1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
69 Three techniques for filling delay slots have been implemented so far:
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
129 #include "function.h"
130 #include "insn-config.h"
131 #include "conditions.h"
132 #include "hard-reg-set.h"
133 #include "basic-block.h"
139 #include "insn-attr.h"
140 #include "resource.h"
146 #ifndef ANNUL_IFTRUE_SLOTS
147 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
149 #ifndef ANNUL_IFFALSE_SLOTS
150 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
153 /* Insns which have delay slots that have not yet been filled. */
155 static struct obstack unfilled_slots_obstack
;
156 static rtx
*unfilled_firstobj
;
158 /* Define macros to refer to the first and last slot containing unfilled
159 insns. These are used because the list may move and its address
160 should be recomputed at each use. */
162 #define unfilled_slots_base \
163 ((rtx *) obstack_base (&unfilled_slots_obstack))
165 #define unfilled_slots_next \
166 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
168 /* Points to the label before the end of the function. */
169 static rtx end_of_function_label
;
171 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
172 not always monotonically increase. */
173 static int *uid_to_ruid
;
175 /* Highest valid index in `uid_to_ruid'. */
178 static int stop_search_p
PARAMS ((rtx
, int));
179 static int resource_conflicts_p
PARAMS ((struct resources
*,
180 struct resources
*));
181 static int insn_references_resource_p
PARAMS ((rtx
, struct resources
*, int));
182 static int insn_sets_resource_p
PARAMS ((rtx
, struct resources
*, int));
183 static rtx find_end_label
PARAMS ((void));
184 static rtx emit_delay_sequence
PARAMS ((rtx
, rtx
, int));
185 static rtx add_to_delay_list
PARAMS ((rtx
, rtx
));
186 static rtx delete_from_delay_slot
PARAMS ((rtx
));
187 static void delete_scheduled_jump
PARAMS ((rtx
));
188 static void note_delay_statistics
PARAMS ((int, int));
189 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
190 static rtx optimize_skip
PARAMS ((rtx
));
192 static int get_jump_flags
PARAMS ((rtx
, rtx
));
193 static int rare_destination
PARAMS ((rtx
));
194 static int mostly_true_jump
PARAMS ((rtx
, rtx
));
195 static rtx get_branch_condition
PARAMS ((rtx
, rtx
));
196 static int condition_dominates_p
PARAMS ((rtx
, rtx
));
197 static int redirect_with_delay_slots_safe_p
PARAMS ((rtx
, rtx
, rtx
));
198 static int redirect_with_delay_list_safe_p
PARAMS ((rtx
, rtx
, rtx
));
199 static int check_annul_list_true_false
PARAMS ((int, rtx
));
200 static rtx steal_delay_list_from_target
PARAMS ((rtx
, rtx
, rtx
, rtx
,
204 int, int *, int *, rtx
*));
205 static rtx steal_delay_list_from_fallthrough
PARAMS ((rtx
, rtx
, rtx
, rtx
,
210 static void try_merge_delay_insns
PARAMS ((rtx
, rtx
));
211 static rtx redundant_insn
PARAMS ((rtx
, rtx
, rtx
));
212 static int own_thread_p
PARAMS ((rtx
, rtx
, int));
213 static void update_block
PARAMS ((rtx
, rtx
));
214 static int reorg_redirect_jump
PARAMS ((rtx
, rtx
));
215 static void update_reg_dead_notes
PARAMS ((rtx
, rtx
));
216 static void fix_reg_dead_note
PARAMS ((rtx
, rtx
));
217 static void update_reg_unused_notes
PARAMS ((rtx
, rtx
));
218 static void fill_simple_delay_slots
PARAMS ((int));
219 static rtx fill_slots_from_thread
PARAMS ((rtx
, rtx
, rtx
, rtx
, int, int,
220 int, int, int *, rtx
));
221 static void fill_eager_delay_slots
PARAMS ((void));
222 static void relax_delay_slots
PARAMS ((rtx
));
224 static void make_return_insns
PARAMS ((rtx
));
227 /* Return TRUE if this insn should stop the search for insn to fill delay
228 slots. LABELS_P indicates that labels should terminate the search.
229 In all cases, jumps terminate the search. */
232 stop_search_p (insn
, labels_p
)
239 switch (GET_CODE (insn
))
253 /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 We don't know anything about these. */
255 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
256 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
257 || asm_noperands (PATTERN (insn
)) >= 0);
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265 resource set contains a volatile memory reference. Otherwise, return FALSE. */
268 resource_conflicts_p (res1
, res2
)
269 struct resources
*res1
, *res2
;
271 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
272 || (res1
->unch_memory
&& res2
->unch_memory
)
273 || res1
->volatil
|| res2
->volatil
)
277 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
282 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
283 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
290 /* Return TRUE if any resource marked in RES, a `struct resources', is
291 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
292 routine is using those resources.
294 We compute this by computing all the resources referenced by INSN and
295 seeing if this conflicts with RES. It might be faster to directly check
296 ourselves, and this is the way it used to work, but it means duplicating
297 a large block of complex code. */
300 insn_references_resource_p (insn
, res
, include_delayed_effects
)
302 struct resources
*res
;
303 int include_delayed_effects
;
305 struct resources insn_res
;
307 CLEAR_RESOURCE (&insn_res
);
308 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
309 return resource_conflicts_p (&insn_res
, res
);
312 /* Return TRUE if INSN modifies resources that are marked in RES.
313 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
314 included. CC0 is only modified if it is explicitly set; see comments
315 in front of mark_set_resources for details. */
318 insn_sets_resource_p (insn
, res
, include_delayed_effects
)
320 struct resources
*res
;
321 int include_delayed_effects
;
323 struct resources insn_sets
;
325 CLEAR_RESOURCE (&insn_sets
);
326 mark_set_resources (insn
, &insn_sets
, 0, include_delayed_effects
);
327 return resource_conflicts_p (&insn_sets
, res
);
330 /* Find a label at the end of the function or before a RETURN. If there is
338 /* If we found one previously, return it. */
339 if (end_of_function_label
)
340 return end_of_function_label
;
342 /* Otherwise, see if there is a label at the end of the function. If there
343 is, it must be that RETURN insns aren't needed, so that is our return
344 label and we don't have to do anything else. */
346 insn
= get_last_insn ();
347 while (GET_CODE (insn
) == NOTE
348 || (GET_CODE (insn
) == INSN
349 && (GET_CODE (PATTERN (insn
)) == USE
350 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
351 insn
= PREV_INSN (insn
);
353 /* When a target threads its epilogue we might already have a
354 suitable return insn. If so put a label before it for the
355 end_of_function_label. */
356 if (GET_CODE (insn
) == BARRIER
357 && GET_CODE (PREV_INSN (insn
)) == JUMP_INSN
358 && GET_CODE (PATTERN (PREV_INSN (insn
))) == RETURN
)
360 rtx temp
= PREV_INSN (PREV_INSN (insn
));
361 end_of_function_label
= gen_label_rtx ();
362 LABEL_NUSES (end_of_function_label
) = 0;
364 /* Put the label before an USE insns that may proceed the RETURN insn. */
365 while (GET_CODE (temp
) == USE
)
366 temp
= PREV_INSN (temp
);
368 emit_label_after (end_of_function_label
, temp
);
371 else if (GET_CODE (insn
) == CODE_LABEL
)
372 end_of_function_label
= insn
;
375 end_of_function_label
= gen_label_rtx ();
376 LABEL_NUSES (end_of_function_label
) = 0;
377 /* If the basic block reorder pass moves the return insn to
378 some other place try to locate it again and put our
379 end_of_function_label there. */
380 while (insn
&& ! (GET_CODE (insn
) == JUMP_INSN
381 && (GET_CODE (PATTERN (insn
)) == RETURN
)))
382 insn
= PREV_INSN (insn
);
385 insn
= PREV_INSN (insn
);
387 /* Put the label before an USE insns that may proceed the
389 while (GET_CODE (insn
) == USE
)
390 insn
= PREV_INSN (insn
);
392 emit_label_after (end_of_function_label
, insn
);
396 /* Otherwise, make a new label and emit a RETURN and BARRIER,
398 emit_label (end_of_function_label
);
402 /* The return we make may have delay slots too. */
403 rtx insn
= gen_return ();
404 insn
= emit_jump_insn (insn
);
406 if (num_delay_slots (insn
) > 0)
407 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
413 /* Show one additional use for this label so it won't go away until
415 ++LABEL_NUSES (end_of_function_label
);
417 return end_of_function_label
;
420 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
421 the pattern of INSN with the SEQUENCE.
423 Chain the insns so that NEXT_INSN of each insn in the sequence points to
424 the next and NEXT_INSN of the last insn in the sequence points to
425 the first insn after the sequence. Similarly for PREV_INSN. This makes
426 it easier to scan all insns.
428 Returns the SEQUENCE that replaces INSN. */
431 emit_delay_sequence (insn
, list
, length
)
440 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
441 rtvec seqv
= rtvec_alloc (length
+ 1);
442 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
443 rtx seq_insn
= make_insn_raw (seq
);
444 rtx first
= get_insns ();
445 rtx last
= get_last_insn ();
447 /* Make a copy of the insn having delay slots. */
448 rtx delay_insn
= copy_rtx (insn
);
450 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
451 confuse further processing. Update LAST in case it was the last insn.
452 We will put the BARRIER back in later. */
453 if (NEXT_INSN (insn
) && GET_CODE (NEXT_INSN (insn
)) == BARRIER
)
455 delete_related_insns (NEXT_INSN (insn
));
456 last
= get_last_insn ();
460 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
461 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
462 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
465 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
468 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
470 /* Note the calls to set_new_first_and_last_insn must occur after
471 SEQ_INSN has been completely spliced into the insn stream.
473 Otherwise CUR_INSN_UID will get set to an incorrect value because
474 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
476 set_new_first_and_last_insn (first
, seq_insn
);
479 set_new_first_and_last_insn (seq_insn
, last
);
481 /* Build our SEQUENCE and rebuild the insn chain. */
482 XVECEXP (seq
, 0, 0) = delay_insn
;
483 INSN_DELETED_P (delay_insn
) = 0;
484 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
486 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
488 rtx tem
= XEXP (li
, 0);
491 /* Show that this copy of the insn isn't deleted. */
492 INSN_DELETED_P (tem
) = 0;
494 XVECEXP (seq
, 0, i
) = tem
;
495 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
496 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
498 for (note
= REG_NOTES (tem
); note
; note
= next
)
500 next
= XEXP (note
, 1);
501 switch (REG_NOTE_KIND (note
))
504 /* Remove any REG_DEAD notes because we can't rely on them now
505 that the insn has been moved. */
506 remove_note (tem
, note
);
510 /* Keep the label reference count up to date. */
511 if (GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
512 LABEL_NUSES (XEXP (note
, 0)) ++;
521 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
523 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
524 last insn in that SEQUENCE to point to us. Similarly for the first
525 insn in the following insn if it is a SEQUENCE. */
527 if (PREV_INSN (seq_insn
) && GET_CODE (PREV_INSN (seq_insn
)) == INSN
528 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
529 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
530 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
533 if (NEXT_INSN (seq_insn
) && GET_CODE (NEXT_INSN (seq_insn
)) == INSN
534 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
535 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
537 /* If there used to be a BARRIER, put it back. */
539 emit_barrier_after (seq_insn
);
547 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
548 be in the order in which the insns are to be executed. */
551 add_to_delay_list (insn
, delay_list
)
555 /* If we have an empty list, just make a new list element. If
556 INSN has its block number recorded, clear it since we may
557 be moving the insn to a new block. */
561 clear_hashed_info_for_insn (insn
);
562 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
565 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
567 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
572 /* Delete INSN from the delay slot of the insn that it is in, which may
573 produce an insn with no delay slots. Return the new insn. */
576 delete_from_delay_slot (insn
)
579 rtx trial
, seq_insn
, seq
, prev
;
583 /* We first must find the insn containing the SEQUENCE with INSN in its
584 delay slot. Do this by finding an insn, TRIAL, where
585 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
588 PREV_INSN (NEXT_INSN (trial
)) == trial
;
589 trial
= NEXT_INSN (trial
))
592 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
593 seq
= PATTERN (seq_insn
);
595 /* Create a delay list consisting of all the insns other than the one
596 we are deleting (unless we were the only one). */
597 if (XVECLEN (seq
, 0) > 2)
598 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
599 if (XVECEXP (seq
, 0, i
) != insn
)
600 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
602 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
603 list, and rebuild the delay list if non-empty. */
604 prev
= PREV_INSN (seq_insn
);
605 trial
= XVECEXP (seq
, 0, 0);
606 delete_related_insns (seq_insn
);
607 add_insn_after (trial
, prev
);
609 if (GET_CODE (trial
) == JUMP_INSN
610 && (simplejump_p (trial
) || GET_CODE (PATTERN (trial
)) == RETURN
))
611 emit_barrier_after (trial
);
613 /* If there are any delay insns, remit them. Otherwise clear the
616 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
617 else if (GET_CODE (trial
) == JUMP_INSN
618 || GET_CODE (trial
) == CALL_INSN
619 || GET_CODE (trial
) == INSN
)
620 INSN_ANNULLED_BRANCH_P (trial
) = 0;
622 INSN_FROM_TARGET_P (insn
) = 0;
624 /* Show we need to fill this insn again. */
625 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
630 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
631 the insn that sets CC0 for it and delete it too. */
634 delete_scheduled_jump (insn
)
637 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
638 delete the insn that sets the condition code, but it is hard to find it.
639 Since this case is rare anyway, don't bother trying; there would likely
640 be other insns that became dead anyway, which we wouldn't know to
644 if (reg_mentioned_p (cc0_rtx
, insn
))
646 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
648 /* If a reg-note was found, it points to an insn to set CC0. This
649 insn is in the delay list of some other insn. So delete it from
650 the delay list it was in. */
653 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
654 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
655 delete_from_delay_slot (XEXP (note
, 0));
659 /* The insn setting CC0 is our previous insn, but it may be in
660 a delay slot. It will be the last insn in the delay slot, if
662 rtx trial
= previous_insn (insn
);
663 if (GET_CODE (trial
) == NOTE
)
664 trial
= prev_nonnote_insn (trial
);
665 if (sets_cc0_p (PATTERN (trial
)) != 1
666 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
668 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
669 delete_related_insns (trial
);
671 delete_from_delay_slot (trial
);
676 delete_related_insns (insn
);
679 /* Counters for delay-slot filling. */
681 #define NUM_REORG_FUNCTIONS 2
682 #define MAX_DELAY_HISTOGRAM 3
683 #define MAX_REORG_PASSES 2
685 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
687 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
689 static int reorg_pass_number
;
692 note_delay_statistics (slots_filled
, index
)
693 int slots_filled
, index
;
695 num_insns_needing_delays
[index
][reorg_pass_number
]++;
696 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
697 slots_filled
= MAX_DELAY_HISTOGRAM
;
698 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
701 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
703 /* Optimize the following cases:
705 1. When a conditional branch skips over only one instruction,
706 use an annulling branch and put that insn in the delay slot.
707 Use either a branch that annuls when the condition if true or
708 invert the test with a branch that annuls when the condition is
709 false. This saves insns, since otherwise we must copy an insn
712 (orig) (skip) (otherwise)
713 Bcc.n L1 Bcc',a L1 Bcc,a L1'
720 2. When a conditional branch skips over only one instruction,
721 and after that, it unconditionally branches somewhere else,
722 perform the similar optimization. This saves executing the
723 second branch in the case where the inverted condition is true.
732 This should be expanded to skip over N insns, where N is the number
733 of delay slots required. */
739 rtx trial
= next_nonnote_insn (insn
);
740 rtx next_trial
= next_active_insn (trial
);
745 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
748 || GET_CODE (trial
) != INSN
749 || GET_CODE (PATTERN (trial
)) == SEQUENCE
750 || recog_memoized (trial
) < 0
751 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
752 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
753 || can_throw_internal (trial
))
756 /* There are two cases where we are just executing one insn (we assume
757 here that a branch requires only one insn; this should be generalized
758 at some point): Where the branch goes around a single insn or where
759 we have one insn followed by a branch to the same label we branch to.
760 In both of these cases, inverting the jump and annulling the delay
761 slot give the same effect in fewer insns. */
762 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
763 && ! (next_trial
== 0 && current_function_epilogue_delay_list
!= 0))
765 && GET_CODE (next_trial
) == JUMP_INSN
766 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)
767 && (simplejump_p (next_trial
)
768 || GET_CODE (PATTERN (next_trial
)) == RETURN
)))
770 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
772 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
773 INSN_FROM_TARGET_P (trial
) = 1;
774 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
778 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
779 next_trial
= next_active_insn (trial
);
780 update_block (trial
, trial
);
781 delete_related_insns (trial
);
783 /* Also, if we are targeting an unconditional
784 branch, thread our jump to the target of that branch. Don't
785 change this into a RETURN here, because it may not accept what
786 we have in the delay slot. We'll fix this up later. */
787 if (next_trial
&& GET_CODE (next_trial
) == JUMP_INSN
788 && (simplejump_p (next_trial
)
789 || GET_CODE (PATTERN (next_trial
)) == RETURN
))
791 target_label
= JUMP_LABEL (next_trial
);
792 if (target_label
== 0)
793 target_label
= find_end_label ();
795 /* Recompute the flags based on TARGET_LABEL since threading
796 the jump to TARGET_LABEL may change the direction of the
797 jump (which may change the circumstances in which the
798 delay slot is nullified). */
799 flags
= get_jump_flags (insn
, target_label
);
800 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
801 reorg_redirect_jump (insn
, target_label
);
804 INSN_ANNULLED_BRANCH_P (insn
) = 1;
811 /* Encode and return branch direction and prediction information for
812 INSN assuming it will jump to LABEL.
814 Non conditional branches return no direction information and
815 are predicted as very likely taken. */
818 get_jump_flags (insn
, label
)
823 /* get_jump_flags can be passed any insn with delay slots, these may
824 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
825 direction information, and only if they are conditional jumps.
827 If LABEL is zero, then there is no way to determine the branch
829 if (GET_CODE (insn
) == JUMP_INSN
830 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
831 && INSN_UID (insn
) <= max_uid
833 && INSN_UID (label
) <= max_uid
)
835 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
836 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
837 /* No valid direction information. */
841 /* If insn is a conditional branch call mostly_true_jump to get
842 determine the branch prediction.
844 Non conditional branches are predicted as very likely taken. */
845 if (GET_CODE (insn
) == JUMP_INSN
846 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
850 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
854 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
857 flags
|= ATTR_FLAG_likely
;
860 flags
|= ATTR_FLAG_unlikely
;
863 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
871 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
876 /* Return 1 if INSN is a destination that will be branched to rarely (the
877 return point of a function); return 2 if DEST will be branched to very
878 rarely (a call to a function that doesn't return). Otherwise,
882 rare_destination (insn
)
888 for (; insn
; insn
= next
)
890 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
891 insn
= XVECEXP (PATTERN (insn
), 0, 0);
893 next
= NEXT_INSN (insn
);
895 switch (GET_CODE (insn
))
900 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
901 don't scan past JUMP_INSNs, so any barrier we find here must
902 have been after a CALL_INSN and hence mean the call doesn't
906 if (GET_CODE (PATTERN (insn
)) == RETURN
)
908 else if (simplejump_p (insn
)
909 && jump_count
++ < 10)
910 next
= JUMP_LABEL (insn
);
919 /* If we got here it means we hit the end of the function. So this
920 is an unlikely destination. */
925 /* Return truth value of the statement that this branch
926 is mostly taken. If we think that the branch is extremely likely
927 to be taken, we return 2. If the branch is slightly more likely to be
928 taken, return 1. If the branch is slightly less likely to be taken,
929 return 0 and if the branch is highly unlikely to be taken, return -1.
931 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
934 mostly_true_jump (jump_insn
, condition
)
935 rtx jump_insn
, condition
;
937 rtx target_label
= JUMP_LABEL (jump_insn
);
939 int rare_dest
= rare_destination (target_label
);
940 int rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
942 /* If branch probabilities are available, then use that number since it
943 always gives a correct answer. */
944 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
947 int prob
= INTVAL (XEXP (note
, 0));
949 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
951 else if (prob
>= REG_BR_PROB_BASE
/ 2)
953 else if (prob
>= REG_BR_PROB_BASE
/ 10)
959 /* ??? Ought to use estimate_probability instead. */
961 /* If this is a branch outside a loop, it is highly unlikely. */
962 if (GET_CODE (PATTERN (jump_insn
)) == SET
963 && GET_CODE (SET_SRC (PATTERN (jump_insn
))) == IF_THEN_ELSE
964 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)) == LABEL_REF
965 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)))
966 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)) == LABEL_REF
967 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)))))
972 /* If this is the test of a loop, it is very likely true. We scan
973 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
974 before the next real insn, we assume the branch is to the top of
976 for (insn
= PREV_INSN (target_label
);
977 insn
&& GET_CODE (insn
) == NOTE
;
978 insn
= PREV_INSN (insn
))
979 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
982 /* If this is a jump to the test of a loop, it is likely true. We scan
983 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
984 before the next real insn, we assume the branch is to the loop branch
986 for (insn
= NEXT_INSN (target_label
);
987 insn
&& GET_CODE (insn
) == NOTE
;
988 insn
= PREV_INSN (insn
))
989 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
)
993 /* Look at the relative rarities of the fallthrough and destination. If
994 they differ, we can predict the branch that way. */
996 switch (rare_fallthrough
- rare_dest
)
1010 /* If we couldn't figure out what this jump was, assume it won't be
1011 taken. This should be rare. */
1015 /* EQ tests are usually false and NE tests are usually true. Also,
1016 most quantities are positive, so we can make the appropriate guesses
1017 about signed comparisons against zero. */
1018 switch (GET_CODE (condition
))
1021 /* Unconditional branch. */
1029 if (XEXP (condition
, 1) == const0_rtx
)
1034 if (XEXP (condition
, 1) == const0_rtx
)
1042 /* Predict backward branches usually take, forward branches usually not. If
1043 we don't know whether this is forward or backward, assume the branch
1044 will be taken, since most are. */
1045 return (target_label
== 0 || INSN_UID (jump_insn
) > max_uid
1046 || INSN_UID (target_label
) > max_uid
1047 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1048 > uid_to_ruid
[INSN_UID (target_label
)]));
1051 /* Return the condition under which INSN will branch to TARGET. If TARGET
1052 is zero, return the condition under which INSN will return. If INSN is
1053 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1054 type of jump, or it doesn't go to TARGET, return 0. */
1057 get_branch_condition (insn
, target
)
1061 rtx pat
= PATTERN (insn
);
1064 if (condjump_in_parallel_p (insn
))
1065 pat
= XVECEXP (pat
, 0, 0);
1067 if (GET_CODE (pat
) == RETURN
)
1068 return target
== 0 ? const_true_rtx
: 0;
1070 else if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1073 src
= SET_SRC (pat
);
1074 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1075 return const_true_rtx
;
1077 else if (GET_CODE (src
) == IF_THEN_ELSE
1078 && ((target
== 0 && GET_CODE (XEXP (src
, 1)) == RETURN
)
1079 || (GET_CODE (XEXP (src
, 1)) == LABEL_REF
1080 && XEXP (XEXP (src
, 1), 0) == target
))
1081 && XEXP (src
, 2) == pc_rtx
)
1082 return XEXP (src
, 0);
1084 else if (GET_CODE (src
) == IF_THEN_ELSE
1085 && ((target
== 0 && GET_CODE (XEXP (src
, 2)) == RETURN
)
1086 || (GET_CODE (XEXP (src
, 2)) == LABEL_REF
1087 && XEXP (XEXP (src
, 2), 0) == target
))
1088 && XEXP (src
, 1) == pc_rtx
)
1091 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1093 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1094 XEXP (XEXP (src
, 0), 0),
1095 XEXP (XEXP (src
, 0), 1));
1101 /* Return non-zero if CONDITION is more strict than the condition of
1102 INSN, i.e., if INSN will always branch if CONDITION is true. */
1105 condition_dominates_p (condition
, insn
)
1109 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1110 enum rtx_code code
= GET_CODE (condition
);
1111 enum rtx_code other_code
;
1113 if (rtx_equal_p (condition
, other_condition
)
1114 || other_condition
== const_true_rtx
)
1117 else if (condition
== const_true_rtx
|| other_condition
== 0)
1120 other_code
= GET_CODE (other_condition
);
1121 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1122 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1123 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1126 return comparison_dominates_p (code
, other_code
);
1129 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1130 any insns already in the delay slot of JUMP. */
1133 redirect_with_delay_slots_safe_p (jump
, newlabel
, seq
)
1134 rtx jump
, newlabel
, seq
;
1137 rtx pat
= PATTERN (seq
);
1139 /* Make sure all the delay slots of this jump would still
1140 be valid after threading the jump. If they are still
1141 valid, then return non-zero. */
1143 flags
= get_jump_flags (jump
, newlabel
);
1144 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1146 #ifdef ANNUL_IFFALSE_SLOTS
1147 (INSN_ANNULLED_BRANCH_P (jump
)
1148 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1149 ? eligible_for_annul_false (jump
, i
- 1,
1150 XVECEXP (pat
, 0, i
), flags
) :
1152 #ifdef ANNUL_IFTRUE_SLOTS
1153 (INSN_ANNULLED_BRANCH_P (jump
)
1154 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1155 ? eligible_for_annul_true (jump
, i
- 1,
1156 XVECEXP (pat
, 0, i
), flags
) :
1158 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1161 return (i
== XVECLEN (pat
, 0));
1164 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1165 any insns we wish to place in the delay slot of JUMP. */
1168 redirect_with_delay_list_safe_p (jump
, newlabel
, delay_list
)
1169 rtx jump
, newlabel
, delay_list
;
1174 /* Make sure all the insns in DELAY_LIST would still be
1175 valid after threading the jump. If they are still
1176 valid, then return non-zero. */
1178 flags
= get_jump_flags (jump
, newlabel
);
1179 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1181 #ifdef ANNUL_IFFALSE_SLOTS
1182 (INSN_ANNULLED_BRANCH_P (jump
)
1183 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1184 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1186 #ifdef ANNUL_IFTRUE_SLOTS
1187 (INSN_ANNULLED_BRANCH_P (jump
)
1188 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1189 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1191 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1194 return (li
== NULL
);
1197 /* DELAY_LIST is a list of insns that have already been placed into delay
1198 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1199 If not, return 0; otherwise return 1. */
1202 check_annul_list_true_false (annul_true_p
, delay_list
)
1210 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1212 rtx trial
= XEXP (temp
, 0);
1214 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1215 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1223 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1224 the condition tested by INSN is CONDITION and the resources shown in
1225 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1226 from SEQ's delay list, in addition to whatever insns it may execute
1227 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1228 needed while searching for delay slot insns. Return the concatenated
1229 delay list if possible, otherwise, return 0.
1231 SLOTS_TO_FILL is the total number of slots required by INSN, and
1232 PSLOTS_FILLED points to the number filled so far (also the number of
1233 insns in DELAY_LIST). It is updated with the number that have been
1234 filled from the SEQUENCE, if any.
1236 PANNUL_P points to a non-zero value if we already know that we need
1237 to annul INSN. If this routine determines that annulling is needed,
1238 it may set that value non-zero.
1240 PNEW_THREAD points to a location that is to receive the place at which
1241 execution should continue. */
1244 steal_delay_list_from_target (insn
, condition
, seq
, delay_list
,
1245 sets
, needed
, other_needed
,
1246 slots_to_fill
, pslots_filled
, pannul_p
,
1248 rtx insn
, condition
;
1251 struct resources
*sets
, *needed
, *other_needed
;
1258 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1259 int total_slots_filled
= *pslots_filled
;
1260 rtx new_delay_list
= 0;
1261 int must_annul
= *pannul_p
;
1264 struct resources cc_set
;
1266 /* We can't do anything if there are more delay slots in SEQ than we
1267 can handle, or if we don't know that it will be a taken branch.
1268 We know that it will be a taken branch if it is either an unconditional
1269 branch or a conditional branch with a stricter branch condition.
1271 Also, exit if the branch has more than one set, since then it is computing
1272 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1273 ??? It may be possible to move other sets into INSN in addition to
1274 moving the instructions in the delay slots.
1276 We can not steal the delay list if one of the instructions in the
1277 current delay_list modifies the condition codes and the jump in the
1278 sequence is a conditional jump. We can not do this because we can
1279 not change the direction of the jump because the condition codes
1280 will effect the direction of the jump in the sequence. */
1282 CLEAR_RESOURCE (&cc_set
);
1283 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1285 rtx trial
= XEXP (temp
, 0);
1287 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1288 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, 0))
1292 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1293 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1294 || ! single_set (XVECEXP (seq
, 0, 0)))
1297 #ifdef MD_CAN_REDIRECT_BRANCH
1298 /* On some targets, branches with delay slots can have a limited
1299 displacement. Give the back end a chance to tell us we can't do
1301 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1305 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1307 rtx trial
= XVECEXP (seq
, 0, i
);
1310 if (insn_references_resource_p (trial
, sets
, 0)
1311 || insn_sets_resource_p (trial
, needed
, 0)
1312 || insn_sets_resource_p (trial
, sets
, 0)
1314 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1316 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1318 /* If TRIAL is from the fallthrough code of an annulled branch insn
1319 in SEQ, we cannot use it. */
1320 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1321 && ! INSN_FROM_TARGET_P (trial
)))
1324 /* If this insn was already done (usually in a previous delay slot),
1325 pretend we put it in our delay slot. */
1326 if (redundant_insn (trial
, insn
, new_delay_list
))
1329 /* We will end up re-vectoring this branch, so compute flags
1330 based on jumping to the new label. */
1331 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1334 && ((condition
== const_true_rtx
1335 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1336 && ! may_trap_p (PATTERN (trial
)))))
1337 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1338 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1340 check_annul_list_true_false (0, delay_list
)
1341 && check_annul_list_true_false (0, new_delay_list
)
1342 && eligible_for_annul_false (insn
, total_slots_filled
,
1347 temp
= copy_rtx (trial
);
1348 INSN_FROM_TARGET_P (temp
) = 1;
1349 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1350 total_slots_filled
++;
1352 if (--slots_remaining
== 0)
1359 /* Show the place to which we will be branching. */
1360 *pnew_thread
= next_active_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1362 /* Add any new insns to the delay list and update the count of the
1363 number of slots filled. */
1364 *pslots_filled
= total_slots_filled
;
1368 if (delay_list
== 0)
1369 return new_delay_list
;
1371 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1372 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1377 /* Similar to steal_delay_list_from_target except that SEQ is on the
1378 fallthrough path of INSN. Here we only do something if the delay insn
1379 of SEQ is an unconditional branch. In that case we steal its delay slot
1380 for INSN since unconditional branches are much easier to fill. */
1383 steal_delay_list_from_fallthrough (insn
, condition
, seq
,
1384 delay_list
, sets
, needed
, other_needed
,
1385 slots_to_fill
, pslots_filled
, pannul_p
)
1386 rtx insn
, condition
;
1389 struct resources
*sets
, *needed
, *other_needed
;
1396 int must_annul
= *pannul_p
;
1399 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1401 /* We can't do anything if SEQ's delay insn isn't an
1402 unconditional branch. */
1404 if (! simplejump_p (XVECEXP (seq
, 0, 0))
1405 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) != RETURN
)
1408 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1410 rtx trial
= XVECEXP (seq
, 0, i
);
1412 /* If TRIAL sets CC0, stealing it will move it too far from the use
1414 if (insn_references_resource_p (trial
, sets
, 0)
1415 || insn_sets_resource_p (trial
, needed
, 0)
1416 || insn_sets_resource_p (trial
, sets
, 0)
1418 || sets_cc0_p (PATTERN (trial
))
1424 /* If this insn was already done, we don't need it. */
1425 if (redundant_insn (trial
, insn
, delay_list
))
1427 delete_from_delay_slot (trial
);
1432 && ((condition
== const_true_rtx
1433 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1434 && ! may_trap_p (PATTERN (trial
)))))
1435 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1436 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1437 check_annul_list_true_false (1, delay_list
)
1438 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1442 delete_from_delay_slot (trial
);
1443 delay_list
= add_to_delay_list (trial
, delay_list
);
1445 if (++(*pslots_filled
) == slots_to_fill
)
1457 /* Try merging insns starting at THREAD which match exactly the insns in
1460 If all insns were matched and the insn was previously annulling, the
1461 annul bit will be cleared.
1463 For each insn that is merged, if the branch is or will be non-annulling,
1464 we delete the merged insn. */
1467 try_merge_delay_insns (insn
, thread
)
1470 rtx trial
, next_trial
;
1471 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1472 int annul_p
= INSN_ANNULLED_BRANCH_P (delay_insn
);
1473 int slot_number
= 1;
1474 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1475 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1476 struct resources set
, needed
;
1477 rtx merged_insns
= 0;
1481 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1483 CLEAR_RESOURCE (&needed
);
1484 CLEAR_RESOURCE (&set
);
1486 /* If this is not an annulling branch, take into account anything needed in
1487 INSN's delay slot. This prevents two increments from being incorrectly
1488 folded into one. If we are annulling, this would be the correct
1489 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1490 will essentially disable this optimization. This method is somewhat of
1491 a kludge, but I don't see a better way.) */
1493 for (i
= 1 ; i
< num_slots
; i
++)
1494 if (XVECEXP (PATTERN (insn
), 0, i
))
1495 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
, 1);
1497 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1499 rtx pat
= PATTERN (trial
);
1500 rtx oldtrial
= trial
;
1502 next_trial
= next_nonnote_insn (trial
);
1504 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1505 if (GET_CODE (trial
) == INSN
1506 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1509 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1511 /* We can't share an insn that sets cc0. */
1512 && ! sets_cc0_p (pat
)
1514 && ! insn_references_resource_p (trial
, &set
, 1)
1515 && ! insn_sets_resource_p (trial
, &set
, 1)
1516 && ! insn_sets_resource_p (trial
, &needed
, 1)
1517 && (trial
= try_split (pat
, trial
, 0)) != 0
1518 /* Update next_trial, in case try_split succeeded. */
1519 && (next_trial
= next_nonnote_insn (trial
))
1520 /* Likewise THREAD. */
1521 && (thread
= oldtrial
== thread
? trial
: thread
)
1522 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1523 /* Have to test this condition if annul condition is different
1524 from (and less restrictive than) non-annulling one. */
1525 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1530 update_block (trial
, thread
);
1531 if (trial
== thread
)
1532 thread
= next_active_insn (thread
);
1534 delete_related_insns (trial
);
1535 INSN_FROM_TARGET_P (next_to_match
) = 0;
1538 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1540 if (++slot_number
== num_slots
)
1543 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1546 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1547 mark_referenced_resources (trial
, &needed
, 1);
1550 /* See if we stopped on a filled insn. If we did, try to see if its
1551 delay slots match. */
1552 if (slot_number
!= num_slots
1553 && trial
&& GET_CODE (trial
) == INSN
1554 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1555 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0)))
1557 rtx pat
= PATTERN (trial
);
1558 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1560 /* Account for resources set/needed by the filled insn. */
1561 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1562 mark_referenced_resources (filled_insn
, &needed
, 1);
1564 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1566 rtx dtrial
= XVECEXP (pat
, 0, i
);
1568 if (! insn_references_resource_p (dtrial
, &set
, 1)
1569 && ! insn_sets_resource_p (dtrial
, &set
, 1)
1570 && ! insn_sets_resource_p (dtrial
, &needed
, 1)
1572 && ! sets_cc0_p (PATTERN (dtrial
))
1574 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1575 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1581 update_block (dtrial
, thread
);
1582 new = delete_from_delay_slot (dtrial
);
1583 if (INSN_DELETED_P (thread
))
1585 INSN_FROM_TARGET_P (next_to_match
) = 0;
1588 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1591 if (++slot_number
== num_slots
)
1594 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1598 /* Keep track of the set/referenced resources for the delay
1599 slots of any trial insns we encounter. */
1600 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1601 mark_referenced_resources (dtrial
, &needed
, 1);
1606 /* If all insns in the delay slot have been matched and we were previously
1607 annulling the branch, we need not any more. In that case delete all the
1608 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1609 the delay list so that we know that it isn't only being used at the
1611 if (slot_number
== num_slots
&& annul_p
)
1613 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1615 if (GET_MODE (merged_insns
) == SImode
)
1619 update_block (XEXP (merged_insns
, 0), thread
);
1620 new = delete_from_delay_slot (XEXP (merged_insns
, 0));
1621 if (INSN_DELETED_P (thread
))
1626 update_block (XEXP (merged_insns
, 0), thread
);
1627 delete_related_insns (XEXP (merged_insns
, 0));
1631 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1633 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1634 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1638 /* See if INSN is redundant with an insn in front of TARGET. Often this
1639 is called when INSN is a candidate for a delay slot of TARGET.
1640 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1641 of INSN. Often INSN will be redundant with an insn in a delay slot of
1642 some previous insn. This happens when we have a series of branches to the
1643 same label; in that case the first insn at the target might want to go
1644 into each of the delay slots.
1646 If we are not careful, this routine can take up a significant fraction
1647 of the total compilation time (4%), but only wins rarely. Hence we
1648 speed this routine up by making two passes. The first pass goes back
1649 until it hits a label and sees if it find an insn with an identical
1650 pattern. Only in this (relatively rare) event does it check for
1653 We do not split insns we encounter. This could cause us not to find a
1654 redundant insn, but the cost of splitting seems greater than the possible
1655 gain in rare cases. */
1658 redundant_insn (insn
, target
, delay_list
)
1663 rtx target_main
= target
;
1664 rtx ipat
= PATTERN (insn
);
1666 struct resources needed
, set
;
1668 unsigned insns_to_search
;
1670 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1671 are allowed to not actually assign to such a register. */
1672 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1675 /* Scan backwards looking for a match. */
1676 for (trial
= PREV_INSN (target
),
1677 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1678 trial
&& insns_to_search
> 0;
1679 trial
= PREV_INSN (trial
), --insns_to_search
)
1681 if (GET_CODE (trial
) == CODE_LABEL
)
1684 if (! INSN_P (trial
))
1687 pat
= PATTERN (trial
);
1688 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1691 if (GET_CODE (pat
) == SEQUENCE
)
1693 /* Stop for a CALL and its delay slots because it is difficult to
1694 track its resource needs correctly. */
1695 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1698 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1699 slots because it is difficult to track its resource needs
1702 #ifdef INSN_SETS_ARE_DELAYED
1703 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1707 #ifdef INSN_REFERENCES_ARE_DELAYED
1708 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1712 /* See if any of the insns in the delay slot match, updating
1713 resource requirements as we go. */
1714 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1715 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1716 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1717 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1720 /* If found a match, exit this loop early. */
1725 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1726 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1730 /* If we didn't find an insn that matches, return 0. */
1734 /* See what resources this insn sets and needs. If they overlap, or
1735 if this insn references CC0, it can't be redundant. */
1737 CLEAR_RESOURCE (&needed
);
1738 CLEAR_RESOURCE (&set
);
1739 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1740 mark_referenced_resources (insn
, &needed
, 1);
1742 /* If TARGET is a SEQUENCE, get the main insn. */
1743 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1744 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1746 if (resource_conflicts_p (&needed
, &set
)
1748 || reg_mentioned_p (cc0_rtx
, ipat
)
1750 /* The insn requiring the delay may not set anything needed or set by
1752 || insn_sets_resource_p (target_main
, &needed
, 1)
1753 || insn_sets_resource_p (target_main
, &set
, 1))
1756 /* Insns we pass may not set either NEEDED or SET, so merge them for
1758 needed
.memory
|= set
.memory
;
1759 needed
.unch_memory
|= set
.unch_memory
;
1760 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1762 /* This insn isn't redundant if it conflicts with an insn that either is
1763 or will be in a delay slot of TARGET. */
1767 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, 1))
1769 delay_list
= XEXP (delay_list
, 1);
1772 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1773 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1774 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
, 1))
1777 /* Scan backwards until we reach a label or an insn that uses something
1778 INSN sets or sets something insn uses or sets. */
1780 for (trial
= PREV_INSN (target
),
1781 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1782 trial
&& GET_CODE (trial
) != CODE_LABEL
&& insns_to_search
> 0;
1783 trial
= PREV_INSN (trial
), --insns_to_search
)
1785 if (GET_CODE (trial
) != INSN
&& GET_CODE (trial
) != CALL_INSN
1786 && GET_CODE (trial
) != JUMP_INSN
)
1789 pat
= PATTERN (trial
);
1790 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1793 if (GET_CODE (pat
) == SEQUENCE
)
1795 /* If this is a CALL_INSN and its delay slots, it is hard to track
1796 the resource needs properly, so give up. */
1797 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1800 /* If this is an INSN or JUMP_INSN with delayed effects, it
1801 is hard to track the resource needs properly, so give up. */
1803 #ifdef INSN_SETS_ARE_DELAYED
1804 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1808 #ifdef INSN_REFERENCES_ARE_DELAYED
1809 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1813 /* See if any of the insns in the delay slot match, updating
1814 resource requirements as we go. */
1815 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1817 rtx candidate
= XVECEXP (pat
, 0, i
);
1819 /* If an insn will be annulled if the branch is false, it isn't
1820 considered as a possible duplicate insn. */
1821 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1822 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1823 && INSN_FROM_TARGET_P (candidate
)))
1825 /* Show that this insn will be used in the sequel. */
1826 INSN_FROM_TARGET_P (candidate
) = 0;
1830 /* Unless this is an annulled insn from the target of a branch,
1831 we must stop if it sets anything needed or set by INSN. */
1832 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1833 || ! INSN_FROM_TARGET_P (candidate
))
1834 && insn_sets_resource_p (candidate
, &needed
, 1))
1838 /* If the insn requiring the delay slot conflicts with INSN, we
1840 if (insn_sets_resource_p (XVECEXP (pat
, 0, 0), &needed
, 1))
1845 /* See if TRIAL is the same as INSN. */
1846 pat
= PATTERN (trial
);
1847 if (rtx_equal_p (pat
, ipat
))
1850 /* Can't go any further if TRIAL conflicts with INSN. */
1851 if (insn_sets_resource_p (trial
, &needed
, 1))
1859 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
1860 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1861 is non-zero, we are allowed to fall into this thread; otherwise, we are
1864 If LABEL is used more than one or we pass a label other than LABEL before
1865 finding an active insn, we do not own this thread. */
1868 own_thread_p (thread
, label
, allow_fallthrough
)
1871 int allow_fallthrough
;
1876 /* We don't own the function end. */
1880 /* Get the first active insn, or THREAD, if it is an active insn. */
1881 active_insn
= next_active_insn (PREV_INSN (thread
));
1883 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1884 if (GET_CODE (insn
) == CODE_LABEL
1885 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1888 if (allow_fallthrough
)
1891 /* Ensure that we reach a BARRIER before any insn or label. */
1892 for (insn
= prev_nonnote_insn (thread
);
1893 insn
== 0 || GET_CODE (insn
) != BARRIER
;
1894 insn
= prev_nonnote_insn (insn
))
1896 || GET_CODE (insn
) == CODE_LABEL
1897 || (GET_CODE (insn
) == INSN
1898 && GET_CODE (PATTERN (insn
)) != USE
1899 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1905 /* Called when INSN is being moved from a location near the target of a jump.
1906 We leave a marker of the form (use (INSN)) immediately in front
1907 of WHERE for mark_target_live_regs. These markers will be deleted when
1910 We used to try to update the live status of registers if WHERE is at
1911 the start of a basic block, but that can't work since we may remove a
1912 BARRIER in relax_delay_slots. */
1915 update_block (insn
, where
)
1919 /* Ignore if this was in a delay slot and it came from the target of
1921 if (INSN_FROM_TARGET_P (insn
))
1924 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1926 /* INSN might be making a value live in a block where it didn't use to
1927 be. So recompute liveness information for this block. */
1929 incr_ticks_for_insn (insn
);
1932 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1933 the basic block containing the jump. */
1936 reorg_redirect_jump (jump
, nlabel
)
1940 incr_ticks_for_insn (jump
);
1941 return redirect_jump (jump
, nlabel
, 1);
1944 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1945 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1946 that reference values used in INSN. If we find one, then we move the
1947 REG_DEAD note to INSN.
1949 This is needed to handle the case where an later insn (after INSN) has a
1950 REG_DEAD note for a register used by INSN, and this later insn subsequently
1951 gets moved before a CODE_LABEL because it is a redundant insn. In this
1952 case, mark_target_live_regs may be confused into thinking the register
1953 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1956 update_reg_dead_notes (insn
, delayed_insn
)
1957 rtx insn
, delayed_insn
;
1961 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1962 p
= next_nonnote_insn (p
))
1963 for (link
= REG_NOTES (p
); link
; link
= next
)
1965 next
= XEXP (link
, 1);
1967 if (REG_NOTE_KIND (link
) != REG_DEAD
1968 || GET_CODE (XEXP (link
, 0)) != REG
)
1971 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1973 /* Move the REG_DEAD note from P to INSN. */
1974 remove_note (p
, link
);
1975 XEXP (link
, 1) = REG_NOTES (insn
);
1976 REG_NOTES (insn
) = link
;
1981 /* Called when an insn redundant with start_insn is deleted. If there
1982 is a REG_DEAD note for the target of start_insn between start_insn
1983 and stop_insn, then the REG_DEAD note needs to be deleted since the
1984 value no longer dies there.
1986 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1987 confused into thinking the register is dead. */
1990 fix_reg_dead_note (start_insn
, stop_insn
)
1991 rtx start_insn
, stop_insn
;
1995 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1996 p
= next_nonnote_insn (p
))
1997 for (link
= REG_NOTES (p
); link
; link
= next
)
1999 next
= XEXP (link
, 1);
2001 if (REG_NOTE_KIND (link
) != REG_DEAD
2002 || GET_CODE (XEXP (link
, 0)) != REG
)
2005 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
2007 remove_note (p
, link
);
2013 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2015 This handles the case of udivmodXi4 instructions which optimize their
2016 output depending on whether any REG_UNUSED notes are present.
2017 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2021 update_reg_unused_notes (insn
, redundant_insn
)
2022 rtx insn
, redundant_insn
;
2026 for (link
= REG_NOTES (insn
); link
; link
= next
)
2028 next
= XEXP (link
, 1);
2030 if (REG_NOTE_KIND (link
) != REG_UNUSED
2031 || GET_CODE (XEXP (link
, 0)) != REG
)
2034 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
2035 REGNO (XEXP (link
, 0))))
2036 remove_note (insn
, link
);
2040 /* Scan a function looking for insns that need a delay slot and find insns to
2041 put into the delay slot.
2043 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
2044 as calls). We do these first since we don't want jump insns (that are
2045 easier to fill) to get the only insns that could be used for non-jump insns.
2046 When it is zero, only try to fill JUMP_INSNs.
2048 When slots are filled in this manner, the insns (including the
2049 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2050 it is possible to tell whether a delay slot has really been filled
2051 or not. `final' knows how to deal with this, by communicating
2052 through FINAL_SEQUENCE. */
2055 fill_simple_delay_slots (non_jumps_p
)
2058 rtx insn
, pat
, trial
, next_trial
;
2060 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2061 struct resources needed
, set
;
2062 int slots_to_fill
, slots_filled
;
2065 for (i
= 0; i
< num_unfilled_slots
; i
++)
2068 /* Get the next insn to fill. If it has already had any slots assigned,
2069 we can't do anything with it. Maybe we'll improve this later. */
2071 insn
= unfilled_slots_base
[i
];
2073 || INSN_DELETED_P (insn
)
2074 || (GET_CODE (insn
) == INSN
2075 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2076 || (GET_CODE (insn
) == JUMP_INSN
&& non_jumps_p
)
2077 || (GET_CODE (insn
) != JUMP_INSN
&& ! non_jumps_p
))
2080 /* It may have been that this insn used to need delay slots, but
2081 now doesn't; ignore in that case. This can happen, for example,
2082 on the HP PA RISC, where the number of delay slots depends on
2083 what insns are nearby. */
2084 slots_to_fill
= num_delay_slots (insn
);
2086 /* Some machine description have defined instructions to have
2087 delay slots only in certain circumstances which may depend on
2088 nearby insns (which change due to reorg's actions).
2090 For example, the PA port normally has delay slots for unconditional
2093 However, the PA port claims such jumps do not have a delay slot
2094 if they are immediate successors of certain CALL_INSNs. This
2095 allows the port to favor filling the delay slot of the call with
2096 the unconditional jump. */
2097 if (slots_to_fill
== 0)
2100 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2101 says how many. After initialization, first try optimizing
2104 nop add %o7,.-L1,%o7
2108 If this case applies, the delay slot of the call is filled with
2109 the unconditional jump. This is done first to avoid having the
2110 delay slot of the call filled in the backward scan. Also, since
2111 the unconditional jump is likely to also have a delay slot, that
2112 insn must exist when it is subsequently scanned.
2114 This is tried on each insn with delay slots as some machines
2115 have insns which perform calls, but are not represented as
2121 if (GET_CODE (insn
) == JUMP_INSN
)
2122 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2124 flags
= get_jump_flags (insn
, NULL_RTX
);
2126 if ((trial
= next_active_insn (insn
))
2127 && GET_CODE (trial
) == JUMP_INSN
2128 && simplejump_p (trial
)
2129 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2130 && no_labels_between_p (insn
, trial
)
2131 && ! can_throw_internal (trial
))
2135 delay_list
= add_to_delay_list (trial
, delay_list
);
2137 /* TRIAL may have had its delay slot filled, then unfilled. When
2138 the delay slot is unfilled, TRIAL is placed back on the unfilled
2139 slots obstack. Unfortunately, it is placed on the end of the
2140 obstack, not in its original location. Therefore, we must search
2141 from entry i + 1 to the end of the unfilled slots obstack to
2142 try and find TRIAL. */
2143 tmp
= &unfilled_slots_base
[i
+ 1];
2144 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2147 /* Remove the unconditional jump from consideration for delay slot
2148 filling and unthread it. */
2152 rtx next
= NEXT_INSN (trial
);
2153 rtx prev
= PREV_INSN (trial
);
2155 NEXT_INSN (prev
) = next
;
2157 PREV_INSN (next
) = prev
;
2161 /* Now, scan backwards from the insn to search for a potential
2162 delay-slot candidate. Stop searching when a label or jump is hit.
2164 For each candidate, if it is to go into the delay slot (moved
2165 forward in execution sequence), it must not need or set any resources
2166 that were set by later insns and must not set any resources that
2167 are needed for those insns.
2169 The delay slot insn itself sets resources unless it is a call
2170 (in which case the called routine, not the insn itself, is doing
2173 if (slots_filled
< slots_to_fill
)
2175 CLEAR_RESOURCE (&needed
);
2176 CLEAR_RESOURCE (&set
);
2177 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2178 mark_referenced_resources (insn
, &needed
, 0);
2180 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2183 next_trial
= prev_nonnote_insn (trial
);
2185 /* This must be an INSN or CALL_INSN. */
2186 pat
= PATTERN (trial
);
2188 /* USE and CLOBBER at this level was just for flow; ignore it. */
2189 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2192 /* Check for resource conflict first, to avoid unnecessary
2194 if (! insn_references_resource_p (trial
, &set
, 1)
2195 && ! insn_sets_resource_p (trial
, &set
, 1)
2196 && ! insn_sets_resource_p (trial
, &needed
, 1)
2198 /* Can't separate set of cc0 from its use. */
2199 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2201 && ! can_throw_internal (trial
))
2203 trial
= try_split (pat
, trial
, 1);
2204 next_trial
= prev_nonnote_insn (trial
);
2205 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2207 /* In this case, we are searching backward, so if we
2208 find insns to put on the delay list, we want
2209 to put them at the head, rather than the
2210 tail, of the list. */
2212 update_reg_dead_notes (trial
, insn
);
2213 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2215 update_block (trial
, trial
);
2216 delete_related_insns (trial
);
2217 if (slots_to_fill
== ++slots_filled
)
2223 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2224 mark_referenced_resources (trial
, &needed
, 1);
2228 /* If all needed slots haven't been filled, we come here. */
2230 /* Try to optimize case of jumping around a single insn. */
2231 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2232 if (slots_filled
!= slots_to_fill
2234 && GET_CODE (insn
) == JUMP_INSN
2235 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2237 delay_list
= optimize_skip (insn
);
2243 /* Try to get insns from beyond the insn needing the delay slot.
2244 These insns can neither set or reference resources set in insns being
2245 skipped, cannot set resources in the insn being skipped, and, if this
2246 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2247 call might not return).
2249 There used to be code which continued past the target label if
2250 we saw all uses of the target label. This code did not work,
2251 because it failed to account for some instructions which were
2252 both annulled and marked as from the target. This can happen as a
2253 result of optimize_skip. Since this code was redundant with
2254 fill_eager_delay_slots anyways, it was just deleted. */
2256 if (slots_filled
!= slots_to_fill
2257 /* If this instruction could throw an exception which is
2258 caught in the same function, then it's not safe to fill
2259 the delay slot with an instruction from beyond this
2260 point. For example, consider:
2271 Even though `i' is a local variable, we must be sure not
2272 to put `i = 3' in the delay slot if `f' might throw an
2275 Presumably, we should also check to see if we could get
2276 back to this function via `setjmp'. */
2277 && ! can_throw_internal (insn
)
2278 && (GET_CODE (insn
) != JUMP_INSN
2279 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2280 && ! simplejump_p (insn
)
2281 && JUMP_LABEL (insn
) != 0)))
2283 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2284 label. Otherwise, zero. */
2286 int maybe_never
= 0;
2287 rtx pat
, trial_delay
;
2289 CLEAR_RESOURCE (&needed
);
2290 CLEAR_RESOURCE (&set
);
2292 if (GET_CODE (insn
) == CALL_INSN
)
2294 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2295 mark_referenced_resources (insn
, &needed
, 1);
2300 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2301 mark_referenced_resources (insn
, &needed
, 1);
2302 if (GET_CODE (insn
) == JUMP_INSN
)
2303 target
= JUMP_LABEL (insn
);
2307 for (trial
= next_nonnote_insn (insn
); trial
; trial
= next_trial
)
2309 next_trial
= next_nonnote_insn (trial
);
2311 if (GET_CODE (trial
) == CODE_LABEL
2312 || GET_CODE (trial
) == BARRIER
)
2315 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2316 pat
= PATTERN (trial
);
2318 /* Stand-alone USE and CLOBBER are just for flow. */
2319 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2322 /* If this already has filled delay slots, get the insn needing
2324 if (GET_CODE (pat
) == SEQUENCE
)
2325 trial_delay
= XVECEXP (pat
, 0, 0);
2327 trial_delay
= trial
;
2329 /* Stop our search when seeing an unconditional jump. */
2330 if (GET_CODE (trial_delay
) == JUMP_INSN
)
2333 /* See if we have a resource problem before we try to
2335 if (GET_CODE (pat
) != SEQUENCE
2336 && ! insn_references_resource_p (trial
, &set
, 1)
2337 && ! insn_sets_resource_p (trial
, &set
, 1)
2338 && ! insn_sets_resource_p (trial
, &needed
, 1)
2340 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2342 && ! (maybe_never
&& may_trap_p (pat
))
2343 && (trial
= try_split (pat
, trial
, 0))
2344 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2345 && ! can_throw_internal(trial
))
2347 next_trial
= next_nonnote_insn (trial
);
2348 delay_list
= add_to_delay_list (trial
, delay_list
);
2351 if (reg_mentioned_p (cc0_rtx
, pat
))
2352 link_cc0_insns (trial
);
2355 delete_related_insns (trial
);
2356 if (slots_to_fill
== ++slots_filled
)
2361 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2362 mark_referenced_resources (trial
, &needed
, 1);
2364 /* Ensure we don't put insns between the setting of cc and the
2365 comparison by moving a setting of cc into an earlier delay
2366 slot since these insns could clobber the condition code. */
2369 /* If this is a call or jump, we might not get here. */
2370 if (GET_CODE (trial_delay
) == CALL_INSN
2371 || GET_CODE (trial_delay
) == JUMP_INSN
)
2375 /* If there are slots left to fill and our search was stopped by an
2376 unconditional branch, try the insn at the branch target. We can
2377 redirect the branch if it works.
2379 Don't do this if the insn at the branch target is a branch. */
2380 if (slots_to_fill
!= slots_filled
2382 && GET_CODE (trial
) == JUMP_INSN
2383 && simplejump_p (trial
)
2384 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2385 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2386 && ! (GET_CODE (next_trial
) == INSN
2387 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2388 && GET_CODE (next_trial
) != JUMP_INSN
2389 && ! insn_references_resource_p (next_trial
, &set
, 1)
2390 && ! insn_sets_resource_p (next_trial
, &set
, 1)
2391 && ! insn_sets_resource_p (next_trial
, &needed
, 1)
2393 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2395 && ! (maybe_never
&& may_trap_p (PATTERN (next_trial
)))
2396 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2397 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2398 && ! can_throw_internal (trial
))
2400 rtx new_label
= next_active_insn (next_trial
);
2403 new_label
= get_label_before (new_label
);
2405 new_label
= find_end_label ();
2408 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2410 reorg_redirect_jump (trial
, new_label
);
2412 /* If we merged because we both jumped to the same place,
2413 redirect the original insn also. */
2415 reorg_redirect_jump (insn
, new_label
);
2419 /* If this is an unconditional jump, then try to get insns from the
2420 target of the jump. */
2421 if (GET_CODE (insn
) == JUMP_INSN
2422 && simplejump_p (insn
)
2423 && slots_filled
!= slots_to_fill
)
2425 = fill_slots_from_thread (insn
, const_true_rtx
,
2426 next_active_insn (JUMP_LABEL (insn
)),
2428 own_thread_p (JUMP_LABEL (insn
),
2429 JUMP_LABEL (insn
), 0),
2430 slots_to_fill
, &slots_filled
,
2434 unfilled_slots_base
[i
]
2435 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2437 if (slots_to_fill
== slots_filled
)
2438 unfilled_slots_base
[i
] = 0;
2440 note_delay_statistics (slots_filled
, 0);
2443 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2444 /* See if the epilogue needs any delay slots. Try to fill them if so.
2445 The only thing we can do is scan backwards from the end of the
2446 function. If we did this in a previous pass, it is incorrect to do it
2448 if (current_function_epilogue_delay_list
)
2451 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2452 if (slots_to_fill
== 0)
2456 CLEAR_RESOURCE (&set
);
2458 /* The frame pointer and stack pointer are needed at the beginning of
2459 the epilogue, so instructions setting them can not be put in the
2460 epilogue delay slot. However, everything else needed at function
2461 end is safe, so we don't want to use end_of_function_needs here. */
2462 CLEAR_RESOURCE (&needed
);
2463 if (frame_pointer_needed
)
2465 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2466 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2467 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2469 #ifdef EXIT_IGNORE_STACK
2470 if (! EXIT_IGNORE_STACK
2471 || current_function_sp_is_unchanging
)
2473 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2476 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2478 #ifdef EPILOGUE_USES
2479 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2481 if (EPILOGUE_USES (i
))
2482 SET_HARD_REG_BIT (needed
.regs
, i
);
2486 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2487 trial
= PREV_INSN (trial
))
2489 if (GET_CODE (trial
) == NOTE
)
2491 pat
= PATTERN (trial
);
2492 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2495 if (! insn_references_resource_p (trial
, &set
, 1)
2496 && ! insn_sets_resource_p (trial
, &needed
, 1)
2497 && ! insn_sets_resource_p (trial
, &set
, 1)
2499 /* Don't want to mess with cc0 here. */
2500 && ! reg_mentioned_p (cc0_rtx
, pat
)
2502 && ! can_throw_internal (trial
))
2504 trial
= try_split (pat
, trial
, 1);
2505 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2507 /* Here as well we are searching backward, so put the
2508 insns we find on the head of the list. */
2510 current_function_epilogue_delay_list
2511 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2512 current_function_epilogue_delay_list
);
2513 mark_end_of_function_resources (trial
, 1);
2514 update_block (trial
, trial
);
2515 delete_related_insns (trial
);
2517 /* Clear deleted bit so final.c will output the insn. */
2518 INSN_DELETED_P (trial
) = 0;
2520 if (slots_to_fill
== ++slots_filled
)
2526 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2527 mark_referenced_resources (trial
, &needed
, 1);
2530 note_delay_statistics (slots_filled
, 0);
2534 /* Try to find insns to place in delay slots.
2536 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2537 or is an unconditional branch if CONDITION is const_true_rtx.
2538 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2540 THREAD is a flow-of-control, either the insns to be executed if the
2541 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2543 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2544 to see if any potential delay slot insns set things needed there.
2546 LIKELY is non-zero if it is extremely likely that the branch will be
2547 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2548 end of a loop back up to the top.
2550 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2551 thread. I.e., it is the fallthrough code of our jump or the target of the
2552 jump when we are the only jump going there.
2554 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2555 case, we can only take insns from the head of the thread for our delay
2556 slot. We then adjust the jump to point after the insns we have taken. */
2559 fill_slots_from_thread (insn
, condition
, thread
, opposite_thread
, likely
,
2560 thread_if_true
, own_thread
,
2561 slots_to_fill
, pslots_filled
, delay_list
)
2564 rtx thread
, opposite_thread
;
2568 int slots_to_fill
, *pslots_filled
;
2572 struct resources opposite_needed
, set
, needed
;
2578 /* Validate our arguments. */
2579 if ((condition
== const_true_rtx
&& ! thread_if_true
)
2580 || (! own_thread
&& ! thread_if_true
))
2583 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2585 /* If our thread is the end of subroutine, we can't get any delay
2590 /* If this is an unconditional branch, nothing is needed at the
2591 opposite thread. Otherwise, compute what is needed there. */
2592 if (condition
== const_true_rtx
)
2593 CLEAR_RESOURCE (&opposite_needed
);
2595 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2597 /* If the insn at THREAD can be split, do it here to avoid having to
2598 update THREAD and NEW_THREAD if it is done in the loop below. Also
2599 initialize NEW_THREAD. */
2601 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2603 /* Scan insns at THREAD. We are looking for an insn that can be removed
2604 from THREAD (it neither sets nor references resources that were set
2605 ahead of it and it doesn't set anything needs by the insns ahead of
2606 it) and that either can be placed in an annulling insn or aren't
2607 needed at OPPOSITE_THREAD. */
2609 CLEAR_RESOURCE (&needed
);
2610 CLEAR_RESOURCE (&set
);
2612 /* If we do not own this thread, we must stop as soon as we find
2613 something that we can't put in a delay slot, since all we can do
2614 is branch into THREAD at a later point. Therefore, labels stop
2615 the search if this is not the `true' thread. */
2617 for (trial
= thread
;
2618 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2619 trial
= next_nonnote_insn (trial
))
2623 /* If we have passed a label, we no longer own this thread. */
2624 if (GET_CODE (trial
) == CODE_LABEL
)
2630 pat
= PATTERN (trial
);
2631 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2634 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2635 don't separate or copy insns that set and use CC0. */
2636 if (! insn_references_resource_p (trial
, &set
, 1)
2637 && ! insn_sets_resource_p (trial
, &set
, 1)
2638 && ! insn_sets_resource_p (trial
, &needed
, 1)
2640 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2641 && (! own_thread
|| ! sets_cc0_p (pat
)))
2643 && ! can_throw_internal (trial
))
2647 /* If TRIAL is redundant with some insn before INSN, we don't
2648 actually need to add it to the delay list; we can merely pretend
2650 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2652 fix_reg_dead_note (prior_insn
, insn
);
2655 update_block (trial
, thread
);
2656 if (trial
== thread
)
2658 thread
= next_active_insn (thread
);
2659 if (new_thread
== trial
)
2660 new_thread
= thread
;
2663 delete_related_insns (trial
);
2667 update_reg_unused_notes (prior_insn
, trial
);
2668 new_thread
= next_active_insn (trial
);
2674 /* There are two ways we can win: If TRIAL doesn't set anything
2675 needed at the opposite thread and can't trap, or if it can
2676 go into an annulled delay slot. */
2678 && (condition
== const_true_rtx
2679 || (! insn_sets_resource_p (trial
, &opposite_needed
, 1)
2680 && ! may_trap_p (pat
))))
2683 trial
= try_split (pat
, trial
, 0);
2684 if (new_thread
== old_trial
)
2686 if (thread
== old_trial
)
2688 pat
= PATTERN (trial
);
2689 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2693 #ifdef ANNUL_IFTRUE_SLOTS
2696 #ifdef ANNUL_IFFALSE_SLOTS
2702 trial
= try_split (pat
, trial
, 0);
2703 if (new_thread
== old_trial
)
2705 if (thread
== old_trial
)
2707 pat
= PATTERN (trial
);
2708 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2709 ? check_annul_list_true_false (0, delay_list
)
2710 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2711 : check_annul_list_true_false (1, delay_list
)
2712 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2720 if (reg_mentioned_p (cc0_rtx
, pat
))
2721 link_cc0_insns (trial
);
2724 /* If we own this thread, delete the insn. If this is the
2725 destination of a branch, show that a basic block status
2726 may have been updated. In any case, mark the new
2727 starting point of this thread. */
2732 update_block (trial
, thread
);
2733 if (trial
== thread
)
2735 thread
= next_active_insn (thread
);
2736 if (new_thread
== trial
)
2737 new_thread
= thread
;
2740 /* We are moving this insn, not deleting it. We must
2741 temporarily increment the use count on any referenced
2742 label lest it be deleted by delete_related_insns. */
2743 note
= find_reg_note (trial
, REG_LABEL
, 0);
2744 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2745 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2746 LABEL_NUSES (XEXP (note
, 0))++;
2748 delete_related_insns (trial
);
2750 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2751 LABEL_NUSES (XEXP (note
, 0))--;
2754 new_thread
= next_active_insn (trial
);
2756 temp
= own_thread
? trial
: copy_rtx (trial
);
2758 INSN_FROM_TARGET_P (temp
) = 1;
2760 delay_list
= add_to_delay_list (temp
, delay_list
);
2762 if (slots_to_fill
== ++(*pslots_filled
))
2764 /* Even though we have filled all the slots, we
2765 may be branching to a location that has a
2766 redundant insn. Skip any if so. */
2767 while (new_thread
&& ! own_thread
2768 && ! insn_sets_resource_p (new_thread
, &set
, 1)
2769 && ! insn_sets_resource_p (new_thread
, &needed
, 1)
2770 && ! insn_references_resource_p (new_thread
,
2773 = redundant_insn (new_thread
, insn
,
2776 /* We know we do not own the thread, so no need
2777 to call update_block and delete_insn. */
2778 fix_reg_dead_note (prior_insn
, insn
);
2779 update_reg_unused_notes (prior_insn
, new_thread
);
2780 new_thread
= next_active_insn (new_thread
);
2790 /* This insn can't go into a delay slot. */
2792 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2793 mark_referenced_resources (trial
, &needed
, 1);
2795 /* Ensure we don't put insns between the setting of cc and the comparison
2796 by moving a setting of cc into an earlier delay slot since these insns
2797 could clobber the condition code. */
2800 /* If this insn is a register-register copy and the next insn has
2801 a use of our destination, change it to use our source. That way,
2802 it will become a candidate for our delay slot the next time
2803 through this loop. This case occurs commonly in loops that
2806 We could check for more complex cases than those tested below,
2807 but it doesn't seem worth it. It might also be a good idea to try
2808 to swap the two insns. That might do better.
2810 We can't do this if the next insn modifies our destination, because
2811 that would make the replacement into the insn invalid. We also can't
2812 do this if it modifies our source, because it might be an earlyclobber
2813 operand. This latter test also prevents updating the contents of
2816 if (GET_CODE (trial
) == INSN
&& GET_CODE (pat
) == SET
2817 && GET_CODE (SET_SRC (pat
)) == REG
2818 && GET_CODE (SET_DEST (pat
)) == REG
)
2820 rtx next
= next_nonnote_insn (trial
);
2822 if (next
&& GET_CODE (next
) == INSN
2823 && GET_CODE (PATTERN (next
)) != USE
2824 && ! reg_set_p (SET_DEST (pat
), next
)
2825 && ! reg_set_p (SET_SRC (pat
), next
)
2826 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2827 && ! modified_in_p (SET_DEST (pat
), next
))
2828 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2832 /* If we stopped on a branch insn that has delay slots, see if we can
2833 steal some of the insns in those slots. */
2834 if (trial
&& GET_CODE (trial
) == INSN
2835 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2836 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
)
2838 /* If this is the `true' thread, we will want to follow the jump,
2839 so we can only do this if we have taken everything up to here. */
2840 if (thread_if_true
&& trial
== new_thread
)
2843 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2844 delay_list
, &set
, &needed
,
2845 &opposite_needed
, slots_to_fill
,
2846 pslots_filled
, &must_annul
,
2848 /* If we owned the thread and are told that it branched
2849 elsewhere, make sure we own the thread at the new location. */
2850 if (own_thread
&& trial
!= new_thread
)
2851 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2853 else if (! thread_if_true
)
2855 = steal_delay_list_from_fallthrough (insn
, condition
,
2857 delay_list
, &set
, &needed
,
2858 &opposite_needed
, slots_to_fill
,
2859 pslots_filled
, &must_annul
);
2862 /* If we haven't found anything for this delay slot and it is very
2863 likely that the branch will be taken, see if the insn at our target
2864 increments or decrements a register with an increment that does not
2865 depend on the destination register. If so, try to place the opposite
2866 arithmetic insn after the jump insn and put the arithmetic insn in the
2867 delay slot. If we can't do this, return. */
2868 if (delay_list
== 0 && likely
&& new_thread
2869 && GET_CODE (new_thread
) == INSN
2870 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2871 && asm_noperands (PATTERN (new_thread
)) < 0)
2873 rtx pat
= PATTERN (new_thread
);
2878 pat
= PATTERN (trial
);
2880 if (GET_CODE (trial
) != INSN
2881 || GET_CODE (pat
) != SET
2882 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2883 || can_throw_internal (trial
))
2886 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2887 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2888 && rtx_equal_p (XEXP (src
, 0), dest
)
2889 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2890 && ! side_effects_p (pat
))
2892 rtx other
= XEXP (src
, 1);
2896 /* If this is a constant adjustment, use the same code with
2897 the negated constant. Otherwise, reverse the sense of the
2899 if (GET_CODE (other
) == CONST_INT
)
2900 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2901 negate_rtx (GET_MODE (src
), other
));
2903 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2904 GET_MODE (src
), dest
, other
);
2906 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2909 if (recog_memoized (ninsn
) < 0
2910 || (extract_insn (ninsn
), ! constrain_operands (1)))
2912 delete_related_insns (ninsn
);
2918 update_block (trial
, thread
);
2919 if (trial
== thread
)
2921 thread
= next_active_insn (thread
);
2922 if (new_thread
== trial
)
2923 new_thread
= thread
;
2925 delete_related_insns (trial
);
2928 new_thread
= next_active_insn (trial
);
2930 ninsn
= own_thread
? trial
: copy_rtx (trial
);
2932 INSN_FROM_TARGET_P (ninsn
) = 1;
2934 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2939 if (delay_list
&& must_annul
)
2940 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2942 /* If we are to branch into the middle of this thread, find an appropriate
2943 label or make a new one if none, and redirect INSN to it. If we hit the
2944 end of the function, use the end-of-function label. */
2945 if (new_thread
!= thread
)
2949 if (! thread_if_true
)
2952 if (new_thread
&& GET_CODE (new_thread
) == JUMP_INSN
2953 && (simplejump_p (new_thread
)
2954 || GET_CODE (PATTERN (new_thread
)) == RETURN
)
2955 && redirect_with_delay_list_safe_p (insn
,
2956 JUMP_LABEL (new_thread
),
2958 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
2960 if (new_thread
== 0)
2961 label
= find_end_label ();
2962 else if (GET_CODE (new_thread
) == CODE_LABEL
)
2965 label
= get_label_before (new_thread
);
2967 reorg_redirect_jump (insn
, label
);
2973 /* Make another attempt to find insns to place in delay slots.
2975 We previously looked for insns located in front of the delay insn
2976 and, for non-jump delay insns, located behind the delay insn.
2978 Here only try to schedule jump insns and try to move insns from either
2979 the target or the following insns into the delay slot. If annulling is
2980 supported, we will be likely to do this. Otherwise, we can do this only
2984 fill_eager_delay_slots ()
2988 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2990 for (i
= 0; i
< num_unfilled_slots
; i
++)
2993 rtx target_label
, insn_at_target
, fallthrough_insn
;
2996 int own_fallthrough
;
2997 int prediction
, slots_to_fill
, slots_filled
;
2999 insn
= unfilled_slots_base
[i
];
3001 || INSN_DELETED_P (insn
)
3002 || GET_CODE (insn
) != JUMP_INSN
3003 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
3006 slots_to_fill
= num_delay_slots (insn
);
3007 /* Some machine description have defined instructions to have
3008 delay slots only in certain circumstances which may depend on
3009 nearby insns (which change due to reorg's actions).
3011 For example, the PA port normally has delay slots for unconditional
3014 However, the PA port claims such jumps do not have a delay slot
3015 if they are immediate successors of certain CALL_INSNs. This
3016 allows the port to favor filling the delay slot of the call with
3017 the unconditional jump. */
3018 if (slots_to_fill
== 0)
3022 target_label
= JUMP_LABEL (insn
);
3023 condition
= get_branch_condition (insn
, target_label
);
3028 /* Get the next active fallthrough and target insns and see if we own
3029 them. Then see whether the branch is likely true. We don't need
3030 to do a lot of this for unconditional branches. */
3032 insn_at_target
= next_active_insn (target_label
);
3033 own_target
= own_thread_p (target_label
, target_label
, 0);
3035 if (condition
== const_true_rtx
)
3037 own_fallthrough
= 0;
3038 fallthrough_insn
= 0;
3043 fallthrough_insn
= next_active_insn (insn
);
3044 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3045 prediction
= mostly_true_jump (insn
, condition
);
3048 /* If this insn is expected to branch, first try to get insns from our
3049 target, then our fallthrough insns. If it is not expected to branch,
3050 try the other order. */
3055 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3056 fallthrough_insn
, prediction
== 2, 1,
3058 slots_to_fill
, &slots_filled
, delay_list
);
3060 if (delay_list
== 0 && own_fallthrough
)
3062 /* Even though we didn't find anything for delay slots,
3063 we might have found a redundant insn which we deleted
3064 from the thread that was filled. So we have to recompute
3065 the next insn at the target. */
3066 target_label
= JUMP_LABEL (insn
);
3067 insn_at_target
= next_active_insn (target_label
);
3070 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3071 insn_at_target
, 0, 0,
3073 slots_to_fill
, &slots_filled
,
3079 if (own_fallthrough
)
3081 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3082 insn_at_target
, 0, 0,
3084 slots_to_fill
, &slots_filled
,
3087 if (delay_list
== 0)
3089 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3090 next_active_insn (insn
), 0, 1,
3092 slots_to_fill
, &slots_filled
,
3097 unfilled_slots_base
[i
]
3098 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3100 if (slots_to_fill
== slots_filled
)
3101 unfilled_slots_base
[i
] = 0;
3103 note_delay_statistics (slots_filled
, 1);
3107 /* Once we have tried two ways to fill a delay slot, make a pass over the
3108 code to try to improve the results and to do such things as more jump
3112 relax_delay_slots (first
)
3115 rtx insn
, next
, pat
;
3116 rtx trial
, delay_insn
, target_label
;
3118 /* Look at every JUMP_INSN and see if we can improve it. */
3119 for (insn
= first
; insn
; insn
= next
)
3123 next
= next_active_insn (insn
);
3125 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3126 the next insn, or jumps to a label that is not the last of a
3127 group of consecutive labels. */
3128 if (GET_CODE (insn
) == JUMP_INSN
3129 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3130 && (target_label
= JUMP_LABEL (insn
)) != 0)
3132 target_label
= follow_jumps (target_label
);
3133 target_label
= prev_label (next_active_insn (target_label
));
3135 if (target_label
== 0)
3136 target_label
= find_end_label ();
3138 if (next_active_insn (target_label
) == next
3139 && ! condjump_in_parallel_p (insn
))
3145 if (target_label
!= JUMP_LABEL (insn
))
3146 reorg_redirect_jump (insn
, target_label
);
3148 /* See if this jump branches around an unconditional jump.
3149 If so, invert this jump and point it to the target of the
3151 if (next
&& GET_CODE (next
) == JUMP_INSN
3152 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3153 && next_active_insn (target_label
) == next_active_insn (next
)
3154 && no_labels_between_p (insn
, next
))
3156 rtx label
= JUMP_LABEL (next
);
3158 /* Be careful how we do this to avoid deleting code or
3159 labels that are momentarily dead. See similar optimization
3162 We also need to ensure we properly handle the case when
3163 invert_jump fails. */
3165 ++LABEL_NUSES (target_label
);
3167 ++LABEL_NUSES (label
);
3169 if (invert_jump (insn
, label
, 1))
3171 delete_related_insns (next
);
3176 --LABEL_NUSES (label
);
3178 if (--LABEL_NUSES (target_label
) == 0)
3179 delete_related_insns (target_label
);
3185 /* If this is an unconditional jump and the previous insn is a
3186 conditional jump, try reversing the condition of the previous
3187 insn and swapping our targets. The next pass might be able to
3190 Don't do this if we expect the conditional branch to be true, because
3191 we would then be making the more common case longer. */
3193 if (GET_CODE (insn
) == JUMP_INSN
3194 && (simplejump_p (insn
) || GET_CODE (PATTERN (insn
)) == RETURN
)
3195 && (other
= prev_active_insn (insn
)) != 0
3196 && (condjump_p (other
) || condjump_in_parallel_p (other
))
3197 && no_labels_between_p (other
, insn
)
3198 && 0 > mostly_true_jump (other
,
3199 get_branch_condition (other
,
3200 JUMP_LABEL (other
))))
3202 rtx other_target
= JUMP_LABEL (other
);
3203 target_label
= JUMP_LABEL (insn
);
3205 if (invert_jump (other
, target_label
, 0))
3206 reorg_redirect_jump (insn
, other_target
);
3209 /* Now look only at cases where we have filled a delay slot. */
3210 if (GET_CODE (insn
) != INSN
3211 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3214 pat
= PATTERN (insn
);
3215 delay_insn
= XVECEXP (pat
, 0, 0);
3217 /* See if the first insn in the delay slot is redundant with some
3218 previous insn. Remove it from the delay slot if so; then set up
3219 to reprocess this insn. */
3220 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3222 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3223 next
= prev_active_insn (next
);
3227 /* See if we have a RETURN insn with a filled delay slot followed
3228 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3229 the first RETURN (but not it's delay insn). This gives the same
3230 effect in fewer instructions.
3232 Only do so if optimizing for size since this results in slower, but
3235 && GET_CODE (PATTERN (delay_insn
)) == RETURN
3237 && GET_CODE (next
) == JUMP_INSN
3238 && GET_CODE (PATTERN (next
)) == RETURN
)
3243 /* Delete the RETURN and just execute the delay list insns.
3245 We do this by deleting the INSN containing the SEQUENCE, then
3246 re-emitting the insns separately, and then deleting the RETURN.
3247 This allows the count of the jump target to be properly
3250 /* Clear the from target bit, since these insns are no longer
3252 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3253 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3255 trial
= PREV_INSN (insn
);
3256 delete_related_insns (insn
);
3257 if (GET_CODE (pat
) != SEQUENCE
)
3260 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3262 rtx this_insn
= XVECEXP (pat
, 0, i
);
3263 add_insn_after (this_insn
, after
);
3266 delete_scheduled_jump (delay_insn
);
3270 /* Now look only at the cases where we have a filled JUMP_INSN. */
3271 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3272 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3273 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3276 target_label
= JUMP_LABEL (delay_insn
);
3280 /* If this jump goes to another unconditional jump, thread it, but
3281 don't convert a jump into a RETURN here. */
3282 trial
= follow_jumps (target_label
);
3283 /* We use next_real_insn instead of next_active_insn, so that
3284 the special USE insns emitted by reorg won't be ignored.
3285 If they are ignored, then they will get deleted if target_label
3286 is now unreachable, and that would cause mark_target_live_regs
3288 trial
= prev_label (next_real_insn (trial
));
3289 if (trial
== 0 && target_label
!= 0)
3290 trial
= find_end_label ();
3292 if (trial
!= target_label
3293 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3295 reorg_redirect_jump (delay_insn
, trial
);
3296 target_label
= trial
;
3299 /* If the first insn at TARGET_LABEL is redundant with a previous
3300 insn, redirect the jump to the following insn process again. */
3301 trial
= next_active_insn (target_label
);
3302 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3303 && redundant_insn (trial
, insn
, 0)
3304 && ! can_throw_internal (trial
))
3308 /* Figure out where to emit the special USE insn so we don't
3309 later incorrectly compute register live/death info. */
3310 tmp
= next_active_insn (trial
);
3312 tmp
= find_end_label ();
3314 /* Insert the special USE insn and update dataflow info. */
3315 update_block (trial
, tmp
);
3317 /* Now emit a label before the special USE insn, and
3318 redirect our jump to the new label. */
3319 target_label
= get_label_before (PREV_INSN (tmp
));
3320 reorg_redirect_jump (delay_insn
, target_label
);
3325 /* Similarly, if it is an unconditional jump with one insn in its
3326 delay list and that insn is redundant, thread the jump. */
3327 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3328 && XVECLEN (PATTERN (trial
), 0) == 2
3329 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
3330 && (simplejump_p (XVECEXP (PATTERN (trial
), 0, 0))
3331 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial
), 0, 0))) == RETURN
)
3332 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3334 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3335 if (target_label
== 0)
3336 target_label
= find_end_label ();
3338 if (redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3341 reorg_redirect_jump (delay_insn
, target_label
);
3348 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3349 && prev_active_insn (target_label
) == insn
3350 && ! condjump_in_parallel_p (delay_insn
)
3352 /* If the last insn in the delay slot sets CC0 for some insn,
3353 various code assumes that it is in a delay slot. We could
3354 put it back where it belonged and delete the register notes,
3355 but it doesn't seem worthwhile in this uncommon case. */
3356 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3357 REG_CC_USER
, NULL_RTX
)
3364 /* All this insn does is execute its delay list and jump to the
3365 following insn. So delete the jump and just execute the delay
3368 We do this by deleting the INSN containing the SEQUENCE, then
3369 re-emitting the insns separately, and then deleting the jump.
3370 This allows the count of the jump target to be properly
3373 /* Clear the from target bit, since these insns are no longer
3375 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3376 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3378 trial
= PREV_INSN (insn
);
3379 delete_related_insns (insn
);
3380 if (GET_CODE (pat
) != SEQUENCE
)
3383 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3385 rtx this_insn
= XVECEXP (pat
, 0, i
);
3386 add_insn_after (this_insn
, after
);
3389 delete_scheduled_jump (delay_insn
);
3393 /* See if this is an unconditional jump around a single insn which is
3394 identical to the one in its delay slot. In this case, we can just
3395 delete the branch and the insn in its delay slot. */
3396 if (next
&& GET_CODE (next
) == INSN
3397 && prev_label (next_active_insn (next
)) == target_label
3398 && simplejump_p (insn
)
3399 && XVECLEN (pat
, 0) == 2
3400 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3402 delete_related_insns (insn
);
3406 /* See if this jump (with its delay slots) branches around another
3407 jump (without delay slots). If so, invert this jump and point
3408 it to the target of the second jump. We cannot do this for
3409 annulled jumps, though. Again, don't convert a jump to a RETURN
3411 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3412 && next
&& GET_CODE (next
) == JUMP_INSN
3413 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3414 && next_active_insn (target_label
) == next_active_insn (next
)
3415 && no_labels_between_p (insn
, next
))
3417 rtx label
= JUMP_LABEL (next
);
3418 rtx old_label
= JUMP_LABEL (delay_insn
);
3421 label
= find_end_label ();
3423 /* find_end_label can generate a new label. Check this first. */
3424 if (no_labels_between_p (insn
, next
)
3425 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3427 /* Be careful how we do this to avoid deleting code or labels
3428 that are momentarily dead. See similar optimization in
3431 ++LABEL_NUSES (old_label
);
3433 if (invert_jump (delay_insn
, label
, 1))
3437 /* Must update the INSN_FROM_TARGET_P bits now that
3438 the branch is reversed, so that mark_target_live_regs
3439 will handle the delay slot insn correctly. */
3440 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3442 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3443 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3446 delete_related_insns (next
);
3450 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3451 delete_related_insns (old_label
);
3456 /* If we own the thread opposite the way this insn branches, see if we
3457 can merge its delay slots with following insns. */
3458 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3459 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3460 try_merge_delay_insns (insn
, next
);
3461 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3462 && own_thread_p (target_label
, target_label
, 0))
3463 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3465 /* If we get here, we haven't deleted INSN. But we may have deleted
3466 NEXT, so recompute it. */
3467 next
= next_active_insn (insn
);
3473 /* Look for filled jumps to the end of function label. We can try to convert
3474 them into RETURN insns if the insns in the delay slot are valid for the
3478 make_return_insns (first
)
3481 rtx insn
, jump_insn
, pat
;
3482 rtx real_return_label
= end_of_function_label
;
3485 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3486 /* If a previous pass filled delay slots in the epilogue, things get a
3487 bit more complicated, as those filler insns would generally (without
3488 data flow analysis) have to be executed after any existing branch
3489 delay slot filler insns. It is also unknown whether such a
3490 transformation would actually be profitable. Note that the existing
3491 code only cares for branches with (some) filled delay slots. */
3492 if (current_function_epilogue_delay_list
!= NULL
)
3496 /* See if there is a RETURN insn in the function other than the one we
3497 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3498 into a RETURN to jump to it. */
3499 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3500 if (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (PATTERN (insn
)) == RETURN
)
3502 real_return_label
= get_label_before (insn
);
3506 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3507 was equal to END_OF_FUNCTION_LABEL. */
3508 LABEL_NUSES (real_return_label
)++;
3510 /* Clear the list of insns to fill so we can use it. */
3511 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3513 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3517 /* Only look at filled JUMP_INSNs that go to the end of function
3519 if (GET_CODE (insn
) != INSN
3520 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3521 || GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3522 || JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) != end_of_function_label
)
3525 pat
= PATTERN (insn
);
3526 jump_insn
= XVECEXP (pat
, 0, 0);
3528 /* If we can't make the jump into a RETURN, try to redirect it to the best
3529 RETURN and go on to the next insn. */
3530 if (! reorg_redirect_jump (jump_insn
, NULL_RTX
))
3532 /* Make sure redirecting the jump will not invalidate the delay
3534 if (redirect_with_delay_slots_safe_p (jump_insn
,
3537 reorg_redirect_jump (jump_insn
, real_return_label
);
3541 /* See if this RETURN can accept the insns current in its delay slot.
3542 It can if it has more or an equal number of slots and the contents
3543 of each is valid. */
3545 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3546 slots
= num_delay_slots (jump_insn
);
3547 if (slots
>= XVECLEN (pat
, 0) - 1)
3549 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3551 #ifdef ANNUL_IFFALSE_SLOTS
3552 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3553 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3554 ? eligible_for_annul_false (jump_insn
, i
- 1,
3555 XVECEXP (pat
, 0, i
), flags
) :
3557 #ifdef ANNUL_IFTRUE_SLOTS
3558 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3559 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3560 ? eligible_for_annul_true (jump_insn
, i
- 1,
3561 XVECEXP (pat
, 0, i
), flags
) :
3563 eligible_for_delay (jump_insn
, i
- 1,
3564 XVECEXP (pat
, 0, i
), flags
)))
3570 if (i
== XVECLEN (pat
, 0))
3573 /* We have to do something with this insn. If it is an unconditional
3574 RETURN, delete the SEQUENCE and output the individual insns,
3575 followed by the RETURN. Then set things up so we try to find
3576 insns for its delay slots, if it needs some. */
3577 if (GET_CODE (PATTERN (jump_insn
)) == RETURN
)
3579 rtx prev
= PREV_INSN (insn
);
3581 delete_related_insns (insn
);
3582 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3583 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3585 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3586 emit_barrier_after (insn
);
3589 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3592 /* It is probably more efficient to keep this with its current
3593 delay slot as a branch to a RETURN. */
3594 reorg_redirect_jump (jump_insn
, real_return_label
);
3597 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3598 new delay slots we have created. */
3599 if (--LABEL_NUSES (real_return_label
) == 0)
3600 delete_related_insns (real_return_label
);
3602 fill_simple_delay_slots (1);
3603 fill_simple_delay_slots (0);
3607 /* Try to find insns to place in delay slots. */
3610 dbr_schedule (first
, file
)
3614 rtx insn
, next
, epilogue_insn
= 0;
3617 int old_flag_no_peephole
= flag_no_peephole
;
3619 /* Execute `final' once in prescan mode to delete any insns that won't be
3620 used. Don't let final try to do any peephole optimization--it will
3621 ruin dataflow information for this pass. */
3623 flag_no_peephole
= 1;
3624 final (first
, 0, NO_DEBUG
, 1, 1);
3625 flag_no_peephole
= old_flag_no_peephole
;
3628 /* If the current function has no insns other than the prologue and
3629 epilogue, then do not try to fill any delay slots. */
3630 if (n_basic_blocks
== 0)
3633 /* Find the highest INSN_UID and allocate and initialize our map from
3634 INSN_UID's to position in code. */
3635 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3637 if (INSN_UID (insn
) > max_uid
)
3638 max_uid
= INSN_UID (insn
);
3639 if (GET_CODE (insn
) == NOTE
3640 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3641 epilogue_insn
= insn
;
3644 uid_to_ruid
= (int *) xmalloc ((max_uid
+ 1) * sizeof (int));
3645 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3646 uid_to_ruid
[INSN_UID (insn
)] = i
;
3648 /* Initialize the list of insns that need filling. */
3649 if (unfilled_firstobj
== 0)
3651 gcc_obstack_init (&unfilled_slots_obstack
);
3652 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3655 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3659 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3660 INSN_FROM_TARGET_P (insn
) = 0;
3662 /* Skip vector tables. We can't get attributes for them. */
3663 if (GET_CODE (insn
) == JUMP_INSN
3664 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3665 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
3668 if (num_delay_slots (insn
) > 0)
3669 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3671 /* Ensure all jumps go to the last of a set of consecutive labels. */
3672 if (GET_CODE (insn
) == JUMP_INSN
3673 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3674 && JUMP_LABEL (insn
) != 0
3675 && ((target
= prev_label (next_active_insn (JUMP_LABEL (insn
))))
3676 != JUMP_LABEL (insn
)))
3677 redirect_jump (insn
, target
, 1);
3680 init_resource_info (epilogue_insn
);
3682 /* Show we haven't computed an end-of-function label yet. */
3683 end_of_function_label
= 0;
3685 /* Initialize the statistics for this function. */
3686 memset ((char *) num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3687 memset ((char *) num_filled_delays
, 0, sizeof num_filled_delays
);
3689 /* Now do the delay slot filling. Try everything twice in case earlier
3690 changes make more slots fillable. */
3692 for (reorg_pass_number
= 0;
3693 reorg_pass_number
< MAX_REORG_PASSES
;
3694 reorg_pass_number
++)
3696 fill_simple_delay_slots (1);
3697 fill_simple_delay_slots (0);
3698 fill_eager_delay_slots ();
3699 relax_delay_slots (first
);
3702 /* Delete any USE insns made by update_block; subsequent passes don't need
3703 them or know how to deal with them. */
3704 for (insn
= first
; insn
; insn
= next
)
3706 next
= NEXT_INSN (insn
);
3708 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
3709 && INSN_P (XEXP (PATTERN (insn
), 0)))
3710 next
= delete_related_insns (insn
);
3713 /* If we made an end of function label, indicate that it is now
3714 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3715 If it is now unused, delete it. */
3716 if (end_of_function_label
&& --LABEL_NUSES (end_of_function_label
) == 0)
3717 delete_related_insns (end_of_function_label
);
3720 if (HAVE_return
&& end_of_function_label
!= 0)
3721 make_return_insns (first
);
3724 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3726 /* It is not clear why the line below is needed, but it does seem to be. */
3727 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3731 int i
, j
, need_comma
;
3732 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3733 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3735 for (reorg_pass_number
= 0;
3736 reorg_pass_number
< MAX_REORG_PASSES
;
3737 reorg_pass_number
++)
3739 fprintf (file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3740 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3743 fprintf (file
, ";; Reorg function #%d\n", i
);
3745 fprintf (file
, ";; %d insns needing delay slots\n;; ",
3746 num_insns_needing_delays
[i
][reorg_pass_number
]);
3748 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3749 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3752 fprintf (file
, ", ");
3754 fprintf (file
, "%d got %d delays",
3755 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3757 fprintf (file
, "\n");
3760 memset ((char *) total_delay_slots
, 0, sizeof total_delay_slots
);
3761 memset ((char *) total_annul_slots
, 0, sizeof total_annul_slots
);
3762 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3764 if (! INSN_DELETED_P (insn
)
3765 && GET_CODE (insn
) == INSN
3766 && GET_CODE (PATTERN (insn
)) != USE
3767 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3769 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3771 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3772 if (j
> MAX_DELAY_HISTOGRAM
)
3773 j
= MAX_DELAY_HISTOGRAM
;
3774 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn
), 0, 0)))
3775 total_annul_slots
[j
]++;
3777 total_delay_slots
[j
]++;
3779 else if (num_delay_slots (insn
) > 0)
3780 total_delay_slots
[0]++;
3783 fprintf (file
, ";; Reorg totals: ");
3785 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3787 if (total_delay_slots
[j
])
3790 fprintf (file
, ", ");
3792 fprintf (file
, "%d got %d delays", total_delay_slots
[j
], j
);
3795 fprintf (file
, "\n");
3796 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3797 fprintf (file
, ";; Reorg annuls: ");
3799 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3801 if (total_annul_slots
[j
])
3804 fprintf (file
, ", ");
3806 fprintf (file
, "%d got %d delays", total_annul_slots
[j
], j
);
3809 fprintf (file
, "\n");
3811 fprintf (file
, "\n");
3814 /* For all JUMP insns, fill in branch prediction notes, so that during
3815 assembler output a target can set branch prediction bits in the code.
3816 We have to do this now, as up until this point the destinations of
3817 JUMPS can be moved around and changed, but past right here that cannot
3819 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3823 if (GET_CODE (insn
) == INSN
)
3825 rtx pat
= PATTERN (insn
);
3827 if (GET_CODE (pat
) == SEQUENCE
)
3828 insn
= XVECEXP (pat
, 0, 0);
3830 if (GET_CODE (insn
) != JUMP_INSN
)
3833 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
3834 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_BR_PRED
,
3835 GEN_INT (pred_flags
),
3838 free_resource_info ();
3841 #endif /* DELAY_SLOTS */