loop
7109 Count := Count + 1;
7110 Result (Count) :=
7111 REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7112 end loop;
7114 -- Gap at end
7116 if Right (Right'Last).Hi < THi then
7117 Count := Count + 1;
7118 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7119 end if;
7121 return Result (1 .. Count);
7122 end;
7123 end "not";
7125 ----------
7126 -- "or" --
7127 ----------
7129 function "or" (Left : RList; Right : RList) return RList is
7130 FEnt : REnt;
7131 -- First range of result
7133 SLeft : Nat := Left'First;
7134 -- Start of rest of left entries
7136 SRight : Nat := Right'First;
7137 -- Start of rest of right entries
7139 begin
7140 -- If either range is True, return True
7142 if Is_True (Left) or else Is_True (Right) then
7143 return True_Range;
7144 end if;
7146 -- If either range is False (empty), return the other
7148 if Is_False (Left) then
7149 return Right;
7150 elsif Is_False (Right) then
7151 return Left;
7152 end if;
7154 -- Initialize result first entry from left or right operand depending
7155 -- on which starts with the lower range.
7157 if Left (SLeft).Lo < Right (SRight).Lo then
7158 FEnt := Left (SLeft);
7159 SLeft := SLeft + 1;
7160 else
7161 FEnt := Right (SRight);
7162 SRight := SRight + 1;
7163 end if;
7165 -- This loop eats ranges from left and right operands that are
7166 -- contiguous with the first range we are gathering.
7168 loop
7169 -- Eat first entry in left operand if contiguous or overlapped by
7170 -- gathered first operand of result.
7172 if SLeft <= Left'Last
7173 and then Left (SLeft).Lo <= FEnt.Hi + 1
7174 then
7175 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7176 SLeft := SLeft + 1;
7178 -- Eat first entry in right operand if contiguous or overlapped by
7179 -- gathered right operand of result.
7181 elsif SRight <= Right'Last
7182 and then Right (SRight).Lo <= FEnt.Hi + 1
7183 then
7184 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7185 SRight := SRight + 1;
7187 -- All done if no more entries to eat
7189 else
7190 exit;
7191 end if;
7192 end loop;
7194 -- Obtain result as the first entry we just computed, concatenated
7195 -- to the "or" of the remaining results (if one operand is empty,
7196 -- this will just concatenate with the other
7198 return
7199 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7200 end "or";
7202 -----------------
7203 -- Build_Range --
7204 -----------------
7206 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7207 Result : Node_Id;
7209 begin
7210 Result :=
7211 Make_Range (Loc,
7212 Low_Bound => Build_Val (Lo),
7213 High_Bound => Build_Val (Hi));
7214 Set_Etype (Result, Btyp);
7215 Set_Analyzed (Result);
7217 return Result;
7218 end Build_Range;
7220 ---------------
7221 -- Build_Val --
7222 ---------------
7224 function Build_Val (V : Uint) return Node_Id is
7225 Result : Node_Id;
7227 begin
7228 if Is_Enumeration_Type (Typ) then
7229 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7230 else
7231 Result := Make_Integer_Literal (Loc, V);
7232 end if;
7234 Set_Etype (Result, Btyp);
7235 Set_Is_Static_Expression (Result);
7236 Set_Analyzed (Result);
7237 return Result;
7238 end Build_Val;
7240 ---------------
7241 -- Get_RList --
7242 ---------------
7244 function Get_RList (Exp : Node_Id) return RList is
7245 Op : Node_Kind;
7246 Val : Uint;
7248 begin
7249 -- Static expression can only be true or false
7251 if Is_OK_Static_Expression (Exp) then
7253 -- For False
7255 if Expr_Value (Exp) = 0 then
7256 return False_Range;
7257 else
7258 return True_Range;
7259 end if;
7260 end if;
7262 -- Otherwise test node type
7264 Op := Nkind (Exp);
7266 case Op is
7268 -- And
7270 when N_Op_And | N_And_Then =>
7271 return Get_RList (Left_Opnd (Exp))
7273 Get_RList (Right_Opnd (Exp));
7275 -- Or
7277 when N_Op_Or | N_Or_Else =>
7278 return Get_RList (Left_Opnd (Exp))
7280 Get_RList (Right_Opnd (Exp));
7282 -- Not
7284 when N_Op_Not =>
7285 return not Get_RList (Right_Opnd (Exp));
7287 -- Comparisons of type with static value
7289 when N_Op_Compare =>
7291 -- Type is left operand
7293 if Is_Type_Ref (Left_Opnd (Exp))
7294 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7295 then
7296 Val := Expr_Value (Right_Opnd (Exp));
7298 -- Typ is right operand
7300 elsif Is_Type_Ref (Right_Opnd (Exp))
7301 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7302 then
7303 Val := Expr_Value (Left_Opnd (Exp));
7305 -- Invert sense of comparison
7307 case Op is
7308 when N_Op_Gt => Op := N_Op_Lt;
7309 when N_Op_Lt => Op := N_Op_Gt;
7310 when N_Op_Ge => Op := N_Op_Le;
7311 when N_Op_Le => Op := N_Op_Ge;
7312 when others => null;
7313 end case;
7315 -- Other cases are non-static
7317 else
7318 raise Non_Static;
7319 end if;
7321 -- Construct range according to comparison operation
7323 case Op is
7324 when N_Op_Eq =>
7325 return RList'(1 => REnt'(Val, Val));
7327 when N_Op_Ge =>
7328 return RList'(1 => REnt'(Val, BHi));
7330 when N_Op_Gt =>
7331 return RList'(1 => REnt'(Val + 1, BHi));
7333 when N_Op_Le =>
7334 return RList'(1 => REnt'(BLo, Val));
7336 when N_Op_Lt =>
7337 return RList'(1 => REnt'(BLo, Val - 1));
7339 when N_Op_Ne =>
7340 return RList'(REnt'(BLo, Val - 1),
7341 REnt'(Val + 1, BHi));
7343 when others =>
7344 raise Program_Error;
7345 end case;
7347 -- Membership (IN)
7349 when N_In =>
7350 if not Is_Type_Ref (Left_Opnd (Exp)) then
7351 raise Non_Static;
7352 end if;
7354 if Present (Right_Opnd (Exp)) then
7355 return Membership_Entry (Right_Opnd (Exp));
7356 else
7357 return Membership_Entries (First (Alternatives (Exp)));
7358 end if;
7360 -- Negative membership (NOT IN)
7362 when N_Not_In =>
7363 if not Is_Type_Ref (Left_Opnd (Exp)) then
7364 raise Non_Static;
7365 end if;
7367 if Present (Right_Opnd (Exp)) then
7368 return not Membership_Entry (Right_Opnd (Exp));
7369 else
7370 return not Membership_Entries (First (Alternatives (Exp)));
7371 end if;
7373 -- Function call, may be call to static predicate
7375 when N_Function_Call =>
7376 if Is_Entity_Name (Name (Exp)) then
7377 declare
7378 Ent : constant Entity_Id := Entity (Name (Exp));
7379 begin
7380 if Is_Predicate_Function (Ent)
7381 or else
7382 Is_Predicate_Function_M (Ent)
7383 then
7384 return Stat_Pred (Etype (First_Formal (Ent)));
7385 end if;
7386 end;
7387 end if;
7389 -- Other function call cases are non-static
7391 raise Non_Static;
7393 -- Qualified expression, dig out the expression
7395 when N_Qualified_Expression =>
7396 return Get_RList (Expression (Exp));
7398 -- Expression with actions: if no actions, dig out expression
7400 when N_Expression_With_Actions =>
7401 if Is_Empty_List (Actions (Exp)) then
7402 return Get_RList (Expression (Exp));
7404 else
7405 raise Non_Static;
7406 end if;
7408 -- Xor operator
7410 when N_Op_Xor =>
7411 return (Get_RList (Left_Opnd (Exp))
7412 and not Get_RList (Right_Opnd (Exp)))
7413 or (Get_RList (Right_Opnd (Exp))
7414 and not Get_RList (Left_Opnd (Exp)));
7416 -- Any other node type is non-static
7418 when others =>
7419 raise Non_Static;
7420 end case;
7421 end Get_RList;
7423 ------------
7424 -- Hi_Val --
7425 ------------
7427 function Hi_Val (N : Node_Id) return Uint is
7428 begin
7429 if Is_Static_Expression (N) then
7430 return Expr_Value (N);
7431 else
7432 pragma Assert (Nkind (N) = N_Range);
7433 return Expr_Value (High_Bound (N));
7434 end if;
7435 end Hi_Val;
7437 --------------
7438 -- Is_False --
7439 --------------
7441 function Is_False (R : RList) return Boolean is
7442 begin
7443 return R'Length = 0;
7444 end Is_False;
7446 -------------
7447 -- Is_True --
7448 -------------
7450 function Is_True (R : RList) return Boolean is
7451 begin
7452 return R'Length = 1
7453 and then R (R'First).Lo = BLo
7454 and then R (R'First).Hi = BHi;
7455 end Is_True;
7457 -----------------
7458 -- Is_Type_Ref --
7459 -----------------
7461 function Is_Type_Ref (N : Node_Id) return Boolean is
7462 begin
7463 return Nkind (N) = N_Identifier and then Chars (N) = Nam;
7464 end Is_Type_Ref;
7466 ------------
7467 -- Lo_Val --
7468 ------------
7470 function Lo_Val (N : Node_Id) return Uint is
7471 begin
7472 if Is_Static_Expression (N) then
7473 return Expr_Value (N);
7474 else
7475 pragma Assert (Nkind (N) = N_Range);
7476 return Expr_Value (Low_Bound (N));
7477 end if;
7478 end Lo_Val;
7480 ------------------------
7481 -- Membership_Entries --
7482 ------------------------
7484 function Membership_Entries (N : Node_Id) return RList is
7485 begin
7486 if No (Next (N)) then
7487 return Membership_Entry (N);
7488 else
7489 return Membership_Entry (N) or Membership_Entries (Next (N));
7490 end if;
7491 end Membership_Entries;
7493 ----------------------
7494 -- Membership_Entry --
7495 ----------------------
7497 function Membership_Entry (N : Node_Id) return RList is
7498 Val : Uint;
7499 SLo : Uint;
7500 SHi : Uint;
7502 begin
7503 -- Range case
7505 if Nkind (N) = N_Range then
7506 if not Is_Static_Expression (Low_Bound (N))
7507 or else
7508 not Is_Static_Expression (High_Bound (N))
7509 then
7510 raise Non_Static;
7511 else
7512 SLo := Expr_Value (Low_Bound (N));
7513 SHi := Expr_Value (High_Bound (N));
7514 return RList'(1 => REnt'(SLo, SHi));
7515 end if;
7517 -- Static expression case
7519 elsif Is_Static_Expression (N) then
7520 Val := Expr_Value (N);
7521 return RList'(1 => REnt'(Val, Val));
7523 -- Identifier (other than static expression) case
7525 else pragma Assert (Nkind (N) = N_Identifier);
7527 -- Type case
7529 if Is_Type (Entity (N)) then
7531 -- If type has predicates, process them
7533 if Has_Predicates (Entity (N)) then
7534 return Stat_Pred (Entity (N));
7536 -- For static subtype without predicates, get range
7538 elsif Is_Static_Subtype (Entity (N)) then
7539 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7540 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7541 return RList'(1 => REnt'(SLo, SHi));
7543 -- Any other type makes us non-static
7545 else
7546 raise Non_Static;
7547 end if;
7549 -- Any other kind of identifier in predicate (e.g. a non-static
7550 -- expression value) means this is not a static predicate.
7552 else
7553 raise Non_Static;
7554 end if;
7555 end if;
7556 end Membership_Entry;
7558 ---------------
7559 -- Stat_Pred --
7560 ---------------
7562 function Stat_Pred (Typ : Entity_Id) return RList is
7563 begin
7564 -- Not static if type does not have static predicates
7566 if not Has_Predicates (Typ) or else No (Static_Predicate (Typ)) then
7567 raise Non_Static;
7568 end if;
7570 -- Otherwise we convert the predicate list to a range list
7572 declare
7573 Result : RList (1 .. List_Length (Static_Predicate (Typ)));
7574 P : Node_Id;
7576 begin
7577 P := First (Static_Predicate (Typ));
7578 for J in Result'Range loop
7579 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7580 Next (P);
7581 end loop;
7583 return Result;
7584 end;
7585 end Stat_Pred;
7587 -- Start of processing for Build_Static_Predicate
7589 begin
7590 -- Now analyze the expression to see if it is a static predicate
7592 declare
7593 Ranges : constant RList := Get_RList (Expr);
7594 -- Range list from expression if it is static
7596 Plist : List_Id;
7598 begin
7599 -- Convert range list into a form for the static predicate. In the
7600 -- Ranges array, we just have raw ranges, these must be converted
7601 -- to properly typed and analyzed static expressions or range nodes.
7603 -- Note: here we limit ranges to the ranges of the subtype, so that
7604 -- a predicate is always false for values outside the subtype. That
7605 -- seems fine, such values are invalid anyway, and considering them
7606 -- to fail the predicate seems allowed and friendly, and furthermore
7607 -- simplifies processing for case statements and loops.
7609 Plist := New_List;
7611 for J in Ranges'Range loop
7612 declare
7613 Lo : Uint := Ranges (J).Lo;
7614 Hi : Uint := Ranges (J).Hi;
7616 begin
7617 -- Ignore completely out of range entry
7619 if Hi < TLo or else Lo > THi then
7620 null;
7622 -- Otherwise process entry
7624 else
7625 -- Adjust out of range value to subtype range
7627 if Lo < TLo then
7628 Lo := TLo;
7629 end if;
7631 if Hi > THi then
7632 Hi := THi;
7633 end if;
7635 -- Convert range into required form
7637 Append_To (Plist, Build_Range (Lo, Hi));
7638 end if;
7639 end;
7640 end loop;
7642 -- Processing was successful and all entries were static, so now we
7643 -- can store the result as the predicate list.
7645 Set_Static_Predicate (Typ, Plist);
7647 -- The processing for static predicates put the expression into
7648 -- canonical form as a series of ranges. It also eliminated
7649 -- duplicates and collapsed and combined ranges. We might as well
7650 -- replace the alternatives list of the right operand of the
7651 -- membership test with the static predicate list, which will
7652 -- usually be more efficient.
7654 declare
7655 New_Alts : constant List_Id := New_List;
7656 Old_Node : Node_Id;
7657 New_Node : Node_Id;
7659 begin
7660 Old_Node := First (Plist);
7661 while Present (Old_Node) loop
7662 New_Node := New_Copy (Old_Node);
7664 if Nkind (New_Node) = N_Range then
7665 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7666 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7667 end if;
7669 Append_To (New_Alts, New_Node);
7670 Next (Old_Node);
7671 end loop;
7673 -- If empty list, replace by False
7675 if Is_Empty_List (New_Alts) then
7676 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7678 -- Else replace by set membership test
7680 else
7681 Rewrite (Expr,
7682 Make_In (Loc,
7683 Left_Opnd => Make_Identifier (Loc, Nam),
7684 Right_Opnd => Empty,
7685 Alternatives => New_Alts));
7687 -- Resolve new expression in function context
7689 Install_Formals (Predicate_Function (Typ));
7690 Push_Scope (Predicate_Function (Typ));
7691 Analyze_And_Resolve (Expr, Standard_Boolean);
7692 Pop_Scope;
7693 end if;
7694 end;
7695 end;
7697 -- If non-static, return doing nothing
7699 exception
7700 when Non_Static =>
7701 return;
7702 end Build_Static_Predicate;
7704 -----------------------------------------
7705 -- Check_Aspect_At_End_Of_Declarations --
7706 -----------------------------------------
7708 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
7709 Ent : constant Entity_Id := Entity (ASN);
7710 Ident : constant Node_Id := Identifier (ASN);
7711 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
7713 End_Decl_Expr : constant Node_Id := Entity (Ident);
7714 -- Expression to be analyzed at end of declarations
7716 Freeze_Expr : constant Node_Id := Expression (ASN);
7717 -- Expression from call to Check_Aspect_At_Freeze_Point
7719 T : constant Entity_Id := Etype (Freeze_Expr);
7720 -- Type required for preanalyze call
7722 Err : Boolean;
7723 -- Set False if error
7725 -- On entry to this procedure, Entity (Ident) contains a copy of the
7726 -- original expression from the aspect, saved for this purpose, and
7727 -- but Expression (Ident) is a preanalyzed copy of the expression,
7728 -- preanalyzed just after the freeze point.
7730 procedure Check_Overloaded_Name;
7731 -- For aspects whose expression is simply a name, this routine checks if
7732 -- the name is overloaded or not. If so, it verifies there is an
7733 -- interpretation that matches the entity obtained at the freeze point,
7734 -- otherwise the compiler complains.
7736 ---------------------------
7737 -- Check_Overloaded_Name --
7738 ---------------------------
7740 procedure Check_Overloaded_Name is
7741 begin
7742 if not Is_Overloaded (End_Decl_Expr) then
7743 Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
7745 else
7746 Err := True;
7748 declare
7749 Index : Interp_Index;
7750 It : Interp;
7752 begin
7753 Get_First_Interp (End_Decl_Expr, Index, It);
7754 while Present (It.Typ) loop
7755 if It.Nam = Entity (Freeze_Expr) then
7756 Err := False;
7757 exit;
7758 end if;
7760 Get_Next_Interp (Index, It);
7761 end loop;
7762 end;
7763 end if;
7764 end Check_Overloaded_Name;
7766 -- Start of processing for Check_Aspect_At_End_Of_Declarations
7768 begin
7769 -- Case of aspects Dimension, Dimension_System and Synchronization
7771 if A_Id = Aspect_Synchronization then
7772 return;
7774 -- Case of stream attributes, just have to compare entities. However,
7775 -- the expression is just a name (possibly overloaded), and there may
7776 -- be stream operations declared for unrelated types, so we just need
7777 -- to verify that one of these interpretations is the one available at
7778 -- at the freeze point.
7780 elsif A_Id = Aspect_Input or else
7781 A_Id = Aspect_Output or else
7782 A_Id = Aspect_Read or else
7783 A_Id = Aspect_Write
7784 then
7785 Analyze (End_Decl_Expr);
7786 Check_Overloaded_Name;
7788 elsif A_Id = Aspect_Variable_Indexing or else
7789 A_Id = Aspect_Constant_Indexing or else
7790 A_Id = Aspect_Default_Iterator or else
7791 A_Id = Aspect_Iterator_Element
7792 then
7793 -- Make type unfrozen before analysis, to prevent spurious errors
7794 -- about late attributes.
7796 Set_Is_Frozen (Ent, False);
7797 Analyze (End_Decl_Expr);
7798 Set_Is_Frozen (Ent, True);
7800 -- If the end of declarations comes before any other freeze
7801 -- point, the Freeze_Expr is not analyzed: no check needed.
7803 if Analyzed (Freeze_Expr) and then not In_Instance then
7804 Check_Overloaded_Name;
7805 else
7806 Err := False;
7807 end if;
7809 -- All other cases
7811 else
7812 -- In a generic context the aspect expressions have not been
7813 -- preanalyzed, so do it now. There are no conformance checks
7814 -- to perform in this case.
7816 if No (T) then
7817 Check_Aspect_At_Freeze_Point (ASN);
7818 return;
7820 -- The default values attributes may be defined in the private part,
7821 -- and the analysis of the expression may take place when only the
7822 -- partial view is visible. The expression must be scalar, so use
7823 -- the full view to resolve.
7825 elsif (A_Id = Aspect_Default_Value
7826 or else
7827 A_Id = Aspect_Default_Component_Value)
7828 and then Is_Private_Type (T)
7829 then
7830 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
7831 else
7832 Preanalyze_Spec_Expression (End_Decl_Expr, T);
7833 end if;
7835 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
7836 end if;
7838 -- Output error message if error
7840 if Err then
7841 Error_Msg_NE
7842 ("visibility of aspect for& changes after freeze point",
7843 ASN, Ent);
7844 Error_Msg_NE
7845 ("info: & is frozen here, aspects evaluated at this point??",
7846 Freeze_Node (Ent), Ent);
7847 end if;
7848 end Check_Aspect_At_End_Of_Declarations;
7850 ----------------------------------
7851 -- Check_Aspect_At_Freeze_Point --
7852 ----------------------------------
7854 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
7855 Ident : constant Node_Id := Identifier (ASN);
7856 -- Identifier (use Entity field to save expression)
7858 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
7860 T : Entity_Id := Empty;
7861 -- Type required for preanalyze call
7863 begin
7864 -- On entry to this procedure, Entity (Ident) contains a copy of the
7865 -- original expression from the aspect, saved for this purpose.
7867 -- On exit from this procedure Entity (Ident) is unchanged, still
7868 -- containing that copy, but Expression (Ident) is a preanalyzed copy
7869 -- of the expression, preanalyzed just after the freeze point.
7871 -- Make a copy of the expression to be preanalyzed
7873 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
7875 -- Find type for preanalyze call
7877 case A_Id is
7879 -- No_Aspect should be impossible
7881 when No_Aspect =>
7882 raise Program_Error;
7884 -- Aspects taking an optional boolean argument
7886 when Boolean_Aspects |
7887 Library_Unit_Aspects =>
7889 T := Standard_Boolean;
7891 -- Aspects corresponding to attribute definition clauses
7893 when Aspect_Address =>
7894 T := RTE (RE_Address);
7896 when Aspect_Attach_Handler =>
7897 T := RTE (RE_Interrupt_ID);
7899 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
7900 T := RTE (RE_Bit_Order);
7902 when Aspect_Convention =>
7903 return;
7905 when Aspect_CPU =>
7906 T := RTE (RE_CPU_Range);
7908 -- Default_Component_Value is resolved with the component type
7910 when Aspect_Default_Component_Value =>
7911 T := Component_Type (Entity (ASN));
7913 -- Default_Value is resolved with the type entity in question
7915 when Aspect_Default_Value =>
7916 T := Entity (ASN);
7918 -- Depends is a delayed aspect because it mentiones names first
7919 -- introduced by aspect Global which is already delayed. There is
7920 -- no action to be taken with respect to the aspect itself as the
7921 -- analysis is done by the corresponding pragma.
7923 when Aspect_Depends =>
7924 return;
7926 when Aspect_Dispatching_Domain =>
7927 T := RTE (RE_Dispatching_Domain);
7929 when Aspect_External_Tag =>
7930 T := Standard_String;
7932 when Aspect_External_Name =>
7933 T := Standard_String;
7935 -- Global is a delayed aspect because it may reference names that
7936 -- have not been declared yet. There is no action to be taken with
7937 -- respect to the aspect itself as the reference checking is done
7938 -- on the corresponding pragma.
7940 when Aspect_Global =>
7941 return;
7943 when Aspect_Link_Name =>
7944 T := Standard_String;
7946 when Aspect_Priority | Aspect_Interrupt_Priority =>
7947 T := Standard_Integer;
7949 when Aspect_Relative_Deadline =>
7950 T := RTE (RE_Time_Span);
7952 when Aspect_Small =>
7953 T := Universal_Real;
7955 -- For a simple storage pool, we have to retrieve the type of the
7956 -- pool object associated with the aspect's corresponding attribute
7957 -- definition clause.
7959 when Aspect_Simple_Storage_Pool =>
7960 T := Etype (Expression (Aspect_Rep_Item (ASN)));
7962 when Aspect_Storage_Pool =>
7963 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
7965 when Aspect_Alignment |
7966 Aspect_Component_Size |
7967 Aspect_Machine_Radix |
7968 Aspect_Object_Size |
7969 Aspect_Size |
7970 Aspect_Storage_Size |
7971 Aspect_Stream_Size |
7972 Aspect_Value_Size =>
7973 T := Any_Integer;
7975 when Aspect_Linker_Section =>
7976 T := Standard_String;
7978 when Aspect_Synchronization =>
7979 return;
7981 -- Special case, the expression of these aspects is just an entity
7982 -- that does not need any resolution, so just analyze.
7984 when Aspect_Input |
7985 Aspect_Output |
7986 Aspect_Read |
7987 Aspect_Suppress |
7988 Aspect_Unsuppress |
7989 Aspect_Warnings |
7990 Aspect_Write =>
7991 Analyze (Expression (ASN));
7992 return;
7994 -- Same for Iterator aspects, where the expression is a function
7995 -- name. Legality rules are checked separately.
7997 when Aspect_Constant_Indexing |
7998 Aspect_Default_Iterator |
7999 Aspect_Iterator_Element |
8000 Aspect_Variable_Indexing =>
8001 Analyze (Expression (ASN));
8002 return;
8004 -- Invariant/Predicate take boolean expressions
8006 when Aspect_Dynamic_Predicate |
8007 Aspect_Invariant |
8008 Aspect_Predicate |
8009 Aspect_Static_Predicate |
8010 Aspect_Type_Invariant =>
8011 T := Standard_Boolean;
8013 -- Here is the list of aspects that don't require delay analysis
8015 when Aspect_Abstract_State |
8016 Aspect_Contract_Cases |
8017 Aspect_Dimension |
8018 Aspect_Dimension_System |
8019 Aspect_Implicit_Dereference |
8020 Aspect_Initial_Condition |
8021 Aspect_Initializes |
8022 Aspect_Part_Of |
8023 Aspect_Post |
8024 Aspect_Postcondition |
8025 Aspect_Pre |
8026 Aspect_Precondition |
8027 Aspect_Refined_Depends |
8028 Aspect_Refined_Global |
8029 Aspect_Refined_Post |
8030 Aspect_Refined_State |
8031 Aspect_SPARK_Mode |
8032 Aspect_Test_Case =>
8033 raise Program_Error;
8035 end case;
8037 -- Do the preanalyze call
8039 Preanalyze_Spec_Expression (Expression (ASN), T);
8040 end Check_Aspect_At_Freeze_Point;
8042 -----------------------------------
8043 -- Check_Constant_Address_Clause --
8044 -----------------------------------
8046 procedure Check_Constant_Address_Clause
8047 (Expr : Node_Id;
8048 U_Ent : Entity_Id)
8050 procedure Check_At_Constant_Address (Nod : Node_Id);
8051 -- Checks that the given node N represents a name whose 'Address is
8052 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
8053 -- address value is the same at the point of declaration of U_Ent and at
8054 -- the time of elaboration of the address clause.
8056 procedure Check_Expr_Constants (Nod : Node_Id);
8057 -- Checks that Nod meets the requirements for a constant address clause
8058 -- in the sense of the enclosing procedure.
8060 procedure Check_List_Constants (Lst : List_Id);
8061 -- Check that all elements of list Lst meet the requirements for a
8062 -- constant address clause in the sense of the enclosing procedure.
8064 -------------------------------
8065 -- Check_At_Constant_Address --
8066 -------------------------------
8068 procedure Check_At_Constant_Address (Nod : Node_Id) is
8069 begin
8070 if Is_Entity_Name (Nod) then
8071 if Present (Address_Clause (Entity ((Nod)))) then
8072 Error_Msg_NE
8073 ("invalid address clause for initialized object &!",
8074 Nod, U_Ent);
8075 Error_Msg_NE
8076 ("address for& cannot" &
8077 " depend on another address clause! (RM 13.1(22))!",
8078 Nod, U_Ent);
8080 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
8081 and then Sloc (U_Ent) < Sloc (Entity (Nod))
8082 then
8083 Error_Msg_NE
8084 ("invalid address clause for initialized object &!",
8085 Nod, U_Ent);
8086 Error_Msg_Node_2 := U_Ent;
8087 Error_Msg_NE
8088 ("\& must be defined before & (RM 13.1(22))!",
8089 Nod, Entity (Nod));
8090 end if;
8092 elsif Nkind (Nod) = N_Selected_Component then
8093 declare
8094 T : constant Entity_Id := Etype (Prefix (Nod));
8096 begin
8097 if (Is_Record_Type (T)
8098 and then Has_Discriminants (T))
8099 or else
8100 (Is_Access_Type (T)
8101 and then Is_Record_Type (Designated_Type (T))
8102 and then Has_Discriminants (Designated_Type (T)))
8103 then
8104 Error_Msg_NE
8105 ("invalid address clause for initialized object &!",
8106 Nod, U_Ent);
8107 Error_Msg_N
8108 ("\address cannot depend on component" &
8109 " of discriminated record (RM 13.1(22))!",
8110 Nod);
8111 else
8112 Check_At_Constant_Address (Prefix (Nod));
8113 end if;
8114 end;
8116 elsif Nkind (Nod) = N_Indexed_Component then
8117 Check_At_Constant_Address (Prefix (Nod));
8118 Check_List_Constants (Expressions (Nod));
8120 else
8121 Check_Expr_Constants (Nod);
8122 end if;
8123 end Check_At_Constant_Address;
8125 --------------------------
8126 -- Check_Expr_Constants --
8127 --------------------------
8129 procedure Check_Expr_Constants (Nod : Node_Id) is
8130 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
8131 Ent : Entity_Id := Empty;
8133 begin
8134 if Nkind (Nod) in N_Has_Etype
8135 and then Etype (Nod) = Any_Type
8136 then
8137 return;
8138 end if;
8140 case Nkind (Nod) is
8141 when N_Empty | N_Error =>
8142 return;
8144 when N_Identifier | N_Expanded_Name =>
8145 Ent := Entity (Nod);
8147 -- We need to look at the original node if it is different
8148 -- from the node, since we may have rewritten things and
8149 -- substituted an identifier representing the rewrite.
8151 if Original_Node (Nod) /= Nod then
8152 Check_Expr_Constants (Original_Node (Nod));
8154 -- If the node is an object declaration without initial
8155 -- value, some code has been expanded, and the expression
8156 -- is not constant, even if the constituents might be
8157 -- acceptable, as in A'Address + offset.
8159 if Ekind (Ent) = E_Variable
8160 and then
8161 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
8162 and then
8163 No (Expression (Declaration_Node (Ent)))
8164 then
8165 Error_Msg_NE
8166 ("invalid address clause for initialized object &!",
8167 Nod, U_Ent);
8169 -- If entity is constant, it may be the result of expanding
8170 -- a check. We must verify that its declaration appears
8171 -- before the object in question, else we also reject the
8172 -- address clause.
8174 elsif Ekind (Ent) = E_Constant
8175 and then In_Same_Source_Unit (Ent, U_Ent)
8176 and then Sloc (Ent) > Loc_U_Ent
8177 then
8178 Error_Msg_NE
8179 ("invalid address clause for initialized object &!",
8180 Nod, U_Ent);
8181 end if;
8183 return;
8184 end if;
8186 -- Otherwise look at the identifier and see if it is OK
8188 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
8189 or else Is_Type (Ent)
8190 then
8191 return;
8193 elsif
8194 Ekind (Ent) = E_Constant
8195 or else
8196 Ekind (Ent) = E_In_Parameter
8197 then
8198 -- This is the case where we must have Ent defined before
8199 -- U_Ent. Clearly if they are in different units this
8200 -- requirement is met since the unit containing Ent is
8201 -- already processed.
8203 if not In_Same_Source_Unit (Ent, U_Ent) then
8204 return;
8206 -- Otherwise location of Ent must be before the location
8207 -- of U_Ent, that's what prior defined means.
8209 elsif Sloc (Ent) < Loc_U_Ent then
8210 return;
8212 else
8213 Error_Msg_NE
8214 ("invalid address clause for initialized object &!",
8215 Nod, U_Ent);
8216 Error_Msg_Node_2 := U_Ent;
8217 Error_Msg_NE
8218 ("\& must be defined before & (RM 13.1(22))!",
8219 Nod, Ent);
8220 end if;
8222 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
8223 Check_Expr_Constants (Original_Node (Nod));
8225 else
8226 Error_Msg_NE
8227 ("invalid address clause for initialized object &!",
8228 Nod, U_Ent);
8230 if Comes_From_Source (Ent) then
8231 Error_Msg_NE
8232 ("\reference to variable& not allowed"
8233 & " (RM 13.1(22))!", Nod, Ent);
8234 else
8235 Error_Msg_N
8236 ("non-static expression not allowed"
8237 & " (RM 13.1(22))!", Nod);
8238 end if;
8239 end if;
8241 when N_Integer_Literal =>
8243 -- If this is a rewritten unchecked conversion, in a system
8244 -- where Address is an integer type, always use the base type
8245 -- for a literal value. This is user-friendly and prevents
8246 -- order-of-elaboration issues with instances of unchecked
8247 -- conversion.
8249 if Nkind (Original_Node (Nod)) = N_Function_Call then
8250 Set_Etype (Nod, Base_Type (Etype (Nod)));
8251 end if;
8253 when N_Real_Literal |
8254 N_String_Literal |
8255 N_Character_Literal =>
8256 return;
8258 when N_Range =>
8259 Check_Expr_Constants (Low_Bound (Nod));
8260 Check_Expr_Constants (High_Bound (Nod));
8262 when N_Explicit_Dereference =>
8263 Check_Expr_Constants (Prefix (Nod));
8265 when N_Indexed_Component =>
8266 Check_Expr_Constants (Prefix (Nod));
8267 Check_List_Constants (Expressions (Nod));
8269 when N_Slice =>
8270 Check_Expr_Constants (Prefix (Nod));
8271 Check_Expr_Constants (Discrete_Range (Nod));
8273 when N_Selected_Component =>
8274 Check_Expr_Constants (Prefix (Nod));
8276 when N_Attribute_Reference =>
8277 if Nam_In (Attribute_Name (Nod), Name_Address,
8278 Name_Access,
8279 Name_Unchecked_Access,
8280 Name_Unrestricted_Access)
8281 then
8282 Check_At_Constant_Address (Prefix (Nod));
8284 else
8285 Check_Expr_Constants (Prefix (Nod));
8286 Check_List_Constants (Expressions (Nod));
8287 end if;
8289 when N_Aggregate =>
8290 Check_List_Constants (Component_Associations (Nod));
8291 Check_List_Constants (Expressions (Nod));
8293 when N_Component_Association =>
8294 Check_Expr_Constants (Expression (Nod));
8296 when N_Extension_Aggregate =>
8297 Check_Expr_Constants (Ancestor_Part (Nod));
8298 Check_List_Constants (Component_Associations (Nod));
8299 Check_List_Constants (Expressions (Nod));
8301 when N_Null =>
8302 return;
8304 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
8305 Check_Expr_Constants (Left_Opnd (Nod));
8306 Check_Expr_Constants (Right_Opnd (Nod));
8308 when N_Unary_Op =>
8309 Check_Expr_Constants (Right_Opnd (Nod));
8311 when N_Type_Conversion |
8312 N_Qualified_Expression |
8313 N_Allocator |
8314 N_Unchecked_Type_Conversion =>
8315 Check_Expr_Constants (Expression (Nod));
8317 when N_Function_Call =>
8318 if not Is_Pure (Entity (Name (Nod))) then
8319 Error_Msg_NE
8320 ("invalid address clause for initialized object &!",
8321 Nod, U_Ent);
8323 Error_Msg_NE
8324 ("\function & is not pure (RM 13.1(22))!",
8325 Nod, Entity (Name (Nod)));
8327 else
8328 Check_List_Constants (Parameter_Associations (Nod));
8329 end if;
8331 when N_Parameter_Association =>
8332 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
8334 when others =>
8335 Error_Msg_NE
8336 ("invalid address clause for initialized object &!",
8337 Nod, U_Ent);
8338 Error_Msg_NE
8339 ("\must be constant defined before& (RM 13.1(22))!",
8340 Nod, U_Ent);
8341 end case;
8342 end Check_Expr_Constants;
8344 --------------------------
8345 -- Check_List_Constants --
8346 --------------------------
8348 procedure Check_List_Constants (Lst : List_Id) is
8349 Nod1 : Node_Id;
8351 begin
8352 if Present (Lst) then
8353 Nod1 := First (Lst);
8354 while Present (Nod1) loop
8355 Check_Expr_Constants (Nod1);
8356 Next (Nod1);
8357 end loop;
8358 end if;
8359 end Check_List_Constants;
8361 -- Start of processing for Check_Constant_Address_Clause
8363 begin
8364 -- If rep_clauses are to be ignored, no need for legality checks. In
8365 -- particular, no need to pester user about rep clauses that violate
8366 -- the rule on constant addresses, given that these clauses will be
8367 -- removed by Freeze before they reach the back end.
8369 if not Ignore_Rep_Clauses then
8370 Check_Expr_Constants (Expr);
8371 end if;
8372 end Check_Constant_Address_Clause;
8374 ---------------------------
8375 -- Check_Pool_Size_Clash --
8376 ---------------------------
8378 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
8379 Post : Node_Id;
8381 begin
8382 -- We need to find out which one came first. Note that in the case of
8383 -- aspects mixed with pragmas there are cases where the processing order
8384 -- is reversed, which is why we do the check here.
8386 if Sloc (SP) < Sloc (SS) then
8387 Error_Msg_Sloc := Sloc (SP);
8388 Post := SS;
8389 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
8391 else
8392 Error_Msg_Sloc := Sloc (SS);
8393 Post := SP;
8394 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
8395 end if;
8397 Error_Msg_N
8398 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
8399 end Check_Pool_Size_Clash;
8401 ----------------------------------------
8402 -- Check_Record_Representation_Clause --
8403 ----------------------------------------
8405 procedure Check_Record_Representation_Clause (N : Node_Id) is
8406 Loc : constant Source_Ptr := Sloc (N);
8407 Ident : constant Node_Id := Identifier (N);
8408 Rectype : Entity_Id;
8409 Fent : Entity_Id;
8410 CC : Node_Id;
8411 Fbit : Uint;
8412 Lbit : Uint;
8413 Hbit : Uint := Uint_0;
8414 Comp : Entity_Id;
8415 Pcomp : Entity_Id;
8417 Max_Bit_So_Far : Uint;
8418 -- Records the maximum bit position so far. If all field positions
8419 -- are monotonically increasing, then we can skip the circuit for
8420 -- checking for overlap, since no overlap is possible.
8422 Tagged_Parent : Entity_Id := Empty;
8423 -- This is set in the case of a derived tagged type for which we have
8424 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
8425 -- positioned by record representation clauses). In this case we must
8426 -- check for overlap between components of this tagged type, and the
8427 -- components of its parent. Tagged_Parent will point to this parent
8428 -- type. For all other cases Tagged_Parent is left set to Empty.
8430 Parent_Last_Bit : Uint;
8431 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
8432 -- last bit position for any field in the parent type. We only need to
8433 -- check overlap for fields starting below this point.
8435 Overlap_Check_Required : Boolean;
8436 -- Used to keep track of whether or not an overlap check is required
8438 Overlap_Detected : Boolean := False;
8439 -- Set True if an overlap is detected
8441 Ccount : Natural := 0;
8442 -- Number of component clauses in record rep clause
8444 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
8445 -- Given two entities for record components or discriminants, checks
8446 -- if they have overlapping component clauses and issues errors if so.
8448 procedure Find_Component;
8449 -- Finds component entity corresponding to current component clause (in
8450 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
8451 -- start/stop bits for the field. If there is no matching component or
8452 -- if the matching component does not have a component clause, then
8453 -- that's an error and Comp is set to Empty, but no error message is
8454 -- issued, since the message was already given. Comp is also set to
8455 -- Empty if the current "component clause" is in fact a pragma.
8457 -----------------------------
8458 -- Check_Component_Overlap --
8459 -----------------------------
8461 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
8462 CC1 : constant Node_Id := Component_Clause (C1_Ent);
8463 CC2 : constant Node_Id := Component_Clause (C2_Ent);
8465 begin
8466 if Present (CC1) and then Present (CC2) then
8468 -- Exclude odd case where we have two tag components in the same
8469 -- record, both at location zero. This seems a bit strange, but
8470 -- it seems to happen in some circumstances, perhaps on an error.
8472 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
8473 return;
8474 end if;
8476 -- Here we check if the two fields overlap
8478 declare
8479 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
8480 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
8481 E1 : constant Uint := S1 + Esize (C1_Ent);
8482 E2 : constant Uint := S2 + Esize (C2_Ent);
8484 begin
8485 if E2 <= S1 or else E1 <= S2 then
8486 null;
8487 else
8488 Error_Msg_Node_2 := Component_Name (CC2);
8489 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
8490 Error_Msg_Node_1 := Component_Name (CC1);
8491 Error_Msg_N
8492 ("component& overlaps & #", Component_Name (CC1));
8493 Overlap_Detected := True;
8494 end if;
8495 end;
8496 end if;
8497 end Check_Component_Overlap;
8499 --------------------
8500 -- Find_Component --
8501 --------------------
8503 procedure Find_Component is
8505 procedure Search_Component (R : Entity_Id);
8506 -- Search components of R for a match. If found, Comp is set
8508 ----------------------
8509 -- Search_Component --
8510 ----------------------
8512 procedure Search_Component (R : Entity_Id) is
8513 begin
8514 Comp := First_Component_Or_Discriminant (R);
8515 while Present (Comp) loop
8517 -- Ignore error of attribute name for component name (we
8518 -- already gave an error message for this, so no need to
8519 -- complain here)
8521 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
8522 null;
8523 else
8524 exit when Chars (Comp) = Chars (Component_Name (CC));
8525 end if;
8527 Next_Component_Or_Discriminant (Comp);
8528 end loop;
8529 end Search_Component;
8531 -- Start of processing for Find_Component
8533 begin
8534 -- Return with Comp set to Empty if we have a pragma
8536 if Nkind (CC) = N_Pragma then
8537 Comp := Empty;
8538 return;
8539 end if;
8541 -- Search current record for matching component
8543 Search_Component (Rectype);
8545 -- If not found, maybe component of base type discriminant that is
8546 -- absent from statically constrained first subtype.
8548 if No (Comp) then
8549 Search_Component (Base_Type (Rectype));
8550 end if;
8552 -- If no component, or the component does not reference the component
8553 -- clause in question, then there was some previous error for which
8554 -- we already gave a message, so just return with Comp Empty.
8556 if No (Comp) or else Component_Clause (Comp) /= CC then
8557 Check_Error_Detected;
8558 Comp := Empty;
8560 -- Normal case where we have a component clause
8562 else
8563 Fbit := Component_Bit_Offset (Comp);
8564 Lbit := Fbit + Esize (Comp) - 1;
8565 end if;
8566 end Find_Component;
8568 -- Start of processing for Check_Record_Representation_Clause
8570 begin
8571 Find_Type (Ident);
8572 Rectype := Entity (Ident);
8574 if Rectype = Any_Type then
8575 return;
8576 else
8577 Rectype := Underlying_Type (Rectype);
8578 end if;
8580 -- See if we have a fully repped derived tagged type
8582 declare
8583 PS : constant Entity_Id := Parent_Subtype (Rectype);
8585 begin
8586 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
8587 Tagged_Parent := PS;
8589 -- Find maximum bit of any component of the parent type
8591 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
8592 Pcomp := First_Entity (Tagged_Parent);
8593 while Present (Pcomp) loop
8594 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
8595 if Component_Bit_Offset (Pcomp) /= No_Uint
8596 and then Known_Static_Esize (Pcomp)
8597 then
8598 Parent_Last_Bit :=
8599 UI_Max
8600 (Parent_Last_Bit,
8601 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
8602 end if;
8604 Next_Entity (Pcomp);
8605 end if;
8606 end loop;
8607 end if;
8608 end;
8610 -- All done if no component clauses
8612 CC := First (Component_Clauses (N));
8614 if No (CC) then
8615 return;
8616 end if;
8618 -- If a tag is present, then create a component clause that places it
8619 -- at the start of the record (otherwise gigi may place it after other
8620 -- fields that have rep clauses).
8622 Fent := First_Entity (Rectype);
8624 if Nkind (Fent) = N_Defining_Identifier
8625 and then Chars (Fent) = Name_uTag
8626 then
8627 Set_Component_Bit_Offset (Fent, Uint_0);
8628 Set_Normalized_Position (Fent, Uint_0);
8629 Set_Normalized_First_Bit (Fent, Uint_0);
8630 Set_Normalized_Position_Max (Fent, Uint_0);
8631 Init_Esize (Fent, System_Address_Size);
8633 Set_Component_Clause (Fent,
8634 Make_Component_Clause (Loc,
8635 Component_Name => Make_Identifier (Loc, Name_uTag),
8637 Position => Make_Integer_Literal (Loc, Uint_0),
8638 First_Bit => Make_Integer_Literal (Loc, Uint_0),
8639 Last_Bit =>
8640 Make_Integer_Literal (Loc,
8641 UI_From_Int (System_Address_Size))));
8643 Ccount := Ccount + 1;
8644 end if;
8646 Max_Bit_So_Far := Uint_Minus_1;
8647 Overlap_Check_Required := False;
8649 -- Process the component clauses
8651 while Present (CC) loop
8652 Find_Component;
8654 if Present (Comp) then
8655 Ccount := Ccount + 1;
8657 -- We need a full overlap check if record positions non-monotonic
8659 if Fbit <= Max_Bit_So_Far then
8660 Overlap_Check_Required := True;
8661 end if;
8663 Max_Bit_So_Far := Lbit;
8665 -- Check bit position out of range of specified size
8667 if Has_Size_Clause (Rectype)
8668 and then RM_Size (Rectype) <= Lbit
8669 then
8670 Error_Msg_N
8671 ("bit number out of range of specified size",
8672 Last_Bit (CC));
8674 -- Check for overlap with tag component
8676 else
8677 if Is_Tagged_Type (Rectype)
8678 and then Fbit < System_Address_Size
8679 then
8680 Error_Msg_NE
8681 ("component overlaps tag field of&",
8682 Component_Name (CC), Rectype);
8683 Overlap_Detected := True;
8684 end if;
8686 if Hbit < Lbit then
8687 Hbit := Lbit;
8688 end if;
8689 end if;
8691 -- Check parent overlap if component might overlap parent field
8693 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
8694 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
8695 while Present (Pcomp) loop
8696 if not Is_Tag (Pcomp)
8697 and then Chars (Pcomp) /= Name_uParent
8698 then
8699 Check_Component_Overlap (Comp, Pcomp);
8700 end if;
8702 Next_Component_Or_Discriminant (Pcomp);
8703 end loop;
8704 end if;
8705 end if;
8707 Next (CC);
8708 end loop;
8710 -- Now that we have processed all the component clauses, check for
8711 -- overlap. We have to leave this till last, since the components can
8712 -- appear in any arbitrary order in the representation clause.
8714 -- We do not need this check if all specified ranges were monotonic,
8715 -- as recorded by Overlap_Check_Required being False at this stage.
8717 -- This first section checks if there are any overlapping entries at
8718 -- all. It does this by sorting all entries and then seeing if there are
8719 -- any overlaps. If there are none, then that is decisive, but if there
8720 -- are overlaps, they may still be OK (they may result from fields in
8721 -- different variants).
8723 if Overlap_Check_Required then
8724 Overlap_Check1 : declare
8726 OC_Fbit : array (0 .. Ccount) of Uint;
8727 -- First-bit values for component clauses, the value is the offset
8728 -- of the first bit of the field from start of record. The zero
8729 -- entry is for use in sorting.
8731 OC_Lbit : array (0 .. Ccount) of Uint;
8732 -- Last-bit values for component clauses, the value is the offset
8733 -- of the last bit of the field from start of record. The zero
8734 -- entry is for use in sorting.
8736 OC_Count : Natural := 0;
8737 -- Count of entries in OC_Fbit and OC_Lbit
8739 function OC_Lt (Op1, Op2 : Natural) return Boolean;
8740 -- Compare routine for Sort
8742 procedure OC_Move (From : Natural; To : Natural);
8743 -- Move routine for Sort
8745 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
8747 -----------
8748 -- OC_Lt --
8749 -----------
8751 function OC_Lt (Op1, Op2 : Natural) return Boolean is
8752 begin
8753 return OC_Fbit (Op1) < OC_Fbit (Op2);
8754 end OC_Lt;
8756 -------------
8757 -- OC_Move --
8758 -------------
8760 procedure OC_Move (From : Natural; To : Natural) is
8761 begin
8762 OC_Fbit (To) := OC_Fbit (From);
8763 OC_Lbit (To) := OC_Lbit (From);
8764 end OC_Move;
8766 -- Start of processing for Overlap_Check
8768 begin
8769 CC := First (Component_Clauses (N));
8770 while Present (CC) loop
8772 -- Exclude component clause already marked in error
8774 if not Error_Posted (CC) then
8775 Find_Component;
8777 if Present (Comp) then
8778 OC_Count := OC_Count + 1;
8779 OC_Fbit (OC_Count) := Fbit;
8780 OC_Lbit (OC_Count) := Lbit;
8781 end if;
8782 end if;
8784 Next (CC);
8785 end loop;
8787 Sorting.Sort (OC_Count);
8789 Overlap_Check_Required := False;
8790 for J in 1 .. OC_Count - 1 loop
8791 if OC_Lbit (J) >= OC_Fbit (J + 1) then
8792 Overlap_Check_Required := True;
8793 exit;
8794 end if;
8795 end loop;
8796 end Overlap_Check1;
8797 end if;
8799 -- If Overlap_Check_Required is still True, then we have to do the full
8800 -- scale overlap check, since we have at least two fields that do
8801 -- overlap, and we need to know if that is OK since they are in
8802 -- different variant, or whether we have a definite problem.
8804 if Overlap_Check_Required then
8805 Overlap_Check2 : declare
8806 C1_Ent, C2_Ent : Entity_Id;
8807 -- Entities of components being checked for overlap
8809 Clist : Node_Id;
8810 -- Component_List node whose Component_Items are being checked
8812 Citem : Node_Id;
8813 -- Component declaration for component being checked
8815 begin
8816 C1_Ent := First_Entity (Base_Type (Rectype));
8818 -- Loop through all components in record. For each component check
8819 -- for overlap with any of the preceding elements on the component
8820 -- list containing the component and also, if the component is in
8821 -- a variant, check against components outside the case structure.
8822 -- This latter test is repeated recursively up the variant tree.
8824 Main_Component_Loop : while Present (C1_Ent) loop
8825 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
8826 goto Continue_Main_Component_Loop;
8827 end if;
8829 -- Skip overlap check if entity has no declaration node. This
8830 -- happens with discriminants in constrained derived types.
8831 -- Possibly we are missing some checks as a result, but that
8832 -- does not seem terribly serious.
8834 if No (Declaration_Node (C1_Ent)) then
8835 goto Continue_Main_Component_Loop;
8836 end if;
8838 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
8840 -- Loop through component lists that need checking. Check the
8841 -- current component list and all lists in variants above us.
8843 Component_List_Loop : loop
8845 -- If derived type definition, go to full declaration
8846 -- If at outer level, check discriminants if there are any.
8848 if Nkind (Clist) = N_Derived_Type_Definition then
8849 Clist := Parent (Clist);
8850 end if;
8852 -- Outer level of record definition, check discriminants
8854 if Nkind_In (Clist, N_Full_Type_Declaration,
8855 N_Private_Type_Declaration)
8856 then
8857 if Has_Discriminants (Defining_Identifier (Clist)) then
8858 C2_Ent :=
8859 First_Discriminant (Defining_Identifier (Clist));
8860 while Present (C2_Ent) loop
8861 exit when C1_Ent = C2_Ent;
8862 Check_Component_Overlap (C1_Ent, C2_Ent);
8863 Next_Discriminant (C2_Ent);
8864 end loop;
8865 end if;
8867 -- Record extension case
8869 elsif Nkind (Clist) = N_Derived_Type_Definition then
8870 Clist := Empty;
8872 -- Otherwise check one component list
8874 else
8875 Citem := First (Component_Items (Clist));
8876 while Present (Citem) loop
8877 if Nkind (Citem) = N_Component_Declaration then
8878 C2_Ent := Defining_Identifier (Citem);
8879 exit when C1_Ent = C2_Ent;
8880 Check_Component_Overlap (C1_Ent, C2_Ent);
8881 end if;
8883 Next (Citem);
8884 end loop;
8885 end if;
8887 -- Check for variants above us (the parent of the Clist can
8888 -- be a variant, in which case its parent is a variant part,
8889 -- and the parent of the variant part is a component list
8890 -- whose components must all be checked against the current
8891 -- component for overlap).
8893 if Nkind (Parent (Clist)) = N_Variant then
8894 Clist := Parent (Parent (Parent (Clist)));
8896 -- Check for possible discriminant part in record, this
8897 -- is treated essentially as another level in the
8898 -- recursion. For this case the parent of the component
8899 -- list is the record definition, and its parent is the
8900 -- full type declaration containing the discriminant
8901 -- specifications.
8903 elsif Nkind (Parent (Clist)) = N_Record_Definition then
8904 Clist := Parent (Parent ((Clist)));
8906 -- If neither of these two cases, we are at the top of
8907 -- the tree.
8909 else
8910 exit Component_List_Loop;
8911 end if;
8912 end loop Component_List_Loop;
8914 <<Continue_Main_Component_Loop>>
8915 Next_Entity (C1_Ent);
8917 end loop Main_Component_Loop;
8918 end Overlap_Check2;
8919 end if;
8921 -- The following circuit deals with warning on record holes (gaps). We
8922 -- skip this check if overlap was detected, since it makes sense for the
8923 -- programmer to fix this illegality before worrying about warnings.
8925 if not Overlap_Detected and Warn_On_Record_Holes then
8926 Record_Hole_Check : declare
8927 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
8928 -- Full declaration of record type
8930 procedure Check_Component_List
8931 (CL : Node_Id;
8932 Sbit : Uint;
8933 DS : List_Id);
8934 -- Check component list CL for holes. The starting bit should be
8935 -- Sbit. which is zero for the main record component list and set
8936 -- appropriately for recursive calls for variants. DS is set to
8937 -- a list of discriminant specifications to be included in the
8938 -- consideration of components. It is No_List if none to consider.
8940 --------------------------
8941 -- Check_Component_List --
8942 --------------------------
8944 procedure Check_Component_List
8945 (CL : Node_Id;
8946 Sbit : Uint;
8947 DS : List_Id)
8949 Compl : Integer;
8951 begin
8952 Compl := Integer (List_Length (Component_Items (CL)));
8954 if DS /= No_List then
8955 Compl := Compl + Integer (List_Length (DS));
8956 end if;
8958 declare
8959 Comps : array (Natural range 0 .. Compl) of Entity_Id;
8960 -- Gather components (zero entry is for sort routine)
8962 Ncomps : Natural := 0;
8963 -- Number of entries stored in Comps (starting at Comps (1))
8965 Citem : Node_Id;
8966 -- One component item or discriminant specification
8968 Nbit : Uint;
8969 -- Starting bit for next component
8971 CEnt : Entity_Id;
8972 -- Component entity
8974 Variant : Node_Id;
8975 -- One variant
8977 function Lt (Op1, Op2 : Natural) return Boolean;
8978 -- Compare routine for Sort
8980 procedure Move (From : Natural; To : Natural);
8981 -- Move routine for Sort
8983 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
8985 --------
8986 -- Lt --
8987 --------
8989 function Lt (Op1, Op2 : Natural) return Boolean is
8990 begin
8991 return Component_Bit_Offset (Comps (Op1))
8993 Component_Bit_Offset (Comps (Op2));
8994 end Lt;
8996 ----------
8997 -- Move --
8998 ----------
9000 procedure Move (From : Natural; To : Natural) is
9001 begin
9002 Comps (To) := Comps (From);
9003 end Move;
9005 begin
9006 -- Gather discriminants into Comp
9008 if DS /= No_List then
9009 Citem := First (DS);
9010 while Present (Citem) loop
9011 if Nkind (Citem) = N_Discriminant_Specification then
9012 declare
9013 Ent : constant Entity_Id :=
9014 Defining_Identifier (Citem);
9015 begin
9016 if Ekind (Ent) = E_Discriminant then
9017 Ncomps := Ncomps + 1;
9018 Comps (Ncomps) := Ent;
9019 end if;
9020 end;
9021 end if;
9023 Next (Citem);
9024 end loop;
9025 end if;
9027 -- Gather component entities into Comp
9029 Citem := First (Component_Items (CL));
9030 while Present (Citem) loop
9031 if Nkind (Citem) = N_Component_Declaration then
9032 Ncomps := Ncomps + 1;
9033 Comps (Ncomps) := Defining_Identifier (Citem);
9034 end if;
9036 Next (Citem);
9037 end loop;
9039 -- Now sort the component entities based on the first bit.
9040 -- Note we already know there are no overlapping components.
9042 Sorting.Sort (Ncomps);
9044 -- Loop through entries checking for holes
9046 Nbit := Sbit;
9047 for J in 1 .. Ncomps loop
9048 CEnt := Comps (J);
9049 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
9051 if Error_Msg_Uint_1 > 0 then
9052 Error_Msg_NE
9053 ("?H?^-bit gap before component&",
9054 Component_Name (Component_Clause (CEnt)), CEnt);
9055 end if;
9057 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
9058 end loop;
9060 -- Process variant parts recursively if present
9062 if Present (Variant_Part (CL)) then
9063 Variant := First (Variants (Variant_Part (CL)));
9064 while Present (Variant) loop
9065 Check_Component_List
9066 (Component_List (Variant), Nbit, No_List);
9067 Next (Variant);
9068 end loop;
9069 end if;
9070 end;
9071 end Check_Component_List;
9073 -- Start of processing for Record_Hole_Check
9075 begin
9076 declare
9077 Sbit : Uint;
9079 begin
9080 if Is_Tagged_Type (Rectype) then
9081 Sbit := UI_From_Int (System_Address_Size);
9082 else
9083 Sbit := Uint_0;
9084 end if;
9086 if Nkind (Decl) = N_Full_Type_Declaration
9087 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
9088 then
9089 Check_Component_List
9090 (Component_List (Type_Definition (Decl)),
9091 Sbit,
9092 Discriminant_Specifications (Decl));
9093 end if;
9094 end;
9095 end Record_Hole_Check;
9096 end if;
9098 -- For records that have component clauses for all components, and whose
9099 -- size is less than or equal to 32, we need to know the size in the
9100 -- front end to activate possible packed array processing where the
9101 -- component type is a record.
9103 -- At this stage Hbit + 1 represents the first unused bit from all the
9104 -- component clauses processed, so if the component clauses are
9105 -- complete, then this is the length of the record.
9107 -- For records longer than System.Storage_Unit, and for those where not
9108 -- all components have component clauses, the back end determines the
9109 -- length (it may for example be appropriate to round up the size
9110 -- to some convenient boundary, based on alignment considerations, etc).
9112 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
9114 -- Nothing to do if at least one component has no component clause
9116 Comp := First_Component_Or_Discriminant (Rectype);
9117 while Present (Comp) loop
9118 exit when No (Component_Clause (Comp));
9119 Next_Component_Or_Discriminant (Comp);
9120 end loop;
9122 -- If we fall out of loop, all components have component clauses
9123 -- and so we can set the size to the maximum value.
9125 if No (Comp) then
9126 Set_RM_Size (Rectype, Hbit + 1);
9127 end if;
9128 end if;
9129 end Check_Record_Representation_Clause;
9131 ----------------
9132 -- Check_Size --
9133 ----------------
9135 procedure Check_Size
9136 (N : Node_Id;
9137 T : Entity_Id;
9138 Siz : Uint;
9139 Biased : out Boolean)
9141 UT : constant Entity_Id := Underlying_Type (T);
9142 M : Uint;
9144 begin
9145 Biased := False;
9147 -- Reject patently improper size values.
9149 if Is_Elementary_Type (T)
9150 and then Siz > UI_From_Int (Int'Last)
9151 then
9152 Error_Msg_N ("Size value too large for elementary type", N);
9154 if Nkind (Original_Node (N)) = N_Op_Expon then
9155 Error_Msg_N
9156 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
9157 end if;
9158 end if;
9160 -- Dismiss generic types
9162 if Is_Generic_Type (T)
9163 or else
9164 Is_Generic_Type (UT)
9165 or else
9166 Is_Generic_Type (Root_Type (UT))
9167 then
9168 return;
9170 -- Guard against previous errors
9172 elsif No (UT) or else UT = Any_Type then
9173 Check_Error_Detected;
9174 return;
9176 -- Check case of bit packed array
9178 elsif Is_Array_Type (UT)
9179 and then Known_Static_Component_Size (UT)
9180 and then Is_Bit_Packed_Array (UT)
9181 then
9182 declare
9183 Asiz : Uint;
9184 Indx : Node_Id;
9185 Ityp : Entity_Id;
9187 begin
9188 Asiz := Component_Size (UT);
9189 Indx := First_Index (UT);
9190 loop
9191 Ityp := Etype (Indx);
9193 -- If non-static bound, then we are not in the business of
9194 -- trying to check the length, and indeed an error will be
9195 -- issued elsewhere, since sizes of non-static array types
9196 -- cannot be set implicitly or explicitly.
9198 if not Is_Static_Subtype (Ityp) then
9199 return;
9200 end if;
9202 -- Otherwise accumulate next dimension
9204 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
9205 Expr_Value (Type_Low_Bound (Ityp)) +
9206 Uint_1);
9208 Next_Index (Indx);
9209 exit when No (Indx);
9210 end loop;
9212 if Asiz <= Siz then
9213 return;
9215 else
9216 Error_Msg_Uint_1 := Asiz;
9217 Error_Msg_NE
9218 ("size for& too small, minimum allowed is ^", N, T);
9219 Set_Esize (T, Asiz);
9220 Set_RM_Size (T, Asiz);
9221 end if;
9222 end;
9224 -- All other composite types are ignored
9226 elsif Is_Composite_Type (UT) then
9227 return;
9229 -- For fixed-point types, don't check minimum if type is not frozen,
9230 -- since we don't know all the characteristics of the type that can
9231 -- affect the size (e.g. a specified small) till freeze time.
9233 elsif Is_Fixed_Point_Type (UT)
9234 and then not Is_Frozen (UT)
9235 then
9236 null;
9238 -- Cases for which a minimum check is required
9240 else
9241 -- Ignore if specified size is correct for the type
9243 if Known_Esize (UT) and then Siz = Esize (UT) then
9244 return;
9245 end if;
9247 -- Otherwise get minimum size
9249 M := UI_From_Int (Minimum_Size (UT));
9251 if Siz < M then
9253 -- Size is less than minimum size, but one possibility remains
9254 -- that we can manage with the new size if we bias the type.
9256 M := UI_From_Int (Minimum_Size (UT, Biased => True));
9258 if Siz < M then
9259 Error_Msg_Uint_1 := M;
9260 Error_Msg_NE
9261 ("size for& too small, minimum allowed is ^", N, T);
9262 Set_Esize (T, M);
9263 Set_RM_Size (T, M);
9264 else
9265 Biased := True;
9266 end if;
9267 end if;
9268 end if;
9269 end Check_Size;
9271 --------------------------
9272 -- Freeze_Entity_Checks --
9273 --------------------------
9275 procedure Freeze_Entity_Checks (N : Node_Id) is
9276 E : constant Entity_Id := Entity (N);
9278 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
9279 -- True in non-generic case. Some of the processing here is skipped
9280 -- for the generic case since it is not needed. Basically in the
9281 -- generic case, we only need to do stuff that might generate error
9282 -- messages or warnings.
9283 begin
9284 -- Remember that we are processing a freezing entity. Required to
9285 -- ensure correct decoration of internal entities associated with
9286 -- interfaces (see New_Overloaded_Entity).
9288 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
9290 -- For tagged types covering interfaces add internal entities that link
9291 -- the primitives of the interfaces with the primitives that cover them.
9292 -- Note: These entities were originally generated only when generating
9293 -- code because their main purpose was to provide support to initialize
9294 -- the secondary dispatch tables. They are now generated also when
9295 -- compiling with no code generation to provide ASIS the relationship
9296 -- between interface primitives and tagged type primitives. They are
9297 -- also used to locate primitives covering interfaces when processing
9298 -- generics (see Derive_Subprograms).
9300 -- This is not needed in the generic case
9302 if Ada_Version >= Ada_2005
9303 and then Non_Generic_Case
9304 and then Ekind (E) = E_Record_Type
9305 and then Is_Tagged_Type (E)
9306 and then not Is_Interface (E)
9307 and then Has_Interfaces (E)
9308 then
9309 -- This would be a good common place to call the routine that checks
9310 -- overriding of interface primitives (and thus factorize calls to
9311 -- Check_Abstract_Overriding located at different contexts in the
9312 -- compiler). However, this is not possible because it causes
9313 -- spurious errors in case of late overriding.
9315 Add_Internal_Interface_Entities (E);
9316 end if;
9318 -- Check CPP types
9320 if Ekind (E) = E_Record_Type
9321 and then Is_CPP_Class (E)
9322 and then Is_Tagged_Type (E)
9323 and then Tagged_Type_Expansion
9324 then
9325 if CPP_Num_Prims (E) = 0 then
9327 -- If the CPP type has user defined components then it must import
9328 -- primitives from C++. This is required because if the C++ class
9329 -- has no primitives then the C++ compiler does not added the _tag
9330 -- component to the type.
9332 if First_Entity (E) /= Last_Entity (E) then
9333 Error_Msg_N
9334 ("'C'P'P type must import at least one primitive from C++??",
9336 end if;
9337 end if;
9339 -- Check that all its primitives are abstract or imported from C++.
9340 -- Check also availability of the C++ constructor.
9342 declare
9343 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
9344 Elmt : Elmt_Id;
9345 Error_Reported : Boolean := False;
9346 Prim : Node_Id;
9348 begin
9349 Elmt := First_Elmt (Primitive_Operations (E));
9350 while Present (Elmt) loop
9351 Prim := Node (Elmt);
9353 if Comes_From_Source (Prim) then
9354 if Is_Abstract_Subprogram (Prim) then
9355 null;
9357 elsif not Is_Imported (Prim)
9358 or else Convention (Prim) /= Convention_CPP
9359 then
9360 Error_Msg_N
9361 ("primitives of 'C'P'P types must be imported from C++ "
9362 & "or abstract??", Prim);
9364 elsif not Has_Constructors
9365 and then not Error_Reported
9366 then
9367 Error_Msg_Name_1 := Chars (E);
9368 Error_Msg_N
9369 ("??'C'P'P constructor required for type %", Prim);
9370 Error_Reported := True;
9371 end if;
9372 end if;
9374 Next_Elmt (Elmt);
9375 end loop;
9376 end;
9377 end if;
9379 -- Check Ada derivation of CPP type
9381 if Expander_Active -- why? losing errors in -gnatc mode???
9382 and then Tagged_Type_Expansion
9383 and then Ekind (E) = E_Record_Type
9384 and then Etype (E) /= E
9385 and then Is_CPP_Class (Etype (E))
9386 and then CPP_Num_Prims (Etype (E)) > 0
9387 and then not Is_CPP_Class (E)
9388 and then not Has_CPP_Constructors (Etype (E))
9389 then
9390 -- If the parent has C++ primitives but it has no constructor then
9391 -- check that all the primitives are overridden in this derivation;
9392 -- otherwise the constructor of the parent is needed to build the
9393 -- dispatch table.
9395 declare
9396 Elmt : Elmt_Id;
9397 Prim : Node_Id;
9399 begin
9400 Elmt := First_Elmt (Primitive_Operations (E));
9401 while Present (Elmt) loop
9402 Prim := Node (Elmt);
9404 if not Is_Abstract_Subprogram (Prim)
9405 and then No (Interface_Alias (Prim))
9406 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
9407 then
9408 Error_Msg_Name_1 := Chars (Etype (E));
9409 Error_Msg_N
9410 ("'C'P'P constructor required for parent type %", E);
9411 exit;
9412 end if;
9414 Next_Elmt (Elmt);
9415 end loop;
9416 end;
9417 end if;
9419 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
9421 -- If we have a type with predicates, build predicate function. This
9422 -- is not needed in the generic casee
9424 if Non_Generic_Case and then Is_Type (E) and then Has_Predicates (E) then
9425 Build_Predicate_Functions (E, N);
9426 end if;
9428 -- If type has delayed aspects, this is where we do the preanalysis at
9429 -- the freeze point, as part of the consistent visibility check. Note
9430 -- that this must be done after calling Build_Predicate_Functions or
9431 -- Build_Invariant_Procedure since these subprograms fix occurrences of
9432 -- the subtype name in the saved expression so that they will not cause
9433 -- trouble in the preanalysis.
9435 -- This is also not needed in the generic case
9437 if Non_Generic_Case
9438 and then Has_Delayed_Aspects (E)
9439 and then Scope (E) = Current_Scope
9440 then
9441 -- Retrieve the visibility to the discriminants in order to properly
9442 -- analyze the aspects.
9444 Push_Scope_And_Install_Discriminants (E);
9446 declare
9447 Ritem : Node_Id;
9449 begin
9450 -- Look for aspect specification entries for this entity
9452 Ritem := First_Rep_Item (E);
9453 while Present (Ritem) loop
9454 if Nkind (Ritem) = N_Aspect_Specification
9455 and then Entity (Ritem) = E
9456 and then Is_Delayed_Aspect (Ritem)
9457 then
9458 Check_Aspect_At_Freeze_Point (Ritem);
9459 end if;
9461 Next_Rep_Item (Ritem);
9462 end loop;
9463 end;
9465 Uninstall_Discriminants_And_Pop_Scope (E);
9466 end if;
9468 -- For a record type, deal with variant parts. This has to be delayed
9469 -- to this point, because of the issue of statically precicated
9470 -- subtypes, which we have to ensure are frozen before checking
9471 -- choices, since we need to have the static choice list set.
9473 if Is_Record_Type (E) then
9474 Check_Variant_Part : declare
9475 D : constant Node_Id := Declaration_Node (E);
9476 T : Node_Id;
9477 C : Node_Id;
9478 VP : Node_Id;
9480 Others_Present : Boolean;
9481 pragma Warnings (Off, Others_Present);
9482 -- Indicates others present, not used in this case
9484 procedure Non_Static_Choice_Error (Choice : Node_Id);
9485 -- Error routine invoked by the generic instantiation below when
9486 -- the variant part has a non static choice.
9488 procedure Process_Declarations (Variant : Node_Id);
9489 -- Processes declarations associated with a variant. We analyzed
9490 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
9491 -- but we still need the recursive call to Check_Choices for any
9492 -- nested variant to get its choices properly processed. This is
9493 -- also where we expand out the choices if expansion is active.
9495 package Variant_Choices_Processing is new
9496 Generic_Check_Choices
9497 (Process_Empty_Choice => No_OP,
9498 Process_Non_Static_Choice => Non_Static_Choice_Error,
9499 Process_Associated_Node => Process_Declarations);
9500 use Variant_Choices_Processing;
9502 -----------------------------
9503 -- Non_Static_Choice_Error --
9504 -----------------------------
9506 procedure Non_Static_Choice_Error (Choice : Node_Id) is
9507 begin
9508 Flag_Non_Static_Expr
9509 ("choice given in variant part is not static!", Choice);
9510 end Non_Static_Choice_Error;
9512 --------------------------
9513 -- Process_Declarations --
9514 --------------------------
9516 procedure Process_Declarations (Variant : Node_Id) is
9517 CL : constant Node_Id := Component_List (Variant);
9518 VP : Node_Id;
9520 begin
9521 -- Check for static predicate present in this variant
9523 if Has_SP_Choice (Variant) then
9525 -- Here we expand. You might expect to find this call in
9526 -- Expand_N_Variant_Part, but that is called when we first
9527 -- see the variant part, and we cannot do this expansion
9528 -- earlier than the freeze point, since for statically
9529 -- predicated subtypes, the predicate is not known till
9530 -- the freeze point.
9532 -- Furthermore, we do this expansion even if the expander
9533 -- is not active, because other semantic processing, e.g.
9534 -- for aggregates, requires the expanded list of choices.
9536 -- If the expander is not active, then we can't just clobber
9537 -- the list since it would invalidate the ASIS -gnatct tree.
9538 -- So we have to rewrite the variant part with a Rewrite
9539 -- call that replaces it with a copy and clobber the copy.
9541 if not Expander_Active then
9542 declare
9543 NewV : constant Node_Id := New_Copy (Variant);
9544 begin
9545 Set_Discrete_Choices
9546 (NewV, New_Copy_List (Discrete_Choices (Variant)));
9547 Rewrite (Variant, NewV);
9548 end;
9549 end if;
9551 Expand_Static_Predicates_In_Choices (Variant);
9552 end if;
9554 -- We don't need to worry about the declarations in the variant
9555 -- (since they were analyzed by Analyze_Choices when we first
9556 -- encountered the variant), but we do need to take care of
9557 -- expansion of any nested variants.
9559 if not Null_Present (CL) then
9560 VP := Variant_Part (CL);
9562 if Present (VP) then
9563 Check_Choices
9564 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
9565 end if;
9566 end if;
9567 end Process_Declarations;
9569 -- Start of processing for Check_Variant_Part
9571 begin
9572 -- Find component list
9574 C := Empty;
9576 if Nkind (D) = N_Full_Type_Declaration then
9577 T := Type_Definition (D);
9579 if Nkind (T) = N_Record_Definition then
9580 C := Component_List (T);
9582 elsif Nkind (T) = N_Derived_Type_Definition
9583 and then Present (Record_Extension_Part (T))
9584 then
9585 C := Component_List (Record_Extension_Part (T));
9586 end if;
9587 end if;
9589 -- Case of variant part present
9591 if Present (C) and then Present (Variant_Part (C)) then
9592 VP := Variant_Part (C);
9594 -- Check choices
9596 Check_Choices
9597 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
9599 -- If the last variant does not contain the Others choice,
9600 -- replace it with an N_Others_Choice node since Gigi always
9601 -- wants an Others. Note that we do not bother to call Analyze
9602 -- on the modified variant part, since its only effect would be
9603 -- to compute the Others_Discrete_Choices node laboriously, and
9604 -- of course we already know the list of choices corresponding
9605 -- to the others choice (it's the list we're replacing).
9607 -- We only want to do this if the expander is active, since
9608 -- we do not want to clobber the ASIS tree.
9610 if Expander_Active then
9611 declare
9612 Last_Var : constant Node_Id :=
9613 Last_Non_Pragma (Variants (VP));
9615 Others_Node : Node_Id;
9617 begin
9618 if Nkind (First (Discrete_Choices (Last_Var))) /=
9619 N_Others_Choice
9620 then
9621 Others_Node := Make_Others_Choice (Sloc (Last_Var));
9622 Set_Others_Discrete_Choices
9623 (Others_Node, Discrete_Choices (Last_Var));
9624 Set_Discrete_Choices
9625 (Last_Var, New_List (Others_Node));
9626 end if;
9627 end;
9628 end if;
9629 end if;
9630 end Check_Variant_Part;
9631 end if;
9632 end Freeze_Entity_Checks;
9634 -------------------------
9635 -- Get_Alignment_Value --
9636 -------------------------
9638 function Get_Alignment_Value (Expr : Node_Id) return Uint is
9639 Align : constant Uint := Static_Integer (Expr);
9641 begin
9642 if Align = No_Uint then
9643 return No_Uint;
9645 elsif Align <= 0 then
9646 Error_Msg_N ("alignment value must be positive", Expr);
9647 return No_Uint;
9649 else
9650 for J in Int range 0 .. 64 loop
9651 declare
9652 M : constant Uint := Uint_2 ** J;
9654 begin
9655 exit when M = Align;
9657 if M > Align then
9658 Error_Msg_N
9659 ("alignment value must be power of 2", Expr);
9660 return No_Uint;
9661 end if;
9662 end;
9663 end loop;
9665 return Align;
9666 end if;
9667 end Get_Alignment_Value;
9669 -------------------------------------
9670 -- Inherit_Aspects_At_Freeze_Point --
9671 -------------------------------------
9673 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
9674 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9675 (Rep_Item : Node_Id) return Boolean;
9676 -- This routine checks if Rep_Item is either a pragma or an aspect
9677 -- specification node whose correponding pragma (if any) is present in
9678 -- the Rep Item chain of the entity it has been specified to.
9680 --------------------------------------------------
9681 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
9682 --------------------------------------------------
9684 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9685 (Rep_Item : Node_Id) return Boolean
9687 begin
9688 return Nkind (Rep_Item) = N_Pragma
9689 or else Present_In_Rep_Item
9690 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
9691 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
9693 -- Start of processing for Inherit_Aspects_At_Freeze_Point
9695 begin
9696 -- A representation item is either subtype-specific (Size and Alignment
9697 -- clauses) or type-related (all others). Subtype-specific aspects may
9698 -- differ for different subtypes of the same type (RM 13.1.8).
9700 -- A derived type inherits each type-related representation aspect of
9701 -- its parent type that was directly specified before the declaration of
9702 -- the derived type (RM 13.1.15).
9704 -- A derived subtype inherits each subtype-specific representation
9705 -- aspect of its parent subtype that was directly specified before the
9706 -- declaration of the derived type (RM 13.1.15).
9708 -- The general processing involves inheriting a representation aspect
9709 -- from a parent type whenever the first rep item (aspect specification,
9710 -- attribute definition clause, pragma) corresponding to the given
9711 -- representation aspect in the rep item chain of Typ, if any, isn't
9712 -- directly specified to Typ but to one of its parents.
9714 -- ??? Note that, for now, just a limited number of representation
9715 -- aspects have been inherited here so far. Many of them are
9716 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
9717 -- a non- exhaustive list of aspects that likely also need to
9718 -- be moved to this routine: Alignment, Component_Alignment,
9719 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
9720 -- Preelaborable_Initialization, RM_Size and Small.
9722 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
9723 return;
9724 end if;
9726 -- Ada_05/Ada_2005
9728 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
9729 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
9730 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9731 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
9732 then
9733 Set_Is_Ada_2005_Only (Typ);
9734 end if;
9736 -- Ada_12/Ada_2012
9738 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
9739 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
9740 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9741 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
9742 then
9743 Set_Is_Ada_2012_Only (Typ);
9744 end if;
9746 -- Atomic/Shared
9748 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
9749 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
9750 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9751 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
9752 then
9753 Set_Is_Atomic (Typ);
9754 Set_Treat_As_Volatile (Typ);
9755 Set_Is_Volatile (Typ);
9756 end if;
9758 -- Default_Component_Value
9760 if Is_Array_Type (Typ)
9761 and then Is_Base_Type (Typ)
9762 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
9763 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
9764 then
9765 Set_Default_Aspect_Component_Value (Typ,
9766 Default_Aspect_Component_Value
9767 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
9768 end if;
9770 -- Default_Value
9772 if Is_Scalar_Type (Typ)
9773 and then Is_Base_Type (Typ)
9774 and then Has_Rep_Item (Typ, Name_Default_Value, False)
9775 and then Has_Rep_Item (Typ, Name_Default_Value)
9776 then
9777 Set_Default_Aspect_Value (Typ,
9778 Default_Aspect_Value
9779 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
9780 end if;
9782 -- Discard_Names
9784 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
9785 and then Has_Rep_Item (Typ, Name_Discard_Names)
9786 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9787 (Get_Rep_Item (Typ, Name_Discard_Names))
9788 then
9789 Set_Discard_Names (Typ);
9790 end if;
9792 -- Invariants
9794 if not Has_Rep_Item (Typ, Name_Invariant, False)
9795 and then Has_Rep_Item (Typ, Name_Invariant)
9796 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9797 (Get_Rep_Item (Typ, Name_Invariant))
9798 then
9799 Set_Has_Invariants (Typ);
9801 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
9802 Set_Has_Inheritable_Invariants (Typ);
9803 end if;
9804 end if;
9806 -- Volatile
9808 if not Has_Rep_Item (Typ, Name_Volatile, False)
9809 and then Has_Rep_Item (Typ, Name_Volatile)
9810 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9811 (Get_Rep_Item (Typ, Name_Volatile))
9812 then
9813 Set_Treat_As_Volatile (Typ);
9814 Set_Is_Volatile (Typ);
9815 end if;
9817 -- Inheritance for derived types only
9819 if Is_Derived_Type (Typ) then
9820 declare
9821 Bas_Typ : constant Entity_Id := Base_Type (Typ);
9822 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
9824 begin
9825 -- Atomic_Components
9827 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
9828 and then Has_Rep_Item (Typ, Name_Atomic_Components)
9829 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9830 (Get_Rep_Item (Typ, Name_Atomic_Components))
9831 then
9832 Set_Has_Atomic_Components (Imp_Bas_Typ);
9833 end if;
9835 -- Volatile_Components
9837 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
9838 and then Has_Rep_Item (Typ, Name_Volatile_Components)
9839 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9840 (Get_Rep_Item (Typ, Name_Volatile_Components))
9841 then
9842 Set_Has_Volatile_Components (Imp_Bas_Typ);
9843 end if;
9845 -- Finalize_Storage_Only.
9847 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
9848 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
9849 then
9850 Set_Finalize_Storage_Only (Bas_Typ);
9851 end if;
9853 -- Universal_Aliasing
9855 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
9856 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
9857 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
9858 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
9859 then
9860 Set_Universal_Aliasing (Imp_Bas_Typ);
9861 end if;
9863 -- Record type specific aspects
9865 if Is_Record_Type (Typ) then
9867 -- Bit_Order
9869 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
9870 and then Has_Rep_Item (Typ, Name_Bit_Order)
9871 then
9872 Set_Reverse_Bit_Order (Bas_Typ,
9873 Reverse_Bit_Order (Entity (Name
9874 (Get_Rep_Item (Typ, Name_Bit_Order)))));
9875 end if;
9877 -- Scalar_Storage_Order
9879 if not Has_Rep_Item (Typ, Name_Scalar_Storage_Order, False)
9880 and then Has_Rep_Item (Typ, Name_Scalar_Storage_Order)
9881 then
9882 Set_Reverse_Storage_Order (Bas_Typ,
9883 Reverse_Storage_Order (Entity (Name
9884 (Get_Rep_Item (Typ, Name_Scalar_Storage_Order)))));
9885 end if;
9886 end if;
9887 end;
9888 end if;
9889 end Inherit_Aspects_At_Freeze_Point;
9891 ----------------
9892 -- Initialize --
9893 ----------------
9895 procedure Initialize is
9896 begin
9897 Address_Clause_Checks.Init;
9898 Independence_Checks.Init;
9899 Unchecked_Conversions.Init;
9900 end Initialize;
9902 -------------------------
9903 -- Is_Operational_Item --
9904 -------------------------
9906 function Is_Operational_Item (N : Node_Id) return Boolean is
9907 begin
9908 if Nkind (N) /= N_Attribute_Definition_Clause then
9909 return False;
9911 else
9912 declare
9913 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
9914 begin
9915 return Id = Attribute_Input
9916 or else Id = Attribute_Output
9917 or else Id = Attribute_Read
9918 or else Id = Attribute_Write
9919 or else Id = Attribute_External_Tag;
9920 end;
9921 end if;
9922 end Is_Operational_Item;
9924 ------------------
9925 -- Minimum_Size --
9926 ------------------
9928 function Minimum_Size
9929 (T : Entity_Id;
9930 Biased : Boolean := False) return Nat
9932 Lo : Uint := No_Uint;
9933 Hi : Uint := No_Uint;
9934 LoR : Ureal := No_Ureal;
9935 HiR : Ureal := No_Ureal;
9936 LoSet : Boolean := False;
9937 HiSet : Boolean := False;
9938 B : Uint;
9939 S : Nat;
9940 Ancest : Entity_Id;
9941 R_Typ : constant Entity_Id := Root_Type (T);
9943 begin
9944 -- If bad type, return 0
9946 if T = Any_Type then
9947 return 0;
9949 -- For generic types, just return zero. There cannot be any legitimate
9950 -- need to know such a size, but this routine may be called with a
9951 -- generic type as part of normal processing.
9953 elsif Is_Generic_Type (R_Typ)
9954 or else R_Typ = Any_Type
9955 then
9956 return 0;
9958 -- Access types. Normally an access type cannot have a size smaller
9959 -- than the size of System.Address. The exception is on VMS, where
9960 -- we have short and long addresses, and it is possible for an access
9961 -- type to have a short address size (and thus be less than the size
9962 -- of System.Address itself). We simply skip the check for VMS, and
9963 -- leave it to the back end to do the check.
9965 elsif Is_Access_Type (T) then
9966 if OpenVMS_On_Target then
9967 return 0;
9968 else
9969 return System_Address_Size;
9970 end if;
9972 -- Floating-point types
9974 elsif Is_Floating_Point_Type (T) then
9975 return UI_To_Int (Esize (R_Typ));
9977 -- Discrete types
9979 elsif Is_Discrete_Type (T) then
9981 -- The following loop is looking for the nearest compile time known
9982 -- bounds following the ancestor subtype chain. The idea is to find
9983 -- the most restrictive known bounds information.
9985 Ancest := T;
9986 loop
9987 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
9988 return 0;
9989 end if;
9991 if not LoSet then
9992 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
9993 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
9994 LoSet := True;
9995 exit when HiSet;
9996 end if;
9997 end if;
9999 if not HiSet then
10000 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
10001 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
10002 HiSet := True;
10003 exit when LoSet;
10004 end if;
10005 end if;
10007 Ancest := Ancestor_Subtype (Ancest);
10009 if No (Ancest) then
10010 Ancest := Base_Type (T);
10012 if Is_Generic_Type (Ancest) then
10013 return 0;
10014 end if;
10015 end if;
10016 end loop;
10018 -- Fixed-point types. We can't simply use Expr_Value to get the
10019 -- Corresponding_Integer_Value values of the bounds, since these do not
10020 -- get set till the type is frozen, and this routine can be called
10021 -- before the type is frozen. Similarly the test for bounds being static
10022 -- needs to include the case where we have unanalyzed real literals for
10023 -- the same reason.
10025 elsif Is_Fixed_Point_Type (T) then
10027 -- The following loop is looking for the nearest compile time known
10028 -- bounds following the ancestor subtype chain. The idea is to find
10029 -- the most restrictive known bounds information.
10031 Ancest := T;
10032 loop
10033 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
10034 return 0;
10035 end if;
10037 -- Note: In the following two tests for LoSet and HiSet, it may
10038 -- seem redundant to test for N_Real_Literal here since normally
10039 -- one would assume that the test for the value being known at
10040 -- compile time includes this case. However, there is a glitch.
10041 -- If the real literal comes from folding a non-static expression,
10042 -- then we don't consider any non- static expression to be known
10043 -- at compile time if we are in configurable run time mode (needed
10044 -- in some cases to give a clearer definition of what is and what
10045 -- is not accepted). So the test is indeed needed. Without it, we
10046 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
10048 if not LoSet then
10049 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
10050 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
10051 then
10052 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
10053 LoSet := True;
10054 exit when HiSet;
10055 end if;
10056 end if;
10058 if not HiSet then
10059 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
10060 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
10061 then
10062 HiR := Expr_Value_R (Type_High_Bound (Ancest));
10063 HiSet := True;
10064 exit when LoSet;
10065 end if;
10066 end if;
10068 Ancest := Ancestor_Subtype (Ancest);
10070 if No (Ancest) then
10071 Ancest := Base_Type (T);
10073 if Is_Generic_Type (Ancest) then
10074 return 0;
10075 end if;
10076 end if;
10077 end loop;
10079 Lo := UR_To_Uint (LoR / Small_Value (T));
10080 Hi := UR_To_Uint (HiR / Small_Value (T));
10082 -- No other types allowed
10084 else
10085 raise Program_Error;
10086 end if;
10088 -- Fall through with Hi and Lo set. Deal with biased case
10090 if (Biased
10091 and then not Is_Fixed_Point_Type (T)
10092 and then not (Is_Enumeration_Type (T)
10093 and then Has_Non_Standard_Rep (T)))
10094 or else Has_Biased_Representation (T)
10095 then
10096 Hi := Hi - Lo;
10097 Lo := Uint_0;
10098 end if;
10100 -- Signed case. Note that we consider types like range 1 .. -1 to be
10101 -- signed for the purpose of computing the size, since the bounds have
10102 -- to be accommodated in the base type.
10104 if Lo < 0 or else Hi < 0 then
10105 S := 1;
10106 B := Uint_1;
10108 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
10109 -- Note that we accommodate the case where the bounds cross. This
10110 -- can happen either because of the way the bounds are declared
10111 -- or because of the algorithm in Freeze_Fixed_Point_Type.
10113 while Lo < -B
10114 or else Hi < -B
10115 or else Lo >= B
10116 or else Hi >= B
10117 loop
10118 B := Uint_2 ** S;
10119 S := S + 1;
10120 end loop;
10122 -- Unsigned case
10124 else
10125 -- If both bounds are positive, make sure that both are represen-
10126 -- table in the case where the bounds are crossed. This can happen
10127 -- either because of the way the bounds are declared, or because of
10128 -- the algorithm in Freeze_Fixed_Point_Type.
10130 if Lo > Hi then
10131 Hi := Lo;
10132 end if;
10134 -- S = size, (can accommodate 0 .. (2**size - 1))
10136 S := 0;
10137 while Hi >= Uint_2 ** S loop
10138 S := S + 1;
10139 end loop;
10140 end if;
10142 return S;
10143 end Minimum_Size;
10145 ---------------------------
10146 -- New_Stream_Subprogram --
10147 ---------------------------
10149 procedure New_Stream_Subprogram
10150 (N : Node_Id;
10151 Ent : Entity_Id;
10152 Subp : Entity_Id;
10153 Nam : TSS_Name_Type)
10155 Loc : constant Source_Ptr := Sloc (N);
10156 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
10157 Subp_Id : Entity_Id;
10158 Subp_Decl : Node_Id;
10159 F : Entity_Id;
10160 Etyp : Entity_Id;
10162 Defer_Declaration : constant Boolean :=
10163 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
10164 -- For a tagged type, there is a declaration for each stream attribute
10165 -- at the freeze point, and we must generate only a completion of this
10166 -- declaration. We do the same for private types, because the full view
10167 -- might be tagged. Otherwise we generate a declaration at the point of
10168 -- the attribute definition clause.
10170 function Build_Spec return Node_Id;
10171 -- Used for declaration and renaming declaration, so that this is
10172 -- treated as a renaming_as_body.
10174 ----------------
10175 -- Build_Spec --
10176 ----------------
10178 function Build_Spec return Node_Id is
10179 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
10180 Formals : List_Id;
10181 Spec : Node_Id;
10182 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
10184 begin
10185 Subp_Id := Make_Defining_Identifier (Loc, Sname);
10187 -- S : access Root_Stream_Type'Class
10189 Formals := New_List (
10190 Make_Parameter_Specification (Loc,
10191 Defining_Identifier =>
10192 Make_Defining_Identifier (Loc, Name_S),
10193 Parameter_Type =>
10194 Make_Access_Definition (Loc,
10195 Subtype_Mark =>
10196 New_Reference_To (
10197 Designated_Type (Etype (F)), Loc))));
10199 if Nam = TSS_Stream_Input then
10200 Spec :=
10201 Make_Function_Specification (Loc,
10202 Defining_Unit_Name => Subp_Id,
10203 Parameter_Specifications => Formals,
10204 Result_Definition => T_Ref);
10205 else
10206 -- V : [out] T
10208 Append_To (Formals,
10209 Make_Parameter_Specification (Loc,
10210 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
10211 Out_Present => Out_P,
10212 Parameter_Type => T_Ref));
10214 Spec :=
10215 Make_Procedure_Specification (Loc,
10216 Defining_Unit_Name => Subp_Id,
10217 Parameter_Specifications => Formals);
10218 end if;
10220 return Spec;
10221 end Build_Spec;
10223 -- Start of processing for New_Stream_Subprogram
10225 begin
10226 F := First_Formal (Subp);
10228 if Ekind (Subp) = E_Procedure then
10229 Etyp := Etype (Next_Formal (F));
10230 else
10231 Etyp := Etype (Subp);
10232 end if;
10234 -- Prepare subprogram declaration and insert it as an action on the
10235 -- clause node. The visibility for this entity is used to test for
10236 -- visibility of the attribute definition clause (in the sense of
10237 -- 8.3(23) as amended by AI-195).
10239 if not Defer_Declaration then
10240 Subp_Decl :=
10241 Make_Subprogram_Declaration (Loc,
10242 Specification => Build_Spec);
10244 -- For a tagged type, there is always a visible declaration for each
10245 -- stream TSS (it is a predefined primitive operation), and the
10246 -- completion of this declaration occurs at the freeze point, which is
10247 -- not always visible at places where the attribute definition clause is
10248 -- visible. So, we create a dummy entity here for the purpose of
10249 -- tracking the visibility of the attribute definition clause itself.
10251 else
10252 Subp_Id :=
10253 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
10254 Subp_Decl :=
10255 Make_Object_Declaration (Loc,
10256 Defining_Identifier => Subp_Id,
10257 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
10258 end if;
10260 Insert_Action (N, Subp_Decl);
10261 Set_Entity (N, Subp_Id);
10263 Subp_Decl :=
10264 Make_Subprogram_Renaming_Declaration (Loc,
10265 Specification => Build_Spec,
10266 Name => New_Reference_To (Subp, Loc));
10268 if Defer_Declaration then
10269 Set_TSS (Base_Type (Ent), Subp_Id);
10270 else
10271 Insert_Action (N, Subp_Decl);
10272 Copy_TSS (Subp_Id, Base_Type (Ent));
10273 end if;
10274 end New_Stream_Subprogram;
10276 ------------------------
10277 -- Rep_Item_Too_Early --
10278 ------------------------
10280 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
10281 begin
10282 -- Cannot apply non-operational rep items to generic types
10284 if Is_Operational_Item (N) then
10285 return False;
10287 elsif Is_Type (T)
10288 and then Is_Generic_Type (Root_Type (T))
10289 then
10290 Error_Msg_N ("representation item not allowed for generic type", N);
10291 return True;
10292 end if;
10294 -- Otherwise check for incomplete type
10296 if Is_Incomplete_Or_Private_Type (T)
10297 and then No (Underlying_Type (T))
10298 and then
10299 (Nkind (N) /= N_Pragma
10300 or else Get_Pragma_Id (N) /= Pragma_Import)
10301 then
10302 Error_Msg_N
10303 ("representation item must be after full type declaration", N);
10304 return True;
10306 -- If the type has incomplete components, a representation clause is
10307 -- illegal but stream attributes and Convention pragmas are correct.
10309 elsif Has_Private_Component (T) then
10310 if Nkind (N) = N_Pragma then
10311 return False;
10313 else
10314 Error_Msg_N
10315 ("representation item must appear after type is fully defined",
10317 return True;
10318 end if;
10319 else
10320 return False;
10321 end if;
10322 end Rep_Item_Too_Early;
10324 -----------------------
10325 -- Rep_Item_Too_Late --
10326 -----------------------
10328 function Rep_Item_Too_Late
10329 (T : Entity_Id;
10330 N : Node_Id;
10331 FOnly : Boolean := False) return Boolean
10333 S : Entity_Id;
10334 Parent_Type : Entity_Id;
10336 procedure Too_Late;
10337 -- Output the too late message. Note that this is not considered a
10338 -- serious error, since the effect is simply that we ignore the
10339 -- representation clause in this case.
10341 --------------
10342 -- Too_Late --
10343 --------------
10345 procedure Too_Late is
10346 begin
10347 -- Other compilers seem more relaxed about rep items appearing too
10348 -- late. Since analysis tools typically don't care about rep items
10349 -- anyway, no reason to be too strict about this.
10351 if not Relaxed_RM_Semantics then
10352 Error_Msg_N ("|representation item appears too late!", N);
10353 end if;
10354 end Too_Late;
10356 -- Start of processing for Rep_Item_Too_Late
10358 begin
10359 -- First make sure entity is not frozen (RM 13.1(9))
10361 if Is_Frozen (T)
10363 -- Exclude imported types, which may be frozen if they appear in a
10364 -- representation clause for a local type.
10366 and then not From_Limited_With (T)
10368 -- Exclude generated entities (not coming from source). The common
10369 -- case is when we generate a renaming which prematurely freezes the
10370 -- renamed internal entity, but we still want to be able to set copies
10371 -- of attribute values such as Size/Alignment.
10373 and then Comes_From_Source (T)
10374 then
10375 Too_Late;
10376 S := First_Subtype (T);
10378 if Present (Freeze_Node (S)) then
10379 Error_Msg_NE
10380 ("??no more representation items for }", Freeze_Node (S), S);
10381 end if;
10383 return True;
10385 -- Check for case of non-tagged derived type whose parent either has
10386 -- primitive operations, or is a by reference type (RM 13.1(10)).
10388 elsif Is_Type (T)
10389 and then not FOnly
10390 and then Is_Derived_Type (T)
10391 and then not Is_Tagged_Type (T)
10392 then
10393 Parent_Type := Etype (Base_Type (T));
10395 if Has_Primitive_Operations (Parent_Type) then
10396 Too_Late;
10397 Error_Msg_NE
10398 ("primitive operations already defined for&!", N, Parent_Type);
10399 return True;
10401 elsif Is_By_Reference_Type (Parent_Type) then
10402 Too_Late;
10403 Error_Msg_NE
10404 ("parent type & is a by reference type!", N, Parent_Type);
10405 return True;
10406 end if;
10407 end if;
10409 -- No error, link item into head of chain of rep items for the entity,
10410 -- but avoid chaining if we have an overloadable entity, and the pragma
10411 -- is one that can apply to multiple overloaded entities.
10413 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
10414 declare
10415 Pname : constant Name_Id := Pragma_Name (N);
10416 begin
10417 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
10418 Name_External, Name_Interface)
10419 then
10420 return False;
10421 end if;
10422 end;
10423 end if;
10425 Record_Rep_Item (T, N);
10426 return False;
10427 end Rep_Item_Too_Late;
10429 -------------------------------------
10430 -- Replace_Type_References_Generic --
10431 -------------------------------------
10433 procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
10435 function Replace_Node (N : Node_Id) return Traverse_Result;
10436 -- Processes a single node in the traversal procedure below, checking
10437 -- if node N should be replaced, and if so, doing the replacement.
10439 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
10440 -- This instantiation provides the body of Replace_Type_References
10442 ------------------
10443 -- Replace_Node --
10444 ------------------
10446 function Replace_Node (N : Node_Id) return Traverse_Result is
10447 S : Entity_Id;
10448 P : Node_Id;
10450 begin
10451 -- Case of identifier
10453 if Nkind (N) = N_Identifier then
10455 -- If not the type name, all done with this node
10457 if Chars (N) /= TName then
10458 return Skip;
10460 -- Otherwise do the replacement and we are done with this node
10462 else
10463 Replace_Type_Reference (N);
10464 return Skip;
10465 end if;
10467 -- Case of selected component (which is what a qualification
10468 -- looks like in the unanalyzed tree, which is what we have.
10470 elsif Nkind (N) = N_Selected_Component then
10472 -- If selector name is not our type, keeping going (we might
10473 -- still have an occurrence of the type in the prefix).
10475 if Nkind (Selector_Name (N)) /= N_Identifier
10476 or else Chars (Selector_Name (N)) /= TName
10477 then
10478 return OK;
10480 -- Selector name is our type, check qualification
10482 else
10483 -- Loop through scopes and prefixes, doing comparison
10485 S := Current_Scope;
10486 P := Prefix (N);
10487 loop
10488 -- Continue if no more scopes or scope with no name
10490 if No (S) or else Nkind (S) not in N_Has_Chars then
10491 return OK;
10492 end if;
10494 -- Do replace if prefix is an identifier matching the
10495 -- scope that we are currently looking at.
10497 if Nkind (P) = N_Identifier
10498 and then Chars (P) = Chars (S)
10499 then
10500 Replace_Type_Reference (N);
10501 return Skip;
10502 end if;
10504 -- Go check scope above us if prefix is itself of the
10505 -- form of a selected component, whose selector matches
10506 -- the scope we are currently looking at.
10508 if Nkind (P) = N_Selected_Component
10509 and then Nkind (Selector_Name (P)) = N_Identifier
10510 and then Chars (Selector_Name (P)) = Chars (S)
10511 then
10512 S := Scope (S);
10513 P := Prefix (P);
10515 -- For anything else, we don't have a match, so keep on
10516 -- going, there are still some weird cases where we may
10517 -- still have a replacement within the prefix.
10519 else
10520 return OK;
10521 end if;
10522 end loop;
10523 end if;
10525 -- Continue for any other node kind
10527 else
10528 return OK;
10529 end if;
10530 end Replace_Node;
10532 begin
10533 Replace_Type_Refs (N);
10534 end Replace_Type_References_Generic;
10536 -------------------------
10537 -- Same_Representation --
10538 -------------------------
10540 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
10541 T1 : constant Entity_Id := Underlying_Type (Typ1);
10542 T2 : constant Entity_Id := Underlying_Type (Typ2);
10544 begin
10545 -- A quick check, if base types are the same, then we definitely have
10546 -- the same representation, because the subtype specific representation
10547 -- attributes (Size and Alignment) do not affect representation from
10548 -- the point of view of this test.
10550 if Base_Type (T1) = Base_Type (T2) then
10551 return True;
10553 elsif Is_Private_Type (Base_Type (T2))
10554 and then Base_Type (T1) = Full_View (Base_Type (T2))
10555 then
10556 return True;
10557 end if;
10559 -- Tagged types never have differing representations
10561 if Is_Tagged_Type (T1) then
10562 return True;
10563 end if;
10565 -- Representations are definitely different if conventions differ
10567 if Convention (T1) /= Convention (T2) then
10568 return False;
10569 end if;
10571 -- Representations are different if component alignments or scalar
10572 -- storage orders differ.
10574 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
10575 and then
10576 (Is_Record_Type (T2) or else Is_Array_Type (T2))
10577 and then
10578 (Component_Alignment (T1) /= Component_Alignment (T2)
10579 or else
10580 Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
10581 then
10582 return False;
10583 end if;
10585 -- For arrays, the only real issue is component size. If we know the
10586 -- component size for both arrays, and it is the same, then that's
10587 -- good enough to know we don't have a change of representation.
10589 if Is_Array_Type (T1) then
10590 if Known_Component_Size (T1)
10591 and then Known_Component_Size (T2)
10592 and then Component_Size (T1) = Component_Size (T2)
10593 then
10594 if VM_Target = No_VM then
10595 return True;
10597 -- In VM targets the representation of arrays with aliased
10598 -- components differs from arrays with non-aliased components
10600 else
10601 return Has_Aliased_Components (Base_Type (T1))
10603 Has_Aliased_Components (Base_Type (T2));
10604 end if;
10605 end if;
10606 end if;
10608 -- Types definitely have same representation if neither has non-standard
10609 -- representation since default representations are always consistent.
10610 -- If only one has non-standard representation, and the other does not,
10611 -- then we consider that they do not have the same representation. They
10612 -- might, but there is no way of telling early enough.
10614 if Has_Non_Standard_Rep (T1) then
10615 if not Has_Non_Standard_Rep (T2) then
10616 return False;
10617 end if;
10618 else
10619 return not Has_Non_Standard_Rep (T2);
10620 end if;
10622 -- Here the two types both have non-standard representation, and we need
10623 -- to determine if they have the same non-standard representation.
10625 -- For arrays, we simply need to test if the component sizes are the
10626 -- same. Pragma Pack is reflected in modified component sizes, so this
10627 -- check also deals with pragma Pack.
10629 if Is_Array_Type (T1) then
10630 return Component_Size (T1) = Component_Size (T2);
10632 -- Tagged types always have the same representation, because it is not
10633 -- possible to specify different representations for common fields.
10635 elsif Is_Tagged_Type (T1) then
10636 return True;
10638 -- Case of record types
10640 elsif Is_Record_Type (T1) then
10642 -- Packed status must conform
10644 if Is_Packed (T1) /= Is_Packed (T2) then
10645 return False;
10647 -- Otherwise we must check components. Typ2 maybe a constrained
10648 -- subtype with fewer components, so we compare the components
10649 -- of the base types.
10651 else
10652 Record_Case : declare
10653 CD1, CD2 : Entity_Id;
10655 function Same_Rep return Boolean;
10656 -- CD1 and CD2 are either components or discriminants. This
10657 -- function tests whether they have the same representation.
10659 --------------
10660 -- Same_Rep --
10661 --------------
10663 function Same_Rep return Boolean is
10664 begin
10665 if No (Component_Clause (CD1)) then
10666 return No (Component_Clause (CD2));
10667 else
10668 -- Note: at this point, component clauses have been
10669 -- normalized to the default bit order, so that the
10670 -- comparison of Component_Bit_Offsets is meaningful.
10672 return
10673 Present (Component_Clause (CD2))
10674 and then
10675 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
10676 and then
10677 Esize (CD1) = Esize (CD2);
10678 end if;
10679 end Same_Rep;
10681 -- Start of processing for Record_Case
10683 begin
10684 if Has_Discriminants (T1) then
10686 -- The number of discriminants may be different if the
10687 -- derived type has fewer (constrained by values). The
10688 -- invisible discriminants retain the representation of
10689 -- the original, so the discrepancy does not per se
10690 -- indicate a different representation.
10692 CD1 := First_Discriminant (T1);
10693 CD2 := First_Discriminant (T2);
10694 while Present (CD1) and then Present (CD2) loop
10695 if not Same_Rep then
10696 return False;
10697 else
10698 Next_Discriminant (CD1);
10699 Next_Discriminant (CD2);
10700 end if;
10701 end loop;
10702 end if;
10704 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
10705 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
10706 while Present (CD1) loop
10707 if not Same_Rep then
10708 return False;
10709 else
10710 Next_Component (CD1);
10711 Next_Component (CD2);
10712 end if;
10713 end loop;
10715 return True;
10716 end Record_Case;
10717 end if;
10719 -- For enumeration types, we must check each literal to see if the
10720 -- representation is the same. Note that we do not permit enumeration
10721 -- representation clauses for Character and Wide_Character, so these
10722 -- cases were already dealt with.
10724 elsif Is_Enumeration_Type (T1) then
10725 Enumeration_Case : declare
10726 L1, L2 : Entity_Id;
10728 begin
10729 L1 := First_Literal (T1);
10730 L2 := First_Literal (T2);
10731 while Present (L1) loop
10732 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
10733 return False;
10734 else
10735 Next_Literal (L1);
10736 Next_Literal (L2);
10737 end if;
10738 end loop;
10740 return True;
10741 end Enumeration_Case;
10743 -- Any other types have the same representation for these purposes
10745 else
10746 return True;
10747 end if;
10748 end Same_Representation;
10750 ----------------
10751 -- Set_Biased --
10752 ----------------
10754 procedure Set_Biased
10755 (E : Entity_Id;
10756 N : Node_Id;
10757 Msg : String;
10758 Biased : Boolean := True)
10760 begin
10761 if Biased then
10762 Set_Has_Biased_Representation (E);
10764 if Warn_On_Biased_Representation then
10765 Error_Msg_NE
10766 ("?B?" & Msg & " forces biased representation for&", N, E);
10767 end if;
10768 end if;
10769 end Set_Biased;
10771 --------------------
10772 -- Set_Enum_Esize --
10773 --------------------
10775 procedure Set_Enum_Esize (T : Entity_Id) is
10776 Lo : Uint;
10777 Hi : Uint;
10778 Sz : Nat;
10780 begin
10781 Init_Alignment (T);
10783 -- Find the minimum standard size (8,16,32,64) that fits
10785 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
10786 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
10788 if Lo < 0 then
10789 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
10790 Sz := Standard_Character_Size; -- May be > 8 on some targets
10792 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
10793 Sz := 16;
10795 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
10796 Sz := 32;
10798 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
10799 Sz := 64;
10800 end if;
10802 else
10803 if Hi < Uint_2**08 then
10804 Sz := Standard_Character_Size; -- May be > 8 on some targets
10806 elsif Hi < Uint_2**16 then
10807 Sz := 16;
10809 elsif Hi < Uint_2**32 then
10810 Sz := 32;
10812 else pragma Assert (Hi < Uint_2**63);
10813 Sz := 64;
10814 end if;
10815 end if;
10817 -- That minimum is the proper size unless we have a foreign convention
10818 -- and the size required is 32 or less, in which case we bump the size
10819 -- up to 32. This is required for C and C++ and seems reasonable for
10820 -- all other foreign conventions.
10822 if Has_Foreign_Convention (T)
10823 and then Esize (T) < Standard_Integer_Size
10825 -- Don't do this if Short_Enums on target
10827 and then not Target_Short_Enums
10828 then
10829 Init_Esize (T, Standard_Integer_Size);
10830 else
10831 Init_Esize (T, Sz);
10832 end if;
10833 end Set_Enum_Esize;
10835 ------------------------------
10836 -- Validate_Address_Clauses --
10837 ------------------------------
10839 procedure Validate_Address_Clauses is
10840 begin
10841 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
10842 declare
10843 ACCR : Address_Clause_Check_Record
10844 renames Address_Clause_Checks.Table (J);
10846 Expr : Node_Id;
10848 X_Alignment : Uint;
10849 Y_Alignment : Uint;
10851 X_Size : Uint;
10852 Y_Size : Uint;
10854 begin
10855 -- Skip processing of this entry if warning already posted
10857 if not Address_Warning_Posted (ACCR.N) then
10858 Expr := Original_Node (Expression (ACCR.N));
10860 -- Get alignments
10862 X_Alignment := Alignment (ACCR.X);
10863 Y_Alignment := Alignment (ACCR.Y);
10865 -- Similarly obtain sizes
10867 X_Size := Esize (ACCR.X);
10868 Y_Size := Esize (ACCR.Y);
10870 -- Check for large object overlaying smaller one
10872 if Y_Size > Uint_0
10873 and then X_Size > Uint_0
10874 and then X_Size > Y_Size
10875 then
10876 Error_Msg_NE
10877 ("?& overlays smaller object", ACCR.N, ACCR.X);
10878 Error_Msg_N
10879 ("\??program execution may be erroneous", ACCR.N);
10880 Error_Msg_Uint_1 := X_Size;
10881 Error_Msg_NE
10882 ("\??size of & is ^", ACCR.N, ACCR.X);
10883 Error_Msg_Uint_1 := Y_Size;
10884 Error_Msg_NE
10885 ("\??size of & is ^", ACCR.N, ACCR.Y);
10887 -- Check for inadequate alignment, both of the base object
10888 -- and of the offset, if any.
10890 -- Note: we do not check the alignment if we gave a size
10891 -- warning, since it would likely be redundant.
10893 elsif Y_Alignment /= Uint_0
10894 and then (Y_Alignment < X_Alignment
10895 or else (ACCR.Off
10896 and then
10897 Nkind (Expr) = N_Attribute_Reference
10898 and then
10899 Attribute_Name (Expr) = Name_Address
10900 and then
10901 Has_Compatible_Alignment
10902 (ACCR.X, Prefix (Expr))
10903 /= Known_Compatible))
10904 then
10905 Error_Msg_NE
10906 ("??specified address for& may be inconsistent "
10907 & "with alignment", ACCR.N, ACCR.X);
10908 Error_Msg_N
10909 ("\??program execution may be erroneous (RM 13.3(27))",
10910 ACCR.N);
10911 Error_Msg_Uint_1 := X_Alignment;
10912 Error_Msg_NE
10913 ("\??alignment of & is ^", ACCR.N, ACCR.X);
10914 Error_Msg_Uint_1 := Y_Alignment;
10915 Error_Msg_NE
10916 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
10917 if Y_Alignment >= X_Alignment then
10918 Error_Msg_N
10919 ("\??but offset is not multiple of alignment", ACCR.N);
10920 end if;
10921 end if;
10922 end if;
10923 end;
10924 end loop;
10925 end Validate_Address_Clauses;
10927 ---------------------------
10928 -- Validate_Independence --
10929 ---------------------------
10931 procedure Validate_Independence is
10932 SU : constant Uint := UI_From_Int (System_Storage_Unit);
10933 N : Node_Id;
10934 E : Entity_Id;
10935 IC : Boolean;
10936 Comp : Entity_Id;
10937 Addr : Node_Id;
10938 P : Node_Id;
10940 procedure Check_Array_Type (Atyp : Entity_Id);
10941 -- Checks if the array type Atyp has independent components, and
10942 -- if not, outputs an appropriate set of error messages.
10944 procedure No_Independence;
10945 -- Output message that independence cannot be guaranteed
10947 function OK_Component (C : Entity_Id) return Boolean;
10948 -- Checks one component to see if it is independently accessible, and
10949 -- if so yields True, otherwise yields False if independent access
10950 -- cannot be guaranteed. This is a conservative routine, it only
10951 -- returns True if it knows for sure, it returns False if it knows
10952 -- there is a problem, or it cannot be sure there is no problem.
10954 procedure Reason_Bad_Component (C : Entity_Id);
10955 -- Outputs continuation message if a reason can be determined for
10956 -- the component C being bad.
10958 ----------------------
10959 -- Check_Array_Type --
10960 ----------------------
10962 procedure Check_Array_Type (Atyp : Entity_Id) is
10963 Ctyp : constant Entity_Id := Component_Type (Atyp);
10965 begin
10966 -- OK if no alignment clause, no pack, and no component size
10968 if not Has_Component_Size_Clause (Atyp)
10969 and then not Has_Alignment_Clause (Atyp)
10970 and then not Is_Packed (Atyp)
10971 then
10972 return;
10973 end if;
10975 -- Check actual component size
10977 if not Known_Component_Size (Atyp)
10978 or else not (Addressable (Component_Size (Atyp))
10979 and then Component_Size (Atyp) < 64)
10980 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
10981 then
10982 No_Independence;
10984 -- Bad component size, check reason
10986 if Has_Component_Size_Clause (Atyp) then
10987 P := Get_Attribute_Definition_Clause
10988 (Atyp, Attribute_Component_Size);
10990 if Present (P) then
10991 Error_Msg_Sloc := Sloc (P);
10992 Error_Msg_N ("\because of Component_Size clause#", N);
10993 return;
10994 end if;
10995 end if;
10997 if Is_Packed (Atyp) then
10998 P := Get_Rep_Pragma (Atyp, Name_Pack);
11000 if Present (P) then
11001 Error_Msg_Sloc := Sloc (P);
11002 Error_Msg_N ("\because of pragma Pack#", N);
11003 return;
11004 end if;
11005 end if;
11007 -- No reason found, just return
11009 return;
11010 end if;
11012 -- Array type is OK independence-wise
11014 return;
11015 end Check_Array_Type;
11017 ---------------------
11018 -- No_Independence --
11019 ---------------------
11021 procedure No_Independence is
11022 begin
11023 if Pragma_Name (N) = Name_Independent then
11024 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
11025 else
11026 Error_Msg_NE
11027 ("independent components cannot be guaranteed for&", N, E);
11028 end if;
11029 end No_Independence;
11031 ------------------
11032 -- OK_Component --
11033 ------------------
11035 function OK_Component (C : Entity_Id) return Boolean is
11036 Rec : constant Entity_Id := Scope (C);
11037 Ctyp : constant Entity_Id := Etype (C);
11039 begin
11040 -- OK if no component clause, no Pack, and no alignment clause
11042 if No (Component_Clause (C))
11043 and then not Is_Packed (Rec)
11044 and then not Has_Alignment_Clause (Rec)
11045 then
11046 return True;
11047 end if;
11049 -- Here we look at the actual component layout. A component is
11050 -- addressable if its size is a multiple of the Esize of the
11051 -- component type, and its starting position in the record has
11052 -- appropriate alignment, and the record itself has appropriate
11053 -- alignment to guarantee the component alignment.
11055 -- Make sure sizes are static, always assume the worst for any
11056 -- cases where we cannot check static values.
11058 if not (Known_Static_Esize (C)
11059 and then
11060 Known_Static_Esize (Ctyp))
11061 then
11062 return False;
11063 end if;
11065 -- Size of component must be addressable or greater than 64 bits
11066 -- and a multiple of bytes.
11068 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
11069 return False;
11070 end if;
11072 -- Check size is proper multiple
11074 if Esize (C) mod Esize (Ctyp) /= 0 then
11075 return False;
11076 end if;
11078 -- Check alignment of component is OK
11080 if not Known_Component_Bit_Offset (C)
11081 or else Component_Bit_Offset (C) < Uint_0
11082 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
11083 then
11084 return False;
11085 end if;
11087 -- Check alignment of record type is OK
11089 if not Known_Alignment (Rec)
11090 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
11091 then
11092 return False;
11093 end if;
11095 -- All tests passed, component is addressable
11097 return True;
11098 end OK_Component;
11100 --------------------------
11101 -- Reason_Bad_Component --
11102 --------------------------
11104 procedure Reason_Bad_Component (C : Entity_Id) is
11105 Rec : constant Entity_Id := Scope (C);
11106 Ctyp : constant Entity_Id := Etype (C);
11108 begin
11109 -- If component clause present assume that's the problem
11111 if Present (Component_Clause (C)) then
11112 Error_Msg_Sloc := Sloc (Component_Clause (C));
11113 Error_Msg_N ("\because of Component_Clause#", N);
11114 return;
11115 end if;
11117 -- If pragma Pack clause present, assume that's the problem
11119 if Is_Packed (Rec) then
11120 P := Get_Rep_Pragma (Rec, Name_Pack);
11122 if Present (P) then
11123 Error_Msg_Sloc := Sloc (P);
11124 Error_Msg_N ("\because of pragma Pack#", N);
11125 return;
11126 end if;
11127 end if;
11129 -- See if record has bad alignment clause
11131 if Has_Alignment_Clause (Rec)
11132 and then Known_Alignment (Rec)
11133 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
11134 then
11135 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
11137 if Present (P) then
11138 Error_Msg_Sloc := Sloc (P);
11139 Error_Msg_N ("\because of Alignment clause#", N);
11140 end if;
11141 end if;
11143 -- Couldn't find a reason, so return without a message
11145 return;
11146 end Reason_Bad_Component;
11148 -- Start of processing for Validate_Independence
11150 begin
11151 for J in Independence_Checks.First .. Independence_Checks.Last loop
11152 N := Independence_Checks.Table (J).N;
11153 E := Independence_Checks.Table (J).E;
11154 IC := Pragma_Name (N) = Name_Independent_Components;
11156 -- Deal with component case
11158 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
11159 if not OK_Component (E) then
11160 No_Independence;
11161 Reason_Bad_Component (E);
11162 goto Continue;
11163 end if;
11164 end if;
11166 -- Deal with record with Independent_Components
11168 if IC and then Is_Record_Type (E) then
11169 Comp := First_Component_Or_Discriminant (E);
11170 while Present (Comp) loop
11171 if not OK_Component (Comp) then
11172 No_Independence;
11173 Reason_Bad_Component (Comp);
11174 goto Continue;
11175 end if;
11177 Next_Component_Or_Discriminant (Comp);
11178 end loop;
11179 end if;
11181 -- Deal with address clause case
11183 if Is_Object (E) then
11184 Addr := Address_Clause (E);
11186 if Present (Addr) then
11187 No_Independence;
11188 Error_Msg_Sloc := Sloc (Addr);
11189 Error_Msg_N ("\because of Address clause#", N);
11190 goto Continue;
11191 end if;
11192 end if;
11194 -- Deal with independent components for array type
11196 if IC and then Is_Array_Type (E) then
11197 Check_Array_Type (E);
11198 end if;
11200 -- Deal with independent components for array object
11202 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
11203 Check_Array_Type (Etype (E));
11204 end if;
11206 <<Continue>> null;
11207 end loop;
11208 end Validate_Independence;
11210 -----------------------------------
11211 -- Validate_Unchecked_Conversion --
11212 -----------------------------------
11214 procedure Validate_Unchecked_Conversion
11215 (N : Node_Id;
11216 Act_Unit : Entity_Id)
11218 Source : Entity_Id;
11219 Target : Entity_Id;
11220 Vnode : Node_Id;
11222 begin
11223 -- Obtain source and target types. Note that we call Ancestor_Subtype
11224 -- here because the processing for generic instantiation always makes
11225 -- subtypes, and we want the original frozen actual types.
11227 -- If we are dealing with private types, then do the check on their
11228 -- fully declared counterparts if the full declarations have been
11229 -- encountered (they don't have to be visible, but they must exist).
11231 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
11233 if Is_Private_Type (Source)
11234 and then Present (Underlying_Type (Source))
11235 then
11236 Source := Underlying_Type (Source);
11237 end if;
11239 Target := Ancestor_Subtype (Etype (Act_Unit));
11241 -- If either type is generic, the instantiation happens within a generic
11242 -- unit, and there is nothing to check. The proper check will happen
11243 -- when the enclosing generic is instantiated.
11245 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
11246 return;
11247 end if;
11249 if Is_Private_Type (Target)
11250 and then Present (Underlying_Type (Target))
11251 then
11252 Target := Underlying_Type (Target);
11253 end if;
11255 -- Source may be unconstrained array, but not target
11257 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
11258 Error_Msg_N
11259 ("unchecked conversion to unconstrained array not allowed", N);
11260 return;
11261 end if;
11263 -- Warn if conversion between two different convention pointers
11265 if Is_Access_Type (Target)
11266 and then Is_Access_Type (Source)
11267 and then Convention (Target) /= Convention (Source)
11268 and then Warn_On_Unchecked_Conversion
11269 then
11270 -- Give warnings for subprogram pointers only on most targets. The
11271 -- exception is VMS, where data pointers can have different lengths
11272 -- depending on the pointer convention.
11274 if Is_Access_Subprogram_Type (Target)
11275 or else Is_Access_Subprogram_Type (Source)
11276 or else OpenVMS_On_Target
11277 then
11278 Error_Msg_N
11279 ("?z?conversion between pointers with different conventions!",
11281 end if;
11282 end if;
11284 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
11285 -- warning when compiling GNAT-related sources.
11287 if Warn_On_Unchecked_Conversion
11288 and then not In_Predefined_Unit (N)
11289 and then RTU_Loaded (Ada_Calendar)
11290 and then
11291 (Chars (Source) = Name_Time
11292 or else
11293 Chars (Target) = Name_Time)
11294 then
11295 -- If Ada.Calendar is loaded and the name of one of the operands is
11296 -- Time, there is a good chance that this is Ada.Calendar.Time.
11298 declare
11299 Calendar_Time : constant Entity_Id :=
11300 Full_View (RTE (RO_CA_Time));
11301 begin
11302 pragma Assert (Present (Calendar_Time));
11304 if Source = Calendar_Time or else Target = Calendar_Time then
11305 Error_Msg_N
11306 ("?z?representation of 'Time values may change between " &
11307 "'G'N'A'T versions", N);
11308 end if;
11309 end;
11310 end if;
11312 -- Make entry in unchecked conversion table for later processing by
11313 -- Validate_Unchecked_Conversions, which will check sizes and alignments
11314 -- (using values set by the back-end where possible). This is only done
11315 -- if the appropriate warning is active.
11317 if Warn_On_Unchecked_Conversion then
11318 Unchecked_Conversions.Append
11319 (New_Val => UC_Entry'(Eloc => Sloc (N),
11320 Source => Source,
11321 Target => Target));
11323 -- If both sizes are known statically now, then back end annotation
11324 -- is not required to do a proper check but if either size is not
11325 -- known statically, then we need the annotation.
11327 if Known_Static_RM_Size (Source)
11328 and then
11329 Known_Static_RM_Size (Target)
11330 then
11331 null;
11332 else
11333 Back_Annotate_Rep_Info := True;
11334 end if;
11335 end if;
11337 -- If unchecked conversion to access type, and access type is declared
11338 -- in the same unit as the unchecked conversion, then set the flag
11339 -- No_Strict_Aliasing (no strict aliasing is implicit here)
11341 if Is_Access_Type (Target) and then
11342 In_Same_Source_Unit (Target, N)
11343 then
11344 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
11345 end if;
11347 -- Generate N_Validate_Unchecked_Conversion node for back end in case
11348 -- the back end needs to perform special validation checks.
11350 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
11351 -- have full expansion and the back end is called ???
11353 Vnode :=
11354 Make_Validate_Unchecked_Conversion (Sloc (N));
11355 Set_Source_Type (Vnode, Source);
11356 Set_Target_Type (Vnode, Target);
11358 -- If the unchecked conversion node is in a list, just insert before it.
11359 -- If not we have some strange case, not worth bothering about.
11361 if Is_List_Member (N) then
11362 Insert_After (N, Vnode);
11363 end if;
11364 end Validate_Unchecked_Conversion;
11366 ------------------------------------
11367 -- Validate_Unchecked_Conversions --
11368 ------------------------------------
11370 procedure Validate_Unchecked_Conversions is
11371 begin
11372 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
11373 declare
11374 T : UC_Entry renames Unchecked_Conversions.Table (N);
11376 Eloc : constant Source_Ptr := T.Eloc;
11377 Source : constant Entity_Id := T.Source;
11378 Target : constant Entity_Id := T.Target;
11380 Source_Siz : Uint;
11381 Target_Siz : Uint;
11383 begin
11384 -- This validation check, which warns if we have unequal sizes for
11385 -- unchecked conversion, and thus potentially implementation
11386 -- dependent semantics, is one of the few occasions on which we
11387 -- use the official RM size instead of Esize. See description in
11388 -- Einfo "Handling of Type'Size Values" for details.
11390 if Serious_Errors_Detected = 0
11391 and then Known_Static_RM_Size (Source)
11392 and then Known_Static_RM_Size (Target)
11394 -- Don't do the check if warnings off for either type, note the
11395 -- deliberate use of OR here instead of OR ELSE to get the flag
11396 -- Warnings_Off_Used set for both types if appropriate.
11398 and then not (Has_Warnings_Off (Source)
11400 Has_Warnings_Off (Target))
11401 then
11402 Source_Siz := RM_Size (Source);
11403 Target_Siz := RM_Size (Target);
11405 if Source_Siz /= Target_Siz then
11406 Error_Msg
11407 ("?z?types for unchecked conversion have different sizes!",
11408 Eloc);
11410 if All_Errors_Mode then
11411 Error_Msg_Name_1 := Chars (Source);
11412 Error_Msg_Uint_1 := Source_Siz;
11413 Error_Msg_Name_2 := Chars (Target);
11414 Error_Msg_Uint_2 := Target_Siz;
11415 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
11417 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
11419 if Is_Discrete_Type (Source)
11420 and then
11421 Is_Discrete_Type (Target)
11422 then
11423 if Source_Siz > Target_Siz then
11424 Error_Msg
11425 ("\?z?^ high order bits of source will "
11426 & "be ignored!", Eloc);
11428 elsif Is_Unsigned_Type (Source) then
11429 Error_Msg
11430 ("\?z?source will be extended with ^ high order "
11431 & "zero bits?!", Eloc);
11433 else
11434 Error_Msg
11435 ("\?z?source will be extended with ^ high order "
11436 & "sign bits!", Eloc);
11437 end if;
11439 elsif Source_Siz < Target_Siz then
11440 if Is_Discrete_Type (Target) then
11441 if Bytes_Big_Endian then
11442 Error_Msg
11443 ("\?z?target value will include ^ undefined "
11444 & "low order bits!", Eloc);
11445 else
11446 Error_Msg
11447 ("\?z?target value will include ^ undefined "
11448 & "high order bits!", Eloc);
11449 end if;
11451 else
11452 Error_Msg
11453 ("\?z?^ trailing bits of target value will be "
11454 & "undefined!", Eloc);
11455 end if;
11457 else pragma Assert (Source_Siz > Target_Siz);
11458 Error_Msg
11459 ("\?z?^ trailing bits of source will be ignored!",
11460 Eloc);
11461 end if;
11462 end if;
11463 end if;
11464 end if;
11466 -- If both types are access types, we need to check the alignment.
11467 -- If the alignment of both is specified, we can do it here.
11469 if Serious_Errors_Detected = 0
11470 and then Ekind (Source) in Access_Kind
11471 and then Ekind (Target) in Access_Kind
11472 and then Target_Strict_Alignment
11473 and then Present (Designated_Type (Source))
11474 and then Present (Designated_Type (Target))
11475 then
11476 declare
11477 D_Source : constant Entity_Id := Designated_Type (Source);
11478 D_Target : constant Entity_Id := Designated_Type (Target);
11480 begin
11481 if Known_Alignment (D_Source)
11482 and then
11483 Known_Alignment (D_Target)
11484 then
11485 declare
11486 Source_Align : constant Uint := Alignment (D_Source);
11487 Target_Align : constant Uint := Alignment (D_Target);
11489 begin
11490 if Source_Align < Target_Align
11491 and then not Is_Tagged_Type (D_Source)
11493 -- Suppress warning if warnings suppressed on either
11494 -- type or either designated type. Note the use of
11495 -- OR here instead of OR ELSE. That is intentional,
11496 -- we would like to set flag Warnings_Off_Used in
11497 -- all types for which warnings are suppressed.
11499 and then not (Has_Warnings_Off (D_Source)
11501 Has_Warnings_Off (D_Target)
11503 Has_Warnings_Off (Source)
11505 Has_Warnings_Off (Target))
11506 then
11507 Error_Msg_Uint_1 := Target_Align;
11508 Error_Msg_Uint_2 := Source_Align;
11509 Error_Msg_Node_1 := D_Target;
11510 Error_Msg_Node_2 := D_Source;
11511 Error_Msg
11512 ("?z?alignment of & (^) is stricter than "
11513 & "alignment of & (^)!", Eloc);
11514 Error_Msg
11515 ("\?z?resulting access value may have invalid "
11516 & "alignment!", Eloc);
11517 end if;
11518 end;
11519 end if;
11520 end;
11521 end if;
11522 end;
11523 end loop;
11524 end Validate_Unchecked_Conversions;
11526 end Sem_Ch13;