re PR fortran/49397 ([F03] ICE with proc pointer assignment)
[official-gcc.git] / gcc / fwprop.c
blob4317f51f0dabcbf31ca88a3f6336b73c2d96281e
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "emit-rtl.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead.
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
116 static int num_changes;
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
132 static inline df_ref
133 get_def_for_use (df_ref use)
135 return use_def_ref[DF_REF_ID (use)];
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
148 static void
149 process_defs (df_ref *def_rec, int top_flag)
151 df_ref def;
152 while ((def = *def_rec++) != NULL)
154 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
155 unsigned int dregno;
157 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
158 continue;
160 dregno = DF_REF_REGNO (def);
161 if (curr_def)
162 reg_defs_stack.safe_push (curr_def);
163 else
165 /* Do not store anything if "transitioning" from NULL to NULL. But
166 otherwise, push a special entry on the stack to tell the
167 leave_block callback that the entry in reg_defs was NULL. */
168 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
170 else
171 reg_defs_stack.safe_push (def);
174 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 bitmap_set_bit (local_md, dregno);
177 reg_defs[dregno] = NULL;
179 else
181 bitmap_clear_bit (local_md, dregno);
182 reg_defs[dregno] = def;
188 /* Fill the use_def_ref vector with values for the uses in USE_REC,
189 taking reaching definitions info from LOCAL_MD and REG_DEFS.
190 TOP_FLAG says which artificials uses should be used, when USE_REC
191 is an artificial use vector. */
193 static void
194 process_uses (df_ref *use_rec, int top_flag)
196 df_ref use;
197 while ((use = *use_rec++) != NULL)
198 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
200 unsigned int uregno = DF_REF_REGNO (use);
201 if (reg_defs[uregno]
202 && !bitmap_bit_p (local_md, uregno)
203 && bitmap_bit_p (local_lr, uregno))
204 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
208 class single_def_use_dom_walker : public dom_walker
210 public:
211 single_def_use_dom_walker (cdi_direction direction)
212 : dom_walker (direction) {}
213 virtual void before_dom_children (basic_block);
214 virtual void after_dom_children (basic_block);
217 void
218 single_def_use_dom_walker::before_dom_children (basic_block bb)
220 int bb_index = bb->index;
221 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
222 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
223 rtx insn;
225 bitmap_copy (local_md, &md_bb_info->in);
226 bitmap_copy (local_lr, &lr_bb_info->in);
228 /* Push a marker for the leave_block callback. */
229 reg_defs_stack.safe_push (NULL);
231 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
232 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
234 /* We don't call df_simulate_initialize_forwards, as it may overestimate
235 the live registers if there are unused artificial defs. We prefer
236 liveness to be underestimated. */
238 FOR_BB_INSNS (bb, insn)
239 if (INSN_P (insn))
241 unsigned int uid = INSN_UID (insn);
242 process_uses (DF_INSN_UID_USES (uid), 0);
243 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
244 process_defs (DF_INSN_UID_DEFS (uid), 0);
245 df_simulate_one_insn_forwards (bb, insn, local_lr);
248 process_uses (df_get_artificial_uses (bb_index), 0);
249 process_defs (df_get_artificial_defs (bb_index), 0);
252 /* Pop the definitions created in this basic block when leaving its
253 dominated parts. */
255 void
256 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
258 df_ref saved_def;
259 while ((saved_def = reg_defs_stack.pop ()) != NULL)
261 unsigned int dregno = DF_REF_REGNO (saved_def);
263 /* See also process_defs. */
264 if (saved_def == reg_defs[dregno])
265 reg_defs[dregno] = NULL;
266 else
267 reg_defs[dregno] = saved_def;
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
275 static void
276 build_single_def_use_links (void)
278 /* We use the multiple definitions problem to compute our restricted
279 use-def chains. */
280 df_set_flags (DF_EQ_NOTES);
281 df_md_add_problem ();
282 df_note_add_problem ();
283 df_analyze ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
286 use_def_ref.create (DF_USES_TABLE_SIZE ());
287 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
289 reg_defs.create (max_reg_num ());
290 reg_defs.safe_grow_cleared (max_reg_num ());
292 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
293 local_md = BITMAP_ALLOC (NULL);
294 local_lr = BITMAP_ALLOC (NULL);
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 single_def_use_dom_walker (CDI_DOMINATORS)
299 .walk (cfun->cfg->x_entry_block_ptr);
301 BITMAP_FREE (local_lr);
302 BITMAP_FREE (local_md);
303 reg_defs.release ();
304 reg_defs_stack.release ();
308 /* Do not try to replace constant addresses or addresses of local and
309 argument slots. These MEM expressions are made only once and inserted
310 in many instructions, as well as being used to control symbol table
311 output. It is not safe to clobber them.
313 There are some uncommon cases where the address is already in a register
314 for some reason, but we cannot take advantage of that because we have
315 no easy way to unshare the MEM. In addition, looking up all stack
316 addresses is costly. */
318 static bool
319 can_simplify_addr (rtx addr)
321 rtx reg;
323 if (CONSTANT_ADDRESS_P (addr))
324 return false;
326 if (GET_CODE (addr) == PLUS)
327 reg = XEXP (addr, 0);
328 else
329 reg = addr;
331 return (!REG_P (reg)
332 || (REGNO (reg) != FRAME_POINTER_REGNUM
333 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
334 && REGNO (reg) != ARG_POINTER_REGNUM));
337 /* Returns a canonical version of X for the address, from the point of view,
338 that all multiplications are represented as MULT instead of the multiply
339 by a power of 2 being represented as ASHIFT.
341 Every ASHIFT we find has been made by simplify_gen_binary and was not
342 there before, so it is not shared. So we can do this in place. */
344 static void
345 canonicalize_address (rtx x)
347 for (;;)
348 switch (GET_CODE (x))
350 case ASHIFT:
351 if (CONST_INT_P (XEXP (x, 1))
352 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
353 && INTVAL (XEXP (x, 1)) >= 0)
355 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
356 PUT_CODE (x, MULT);
357 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
358 GET_MODE (x));
361 x = XEXP (x, 0);
362 break;
364 case PLUS:
365 if (GET_CODE (XEXP (x, 0)) == PLUS
366 || GET_CODE (XEXP (x, 0)) == ASHIFT
367 || GET_CODE (XEXP (x, 0)) == CONST)
368 canonicalize_address (XEXP (x, 0));
370 x = XEXP (x, 1);
371 break;
373 case CONST:
374 x = XEXP (x, 0);
375 break;
377 default:
378 return;
382 /* OLD is a memory address. Return whether it is good to use NEW instead,
383 for a memory access in the given MODE. */
385 static bool
386 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
387 addr_space_t as, bool speed)
389 int gain;
391 if (rtx_equal_p (old_rtx, new_rtx)
392 || !memory_address_addr_space_p (mode, new_rtx, as))
393 return false;
395 /* Copy propagation is always ok. */
396 if (REG_P (old_rtx) && REG_P (new_rtx))
397 return true;
399 /* Prefer the new address if it is less expensive. */
400 gain = (address_cost (old_rtx, mode, as, speed)
401 - address_cost (new_rtx, mode, as, speed));
403 /* If the addresses have equivalent cost, prefer the new address
404 if it has the highest `set_src_cost'. That has the potential of
405 eliminating the most insns without additional costs, and it
406 is the same that cse.c used to do. */
407 if (gain == 0)
408 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
410 return (gain > 0);
414 /* Flags for the last parameter of propagate_rtx_1. */
416 enum {
417 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
418 if it is false, propagate_rtx_1 returns false if, for at least
419 one occurrence OLD, it failed to collapse the result to a constant.
420 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
421 collapse to zero if replacing (reg:M B) with (reg:M A).
423 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
424 propagate_rtx_1 just tries to make cheaper and valid memory
425 addresses. */
426 PR_CAN_APPEAR = 1,
428 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
429 outside memory addresses. This is needed because propagate_rtx_1 does
430 not do any analysis on memory; thus it is very conservative and in general
431 it will fail if non-read-only MEMs are found in the source expression.
433 PR_HANDLE_MEM is set when the source of the propagation was not
434 another MEM. Then, it is safe not to treat non-read-only MEMs as
435 ``opaque'' objects. */
436 PR_HANDLE_MEM = 2,
438 /* Set when costs should be optimized for speed. */
439 PR_OPTIMIZE_FOR_SPEED = 4
443 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
444 resulting expression. Replace *PX with a new RTL expression if an
445 occurrence of OLD was found.
447 This is only a wrapper around simplify-rtx.c: do not add any pattern
448 matching code here. (The sole exception is the handling of LO_SUM, but
449 that is because there is no simplify_gen_* function for LO_SUM). */
451 static bool
452 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
454 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
455 enum rtx_code code = GET_CODE (x);
456 enum machine_mode mode = GET_MODE (x);
457 enum machine_mode op_mode;
458 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
459 bool valid_ops = true;
461 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
463 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
464 they have side effects or not). */
465 *px = (side_effects_p (x)
466 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
467 : gen_rtx_SCRATCH (GET_MODE (x)));
468 return false;
471 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
472 address, and we are *not* inside one. */
473 if (x == old_rtx)
475 *px = new_rtx;
476 return can_appear;
479 /* If this is an expression, try recursive substitution. */
480 switch (GET_RTX_CLASS (code))
482 case RTX_UNARY:
483 op0 = XEXP (x, 0);
484 op_mode = GET_MODE (op0);
485 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
486 if (op0 == XEXP (x, 0))
487 return true;
488 tem = simplify_gen_unary (code, mode, op0, op_mode);
489 break;
491 case RTX_BIN_ARITH:
492 case RTX_COMM_ARITH:
493 op0 = XEXP (x, 0);
494 op1 = XEXP (x, 1);
495 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
496 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
497 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
498 return true;
499 tem = simplify_gen_binary (code, mode, op0, op1);
500 break;
502 case RTX_COMPARE:
503 case RTX_COMM_COMPARE:
504 op0 = XEXP (x, 0);
505 op1 = XEXP (x, 1);
506 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
507 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
508 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
509 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
510 return true;
511 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
512 break;
514 case RTX_TERNARY:
515 case RTX_BITFIELD_OPS:
516 op0 = XEXP (x, 0);
517 op1 = XEXP (x, 1);
518 op2 = XEXP (x, 2);
519 op_mode = GET_MODE (op0);
520 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
521 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
522 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
523 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
524 return true;
525 if (op_mode == VOIDmode)
526 op_mode = GET_MODE (op0);
527 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
528 break;
530 case RTX_EXTRA:
531 /* The only case we try to handle is a SUBREG. */
532 if (code == SUBREG)
534 op0 = XEXP (x, 0);
535 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
536 if (op0 == XEXP (x, 0))
537 return true;
538 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
539 SUBREG_BYTE (x));
541 break;
543 case RTX_OBJ:
544 if (code == MEM && x != new_rtx)
546 rtx new_op0;
547 op0 = XEXP (x, 0);
549 /* There are some addresses that we cannot work on. */
550 if (!can_simplify_addr (op0))
551 return true;
553 op0 = new_op0 = targetm.delegitimize_address (op0);
554 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
555 flags | PR_CAN_APPEAR);
557 /* Dismiss transformation that we do not want to carry on. */
558 if (!valid_ops
559 || new_op0 == op0
560 || !(GET_MODE (new_op0) == GET_MODE (op0)
561 || GET_MODE (new_op0) == VOIDmode))
562 return true;
564 canonicalize_address (new_op0);
566 /* Copy propagations are always ok. Otherwise check the costs. */
567 if (!(REG_P (old_rtx) && REG_P (new_rtx))
568 && !should_replace_address (op0, new_op0, GET_MODE (x),
569 MEM_ADDR_SPACE (x),
570 flags & PR_OPTIMIZE_FOR_SPEED))
571 return true;
573 tem = replace_equiv_address_nv (x, new_op0);
576 else if (code == LO_SUM)
578 op0 = XEXP (x, 0);
579 op1 = XEXP (x, 1);
581 /* The only simplification we do attempts to remove references to op0
582 or make it constant -- in both cases, op0's invalidity will not
583 make the result invalid. */
584 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
585 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
586 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
587 return true;
589 /* (lo_sum (high x) x) -> x */
590 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
591 tem = op1;
592 else
593 tem = gen_rtx_LO_SUM (mode, op0, op1);
595 /* OP1 is likely not a legitimate address, otherwise there would have
596 been no LO_SUM. We want it to disappear if it is invalid, return
597 false in that case. */
598 return memory_address_p (mode, tem);
601 else if (code == REG)
603 if (rtx_equal_p (x, old_rtx))
605 *px = new_rtx;
606 return can_appear;
609 break;
611 default:
612 break;
615 /* No change, no trouble. */
616 if (tem == NULL_RTX)
617 return true;
619 *px = tem;
621 /* The replacement we made so far is valid, if all of the recursive
622 replacements were valid, or we could simplify everything to
623 a constant. */
624 return valid_ops || can_appear || CONSTANT_P (tem);
628 /* for_each_rtx traversal function that returns 1 if BODY points to
629 a non-constant mem. */
631 static int
632 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
634 rtx x = *body;
635 return MEM_P (x) && !MEM_READONLY_P (x);
639 /* Replace all occurrences of OLD in X with NEW and try to simplify the
640 resulting expression (in mode MODE). Return a new expression if it is
641 a constant, otherwise X.
643 Simplifications where occurrences of NEW collapse to a constant are always
644 accepted. All simplifications are accepted if NEW is a pseudo too.
645 Otherwise, we accept simplifications that have a lower or equal cost. */
647 static rtx
648 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
649 bool speed)
651 rtx tem;
652 bool collapsed;
653 int flags;
655 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
656 return NULL_RTX;
658 flags = 0;
659 if (REG_P (new_rtx)
660 || CONSTANT_P (new_rtx)
661 || (GET_CODE (new_rtx) == SUBREG
662 && REG_P (SUBREG_REG (new_rtx))
663 && (GET_MODE_SIZE (mode)
664 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
665 flags |= PR_CAN_APPEAR;
666 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
667 flags |= PR_HANDLE_MEM;
669 if (speed)
670 flags |= PR_OPTIMIZE_FOR_SPEED;
672 tem = x;
673 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
674 if (tem == x || !collapsed)
675 return NULL_RTX;
677 /* gen_lowpart_common will not be able to process VOIDmode entities other
678 than CONST_INTs. */
679 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
680 return NULL_RTX;
682 if (GET_MODE (tem) == VOIDmode)
683 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
684 else
685 gcc_assert (GET_MODE (tem) == mode);
687 return tem;
693 /* Return true if the register from reference REF is killed
694 between FROM to (but not including) TO. */
696 static bool
697 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
699 rtx insn;
701 for (insn = from; insn != to; insn = NEXT_INSN (insn))
703 df_ref *def_rec;
704 if (!INSN_P (insn))
705 continue;
707 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
709 df_ref def = *def_rec;
710 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
711 return true;
714 return false;
718 /* Check if the given DEF is available in INSN. This would require full
719 computation of available expressions; we check only restricted conditions:
720 - if DEF is the sole definition of its register, go ahead;
721 - in the same basic block, we check for no definitions killing the
722 definition of DEF_INSN;
723 - if USE's basic block has DEF's basic block as the sole predecessor,
724 we check if the definition is killed after DEF_INSN or before
725 TARGET_INSN insn, in their respective basic blocks. */
726 static bool
727 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
729 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
730 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
731 int regno;
732 df_ref def;
734 /* We used to have a def reaching a use that is _before_ the def,
735 with the def not dominating the use even though the use and def
736 are in the same basic block, when a register may be used
737 uninitialized in a loop. This should not happen anymore since
738 we do not use reaching definitions, but still we test for such
739 cases and assume that DEF is not available. */
740 if (def_bb == target_bb
741 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
742 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
743 return true;
745 /* Check if the reg in USE has only one definition. We already
746 know that this definition reaches use, or we wouldn't be here.
747 However, this is invalid for hard registers because if they are
748 live at the beginning of the function it does not mean that we
749 have an uninitialized access. */
750 regno = DF_REF_REGNO (use);
751 def = DF_REG_DEF_CHAIN (regno);
752 if (def
753 && DF_REF_NEXT_REG (def) == NULL
754 && regno >= FIRST_PSEUDO_REGISTER)
755 return false;
757 /* Check locally if we are in the same basic block. */
758 if (def_bb == target_bb)
759 return local_ref_killed_between_p (use, def_insn, target_insn);
761 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
762 if (single_pred_p (target_bb)
763 && single_pred (target_bb) == def_bb)
765 df_ref x;
767 /* See if USE is killed between DEF_INSN and the last insn in the
768 basic block containing DEF_INSN. */
769 x = df_bb_regno_last_def_find (def_bb, regno);
770 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
771 return true;
773 /* See if USE is killed between TARGET_INSN and the first insn in the
774 basic block containing TARGET_INSN. */
775 x = df_bb_regno_first_def_find (target_bb, regno);
776 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
777 return true;
779 return false;
782 /* Otherwise assume the worst case. */
783 return true;
787 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
788 would require full computation of available expressions;
789 we check only restricted conditions, see use_killed_between. */
790 static bool
791 all_uses_available_at (rtx def_insn, rtx target_insn)
793 df_ref *use_rec;
794 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
795 rtx def_set = single_set (def_insn);
796 rtx next;
798 gcc_assert (def_set);
800 /* If target_insn comes right after def_insn, which is very common
801 for addresses, we can use a quicker test. Ignore debug insns
802 other than target insns for this. */
803 next = NEXT_INSN (def_insn);
804 while (next && next != target_insn && DEBUG_INSN_P (next))
805 next = NEXT_INSN (next);
806 if (next == target_insn && REG_P (SET_DEST (def_set)))
808 rtx def_reg = SET_DEST (def_set);
810 /* If the insn uses the reg that it defines, the substitution is
811 invalid. */
812 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
814 df_ref use = *use_rec;
815 if (rtx_equal_p (DF_REF_REG (use), def_reg))
816 return false;
818 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
820 df_ref use = *use_rec;
821 if (rtx_equal_p (DF_REF_REG (use), def_reg))
822 return false;
825 else
827 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
829 /* Look at all the uses of DEF_INSN, and see if they are not
830 killed between DEF_INSN and TARGET_INSN. */
831 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
833 df_ref use = *use_rec;
834 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
835 return false;
836 if (use_killed_between (use, def_insn, target_insn))
837 return false;
839 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
841 df_ref use = *use_rec;
842 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
843 return false;
844 if (use_killed_between (use, def_insn, target_insn))
845 return false;
849 return true;
853 static df_ref *active_defs;
854 #ifdef ENABLE_CHECKING
855 static sparseset active_defs_check;
856 #endif
858 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
859 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
860 too, for checking purposes. */
862 static void
863 register_active_defs (df_ref *use_rec)
865 while (*use_rec)
867 df_ref use = *use_rec++;
868 df_ref def = get_def_for_use (use);
869 int regno = DF_REF_REGNO (use);
871 #ifdef ENABLE_CHECKING
872 sparseset_set_bit (active_defs_check, regno);
873 #endif
874 active_defs[regno] = def;
879 /* Build the use->def links that we use to update the dataflow info
880 for new uses. Note that building the links is very cheap and if
881 it were done earlier, they could be used to rule out invalid
882 propagations (in addition to what is done in all_uses_available_at).
883 I'm not doing this yet, though. */
885 static void
886 update_df_init (rtx def_insn, rtx insn)
888 #ifdef ENABLE_CHECKING
889 sparseset_clear (active_defs_check);
890 #endif
891 register_active_defs (DF_INSN_USES (def_insn));
892 register_active_defs (DF_INSN_USES (insn));
893 register_active_defs (DF_INSN_EQ_USES (insn));
897 /* Update the USE_DEF_REF array for the given use, using the active definitions
898 in the ACTIVE_DEFS array to match pseudos to their def. */
900 static inline void
901 update_uses (df_ref *use_rec)
903 while (*use_rec)
905 df_ref use = *use_rec++;
906 int regno = DF_REF_REGNO (use);
908 /* Set up the use-def chain. */
909 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
910 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
912 #ifdef ENABLE_CHECKING
913 gcc_assert (sparseset_bit_p (active_defs_check, regno));
914 #endif
915 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
920 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
921 uses if NOTES_ONLY is true. */
923 static void
924 update_df (rtx insn, rtx note)
926 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
928 if (note)
930 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
931 df_notes_rescan (insn);
933 else
935 df_uses_create (&PATTERN (insn), insn, 0);
936 df_insn_rescan (insn);
937 update_uses (DF_INSN_INFO_USES (insn_info));
940 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
944 /* Try substituting NEW into LOC, which originated from forward propagation
945 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
946 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
947 new insn is not recognized. Return whether the substitution was
948 performed. */
950 static bool
951 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
953 rtx insn = DF_REF_INSN (use);
954 rtx set = single_set (insn);
955 rtx note = NULL_RTX;
956 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
957 int old_cost = 0;
958 bool ok;
960 update_df_init (def_insn, insn);
962 /* forward_propagate_subreg may be operating on an instruction with
963 multiple sets. If so, assume the cost of the new instruction is
964 not greater than the old one. */
965 if (set)
966 old_cost = set_src_cost (SET_SRC (set), speed);
967 if (dump_file)
969 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
970 print_inline_rtx (dump_file, *loc, 2);
971 fprintf (dump_file, "\n with ");
972 print_inline_rtx (dump_file, new_rtx, 2);
973 fprintf (dump_file, "\n");
976 validate_unshare_change (insn, loc, new_rtx, true);
977 if (!verify_changes (0))
979 if (dump_file)
980 fprintf (dump_file, "Changes to insn %d not recognized\n",
981 INSN_UID (insn));
982 ok = false;
985 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
986 && set
987 && set_src_cost (SET_SRC (set), speed) > old_cost)
989 if (dump_file)
990 fprintf (dump_file, "Changes to insn %d not profitable\n",
991 INSN_UID (insn));
992 ok = false;
995 else
997 if (dump_file)
998 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
999 ok = true;
1002 if (ok)
1004 confirm_change_group ();
1005 num_changes++;
1007 else
1009 cancel_changes (0);
1011 /* Can also record a simplified value in a REG_EQUAL note,
1012 making a new one if one does not already exist. */
1013 if (set_reg_equal)
1015 if (dump_file)
1016 fprintf (dump_file, " Setting REG_EQUAL note\n");
1018 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1022 if ((ok || note) && !CONSTANT_P (new_rtx))
1023 update_df (insn, note);
1025 return ok;
1028 /* For the given single_set INSN, containing SRC known to be a
1029 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1030 is redundant due to the register being set by a LOAD_EXTEND_OP
1031 load from memory. */
1033 static bool
1034 free_load_extend (rtx src, rtx insn)
1036 rtx reg;
1037 df_ref *use_vec;
1038 df_ref use = 0, def;
1040 reg = XEXP (src, 0);
1041 #ifdef LOAD_EXTEND_OP
1042 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1043 #endif
1044 return false;
1046 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1048 use = *use_vec;
1050 if (!DF_REF_IS_ARTIFICIAL (use)
1051 && DF_REF_TYPE (use) == DF_REF_REG_USE
1052 && DF_REF_REG (use) == reg)
1053 break;
1055 if (!use)
1056 return false;
1058 def = get_def_for_use (use);
1059 if (!def)
1060 return false;
1062 if (DF_REF_IS_ARTIFICIAL (def))
1063 return false;
1065 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1067 rtx patt = PATTERN (DF_REF_INSN (def));
1069 if (GET_CODE (patt) == SET
1070 && GET_CODE (SET_SRC (patt)) == MEM
1071 && rtx_equal_p (SET_DEST (patt), reg))
1072 return true;
1074 return false;
1077 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1079 static bool
1080 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1082 rtx use_reg = DF_REF_REG (use);
1083 rtx use_insn, src;
1085 /* Only consider subregs... */
1086 enum machine_mode use_mode = GET_MODE (use_reg);
1087 if (GET_CODE (use_reg) != SUBREG
1088 || !REG_P (SET_DEST (def_set)))
1089 return false;
1091 /* If this is a paradoxical SUBREG... */
1092 if (GET_MODE_SIZE (use_mode)
1093 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1095 /* If this is a paradoxical SUBREG, we have no idea what value the
1096 extra bits would have. However, if the operand is equivalent to
1097 a SUBREG whose operand is the same as our mode, and all the modes
1098 are within a word, we can just use the inner operand because
1099 these SUBREGs just say how to treat the register. */
1100 use_insn = DF_REF_INSN (use);
1101 src = SET_SRC (def_set);
1102 if (GET_CODE (src) == SUBREG
1103 && REG_P (SUBREG_REG (src))
1104 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1105 && GET_MODE (SUBREG_REG (src)) == use_mode
1106 && subreg_lowpart_p (src)
1107 && all_uses_available_at (def_insn, use_insn))
1108 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1109 def_insn, false);
1112 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1113 is the low part of the reg being extended then just use the inner
1114 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1115 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1116 or due to the operation being a no-op when applied to registers.
1117 For example, if we have:
1119 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1120 B: (... (subreg:SI (reg:DI X)) ...)
1122 and mode_rep_extended says that Y is already sign-extended,
1123 the backend will typically allow A to be combined with the
1124 definition of Y or, failing that, allow A to be deleted after
1125 reload through register tying. Introducing more uses of Y
1126 prevents both optimisations. */
1127 else if (subreg_lowpart_p (use_reg))
1129 use_insn = DF_REF_INSN (use);
1130 src = SET_SRC (def_set);
1131 if ((GET_CODE (src) == ZERO_EXTEND
1132 || GET_CODE (src) == SIGN_EXTEND)
1133 && REG_P (XEXP (src, 0))
1134 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1135 && GET_MODE (XEXP (src, 0)) == use_mode
1136 && !free_load_extend (src, def_insn)
1137 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1138 != (int) GET_CODE (src))
1139 && all_uses_available_at (def_insn, use_insn))
1140 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1141 def_insn, false);
1144 return false;
1147 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1149 static bool
1150 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1152 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1153 int speed_p, i;
1154 df_ref *use_vec;
1156 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1158 src = SET_SRC (def_set);
1159 use_pat = PATTERN (use_insn);
1161 /* In __asm don't replace if src might need more registers than
1162 reg, as that could increase register pressure on the __asm. */
1163 use_vec = DF_INSN_USES (def_insn);
1164 if (use_vec[0] && use_vec[1])
1165 return false;
1167 update_df_init (def_insn, use_insn);
1168 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1169 asm_operands = NULL_RTX;
1170 switch (GET_CODE (use_pat))
1172 case ASM_OPERANDS:
1173 asm_operands = use_pat;
1174 break;
1175 case SET:
1176 if (MEM_P (SET_DEST (use_pat)))
1178 loc = &SET_DEST (use_pat);
1179 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1180 if (new_rtx)
1181 validate_unshare_change (use_insn, loc, new_rtx, true);
1183 asm_operands = SET_SRC (use_pat);
1184 break;
1185 case PARALLEL:
1186 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1187 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1189 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1191 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1192 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1193 src, speed_p);
1194 if (new_rtx)
1195 validate_unshare_change (use_insn, loc, new_rtx, true);
1197 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1199 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1200 asm_operands = XVECEXP (use_pat, 0, i);
1201 break;
1202 default:
1203 gcc_unreachable ();
1206 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1207 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1209 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1210 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1211 if (new_rtx)
1212 validate_unshare_change (use_insn, loc, new_rtx, true);
1215 if (num_changes_pending () == 0 || !apply_change_group ())
1216 return false;
1218 update_df (use_insn, NULL);
1219 num_changes++;
1220 return true;
1223 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1224 result. */
1226 static bool
1227 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1229 rtx use_insn = DF_REF_INSN (use);
1230 rtx use_set = single_set (use_insn);
1231 rtx src, reg, new_rtx, *loc;
1232 bool set_reg_equal;
1233 enum machine_mode mode;
1234 int asm_use = -1;
1236 if (INSN_CODE (use_insn) < 0)
1237 asm_use = asm_noperands (PATTERN (use_insn));
1239 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1240 return false;
1242 /* Do not propagate into PC, CC0, etc. */
1243 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1244 return false;
1246 /* If def and use are subreg, check if they match. */
1247 reg = DF_REF_REG (use);
1248 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1250 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1251 return false;
1253 /* Check if the def had a subreg, but the use has the whole reg. */
1254 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1255 return false;
1256 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1257 previous case, the optimization is possible and often useful indeed. */
1258 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1259 reg = SUBREG_REG (reg);
1261 /* Make sure that we can treat REG as having the same mode as the
1262 source of DEF_SET. */
1263 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1264 return false;
1266 /* Check if the substitution is valid (last, because it's the most
1267 expensive check!). */
1268 src = SET_SRC (def_set);
1269 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1270 return false;
1272 /* Check if the def is loading something from the constant pool; in this
1273 case we would undo optimization such as compress_float_constant.
1274 Still, we can set a REG_EQUAL note. */
1275 if (MEM_P (src) && MEM_READONLY_P (src))
1277 rtx x = avoid_constant_pool_reference (src);
1278 if (x != src && use_set)
1280 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1281 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1282 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1283 if (old_rtx != new_rtx)
1284 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1286 return false;
1289 if (asm_use >= 0)
1290 return forward_propagate_asm (use, def_insn, def_set, reg);
1292 /* Else try simplifying. */
1294 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1296 loc = &SET_DEST (use_set);
1297 set_reg_equal = false;
1299 else if (!use_set)
1301 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1302 set_reg_equal = false;
1304 else
1306 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1307 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1308 loc = &XEXP (note, 0);
1309 else
1310 loc = &SET_SRC (use_set);
1312 /* Do not replace an existing REG_EQUAL note if the insn is not
1313 recognized. Either we're already replacing in the note, or we'll
1314 separately try plugging the definition in the note and simplifying.
1315 And only install a REQ_EQUAL note when the destination is a REG
1316 that isn't mentioned in USE_SET, as the note would be invalid
1317 otherwise. We also don't want to install a note if we are merely
1318 propagating a pseudo since verifying that this pseudo isn't dead
1319 is a pain; moreover such a note won't help anything. */
1320 set_reg_equal = (note == NULL_RTX
1321 && REG_P (SET_DEST (use_set))
1322 && !REG_P (src)
1323 && !(GET_CODE (src) == SUBREG
1324 && REG_P (SUBREG_REG (src)))
1325 && !reg_mentioned_p (SET_DEST (use_set),
1326 SET_SRC (use_set)));
1329 if (GET_MODE (*loc) == VOIDmode)
1330 mode = GET_MODE (SET_DEST (use_set));
1331 else
1332 mode = GET_MODE (*loc);
1334 new_rtx = propagate_rtx (*loc, mode, reg, src,
1335 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1337 if (!new_rtx)
1338 return false;
1340 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1344 /* Given a use USE of an insn, if it has a single reaching
1345 definition, try to forward propagate it into that insn.
1346 Return true if cfg cleanup will be needed. */
1348 static bool
1349 forward_propagate_into (df_ref use)
1351 df_ref def;
1352 rtx def_insn, def_set, use_insn;
1353 rtx parent;
1355 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1356 return false;
1357 if (DF_REF_IS_ARTIFICIAL (use))
1358 return false;
1360 /* Only consider uses that have a single definition. */
1361 def = get_def_for_use (use);
1362 if (!def)
1363 return false;
1364 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1365 return false;
1366 if (DF_REF_IS_ARTIFICIAL (def))
1367 return false;
1369 /* Do not propagate loop invariant definitions inside the loop. */
1370 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1371 return false;
1373 /* Check if the use is still present in the insn! */
1374 use_insn = DF_REF_INSN (use);
1375 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1376 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1377 else
1378 parent = PATTERN (use_insn);
1380 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1381 return false;
1383 def_insn = DF_REF_INSN (def);
1384 if (multiple_sets (def_insn))
1385 return false;
1386 def_set = single_set (def_insn);
1387 if (!def_set)
1388 return false;
1390 /* Only try one kind of propagation. If two are possible, we'll
1391 do it on the following iterations. */
1392 if (forward_propagate_and_simplify (use, def_insn, def_set)
1393 || forward_propagate_subreg (use, def_insn, def_set))
1395 if (cfun->can_throw_non_call_exceptions
1396 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1397 && purge_dead_edges (DF_REF_BB (use)))
1398 return true;
1400 return false;
1404 static void
1405 fwprop_init (void)
1407 num_changes = 0;
1408 calculate_dominance_info (CDI_DOMINATORS);
1410 /* We do not always want to propagate into loops, so we have to find
1411 loops and be careful about them. Avoid CFG modifications so that
1412 we don't have to update dominance information afterwards for
1413 build_single_def_use_links. */
1414 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1416 build_single_def_use_links ();
1417 df_set_flags (DF_DEFER_INSN_RESCAN);
1419 active_defs = XNEWVEC (df_ref, max_reg_num ());
1420 #ifdef ENABLE_CHECKING
1421 active_defs_check = sparseset_alloc (max_reg_num ());
1422 #endif
1425 static void
1426 fwprop_done (void)
1428 loop_optimizer_finalize ();
1430 use_def_ref.release ();
1431 free (active_defs);
1432 #ifdef ENABLE_CHECKING
1433 sparseset_free (active_defs_check);
1434 #endif
1436 free_dominance_info (CDI_DOMINATORS);
1437 cleanup_cfg (0);
1438 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1440 if (dump_file)
1441 fprintf (dump_file,
1442 "\nNumber of successful forward propagations: %d\n\n",
1443 num_changes);
1447 /* Main entry point. */
1449 static bool
1450 gate_fwprop (void)
1452 return optimize > 0 && flag_forward_propagate;
1455 static unsigned int
1456 fwprop (void)
1458 unsigned i;
1459 bool need_cleanup = false;
1461 fwprop_init ();
1463 /* Go through all the uses. df_uses_create will create new ones at the
1464 end, and we'll go through them as well.
1466 Do not forward propagate addresses into loops until after unrolling.
1467 CSE did so because it was able to fix its own mess, but we are not. */
1469 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1471 df_ref use = DF_USES_GET (i);
1472 if (use)
1473 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1474 || DF_REF_BB (use)->loop_father == NULL
1475 /* The outer most loop is not really a loop. */
1476 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1477 need_cleanup |= forward_propagate_into (use);
1480 fwprop_done ();
1481 if (need_cleanup)
1482 cleanup_cfg (0);
1483 return 0;
1486 namespace {
1488 const pass_data pass_data_rtl_fwprop =
1490 RTL_PASS, /* type */
1491 "fwprop1", /* name */
1492 OPTGROUP_NONE, /* optinfo_flags */
1493 true, /* has_gate */
1494 true, /* has_execute */
1495 TV_FWPROP, /* tv_id */
1496 0, /* properties_required */
1497 0, /* properties_provided */
1498 0, /* properties_destroyed */
1499 0, /* todo_flags_start */
1500 ( TODO_df_finish | TODO_verify_flow
1501 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
1504 class pass_rtl_fwprop : public rtl_opt_pass
1506 public:
1507 pass_rtl_fwprop (gcc::context *ctxt)
1508 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1511 /* opt_pass methods: */
1512 bool gate () { return gate_fwprop (); }
1513 unsigned int execute () { return fwprop (); }
1515 }; // class pass_rtl_fwprop
1517 } // anon namespace
1519 rtl_opt_pass *
1520 make_pass_rtl_fwprop (gcc::context *ctxt)
1522 return new pass_rtl_fwprop (ctxt);
1525 static unsigned int
1526 fwprop_addr (void)
1528 unsigned i;
1529 bool need_cleanup = false;
1531 fwprop_init ();
1533 /* Go through all the uses. df_uses_create will create new ones at the
1534 end, and we'll go through them as well. */
1535 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1537 df_ref use = DF_USES_GET (i);
1538 if (use)
1539 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1540 && DF_REF_BB (use)->loop_father != NULL
1541 /* The outer most loop is not really a loop. */
1542 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1543 need_cleanup |= forward_propagate_into (use);
1546 fwprop_done ();
1548 if (need_cleanup)
1549 cleanup_cfg (0);
1550 return 0;
1553 namespace {
1555 const pass_data pass_data_rtl_fwprop_addr =
1557 RTL_PASS, /* type */
1558 "fwprop2", /* name */
1559 OPTGROUP_NONE, /* optinfo_flags */
1560 true, /* has_gate */
1561 true, /* has_execute */
1562 TV_FWPROP, /* tv_id */
1563 0, /* properties_required */
1564 0, /* properties_provided */
1565 0, /* properties_destroyed */
1566 0, /* todo_flags_start */
1567 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
1570 class pass_rtl_fwprop_addr : public rtl_opt_pass
1572 public:
1573 pass_rtl_fwprop_addr (gcc::context *ctxt)
1574 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1577 /* opt_pass methods: */
1578 bool gate () { return gate_fwprop (); }
1579 unsigned int execute () { return fwprop_addr (); }
1581 }; // class pass_rtl_fwprop_addr
1583 } // anon namespace
1585 rtl_opt_pass *
1586 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1588 return new pass_rtl_fwprop_addr (ctxt);