1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
115 #include "gimple-pretty-print.h"
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
126 /* The basic block represented by this structure. */
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt
;
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
139 struct occurrence
*children
;
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence
*next
;
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division
;
158 /* Number of 1.0/X ops inserted. */
161 /* Number of 1.0/FUNC ops inserted. */
167 /* Number of cexpi calls inserted. */
173 /* Number of hand-written 16-bit bswaps found. */
176 /* Number of hand-written 32-bit bswaps found. */
179 /* Number of hand-written 64-bit bswaps found. */
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted
;
188 /* Number of integer multiply-and-accumulate ops inserted. */
191 /* Number of fp fused multiply-add ops inserted. */
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence
*occ_head
;
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool
;
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence
*
207 occ_new (basic_block bb
, struct occurrence
*children
)
209 struct occurrence
*occ
;
211 bb
->aux
= occ
= (struct occurrence
*) pool_alloc (occ_pool
);
212 memset (occ
, 0, sizeof (struct occurrence
));
215 occ
->children
= children
;
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
229 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
230 struct occurrence
**p_head
)
232 struct occurrence
*occ
, **p_occ
;
234 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
236 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
237 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 occ
->next
= new_occ
->children
;
244 new_occ
->children
= occ
;
246 /* Try the next block (it may as well be dominated by BB). */
249 else if (dom
== occ_bb
)
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ
, dom
, &occ
->children
);
256 else if (dom
!= idom
)
258 gcc_assert (!dom
->aux
);
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ
= occ_new (dom
, new_occ
);
275 /* Nothing special, go on with the next element. */
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ
->next
= *p_head
;
285 /* Register that we found a division in BB. */
288 register_division_in (basic_block bb
)
290 struct occurrence
*occ
;
292 occ
= (struct occurrence
*) bb
->aux
;
295 occ
= occ_new (bb
, NULL
);
296 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
299 occ
->bb_has_division
= true;
300 occ
->num_divisions
++;
304 /* Compute the number of divisions that postdominate each block in OCC and
308 compute_merit (struct occurrence
*occ
)
310 struct occurrence
*occ_child
;
311 basic_block dom
= occ
->bb
;
313 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
316 if (occ_child
->children
)
317 compute_merit (occ_child
);
320 bb
= single_noncomplex_succ (dom
);
324 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
325 occ
->num_divisions
+= occ_child
->num_divisions
;
330 /* Return whether USE_STMT is a floating-point division by DEF. */
332 is_division_by (gimple use_stmt
, tree def
)
334 return is_gimple_assign (use_stmt
)
335 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt
) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
340 && gimple_assign_rhs1 (use_stmt
) != def
;
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
353 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
354 tree def
, tree recip_def
, int threshold
)
358 gimple_stmt_iterator gsi
;
359 struct occurrence
*occ_child
;
362 && (occ
->bb_has_division
|| !flag_trapping_math
)
363 && occ
->num_divisions
>= threshold
)
365 /* Make a variable with the replacement and substitute it. */
366 type
= TREE_TYPE (def
);
367 recip_def
= create_tmp_reg (type
, "reciptmp");
368 new_stmt
= gimple_build_assign_with_ops (RDIV_EXPR
, recip_def
,
369 build_one_cst (type
), def
);
371 if (occ
->bb_has_division
)
373 /* Case 1: insert before an existing division. */
374 gsi
= gsi_after_labels (occ
->bb
);
375 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
378 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
380 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi
= gsi_after_labels (occ
->bb
);
392 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
395 reciprocal_stats
.rdivs_inserted
++;
397 occ
->recip_def_stmt
= new_stmt
;
400 occ
->recip_def
= recip_def
;
401 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
402 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
410 replace_reciprocal (use_operand_p use_p
)
412 gimple use_stmt
= USE_STMT (use_p
);
413 basic_block bb
= gimple_bb (use_stmt
);
414 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
416 if (optimize_bb_for_speed_p (bb
)
417 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
419 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
420 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
421 SET_USE (use_p
, occ
->recip_def
);
422 fold_stmt_inplace (&gsi
);
423 update_stmt (use_stmt
);
428 /* Free OCC and return one more "struct occurrence" to be freed. */
430 static struct occurrence
*
431 free_bb (struct occurrence
*occ
)
433 struct occurrence
*child
, *next
;
435 /* First get the two pointers hanging off OCC. */
437 child
= occ
->children
;
439 pool_free (occ_pool
, occ
);
441 /* Now ensure that we don't recurse unless it is necessary. */
447 next
= free_bb (next
);
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
458 DEF must be a GIMPLE register of a floating-point type. */
461 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
464 imm_use_iterator use_iter
;
465 struct occurrence
*occ
;
466 int count
= 0, threshold
;
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
470 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
472 gimple use_stmt
= USE_STMT (use_p
);
473 if (is_division_by (use_stmt
, def
))
475 register_division_in (gimple_bb (use_stmt
));
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
482 if (count
>= threshold
)
485 for (occ
= occ_head
; occ
; occ
= occ
->next
)
488 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
491 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
493 if (is_division_by (use_stmt
, def
))
495 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
496 replace_reciprocal (use_p
);
501 for (occ
= occ_head
; occ
; )
508 gate_cse_reciprocals (void)
510 return optimize
&& flag_reciprocal_math
;
513 /* Go through all the floating-point SSA_NAMEs, and call
514 execute_cse_reciprocals_1 on each of them. */
516 execute_cse_reciprocals (void)
521 occ_pool
= create_alloc_pool ("dominators for recip",
522 sizeof (struct occurrence
),
523 n_basic_blocks_for_fn (cfun
) / 3 + 1);
525 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
526 calculate_dominance_info (CDI_DOMINATORS
);
527 calculate_dominance_info (CDI_POST_DOMINATORS
);
529 #ifdef ENABLE_CHECKING
530 FOR_EACH_BB_FN (bb
, cfun
)
531 gcc_assert (!bb
->aux
);
534 for (arg
= DECL_ARGUMENTS (cfun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
535 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
536 && is_gimple_reg (arg
))
538 tree name
= ssa_default_def (cfun
, arg
);
540 execute_cse_reciprocals_1 (NULL
, name
);
543 FOR_EACH_BB_FN (bb
, cfun
)
545 gimple_stmt_iterator gsi
;
549 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
551 phi
= gsi_stmt (gsi
);
552 def
= PHI_RESULT (phi
);
553 if (! virtual_operand_p (def
)
554 && FLOAT_TYPE_P (TREE_TYPE (def
)))
555 execute_cse_reciprocals_1 (NULL
, def
);
558 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
560 gimple stmt
= gsi_stmt (gsi
);
562 if (gimple_has_lhs (stmt
)
563 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
564 && FLOAT_TYPE_P (TREE_TYPE (def
))
565 && TREE_CODE (def
) == SSA_NAME
)
566 execute_cse_reciprocals_1 (&gsi
, def
);
569 if (optimize_bb_for_size_p (bb
))
572 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
573 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
575 gimple stmt
= gsi_stmt (gsi
);
578 if (is_gimple_assign (stmt
)
579 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
581 tree arg1
= gimple_assign_rhs2 (stmt
);
584 if (TREE_CODE (arg1
) != SSA_NAME
)
587 stmt1
= SSA_NAME_DEF_STMT (arg1
);
589 if (is_gimple_call (stmt1
)
590 && gimple_call_lhs (stmt1
)
591 && (fndecl
= gimple_call_fndecl (stmt1
))
592 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
593 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
595 enum built_in_function code
;
600 code
= DECL_FUNCTION_CODE (fndecl
);
601 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
603 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
607 /* Check that all uses of the SSA name are divisions,
608 otherwise replacing the defining statement will do
611 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
613 gimple stmt2
= USE_STMT (use_p
);
614 if (is_gimple_debug (stmt2
))
616 if (!is_gimple_assign (stmt2
)
617 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
618 || gimple_assign_rhs1 (stmt2
) == arg1
619 || gimple_assign_rhs2 (stmt2
) != arg1
)
628 gimple_replace_ssa_lhs (stmt1
, arg1
);
629 gimple_call_set_fndecl (stmt1
, fndecl
);
631 reciprocal_stats
.rfuncs_inserted
++;
633 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
635 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
636 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
637 fold_stmt_inplace (&gsi
);
645 statistics_counter_event (cfun
, "reciprocal divs inserted",
646 reciprocal_stats
.rdivs_inserted
);
647 statistics_counter_event (cfun
, "reciprocal functions inserted",
648 reciprocal_stats
.rfuncs_inserted
);
650 free_dominance_info (CDI_DOMINATORS
);
651 free_dominance_info (CDI_POST_DOMINATORS
);
652 free_alloc_pool (occ_pool
);
658 const pass_data pass_data_cse_reciprocals
=
660 GIMPLE_PASS
, /* type */
662 OPTGROUP_NONE
, /* optinfo_flags */
664 true, /* has_execute */
666 PROP_ssa
, /* properties_required */
667 0, /* properties_provided */
668 0, /* properties_destroyed */
669 0, /* todo_flags_start */
670 ( TODO_update_ssa
| TODO_verify_ssa
671 | TODO_verify_stmts
), /* todo_flags_finish */
674 class pass_cse_reciprocals
: public gimple_opt_pass
677 pass_cse_reciprocals (gcc::context
*ctxt
)
678 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
681 /* opt_pass methods: */
682 bool gate () { return gate_cse_reciprocals (); }
683 unsigned int execute () { return execute_cse_reciprocals (); }
685 }; // class pass_cse_reciprocals
690 make_pass_cse_reciprocals (gcc::context
*ctxt
)
692 return new pass_cse_reciprocals (ctxt
);
695 /* Records an occurrence at statement USE_STMT in the vector of trees
696 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
697 is not yet initialized. Returns true if the occurrence was pushed on
698 the vector. Adjusts *TOP_BB to be the basic block dominating all
699 statements in the vector. */
702 maybe_record_sincos (vec
<gimple
> *stmts
,
703 basic_block
*top_bb
, gimple use_stmt
)
705 basic_block use_bb
= gimple_bb (use_stmt
);
707 && (*top_bb
== use_bb
708 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
709 stmts
->safe_push (use_stmt
);
711 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
713 stmts
->safe_push (use_stmt
);
722 /* Look for sin, cos and cexpi calls with the same argument NAME and
723 create a single call to cexpi CSEing the result in this case.
724 We first walk over all immediate uses of the argument collecting
725 statements that we can CSE in a vector and in a second pass replace
726 the statement rhs with a REALPART or IMAGPART expression on the
727 result of the cexpi call we insert before the use statement that
728 dominates all other candidates. */
731 execute_cse_sincos_1 (tree name
)
733 gimple_stmt_iterator gsi
;
734 imm_use_iterator use_iter
;
735 tree fndecl
, res
, type
;
736 gimple def_stmt
, use_stmt
, stmt
;
737 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
738 vec
<gimple
> stmts
= vNULL
;
739 basic_block top_bb
= NULL
;
741 bool cfg_changed
= false;
743 type
= TREE_TYPE (name
);
744 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
746 if (gimple_code (use_stmt
) != GIMPLE_CALL
747 || !gimple_call_lhs (use_stmt
)
748 || !(fndecl
= gimple_call_fndecl (use_stmt
))
749 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
752 switch (DECL_FUNCTION_CODE (fndecl
))
754 CASE_FLT_FN (BUILT_IN_COS
):
755 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
758 CASE_FLT_FN (BUILT_IN_SIN
):
759 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
762 CASE_FLT_FN (BUILT_IN_CEXPI
):
763 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
770 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
776 /* Simply insert cexpi at the beginning of top_bb but not earlier than
777 the name def statement. */
778 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
781 stmt
= gimple_build_call (fndecl
, 1, name
);
782 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
783 gimple_call_set_lhs (stmt
, res
);
785 def_stmt
= SSA_NAME_DEF_STMT (name
);
786 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
787 && gimple_code (def_stmt
) != GIMPLE_PHI
788 && gimple_bb (def_stmt
) == top_bb
)
790 gsi
= gsi_for_stmt (def_stmt
);
791 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
795 gsi
= gsi_after_labels (top_bb
);
796 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
798 sincos_stats
.inserted
++;
800 /* And adjust the recorded old call sites. */
801 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
804 fndecl
= gimple_call_fndecl (use_stmt
);
806 switch (DECL_FUNCTION_CODE (fndecl
))
808 CASE_FLT_FN (BUILT_IN_COS
):
809 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
812 CASE_FLT_FN (BUILT_IN_SIN
):
813 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
816 CASE_FLT_FN (BUILT_IN_CEXPI
):
824 /* Replace call with a copy. */
825 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
827 gsi
= gsi_for_stmt (use_stmt
);
828 gsi_replace (&gsi
, stmt
, true);
829 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
838 /* To evaluate powi(x,n), the floating point value x raised to the
839 constant integer exponent n, we use a hybrid algorithm that
840 combines the "window method" with look-up tables. For an
841 introduction to exponentiation algorithms and "addition chains",
842 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
843 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
844 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
845 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
847 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
848 multiplications to inline before calling the system library's pow
849 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
850 so this default never requires calling pow, powf or powl. */
852 #ifndef POWI_MAX_MULTS
853 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
856 /* The size of the "optimal power tree" lookup table. All
857 exponents less than this value are simply looked up in the
858 powi_table below. This threshold is also used to size the
859 cache of pseudo registers that hold intermediate results. */
860 #define POWI_TABLE_SIZE 256
862 /* The size, in bits of the window, used in the "window method"
863 exponentiation algorithm. This is equivalent to a radix of
864 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
865 #define POWI_WINDOW_SIZE 3
867 /* The following table is an efficient representation of an
868 "optimal power tree". For each value, i, the corresponding
869 value, j, in the table states than an optimal evaluation
870 sequence for calculating pow(x,i) can be found by evaluating
871 pow(x,j)*pow(x,i-j). An optimal power tree for the first
872 100 integers is given in Knuth's "Seminumerical algorithms". */
874 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
876 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
877 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
878 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
879 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
880 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
881 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
882 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
883 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
884 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
885 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
886 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
887 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
888 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
889 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
890 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
891 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
892 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
893 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
894 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
895 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
896 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
897 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
898 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
899 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
900 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
901 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
902 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
903 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
904 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
905 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
906 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
907 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
911 /* Return the number of multiplications required to calculate
912 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
913 subroutine of powi_cost. CACHE is an array indicating
914 which exponents have already been calculated. */
917 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
919 /* If we've already calculated this exponent, then this evaluation
920 doesn't require any additional multiplications. */
925 return powi_lookup_cost (n
- powi_table
[n
], cache
)
926 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
929 /* Return the number of multiplications required to calculate
930 powi(x,n) for an arbitrary x, given the exponent N. This
931 function needs to be kept in sync with powi_as_mults below. */
934 powi_cost (HOST_WIDE_INT n
)
936 bool cache
[POWI_TABLE_SIZE
];
937 unsigned HOST_WIDE_INT digit
;
938 unsigned HOST_WIDE_INT val
;
944 /* Ignore the reciprocal when calculating the cost. */
945 val
= (n
< 0) ? -n
: n
;
947 /* Initialize the exponent cache. */
948 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
953 while (val
>= POWI_TABLE_SIZE
)
957 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
958 result
+= powi_lookup_cost (digit
, cache
)
959 + POWI_WINDOW_SIZE
+ 1;
960 val
>>= POWI_WINDOW_SIZE
;
969 return result
+ powi_lookup_cost (val
, cache
);
972 /* Recursive subroutine of powi_as_mults. This function takes the
973 array, CACHE, of already calculated exponents and an exponent N and
974 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
977 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
978 HOST_WIDE_INT n
, tree
*cache
)
980 tree op0
, op1
, ssa_target
;
981 unsigned HOST_WIDE_INT digit
;
984 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
987 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
989 if (n
< POWI_TABLE_SIZE
)
991 cache
[n
] = ssa_target
;
992 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
993 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
997 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
998 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
999 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
1003 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1007 mult_stmt
= gimple_build_assign_with_ops (MULT_EXPR
, ssa_target
, op0
, op1
);
1008 gimple_set_location (mult_stmt
, loc
);
1009 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1014 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1015 This function needs to be kept in sync with powi_cost above. */
1018 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1019 tree arg0
, HOST_WIDE_INT n
)
1021 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1026 return build_real (type
, dconst1
);
1028 memset (cache
, 0, sizeof (cache
));
1031 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1035 /* If the original exponent was negative, reciprocate the result. */
1036 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1037 div_stmt
= gimple_build_assign_with_ops (RDIV_EXPR
, target
,
1038 build_real (type
, dconst1
),
1040 gimple_set_location (div_stmt
, loc
);
1041 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1046 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1047 location info LOC. If the arguments are appropriate, create an
1048 equivalent sequence of statements prior to GSI using an optimal
1049 number of multiplications, and return an expession holding the
1053 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1054 tree arg0
, HOST_WIDE_INT n
)
1056 /* Avoid largest negative number. */
1058 && ((n
>= -1 && n
<= 2)
1059 || (optimize_function_for_speed_p (cfun
)
1060 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1061 return powi_as_mults (gsi
, loc
, arg0
, n
);
1066 /* Build a gimple call statement that calls FN with argument ARG.
1067 Set the lhs of the call statement to a fresh SSA name. Insert the
1068 statement prior to GSI's current position, and return the fresh
1072 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1078 call_stmt
= gimple_build_call (fn
, 1, arg
);
1079 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1080 gimple_set_lhs (call_stmt
, ssa_target
);
1081 gimple_set_location (call_stmt
, loc
);
1082 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1087 /* Build a gimple binary operation with the given CODE and arguments
1088 ARG0, ARG1, assigning the result to a new SSA name for variable
1089 TARGET. Insert the statement prior to GSI's current position, and
1090 return the fresh SSA name.*/
1093 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1094 const char *name
, enum tree_code code
,
1095 tree arg0
, tree arg1
)
1097 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1098 gimple stmt
= gimple_build_assign_with_ops (code
, result
, arg0
, arg1
);
1099 gimple_set_location (stmt
, loc
);
1100 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1104 /* Build a gimple reference operation with the given CODE and argument
1105 ARG, assigning the result to a new SSA name of TYPE with NAME.
1106 Insert the statement prior to GSI's current position, and return
1107 the fresh SSA name. */
1110 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1111 const char *name
, enum tree_code code
, tree arg0
)
1113 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1114 gimple stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1115 gimple_set_location (stmt
, loc
);
1116 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1120 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1121 prior to GSI's current position, and return the fresh SSA name. */
1124 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1125 tree type
, tree val
)
1127 tree result
= make_ssa_name (type
, NULL
);
1128 gimple stmt
= gimple_build_assign_with_ops (NOP_EXPR
, result
, val
, NULL_TREE
);
1129 gimple_set_location (stmt
, loc
);
1130 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1134 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1135 with location info LOC. If possible, create an equivalent and
1136 less expensive sequence of statements prior to GSI, and return an
1137 expession holding the result. */
1140 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1141 tree arg0
, tree arg1
)
1143 REAL_VALUE_TYPE c
, cint
, dconst1_4
, dconst3_4
, dconst1_3
, dconst1_6
;
1144 REAL_VALUE_TYPE c2
, dconst3
;
1146 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, sqrt_sqrt
, result
, cbrt_x
, powi_cbrt_x
;
1147 enum machine_mode mode
;
1148 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1150 /* If the exponent isn't a constant, there's nothing of interest
1152 if (TREE_CODE (arg1
) != REAL_CST
)
1155 /* If the exponent is equivalent to an integer, expand to an optimal
1156 multiplication sequence when profitable. */
1157 c
= TREE_REAL_CST (arg1
);
1158 n
= real_to_integer (&c
);
1159 real_from_integer (&cint
, VOIDmode
, n
, n
< 0 ? -1 : 0, 0);
1160 c_is_int
= real_identical (&c
, &cint
);
1163 && ((n
>= -1 && n
<= 2)
1164 || (flag_unsafe_math_optimizations
1165 && optimize_insn_for_speed_p ()
1166 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1167 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1169 /* Attempt various optimizations using sqrt and cbrt. */
1170 type
= TREE_TYPE (arg0
);
1171 mode
= TYPE_MODE (type
);
1172 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1174 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1175 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1178 && REAL_VALUES_EQUAL (c
, dconsthalf
)
1179 && !HONOR_SIGNED_ZEROS (mode
))
1180 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1182 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1183 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1184 so do this optimization even if -Os. Don't do this optimization
1185 if we don't have a hardware sqrt insn. */
1186 dconst1_4
= dconst1
;
1187 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1188 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1190 if (flag_unsafe_math_optimizations
1192 && REAL_VALUES_EQUAL (c
, dconst1_4
)
1196 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1199 return build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1202 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1203 optimizing for space. Don't do this optimization if we don't have
1204 a hardware sqrt insn. */
1205 real_from_integer (&dconst3_4
, VOIDmode
, 3, 0, 0);
1206 SET_REAL_EXP (&dconst3_4
, REAL_EXP (&dconst3_4
) - 2);
1208 if (flag_unsafe_math_optimizations
1210 && optimize_function_for_speed_p (cfun
)
1211 && REAL_VALUES_EQUAL (c
, dconst3_4
)
1215 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1218 sqrt_sqrt
= build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1220 /* sqrt(x) * sqrt(sqrt(x)) */
1221 return build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1222 sqrt_arg0
, sqrt_sqrt
);
1225 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1226 optimizations since 1./3. is not exactly representable. If x
1227 is negative and finite, the correct value of pow(x,1./3.) is
1228 a NaN with the "invalid" exception raised, because the value
1229 of 1./3. actually has an even denominator. The correct value
1230 of cbrt(x) is a negative real value. */
1231 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1232 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1234 if (flag_unsafe_math_optimizations
1236 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1237 && REAL_VALUES_EQUAL (c
, dconst1_3
))
1238 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1240 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1241 if we don't have a hardware sqrt insn. */
1242 dconst1_6
= dconst1_3
;
1243 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1245 if (flag_unsafe_math_optimizations
1248 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1249 && optimize_function_for_speed_p (cfun
)
1251 && REAL_VALUES_EQUAL (c
, dconst1_6
))
1254 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1257 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1260 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1261 and c not an integer, into
1263 sqrt(x) * powi(x, n/2), n > 0;
1264 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1266 Do not calculate the powi factor when n/2 = 0. */
1267 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1268 n
= real_to_integer (&c2
);
1269 real_from_integer (&cint
, VOIDmode
, n
, n
< 0 ? -1 : 0, 0);
1270 c2_is_int
= real_identical (&c2
, &cint
);
1272 if (flag_unsafe_math_optimizations
1276 && optimize_function_for_speed_p (cfun
))
1278 tree powi_x_ndiv2
= NULL_TREE
;
1280 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1281 possible or profitable, give up. Skip the degenerate case when
1282 n is 1 or -1, where the result is always 1. */
1283 if (absu_hwi (n
) != 1)
1285 powi_x_ndiv2
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1291 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1292 result of the optimal multiply sequence just calculated. */
1293 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1295 if (absu_hwi (n
) == 1)
1298 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1299 sqrt_arg0
, powi_x_ndiv2
);
1301 /* If n is negative, reciprocate the result. */
1303 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1304 build_real (type
, dconst1
), result
);
1308 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1310 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1311 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1313 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1314 different from pow(x, 1./3.) due to rounding and behavior with
1315 negative x, we need to constrain this transformation to unsafe
1316 math and positive x or finite math. */
1317 real_from_integer (&dconst3
, VOIDmode
, 3, 0, 0);
1318 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1319 real_round (&c2
, mode
, &c2
);
1320 n
= real_to_integer (&c2
);
1321 real_from_integer (&cint
, VOIDmode
, n
, n
< 0 ? -1 : 0, 0);
1322 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1323 real_convert (&c2
, mode
, &c2
);
1325 if (flag_unsafe_math_optimizations
1327 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1328 && real_identical (&c2
, &c
)
1330 && optimize_function_for_speed_p (cfun
)
1331 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1333 tree powi_x_ndiv3
= NULL_TREE
;
1335 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1336 possible or profitable, give up. Skip the degenerate case when
1337 abs(n) < 3, where the result is always 1. */
1338 if (absu_hwi (n
) >= 3)
1340 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1346 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1347 as that creates an unnecessary variable. Instead, just produce
1348 either cbrt(x) or cbrt(x) * cbrt(x). */
1349 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1351 if (absu_hwi (n
) % 3 == 1)
1352 powi_cbrt_x
= cbrt_x
;
1354 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1357 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1358 if (absu_hwi (n
) < 3)
1359 result
= powi_cbrt_x
;
1361 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1362 powi_x_ndiv3
, powi_cbrt_x
);
1364 /* If n is negative, reciprocate the result. */
1366 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1367 build_real (type
, dconst1
), result
);
1372 /* No optimizations succeeded. */
1376 /* ARG is the argument to a cabs builtin call in GSI with location info
1377 LOC. Create a sequence of statements prior to GSI that calculates
1378 sqrt(R*R + I*I), where R and I are the real and imaginary components
1379 of ARG, respectively. Return an expression holding the result. */
1382 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1384 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1385 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1386 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1387 enum machine_mode mode
= TYPE_MODE (type
);
1389 if (!flag_unsafe_math_optimizations
1390 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1392 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1395 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1396 REALPART_EXPR
, arg
);
1397 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1398 real_part
, real_part
);
1399 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1400 IMAGPART_EXPR
, arg
);
1401 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1402 imag_part
, imag_part
);
1403 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1404 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1409 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1410 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1411 an optimal number of multiplies, when n is a constant. */
1414 execute_cse_sincos (void)
1417 bool cfg_changed
= false;
1419 calculate_dominance_info (CDI_DOMINATORS
);
1420 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1422 FOR_EACH_BB_FN (bb
, cfun
)
1424 gimple_stmt_iterator gsi
;
1425 bool cleanup_eh
= false;
1427 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1429 gimple stmt
= gsi_stmt (gsi
);
1432 /* Only the last stmt in a bb could throw, no need to call
1433 gimple_purge_dead_eh_edges if we change something in the middle
1434 of a basic block. */
1437 if (is_gimple_call (stmt
)
1438 && gimple_call_lhs (stmt
)
1439 && (fndecl
= gimple_call_fndecl (stmt
))
1440 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1442 tree arg
, arg0
, arg1
, result
;
1446 switch (DECL_FUNCTION_CODE (fndecl
))
1448 CASE_FLT_FN (BUILT_IN_COS
):
1449 CASE_FLT_FN (BUILT_IN_SIN
):
1450 CASE_FLT_FN (BUILT_IN_CEXPI
):
1451 /* Make sure we have either sincos or cexp. */
1452 if (!targetm
.libc_has_function (function_c99_math_complex
)
1453 && !targetm
.libc_has_function (function_sincos
))
1456 arg
= gimple_call_arg (stmt
, 0);
1457 if (TREE_CODE (arg
) == SSA_NAME
)
1458 cfg_changed
|= execute_cse_sincos_1 (arg
);
1461 CASE_FLT_FN (BUILT_IN_POW
):
1462 arg0
= gimple_call_arg (stmt
, 0);
1463 arg1
= gimple_call_arg (stmt
, 1);
1465 loc
= gimple_location (stmt
);
1466 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1470 tree lhs
= gimple_get_lhs (stmt
);
1471 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1472 gimple_set_location (new_stmt
, loc
);
1473 unlink_stmt_vdef (stmt
);
1474 gsi_replace (&gsi
, new_stmt
, true);
1476 if (gimple_vdef (stmt
))
1477 release_ssa_name (gimple_vdef (stmt
));
1481 CASE_FLT_FN (BUILT_IN_POWI
):
1482 arg0
= gimple_call_arg (stmt
, 0);
1483 arg1
= gimple_call_arg (stmt
, 1);
1484 loc
= gimple_location (stmt
);
1486 if (real_minus_onep (arg0
))
1488 tree t0
, t1
, cond
, one
, minus_one
;
1491 t0
= TREE_TYPE (arg0
);
1492 t1
= TREE_TYPE (arg1
);
1493 one
= build_real (t0
, dconst1
);
1494 minus_one
= build_real (t0
, dconstm1
);
1496 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
1497 stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR
, cond
,
1501 gimple_set_location (stmt
, loc
);
1502 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1504 result
= make_temp_ssa_name (t0
, NULL
, "powi");
1505 stmt
= gimple_build_assign_with_ops (COND_EXPR
, result
,
1508 gimple_set_location (stmt
, loc
);
1509 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1513 if (!tree_fits_shwi_p (arg1
))
1516 n
= tree_to_shwi (arg1
);
1517 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
1522 tree lhs
= gimple_get_lhs (stmt
);
1523 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1524 gimple_set_location (new_stmt
, loc
);
1525 unlink_stmt_vdef (stmt
);
1526 gsi_replace (&gsi
, new_stmt
, true);
1528 if (gimple_vdef (stmt
))
1529 release_ssa_name (gimple_vdef (stmt
));
1533 CASE_FLT_FN (BUILT_IN_CABS
):
1534 arg0
= gimple_call_arg (stmt
, 0);
1535 loc
= gimple_location (stmt
);
1536 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
1540 tree lhs
= gimple_get_lhs (stmt
);
1541 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1542 gimple_set_location (new_stmt
, loc
);
1543 unlink_stmt_vdef (stmt
);
1544 gsi_replace (&gsi
, new_stmt
, true);
1546 if (gimple_vdef (stmt
))
1547 release_ssa_name (gimple_vdef (stmt
));
1556 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
1559 statistics_counter_event (cfun
, "sincos statements inserted",
1560 sincos_stats
.inserted
);
1562 free_dominance_info (CDI_DOMINATORS
);
1563 return cfg_changed
? TODO_cleanup_cfg
: 0;
1567 gate_cse_sincos (void)
1569 /* We no longer require either sincos or cexp, since powi expansion
1570 piggybacks on this pass. */
1576 const pass_data pass_data_cse_sincos
=
1578 GIMPLE_PASS
, /* type */
1579 "sincos", /* name */
1580 OPTGROUP_NONE
, /* optinfo_flags */
1581 true, /* has_gate */
1582 true, /* has_execute */
1583 TV_NONE
, /* tv_id */
1584 PROP_ssa
, /* properties_required */
1585 0, /* properties_provided */
1586 0, /* properties_destroyed */
1587 0, /* todo_flags_start */
1588 ( TODO_update_ssa
| TODO_verify_ssa
1589 | TODO_verify_stmts
), /* todo_flags_finish */
1592 class pass_cse_sincos
: public gimple_opt_pass
1595 pass_cse_sincos (gcc::context
*ctxt
)
1596 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1599 /* opt_pass methods: */
1600 bool gate () { return gate_cse_sincos (); }
1601 unsigned int execute () { return execute_cse_sincos (); }
1603 }; // class pass_cse_sincos
1608 make_pass_cse_sincos (gcc::context
*ctxt
)
1610 return new pass_cse_sincos (ctxt
);
1613 /* A symbolic number is used to detect byte permutation and selection
1614 patterns. Therefore the field N contains an artificial number
1615 consisting of byte size markers:
1617 0 - byte has the value 0
1618 1..size - byte contains the content of the byte
1619 number indexed with that value minus one */
1621 struct symbolic_number
{
1622 unsigned HOST_WIDEST_INT n
;
1626 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1627 number N. Return false if the requested operation is not permitted
1628 on a symbolic number. */
1631 do_shift_rotate (enum tree_code code
,
1632 struct symbolic_number
*n
,
1638 /* Zero out the extra bits of N in order to avoid them being shifted
1639 into the significant bits. */
1640 if (n
->size
< (int)sizeof (HOST_WIDEST_INT
))
1641 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 << (n
->size
* BITS_PER_UNIT
)) - 1;
1652 n
->n
= (n
->n
<< count
) | (n
->n
>> ((n
->size
* BITS_PER_UNIT
) - count
));
1655 n
->n
= (n
->n
>> count
) | (n
->n
<< ((n
->size
* BITS_PER_UNIT
) - count
));
1660 /* Zero unused bits for size. */
1661 if (n
->size
< (int)sizeof (HOST_WIDEST_INT
))
1662 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 << (n
->size
* BITS_PER_UNIT
)) - 1;
1666 /* Perform sanity checking for the symbolic number N and the gimple
1670 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
1674 lhs_type
= gimple_expr_type (stmt
);
1676 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
1679 if (TYPE_PRECISION (lhs_type
) != n
->size
* BITS_PER_UNIT
)
1685 /* find_bswap_1 invokes itself recursively with N and tries to perform
1686 the operation given by the rhs of STMT on the result. If the
1687 operation could successfully be executed the function returns the
1688 tree expression of the source operand and NULL otherwise. */
1691 find_bswap_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
1693 enum tree_code code
;
1694 tree rhs1
, rhs2
= NULL
;
1695 gimple rhs1_stmt
, rhs2_stmt
;
1697 enum gimple_rhs_class rhs_class
;
1699 if (!limit
|| !is_gimple_assign (stmt
))
1702 rhs1
= gimple_assign_rhs1 (stmt
);
1704 if (TREE_CODE (rhs1
) != SSA_NAME
)
1707 code
= gimple_assign_rhs_code (stmt
);
1708 rhs_class
= gimple_assign_rhs_class (stmt
);
1709 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
1711 if (rhs_class
== GIMPLE_BINARY_RHS
)
1712 rhs2
= gimple_assign_rhs2 (stmt
);
1714 /* Handle unary rhs and binary rhs with integer constants as second
1717 if (rhs_class
== GIMPLE_UNARY_RHS
1718 || (rhs_class
== GIMPLE_BINARY_RHS
1719 && TREE_CODE (rhs2
) == INTEGER_CST
))
1721 if (code
!= BIT_AND_EXPR
1722 && code
!= LSHIFT_EXPR
1723 && code
!= RSHIFT_EXPR
1724 && code
!= LROTATE_EXPR
1725 && code
!= RROTATE_EXPR
1727 && code
!= CONVERT_EXPR
)
1730 source_expr1
= find_bswap_1 (rhs1_stmt
, n
, limit
- 1);
1732 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1733 to initialize the symbolic number. */
1736 /* Set up the symbolic number N by setting each byte to a
1737 value between 1 and the byte size of rhs1. The highest
1738 order byte is set to n->size and the lowest order
1740 n
->size
= TYPE_PRECISION (TREE_TYPE (rhs1
));
1741 if (n
->size
% BITS_PER_UNIT
!= 0)
1743 n
->size
/= BITS_PER_UNIT
;
1744 n
->n
= (sizeof (HOST_WIDEST_INT
) < 8 ? 0 :
1745 (unsigned HOST_WIDEST_INT
)0x08070605 << 32 | 0x04030201);
1747 if (n
->size
< (int)sizeof (HOST_WIDEST_INT
))
1748 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 <<
1749 (n
->size
* BITS_PER_UNIT
)) - 1;
1751 source_expr1
= rhs1
;
1759 unsigned HOST_WIDEST_INT val
= widest_int_cst_value (rhs2
);
1760 unsigned HOST_WIDEST_INT tmp
= val
;
1762 /* Only constants masking full bytes are allowed. */
1763 for (i
= 0; i
< n
->size
; i
++, tmp
>>= BITS_PER_UNIT
)
1764 if ((tmp
& 0xff) != 0 && (tmp
& 0xff) != 0xff)
1774 if (!do_shift_rotate (code
, n
, (int)TREE_INT_CST_LOW (rhs2
)))
1781 type_size
= TYPE_PRECISION (gimple_expr_type (stmt
));
1782 if (type_size
% BITS_PER_UNIT
!= 0)
1785 if (type_size
/ BITS_PER_UNIT
< (int)(sizeof (HOST_WIDEST_INT
)))
1787 /* If STMT casts to a smaller type mask out the bits not
1788 belonging to the target type. */
1789 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 << type_size
) - 1;
1791 n
->size
= type_size
/ BITS_PER_UNIT
;
1797 return verify_symbolic_number_p (n
, stmt
) ? source_expr1
: NULL
;
1800 /* Handle binary rhs. */
1802 if (rhs_class
== GIMPLE_BINARY_RHS
)
1804 struct symbolic_number n1
, n2
;
1807 if (code
!= BIT_IOR_EXPR
)
1810 if (TREE_CODE (rhs2
) != SSA_NAME
)
1813 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
1818 source_expr1
= find_bswap_1 (rhs1_stmt
, &n1
, limit
- 1);
1823 source_expr2
= find_bswap_1 (rhs2_stmt
, &n2
, limit
- 1);
1825 if (source_expr1
!= source_expr2
1826 || n1
.size
!= n2
.size
)
1832 if (!verify_symbolic_number_p (n
, stmt
))
1839 return source_expr1
;
1844 /* Check if STMT completes a bswap implementation consisting of ORs,
1845 SHIFTs and ANDs. Return the source tree expression on which the
1846 byte swap is performed and NULL if no bswap was found. */
1849 find_bswap (gimple stmt
)
1851 /* The number which the find_bswap result should match in order to
1852 have a full byte swap. The number is shifted to the left according
1853 to the size of the symbolic number before using it. */
1854 unsigned HOST_WIDEST_INT cmp
=
1855 sizeof (HOST_WIDEST_INT
) < 8 ? 0 :
1856 (unsigned HOST_WIDEST_INT
)0x01020304 << 32 | 0x05060708;
1858 struct symbolic_number n
;
1862 /* The last parameter determines the depth search limit. It usually
1863 correlates directly to the number of bytes to be touched. We
1864 increase that number by three here in order to also
1865 cover signed -> unsigned converions of the src operand as can be seen
1866 in libgcc, and for initial shift/and operation of the src operand. */
1867 limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
1868 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
1869 source_expr
= find_bswap_1 (stmt
, &n
, limit
);
1874 /* Zero out the extra bits of N and CMP. */
1875 if (n
.size
< (int)sizeof (HOST_WIDEST_INT
))
1877 unsigned HOST_WIDEST_INT mask
=
1878 ((unsigned HOST_WIDEST_INT
)1 << (n
.size
* BITS_PER_UNIT
)) - 1;
1881 cmp
>>= (sizeof (HOST_WIDEST_INT
) - n
.size
) * BITS_PER_UNIT
;
1884 /* A complete byte swap should make the symbolic number to start
1885 with the largest digit in the highest order byte. */
1892 /* Find manual byte swap implementations and turn them into a bswap
1893 builtin invokation. */
1896 execute_optimize_bswap (void)
1899 bool bswap16_p
, bswap32_p
, bswap64_p
;
1900 bool changed
= false;
1901 tree bswap16_type
= NULL_TREE
, bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
1903 if (BITS_PER_UNIT
!= 8)
1906 if (sizeof (HOST_WIDEST_INT
) < 8)
1909 bswap16_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP16
)
1910 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
);
1911 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
1912 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
1913 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
1914 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
1915 || (bswap32_p
&& word_mode
== SImode
)));
1917 if (!bswap16_p
&& !bswap32_p
&& !bswap64_p
)
1920 /* Determine the argument type of the builtins. The code later on
1921 assumes that the return and argument type are the same. */
1924 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP16
);
1925 bswap16_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1930 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1931 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1936 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1937 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1940 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
1942 FOR_EACH_BB_FN (bb
, cfun
)
1944 gimple_stmt_iterator gsi
;
1946 /* We do a reverse scan for bswap patterns to make sure we get the
1947 widest match. As bswap pattern matching doesn't handle
1948 previously inserted smaller bswap replacements as sub-
1949 patterns, the wider variant wouldn't be detected. */
1950 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
1952 gimple stmt
= gsi_stmt (gsi
);
1953 tree bswap_src
, bswap_type
;
1955 tree fndecl
= NULL_TREE
;
1959 if (!is_gimple_assign (stmt
)
1960 || gimple_assign_rhs_code (stmt
) != BIT_IOR_EXPR
)
1963 type_size
= TYPE_PRECISION (gimple_expr_type (stmt
));
1970 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP16
);
1971 bswap_type
= bswap16_type
;
1977 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1978 bswap_type
= bswap32_type
;
1984 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1985 bswap_type
= bswap64_type
;
1995 bswap_src
= find_bswap (stmt
);
2001 if (type_size
== 16)
2002 bswap_stats
.found_16bit
++;
2003 else if (type_size
== 32)
2004 bswap_stats
.found_32bit
++;
2006 bswap_stats
.found_64bit
++;
2008 bswap_tmp
= bswap_src
;
2010 /* Convert the src expression if necessary. */
2011 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp
), bswap_type
))
2013 gimple convert_stmt
;
2014 bswap_tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
2015 convert_stmt
= gimple_build_assign_with_ops
2016 (NOP_EXPR
, bswap_tmp
, bswap_src
, NULL
);
2017 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2020 call
= gimple_build_call (fndecl
, 1, bswap_tmp
);
2022 bswap_tmp
= gimple_assign_lhs (stmt
);
2024 /* Convert the result if necessary. */
2025 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp
), bswap_type
))
2027 gimple convert_stmt
;
2028 bswap_tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
2029 convert_stmt
= gimple_build_assign_with_ops
2030 (NOP_EXPR
, gimple_assign_lhs (stmt
), bswap_tmp
, NULL
);
2031 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2034 gimple_call_set_lhs (call
, bswap_tmp
);
2038 fprintf (dump_file
, "%d bit bswap implementation found at: ",
2040 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2043 gsi_insert_after (&gsi
, call
, GSI_SAME_STMT
);
2044 gsi_remove (&gsi
, true);
2048 statistics_counter_event (cfun
, "16-bit bswap implementations found",
2049 bswap_stats
.found_16bit
);
2050 statistics_counter_event (cfun
, "32-bit bswap implementations found",
2051 bswap_stats
.found_32bit
);
2052 statistics_counter_event (cfun
, "64-bit bswap implementations found",
2053 bswap_stats
.found_64bit
);
2055 return (changed
? TODO_update_ssa
| TODO_verify_ssa
2056 | TODO_verify_stmts
: 0);
2060 gate_optimize_bswap (void)
2062 return flag_expensive_optimizations
&& optimize
;
2067 const pass_data pass_data_optimize_bswap
=
2069 GIMPLE_PASS
, /* type */
2071 OPTGROUP_NONE
, /* optinfo_flags */
2072 true, /* has_gate */
2073 true, /* has_execute */
2074 TV_NONE
, /* tv_id */
2075 PROP_ssa
, /* properties_required */
2076 0, /* properties_provided */
2077 0, /* properties_destroyed */
2078 0, /* todo_flags_start */
2079 0, /* todo_flags_finish */
2082 class pass_optimize_bswap
: public gimple_opt_pass
2085 pass_optimize_bswap (gcc::context
*ctxt
)
2086 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
2089 /* opt_pass methods: */
2090 bool gate () { return gate_optimize_bswap (); }
2091 unsigned int execute () { return execute_optimize_bswap (); }
2093 }; // class pass_optimize_bswap
2098 make_pass_optimize_bswap (gcc::context
*ctxt
)
2100 return new pass_optimize_bswap (ctxt
);
2103 /* Return true if stmt is a type conversion operation that can be stripped
2104 when used in a widening multiply operation. */
2106 widening_mult_conversion_strippable_p (tree result_type
, gimple stmt
)
2108 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2110 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2115 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2118 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2120 /* If the type of OP has the same precision as the result, then
2121 we can strip this conversion. The multiply operation will be
2122 selected to create the correct extension as a by-product. */
2123 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2126 /* We can also strip a conversion if it preserves the signed-ness of
2127 the operation and doesn't narrow the range. */
2128 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2130 /* If the inner-most type is unsigned, then we can strip any
2131 intermediate widening operation. If it's signed, then the
2132 intermediate widening operation must also be signed. */
2133 if ((TYPE_UNSIGNED (inner_op_type
)
2134 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2135 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2141 return rhs_code
== FIXED_CONVERT_EXPR
;
2144 /* Return true if RHS is a suitable operand for a widening multiplication,
2145 assuming a target type of TYPE.
2146 There are two cases:
2148 - RHS makes some value at least twice as wide. Store that value
2149 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2151 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2152 but leave *TYPE_OUT untouched. */
2155 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2161 if (TREE_CODE (rhs
) == SSA_NAME
)
2163 stmt
= SSA_NAME_DEF_STMT (rhs
);
2164 if (is_gimple_assign (stmt
))
2166 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2170 rhs1
= gimple_assign_rhs1 (stmt
);
2172 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2174 *new_rhs_out
= rhs1
;
2183 type1
= TREE_TYPE (rhs1
);
2185 if (TREE_CODE (type1
) != TREE_CODE (type
)
2186 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2189 *new_rhs_out
= rhs1
;
2194 if (TREE_CODE (rhs
) == INTEGER_CST
)
2204 /* Return true if STMT performs a widening multiplication, assuming the
2205 output type is TYPE. If so, store the unwidened types of the operands
2206 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2207 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2208 and *TYPE2_OUT would give the operands of the multiplication. */
2211 is_widening_mult_p (gimple stmt
,
2212 tree
*type1_out
, tree
*rhs1_out
,
2213 tree
*type2_out
, tree
*rhs2_out
)
2215 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2217 if (TREE_CODE (type
) != INTEGER_TYPE
2218 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2221 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2225 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2229 if (*type1_out
== NULL
)
2231 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
2233 *type1_out
= *type2_out
;
2236 if (*type2_out
== NULL
)
2238 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
2240 *type2_out
= *type1_out
;
2243 /* Ensure that the larger of the two operands comes first. */
2244 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
2248 *type1_out
= *type2_out
;
2251 *rhs1_out
= *rhs2_out
;
2258 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2259 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2260 value is true iff we converted the statement. */
2263 convert_mult_to_widen (gimple stmt
, gimple_stmt_iterator
*gsi
)
2265 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
2266 enum insn_code handler
;
2267 enum machine_mode to_mode
, from_mode
, actual_mode
;
2269 int actual_precision
;
2270 location_t loc
= gimple_location (stmt
);
2271 bool from_unsigned1
, from_unsigned2
;
2273 lhs
= gimple_assign_lhs (stmt
);
2274 type
= TREE_TYPE (lhs
);
2275 if (TREE_CODE (type
) != INTEGER_TYPE
)
2278 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
2281 to_mode
= TYPE_MODE (type
);
2282 from_mode
= TYPE_MODE (type1
);
2283 from_unsigned1
= TYPE_UNSIGNED (type1
);
2284 from_unsigned2
= TYPE_UNSIGNED (type2
);
2286 if (from_unsigned1
&& from_unsigned2
)
2287 op
= umul_widen_optab
;
2288 else if (!from_unsigned1
&& !from_unsigned2
)
2289 op
= smul_widen_optab
;
2291 op
= usmul_widen_optab
;
2293 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
2296 if (handler
== CODE_FOR_nothing
)
2298 if (op
!= smul_widen_optab
)
2300 /* We can use a signed multiply with unsigned types as long as
2301 there is a wider mode to use, or it is the smaller of the two
2302 types that is unsigned. Note that type1 >= type2, always. */
2303 if ((TYPE_UNSIGNED (type1
)
2304 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2305 || (TYPE_UNSIGNED (type2
)
2306 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2308 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2309 if (GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
2313 op
= smul_widen_optab
;
2314 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
2318 if (handler
== CODE_FOR_nothing
)
2321 from_unsigned1
= from_unsigned2
= false;
2327 /* Ensure that the inputs to the handler are in the correct precison
2328 for the opcode. This will be the full mode size. */
2329 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2330 if (2 * actual_precision
> TYPE_PRECISION (type
))
2332 if (actual_precision
!= TYPE_PRECISION (type1
)
2333 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2334 rhs1
= build_and_insert_cast (gsi
, loc
,
2335 build_nonstandard_integer_type
2336 (actual_precision
, from_unsigned1
), rhs1
);
2337 if (actual_precision
!= TYPE_PRECISION (type2
)
2338 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2339 rhs2
= build_and_insert_cast (gsi
, loc
,
2340 build_nonstandard_integer_type
2341 (actual_precision
, from_unsigned2
), rhs2
);
2343 /* Handle constants. */
2344 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2345 rhs1
= fold_convert (type1
, rhs1
);
2346 if (TREE_CODE (rhs2
) == INTEGER_CST
)
2347 rhs2
= fold_convert (type2
, rhs2
);
2349 gimple_assign_set_rhs1 (stmt
, rhs1
);
2350 gimple_assign_set_rhs2 (stmt
, rhs2
);
2351 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
2353 widen_mul_stats
.widen_mults_inserted
++;
2357 /* Process a single gimple statement STMT, which is found at the
2358 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2359 rhs (given by CODE), and try to convert it into a
2360 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2361 is true iff we converted the statement. */
2364 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
2365 enum tree_code code
)
2367 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
2368 gimple conv1_stmt
= NULL
, conv2_stmt
= NULL
, conv_stmt
;
2369 tree type
, type1
, type2
, optype
;
2370 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
2371 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
2373 enum tree_code wmult_code
;
2374 enum insn_code handler
;
2375 enum machine_mode to_mode
, from_mode
, actual_mode
;
2376 location_t loc
= gimple_location (stmt
);
2377 int actual_precision
;
2378 bool from_unsigned1
, from_unsigned2
;
2380 lhs
= gimple_assign_lhs (stmt
);
2381 type
= TREE_TYPE (lhs
);
2382 if (TREE_CODE (type
) != INTEGER_TYPE
2383 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2386 if (code
== MINUS_EXPR
)
2387 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
2389 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
2391 rhs1
= gimple_assign_rhs1 (stmt
);
2392 rhs2
= gimple_assign_rhs2 (stmt
);
2394 if (TREE_CODE (rhs1
) == SSA_NAME
)
2396 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2397 if (is_gimple_assign (rhs1_stmt
))
2398 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2401 if (TREE_CODE (rhs2
) == SSA_NAME
)
2403 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2404 if (is_gimple_assign (rhs2_stmt
))
2405 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2408 /* Allow for one conversion statement between the multiply
2409 and addition/subtraction statement. If there are more than
2410 one conversions then we assume they would invalidate this
2411 transformation. If that's not the case then they should have
2412 been folded before now. */
2413 if (CONVERT_EXPR_CODE_P (rhs1_code
))
2415 conv1_stmt
= rhs1_stmt
;
2416 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
2417 if (TREE_CODE (rhs1
) == SSA_NAME
)
2419 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2420 if (is_gimple_assign (rhs1_stmt
))
2421 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2426 if (CONVERT_EXPR_CODE_P (rhs2_code
))
2428 conv2_stmt
= rhs2_stmt
;
2429 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
2430 if (TREE_CODE (rhs2
) == SSA_NAME
)
2432 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2433 if (is_gimple_assign (rhs2_stmt
))
2434 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2440 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2441 is_widening_mult_p, but we still need the rhs returns.
2443 It might also appear that it would be sufficient to use the existing
2444 operands of the widening multiply, but that would limit the choice of
2445 multiply-and-accumulate instructions.
2447 If the widened-multiplication result has more than one uses, it is
2448 probably wiser not to do the conversion. */
2449 if (code
== PLUS_EXPR
2450 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
2452 if (!has_single_use (rhs1
)
2453 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
2454 &type2
, &mult_rhs2
))
2457 conv_stmt
= conv1_stmt
;
2459 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
2461 if (!has_single_use (rhs2
)
2462 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
2463 &type2
, &mult_rhs2
))
2466 conv_stmt
= conv2_stmt
;
2471 to_mode
= TYPE_MODE (type
);
2472 from_mode
= TYPE_MODE (type1
);
2473 from_unsigned1
= TYPE_UNSIGNED (type1
);
2474 from_unsigned2
= TYPE_UNSIGNED (type2
);
2477 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2478 if (from_unsigned1
!= from_unsigned2
)
2480 if (!INTEGRAL_TYPE_P (type
))
2482 /* We can use a signed multiply with unsigned types as long as
2483 there is a wider mode to use, or it is the smaller of the two
2484 types that is unsigned. Note that type1 >= type2, always. */
2486 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2488 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2490 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2491 if (GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
2495 from_unsigned1
= from_unsigned2
= false;
2496 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
2500 /* If there was a conversion between the multiply and addition
2501 then we need to make sure it fits a multiply-and-accumulate.
2502 The should be a single mode change which does not change the
2506 /* We use the original, unmodified data types for this. */
2507 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
2508 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
2509 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
2510 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
2512 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
2514 /* Conversion is a truncate. */
2515 if (TYPE_PRECISION (to_type
) < data_size
)
2518 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
2520 /* Conversion is an extend. Check it's the right sort. */
2521 if (TYPE_UNSIGNED (from_type
) != is_unsigned
2522 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
2525 /* else convert is a no-op for our purposes. */
2528 /* Verify that the machine can perform a widening multiply
2529 accumulate in this mode/signedness combination, otherwise
2530 this transformation is likely to pessimize code. */
2531 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
2532 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
2533 from_mode
, 0, &actual_mode
);
2535 if (handler
== CODE_FOR_nothing
)
2538 /* Ensure that the inputs to the handler are in the correct precison
2539 for the opcode. This will be the full mode size. */
2540 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2541 if (actual_precision
!= TYPE_PRECISION (type1
)
2542 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2543 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
2544 build_nonstandard_integer_type
2545 (actual_precision
, from_unsigned1
),
2547 if (actual_precision
!= TYPE_PRECISION (type2
)
2548 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2549 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
2550 build_nonstandard_integer_type
2551 (actual_precision
, from_unsigned2
),
2554 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
2555 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
2557 /* Handle constants. */
2558 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
2559 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
2560 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
2561 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
2563 gimple_assign_set_rhs_with_ops_1 (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
2565 update_stmt (gsi_stmt (*gsi
));
2566 widen_mul_stats
.maccs_inserted
++;
2570 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2571 with uses in additions and subtractions to form fused multiply-add
2572 operations. Returns true if successful and MUL_STMT should be removed. */
2575 convert_mult_to_fma (gimple mul_stmt
, tree op1
, tree op2
)
2577 tree mul_result
= gimple_get_lhs (mul_stmt
);
2578 tree type
= TREE_TYPE (mul_result
);
2579 gimple use_stmt
, neguse_stmt
, fma_stmt
;
2580 use_operand_p use_p
;
2581 imm_use_iterator imm_iter
;
2583 if (FLOAT_TYPE_P (type
)
2584 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
2587 /* We don't want to do bitfield reduction ops. */
2588 if (INTEGRAL_TYPE_P (type
)
2589 && (TYPE_PRECISION (type
)
2590 != GET_MODE_PRECISION (TYPE_MODE (type
))))
2593 /* If the target doesn't support it, don't generate it. We assume that
2594 if fma isn't available then fms, fnma or fnms are not either. */
2595 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
2598 /* If the multiplication has zero uses, it is kept around probably because
2599 of -fnon-call-exceptions. Don't optimize it away in that case,
2601 if (has_zero_uses (mul_result
))
2604 /* Make sure that the multiplication statement becomes dead after
2605 the transformation, thus that all uses are transformed to FMAs.
2606 This means we assume that an FMA operation has the same cost
2608 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
2610 enum tree_code use_code
;
2611 tree result
= mul_result
;
2612 bool negate_p
= false;
2614 use_stmt
= USE_STMT (use_p
);
2616 if (is_gimple_debug (use_stmt
))
2619 /* For now restrict this operations to single basic blocks. In theory
2620 we would want to support sinking the multiplication in
2626 to form a fma in the then block and sink the multiplication to the
2628 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
2631 if (!is_gimple_assign (use_stmt
))
2634 use_code
= gimple_assign_rhs_code (use_stmt
);
2636 /* A negate on the multiplication leads to FNMA. */
2637 if (use_code
== NEGATE_EXPR
)
2642 result
= gimple_assign_lhs (use_stmt
);
2644 /* Make sure the negate statement becomes dead with this
2645 single transformation. */
2646 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
2647 &use_p
, &neguse_stmt
))
2650 /* Make sure the multiplication isn't also used on that stmt. */
2651 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
2652 if (USE_FROM_PTR (usep
) == mul_result
)
2656 use_stmt
= neguse_stmt
;
2657 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
2659 if (!is_gimple_assign (use_stmt
))
2662 use_code
= gimple_assign_rhs_code (use_stmt
);
2669 if (gimple_assign_rhs2 (use_stmt
) == result
)
2670 negate_p
= !negate_p
;
2675 /* FMA can only be formed from PLUS and MINUS. */
2679 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2680 by a MULT_EXPR that we'll visit later, we might be able to
2681 get a more profitable match with fnma.
2682 OTOH, if we don't, a negate / fma pair has likely lower latency
2683 that a mult / subtract pair. */
2684 if (use_code
== MINUS_EXPR
&& !negate_p
2685 && gimple_assign_rhs1 (use_stmt
) == result
2686 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
2687 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
2689 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
2691 if (TREE_CODE (rhs2
) == SSA_NAME
)
2693 gimple stmt2
= SSA_NAME_DEF_STMT (rhs2
);
2694 if (has_single_use (rhs2
)
2695 && is_gimple_assign (stmt2
)
2696 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
2701 /* We can't handle a * b + a * b. */
2702 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
2705 /* While it is possible to validate whether or not the exact form
2706 that we've recognized is available in the backend, the assumption
2707 is that the transformation is never a loss. For instance, suppose
2708 the target only has the plain FMA pattern available. Consider
2709 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2710 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2711 still have 3 operations, but in the FMA form the two NEGs are
2712 independent and could be run in parallel. */
2715 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
2717 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
2718 enum tree_code use_code
;
2719 tree addop
, mulop1
= op1
, result
= mul_result
;
2720 bool negate_p
= false;
2722 if (is_gimple_debug (use_stmt
))
2725 use_code
= gimple_assign_rhs_code (use_stmt
);
2726 if (use_code
== NEGATE_EXPR
)
2728 result
= gimple_assign_lhs (use_stmt
);
2729 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
2730 gsi_remove (&gsi
, true);
2731 release_defs (use_stmt
);
2733 use_stmt
= neguse_stmt
;
2734 gsi
= gsi_for_stmt (use_stmt
);
2735 use_code
= gimple_assign_rhs_code (use_stmt
);
2739 if (gimple_assign_rhs1 (use_stmt
) == result
)
2741 addop
= gimple_assign_rhs2 (use_stmt
);
2742 /* a * b - c -> a * b + (-c) */
2743 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
2744 addop
= force_gimple_operand_gsi (&gsi
,
2745 build1 (NEGATE_EXPR
,
2747 true, NULL_TREE
, true,
2752 addop
= gimple_assign_rhs1 (use_stmt
);
2753 /* a - b * c -> (-b) * c + a */
2754 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
2755 negate_p
= !negate_p
;
2759 mulop1
= force_gimple_operand_gsi (&gsi
,
2760 build1 (NEGATE_EXPR
,
2762 true, NULL_TREE
, true,
2765 fma_stmt
= gimple_build_assign_with_ops (FMA_EXPR
,
2766 gimple_assign_lhs (use_stmt
),
2769 gsi_replace (&gsi
, fma_stmt
, true);
2770 widen_mul_stats
.fmas_inserted
++;
2776 /* Find integer multiplications where the operands are extended from
2777 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2778 where appropriate. */
2781 execute_optimize_widening_mul (void)
2784 bool cfg_changed
= false;
2786 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
2788 FOR_EACH_BB_FN (bb
, cfun
)
2790 gimple_stmt_iterator gsi
;
2792 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
2794 gimple stmt
= gsi_stmt (gsi
);
2795 enum tree_code code
;
2797 if (is_gimple_assign (stmt
))
2799 code
= gimple_assign_rhs_code (stmt
);
2803 if (!convert_mult_to_widen (stmt
, &gsi
)
2804 && convert_mult_to_fma (stmt
,
2805 gimple_assign_rhs1 (stmt
),
2806 gimple_assign_rhs2 (stmt
)))
2808 gsi_remove (&gsi
, true);
2809 release_defs (stmt
);
2816 convert_plusminus_to_widen (&gsi
, stmt
, code
);
2822 else if (is_gimple_call (stmt
)
2823 && gimple_call_lhs (stmt
))
2825 tree fndecl
= gimple_call_fndecl (stmt
);
2827 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
2829 switch (DECL_FUNCTION_CODE (fndecl
))
2834 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
2835 && REAL_VALUES_EQUAL
2836 (TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
2838 && convert_mult_to_fma (stmt
,
2839 gimple_call_arg (stmt
, 0),
2840 gimple_call_arg (stmt
, 0)))
2842 unlink_stmt_vdef (stmt
);
2843 if (gsi_remove (&gsi
, true)
2844 && gimple_purge_dead_eh_edges (bb
))
2846 release_defs (stmt
);
2859 statistics_counter_event (cfun
, "widening multiplications inserted",
2860 widen_mul_stats
.widen_mults_inserted
);
2861 statistics_counter_event (cfun
, "widening maccs inserted",
2862 widen_mul_stats
.maccs_inserted
);
2863 statistics_counter_event (cfun
, "fused multiply-adds inserted",
2864 widen_mul_stats
.fmas_inserted
);
2866 return cfg_changed
? TODO_cleanup_cfg
: 0;
2870 gate_optimize_widening_mul (void)
2872 return flag_expensive_optimizations
&& optimize
;
2877 const pass_data pass_data_optimize_widening_mul
=
2879 GIMPLE_PASS
, /* type */
2880 "widening_mul", /* name */
2881 OPTGROUP_NONE
, /* optinfo_flags */
2882 true, /* has_gate */
2883 true, /* has_execute */
2884 TV_NONE
, /* tv_id */
2885 PROP_ssa
, /* properties_required */
2886 0, /* properties_provided */
2887 0, /* properties_destroyed */
2888 0, /* todo_flags_start */
2889 ( TODO_verify_ssa
| TODO_verify_stmts
2890 | TODO_update_ssa
), /* todo_flags_finish */
2893 class pass_optimize_widening_mul
: public gimple_opt_pass
2896 pass_optimize_widening_mul (gcc::context
*ctxt
)
2897 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
2900 /* opt_pass methods: */
2901 bool gate () { return gate_optimize_widening_mul (); }
2902 unsigned int execute () { return execute_optimize_widening_mul (); }
2904 }; // class pass_optimize_widening_mul
2909 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
2911 return new pass_optimize_widening_mul (ctxt
);