* tree.c (build_int_cst_wide): Add an assertion (gcc_unreachable)
[official-gcc.git] / gcc / cse.c
blob8bd275859417727b4738e04e8cb98063f7e188c8
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
76 Registers and "quantity numbers":
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
111 Constants and quantity numbers
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
131 Other expressions:
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
199 Related expressions:
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
263 rtx insn;
264 rtx newreg;
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
272 Instead, we store below the value last assigned to CC0. If it should
273 happen to be a constant, it is stored in preference to the actual
274 assigned value. In case it is a constant, we store the mode in which
275 the constant should be interpreted. */
277 static rtx prev_insn_cc0;
278 static enum machine_mode prev_insn_cc0_mode;
280 /* Previous actual insn. 0 if at first insn of basic block. */
282 static rtx prev_insn;
283 #endif
285 /* Insn being scanned. */
287 static rtx this_insn;
289 /* Index by register number, gives the number of the next (or
290 previous) register in the chain of registers sharing the same
291 value.
293 Or -1 if this register is at the end of the chain.
295 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
297 /* Per-register equivalence chain. */
298 struct reg_eqv_elem
300 int next, prev;
303 /* The table of all register equivalence chains. */
304 static struct reg_eqv_elem *reg_eqv_table;
306 struct cse_reg_info
308 /* The timestamp at which this register is initialized. */
309 unsigned int timestamp;
311 /* The quantity number of the register's current contents. */
312 int reg_qty;
314 /* The number of times the register has been altered in the current
315 basic block. */
316 int reg_tick;
318 /* The REG_TICK value at which rtx's containing this register are
319 valid in the hash table. If this does not equal the current
320 reg_tick value, such expressions existing in the hash table are
321 invalid. */
322 int reg_in_table;
324 /* The SUBREG that was set when REG_TICK was last incremented. Set
325 to -1 if the last store was to the whole register, not a subreg. */
326 unsigned int subreg_ticked;
329 /* A table of cse_reg_info indexed by register numbers. */
330 static struct cse_reg_info *cse_reg_info_table;
332 /* The size of the above table. */
333 static unsigned int cse_reg_info_table_size;
335 /* The index of the first entry that has not been initialized. */
336 static unsigned int cse_reg_info_table_first_uninitialized;
338 /* The timestamp at the beginning of the current run of
339 cse_basic_block. We increment this variable at the beginning of
340 the current run of cse_basic_block. The timestamp field of a
341 cse_reg_info entry matches the value of this variable if and only
342 if the entry has been initialized during the current run of
343 cse_basic_block. */
344 static unsigned int cse_reg_info_timestamp;
346 /* A HARD_REG_SET containing all the hard registers for which there is
347 currently a REG expression in the hash table. Note the difference
348 from the above variables, which indicate if the REG is mentioned in some
349 expression in the table. */
351 static HARD_REG_SET hard_regs_in_table;
353 /* CUID of insn that starts the basic block currently being cse-processed. */
355 static int cse_basic_block_start;
357 /* CUID of insn that ends the basic block currently being cse-processed. */
359 static int cse_basic_block_end;
361 /* Vector mapping INSN_UIDs to cuids.
362 The cuids are like uids but increase monotonically always.
363 We use them to see whether a reg is used outside a given basic block. */
365 static int *uid_cuid;
367 /* Highest UID in UID_CUID. */
368 static int max_uid;
370 /* Get the cuid of an insn. */
372 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
374 /* Nonzero if this pass has made changes, and therefore it's
375 worthwhile to run the garbage collector. */
377 static int cse_altered;
379 /* Nonzero if cse has altered conditional jump insns
380 in such a way that jump optimization should be redone. */
382 static int cse_jumps_altered;
384 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
385 REG_LABEL, we have to rerun jump after CSE to put in the note. */
386 static int recorded_label_ref;
388 /* canon_hash stores 1 in do_not_record
389 if it notices a reference to CC0, PC, or some other volatile
390 subexpression. */
392 static int do_not_record;
394 /* canon_hash stores 1 in hash_arg_in_memory
395 if it notices a reference to memory within the expression being hashed. */
397 static int hash_arg_in_memory;
399 /* The hash table contains buckets which are chains of `struct table_elt's,
400 each recording one expression's information.
401 That expression is in the `exp' field.
403 The canon_exp field contains a canonical (from the point of view of
404 alias analysis) version of the `exp' field.
406 Those elements with the same hash code are chained in both directions
407 through the `next_same_hash' and `prev_same_hash' fields.
409 Each set of expressions with equivalent values
410 are on a two-way chain through the `next_same_value'
411 and `prev_same_value' fields, and all point with
412 the `first_same_value' field at the first element in
413 that chain. The chain is in order of increasing cost.
414 Each element's cost value is in its `cost' field.
416 The `in_memory' field is nonzero for elements that
417 involve any reference to memory. These elements are removed
418 whenever a write is done to an unidentified location in memory.
419 To be safe, we assume that a memory address is unidentified unless
420 the address is either a symbol constant or a constant plus
421 the frame pointer or argument pointer.
423 The `related_value' field is used to connect related expressions
424 (that differ by adding an integer).
425 The related expressions are chained in a circular fashion.
426 `related_value' is zero for expressions for which this
427 chain is not useful.
429 The `cost' field stores the cost of this element's expression.
430 The `regcost' field stores the value returned by approx_reg_cost for
431 this element's expression.
433 The `is_const' flag is set if the element is a constant (including
434 a fixed address).
436 The `flag' field is used as a temporary during some search routines.
438 The `mode' field is usually the same as GET_MODE (`exp'), but
439 if `exp' is a CONST_INT and has no machine mode then the `mode'
440 field is the mode it was being used as. Each constant is
441 recorded separately for each mode it is used with. */
443 struct table_elt
445 rtx exp;
446 rtx canon_exp;
447 struct table_elt *next_same_hash;
448 struct table_elt *prev_same_hash;
449 struct table_elt *next_same_value;
450 struct table_elt *prev_same_value;
451 struct table_elt *first_same_value;
452 struct table_elt *related_value;
453 int cost;
454 int regcost;
455 /* The size of this field should match the size
456 of the mode field of struct rtx_def (see rtl.h). */
457 ENUM_BITFIELD(machine_mode) mode : 8;
458 char in_memory;
459 char is_const;
460 char flag;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
473 #define HASH(X, M) \
474 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Like HASH, but without side-effects. */
479 #define SAFE_HASH(X, M) \
480 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
481 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
482 : safe_hash (X, M)) & HASH_MASK)
484 /* Determine whether register number N is considered a fixed register for the
485 purpose of approximating register costs.
486 It is desirable to replace other regs with fixed regs, to reduce need for
487 non-fixed hard regs.
488 A reg wins if it is either the frame pointer or designated as fixed. */
489 #define FIXED_REGNO_P(N) \
490 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
491 || fixed_regs[N] || global_regs[N])
493 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
494 hard registers and pointers into the frame are the cheapest with a cost
495 of 0. Next come pseudos with a cost of one and other hard registers with
496 a cost of 2. Aside from these special cases, call `rtx_cost'. */
498 #define CHEAP_REGNO(N) \
499 (REGNO_PTR_FRAME_P(N) \
500 || (HARD_REGISTER_NUM_P (N) \
501 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
503 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
504 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
506 /* Get the number of times this register has been updated in this
507 basic block. */
509 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
511 /* Get the point at which REG was recorded in the table. */
513 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
515 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
516 SUBREG). */
518 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
520 /* Get the quantity number for REG. */
522 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
524 /* Determine if the quantity number for register X represents a valid index
525 into the qty_table. */
527 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
529 static struct table_elt *table[HASH_SIZE];
531 /* Chain of `struct table_elt's made so far for this function
532 but currently removed from the table. */
534 static struct table_elt *free_element_chain;
536 /* Set to the cost of a constant pool reference if one was found for a
537 symbolic constant. If this was found, it means we should try to
538 convert constants into constant pool entries if they don't fit in
539 the insn. */
541 static int constant_pool_entries_cost;
542 static int constant_pool_entries_regcost;
544 /* This data describes a block that will be processed by cse_basic_block. */
546 struct cse_basic_block_data
548 /* Lowest CUID value of insns in block. */
549 int low_cuid;
550 /* Highest CUID value of insns in block. */
551 int high_cuid;
552 /* Total number of SETs in block. */
553 int nsets;
554 /* Last insn in the block. */
555 rtx last;
556 /* Size of current branch path, if any. */
557 int path_size;
558 /* Current branch path, indicating which branches will be taken. */
559 struct branch_path
561 /* The branch insn. */
562 rtx branch;
563 /* Whether it should be taken or not. AROUND is the same as taken
564 except that it is used when the destination label is not preceded
565 by a BARRIER. */
566 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
567 } *path;
570 static bool fixed_base_plus_p (rtx x);
571 static int notreg_cost (rtx, enum rtx_code);
572 static int approx_reg_cost_1 (rtx *, void *);
573 static int approx_reg_cost (rtx);
574 static int preferable (int, int, int, int);
575 static void new_basic_block (void);
576 static void make_new_qty (unsigned int, enum machine_mode);
577 static void make_regs_eqv (unsigned int, unsigned int);
578 static void delete_reg_equiv (unsigned int);
579 static int mention_regs (rtx);
580 static int insert_regs (rtx, struct table_elt *, int);
581 static void remove_from_table (struct table_elt *, unsigned);
582 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
583 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
584 static rtx lookup_as_function (rtx, enum rtx_code);
585 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
586 enum machine_mode);
587 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
588 static void invalidate (rtx, enum machine_mode);
589 static int cse_rtx_varies_p (rtx, int);
590 static void remove_invalid_refs (unsigned int);
591 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
592 enum machine_mode);
593 static void rehash_using_reg (rtx);
594 static void invalidate_memory (void);
595 static void invalidate_for_call (void);
596 static rtx use_related_value (rtx, struct table_elt *);
598 static inline unsigned canon_hash (rtx, enum machine_mode);
599 static inline unsigned safe_hash (rtx, enum machine_mode);
600 static unsigned hash_rtx_string (const char *);
602 static rtx canon_reg (rtx, rtx);
603 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606 static rtx fold_rtx (rtx, rtx);
607 static rtx equiv_constant (rtx);
608 static void record_jump_equiv (rtx, int);
609 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611 static void cse_insn (rtx, rtx);
612 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
613 int, int);
614 static int addr_affects_sp_p (rtx);
615 static void invalidate_from_clobbers (rtx);
616 static rtx cse_process_notes (rtx, rtx);
617 static void invalidate_skipped_set (rtx, rtx, void *);
618 static void invalidate_skipped_block (rtx);
619 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
620 static void count_reg_usage (rtx, int *, rtx, int);
621 static int check_for_label_ref (rtx *, void *);
622 extern void dump_class (struct table_elt*);
623 static void get_cse_reg_info_1 (unsigned int regno);
624 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
625 static int check_dependence (rtx *, void *);
627 static void flush_hash_table (void);
628 static bool insn_live_p (rtx, int *);
629 static bool set_live_p (rtx, rtx, int *);
630 static bool dead_libcall_p (rtx, int *);
631 static int cse_change_cc_mode (rtx *, void *);
632 static void cse_change_cc_mode_insn (rtx, rtx);
633 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
637 #undef RTL_HOOKS_GEN_LOWPART
638 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
640 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
642 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
646 static bool
647 fixed_base_plus_p (rtx x)
649 switch (GET_CODE (x))
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
666 default:
667 return false;
671 /* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
673 void
674 dump_class (struct table_elt *classp)
676 struct table_elt *elt;
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
689 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
691 static int
692 approx_reg_cost_1 (rtx *xp, void *data)
694 rtx x = *xp;
695 int *cost_p = data;
697 if (x && REG_P (x))
699 unsigned int regno = REGNO (x);
701 if (! CHEAP_REGNO (regno))
703 if (regno < FIRST_PSEUDO_REGISTER)
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
709 else
710 *cost_p += 1;
714 return 0;
717 /* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
719 however for some exceptions like fixed registers we use a cost of
720 0. If any other hard register reference occurs, return MAX_COST. */
722 static int
723 approx_reg_cost (rtx x)
725 int cost = 0;
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
730 return cost;
733 /* Return a negative value if an rtx A, whose costs are given by COST_A
734 and REGCOST_A, is more desirable than an rtx B.
735 Return a positive value if A is less desirable, or 0 if the two are
736 equally good. */
737 static int
738 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
740 /* First, get rid of cases involving expressions that are entirely
741 unwanted. */
742 if (cost_a != cost_b)
744 if (cost_a == MAX_COST)
745 return 1;
746 if (cost_b == MAX_COST)
747 return -1;
750 /* Avoid extending lifetimes of hardregs. */
751 if (regcost_a != regcost_b)
753 if (regcost_a == MAX_COST)
754 return 1;
755 if (regcost_b == MAX_COST)
756 return -1;
759 /* Normal operation costs take precedence. */
760 if (cost_a != cost_b)
761 return cost_a - cost_b;
762 /* Only if these are identical consider effects on register pressure. */
763 if (regcost_a != regcost_b)
764 return regcost_a - regcost_b;
765 return 0;
768 /* Internal function, to compute cost when X is not a register; called
769 from COST macro to keep it simple. */
771 static int
772 notreg_cost (rtx x, enum rtx_code outer)
774 return ((GET_CODE (x) == SUBREG
775 && REG_P (SUBREG_REG (x))
776 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
777 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
778 && (GET_MODE_SIZE (GET_MODE (x))
779 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
780 && subreg_lowpart_p (x)
781 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
782 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
784 : rtx_cost (x, outer) * 2);
788 /* Initialize CSE_REG_INFO_TABLE. */
790 static void
791 init_cse_reg_info (unsigned int nregs)
793 /* Do we need to grow the table? */
794 if (nregs > cse_reg_info_table_size)
796 unsigned int new_size;
798 if (cse_reg_info_table_size < 2048)
800 /* Compute a new size that is a power of 2 and no smaller
801 than the large of NREGS and 64. */
802 new_size = (cse_reg_info_table_size
803 ? cse_reg_info_table_size : 64);
805 while (new_size < nregs)
806 new_size *= 2;
808 else
810 /* If we need a big table, allocate just enough to hold
811 NREGS registers. */
812 new_size = nregs;
815 /* Reallocate the table with NEW_SIZE entries. */
816 if (cse_reg_info_table)
817 free (cse_reg_info_table);
818 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
819 cse_reg_info_table_size = new_size;
820 cse_reg_info_table_first_uninitialized = 0;
823 /* Do we have all of the first NREGS entries initialized? */
824 if (cse_reg_info_table_first_uninitialized < nregs)
826 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
827 unsigned int i;
829 /* Put the old timestamp on newly allocated entries so that they
830 will all be considered out of date. We do not touch those
831 entries beyond the first NREGS entries to be nice to the
832 virtual memory. */
833 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
834 cse_reg_info_table[i].timestamp = old_timestamp;
836 cse_reg_info_table_first_uninitialized = nregs;
840 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
842 static void
843 get_cse_reg_info_1 (unsigned int regno)
845 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
846 entry will be considered to have been initialized. */
847 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
849 /* Initialize the rest of the entry. */
850 cse_reg_info_table[regno].reg_tick = 1;
851 cse_reg_info_table[regno].reg_in_table = -1;
852 cse_reg_info_table[regno].subreg_ticked = -1;
853 cse_reg_info_table[regno].reg_qty = -regno - 1;
856 /* Find a cse_reg_info entry for REGNO. */
858 static inline struct cse_reg_info *
859 get_cse_reg_info (unsigned int regno)
861 struct cse_reg_info *p = &cse_reg_info_table[regno];
863 /* If this entry has not been initialized, go ahead and initialize
864 it. */
865 if (p->timestamp != cse_reg_info_timestamp)
866 get_cse_reg_info_1 (regno);
868 return p;
871 /* Clear the hash table and initialize each register with its own quantity,
872 for a new basic block. */
874 static void
875 new_basic_block (void)
877 int i;
879 next_qty = 0;
881 /* Invalidate cse_reg_info_table. */
882 cse_reg_info_timestamp++;
884 /* Clear out hash table state for this pass. */
885 CLEAR_HARD_REG_SET (hard_regs_in_table);
887 /* The per-quantity values used to be initialized here, but it is
888 much faster to initialize each as it is made in `make_new_qty'. */
890 for (i = 0; i < HASH_SIZE; i++)
892 struct table_elt *first;
894 first = table[i];
895 if (first != NULL)
897 struct table_elt *last = first;
899 table[i] = NULL;
901 while (last->next_same_hash != NULL)
902 last = last->next_same_hash;
904 /* Now relink this hash entire chain into
905 the free element list. */
907 last->next_same_hash = free_element_chain;
908 free_element_chain = first;
912 #ifdef HAVE_cc0
913 prev_insn = 0;
914 prev_insn_cc0 = 0;
915 #endif
918 /* Say that register REG contains a quantity in mode MODE not in any
919 register before and initialize that quantity. */
921 static void
922 make_new_qty (unsigned int reg, enum machine_mode mode)
924 int q;
925 struct qty_table_elem *ent;
926 struct reg_eqv_elem *eqv;
928 gcc_assert (next_qty < max_qty);
930 q = REG_QTY (reg) = next_qty++;
931 ent = &qty_table[q];
932 ent->first_reg = reg;
933 ent->last_reg = reg;
934 ent->mode = mode;
935 ent->const_rtx = ent->const_insn = NULL_RTX;
936 ent->comparison_code = UNKNOWN;
938 eqv = &reg_eqv_table[reg];
939 eqv->next = eqv->prev = -1;
942 /* Make reg NEW equivalent to reg OLD.
943 OLD is not changing; NEW is. */
945 static void
946 make_regs_eqv (unsigned int new, unsigned int old)
948 unsigned int lastr, firstr;
949 int q = REG_QTY (old);
950 struct qty_table_elem *ent;
952 ent = &qty_table[q];
954 /* Nothing should become eqv until it has a "non-invalid" qty number. */
955 gcc_assert (REGNO_QTY_VALID_P (old));
957 REG_QTY (new) = q;
958 firstr = ent->first_reg;
959 lastr = ent->last_reg;
961 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
962 hard regs. Among pseudos, if NEW will live longer than any other reg
963 of the same qty, and that is beyond the current basic block,
964 make it the new canonical replacement for this qty. */
965 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
966 /* Certain fixed registers might be of the class NO_REGS. This means
967 that not only can they not be allocated by the compiler, but
968 they cannot be used in substitutions or canonicalizations
969 either. */
970 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
971 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
972 || (new >= FIRST_PSEUDO_REGISTER
973 && (firstr < FIRST_PSEUDO_REGISTER
974 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
975 || (uid_cuid[REGNO_FIRST_UID (new)]
976 < cse_basic_block_start))
977 && (uid_cuid[REGNO_LAST_UID (new)]
978 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
980 reg_eqv_table[firstr].prev = new;
981 reg_eqv_table[new].next = firstr;
982 reg_eqv_table[new].prev = -1;
983 ent->first_reg = new;
985 else
987 /* If NEW is a hard reg (known to be non-fixed), insert at end.
988 Otherwise, insert before any non-fixed hard regs that are at the
989 end. Registers of class NO_REGS cannot be used as an
990 equivalent for anything. */
991 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
992 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
993 && new >= FIRST_PSEUDO_REGISTER)
994 lastr = reg_eqv_table[lastr].prev;
995 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
996 if (reg_eqv_table[lastr].next >= 0)
997 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
998 else
999 qty_table[q].last_reg = new;
1000 reg_eqv_table[lastr].next = new;
1001 reg_eqv_table[new].prev = lastr;
1005 /* Remove REG from its equivalence class. */
1007 static void
1008 delete_reg_equiv (unsigned int reg)
1010 struct qty_table_elem *ent;
1011 int q = REG_QTY (reg);
1012 int p, n;
1014 /* If invalid, do nothing. */
1015 if (! REGNO_QTY_VALID_P (reg))
1016 return;
1018 ent = &qty_table[q];
1020 p = reg_eqv_table[reg].prev;
1021 n = reg_eqv_table[reg].next;
1023 if (n != -1)
1024 reg_eqv_table[n].prev = p;
1025 else
1026 ent->last_reg = p;
1027 if (p != -1)
1028 reg_eqv_table[p].next = n;
1029 else
1030 ent->first_reg = n;
1032 REG_QTY (reg) = -reg - 1;
1035 /* Remove any invalid expressions from the hash table
1036 that refer to any of the registers contained in expression X.
1038 Make sure that newly inserted references to those registers
1039 as subexpressions will be considered valid.
1041 mention_regs is not called when a register itself
1042 is being stored in the table.
1044 Return 1 if we have done something that may have changed the hash code
1045 of X. */
1047 static int
1048 mention_regs (rtx x)
1050 enum rtx_code code;
1051 int i, j;
1052 const char *fmt;
1053 int changed = 0;
1055 if (x == 0)
1056 return 0;
1058 code = GET_CODE (x);
1059 if (code == REG)
1061 unsigned int regno = REGNO (x);
1062 unsigned int endregno
1063 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1064 : hard_regno_nregs[regno][GET_MODE (x)]);
1065 unsigned int i;
1067 for (i = regno; i < endregno; i++)
1069 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1070 remove_invalid_refs (i);
1072 REG_IN_TABLE (i) = REG_TICK (i);
1073 SUBREG_TICKED (i) = -1;
1076 return 0;
1079 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1080 pseudo if they don't use overlapping words. We handle only pseudos
1081 here for simplicity. */
1082 if (code == SUBREG && REG_P (SUBREG_REG (x))
1083 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1085 unsigned int i = REGNO (SUBREG_REG (x));
1087 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1089 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1090 the last store to this register really stored into this
1091 subreg, then remove the memory of this subreg.
1092 Otherwise, remove any memory of the entire register and
1093 all its subregs from the table. */
1094 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1095 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1096 remove_invalid_refs (i);
1097 else
1098 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1101 REG_IN_TABLE (i) = REG_TICK (i);
1102 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1103 return 0;
1106 /* If X is a comparison or a COMPARE and either operand is a register
1107 that does not have a quantity, give it one. This is so that a later
1108 call to record_jump_equiv won't cause X to be assigned a different
1109 hash code and not found in the table after that call.
1111 It is not necessary to do this here, since rehash_using_reg can
1112 fix up the table later, but doing this here eliminates the need to
1113 call that expensive function in the most common case where the only
1114 use of the register is in the comparison. */
1116 if (code == COMPARE || COMPARISON_P (x))
1118 if (REG_P (XEXP (x, 0))
1119 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1120 if (insert_regs (XEXP (x, 0), NULL, 0))
1122 rehash_using_reg (XEXP (x, 0));
1123 changed = 1;
1126 if (REG_P (XEXP (x, 1))
1127 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1128 if (insert_regs (XEXP (x, 1), NULL, 0))
1130 rehash_using_reg (XEXP (x, 1));
1131 changed = 1;
1135 fmt = GET_RTX_FORMAT (code);
1136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1137 if (fmt[i] == 'e')
1138 changed |= mention_regs (XEXP (x, i));
1139 else if (fmt[i] == 'E')
1140 for (j = 0; j < XVECLEN (x, i); j++)
1141 changed |= mention_regs (XVECEXP (x, i, j));
1143 return changed;
1146 /* Update the register quantities for inserting X into the hash table
1147 with a value equivalent to CLASSP.
1148 (If the class does not contain a REG, it is irrelevant.)
1149 If MODIFIED is nonzero, X is a destination; it is being modified.
1150 Note that delete_reg_equiv should be called on a register
1151 before insert_regs is done on that register with MODIFIED != 0.
1153 Nonzero value means that elements of reg_qty have changed
1154 so X's hash code may be different. */
1156 static int
1157 insert_regs (rtx x, struct table_elt *classp, int modified)
1159 if (REG_P (x))
1161 unsigned int regno = REGNO (x);
1162 int qty_valid;
1164 /* If REGNO is in the equivalence table already but is of the
1165 wrong mode for that equivalence, don't do anything here. */
1167 qty_valid = REGNO_QTY_VALID_P (regno);
1168 if (qty_valid)
1170 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1172 if (ent->mode != GET_MODE (x))
1173 return 0;
1176 if (modified || ! qty_valid)
1178 if (classp)
1179 for (classp = classp->first_same_value;
1180 classp != 0;
1181 classp = classp->next_same_value)
1182 if (REG_P (classp->exp)
1183 && GET_MODE (classp->exp) == GET_MODE (x))
1185 unsigned c_regno = REGNO (classp->exp);
1187 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1189 /* Suppose that 5 is hard reg and 100 and 101 are
1190 pseudos. Consider
1192 (set (reg:si 100) (reg:si 5))
1193 (set (reg:si 5) (reg:si 100))
1194 (set (reg:di 101) (reg:di 5))
1196 We would now set REG_QTY (101) = REG_QTY (5), but the
1197 entry for 5 is in SImode. When we use this later in
1198 copy propagation, we get the register in wrong mode. */
1199 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1200 continue;
1202 make_regs_eqv (regno, c_regno);
1203 return 1;
1206 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1207 than REG_IN_TABLE to find out if there was only a single preceding
1208 invalidation - for the SUBREG - or another one, which would be
1209 for the full register. However, if we find here that REG_TICK
1210 indicates that the register is invalid, it means that it has
1211 been invalidated in a separate operation. The SUBREG might be used
1212 now (then this is a recursive call), or we might use the full REG
1213 now and a SUBREG of it later. So bump up REG_TICK so that
1214 mention_regs will do the right thing. */
1215 if (! modified
1216 && REG_IN_TABLE (regno) >= 0
1217 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1218 REG_TICK (regno)++;
1219 make_new_qty (regno, GET_MODE (x));
1220 return 1;
1223 return 0;
1226 /* If X is a SUBREG, we will likely be inserting the inner register in the
1227 table. If that register doesn't have an assigned quantity number at
1228 this point but does later, the insertion that we will be doing now will
1229 not be accessible because its hash code will have changed. So assign
1230 a quantity number now. */
1232 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1233 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1235 insert_regs (SUBREG_REG (x), NULL, 0);
1236 mention_regs (x);
1237 return 1;
1239 else
1240 return mention_regs (x);
1243 /* Look in or update the hash table. */
1245 /* Remove table element ELT from use in the table.
1246 HASH is its hash code, made using the HASH macro.
1247 It's an argument because often that is known in advance
1248 and we save much time not recomputing it. */
1250 static void
1251 remove_from_table (struct table_elt *elt, unsigned int hash)
1253 if (elt == 0)
1254 return;
1256 /* Mark this element as removed. See cse_insn. */
1257 elt->first_same_value = 0;
1259 /* Remove the table element from its equivalence class. */
1262 struct table_elt *prev = elt->prev_same_value;
1263 struct table_elt *next = elt->next_same_value;
1265 if (next)
1266 next->prev_same_value = prev;
1268 if (prev)
1269 prev->next_same_value = next;
1270 else
1272 struct table_elt *newfirst = next;
1273 while (next)
1275 next->first_same_value = newfirst;
1276 next = next->next_same_value;
1281 /* Remove the table element from its hash bucket. */
1284 struct table_elt *prev = elt->prev_same_hash;
1285 struct table_elt *next = elt->next_same_hash;
1287 if (next)
1288 next->prev_same_hash = prev;
1290 if (prev)
1291 prev->next_same_hash = next;
1292 else if (table[hash] == elt)
1293 table[hash] = next;
1294 else
1296 /* This entry is not in the proper hash bucket. This can happen
1297 when two classes were merged by `merge_equiv_classes'. Search
1298 for the hash bucket that it heads. This happens only very
1299 rarely, so the cost is acceptable. */
1300 for (hash = 0; hash < HASH_SIZE; hash++)
1301 if (table[hash] == elt)
1302 table[hash] = next;
1306 /* Remove the table element from its related-value circular chain. */
1308 if (elt->related_value != 0 && elt->related_value != elt)
1310 struct table_elt *p = elt->related_value;
1312 while (p->related_value != elt)
1313 p = p->related_value;
1314 p->related_value = elt->related_value;
1315 if (p->related_value == p)
1316 p->related_value = 0;
1319 /* Now add it to the free element chain. */
1320 elt->next_same_hash = free_element_chain;
1321 free_element_chain = elt;
1324 /* Look up X in the hash table and return its table element,
1325 or 0 if X is not in the table.
1327 MODE is the machine-mode of X, or if X is an integer constant
1328 with VOIDmode then MODE is the mode with which X will be used.
1330 Here we are satisfied to find an expression whose tree structure
1331 looks like X. */
1333 static struct table_elt *
1334 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1336 struct table_elt *p;
1338 for (p = table[hash]; p; p = p->next_same_hash)
1339 if (mode == p->mode && ((x == p->exp && REG_P (x))
1340 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1341 return p;
1343 return 0;
1346 /* Like `lookup' but don't care whether the table element uses invalid regs.
1347 Also ignore discrepancies in the machine mode of a register. */
1349 static struct table_elt *
1350 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1352 struct table_elt *p;
1354 if (REG_P (x))
1356 unsigned int regno = REGNO (x);
1358 /* Don't check the machine mode when comparing registers;
1359 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1360 for (p = table[hash]; p; p = p->next_same_hash)
1361 if (REG_P (p->exp)
1362 && REGNO (p->exp) == regno)
1363 return p;
1365 else
1367 for (p = table[hash]; p; p = p->next_same_hash)
1368 if (mode == p->mode
1369 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1370 return p;
1373 return 0;
1376 /* Look for an expression equivalent to X and with code CODE.
1377 If one is found, return that expression. */
1379 static rtx
1380 lookup_as_function (rtx x, enum rtx_code code)
1382 struct table_elt *p
1383 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1385 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1386 long as we are narrowing. So if we looked in vain for a mode narrower
1387 than word_mode before, look for word_mode now. */
1388 if (p == 0 && code == CONST_INT
1389 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1391 x = copy_rtx (x);
1392 PUT_MODE (x, word_mode);
1393 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1396 if (p == 0)
1397 return 0;
1399 for (p = p->first_same_value; p; p = p->next_same_value)
1400 if (GET_CODE (p->exp) == code
1401 /* Make sure this is a valid entry in the table. */
1402 && exp_equiv_p (p->exp, p->exp, 1, false))
1403 return p->exp;
1405 return 0;
1408 /* Insert X in the hash table, assuming HASH is its hash code
1409 and CLASSP is an element of the class it should go in
1410 (or 0 if a new class should be made).
1411 It is inserted at the proper position to keep the class in
1412 the order cheapest first.
1414 MODE is the machine-mode of X, or if X is an integer constant
1415 with VOIDmode then MODE is the mode with which X will be used.
1417 For elements of equal cheapness, the most recent one
1418 goes in front, except that the first element in the list
1419 remains first unless a cheaper element is added. The order of
1420 pseudo-registers does not matter, as canon_reg will be called to
1421 find the cheapest when a register is retrieved from the table.
1423 The in_memory field in the hash table element is set to 0.
1424 The caller must set it nonzero if appropriate.
1426 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1427 and if insert_regs returns a nonzero value
1428 you must then recompute its hash code before calling here.
1430 If necessary, update table showing constant values of quantities. */
1432 #define CHEAPER(X, Y) \
1433 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1435 static struct table_elt *
1436 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1438 struct table_elt *elt;
1440 /* If X is a register and we haven't made a quantity for it,
1441 something is wrong. */
1442 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1444 /* If X is a hard register, show it is being put in the table. */
1445 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1447 unsigned int regno = REGNO (x);
1448 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1449 unsigned int i;
1451 for (i = regno; i < endregno; i++)
1452 SET_HARD_REG_BIT (hard_regs_in_table, i);
1455 /* Put an element for X into the right hash bucket. */
1457 elt = free_element_chain;
1458 if (elt)
1459 free_element_chain = elt->next_same_hash;
1460 else
1461 elt = XNEW (struct table_elt);
1463 elt->exp = x;
1464 elt->canon_exp = NULL_RTX;
1465 elt->cost = COST (x);
1466 elt->regcost = approx_reg_cost (x);
1467 elt->next_same_value = 0;
1468 elt->prev_same_value = 0;
1469 elt->next_same_hash = table[hash];
1470 elt->prev_same_hash = 0;
1471 elt->related_value = 0;
1472 elt->in_memory = 0;
1473 elt->mode = mode;
1474 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1476 if (table[hash])
1477 table[hash]->prev_same_hash = elt;
1478 table[hash] = elt;
1480 /* Put it into the proper value-class. */
1481 if (classp)
1483 classp = classp->first_same_value;
1484 if (CHEAPER (elt, classp))
1485 /* Insert at the head of the class. */
1487 struct table_elt *p;
1488 elt->next_same_value = classp;
1489 classp->prev_same_value = elt;
1490 elt->first_same_value = elt;
1492 for (p = classp; p; p = p->next_same_value)
1493 p->first_same_value = elt;
1495 else
1497 /* Insert not at head of the class. */
1498 /* Put it after the last element cheaper than X. */
1499 struct table_elt *p, *next;
1501 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1502 p = next);
1504 /* Put it after P and before NEXT. */
1505 elt->next_same_value = next;
1506 if (next)
1507 next->prev_same_value = elt;
1509 elt->prev_same_value = p;
1510 p->next_same_value = elt;
1511 elt->first_same_value = classp;
1514 else
1515 elt->first_same_value = elt;
1517 /* If this is a constant being set equivalent to a register or a register
1518 being set equivalent to a constant, note the constant equivalence.
1520 If this is a constant, it cannot be equivalent to a different constant,
1521 and a constant is the only thing that can be cheaper than a register. So
1522 we know the register is the head of the class (before the constant was
1523 inserted).
1525 If this is a register that is not already known equivalent to a
1526 constant, we must check the entire class.
1528 If this is a register that is already known equivalent to an insn,
1529 update the qtys `const_insn' to show that `this_insn' is the latest
1530 insn making that quantity equivalent to the constant. */
1532 if (elt->is_const && classp && REG_P (classp->exp)
1533 && !REG_P (x))
1535 int exp_q = REG_QTY (REGNO (classp->exp));
1536 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1538 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1539 exp_ent->const_insn = this_insn;
1542 else if (REG_P (x)
1543 && classp
1544 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1545 && ! elt->is_const)
1547 struct table_elt *p;
1549 for (p = classp; p != 0; p = p->next_same_value)
1551 if (p->is_const && !REG_P (p->exp))
1553 int x_q = REG_QTY (REGNO (x));
1554 struct qty_table_elem *x_ent = &qty_table[x_q];
1556 x_ent->const_rtx
1557 = gen_lowpart (GET_MODE (x), p->exp);
1558 x_ent->const_insn = this_insn;
1559 break;
1564 else if (REG_P (x)
1565 && qty_table[REG_QTY (REGNO (x))].const_rtx
1566 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1567 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1569 /* If this is a constant with symbolic value,
1570 and it has a term with an explicit integer value,
1571 link it up with related expressions. */
1572 if (GET_CODE (x) == CONST)
1574 rtx subexp = get_related_value (x);
1575 unsigned subhash;
1576 struct table_elt *subelt, *subelt_prev;
1578 if (subexp != 0)
1580 /* Get the integer-free subexpression in the hash table. */
1581 subhash = SAFE_HASH (subexp, mode);
1582 subelt = lookup (subexp, subhash, mode);
1583 if (subelt == 0)
1584 subelt = insert (subexp, NULL, subhash, mode);
1585 /* Initialize SUBELT's circular chain if it has none. */
1586 if (subelt->related_value == 0)
1587 subelt->related_value = subelt;
1588 /* Find the element in the circular chain that precedes SUBELT. */
1589 subelt_prev = subelt;
1590 while (subelt_prev->related_value != subelt)
1591 subelt_prev = subelt_prev->related_value;
1592 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1593 This way the element that follows SUBELT is the oldest one. */
1594 elt->related_value = subelt_prev->related_value;
1595 subelt_prev->related_value = elt;
1599 return elt;
1602 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1603 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1604 the two classes equivalent.
1606 CLASS1 will be the surviving class; CLASS2 should not be used after this
1607 call.
1609 Any invalid entries in CLASS2 will not be copied. */
1611 static void
1612 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1614 struct table_elt *elt, *next, *new;
1616 /* Ensure we start with the head of the classes. */
1617 class1 = class1->first_same_value;
1618 class2 = class2->first_same_value;
1620 /* If they were already equal, forget it. */
1621 if (class1 == class2)
1622 return;
1624 for (elt = class2; elt; elt = next)
1626 unsigned int hash;
1627 rtx exp = elt->exp;
1628 enum machine_mode mode = elt->mode;
1630 next = elt->next_same_value;
1632 /* Remove old entry, make a new one in CLASS1's class.
1633 Don't do this for invalid entries as we cannot find their
1634 hash code (it also isn't necessary). */
1635 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1637 bool need_rehash = false;
1639 hash_arg_in_memory = 0;
1640 hash = HASH (exp, mode);
1642 if (REG_P (exp))
1644 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1645 delete_reg_equiv (REGNO (exp));
1648 remove_from_table (elt, hash);
1650 if (insert_regs (exp, class1, 0) || need_rehash)
1652 rehash_using_reg (exp);
1653 hash = HASH (exp, mode);
1655 new = insert (exp, class1, hash, mode);
1656 new->in_memory = hash_arg_in_memory;
1661 /* Flush the entire hash table. */
1663 static void
1664 flush_hash_table (void)
1666 int i;
1667 struct table_elt *p;
1669 for (i = 0; i < HASH_SIZE; i++)
1670 for (p = table[i]; p; p = table[i])
1672 /* Note that invalidate can remove elements
1673 after P in the current hash chain. */
1674 if (REG_P (p->exp))
1675 invalidate (p->exp, VOIDmode);
1676 else
1677 remove_from_table (p, i);
1681 /* Function called for each rtx to check whether true dependence exist. */
1682 struct check_dependence_data
1684 enum machine_mode mode;
1685 rtx exp;
1686 rtx addr;
1689 static int
1690 check_dependence (rtx *x, void *data)
1692 struct check_dependence_data *d = (struct check_dependence_data *) data;
1693 if (*x && MEM_P (*x))
1694 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1695 cse_rtx_varies_p);
1696 else
1697 return 0;
1700 /* Remove from the hash table, or mark as invalid, all expressions whose
1701 values could be altered by storing in X. X is a register, a subreg, or
1702 a memory reference with nonvarying address (because, when a memory
1703 reference with a varying address is stored in, all memory references are
1704 removed by invalidate_memory so specific invalidation is superfluous).
1705 FULL_MODE, if not VOIDmode, indicates that this much should be
1706 invalidated instead of just the amount indicated by the mode of X. This
1707 is only used for bitfield stores into memory.
1709 A nonvarying address may be just a register or just a symbol reference,
1710 or it may be either of those plus a numeric offset. */
1712 static void
1713 invalidate (rtx x, enum machine_mode full_mode)
1715 int i;
1716 struct table_elt *p;
1717 rtx addr;
1719 switch (GET_CODE (x))
1721 case REG:
1723 /* If X is a register, dependencies on its contents are recorded
1724 through the qty number mechanism. Just change the qty number of
1725 the register, mark it as invalid for expressions that refer to it,
1726 and remove it itself. */
1727 unsigned int regno = REGNO (x);
1728 unsigned int hash = HASH (x, GET_MODE (x));
1730 /* Remove REGNO from any quantity list it might be on and indicate
1731 that its value might have changed. If it is a pseudo, remove its
1732 entry from the hash table.
1734 For a hard register, we do the first two actions above for any
1735 additional hard registers corresponding to X. Then, if any of these
1736 registers are in the table, we must remove any REG entries that
1737 overlap these registers. */
1739 delete_reg_equiv (regno);
1740 REG_TICK (regno)++;
1741 SUBREG_TICKED (regno) = -1;
1743 if (regno >= FIRST_PSEUDO_REGISTER)
1745 /* Because a register can be referenced in more than one mode,
1746 we might have to remove more than one table entry. */
1747 struct table_elt *elt;
1749 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1750 remove_from_table (elt, hash);
1752 else
1754 HOST_WIDE_INT in_table
1755 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1756 unsigned int endregno
1757 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1758 unsigned int tregno, tendregno, rn;
1759 struct table_elt *p, *next;
1761 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1763 for (rn = regno + 1; rn < endregno; rn++)
1765 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1766 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1767 delete_reg_equiv (rn);
1768 REG_TICK (rn)++;
1769 SUBREG_TICKED (rn) = -1;
1772 if (in_table)
1773 for (hash = 0; hash < HASH_SIZE; hash++)
1774 for (p = table[hash]; p; p = next)
1776 next = p->next_same_hash;
1778 if (!REG_P (p->exp)
1779 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1780 continue;
1782 tregno = REGNO (p->exp);
1783 tendregno
1784 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1785 if (tendregno > regno && tregno < endregno)
1786 remove_from_table (p, hash);
1790 return;
1792 case SUBREG:
1793 invalidate (SUBREG_REG (x), VOIDmode);
1794 return;
1796 case PARALLEL:
1797 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1798 invalidate (XVECEXP (x, 0, i), VOIDmode);
1799 return;
1801 case EXPR_LIST:
1802 /* This is part of a disjoint return value; extract the location in
1803 question ignoring the offset. */
1804 invalidate (XEXP (x, 0), VOIDmode);
1805 return;
1807 case MEM:
1808 addr = canon_rtx (get_addr (XEXP (x, 0)));
1809 /* Calculate the canonical version of X here so that
1810 true_dependence doesn't generate new RTL for X on each call. */
1811 x = canon_rtx (x);
1813 /* Remove all hash table elements that refer to overlapping pieces of
1814 memory. */
1815 if (full_mode == VOIDmode)
1816 full_mode = GET_MODE (x);
1818 for (i = 0; i < HASH_SIZE; i++)
1820 struct table_elt *next;
1822 for (p = table[i]; p; p = next)
1824 next = p->next_same_hash;
1825 if (p->in_memory)
1827 struct check_dependence_data d;
1829 /* Just canonicalize the expression once;
1830 otherwise each time we call invalidate
1831 true_dependence will canonicalize the
1832 expression again. */
1833 if (!p->canon_exp)
1834 p->canon_exp = canon_rtx (p->exp);
1835 d.exp = x;
1836 d.addr = addr;
1837 d.mode = full_mode;
1838 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1839 remove_from_table (p, i);
1843 return;
1845 default:
1846 gcc_unreachable ();
1850 /* Remove all expressions that refer to register REGNO,
1851 since they are already invalid, and we are about to
1852 mark that register valid again and don't want the old
1853 expressions to reappear as valid. */
1855 static void
1856 remove_invalid_refs (unsigned int regno)
1858 unsigned int i;
1859 struct table_elt *p, *next;
1861 for (i = 0; i < HASH_SIZE; i++)
1862 for (p = table[i]; p; p = next)
1864 next = p->next_same_hash;
1865 if (!REG_P (p->exp)
1866 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1867 remove_from_table (p, i);
1871 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1872 and mode MODE. */
1873 static void
1874 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1875 enum machine_mode mode)
1877 unsigned int i;
1878 struct table_elt *p, *next;
1879 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1881 for (i = 0; i < HASH_SIZE; i++)
1882 for (p = table[i]; p; p = next)
1884 rtx exp = p->exp;
1885 next = p->next_same_hash;
1887 if (!REG_P (exp)
1888 && (GET_CODE (exp) != SUBREG
1889 || !REG_P (SUBREG_REG (exp))
1890 || REGNO (SUBREG_REG (exp)) != regno
1891 || (((SUBREG_BYTE (exp)
1892 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1893 && SUBREG_BYTE (exp) <= end))
1894 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1895 remove_from_table (p, i);
1899 /* Recompute the hash codes of any valid entries in the hash table that
1900 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1902 This is called when we make a jump equivalence. */
1904 static void
1905 rehash_using_reg (rtx x)
1907 unsigned int i;
1908 struct table_elt *p, *next;
1909 unsigned hash;
1911 if (GET_CODE (x) == SUBREG)
1912 x = SUBREG_REG (x);
1914 /* If X is not a register or if the register is known not to be in any
1915 valid entries in the table, we have no work to do. */
1917 if (!REG_P (x)
1918 || REG_IN_TABLE (REGNO (x)) < 0
1919 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1920 return;
1922 /* Scan all hash chains looking for valid entries that mention X.
1923 If we find one and it is in the wrong hash chain, move it. */
1925 for (i = 0; i < HASH_SIZE; i++)
1926 for (p = table[i]; p; p = next)
1928 next = p->next_same_hash;
1929 if (reg_mentioned_p (x, p->exp)
1930 && exp_equiv_p (p->exp, p->exp, 1, false)
1931 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1933 if (p->next_same_hash)
1934 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1936 if (p->prev_same_hash)
1937 p->prev_same_hash->next_same_hash = p->next_same_hash;
1938 else
1939 table[i] = p->next_same_hash;
1941 p->next_same_hash = table[hash];
1942 p->prev_same_hash = 0;
1943 if (table[hash])
1944 table[hash]->prev_same_hash = p;
1945 table[hash] = p;
1950 /* Remove from the hash table any expression that is a call-clobbered
1951 register. Also update their TICK values. */
1953 static void
1954 invalidate_for_call (void)
1956 unsigned int regno, endregno;
1957 unsigned int i;
1958 unsigned hash;
1959 struct table_elt *p, *next;
1960 int in_table = 0;
1962 /* Go through all the hard registers. For each that is clobbered in
1963 a CALL_INSN, remove the register from quantity chains and update
1964 reg_tick if defined. Also see if any of these registers is currently
1965 in the table. */
1967 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1968 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1970 delete_reg_equiv (regno);
1971 if (REG_TICK (regno) >= 0)
1973 REG_TICK (regno)++;
1974 SUBREG_TICKED (regno) = -1;
1977 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1980 /* In the case where we have no call-clobbered hard registers in the
1981 table, we are done. Otherwise, scan the table and remove any
1982 entry that overlaps a call-clobbered register. */
1984 if (in_table)
1985 for (hash = 0; hash < HASH_SIZE; hash++)
1986 for (p = table[hash]; p; p = next)
1988 next = p->next_same_hash;
1990 if (!REG_P (p->exp)
1991 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1992 continue;
1994 regno = REGNO (p->exp);
1995 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
1997 for (i = regno; i < endregno; i++)
1998 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2000 remove_from_table (p, hash);
2001 break;
2006 /* Given an expression X of type CONST,
2007 and ELT which is its table entry (or 0 if it
2008 is not in the hash table),
2009 return an alternate expression for X as a register plus integer.
2010 If none can be found, return 0. */
2012 static rtx
2013 use_related_value (rtx x, struct table_elt *elt)
2015 struct table_elt *relt = 0;
2016 struct table_elt *p, *q;
2017 HOST_WIDE_INT offset;
2019 /* First, is there anything related known?
2020 If we have a table element, we can tell from that.
2021 Otherwise, must look it up. */
2023 if (elt != 0 && elt->related_value != 0)
2024 relt = elt;
2025 else if (elt == 0 && GET_CODE (x) == CONST)
2027 rtx subexp = get_related_value (x);
2028 if (subexp != 0)
2029 relt = lookup (subexp,
2030 SAFE_HASH (subexp, GET_MODE (subexp)),
2031 GET_MODE (subexp));
2034 if (relt == 0)
2035 return 0;
2037 /* Search all related table entries for one that has an
2038 equivalent register. */
2040 p = relt;
2041 while (1)
2043 /* This loop is strange in that it is executed in two different cases.
2044 The first is when X is already in the table. Then it is searching
2045 the RELATED_VALUE list of X's class (RELT). The second case is when
2046 X is not in the table. Then RELT points to a class for the related
2047 value.
2049 Ensure that, whatever case we are in, that we ignore classes that have
2050 the same value as X. */
2052 if (rtx_equal_p (x, p->exp))
2053 q = 0;
2054 else
2055 for (q = p->first_same_value; q; q = q->next_same_value)
2056 if (REG_P (q->exp))
2057 break;
2059 if (q)
2060 break;
2062 p = p->related_value;
2064 /* We went all the way around, so there is nothing to be found.
2065 Alternatively, perhaps RELT was in the table for some other reason
2066 and it has no related values recorded. */
2067 if (p == relt || p == 0)
2068 break;
2071 if (q == 0)
2072 return 0;
2074 offset = (get_integer_term (x) - get_integer_term (p->exp));
2075 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2076 return plus_constant (q->exp, offset);
2079 /* Hash a string. Just add its bytes up. */
2080 static inline unsigned
2081 hash_rtx_string (const char *ps)
2083 unsigned hash = 0;
2084 const unsigned char *p = (const unsigned char *) ps;
2086 if (p)
2087 while (*p)
2088 hash += *p++;
2090 return hash;
2093 /* Hash an rtx. We are careful to make sure the value is never negative.
2094 Equivalent registers hash identically.
2095 MODE is used in hashing for CONST_INTs only;
2096 otherwise the mode of X is used.
2098 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2100 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2101 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2103 Note that cse_insn knows that the hash code of a MEM expression
2104 is just (int) MEM plus the hash code of the address. */
2106 unsigned
2107 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2108 int *hash_arg_in_memory_p, bool have_reg_qty)
2110 int i, j;
2111 unsigned hash = 0;
2112 enum rtx_code code;
2113 const char *fmt;
2115 /* Used to turn recursion into iteration. We can't rely on GCC's
2116 tail-recursion elimination since we need to keep accumulating values
2117 in HASH. */
2118 repeat:
2119 if (x == 0)
2120 return hash;
2122 code = GET_CODE (x);
2123 switch (code)
2125 case REG:
2127 unsigned int regno = REGNO (x);
2129 if (!reload_completed)
2131 /* On some machines, we can't record any non-fixed hard register,
2132 because extending its life will cause reload problems. We
2133 consider ap, fp, sp, gp to be fixed for this purpose.
2135 We also consider CCmode registers to be fixed for this purpose;
2136 failure to do so leads to failure to simplify 0<100 type of
2137 conditionals.
2139 On all machines, we can't record any global registers.
2140 Nor should we record any register that is in a small
2141 class, as defined by CLASS_LIKELY_SPILLED_P. */
2142 bool record;
2144 if (regno >= FIRST_PSEUDO_REGISTER)
2145 record = true;
2146 else if (x == frame_pointer_rtx
2147 || x == hard_frame_pointer_rtx
2148 || x == arg_pointer_rtx
2149 || x == stack_pointer_rtx
2150 || x == pic_offset_table_rtx)
2151 record = true;
2152 else if (global_regs[regno])
2153 record = false;
2154 else if (fixed_regs[regno])
2155 record = true;
2156 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2157 record = true;
2158 else if (SMALL_REGISTER_CLASSES)
2159 record = false;
2160 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2161 record = false;
2162 else
2163 record = true;
2165 if (!record)
2167 *do_not_record_p = 1;
2168 return 0;
2172 hash += ((unsigned int) REG << 7);
2173 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2174 return hash;
2177 /* We handle SUBREG of a REG specially because the underlying
2178 reg changes its hash value with every value change; we don't
2179 want to have to forget unrelated subregs when one subreg changes. */
2180 case SUBREG:
2182 if (REG_P (SUBREG_REG (x)))
2184 hash += (((unsigned int) SUBREG << 7)
2185 + REGNO (SUBREG_REG (x))
2186 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2187 return hash;
2189 break;
2192 case CONST_INT:
2193 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2194 + (unsigned int) INTVAL (x));
2195 return hash;
2197 case CONST_DOUBLE:
2198 /* This is like the general case, except that it only counts
2199 the integers representing the constant. */
2200 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2201 if (GET_MODE (x) != VOIDmode)
2202 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2203 else
2204 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2205 + (unsigned int) CONST_DOUBLE_HIGH (x));
2206 return hash;
2208 case CONST_VECTOR:
2210 int units;
2211 rtx elt;
2213 units = CONST_VECTOR_NUNITS (x);
2215 for (i = 0; i < units; ++i)
2217 elt = CONST_VECTOR_ELT (x, i);
2218 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2219 hash_arg_in_memory_p, have_reg_qty);
2222 return hash;
2225 /* Assume there is only one rtx object for any given label. */
2226 case LABEL_REF:
2227 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2228 differences and differences between each stage's debugging dumps. */
2229 hash += (((unsigned int) LABEL_REF << 7)
2230 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2231 return hash;
2233 case SYMBOL_REF:
2235 /* Don't hash on the symbol's address to avoid bootstrap differences.
2236 Different hash values may cause expressions to be recorded in
2237 different orders and thus different registers to be used in the
2238 final assembler. This also avoids differences in the dump files
2239 between various stages. */
2240 unsigned int h = 0;
2241 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2243 while (*p)
2244 h += (h << 7) + *p++; /* ??? revisit */
2246 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2247 return hash;
2250 case MEM:
2251 /* We don't record if marked volatile or if BLKmode since we don't
2252 know the size of the move. */
2253 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2255 *do_not_record_p = 1;
2256 return 0;
2258 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2259 *hash_arg_in_memory_p = 1;
2261 /* Now that we have already found this special case,
2262 might as well speed it up as much as possible. */
2263 hash += (unsigned) MEM;
2264 x = XEXP (x, 0);
2265 goto repeat;
2267 case USE:
2268 /* A USE that mentions non-volatile memory needs special
2269 handling since the MEM may be BLKmode which normally
2270 prevents an entry from being made. Pure calls are
2271 marked by a USE which mentions BLKmode memory.
2272 See calls.c:emit_call_1. */
2273 if (MEM_P (XEXP (x, 0))
2274 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2276 hash += (unsigned) USE;
2277 x = XEXP (x, 0);
2279 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2280 *hash_arg_in_memory_p = 1;
2282 /* Now that we have already found this special case,
2283 might as well speed it up as much as possible. */
2284 hash += (unsigned) MEM;
2285 x = XEXP (x, 0);
2286 goto repeat;
2288 break;
2290 case PRE_DEC:
2291 case PRE_INC:
2292 case POST_DEC:
2293 case POST_INC:
2294 case PRE_MODIFY:
2295 case POST_MODIFY:
2296 case PC:
2297 case CC0:
2298 case CALL:
2299 case UNSPEC_VOLATILE:
2300 *do_not_record_p = 1;
2301 return 0;
2303 case ASM_OPERANDS:
2304 if (MEM_VOLATILE_P (x))
2306 *do_not_record_p = 1;
2307 return 0;
2309 else
2311 /* We don't want to take the filename and line into account. */
2312 hash += (unsigned) code + (unsigned) GET_MODE (x)
2313 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2314 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2315 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2317 if (ASM_OPERANDS_INPUT_LENGTH (x))
2319 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2321 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2322 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2323 do_not_record_p, hash_arg_in_memory_p,
2324 have_reg_qty)
2325 + hash_rtx_string
2326 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2329 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2330 x = ASM_OPERANDS_INPUT (x, 0);
2331 mode = GET_MODE (x);
2332 goto repeat;
2335 return hash;
2337 break;
2339 default:
2340 break;
2343 i = GET_RTX_LENGTH (code) - 1;
2344 hash += (unsigned) code + (unsigned) GET_MODE (x);
2345 fmt = GET_RTX_FORMAT (code);
2346 for (; i >= 0; i--)
2348 switch (fmt[i])
2350 case 'e':
2351 /* If we are about to do the last recursive call
2352 needed at this level, change it into iteration.
2353 This function is called enough to be worth it. */
2354 if (i == 0)
2356 x = XEXP (x, i);
2357 goto repeat;
2360 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2361 hash_arg_in_memory_p, have_reg_qty);
2362 break;
2364 case 'E':
2365 for (j = 0; j < XVECLEN (x, i); j++)
2366 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2367 hash_arg_in_memory_p, have_reg_qty);
2368 break;
2370 case 's':
2371 hash += hash_rtx_string (XSTR (x, i));
2372 break;
2374 case 'i':
2375 hash += (unsigned int) XINT (x, i);
2376 break;
2378 case '0': case 't':
2379 /* Unused. */
2380 break;
2382 default:
2383 gcc_unreachable ();
2387 return hash;
2390 /* Hash an rtx X for cse via hash_rtx.
2391 Stores 1 in do_not_record if any subexpression is volatile.
2392 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2393 does not have the RTX_UNCHANGING_P bit set. */
2395 static inline unsigned
2396 canon_hash (rtx x, enum machine_mode mode)
2398 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2401 /* Like canon_hash but with no side effects, i.e. do_not_record
2402 and hash_arg_in_memory are not changed. */
2404 static inline unsigned
2405 safe_hash (rtx x, enum machine_mode mode)
2407 int dummy_do_not_record;
2408 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2411 /* Return 1 iff X and Y would canonicalize into the same thing,
2412 without actually constructing the canonicalization of either one.
2413 If VALIDATE is nonzero,
2414 we assume X is an expression being processed from the rtl
2415 and Y was found in the hash table. We check register refs
2416 in Y for being marked as valid.
2418 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2421 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2423 int i, j;
2424 enum rtx_code code;
2425 const char *fmt;
2427 /* Note: it is incorrect to assume an expression is equivalent to itself
2428 if VALIDATE is nonzero. */
2429 if (x == y && !validate)
2430 return 1;
2432 if (x == 0 || y == 0)
2433 return x == y;
2435 code = GET_CODE (x);
2436 if (code != GET_CODE (y))
2437 return 0;
2439 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2440 if (GET_MODE (x) != GET_MODE (y))
2441 return 0;
2443 switch (code)
2445 case PC:
2446 case CC0:
2447 case CONST_INT:
2448 case CONST_DOUBLE:
2449 return x == y;
2451 case LABEL_REF:
2452 return XEXP (x, 0) == XEXP (y, 0);
2454 case SYMBOL_REF:
2455 return XSTR (x, 0) == XSTR (y, 0);
2457 case REG:
2458 if (for_gcse)
2459 return REGNO (x) == REGNO (y);
2460 else
2462 unsigned int regno = REGNO (y);
2463 unsigned int i;
2464 unsigned int endregno
2465 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2466 : hard_regno_nregs[regno][GET_MODE (y)]);
2468 /* If the quantities are not the same, the expressions are not
2469 equivalent. If there are and we are not to validate, they
2470 are equivalent. Otherwise, ensure all regs are up-to-date. */
2472 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2473 return 0;
2475 if (! validate)
2476 return 1;
2478 for (i = regno; i < endregno; i++)
2479 if (REG_IN_TABLE (i) != REG_TICK (i))
2480 return 0;
2482 return 1;
2485 case MEM:
2486 if (for_gcse)
2488 /* A volatile mem should not be considered equivalent to any
2489 other. */
2490 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2491 return 0;
2493 /* Can't merge two expressions in different alias sets, since we
2494 can decide that the expression is transparent in a block when
2495 it isn't, due to it being set with the different alias set.
2497 Also, can't merge two expressions with different MEM_ATTRS.
2498 They could e.g. be two different entities allocated into the
2499 same space on the stack (see e.g. PR25130). In that case, the
2500 MEM addresses can be the same, even though the two MEMs are
2501 absolutely not equivalent.
2503 But because really all MEM attributes should be the same for
2504 equivalent MEMs, we just use the invariant that MEMs that have
2505 the same attributes share the same mem_attrs data structure. */
2506 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2507 return 0;
2509 break;
2511 /* For commutative operations, check both orders. */
2512 case PLUS:
2513 case MULT:
2514 case AND:
2515 case IOR:
2516 case XOR:
2517 case NE:
2518 case EQ:
2519 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2520 validate, for_gcse)
2521 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2522 validate, for_gcse))
2523 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2524 validate, for_gcse)
2525 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2526 validate, for_gcse)));
2528 case ASM_OPERANDS:
2529 /* We don't use the generic code below because we want to
2530 disregard filename and line numbers. */
2532 /* A volatile asm isn't equivalent to any other. */
2533 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2534 return 0;
2536 if (GET_MODE (x) != GET_MODE (y)
2537 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2538 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2539 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2540 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2541 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2542 return 0;
2544 if (ASM_OPERANDS_INPUT_LENGTH (x))
2546 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2547 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2548 ASM_OPERANDS_INPUT (y, i),
2549 validate, for_gcse)
2550 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2551 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2552 return 0;
2555 return 1;
2557 default:
2558 break;
2561 /* Compare the elements. If any pair of corresponding elements
2562 fail to match, return 0 for the whole thing. */
2564 fmt = GET_RTX_FORMAT (code);
2565 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2567 switch (fmt[i])
2569 case 'e':
2570 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2571 validate, for_gcse))
2572 return 0;
2573 break;
2575 case 'E':
2576 if (XVECLEN (x, i) != XVECLEN (y, i))
2577 return 0;
2578 for (j = 0; j < XVECLEN (x, i); j++)
2579 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2580 validate, for_gcse))
2581 return 0;
2582 break;
2584 case 's':
2585 if (strcmp (XSTR (x, i), XSTR (y, i)))
2586 return 0;
2587 break;
2589 case 'i':
2590 if (XINT (x, i) != XINT (y, i))
2591 return 0;
2592 break;
2594 case 'w':
2595 if (XWINT (x, i) != XWINT (y, i))
2596 return 0;
2597 break;
2599 case '0':
2600 case 't':
2601 break;
2603 default:
2604 gcc_unreachable ();
2608 return 1;
2611 /* Return 1 if X has a value that can vary even between two
2612 executions of the program. 0 means X can be compared reliably
2613 against certain constants or near-constants. */
2615 static int
2616 cse_rtx_varies_p (rtx x, int from_alias)
2618 /* We need not check for X and the equivalence class being of the same
2619 mode because if X is equivalent to a constant in some mode, it
2620 doesn't vary in any mode. */
2622 if (REG_P (x)
2623 && REGNO_QTY_VALID_P (REGNO (x)))
2625 int x_q = REG_QTY (REGNO (x));
2626 struct qty_table_elem *x_ent = &qty_table[x_q];
2628 if (GET_MODE (x) == x_ent->mode
2629 && x_ent->const_rtx != NULL_RTX)
2630 return 0;
2633 if (GET_CODE (x) == PLUS
2634 && GET_CODE (XEXP (x, 1)) == CONST_INT
2635 && REG_P (XEXP (x, 0))
2636 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2638 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2639 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2641 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2642 && x0_ent->const_rtx != NULL_RTX)
2643 return 0;
2646 /* This can happen as the result of virtual register instantiation, if
2647 the initial constant is too large to be a valid address. This gives
2648 us a three instruction sequence, load large offset into a register,
2649 load fp minus a constant into a register, then a MEM which is the
2650 sum of the two `constant' registers. */
2651 if (GET_CODE (x) == PLUS
2652 && REG_P (XEXP (x, 0))
2653 && REG_P (XEXP (x, 1))
2654 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2655 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2657 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2658 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2659 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2660 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2662 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2663 && x0_ent->const_rtx != NULL_RTX
2664 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2665 && x1_ent->const_rtx != NULL_RTX)
2666 return 0;
2669 return rtx_varies_p (x, from_alias);
2672 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2673 the result if necessary. INSN is as for canon_reg. */
2675 static void
2676 validate_canon_reg (rtx *xloc, rtx insn)
2678 rtx new = canon_reg (*xloc, insn);
2680 /* If replacing pseudo with hard reg or vice versa, ensure the
2681 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2682 if (insn != 0 && new != 0)
2683 validate_change (insn, xloc, new, 1);
2684 else
2685 *xloc = new;
2688 /* Canonicalize an expression:
2689 replace each register reference inside it
2690 with the "oldest" equivalent register.
2692 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2693 after we make our substitution. The calls are made with IN_GROUP nonzero
2694 so apply_change_group must be called upon the outermost return from this
2695 function (unless INSN is zero). The result of apply_change_group can
2696 generally be discarded since the changes we are making are optional. */
2698 static rtx
2699 canon_reg (rtx x, rtx insn)
2701 int i;
2702 enum rtx_code code;
2703 const char *fmt;
2705 if (x == 0)
2706 return x;
2708 code = GET_CODE (x);
2709 switch (code)
2711 case PC:
2712 case CC0:
2713 case CONST:
2714 case CONST_INT:
2715 case CONST_DOUBLE:
2716 case CONST_VECTOR:
2717 case SYMBOL_REF:
2718 case LABEL_REF:
2719 case ADDR_VEC:
2720 case ADDR_DIFF_VEC:
2721 return x;
2723 case REG:
2725 int first;
2726 int q;
2727 struct qty_table_elem *ent;
2729 /* Never replace a hard reg, because hard regs can appear
2730 in more than one machine mode, and we must preserve the mode
2731 of each occurrence. Also, some hard regs appear in
2732 MEMs that are shared and mustn't be altered. Don't try to
2733 replace any reg that maps to a reg of class NO_REGS. */
2734 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2735 || ! REGNO_QTY_VALID_P (REGNO (x)))
2736 return x;
2738 q = REG_QTY (REGNO (x));
2739 ent = &qty_table[q];
2740 first = ent->first_reg;
2741 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2742 : REGNO_REG_CLASS (first) == NO_REGS ? x
2743 : gen_rtx_REG (ent->mode, first));
2746 default:
2747 break;
2750 fmt = GET_RTX_FORMAT (code);
2751 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2753 int j;
2755 if (fmt[i] == 'e')
2756 validate_canon_reg (&XEXP (x, i), insn);
2757 else if (fmt[i] == 'E')
2758 for (j = 0; j < XVECLEN (x, i); j++)
2759 validate_canon_reg (&XVECEXP (x, i, j), insn);
2762 return x;
2765 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2766 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2767 what values are being compared.
2769 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2770 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2771 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2772 compared to produce cc0.
2774 The return value is the comparison operator and is either the code of
2775 A or the code corresponding to the inverse of the comparison. */
2777 static enum rtx_code
2778 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2779 enum machine_mode *pmode1, enum machine_mode *pmode2)
2781 rtx arg1, arg2;
2783 arg1 = *parg1, arg2 = *parg2;
2785 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2787 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2789 /* Set nonzero when we find something of interest. */
2790 rtx x = 0;
2791 int reverse_code = 0;
2792 struct table_elt *p = 0;
2794 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2795 On machines with CC0, this is the only case that can occur, since
2796 fold_rtx will return the COMPARE or item being compared with zero
2797 when given CC0. */
2799 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2800 x = arg1;
2802 /* If ARG1 is a comparison operator and CODE is testing for
2803 STORE_FLAG_VALUE, get the inner arguments. */
2805 else if (COMPARISON_P (arg1))
2807 #ifdef FLOAT_STORE_FLAG_VALUE
2808 REAL_VALUE_TYPE fsfv;
2809 #endif
2811 if (code == NE
2812 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2813 && code == LT && STORE_FLAG_VALUE == -1)
2814 #ifdef FLOAT_STORE_FLAG_VALUE
2815 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2816 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2817 REAL_VALUE_NEGATIVE (fsfv)))
2818 #endif
2820 x = arg1;
2821 else if (code == EQ
2822 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2823 && code == GE && STORE_FLAG_VALUE == -1)
2824 #ifdef FLOAT_STORE_FLAG_VALUE
2825 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2826 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2827 REAL_VALUE_NEGATIVE (fsfv)))
2828 #endif
2830 x = arg1, reverse_code = 1;
2833 /* ??? We could also check for
2835 (ne (and (eq (...) (const_int 1))) (const_int 0))
2837 and related forms, but let's wait until we see them occurring. */
2839 if (x == 0)
2840 /* Look up ARG1 in the hash table and see if it has an equivalence
2841 that lets us see what is being compared. */
2842 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2843 if (p)
2845 p = p->first_same_value;
2847 /* If what we compare is already known to be constant, that is as
2848 good as it gets.
2849 We need to break the loop in this case, because otherwise we
2850 can have an infinite loop when looking at a reg that is known
2851 to be a constant which is the same as a comparison of a reg
2852 against zero which appears later in the insn stream, which in
2853 turn is constant and the same as the comparison of the first reg
2854 against zero... */
2855 if (p->is_const)
2856 break;
2859 for (; p; p = p->next_same_value)
2861 enum machine_mode inner_mode = GET_MODE (p->exp);
2862 #ifdef FLOAT_STORE_FLAG_VALUE
2863 REAL_VALUE_TYPE fsfv;
2864 #endif
2866 /* If the entry isn't valid, skip it. */
2867 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2868 continue;
2870 if (GET_CODE (p->exp) == COMPARE
2871 /* Another possibility is that this machine has a compare insn
2872 that includes the comparison code. In that case, ARG1 would
2873 be equivalent to a comparison operation that would set ARG1 to
2874 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2875 ORIG_CODE is the actual comparison being done; if it is an EQ,
2876 we must reverse ORIG_CODE. On machine with a negative value
2877 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2878 || ((code == NE
2879 || (code == LT
2880 && GET_MODE_CLASS (inner_mode) == MODE_INT
2881 && (GET_MODE_BITSIZE (inner_mode)
2882 <= HOST_BITS_PER_WIDE_INT)
2883 && (STORE_FLAG_VALUE
2884 & ((HOST_WIDE_INT) 1
2885 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2886 #ifdef FLOAT_STORE_FLAG_VALUE
2887 || (code == LT
2888 && SCALAR_FLOAT_MODE_P (inner_mode)
2889 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2890 REAL_VALUE_NEGATIVE (fsfv)))
2891 #endif
2893 && COMPARISON_P (p->exp)))
2895 x = p->exp;
2896 break;
2898 else if ((code == EQ
2899 || (code == GE
2900 && GET_MODE_CLASS (inner_mode) == MODE_INT
2901 && (GET_MODE_BITSIZE (inner_mode)
2902 <= HOST_BITS_PER_WIDE_INT)
2903 && (STORE_FLAG_VALUE
2904 & ((HOST_WIDE_INT) 1
2905 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2906 #ifdef FLOAT_STORE_FLAG_VALUE
2907 || (code == GE
2908 && SCALAR_FLOAT_MODE_P (inner_mode)
2909 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2910 REAL_VALUE_NEGATIVE (fsfv)))
2911 #endif
2913 && COMPARISON_P (p->exp))
2915 reverse_code = 1;
2916 x = p->exp;
2917 break;
2920 /* If this non-trapping address, e.g. fp + constant, the
2921 equivalent is a better operand since it may let us predict
2922 the value of the comparison. */
2923 else if (!rtx_addr_can_trap_p (p->exp))
2925 arg1 = p->exp;
2926 continue;
2930 /* If we didn't find a useful equivalence for ARG1, we are done.
2931 Otherwise, set up for the next iteration. */
2932 if (x == 0)
2933 break;
2935 /* If we need to reverse the comparison, make sure that that is
2936 possible -- we can't necessarily infer the value of GE from LT
2937 with floating-point operands. */
2938 if (reverse_code)
2940 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2941 if (reversed == UNKNOWN)
2942 break;
2943 else
2944 code = reversed;
2946 else if (COMPARISON_P (x))
2947 code = GET_CODE (x);
2948 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2951 /* Return our results. Return the modes from before fold_rtx
2952 because fold_rtx might produce const_int, and then it's too late. */
2953 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2954 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2956 return code;
2959 /* If X is a nontrivial arithmetic operation on an argument for which
2960 a constant value can be determined, return the result of operating
2961 on that value, as a constant. Otherwise, return X, possibly with
2962 one or more operands changed to a forward-propagated constant.
2964 If X is a register whose contents are known, we do NOT return
2965 those contents here; equiv_constant is called to perform that task.
2966 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2968 INSN is the insn that we may be modifying. If it is 0, make a copy
2969 of X before modifying it. */
2971 static rtx
2972 fold_rtx (rtx x, rtx insn)
2974 enum rtx_code code;
2975 enum machine_mode mode;
2976 const char *fmt;
2977 int i;
2978 rtx new = 0;
2979 int changed = 0;
2981 /* Operands of X. */
2982 rtx folded_arg0;
2983 rtx folded_arg1;
2985 /* Constant equivalents of first three operands of X;
2986 0 when no such equivalent is known. */
2987 rtx const_arg0;
2988 rtx const_arg1;
2989 rtx const_arg2;
2991 /* The mode of the first operand of X. We need this for sign and zero
2992 extends. */
2993 enum machine_mode mode_arg0;
2995 if (x == 0)
2996 return x;
2998 /* Try to perform some initial simplifications on X. */
2999 code = GET_CODE (x);
3000 switch (code)
3002 case MEM:
3003 case SUBREG:
3004 if ((new = equiv_constant (x)) != NULL_RTX)
3005 return new;
3006 return x;
3008 case CONST:
3009 case CONST_INT:
3010 case CONST_DOUBLE:
3011 case CONST_VECTOR:
3012 case SYMBOL_REF:
3013 case LABEL_REF:
3014 case REG:
3015 case PC:
3016 /* No use simplifying an EXPR_LIST
3017 since they are used only for lists of args
3018 in a function call's REG_EQUAL note. */
3019 case EXPR_LIST:
3020 return x;
3022 #ifdef HAVE_cc0
3023 case CC0:
3024 return prev_insn_cc0;
3025 #endif
3027 case ASM_OPERANDS:
3028 if (insn)
3030 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3031 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3032 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3034 return x;
3036 #ifdef NO_FUNCTION_CSE
3037 case CALL:
3038 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3039 return x;
3040 break;
3041 #endif
3043 /* Anything else goes through the loop below. */
3044 default:
3045 break;
3048 mode = GET_MODE (x);
3049 const_arg0 = 0;
3050 const_arg1 = 0;
3051 const_arg2 = 0;
3052 mode_arg0 = VOIDmode;
3054 /* Try folding our operands.
3055 Then see which ones have constant values known. */
3057 fmt = GET_RTX_FORMAT (code);
3058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3059 if (fmt[i] == 'e')
3061 rtx folded_arg = XEXP (x, i), const_arg;
3062 enum machine_mode mode_arg = GET_MODE (folded_arg);
3063 #ifdef HAVE_cc0
3064 if (CC0_P (folded_arg))
3065 folded_arg = prev_insn_cc0, mode_arg = prev_insn_cc0_mode;
3066 #endif
3067 const_arg = equiv_constant (folded_arg);
3069 /* For the first three operands, see if the operand
3070 is constant or equivalent to a constant. */
3071 switch (i)
3073 case 0:
3074 folded_arg0 = folded_arg;
3075 const_arg0 = const_arg;
3076 mode_arg0 = mode_arg;
3077 break;
3078 case 1:
3079 folded_arg1 = folded_arg;
3080 const_arg1 = const_arg;
3081 break;
3082 case 2:
3083 const_arg2 = const_arg;
3084 break;
3087 /* Pick the least expensive of the argument and an equivalent constant
3088 argument. */
3089 if (const_arg != 0
3090 && const_arg != folded_arg
3091 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3093 /* It's not safe to substitute the operand of a conversion
3094 operator with a constant, as the conversion's identity
3095 depends upon the mode of its operand. This optimization
3096 is handled by the call to simplify_unary_operation. */
3097 && (GET_RTX_CLASS (code) != RTX_UNARY
3098 || GET_MODE (const_arg) == mode_arg0
3099 || (code != ZERO_EXTEND
3100 && code != SIGN_EXTEND
3101 && code != TRUNCATE
3102 && code != FLOAT_TRUNCATE
3103 && code != FLOAT_EXTEND
3104 && code != FLOAT
3105 && code != FIX
3106 && code != UNSIGNED_FLOAT
3107 && code != UNSIGNED_FIX)))
3108 folded_arg = const_arg;
3110 if (folded_arg == XEXP (x, i))
3111 continue;
3113 if (insn == NULL_RTX && !changed)
3114 x = copy_rtx (x);
3115 changed = 1;
3116 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3119 if (changed)
3121 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3122 consistent with the order in X. */
3123 if (canonicalize_change_group (insn, x))
3125 rtx tem;
3126 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3127 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3130 apply_change_group ();
3133 /* If X is an arithmetic operation, see if we can simplify it. */
3135 switch (GET_RTX_CLASS (code))
3137 case RTX_UNARY:
3139 int is_const = 0;
3141 /* We can't simplify extension ops unless we know the
3142 original mode. */
3143 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3144 && mode_arg0 == VOIDmode)
3145 break;
3147 /* If we had a CONST, strip it off and put it back later if we
3148 fold. */
3149 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3150 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3152 new = simplify_unary_operation (code, mode,
3153 const_arg0 ? const_arg0 : folded_arg0,
3154 mode_arg0);
3155 /* NEG of PLUS could be converted into MINUS, but that causes
3156 expressions of the form
3157 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3158 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3159 FIXME: those ports should be fixed. */
3160 if (new != 0 && is_const
3161 && GET_CODE (new) == PLUS
3162 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3163 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3164 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3165 new = gen_rtx_CONST (mode, new);
3167 break;
3169 case RTX_COMPARE:
3170 case RTX_COMM_COMPARE:
3171 /* See what items are actually being compared and set FOLDED_ARG[01]
3172 to those values and CODE to the actual comparison code. If any are
3173 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3174 do anything if both operands are already known to be constant. */
3176 /* ??? Vector mode comparisons are not supported yet. */
3177 if (VECTOR_MODE_P (mode))
3178 break;
3180 if (const_arg0 == 0 || const_arg1 == 0)
3182 struct table_elt *p0, *p1;
3183 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3184 enum machine_mode mode_arg1;
3186 #ifdef FLOAT_STORE_FLAG_VALUE
3187 if (SCALAR_FLOAT_MODE_P (mode))
3189 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3190 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3191 false_rtx = CONST0_RTX (mode);
3193 #endif
3195 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3196 &mode_arg0, &mode_arg1);
3198 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3199 what kinds of things are being compared, so we can't do
3200 anything with this comparison. */
3202 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3203 break;
3205 const_arg0 = equiv_constant (folded_arg0);
3206 const_arg1 = equiv_constant (folded_arg1);
3208 /* If we do not now have two constants being compared, see
3209 if we can nevertheless deduce some things about the
3210 comparison. */
3211 if (const_arg0 == 0 || const_arg1 == 0)
3213 if (const_arg1 != NULL)
3215 rtx cheapest_simplification;
3216 int cheapest_cost;
3217 rtx simp_result;
3218 struct table_elt *p;
3220 /* See if we can find an equivalent of folded_arg0
3221 that gets us a cheaper expression, possibly a
3222 constant through simplifications. */
3223 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3224 mode_arg0);
3226 if (p != NULL)
3228 cheapest_simplification = x;
3229 cheapest_cost = COST (x);
3231 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3233 int cost;
3235 /* If the entry isn't valid, skip it. */
3236 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3237 continue;
3239 /* Try to simplify using this equivalence. */
3240 simp_result
3241 = simplify_relational_operation (code, mode,
3242 mode_arg0,
3243 p->exp,
3244 const_arg1);
3246 if (simp_result == NULL)
3247 continue;
3249 cost = COST (simp_result);
3250 if (cost < cheapest_cost)
3252 cheapest_cost = cost;
3253 cheapest_simplification = simp_result;
3257 /* If we have a cheaper expression now, use that
3258 and try folding it further, from the top. */
3259 if (cheapest_simplification != x)
3260 return fold_rtx (cheapest_simplification, insn);
3264 /* Some addresses are known to be nonzero. We don't know
3265 their sign, but equality comparisons are known. */
3266 if (const_arg1 == const0_rtx
3267 && nonzero_address_p (folded_arg0))
3269 if (code == EQ)
3270 return false_rtx;
3271 else if (code == NE)
3272 return true_rtx;
3275 /* See if the two operands are the same. */
3277 if (folded_arg0 == folded_arg1
3278 || (REG_P (folded_arg0)
3279 && REG_P (folded_arg1)
3280 && (REG_QTY (REGNO (folded_arg0))
3281 == REG_QTY (REGNO (folded_arg1))))
3282 || ((p0 = lookup (folded_arg0,
3283 SAFE_HASH (folded_arg0, mode_arg0),
3284 mode_arg0))
3285 && (p1 = lookup (folded_arg1,
3286 SAFE_HASH (folded_arg1, mode_arg0),
3287 mode_arg0))
3288 && p0->first_same_value == p1->first_same_value))
3290 /* Sadly two equal NaNs are not equivalent. */
3291 if (!HONOR_NANS (mode_arg0))
3292 return ((code == EQ || code == LE || code == GE
3293 || code == LEU || code == GEU || code == UNEQ
3294 || code == UNLE || code == UNGE
3295 || code == ORDERED)
3296 ? true_rtx : false_rtx);
3297 /* Take care for the FP compares we can resolve. */
3298 if (code == UNEQ || code == UNLE || code == UNGE)
3299 return true_rtx;
3300 if (code == LTGT || code == LT || code == GT)
3301 return false_rtx;
3304 /* If FOLDED_ARG0 is a register, see if the comparison we are
3305 doing now is either the same as we did before or the reverse
3306 (we only check the reverse if not floating-point). */
3307 else if (REG_P (folded_arg0))
3309 int qty = REG_QTY (REGNO (folded_arg0));
3311 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3313 struct qty_table_elem *ent = &qty_table[qty];
3315 if ((comparison_dominates_p (ent->comparison_code, code)
3316 || (! FLOAT_MODE_P (mode_arg0)
3317 && comparison_dominates_p (ent->comparison_code,
3318 reverse_condition (code))))
3319 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3320 || (const_arg1
3321 && rtx_equal_p (ent->comparison_const,
3322 const_arg1))
3323 || (REG_P (folded_arg1)
3324 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3325 return (comparison_dominates_p (ent->comparison_code, code)
3326 ? true_rtx : false_rtx);
3332 /* If we are comparing against zero, see if the first operand is
3333 equivalent to an IOR with a constant. If so, we may be able to
3334 determine the result of this comparison. */
3336 if (const_arg1 == const0_rtx)
3338 rtx y = lookup_as_function (folded_arg0, IOR);
3339 rtx inner_const;
3341 if (y != 0
3342 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3343 && GET_CODE (inner_const) == CONST_INT
3344 && INTVAL (inner_const) != 0)
3346 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3347 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3348 && (INTVAL (inner_const)
3349 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3350 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3352 #ifdef FLOAT_STORE_FLAG_VALUE
3353 if (SCALAR_FLOAT_MODE_P (mode))
3355 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3356 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3357 false_rtx = CONST0_RTX (mode);
3359 #endif
3361 switch (code)
3363 case EQ:
3364 return false_rtx;
3365 case NE:
3366 return true_rtx;
3367 case LT: case LE:
3368 if (has_sign)
3369 return true_rtx;
3370 break;
3371 case GT: case GE:
3372 if (has_sign)
3373 return false_rtx;
3374 break;
3375 default:
3376 break;
3382 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3383 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3384 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3386 break;
3388 case RTX_BIN_ARITH:
3389 case RTX_COMM_ARITH:
3390 switch (code)
3392 case PLUS:
3393 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3394 with that LABEL_REF as its second operand. If so, the result is
3395 the first operand of that MINUS. This handles switches with an
3396 ADDR_DIFF_VEC table. */
3397 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3399 rtx y
3400 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3401 : lookup_as_function (folded_arg0, MINUS);
3403 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3404 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3405 return XEXP (y, 0);
3407 /* Now try for a CONST of a MINUS like the above. */
3408 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3409 : lookup_as_function (folded_arg0, CONST))) != 0
3410 && GET_CODE (XEXP (y, 0)) == MINUS
3411 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3412 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3413 return XEXP (XEXP (y, 0), 0);
3416 /* Likewise if the operands are in the other order. */
3417 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3419 rtx y
3420 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3421 : lookup_as_function (folded_arg1, MINUS);
3423 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3424 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3425 return XEXP (y, 0);
3427 /* Now try for a CONST of a MINUS like the above. */
3428 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3429 : lookup_as_function (folded_arg1, CONST))) != 0
3430 && GET_CODE (XEXP (y, 0)) == MINUS
3431 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3432 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3433 return XEXP (XEXP (y, 0), 0);
3436 /* If second operand is a register equivalent to a negative
3437 CONST_INT, see if we can find a register equivalent to the
3438 positive constant. Make a MINUS if so. Don't do this for
3439 a non-negative constant since we might then alternate between
3440 choosing positive and negative constants. Having the positive
3441 constant previously-used is the more common case. Be sure
3442 the resulting constant is non-negative; if const_arg1 were
3443 the smallest negative number this would overflow: depending
3444 on the mode, this would either just be the same value (and
3445 hence not save anything) or be incorrect. */
3446 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3447 && INTVAL (const_arg1) < 0
3448 /* This used to test
3450 -INTVAL (const_arg1) >= 0
3452 But The Sun V5.0 compilers mis-compiled that test. So
3453 instead we test for the problematic value in a more direct
3454 manner and hope the Sun compilers get it correct. */
3455 && INTVAL (const_arg1) !=
3456 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3457 && REG_P (folded_arg1))
3459 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3460 struct table_elt *p
3461 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3463 if (p)
3464 for (p = p->first_same_value; p; p = p->next_same_value)
3465 if (REG_P (p->exp))
3466 return simplify_gen_binary (MINUS, mode, folded_arg0,
3467 canon_reg (p->exp, NULL_RTX));
3469 goto from_plus;
3471 case MINUS:
3472 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3473 If so, produce (PLUS Z C2-C). */
3474 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3476 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3477 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3478 return fold_rtx (plus_constant (copy_rtx (y),
3479 -INTVAL (const_arg1)),
3480 NULL_RTX);
3483 /* Fall through. */
3485 from_plus:
3486 case SMIN: case SMAX: case UMIN: case UMAX:
3487 case IOR: case AND: case XOR:
3488 case MULT:
3489 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3490 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3491 is known to be of similar form, we may be able to replace the
3492 operation with a combined operation. This may eliminate the
3493 intermediate operation if every use is simplified in this way.
3494 Note that the similar optimization done by combine.c only works
3495 if the intermediate operation's result has only one reference. */
3497 if (REG_P (folded_arg0)
3498 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3500 int is_shift
3501 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3502 rtx y, inner_const, new_const;
3503 enum rtx_code associate_code;
3505 if (is_shift
3506 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3507 || INTVAL (const_arg1) < 0))
3509 if (SHIFT_COUNT_TRUNCATED)
3510 const_arg1 = GEN_INT (INTVAL (const_arg1)
3511 & (GET_MODE_BITSIZE (mode) - 1));
3512 else
3513 break;
3516 y = lookup_as_function (folded_arg0, code);
3517 if (y == 0)
3518 break;
3520 /* If we have compiled a statement like
3521 "if (x == (x & mask1))", and now are looking at
3522 "x & mask2", we will have a case where the first operand
3523 of Y is the same as our first operand. Unless we detect
3524 this case, an infinite loop will result. */
3525 if (XEXP (y, 0) == folded_arg0)
3526 break;
3528 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3529 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3530 break;
3532 /* Don't associate these operations if they are a PLUS with the
3533 same constant and it is a power of two. These might be doable
3534 with a pre- or post-increment. Similarly for two subtracts of
3535 identical powers of two with post decrement. */
3537 if (code == PLUS && const_arg1 == inner_const
3538 && ((HAVE_PRE_INCREMENT
3539 && exact_log2 (INTVAL (const_arg1)) >= 0)
3540 || (HAVE_POST_INCREMENT
3541 && exact_log2 (INTVAL (const_arg1)) >= 0)
3542 || (HAVE_PRE_DECREMENT
3543 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3544 || (HAVE_POST_DECREMENT
3545 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3546 break;
3548 if (is_shift
3549 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3550 || INTVAL (inner_const) < 0))
3552 if (SHIFT_COUNT_TRUNCATED)
3553 inner_const = GEN_INT (INTVAL (inner_const)
3554 & (GET_MODE_BITSIZE (mode) - 1));
3555 else
3556 break;
3559 /* Compute the code used to compose the constants. For example,
3560 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3562 associate_code = (is_shift || code == MINUS ? PLUS : code);
3564 new_const = simplify_binary_operation (associate_code, mode,
3565 const_arg1, inner_const);
3567 if (new_const == 0)
3568 break;
3570 /* If we are associating shift operations, don't let this
3571 produce a shift of the size of the object or larger.
3572 This could occur when we follow a sign-extend by a right
3573 shift on a machine that does a sign-extend as a pair
3574 of shifts. */
3576 if (is_shift
3577 && GET_CODE (new_const) == CONST_INT
3578 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3580 /* As an exception, we can turn an ASHIFTRT of this
3581 form into a shift of the number of bits - 1. */
3582 if (code == ASHIFTRT)
3583 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3584 else if (!side_effects_p (XEXP (y, 0)))
3585 return CONST0_RTX (mode);
3586 else
3587 break;
3590 y = copy_rtx (XEXP (y, 0));
3592 /* If Y contains our first operand (the most common way this
3593 can happen is if Y is a MEM), we would do into an infinite
3594 loop if we tried to fold it. So don't in that case. */
3596 if (! reg_mentioned_p (folded_arg0, y))
3597 y = fold_rtx (y, insn);
3599 return simplify_gen_binary (code, mode, y, new_const);
3601 break;
3603 case DIV: case UDIV:
3604 /* ??? The associative optimization performed immediately above is
3605 also possible for DIV and UDIV using associate_code of MULT.
3606 However, we would need extra code to verify that the
3607 multiplication does not overflow, that is, there is no overflow
3608 in the calculation of new_const. */
3609 break;
3611 default:
3612 break;
3615 new = simplify_binary_operation (code, mode,
3616 const_arg0 ? const_arg0 : folded_arg0,
3617 const_arg1 ? const_arg1 : folded_arg1);
3618 break;
3620 case RTX_OBJ:
3621 /* (lo_sum (high X) X) is simply X. */
3622 if (code == LO_SUM && const_arg0 != 0
3623 && GET_CODE (const_arg0) == HIGH
3624 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3625 return const_arg1;
3626 break;
3628 case RTX_TERNARY:
3629 case RTX_BITFIELD_OPS:
3630 new = simplify_ternary_operation (code, mode, mode_arg0,
3631 const_arg0 ? const_arg0 : folded_arg0,
3632 const_arg1 ? const_arg1 : folded_arg1,
3633 const_arg2 ? const_arg2 : XEXP (x, 2));
3634 break;
3636 default:
3637 break;
3640 return new ? new : x;
3643 /* Return a constant value currently equivalent to X.
3644 Return 0 if we don't know one. */
3646 static rtx
3647 equiv_constant (rtx x)
3649 if (REG_P (x)
3650 && REGNO_QTY_VALID_P (REGNO (x)))
3652 int x_q = REG_QTY (REGNO (x));
3653 struct qty_table_elem *x_ent = &qty_table[x_q];
3655 if (x_ent->const_rtx)
3656 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3659 if (x == 0 || CONSTANT_P (x))
3660 return x;
3662 if (GET_CODE (x) == SUBREG)
3664 rtx new;
3666 /* See if we previously assigned a constant value to this SUBREG. */
3667 if ((new = lookup_as_function (x, CONST_INT)) != 0
3668 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3669 return new;
3671 if (REG_P (SUBREG_REG (x))
3672 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3673 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3674 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3676 return 0;
3679 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3680 the hash table in case its value was seen before. */
3682 if (MEM_P (x))
3684 struct table_elt *elt;
3686 x = avoid_constant_pool_reference (x);
3687 if (CONSTANT_P (x))
3688 return x;
3690 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3691 if (elt == 0)
3692 return 0;
3694 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3695 if (elt->is_const && CONSTANT_P (elt->exp))
3696 return elt->exp;
3699 return 0;
3702 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
3703 branch. It will be zero if not.
3705 In certain cases, this can cause us to add an equivalence. For example,
3706 if we are following the taken case of
3707 if (i == 2)
3708 we can add the fact that `i' and '2' are now equivalent.
3710 In any case, we can record that this comparison was passed. If the same
3711 comparison is seen later, we will know its value. */
3713 static void
3714 record_jump_equiv (rtx insn, int taken)
3716 int cond_known_true;
3717 rtx op0, op1;
3718 rtx set;
3719 enum machine_mode mode, mode0, mode1;
3720 int reversed_nonequality = 0;
3721 enum rtx_code code;
3723 /* Ensure this is the right kind of insn. */
3724 if (! any_condjump_p (insn))
3725 return;
3726 set = pc_set (insn);
3728 /* See if this jump condition is known true or false. */
3729 if (taken)
3730 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3731 else
3732 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3734 /* Get the type of comparison being done and the operands being compared.
3735 If we had to reverse a non-equality condition, record that fact so we
3736 know that it isn't valid for floating-point. */
3737 code = GET_CODE (XEXP (SET_SRC (set), 0));
3738 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3739 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3741 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3742 if (! cond_known_true)
3744 code = reversed_comparison_code_parts (code, op0, op1, insn);
3746 /* Don't remember if we can't find the inverse. */
3747 if (code == UNKNOWN)
3748 return;
3751 /* The mode is the mode of the non-constant. */
3752 mode = mode0;
3753 if (mode1 != VOIDmode)
3754 mode = mode1;
3756 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3759 /* Yet another form of subreg creation. In this case, we want something in
3760 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3762 static rtx
3763 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3765 enum machine_mode op_mode = GET_MODE (op);
3766 if (op_mode == mode || op_mode == VOIDmode)
3767 return op;
3768 return lowpart_subreg (mode, op, op_mode);
3771 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3772 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3773 Make any useful entries we can with that information. Called from
3774 above function and called recursively. */
3776 static void
3777 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3778 rtx op1, int reversed_nonequality)
3780 unsigned op0_hash, op1_hash;
3781 int op0_in_memory, op1_in_memory;
3782 struct table_elt *op0_elt, *op1_elt;
3784 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3785 we know that they are also equal in the smaller mode (this is also
3786 true for all smaller modes whether or not there is a SUBREG, but
3787 is not worth testing for with no SUBREG). */
3789 /* Note that GET_MODE (op0) may not equal MODE. */
3790 if (code == EQ && GET_CODE (op0) == SUBREG
3791 && (GET_MODE_SIZE (GET_MODE (op0))
3792 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3794 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3795 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3796 if (tem)
3797 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3798 reversed_nonequality);
3801 if (code == EQ && GET_CODE (op1) == SUBREG
3802 && (GET_MODE_SIZE (GET_MODE (op1))
3803 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3805 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3806 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3807 if (tem)
3808 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3809 reversed_nonequality);
3812 /* Similarly, if this is an NE comparison, and either is a SUBREG
3813 making a smaller mode, we know the whole thing is also NE. */
3815 /* Note that GET_MODE (op0) may not equal MODE;
3816 if we test MODE instead, we can get an infinite recursion
3817 alternating between two modes each wider than MODE. */
3819 if (code == NE && GET_CODE (op0) == SUBREG
3820 && subreg_lowpart_p (op0)
3821 && (GET_MODE_SIZE (GET_MODE (op0))
3822 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3824 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3825 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3826 if (tem)
3827 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3828 reversed_nonequality);
3831 if (code == NE && GET_CODE (op1) == SUBREG
3832 && subreg_lowpart_p (op1)
3833 && (GET_MODE_SIZE (GET_MODE (op1))
3834 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3836 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3837 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3838 if (tem)
3839 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3840 reversed_nonequality);
3843 /* Hash both operands. */
3845 do_not_record = 0;
3846 hash_arg_in_memory = 0;
3847 op0_hash = HASH (op0, mode);
3848 op0_in_memory = hash_arg_in_memory;
3850 if (do_not_record)
3851 return;
3853 do_not_record = 0;
3854 hash_arg_in_memory = 0;
3855 op1_hash = HASH (op1, mode);
3856 op1_in_memory = hash_arg_in_memory;
3858 if (do_not_record)
3859 return;
3861 /* Look up both operands. */
3862 op0_elt = lookup (op0, op0_hash, mode);
3863 op1_elt = lookup (op1, op1_hash, mode);
3865 /* If both operands are already equivalent or if they are not in the
3866 table but are identical, do nothing. */
3867 if ((op0_elt != 0 && op1_elt != 0
3868 && op0_elt->first_same_value == op1_elt->first_same_value)
3869 || op0 == op1 || rtx_equal_p (op0, op1))
3870 return;
3872 /* If we aren't setting two things equal all we can do is save this
3873 comparison. Similarly if this is floating-point. In the latter
3874 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3875 If we record the equality, we might inadvertently delete code
3876 whose intent was to change -0 to +0. */
3878 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3880 struct qty_table_elem *ent;
3881 int qty;
3883 /* If we reversed a floating-point comparison, if OP0 is not a
3884 register, or if OP1 is neither a register or constant, we can't
3885 do anything. */
3887 if (!REG_P (op1))
3888 op1 = equiv_constant (op1);
3890 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3891 || !REG_P (op0) || op1 == 0)
3892 return;
3894 /* Put OP0 in the hash table if it isn't already. This gives it a
3895 new quantity number. */
3896 if (op0_elt == 0)
3898 if (insert_regs (op0, NULL, 0))
3900 rehash_using_reg (op0);
3901 op0_hash = HASH (op0, mode);
3903 /* If OP0 is contained in OP1, this changes its hash code
3904 as well. Faster to rehash than to check, except
3905 for the simple case of a constant. */
3906 if (! CONSTANT_P (op1))
3907 op1_hash = HASH (op1,mode);
3910 op0_elt = insert (op0, NULL, op0_hash, mode);
3911 op0_elt->in_memory = op0_in_memory;
3914 qty = REG_QTY (REGNO (op0));
3915 ent = &qty_table[qty];
3917 ent->comparison_code = code;
3918 if (REG_P (op1))
3920 /* Look it up again--in case op0 and op1 are the same. */
3921 op1_elt = lookup (op1, op1_hash, mode);
3923 /* Put OP1 in the hash table so it gets a new quantity number. */
3924 if (op1_elt == 0)
3926 if (insert_regs (op1, NULL, 0))
3928 rehash_using_reg (op1);
3929 op1_hash = HASH (op1, mode);
3932 op1_elt = insert (op1, NULL, op1_hash, mode);
3933 op1_elt->in_memory = op1_in_memory;
3936 ent->comparison_const = NULL_RTX;
3937 ent->comparison_qty = REG_QTY (REGNO (op1));
3939 else
3941 ent->comparison_const = op1;
3942 ent->comparison_qty = -1;
3945 return;
3948 /* If either side is still missing an equivalence, make it now,
3949 then merge the equivalences. */
3951 if (op0_elt == 0)
3953 if (insert_regs (op0, NULL, 0))
3955 rehash_using_reg (op0);
3956 op0_hash = HASH (op0, mode);
3959 op0_elt = insert (op0, NULL, op0_hash, mode);
3960 op0_elt->in_memory = op0_in_memory;
3963 if (op1_elt == 0)
3965 if (insert_regs (op1, NULL, 0))
3967 rehash_using_reg (op1);
3968 op1_hash = HASH (op1, mode);
3971 op1_elt = insert (op1, NULL, op1_hash, mode);
3972 op1_elt->in_memory = op1_in_memory;
3975 merge_equiv_classes (op0_elt, op1_elt);
3978 /* CSE processing for one instruction.
3979 First simplify sources and addresses of all assignments
3980 in the instruction, using previously-computed equivalents values.
3981 Then install the new sources and destinations in the table
3982 of available values.
3984 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3985 the insn. It means that INSN is inside libcall block. In this
3986 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3988 /* Data on one SET contained in the instruction. */
3990 struct set
3992 /* The SET rtx itself. */
3993 rtx rtl;
3994 /* The SET_SRC of the rtx (the original value, if it is changing). */
3995 rtx src;
3996 /* The hash-table element for the SET_SRC of the SET. */
3997 struct table_elt *src_elt;
3998 /* Hash value for the SET_SRC. */
3999 unsigned src_hash;
4000 /* Hash value for the SET_DEST. */
4001 unsigned dest_hash;
4002 /* The SET_DEST, with SUBREG, etc., stripped. */
4003 rtx inner_dest;
4004 /* Nonzero if the SET_SRC is in memory. */
4005 char src_in_memory;
4006 /* Nonzero if the SET_SRC contains something
4007 whose value cannot be predicted and understood. */
4008 char src_volatile;
4009 /* Original machine mode, in case it becomes a CONST_INT.
4010 The size of this field should match the size of the mode
4011 field of struct rtx_def (see rtl.h). */
4012 ENUM_BITFIELD(machine_mode) mode : 8;
4013 /* A constant equivalent for SET_SRC, if any. */
4014 rtx src_const;
4015 /* Original SET_SRC value used for libcall notes. */
4016 rtx orig_src;
4017 /* Hash value of constant equivalent for SET_SRC. */
4018 unsigned src_const_hash;
4019 /* Table entry for constant equivalent for SET_SRC, if any. */
4020 struct table_elt *src_const_elt;
4021 /* Table entry for the destination address. */
4022 struct table_elt *dest_addr_elt;
4025 static void
4026 cse_insn (rtx insn, rtx libcall_insn)
4028 rtx x = PATTERN (insn);
4029 int i;
4030 rtx tem;
4031 int n_sets = 0;
4033 #ifdef HAVE_cc0
4034 /* Records what this insn does to set CC0. */
4035 rtx this_insn_cc0 = 0;
4036 enum machine_mode this_insn_cc0_mode = VOIDmode;
4037 #endif
4039 rtx src_eqv = 0;
4040 struct table_elt *src_eqv_elt = 0;
4041 int src_eqv_volatile = 0;
4042 int src_eqv_in_memory = 0;
4043 unsigned src_eqv_hash = 0;
4045 struct set *sets = (struct set *) 0;
4047 this_insn = insn;
4049 /* Find all the SETs and CLOBBERs in this instruction.
4050 Record all the SETs in the array `set' and count them.
4051 Also determine whether there is a CLOBBER that invalidates
4052 all memory references, or all references at varying addresses. */
4054 if (CALL_P (insn))
4056 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4058 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4059 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4060 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4064 if (GET_CODE (x) == SET)
4066 sets = alloca (sizeof (struct set));
4067 sets[0].rtl = x;
4069 /* Ignore SETs that are unconditional jumps.
4070 They never need cse processing, so this does not hurt.
4071 The reason is not efficiency but rather
4072 so that we can test at the end for instructions
4073 that have been simplified to unconditional jumps
4074 and not be misled by unchanged instructions
4075 that were unconditional jumps to begin with. */
4076 if (SET_DEST (x) == pc_rtx
4077 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4080 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4081 The hard function value register is used only once, to copy to
4082 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4083 Ensure we invalidate the destination register. On the 80386 no
4084 other code would invalidate it since it is a fixed_reg.
4085 We need not check the return of apply_change_group; see canon_reg. */
4087 else if (GET_CODE (SET_SRC (x)) == CALL)
4089 canon_reg (SET_SRC (x), insn);
4090 apply_change_group ();
4091 fold_rtx (SET_SRC (x), insn);
4092 invalidate (SET_DEST (x), VOIDmode);
4094 else
4095 n_sets = 1;
4097 else if (GET_CODE (x) == PARALLEL)
4099 int lim = XVECLEN (x, 0);
4101 sets = alloca (lim * sizeof (struct set));
4103 /* Find all regs explicitly clobbered in this insn,
4104 and ensure they are not replaced with any other regs
4105 elsewhere in this insn.
4106 When a reg that is clobbered is also used for input,
4107 we should presume that that is for a reason,
4108 and we should not substitute some other register
4109 which is not supposed to be clobbered.
4110 Therefore, this loop cannot be merged into the one below
4111 because a CALL may precede a CLOBBER and refer to the
4112 value clobbered. We must not let a canonicalization do
4113 anything in that case. */
4114 for (i = 0; i < lim; i++)
4116 rtx y = XVECEXP (x, 0, i);
4117 if (GET_CODE (y) == CLOBBER)
4119 rtx clobbered = XEXP (y, 0);
4121 if (REG_P (clobbered)
4122 || GET_CODE (clobbered) == SUBREG)
4123 invalidate (clobbered, VOIDmode);
4124 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4125 || GET_CODE (clobbered) == ZERO_EXTRACT)
4126 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4130 for (i = 0; i < lim; i++)
4132 rtx y = XVECEXP (x, 0, i);
4133 if (GET_CODE (y) == SET)
4135 /* As above, we ignore unconditional jumps and call-insns and
4136 ignore the result of apply_change_group. */
4137 if (GET_CODE (SET_SRC (y)) == CALL)
4139 canon_reg (SET_SRC (y), insn);
4140 apply_change_group ();
4141 fold_rtx (SET_SRC (y), insn);
4142 invalidate (SET_DEST (y), VOIDmode);
4144 else if (SET_DEST (y) == pc_rtx
4145 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4147 else
4148 sets[n_sets++].rtl = y;
4150 else if (GET_CODE (y) == CLOBBER)
4152 /* If we clobber memory, canon the address.
4153 This does nothing when a register is clobbered
4154 because we have already invalidated the reg. */
4155 if (MEM_P (XEXP (y, 0)))
4156 canon_reg (XEXP (y, 0), NULL_RTX);
4158 else if (GET_CODE (y) == USE
4159 && ! (REG_P (XEXP (y, 0))
4160 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4161 canon_reg (y, NULL_RTX);
4162 else if (GET_CODE (y) == CALL)
4164 /* The result of apply_change_group can be ignored; see
4165 canon_reg. */
4166 canon_reg (y, insn);
4167 apply_change_group ();
4168 fold_rtx (y, insn);
4172 else if (GET_CODE (x) == CLOBBER)
4174 if (MEM_P (XEXP (x, 0)))
4175 canon_reg (XEXP (x, 0), NULL_RTX);
4178 /* Canonicalize a USE of a pseudo register or memory location. */
4179 else if (GET_CODE (x) == USE
4180 && ! (REG_P (XEXP (x, 0))
4181 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4182 canon_reg (XEXP (x, 0), NULL_RTX);
4183 else if (GET_CODE (x) == CALL)
4185 /* The result of apply_change_group can be ignored; see canon_reg. */
4186 canon_reg (x, insn);
4187 apply_change_group ();
4188 fold_rtx (x, insn);
4191 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4192 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4193 is handled specially for this case, and if it isn't set, then there will
4194 be no equivalence for the destination. */
4195 if (n_sets == 1 && REG_NOTES (insn) != 0
4196 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4197 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4198 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4200 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4201 XEXP (tem, 0) = src_eqv;
4204 /* Canonicalize sources and addresses of destinations.
4205 We do this in a separate pass to avoid problems when a MATCH_DUP is
4206 present in the insn pattern. In that case, we want to ensure that
4207 we don't break the duplicate nature of the pattern. So we will replace
4208 both operands at the same time. Otherwise, we would fail to find an
4209 equivalent substitution in the loop calling validate_change below.
4211 We used to suppress canonicalization of DEST if it appears in SRC,
4212 but we don't do this any more. */
4214 for (i = 0; i < n_sets; i++)
4216 rtx dest = SET_DEST (sets[i].rtl);
4217 rtx src = SET_SRC (sets[i].rtl);
4218 rtx new = canon_reg (src, insn);
4220 sets[i].orig_src = src;
4221 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4223 if (GET_CODE (dest) == ZERO_EXTRACT)
4225 validate_change (insn, &XEXP (dest, 1),
4226 canon_reg (XEXP (dest, 1), insn), 1);
4227 validate_change (insn, &XEXP (dest, 2),
4228 canon_reg (XEXP (dest, 2), insn), 1);
4231 while (GET_CODE (dest) == SUBREG
4232 || GET_CODE (dest) == ZERO_EXTRACT
4233 || GET_CODE (dest) == STRICT_LOW_PART)
4234 dest = XEXP (dest, 0);
4236 if (MEM_P (dest))
4237 canon_reg (dest, insn);
4240 /* Now that we have done all the replacements, we can apply the change
4241 group and see if they all work. Note that this will cause some
4242 canonicalizations that would have worked individually not to be applied
4243 because some other canonicalization didn't work, but this should not
4244 occur often.
4246 The result of apply_change_group can be ignored; see canon_reg. */
4248 apply_change_group ();
4250 /* Set sets[i].src_elt to the class each source belongs to.
4251 Detect assignments from or to volatile things
4252 and set set[i] to zero so they will be ignored
4253 in the rest of this function.
4255 Nothing in this loop changes the hash table or the register chains. */
4257 for (i = 0; i < n_sets; i++)
4259 rtx src, dest;
4260 rtx src_folded;
4261 struct table_elt *elt = 0, *p;
4262 enum machine_mode mode;
4263 rtx src_eqv_here;
4264 rtx src_const = 0;
4265 rtx src_related = 0;
4266 struct table_elt *src_const_elt = 0;
4267 int src_cost = MAX_COST;
4268 int src_eqv_cost = MAX_COST;
4269 int src_folded_cost = MAX_COST;
4270 int src_related_cost = MAX_COST;
4271 int src_elt_cost = MAX_COST;
4272 int src_regcost = MAX_COST;
4273 int src_eqv_regcost = MAX_COST;
4274 int src_folded_regcost = MAX_COST;
4275 int src_related_regcost = MAX_COST;
4276 int src_elt_regcost = MAX_COST;
4277 /* Set nonzero if we need to call force_const_mem on with the
4278 contents of src_folded before using it. */
4279 int src_folded_force_flag = 0;
4281 dest = SET_DEST (sets[i].rtl);
4282 src = SET_SRC (sets[i].rtl);
4284 /* If SRC is a constant that has no machine mode,
4285 hash it with the destination's machine mode.
4286 This way we can keep different modes separate. */
4288 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4289 sets[i].mode = mode;
4291 if (src_eqv)
4293 enum machine_mode eqvmode = mode;
4294 if (GET_CODE (dest) == STRICT_LOW_PART)
4295 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4296 do_not_record = 0;
4297 hash_arg_in_memory = 0;
4298 src_eqv_hash = HASH (src_eqv, eqvmode);
4300 /* Find the equivalence class for the equivalent expression. */
4302 if (!do_not_record)
4303 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4305 src_eqv_volatile = do_not_record;
4306 src_eqv_in_memory = hash_arg_in_memory;
4309 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4310 value of the INNER register, not the destination. So it is not
4311 a valid substitution for the source. But save it for later. */
4312 if (GET_CODE (dest) == STRICT_LOW_PART)
4313 src_eqv_here = 0;
4314 else
4315 src_eqv_here = src_eqv;
4317 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4318 simplified result, which may not necessarily be valid. */
4319 src_folded = fold_rtx (src, insn);
4321 #if 0
4322 /* ??? This caused bad code to be generated for the m68k port with -O2.
4323 Suppose src is (CONST_INT -1), and that after truncation src_folded
4324 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4325 At the end we will add src and src_const to the same equivalence
4326 class. We now have 3 and -1 on the same equivalence class. This
4327 causes later instructions to be mis-optimized. */
4328 /* If storing a constant in a bitfield, pre-truncate the constant
4329 so we will be able to record it later. */
4330 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4332 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4334 if (GET_CODE (src) == CONST_INT
4335 && GET_CODE (width) == CONST_INT
4336 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4337 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4338 src_folded
4339 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4340 << INTVAL (width)) - 1));
4342 #endif
4344 /* Compute SRC's hash code, and also notice if it
4345 should not be recorded at all. In that case,
4346 prevent any further processing of this assignment. */
4347 do_not_record = 0;
4348 hash_arg_in_memory = 0;
4350 sets[i].src = src;
4351 sets[i].src_hash = HASH (src, mode);
4352 sets[i].src_volatile = do_not_record;
4353 sets[i].src_in_memory = hash_arg_in_memory;
4355 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4356 a pseudo, do not record SRC. Using SRC as a replacement for
4357 anything else will be incorrect in that situation. Note that
4358 this usually occurs only for stack slots, in which case all the
4359 RTL would be referring to SRC, so we don't lose any optimization
4360 opportunities by not having SRC in the hash table. */
4362 if (MEM_P (src)
4363 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4364 && REG_P (dest)
4365 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4366 sets[i].src_volatile = 1;
4368 #if 0
4369 /* It is no longer clear why we used to do this, but it doesn't
4370 appear to still be needed. So let's try without it since this
4371 code hurts cse'ing widened ops. */
4372 /* If source is a paradoxical subreg (such as QI treated as an SI),
4373 treat it as volatile. It may do the work of an SI in one context
4374 where the extra bits are not being used, but cannot replace an SI
4375 in general. */
4376 if (GET_CODE (src) == SUBREG
4377 && (GET_MODE_SIZE (GET_MODE (src))
4378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4379 sets[i].src_volatile = 1;
4380 #endif
4382 /* Locate all possible equivalent forms for SRC. Try to replace
4383 SRC in the insn with each cheaper equivalent.
4385 We have the following types of equivalents: SRC itself, a folded
4386 version, a value given in a REG_EQUAL note, or a value related
4387 to a constant.
4389 Each of these equivalents may be part of an additional class
4390 of equivalents (if more than one is in the table, they must be in
4391 the same class; we check for this).
4393 If the source is volatile, we don't do any table lookups.
4395 We note any constant equivalent for possible later use in a
4396 REG_NOTE. */
4398 if (!sets[i].src_volatile)
4399 elt = lookup (src, sets[i].src_hash, mode);
4401 sets[i].src_elt = elt;
4403 if (elt && src_eqv_here && src_eqv_elt)
4405 if (elt->first_same_value != src_eqv_elt->first_same_value)
4407 /* The REG_EQUAL is indicating that two formerly distinct
4408 classes are now equivalent. So merge them. */
4409 merge_equiv_classes (elt, src_eqv_elt);
4410 src_eqv_hash = HASH (src_eqv, elt->mode);
4411 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4414 src_eqv_here = 0;
4417 else if (src_eqv_elt)
4418 elt = src_eqv_elt;
4420 /* Try to find a constant somewhere and record it in `src_const'.
4421 Record its table element, if any, in `src_const_elt'. Look in
4422 any known equivalences first. (If the constant is not in the
4423 table, also set `sets[i].src_const_hash'). */
4424 if (elt)
4425 for (p = elt->first_same_value; p; p = p->next_same_value)
4426 if (p->is_const)
4428 src_const = p->exp;
4429 src_const_elt = elt;
4430 break;
4433 if (src_const == 0
4434 && (CONSTANT_P (src_folded)
4435 /* Consider (minus (label_ref L1) (label_ref L2)) as
4436 "constant" here so we will record it. This allows us
4437 to fold switch statements when an ADDR_DIFF_VEC is used. */
4438 || (GET_CODE (src_folded) == MINUS
4439 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4440 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4441 src_const = src_folded, src_const_elt = elt;
4442 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4443 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4445 /* If we don't know if the constant is in the table, get its
4446 hash code and look it up. */
4447 if (src_const && src_const_elt == 0)
4449 sets[i].src_const_hash = HASH (src_const, mode);
4450 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4453 sets[i].src_const = src_const;
4454 sets[i].src_const_elt = src_const_elt;
4456 /* If the constant and our source are both in the table, mark them as
4457 equivalent. Otherwise, if a constant is in the table but the source
4458 isn't, set ELT to it. */
4459 if (src_const_elt && elt
4460 && src_const_elt->first_same_value != elt->first_same_value)
4461 merge_equiv_classes (elt, src_const_elt);
4462 else if (src_const_elt && elt == 0)
4463 elt = src_const_elt;
4465 /* See if there is a register linearly related to a constant
4466 equivalent of SRC. */
4467 if (src_const
4468 && (GET_CODE (src_const) == CONST
4469 || (src_const_elt && src_const_elt->related_value != 0)))
4471 src_related = use_related_value (src_const, src_const_elt);
4472 if (src_related)
4474 struct table_elt *src_related_elt
4475 = lookup (src_related, HASH (src_related, mode), mode);
4476 if (src_related_elt && elt)
4478 if (elt->first_same_value
4479 != src_related_elt->first_same_value)
4480 /* This can occur when we previously saw a CONST
4481 involving a SYMBOL_REF and then see the SYMBOL_REF
4482 twice. Merge the involved classes. */
4483 merge_equiv_classes (elt, src_related_elt);
4485 src_related = 0;
4486 src_related_elt = 0;
4488 else if (src_related_elt && elt == 0)
4489 elt = src_related_elt;
4493 /* See if we have a CONST_INT that is already in a register in a
4494 wider mode. */
4496 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4497 && GET_MODE_CLASS (mode) == MODE_INT
4498 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4500 enum machine_mode wider_mode;
4502 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4503 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4504 && src_related == 0;
4505 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4507 struct table_elt *const_elt
4508 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4510 if (const_elt == 0)
4511 continue;
4513 for (const_elt = const_elt->first_same_value;
4514 const_elt; const_elt = const_elt->next_same_value)
4515 if (REG_P (const_elt->exp))
4517 src_related = gen_lowpart (mode,
4518 const_elt->exp);
4519 break;
4524 /* Another possibility is that we have an AND with a constant in
4525 a mode narrower than a word. If so, it might have been generated
4526 as part of an "if" which would narrow the AND. If we already
4527 have done the AND in a wider mode, we can use a SUBREG of that
4528 value. */
4530 if (flag_expensive_optimizations && ! src_related
4531 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4532 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4534 enum machine_mode tmode;
4535 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4537 for (tmode = GET_MODE_WIDER_MODE (mode);
4538 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4539 tmode = GET_MODE_WIDER_MODE (tmode))
4541 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4542 struct table_elt *larger_elt;
4544 if (inner)
4546 PUT_MODE (new_and, tmode);
4547 XEXP (new_and, 0) = inner;
4548 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4549 if (larger_elt == 0)
4550 continue;
4552 for (larger_elt = larger_elt->first_same_value;
4553 larger_elt; larger_elt = larger_elt->next_same_value)
4554 if (REG_P (larger_elt->exp))
4556 src_related
4557 = gen_lowpart (mode, larger_elt->exp);
4558 break;
4561 if (src_related)
4562 break;
4567 #ifdef LOAD_EXTEND_OP
4568 /* See if a MEM has already been loaded with a widening operation;
4569 if it has, we can use a subreg of that. Many CISC machines
4570 also have such operations, but this is only likely to be
4571 beneficial on these machines. */
4573 if (flag_expensive_optimizations && src_related == 0
4574 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4575 && GET_MODE_CLASS (mode) == MODE_INT
4576 && MEM_P (src) && ! do_not_record
4577 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4579 struct rtx_def memory_extend_buf;
4580 rtx memory_extend_rtx = &memory_extend_buf;
4581 enum machine_mode tmode;
4583 /* Set what we are trying to extend and the operation it might
4584 have been extended with. */
4585 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4586 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4587 XEXP (memory_extend_rtx, 0) = src;
4589 for (tmode = GET_MODE_WIDER_MODE (mode);
4590 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4591 tmode = GET_MODE_WIDER_MODE (tmode))
4593 struct table_elt *larger_elt;
4595 PUT_MODE (memory_extend_rtx, tmode);
4596 larger_elt = lookup (memory_extend_rtx,
4597 HASH (memory_extend_rtx, tmode), tmode);
4598 if (larger_elt == 0)
4599 continue;
4601 for (larger_elt = larger_elt->first_same_value;
4602 larger_elt; larger_elt = larger_elt->next_same_value)
4603 if (REG_P (larger_elt->exp))
4605 src_related = gen_lowpart (mode,
4606 larger_elt->exp);
4607 break;
4610 if (src_related)
4611 break;
4614 #endif /* LOAD_EXTEND_OP */
4616 if (src == src_folded)
4617 src_folded = 0;
4619 /* At this point, ELT, if nonzero, points to a class of expressions
4620 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4621 and SRC_RELATED, if nonzero, each contain additional equivalent
4622 expressions. Prune these latter expressions by deleting expressions
4623 already in the equivalence class.
4625 Check for an equivalent identical to the destination. If found,
4626 this is the preferred equivalent since it will likely lead to
4627 elimination of the insn. Indicate this by placing it in
4628 `src_related'. */
4630 if (elt)
4631 elt = elt->first_same_value;
4632 for (p = elt; p; p = p->next_same_value)
4634 enum rtx_code code = GET_CODE (p->exp);
4636 /* If the expression is not valid, ignore it. Then we do not
4637 have to check for validity below. In most cases, we can use
4638 `rtx_equal_p', since canonicalization has already been done. */
4639 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4640 continue;
4642 /* Also skip paradoxical subregs, unless that's what we're
4643 looking for. */
4644 if (code == SUBREG
4645 && (GET_MODE_SIZE (GET_MODE (p->exp))
4646 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4647 && ! (src != 0
4648 && GET_CODE (src) == SUBREG
4649 && GET_MODE (src) == GET_MODE (p->exp)
4650 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4651 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4652 continue;
4654 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4655 src = 0;
4656 else if (src_folded && GET_CODE (src_folded) == code
4657 && rtx_equal_p (src_folded, p->exp))
4658 src_folded = 0;
4659 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4660 && rtx_equal_p (src_eqv_here, p->exp))
4661 src_eqv_here = 0;
4662 else if (src_related && GET_CODE (src_related) == code
4663 && rtx_equal_p (src_related, p->exp))
4664 src_related = 0;
4666 /* This is the same as the destination of the insns, we want
4667 to prefer it. Copy it to src_related. The code below will
4668 then give it a negative cost. */
4669 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4670 src_related = dest;
4673 /* Find the cheapest valid equivalent, trying all the available
4674 possibilities. Prefer items not in the hash table to ones
4675 that are when they are equal cost. Note that we can never
4676 worsen an insn as the current contents will also succeed.
4677 If we find an equivalent identical to the destination, use it as best,
4678 since this insn will probably be eliminated in that case. */
4679 if (src)
4681 if (rtx_equal_p (src, dest))
4682 src_cost = src_regcost = -1;
4683 else
4685 src_cost = COST (src);
4686 src_regcost = approx_reg_cost (src);
4690 if (src_eqv_here)
4692 if (rtx_equal_p (src_eqv_here, dest))
4693 src_eqv_cost = src_eqv_regcost = -1;
4694 else
4696 src_eqv_cost = COST (src_eqv_here);
4697 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4701 if (src_folded)
4703 if (rtx_equal_p (src_folded, dest))
4704 src_folded_cost = src_folded_regcost = -1;
4705 else
4707 src_folded_cost = COST (src_folded);
4708 src_folded_regcost = approx_reg_cost (src_folded);
4712 if (src_related)
4714 if (rtx_equal_p (src_related, dest))
4715 src_related_cost = src_related_regcost = -1;
4716 else
4718 src_related_cost = COST (src_related);
4719 src_related_regcost = approx_reg_cost (src_related);
4723 /* If this was an indirect jump insn, a known label will really be
4724 cheaper even though it looks more expensive. */
4725 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4726 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4728 /* Terminate loop when replacement made. This must terminate since
4729 the current contents will be tested and will always be valid. */
4730 while (1)
4732 rtx trial;
4734 /* Skip invalid entries. */
4735 while (elt && !REG_P (elt->exp)
4736 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4737 elt = elt->next_same_value;
4739 /* A paradoxical subreg would be bad here: it'll be the right
4740 size, but later may be adjusted so that the upper bits aren't
4741 what we want. So reject it. */
4742 if (elt != 0
4743 && GET_CODE (elt->exp) == SUBREG
4744 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4745 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4746 /* It is okay, though, if the rtx we're trying to match
4747 will ignore any of the bits we can't predict. */
4748 && ! (src != 0
4749 && GET_CODE (src) == SUBREG
4750 && GET_MODE (src) == GET_MODE (elt->exp)
4751 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4752 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4754 elt = elt->next_same_value;
4755 continue;
4758 if (elt)
4760 src_elt_cost = elt->cost;
4761 src_elt_regcost = elt->regcost;
4764 /* Find cheapest and skip it for the next time. For items
4765 of equal cost, use this order:
4766 src_folded, src, src_eqv, src_related and hash table entry. */
4767 if (src_folded
4768 && preferable (src_folded_cost, src_folded_regcost,
4769 src_cost, src_regcost) <= 0
4770 && preferable (src_folded_cost, src_folded_regcost,
4771 src_eqv_cost, src_eqv_regcost) <= 0
4772 && preferable (src_folded_cost, src_folded_regcost,
4773 src_related_cost, src_related_regcost) <= 0
4774 && preferable (src_folded_cost, src_folded_regcost,
4775 src_elt_cost, src_elt_regcost) <= 0)
4777 trial = src_folded, src_folded_cost = MAX_COST;
4778 if (src_folded_force_flag)
4780 rtx forced = force_const_mem (mode, trial);
4781 if (forced)
4782 trial = forced;
4785 else if (src
4786 && preferable (src_cost, src_regcost,
4787 src_eqv_cost, src_eqv_regcost) <= 0
4788 && preferable (src_cost, src_regcost,
4789 src_related_cost, src_related_regcost) <= 0
4790 && preferable (src_cost, src_regcost,
4791 src_elt_cost, src_elt_regcost) <= 0)
4792 trial = src, src_cost = MAX_COST;
4793 else if (src_eqv_here
4794 && preferable (src_eqv_cost, src_eqv_regcost,
4795 src_related_cost, src_related_regcost) <= 0
4796 && preferable (src_eqv_cost, src_eqv_regcost,
4797 src_elt_cost, src_elt_regcost) <= 0)
4798 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4799 else if (src_related
4800 && preferable (src_related_cost, src_related_regcost,
4801 src_elt_cost, src_elt_regcost) <= 0)
4802 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4803 else
4805 trial = copy_rtx (elt->exp);
4806 elt = elt->next_same_value;
4807 src_elt_cost = MAX_COST;
4810 /* We don't normally have an insn matching (set (pc) (pc)), so
4811 check for this separately here. We will delete such an
4812 insn below.
4814 For other cases such as a table jump or conditional jump
4815 where we know the ultimate target, go ahead and replace the
4816 operand. While that may not make a valid insn, we will
4817 reemit the jump below (and also insert any necessary
4818 barriers). */
4819 if (n_sets == 1 && dest == pc_rtx
4820 && (trial == pc_rtx
4821 || (GET_CODE (trial) == LABEL_REF
4822 && ! condjump_p (insn))))
4824 /* Don't substitute non-local labels, this confuses CFG. */
4825 if (GET_CODE (trial) == LABEL_REF
4826 && LABEL_REF_NONLOCAL_P (trial))
4827 continue;
4829 SET_SRC (sets[i].rtl) = trial;
4830 cse_jumps_altered = 1;
4831 break;
4834 /* Reject certain invalid forms of CONST that we create. */
4835 else if (CONSTANT_P (trial)
4836 && GET_CODE (trial) == CONST
4837 /* Reject cases that will cause decode_rtx_const to
4838 die. On the alpha when simplifying a switch, we
4839 get (const (truncate (minus (label_ref)
4840 (label_ref)))). */
4841 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4842 /* Likewise on IA-64, except without the
4843 truncate. */
4844 || (GET_CODE (XEXP (trial, 0)) == MINUS
4845 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4846 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4847 /* Do nothing for this case. */
4850 /* Look for a substitution that makes a valid insn. */
4851 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
4853 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4855 /* If we just made a substitution inside a libcall, then we
4856 need to make the same substitution in any notes attached
4857 to the RETVAL insn. */
4858 if (libcall_insn
4859 && (REG_P (sets[i].orig_src)
4860 || GET_CODE (sets[i].orig_src) == SUBREG
4861 || MEM_P (sets[i].orig_src)))
4863 rtx note = find_reg_equal_equiv_note (libcall_insn);
4864 if (note != 0)
4865 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4866 sets[i].orig_src,
4867 copy_rtx (new));
4870 /* The result of apply_change_group can be ignored; see
4871 canon_reg. */
4873 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4874 apply_change_group ();
4875 break;
4878 /* If we previously found constant pool entries for
4879 constants and this is a constant, try making a
4880 pool entry. Put it in src_folded unless we already have done
4881 this since that is where it likely came from. */
4883 else if (constant_pool_entries_cost
4884 && CONSTANT_P (trial)
4885 && (src_folded == 0
4886 || (!MEM_P (src_folded)
4887 && ! src_folded_force_flag))
4888 && GET_MODE_CLASS (mode) != MODE_CC
4889 && mode != VOIDmode)
4891 src_folded_force_flag = 1;
4892 src_folded = trial;
4893 src_folded_cost = constant_pool_entries_cost;
4894 src_folded_regcost = constant_pool_entries_regcost;
4898 src = SET_SRC (sets[i].rtl);
4900 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4901 However, there is an important exception: If both are registers
4902 that are not the head of their equivalence class, replace SET_SRC
4903 with the head of the class. If we do not do this, we will have
4904 both registers live over a portion of the basic block. This way,
4905 their lifetimes will likely abut instead of overlapping. */
4906 if (REG_P (dest)
4907 && REGNO_QTY_VALID_P (REGNO (dest)))
4909 int dest_q = REG_QTY (REGNO (dest));
4910 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4912 if (dest_ent->mode == GET_MODE (dest)
4913 && dest_ent->first_reg != REGNO (dest)
4914 && REG_P (src) && REGNO (src) == REGNO (dest)
4915 /* Don't do this if the original insn had a hard reg as
4916 SET_SRC or SET_DEST. */
4917 && (!REG_P (sets[i].src)
4918 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4919 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4920 /* We can't call canon_reg here because it won't do anything if
4921 SRC is a hard register. */
4923 int src_q = REG_QTY (REGNO (src));
4924 struct qty_table_elem *src_ent = &qty_table[src_q];
4925 int first = src_ent->first_reg;
4926 rtx new_src
4927 = (first >= FIRST_PSEUDO_REGISTER
4928 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4930 /* We must use validate-change even for this, because this
4931 might be a special no-op instruction, suitable only to
4932 tag notes onto. */
4933 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4935 src = new_src;
4936 /* If we had a constant that is cheaper than what we are now
4937 setting SRC to, use that constant. We ignored it when we
4938 thought we could make this into a no-op. */
4939 if (src_const && COST (src_const) < COST (src)
4940 && validate_change (insn, &SET_SRC (sets[i].rtl),
4941 src_const, 0))
4942 src = src_const;
4947 /* If we made a change, recompute SRC values. */
4948 if (src != sets[i].src)
4950 cse_altered = 1;
4951 do_not_record = 0;
4952 hash_arg_in_memory = 0;
4953 sets[i].src = src;
4954 sets[i].src_hash = HASH (src, mode);
4955 sets[i].src_volatile = do_not_record;
4956 sets[i].src_in_memory = hash_arg_in_memory;
4957 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4960 /* If this is a single SET, we are setting a register, and we have an
4961 equivalent constant, we want to add a REG_NOTE. We don't want
4962 to write a REG_EQUAL note for a constant pseudo since verifying that
4963 that pseudo hasn't been eliminated is a pain. Such a note also
4964 won't help anything.
4966 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4967 which can be created for a reference to a compile time computable
4968 entry in a jump table. */
4970 if (n_sets == 1 && src_const && REG_P (dest)
4971 && !REG_P (src_const)
4972 && ! (GET_CODE (src_const) == CONST
4973 && GET_CODE (XEXP (src_const, 0)) == MINUS
4974 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4975 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4977 /* We only want a REG_EQUAL note if src_const != src. */
4978 if (! rtx_equal_p (src, src_const))
4980 /* Make sure that the rtx is not shared. */
4981 src_const = copy_rtx (src_const);
4983 /* Record the actual constant value in a REG_EQUAL note,
4984 making a new one if one does not already exist. */
4985 set_unique_reg_note (insn, REG_EQUAL, src_const);
4989 /* Now deal with the destination. */
4990 do_not_record = 0;
4992 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4993 while (GET_CODE (dest) == SUBREG
4994 || GET_CODE (dest) == ZERO_EXTRACT
4995 || GET_CODE (dest) == STRICT_LOW_PART)
4996 dest = XEXP (dest, 0);
4998 sets[i].inner_dest = dest;
5000 if (MEM_P (dest))
5002 #ifdef PUSH_ROUNDING
5003 /* Stack pushes invalidate the stack pointer. */
5004 rtx addr = XEXP (dest, 0);
5005 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5006 && XEXP (addr, 0) == stack_pointer_rtx)
5007 invalidate (stack_pointer_rtx, VOIDmode);
5008 #endif
5009 dest = fold_rtx (dest, insn);
5012 /* Compute the hash code of the destination now,
5013 before the effects of this instruction are recorded,
5014 since the register values used in the address computation
5015 are those before this instruction. */
5016 sets[i].dest_hash = HASH (dest, mode);
5018 /* Don't enter a bit-field in the hash table
5019 because the value in it after the store
5020 may not equal what was stored, due to truncation. */
5022 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5024 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5026 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5027 && GET_CODE (width) == CONST_INT
5028 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5029 && ! (INTVAL (src_const)
5030 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5031 /* Exception: if the value is constant,
5032 and it won't be truncated, record it. */
5034 else
5036 /* This is chosen so that the destination will be invalidated
5037 but no new value will be recorded.
5038 We must invalidate because sometimes constant
5039 values can be recorded for bitfields. */
5040 sets[i].src_elt = 0;
5041 sets[i].src_volatile = 1;
5042 src_eqv = 0;
5043 src_eqv_elt = 0;
5047 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5048 the insn. */
5049 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5051 /* One less use of the label this insn used to jump to. */
5052 delete_insn (insn);
5053 cse_jumps_altered = 1;
5054 /* No more processing for this set. */
5055 sets[i].rtl = 0;
5058 /* If this SET is now setting PC to a label, we know it used to
5059 be a conditional or computed branch. */
5060 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5061 && !LABEL_REF_NONLOCAL_P (src))
5063 /* Now emit a BARRIER after the unconditional jump. */
5064 if (NEXT_INSN (insn) == 0
5065 || !BARRIER_P (NEXT_INSN (insn)))
5066 emit_barrier_after (insn);
5068 /* We reemit the jump in as many cases as possible just in
5069 case the form of an unconditional jump is significantly
5070 different than a computed jump or conditional jump.
5072 If this insn has multiple sets, then reemitting the
5073 jump is nontrivial. So instead we just force rerecognition
5074 and hope for the best. */
5075 if (n_sets == 1)
5077 rtx new, note;
5079 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5080 JUMP_LABEL (new) = XEXP (src, 0);
5081 LABEL_NUSES (XEXP (src, 0))++;
5083 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5084 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5085 if (note)
5087 XEXP (note, 1) = NULL_RTX;
5088 REG_NOTES (new) = note;
5091 delete_insn (insn);
5092 insn = new;
5094 /* Now emit a BARRIER after the unconditional jump. */
5095 if (NEXT_INSN (insn) == 0
5096 || !BARRIER_P (NEXT_INSN (insn)))
5097 emit_barrier_after (insn);
5099 else
5100 INSN_CODE (insn) = -1;
5102 /* Do not bother deleting any unreachable code,
5103 let jump/flow do that. */
5105 cse_jumps_altered = 1;
5106 sets[i].rtl = 0;
5109 /* If destination is volatile, invalidate it and then do no further
5110 processing for this assignment. */
5112 else if (do_not_record)
5114 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5115 invalidate (dest, VOIDmode);
5116 else if (MEM_P (dest))
5117 invalidate (dest, VOIDmode);
5118 else if (GET_CODE (dest) == STRICT_LOW_PART
5119 || GET_CODE (dest) == ZERO_EXTRACT)
5120 invalidate (XEXP (dest, 0), GET_MODE (dest));
5121 sets[i].rtl = 0;
5124 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5125 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5127 #ifdef HAVE_cc0
5128 /* If setting CC0, record what it was set to, or a constant, if it
5129 is equivalent to a constant. If it is being set to a floating-point
5130 value, make a COMPARE with the appropriate constant of 0. If we
5131 don't do this, later code can interpret this as a test against
5132 const0_rtx, which can cause problems if we try to put it into an
5133 insn as a floating-point operand. */
5134 if (dest == cc0_rtx)
5136 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5137 this_insn_cc0_mode = mode;
5138 if (FLOAT_MODE_P (mode))
5139 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5140 CONST0_RTX (mode));
5142 #endif
5145 /* Now enter all non-volatile source expressions in the hash table
5146 if they are not already present.
5147 Record their equivalence classes in src_elt.
5148 This way we can insert the corresponding destinations into
5149 the same classes even if the actual sources are no longer in them
5150 (having been invalidated). */
5152 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5153 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5155 struct table_elt *elt;
5156 struct table_elt *classp = sets[0].src_elt;
5157 rtx dest = SET_DEST (sets[0].rtl);
5158 enum machine_mode eqvmode = GET_MODE (dest);
5160 if (GET_CODE (dest) == STRICT_LOW_PART)
5162 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5163 classp = 0;
5165 if (insert_regs (src_eqv, classp, 0))
5167 rehash_using_reg (src_eqv);
5168 src_eqv_hash = HASH (src_eqv, eqvmode);
5170 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5171 elt->in_memory = src_eqv_in_memory;
5172 src_eqv_elt = elt;
5174 /* Check to see if src_eqv_elt is the same as a set source which
5175 does not yet have an elt, and if so set the elt of the set source
5176 to src_eqv_elt. */
5177 for (i = 0; i < n_sets; i++)
5178 if (sets[i].rtl && sets[i].src_elt == 0
5179 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5180 sets[i].src_elt = src_eqv_elt;
5183 for (i = 0; i < n_sets; i++)
5184 if (sets[i].rtl && ! sets[i].src_volatile
5185 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5187 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5189 /* REG_EQUAL in setting a STRICT_LOW_PART
5190 gives an equivalent for the entire destination register,
5191 not just for the subreg being stored in now.
5192 This is a more interesting equivalence, so we arrange later
5193 to treat the entire reg as the destination. */
5194 sets[i].src_elt = src_eqv_elt;
5195 sets[i].src_hash = src_eqv_hash;
5197 else
5199 /* Insert source and constant equivalent into hash table, if not
5200 already present. */
5201 struct table_elt *classp = src_eqv_elt;
5202 rtx src = sets[i].src;
5203 rtx dest = SET_DEST (sets[i].rtl);
5204 enum machine_mode mode
5205 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5207 /* It's possible that we have a source value known to be
5208 constant but don't have a REG_EQUAL note on the insn.
5209 Lack of a note will mean src_eqv_elt will be NULL. This
5210 can happen where we've generated a SUBREG to access a
5211 CONST_INT that is already in a register in a wider mode.
5212 Ensure that the source expression is put in the proper
5213 constant class. */
5214 if (!classp)
5215 classp = sets[i].src_const_elt;
5217 if (sets[i].src_elt == 0)
5219 /* Don't put a hard register source into the table if this is
5220 the last insn of a libcall. In this case, we only need
5221 to put src_eqv_elt in src_elt. */
5222 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5224 struct table_elt *elt;
5226 /* Note that these insert_regs calls cannot remove
5227 any of the src_elt's, because they would have failed to
5228 match if not still valid. */
5229 if (insert_regs (src, classp, 0))
5231 rehash_using_reg (src);
5232 sets[i].src_hash = HASH (src, mode);
5234 elt = insert (src, classp, sets[i].src_hash, mode);
5235 elt->in_memory = sets[i].src_in_memory;
5236 sets[i].src_elt = classp = elt;
5238 else
5239 sets[i].src_elt = classp;
5241 if (sets[i].src_const && sets[i].src_const_elt == 0
5242 && src != sets[i].src_const
5243 && ! rtx_equal_p (sets[i].src_const, src))
5244 sets[i].src_elt = insert (sets[i].src_const, classp,
5245 sets[i].src_const_hash, mode);
5248 else if (sets[i].src_elt == 0)
5249 /* If we did not insert the source into the hash table (e.g., it was
5250 volatile), note the equivalence class for the REG_EQUAL value, if any,
5251 so that the destination goes into that class. */
5252 sets[i].src_elt = src_eqv_elt;
5254 /* Record destination addresses in the hash table. This allows us to
5255 check if they are invalidated by other sets. */
5256 for (i = 0; i < n_sets; i++)
5258 if (sets[i].rtl)
5260 rtx x = sets[i].inner_dest;
5261 struct table_elt *elt;
5262 enum machine_mode mode;
5263 unsigned hash;
5265 if (MEM_P (x))
5267 x = XEXP (x, 0);
5268 mode = GET_MODE (x);
5269 hash = HASH (x, mode);
5270 elt = lookup (x, hash, mode);
5271 if (!elt)
5273 if (insert_regs (x, NULL, 0))
5275 rehash_using_reg (x);
5276 hash = HASH (x, mode);
5278 elt = insert (x, NULL, hash, mode);
5281 sets[i].dest_addr_elt = elt;
5283 else
5284 sets[i].dest_addr_elt = NULL;
5288 invalidate_from_clobbers (x);
5290 /* Some registers are invalidated by subroutine calls. Memory is
5291 invalidated by non-constant calls. */
5293 if (CALL_P (insn))
5295 if (! CONST_OR_PURE_CALL_P (insn))
5296 invalidate_memory ();
5297 invalidate_for_call ();
5300 /* Now invalidate everything set by this instruction.
5301 If a SUBREG or other funny destination is being set,
5302 sets[i].rtl is still nonzero, so here we invalidate the reg
5303 a part of which is being set. */
5305 for (i = 0; i < n_sets; i++)
5306 if (sets[i].rtl)
5308 /* We can't use the inner dest, because the mode associated with
5309 a ZERO_EXTRACT is significant. */
5310 rtx dest = SET_DEST (sets[i].rtl);
5312 /* Needed for registers to remove the register from its
5313 previous quantity's chain.
5314 Needed for memory if this is a nonvarying address, unless
5315 we have just done an invalidate_memory that covers even those. */
5316 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5317 invalidate (dest, VOIDmode);
5318 else if (MEM_P (dest))
5319 invalidate (dest, VOIDmode);
5320 else if (GET_CODE (dest) == STRICT_LOW_PART
5321 || GET_CODE (dest) == ZERO_EXTRACT)
5322 invalidate (XEXP (dest, 0), GET_MODE (dest));
5325 /* A volatile ASM invalidates everything. */
5326 if (NONJUMP_INSN_P (insn)
5327 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5328 && MEM_VOLATILE_P (PATTERN (insn)))
5329 flush_hash_table ();
5331 /* Make sure registers mentioned in destinations
5332 are safe for use in an expression to be inserted.
5333 This removes from the hash table
5334 any invalid entry that refers to one of these registers.
5336 We don't care about the return value from mention_regs because
5337 we are going to hash the SET_DEST values unconditionally. */
5339 for (i = 0; i < n_sets; i++)
5341 if (sets[i].rtl)
5343 rtx x = SET_DEST (sets[i].rtl);
5345 if (!REG_P (x))
5346 mention_regs (x);
5347 else
5349 /* We used to rely on all references to a register becoming
5350 inaccessible when a register changes to a new quantity,
5351 since that changes the hash code. However, that is not
5352 safe, since after HASH_SIZE new quantities we get a
5353 hash 'collision' of a register with its own invalid
5354 entries. And since SUBREGs have been changed not to
5355 change their hash code with the hash code of the register,
5356 it wouldn't work any longer at all. So we have to check
5357 for any invalid references lying around now.
5358 This code is similar to the REG case in mention_regs,
5359 but it knows that reg_tick has been incremented, and
5360 it leaves reg_in_table as -1 . */
5361 unsigned int regno = REGNO (x);
5362 unsigned int endregno
5363 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5364 : hard_regno_nregs[regno][GET_MODE (x)]);
5365 unsigned int i;
5367 for (i = regno; i < endregno; i++)
5369 if (REG_IN_TABLE (i) >= 0)
5371 remove_invalid_refs (i);
5372 REG_IN_TABLE (i) = -1;
5379 /* We may have just removed some of the src_elt's from the hash table.
5380 So replace each one with the current head of the same class.
5381 Also check if destination addresses have been removed. */
5383 for (i = 0; i < n_sets; i++)
5384 if (sets[i].rtl)
5386 if (sets[i].dest_addr_elt
5387 && sets[i].dest_addr_elt->first_same_value == 0)
5389 /* The elt was removed, which means this destination is not
5390 valid after this instruction. */
5391 sets[i].rtl = NULL_RTX;
5393 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5394 /* If elt was removed, find current head of same class,
5395 or 0 if nothing remains of that class. */
5397 struct table_elt *elt = sets[i].src_elt;
5399 while (elt && elt->prev_same_value)
5400 elt = elt->prev_same_value;
5402 while (elt && elt->first_same_value == 0)
5403 elt = elt->next_same_value;
5404 sets[i].src_elt = elt ? elt->first_same_value : 0;
5408 /* Now insert the destinations into their equivalence classes. */
5410 for (i = 0; i < n_sets; i++)
5411 if (sets[i].rtl)
5413 rtx dest = SET_DEST (sets[i].rtl);
5414 struct table_elt *elt;
5416 /* Don't record value if we are not supposed to risk allocating
5417 floating-point values in registers that might be wider than
5418 memory. */
5419 if ((flag_float_store
5420 && MEM_P (dest)
5421 && FLOAT_MODE_P (GET_MODE (dest)))
5422 /* Don't record BLKmode values, because we don't know the
5423 size of it, and can't be sure that other BLKmode values
5424 have the same or smaller size. */
5425 || GET_MODE (dest) == BLKmode
5426 /* Don't record values of destinations set inside a libcall block
5427 since we might delete the libcall. Things should have been set
5428 up so we won't want to reuse such a value, but we play it safe
5429 here. */
5430 || libcall_insn
5431 /* If we didn't put a REG_EQUAL value or a source into the hash
5432 table, there is no point is recording DEST. */
5433 || sets[i].src_elt == 0
5434 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5435 or SIGN_EXTEND, don't record DEST since it can cause
5436 some tracking to be wrong.
5438 ??? Think about this more later. */
5439 || (GET_CODE (dest) == SUBREG
5440 && (GET_MODE_SIZE (GET_MODE (dest))
5441 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5442 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5443 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5444 continue;
5446 /* STRICT_LOW_PART isn't part of the value BEING set,
5447 and neither is the SUBREG inside it.
5448 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5449 if (GET_CODE (dest) == STRICT_LOW_PART)
5450 dest = SUBREG_REG (XEXP (dest, 0));
5452 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5453 /* Registers must also be inserted into chains for quantities. */
5454 if (insert_regs (dest, sets[i].src_elt, 1))
5456 /* If `insert_regs' changes something, the hash code must be
5457 recalculated. */
5458 rehash_using_reg (dest);
5459 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5462 elt = insert (dest, sets[i].src_elt,
5463 sets[i].dest_hash, GET_MODE (dest));
5465 elt->in_memory = (MEM_P (sets[i].inner_dest)
5466 && !MEM_READONLY_P (sets[i].inner_dest));
5468 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5469 narrower than M2, and both M1 and M2 are the same number of words,
5470 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5471 make that equivalence as well.
5473 However, BAR may have equivalences for which gen_lowpart
5474 will produce a simpler value than gen_lowpart applied to
5475 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5476 BAR's equivalences. If we don't get a simplified form, make
5477 the SUBREG. It will not be used in an equivalence, but will
5478 cause two similar assignments to be detected.
5480 Note the loop below will find SUBREG_REG (DEST) since we have
5481 already entered SRC and DEST of the SET in the table. */
5483 if (GET_CODE (dest) == SUBREG
5484 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5485 / UNITS_PER_WORD)
5486 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5487 && (GET_MODE_SIZE (GET_MODE (dest))
5488 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5489 && sets[i].src_elt != 0)
5491 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5492 struct table_elt *elt, *classp = 0;
5494 for (elt = sets[i].src_elt->first_same_value; elt;
5495 elt = elt->next_same_value)
5497 rtx new_src = 0;
5498 unsigned src_hash;
5499 struct table_elt *src_elt;
5500 int byte = 0;
5502 /* Ignore invalid entries. */
5503 if (!REG_P (elt->exp)
5504 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5505 continue;
5507 /* We may have already been playing subreg games. If the
5508 mode is already correct for the destination, use it. */
5509 if (GET_MODE (elt->exp) == new_mode)
5510 new_src = elt->exp;
5511 else
5513 /* Calculate big endian correction for the SUBREG_BYTE.
5514 We have already checked that M1 (GET_MODE (dest))
5515 is not narrower than M2 (new_mode). */
5516 if (BYTES_BIG_ENDIAN)
5517 byte = (GET_MODE_SIZE (GET_MODE (dest))
5518 - GET_MODE_SIZE (new_mode));
5520 new_src = simplify_gen_subreg (new_mode, elt->exp,
5521 GET_MODE (dest), byte);
5524 /* The call to simplify_gen_subreg fails if the value
5525 is VOIDmode, yet we can't do any simplification, e.g.
5526 for EXPR_LISTs denoting function call results.
5527 It is invalid to construct a SUBREG with a VOIDmode
5528 SUBREG_REG, hence a zero new_src means we can't do
5529 this substitution. */
5530 if (! new_src)
5531 continue;
5533 src_hash = HASH (new_src, new_mode);
5534 src_elt = lookup (new_src, src_hash, new_mode);
5536 /* Put the new source in the hash table is if isn't
5537 already. */
5538 if (src_elt == 0)
5540 if (insert_regs (new_src, classp, 0))
5542 rehash_using_reg (new_src);
5543 src_hash = HASH (new_src, new_mode);
5545 src_elt = insert (new_src, classp, src_hash, new_mode);
5546 src_elt->in_memory = elt->in_memory;
5548 else if (classp && classp != src_elt->first_same_value)
5549 /* Show that two things that we've seen before are
5550 actually the same. */
5551 merge_equiv_classes (src_elt, classp);
5553 classp = src_elt->first_same_value;
5554 /* Ignore invalid entries. */
5555 while (classp
5556 && !REG_P (classp->exp)
5557 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5558 classp = classp->next_same_value;
5563 /* Special handling for (set REG0 REG1) where REG0 is the
5564 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5565 be used in the sequel, so (if easily done) change this insn to
5566 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5567 that computed their value. Then REG1 will become a dead store
5568 and won't cloud the situation for later optimizations.
5570 Do not make this change if REG1 is a hard register, because it will
5571 then be used in the sequel and we may be changing a two-operand insn
5572 into a three-operand insn.
5574 Also do not do this if we are operating on a copy of INSN.
5576 Also don't do this if INSN ends a libcall; this would cause an unrelated
5577 register to be set in the middle of a libcall, and we then get bad code
5578 if the libcall is deleted. */
5580 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5581 && NEXT_INSN (PREV_INSN (insn)) == insn
5582 && REG_P (SET_SRC (sets[0].rtl))
5583 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5584 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5586 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5587 struct qty_table_elem *src_ent = &qty_table[src_q];
5589 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5590 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5592 rtx prev = insn;
5593 /* Scan for the previous nonnote insn, but stop at a basic
5594 block boundary. */
5597 prev = PREV_INSN (prev);
5599 while (prev && NOTE_P (prev)
5600 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
5602 /* Do not swap the registers around if the previous instruction
5603 attaches a REG_EQUIV note to REG1.
5605 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5606 from the pseudo that originally shadowed an incoming argument
5607 to another register. Some uses of REG_EQUIV might rely on it
5608 being attached to REG1 rather than REG2.
5610 This section previously turned the REG_EQUIV into a REG_EQUAL
5611 note. We cannot do that because REG_EQUIV may provide an
5612 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5614 if (prev != 0 && NONJUMP_INSN_P (prev)
5615 && GET_CODE (PATTERN (prev)) == SET
5616 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5617 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5619 rtx dest = SET_DEST (sets[0].rtl);
5620 rtx src = SET_SRC (sets[0].rtl);
5621 rtx note;
5623 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5624 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5625 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5626 apply_change_group ();
5628 /* If INSN has a REG_EQUAL note, and this note mentions
5629 REG0, then we must delete it, because the value in
5630 REG0 has changed. If the note's value is REG1, we must
5631 also delete it because that is now this insn's dest. */
5632 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5633 if (note != 0
5634 && (reg_mentioned_p (dest, XEXP (note, 0))
5635 || rtx_equal_p (src, XEXP (note, 0))))
5636 remove_note (insn, note);
5641 /* If this is a conditional jump insn, record any known equivalences due to
5642 the condition being tested. */
5644 if (JUMP_P (insn)
5645 && n_sets == 1 && GET_CODE (x) == SET
5646 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
5647 record_jump_equiv (insn, 0);
5649 #ifdef HAVE_cc0
5650 /* If the previous insn set CC0 and this insn no longer references CC0,
5651 delete the previous insn. Here we use the fact that nothing expects CC0
5652 to be valid over an insn, which is true until the final pass. */
5653 if (prev_insn && NONJUMP_INSN_P (prev_insn)
5654 && (tem = single_set (prev_insn)) != 0
5655 && SET_DEST (tem) == cc0_rtx
5656 && ! reg_mentioned_p (cc0_rtx, x))
5657 delete_insn (prev_insn);
5659 prev_insn_cc0 = this_insn_cc0;
5660 prev_insn_cc0_mode = this_insn_cc0_mode;
5661 prev_insn = insn;
5662 #endif
5665 /* Remove from the hash table all expressions that reference memory. */
5667 static void
5668 invalidate_memory (void)
5670 int i;
5671 struct table_elt *p, *next;
5673 for (i = 0; i < HASH_SIZE; i++)
5674 for (p = table[i]; p; p = next)
5676 next = p->next_same_hash;
5677 if (p->in_memory)
5678 remove_from_table (p, i);
5682 /* If ADDR is an address that implicitly affects the stack pointer, return
5683 1 and update the register tables to show the effect. Else, return 0. */
5685 static int
5686 addr_affects_sp_p (rtx addr)
5688 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5689 && REG_P (XEXP (addr, 0))
5690 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
5692 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
5694 REG_TICK (STACK_POINTER_REGNUM)++;
5695 /* Is it possible to use a subreg of SP? */
5696 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
5699 /* This should be *very* rare. */
5700 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
5701 invalidate (stack_pointer_rtx, VOIDmode);
5703 return 1;
5706 return 0;
5709 /* Perform invalidation on the basis of everything about an insn
5710 except for invalidating the actual places that are SET in it.
5711 This includes the places CLOBBERed, and anything that might
5712 alias with something that is SET or CLOBBERed.
5714 X is the pattern of the insn. */
5716 static void
5717 invalidate_from_clobbers (rtx x)
5719 if (GET_CODE (x) == CLOBBER)
5721 rtx ref = XEXP (x, 0);
5722 if (ref)
5724 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5725 || MEM_P (ref))
5726 invalidate (ref, VOIDmode);
5727 else if (GET_CODE (ref) == STRICT_LOW_PART
5728 || GET_CODE (ref) == ZERO_EXTRACT)
5729 invalidate (XEXP (ref, 0), GET_MODE (ref));
5732 else if (GET_CODE (x) == PARALLEL)
5734 int i;
5735 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5737 rtx y = XVECEXP (x, 0, i);
5738 if (GET_CODE (y) == CLOBBER)
5740 rtx ref = XEXP (y, 0);
5741 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5742 || MEM_P (ref))
5743 invalidate (ref, VOIDmode);
5744 else if (GET_CODE (ref) == STRICT_LOW_PART
5745 || GET_CODE (ref) == ZERO_EXTRACT)
5746 invalidate (XEXP (ref, 0), GET_MODE (ref));
5752 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5753 and replace any registers in them with either an equivalent constant
5754 or the canonical form of the register. If we are inside an address,
5755 only do this if the address remains valid.
5757 OBJECT is 0 except when within a MEM in which case it is the MEM.
5759 Return the replacement for X. */
5761 static rtx
5762 cse_process_notes (rtx x, rtx object)
5764 enum rtx_code code = GET_CODE (x);
5765 const char *fmt = GET_RTX_FORMAT (code);
5766 int i;
5768 switch (code)
5770 case CONST_INT:
5771 case CONST:
5772 case SYMBOL_REF:
5773 case LABEL_REF:
5774 case CONST_DOUBLE:
5775 case CONST_VECTOR:
5776 case PC:
5777 case CC0:
5778 case LO_SUM:
5779 return x;
5781 case MEM:
5782 validate_change (x, &XEXP (x, 0),
5783 cse_process_notes (XEXP (x, 0), x), 0);
5784 return x;
5786 case EXPR_LIST:
5787 case INSN_LIST:
5788 if (REG_NOTE_KIND (x) == REG_EQUAL)
5789 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
5790 if (XEXP (x, 1))
5791 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
5792 return x;
5794 case SIGN_EXTEND:
5795 case ZERO_EXTEND:
5796 case SUBREG:
5798 rtx new = cse_process_notes (XEXP (x, 0), object);
5799 /* We don't substitute VOIDmode constants into these rtx,
5800 since they would impede folding. */
5801 if (GET_MODE (new) != VOIDmode)
5802 validate_change (object, &XEXP (x, 0), new, 0);
5803 return x;
5806 case REG:
5807 i = REG_QTY (REGNO (x));
5809 /* Return a constant or a constant register. */
5810 if (REGNO_QTY_VALID_P (REGNO (x)))
5812 struct qty_table_elem *ent = &qty_table[i];
5814 if (ent->const_rtx != NULL_RTX
5815 && (CONSTANT_P (ent->const_rtx)
5816 || REG_P (ent->const_rtx)))
5818 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5819 if (new)
5820 return copy_rtx (new);
5824 /* Otherwise, canonicalize this register. */
5825 return canon_reg (x, NULL_RTX);
5827 default:
5828 break;
5831 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5832 if (fmt[i] == 'e')
5833 validate_change (object, &XEXP (x, i),
5834 cse_process_notes (XEXP (x, i), object), 0);
5836 return x;
5839 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
5840 since they are done elsewhere. This function is called via note_stores. */
5842 static void
5843 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
5845 enum rtx_code code = GET_CODE (dest);
5847 if (code == MEM
5848 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
5849 /* There are times when an address can appear varying and be a PLUS
5850 during this scan when it would be a fixed address were we to know
5851 the proper equivalences. So invalidate all memory if there is
5852 a BLKmode or nonscalar memory reference or a reference to a
5853 variable address. */
5854 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
5855 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
5857 invalidate_memory ();
5858 return;
5861 if (GET_CODE (set) == CLOBBER
5862 || CC0_P (dest)
5863 || dest == pc_rtx)
5864 return;
5866 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
5867 invalidate (XEXP (dest, 0), GET_MODE (dest));
5868 else if (code == REG || code == SUBREG || code == MEM)
5869 invalidate (dest, VOIDmode);
5872 /* Invalidate all insns from START up to the end of the function or the
5873 next label. This called when we wish to CSE around a block that is
5874 conditionally executed. */
5876 static void
5877 invalidate_skipped_block (rtx start)
5879 rtx insn;
5881 for (insn = start; insn && !LABEL_P (insn);
5882 insn = NEXT_INSN (insn))
5884 if (! INSN_P (insn))
5885 continue;
5887 if (CALL_P (insn))
5889 if (! CONST_OR_PURE_CALL_P (insn))
5890 invalidate_memory ();
5891 invalidate_for_call ();
5894 invalidate_from_clobbers (PATTERN (insn));
5895 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
5899 /* Find the end of INSN's basic block and return its range,
5900 the total number of SETs in all the insns of the block, the last insn of the
5901 block, and the branch path.
5903 The branch path indicates which branches should be followed. If a nonzero
5904 path size is specified, the block should be rescanned and a different set
5905 of branches will be taken. The branch path is only used if
5906 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
5908 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
5909 used to describe the block. It is filled in with the information about
5910 the current block. The incoming structure's branch path, if any, is used
5911 to construct the output branch path. */
5913 static void
5914 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
5915 int follow_jumps, int skip_blocks)
5917 rtx p = insn, q;
5918 int nsets = 0;
5919 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
5920 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
5921 int path_size = data->path_size;
5922 int path_entry = 0;
5923 int i;
5925 /* Update the previous branch path, if any. If the last branch was
5926 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
5927 If it was previously PATH_NOT_TAKEN,
5928 shorten the path by one and look at the previous branch. We know that
5929 at least one branch must have been taken if PATH_SIZE is nonzero. */
5930 while (path_size > 0)
5932 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
5934 data->path[path_size - 1].status = PATH_NOT_TAKEN;
5935 break;
5937 else
5938 path_size--;
5941 /* If the first instruction is marked with QImode, that means we've
5942 already processed this block. Our caller will look at DATA->LAST
5943 to figure out where to go next. We want to return the next block
5944 in the instruction stream, not some branched-to block somewhere
5945 else. We accomplish this by pretending our called forbid us to
5946 follow jumps, or skip blocks. */
5947 if (GET_MODE (insn) == QImode)
5948 follow_jumps = skip_blocks = 0;
5950 /* Scan to end of this basic block. */
5951 while (p && !LABEL_P (p))
5953 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5954 the regs restored by the longjmp come from
5955 a later time than the setjmp. */
5956 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
5957 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
5958 break;
5960 /* A PARALLEL can have lots of SETs in it,
5961 especially if it is really an ASM_OPERANDS. */
5962 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
5963 nsets += XVECLEN (PATTERN (p), 0);
5964 else if (!NOTE_P (p))
5965 nsets += 1;
5967 /* Ignore insns made by CSE; they cannot affect the boundaries of
5968 the basic block. */
5970 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
5971 high_cuid = INSN_CUID (p);
5972 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
5973 low_cuid = INSN_CUID (p);
5975 /* See if this insn is in our branch path. If it is and we are to
5976 take it, do so. */
5977 if (path_entry < path_size && data->path[path_entry].branch == p)
5979 if (data->path[path_entry].status != PATH_NOT_TAKEN)
5980 p = JUMP_LABEL (p);
5982 /* Point to next entry in path, if any. */
5983 path_entry++;
5986 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
5987 was specified, we haven't reached our maximum path length, there are
5988 insns following the target of the jump, this is the only use of the
5989 jump label, and the target label is preceded by a BARRIER.
5991 Alternatively, we can follow the jump if it branches around a
5992 block of code and there are no other branches into the block.
5993 In this case invalidate_skipped_block will be called to invalidate any
5994 registers set in the block when following the jump. */
5996 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
5997 && JUMP_P (p)
5998 && GET_CODE (PATTERN (p)) == SET
5999 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6000 && JUMP_LABEL (p) != 0
6001 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6002 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6004 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6005 if ((!NOTE_P (q)
6006 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6007 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6008 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6009 break;
6011 /* If we ran into a BARRIER, this code is an extension of the
6012 basic block when the branch is taken. */
6013 if (follow_jumps && q != 0 && BARRIER_P (q))
6015 /* Don't allow ourself to keep walking around an
6016 always-executed loop. */
6017 if (next_real_insn (q) == next)
6019 p = NEXT_INSN (p);
6020 continue;
6023 /* Similarly, don't put a branch in our path more than once. */
6024 for (i = 0; i < path_entry; i++)
6025 if (data->path[i].branch == p)
6026 break;
6028 if (i != path_entry)
6029 break;
6031 data->path[path_entry].branch = p;
6032 data->path[path_entry++].status = PATH_TAKEN;
6034 /* This branch now ends our path. It was possible that we
6035 didn't see this branch the last time around (when the
6036 insn in front of the target was a JUMP_INSN that was
6037 turned into a no-op). */
6038 path_size = path_entry;
6040 p = JUMP_LABEL (p);
6041 /* Mark block so we won't scan it again later. */
6042 PUT_MODE (NEXT_INSN (p), QImode);
6044 /* Detect a branch around a block of code. */
6045 else if (skip_blocks && q != 0 && !LABEL_P (q))
6047 rtx tmp;
6049 if (next_real_insn (q) == next)
6051 p = NEXT_INSN (p);
6052 continue;
6055 for (i = 0; i < path_entry; i++)
6056 if (data->path[i].branch == p)
6057 break;
6059 if (i != path_entry)
6060 break;
6062 /* This is no_labels_between_p (p, q) with an added check for
6063 reaching the end of a function (in case Q precedes P). */
6064 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6065 if (LABEL_P (tmp))
6066 break;
6068 if (tmp == q)
6070 data->path[path_entry].branch = p;
6071 data->path[path_entry++].status = PATH_AROUND;
6073 path_size = path_entry;
6075 p = JUMP_LABEL (p);
6076 /* Mark block so we won't scan it again later. */
6077 PUT_MODE (NEXT_INSN (p), QImode);
6081 p = NEXT_INSN (p);
6084 data->low_cuid = low_cuid;
6085 data->high_cuid = high_cuid;
6086 data->nsets = nsets;
6087 data->last = p;
6089 /* If all jumps in the path are not taken, set our path length to zero
6090 so a rescan won't be done. */
6091 for (i = path_size - 1; i >= 0; i--)
6092 if (data->path[i].status != PATH_NOT_TAKEN)
6093 break;
6095 if (i == -1)
6096 data->path_size = 0;
6097 else
6098 data->path_size = path_size;
6100 /* End the current branch path. */
6101 data->path[path_size].branch = 0;
6104 /* Perform cse on the instructions of a function.
6105 F is the first instruction.
6106 NREGS is one plus the highest pseudo-reg number used in the instruction.
6108 Returns 1 if jump_optimize should be redone due to simplifications
6109 in conditional jump instructions. */
6112 cse_main (rtx f, int nregs)
6114 struct cse_basic_block_data val;
6115 rtx insn = f;
6116 int i;
6118 init_cse_reg_info (nregs);
6120 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6122 cse_jumps_altered = 0;
6123 recorded_label_ref = 0;
6124 constant_pool_entries_cost = 0;
6125 constant_pool_entries_regcost = 0;
6126 val.path_size = 0;
6127 rtl_hooks = cse_rtl_hooks;
6129 init_recog ();
6130 init_alias_analysis ();
6132 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6134 /* Find the largest uid. */
6136 max_uid = get_max_uid ();
6137 uid_cuid = XCNEWVEC (int, max_uid + 1);
6139 /* Compute the mapping from uids to cuids.
6140 CUIDs are numbers assigned to insns, like uids,
6141 except that cuids increase monotonically through the code.
6142 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6143 between two insns is not affected by -g. */
6145 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6147 if (!NOTE_P (insn)
6148 || NOTE_LINE_NUMBER (insn) < 0)
6149 INSN_CUID (insn) = ++i;
6150 else
6151 /* Give a line number note the same cuid as preceding insn. */
6152 INSN_CUID (insn) = i;
6155 /* Loop over basic blocks.
6156 Compute the maximum number of qty's needed for each basic block
6157 (which is 2 for each SET). */
6158 insn = f;
6159 while (insn)
6161 cse_altered = 0;
6162 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6163 flag_cse_skip_blocks);
6165 /* If this basic block was already processed or has no sets, skip it. */
6166 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6168 PUT_MODE (insn, VOIDmode);
6169 insn = (val.last ? NEXT_INSN (val.last) : 0);
6170 val.path_size = 0;
6171 continue;
6174 cse_basic_block_start = val.low_cuid;
6175 cse_basic_block_end = val.high_cuid;
6176 max_qty = val.nsets * 2;
6178 if (dump_file)
6179 fprintf (dump_file, ";; Processing block from %d to %d, %d sets.\n",
6180 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6181 val.nsets);
6183 /* Make MAX_QTY bigger to give us room to optimize
6184 past the end of this basic block, if that should prove useful. */
6185 if (max_qty < 500)
6186 max_qty = 500;
6188 /* If this basic block is being extended by following certain jumps,
6189 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6190 Otherwise, we start after this basic block. */
6191 if (val.path_size > 0)
6192 cse_basic_block (insn, val.last, val.path);
6193 else
6195 int old_cse_jumps_altered = cse_jumps_altered;
6196 rtx temp;
6198 /* When cse changes a conditional jump to an unconditional
6199 jump, we want to reprocess the block, since it will give
6200 us a new branch path to investigate. */
6201 cse_jumps_altered = 0;
6202 temp = cse_basic_block (insn, val.last, val.path);
6203 if (cse_jumps_altered == 0
6204 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6205 insn = temp;
6207 cse_jumps_altered |= old_cse_jumps_altered;
6210 if (cse_altered)
6211 ggc_collect ();
6213 #ifdef USE_C_ALLOCA
6214 alloca (0);
6215 #endif
6218 /* Clean up. */
6219 end_alias_analysis ();
6220 free (uid_cuid);
6221 free (reg_eqv_table);
6222 free (val.path);
6223 rtl_hooks = general_rtl_hooks;
6225 return cse_jumps_altered || recorded_label_ref;
6228 /* Process a single basic block. FROM and TO and the limits of the basic
6229 block. NEXT_BRANCH points to the branch path when following jumps or
6230 a null path when not following jumps. */
6232 static rtx
6233 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6235 rtx insn;
6236 int to_usage = 0;
6237 rtx libcall_insn = NULL_RTX;
6238 int num_insns = 0;
6239 int no_conflict = 0;
6241 /* Allocate the space needed by qty_table. */
6242 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6244 new_basic_block ();
6246 /* TO might be a label. If so, protect it from being deleted. */
6247 if (to != 0 && LABEL_P (to))
6248 ++LABEL_NUSES (to);
6250 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6252 enum rtx_code code = GET_CODE (insn);
6254 /* If we have processed 1,000 insns, flush the hash table to
6255 avoid extreme quadratic behavior. We must not include NOTEs
6256 in the count since there may be more of them when generating
6257 debugging information. If we clear the table at different
6258 times, code generated with -g -O might be different than code
6259 generated with -O but not -g.
6261 ??? This is a real kludge and needs to be done some other way.
6262 Perhaps for 2.9. */
6263 if (code != NOTE && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6265 flush_hash_table ();
6266 num_insns = 0;
6269 /* See if this is a branch that is part of the path. If so, and it is
6270 to be taken, do so. */
6271 if (next_branch->branch == insn)
6273 enum taken status = next_branch++->status;
6274 if (status != PATH_NOT_TAKEN)
6276 if (status == PATH_TAKEN)
6277 record_jump_equiv (insn, 1);
6278 else
6279 invalidate_skipped_block (NEXT_INSN (insn));
6281 /* Set the last insn as the jump insn; it doesn't affect cc0.
6282 Then follow this branch. */
6283 #ifdef HAVE_cc0
6284 prev_insn_cc0 = 0;
6285 prev_insn = insn;
6286 #endif
6287 insn = JUMP_LABEL (insn);
6288 continue;
6292 if (GET_MODE (insn) == QImode)
6293 PUT_MODE (insn, VOIDmode);
6295 if (GET_RTX_CLASS (code) == RTX_INSN)
6297 rtx p;
6299 /* Process notes first so we have all notes in canonical forms when
6300 looking for duplicate operations. */
6302 if (REG_NOTES (insn))
6303 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6305 /* Track when we are inside in LIBCALL block. Inside such a block,
6306 we do not want to record destinations. The last insn of a
6307 LIBCALL block is not considered to be part of the block, since
6308 its destination is the result of the block and hence should be
6309 recorded. */
6311 if (REG_NOTES (insn) != 0)
6313 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6314 libcall_insn = XEXP (p, 0);
6315 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6317 /* Keep libcall_insn for the last SET insn of a no-conflict
6318 block to prevent changing the destination. */
6319 if (! no_conflict)
6320 libcall_insn = 0;
6321 else
6322 no_conflict = -1;
6324 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6325 no_conflict = 1;
6328 cse_insn (insn, libcall_insn);
6330 if (no_conflict == -1)
6332 libcall_insn = 0;
6333 no_conflict = 0;
6336 /* If we haven't already found an insn where we added a LABEL_REF,
6337 check this one. */
6338 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6339 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6340 (void *) insn))
6341 recorded_label_ref = 1;
6344 /* If INSN is now an unconditional jump, skip to the end of our
6345 basic block by pretending that we just did the last insn in the
6346 basic block. If we are jumping to the end of our block, show
6347 that we can have one usage of TO. */
6349 if (any_uncondjump_p (insn))
6351 if (to == 0)
6353 free (qty_table);
6354 return 0;
6357 if (JUMP_LABEL (insn) == to)
6358 to_usage = 1;
6360 /* Maybe TO was deleted because the jump is unconditional.
6361 If so, there is nothing left in this basic block. */
6362 /* ??? Perhaps it would be smarter to set TO
6363 to whatever follows this insn,
6364 and pretend the basic block had always ended here. */
6365 if (INSN_DELETED_P (to))
6366 break;
6368 insn = PREV_INSN (to);
6371 /* See if it is ok to keep on going past the label
6372 which used to end our basic block. Remember that we incremented
6373 the count of that label, so we decrement it here. If we made
6374 a jump unconditional, TO_USAGE will be one; in that case, we don't
6375 want to count the use in that jump. */
6377 if (to != 0 && NEXT_INSN (insn) == to
6378 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
6380 struct cse_basic_block_data val;
6381 rtx prev;
6383 insn = NEXT_INSN (to);
6385 /* If TO was the last insn in the function, we are done. */
6386 if (insn == 0)
6388 free (qty_table);
6389 return 0;
6392 /* If TO was preceded by a BARRIER we are done with this block
6393 because it has no continuation. */
6394 prev = prev_nonnote_insn (to);
6395 if (prev && BARRIER_P (prev))
6397 free (qty_table);
6398 return insn;
6401 /* Find the end of the following block. Note that we won't be
6402 following branches in this case. */
6403 to_usage = 0;
6404 val.path_size = 0;
6405 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6406 cse_end_of_basic_block (insn, &val, 0, 0);
6407 free (val.path);
6409 /* If the tables we allocated have enough space left
6410 to handle all the SETs in the next basic block,
6411 continue through it. Otherwise, return,
6412 and that block will be scanned individually. */
6413 if (val.nsets * 2 + next_qty > max_qty)
6414 break;
6416 cse_basic_block_start = val.low_cuid;
6417 cse_basic_block_end = val.high_cuid;
6418 to = val.last;
6420 /* Prevent TO from being deleted if it is a label. */
6421 if (to != 0 && LABEL_P (to))
6422 ++LABEL_NUSES (to);
6424 /* Back up so we process the first insn in the extension. */
6425 insn = PREV_INSN (insn);
6429 gcc_assert (next_qty <= max_qty);
6431 free (qty_table);
6433 return to ? NEXT_INSN (to) : 0;
6436 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6437 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6439 static int
6440 check_for_label_ref (rtx *rtl, void *data)
6442 rtx insn = (rtx) data;
6444 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6445 we must rerun jump since it needs to place the note. If this is a
6446 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6447 since no REG_LABEL will be added. */
6448 return (GET_CODE (*rtl) == LABEL_REF
6449 && ! LABEL_REF_NONLOCAL_P (*rtl)
6450 && LABEL_P (XEXP (*rtl, 0))
6451 && INSN_UID (XEXP (*rtl, 0)) != 0
6452 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6455 /* Count the number of times registers are used (not set) in X.
6456 COUNTS is an array in which we accumulate the count, INCR is how much
6457 we count each register usage.
6459 Don't count a usage of DEST, which is the SET_DEST of a SET which
6460 contains X in its SET_SRC. This is because such a SET does not
6461 modify the liveness of DEST.
6462 DEST is set to pc_rtx for a trapping insn, which means that we must count
6463 uses of a SET_DEST regardless because the insn can't be deleted here. */
6465 static void
6466 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6468 enum rtx_code code;
6469 rtx note;
6470 const char *fmt;
6471 int i, j;
6473 if (x == 0)
6474 return;
6476 switch (code = GET_CODE (x))
6478 case REG:
6479 if (x != dest)
6480 counts[REGNO (x)] += incr;
6481 return;
6483 case PC:
6484 case CC0:
6485 case CONST:
6486 case CONST_INT:
6487 case CONST_DOUBLE:
6488 case CONST_VECTOR:
6489 case SYMBOL_REF:
6490 case LABEL_REF:
6491 return;
6493 case CLOBBER:
6494 /* If we are clobbering a MEM, mark any registers inside the address
6495 as being used. */
6496 if (MEM_P (XEXP (x, 0)))
6497 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6498 return;
6500 case SET:
6501 /* Unless we are setting a REG, count everything in SET_DEST. */
6502 if (!REG_P (SET_DEST (x)))
6503 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6504 count_reg_usage (SET_SRC (x), counts,
6505 dest ? dest : SET_DEST (x),
6506 incr);
6507 return;
6509 case CALL_INSN:
6510 case INSN:
6511 case JUMP_INSN:
6512 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6513 this fact by setting DEST to pc_rtx. */
6514 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6515 dest = pc_rtx;
6516 if (code == CALL_INSN)
6517 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6518 count_reg_usage (PATTERN (x), counts, dest, incr);
6520 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6521 use them. */
6523 note = find_reg_equal_equiv_note (x);
6524 if (note)
6526 rtx eqv = XEXP (note, 0);
6528 if (GET_CODE (eqv) == EXPR_LIST)
6529 /* This REG_EQUAL note describes the result of a function call.
6530 Process all the arguments. */
6533 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6534 eqv = XEXP (eqv, 1);
6536 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6537 else
6538 count_reg_usage (eqv, counts, dest, incr);
6540 return;
6542 case EXPR_LIST:
6543 if (REG_NOTE_KIND (x) == REG_EQUAL
6544 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6545 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6546 involving registers in the address. */
6547 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6548 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6550 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6551 return;
6553 case ASM_OPERANDS:
6554 /* If the asm is volatile, then this insn cannot be deleted,
6555 and so the inputs *must* be live. */
6556 if (MEM_VOLATILE_P (x))
6557 dest = NULL_RTX;
6558 /* Iterate over just the inputs, not the constraints as well. */
6559 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6560 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6561 return;
6563 case INSN_LIST:
6564 gcc_unreachable ();
6566 default:
6567 break;
6570 fmt = GET_RTX_FORMAT (code);
6571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6573 if (fmt[i] == 'e')
6574 count_reg_usage (XEXP (x, i), counts, dest, incr);
6575 else if (fmt[i] == 'E')
6576 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6577 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6581 /* Return true if set is live. */
6582 static bool
6583 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6584 int *counts)
6586 #ifdef HAVE_cc0
6587 rtx tem;
6588 #endif
6590 if (set_noop_p (set))
6593 #ifdef HAVE_cc0
6594 else if (GET_CODE (SET_DEST (set)) == CC0
6595 && !side_effects_p (SET_SRC (set))
6596 && ((tem = next_nonnote_insn (insn)) == 0
6597 || !INSN_P (tem)
6598 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6599 return false;
6600 #endif
6601 else if (!REG_P (SET_DEST (set))
6602 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6603 || counts[REGNO (SET_DEST (set))] != 0
6604 || side_effects_p (SET_SRC (set)))
6605 return true;
6606 return false;
6609 /* Return true if insn is live. */
6611 static bool
6612 insn_live_p (rtx insn, int *counts)
6614 int i;
6615 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6616 return true;
6617 else if (GET_CODE (PATTERN (insn)) == SET)
6618 return set_live_p (PATTERN (insn), insn, counts);
6619 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6621 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6623 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6625 if (GET_CODE (elt) == SET)
6627 if (set_live_p (elt, insn, counts))
6628 return true;
6630 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6631 return true;
6633 return false;
6635 else
6636 return true;
6639 /* Return true if libcall is dead as a whole. */
6641 static bool
6642 dead_libcall_p (rtx insn, int *counts)
6644 rtx note, set, new;
6646 /* See if there's a REG_EQUAL note on this insn and try to
6647 replace the source with the REG_EQUAL expression.
6649 We assume that insns with REG_RETVALs can only be reg->reg
6650 copies at this point. */
6651 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6652 if (!note)
6653 return false;
6655 set = single_set (insn);
6656 if (!set)
6657 return false;
6659 new = simplify_rtx (XEXP (note, 0));
6660 if (!new)
6661 new = XEXP (note, 0);
6663 /* While changing insn, we must update the counts accordingly. */
6664 count_reg_usage (insn, counts, NULL_RTX, -1);
6666 if (validate_change (insn, &SET_SRC (set), new, 0))
6668 count_reg_usage (insn, counts, NULL_RTX, 1);
6669 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6670 remove_note (insn, note);
6671 return true;
6674 if (CONSTANT_P (new))
6676 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6677 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6679 count_reg_usage (insn, counts, NULL_RTX, 1);
6680 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6681 remove_note (insn, note);
6682 return true;
6686 count_reg_usage (insn, counts, NULL_RTX, 1);
6687 return false;
6690 /* Scan all the insns and delete any that are dead; i.e., they store a register
6691 that is never used or they copy a register to itself.
6693 This is used to remove insns made obviously dead by cse, loop or other
6694 optimizations. It improves the heuristics in loop since it won't try to
6695 move dead invariants out of loops or make givs for dead quantities. The
6696 remaining passes of the compilation are also sped up. */
6699 delete_trivially_dead_insns (rtx insns, int nreg)
6701 int *counts;
6702 rtx insn, prev;
6703 int in_libcall = 0, dead_libcall = 0;
6704 int ndead = 0;
6706 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6707 /* First count the number of times each register is used. */
6708 counts = XCNEWVEC (int, nreg);
6709 for (insn = insns; insn; insn = NEXT_INSN (insn))
6710 if (INSN_P (insn))
6711 count_reg_usage (insn, counts, NULL_RTX, 1);
6713 /* Go from the last insn to the first and delete insns that only set unused
6714 registers or copy a register to itself. As we delete an insn, remove
6715 usage counts for registers it uses.
6717 The first jump optimization pass may leave a real insn as the last
6718 insn in the function. We must not skip that insn or we may end
6719 up deleting code that is not really dead. */
6720 for (insn = get_last_insn (); insn; insn = prev)
6722 int live_insn = 0;
6724 prev = PREV_INSN (insn);
6725 if (!INSN_P (insn))
6726 continue;
6728 /* Don't delete any insns that are part of a libcall block unless
6729 we can delete the whole libcall block.
6731 Flow or loop might get confused if we did that. Remember
6732 that we are scanning backwards. */
6733 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6735 in_libcall = 1;
6736 live_insn = 1;
6737 dead_libcall = dead_libcall_p (insn, counts);
6739 else if (in_libcall)
6740 live_insn = ! dead_libcall;
6741 else
6742 live_insn = insn_live_p (insn, counts);
6744 /* If this is a dead insn, delete it and show registers in it aren't
6745 being used. */
6747 if (! live_insn)
6749 count_reg_usage (insn, counts, NULL_RTX, -1);
6750 delete_insn_and_edges (insn);
6751 ndead++;
6754 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6756 in_libcall = 0;
6757 dead_libcall = 0;
6761 if (dump_file && ndead)
6762 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6763 ndead);
6764 /* Clean up. */
6765 free (counts);
6766 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6767 return ndead;
6770 /* This function is called via for_each_rtx. The argument, NEWREG, is
6771 a condition code register with the desired mode. If we are looking
6772 at the same register in a different mode, replace it with
6773 NEWREG. */
6775 static int
6776 cse_change_cc_mode (rtx *loc, void *data)
6778 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6780 if (*loc
6781 && REG_P (*loc)
6782 && REGNO (*loc) == REGNO (args->newreg)
6783 && GET_MODE (*loc) != GET_MODE (args->newreg))
6785 validate_change (args->insn, loc, args->newreg, 1);
6787 return -1;
6789 return 0;
6792 /* Change the mode of any reference to the register REGNO (NEWREG) to
6793 GET_MODE (NEWREG) in INSN. */
6795 static void
6796 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6798 struct change_cc_mode_args args;
6799 int success;
6801 if (!INSN_P (insn))
6802 return;
6804 args.insn = insn;
6805 args.newreg = newreg;
6807 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6808 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6810 /* If the following assertion was triggered, there is most probably
6811 something wrong with the cc_modes_compatible back end function.
6812 CC modes only can be considered compatible if the insn - with the mode
6813 replaced by any of the compatible modes - can still be recognized. */
6814 success = apply_change_group ();
6815 gcc_assert (success);
6818 /* Change the mode of any reference to the register REGNO (NEWREG) to
6819 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6820 any instruction which modifies NEWREG. */
6822 static void
6823 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6825 rtx insn;
6827 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6829 if (! INSN_P (insn))
6830 continue;
6832 if (reg_set_p (newreg, insn))
6833 return;
6835 cse_change_cc_mode_insn (insn, newreg);
6839 /* BB is a basic block which finishes with CC_REG as a condition code
6840 register which is set to CC_SRC. Look through the successors of BB
6841 to find blocks which have a single predecessor (i.e., this one),
6842 and look through those blocks for an assignment to CC_REG which is
6843 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6844 permitted to change the mode of CC_SRC to a compatible mode. This
6845 returns VOIDmode if no equivalent assignments were found.
6846 Otherwise it returns the mode which CC_SRC should wind up with.
6848 The main complexity in this function is handling the mode issues.
6849 We may have more than one duplicate which we can eliminate, and we
6850 try to find a mode which will work for multiple duplicates. */
6852 static enum machine_mode
6853 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6855 bool found_equiv;
6856 enum machine_mode mode;
6857 unsigned int insn_count;
6858 edge e;
6859 rtx insns[2];
6860 enum machine_mode modes[2];
6861 rtx last_insns[2];
6862 unsigned int i;
6863 rtx newreg;
6864 edge_iterator ei;
6866 /* We expect to have two successors. Look at both before picking
6867 the final mode for the comparison. If we have more successors
6868 (i.e., some sort of table jump, although that seems unlikely),
6869 then we require all beyond the first two to use the same
6870 mode. */
6872 found_equiv = false;
6873 mode = GET_MODE (cc_src);
6874 insn_count = 0;
6875 FOR_EACH_EDGE (e, ei, bb->succs)
6877 rtx insn;
6878 rtx end;
6880 if (e->flags & EDGE_COMPLEX)
6881 continue;
6883 if (EDGE_COUNT (e->dest->preds) != 1
6884 || e->dest == EXIT_BLOCK_PTR)
6885 continue;
6887 end = NEXT_INSN (BB_END (e->dest));
6888 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6890 rtx set;
6892 if (! INSN_P (insn))
6893 continue;
6895 /* If CC_SRC is modified, we have to stop looking for
6896 something which uses it. */
6897 if (modified_in_p (cc_src, insn))
6898 break;
6900 /* Check whether INSN sets CC_REG to CC_SRC. */
6901 set = single_set (insn);
6902 if (set
6903 && REG_P (SET_DEST (set))
6904 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6906 bool found;
6907 enum machine_mode set_mode;
6908 enum machine_mode comp_mode;
6910 found = false;
6911 set_mode = GET_MODE (SET_SRC (set));
6912 comp_mode = set_mode;
6913 if (rtx_equal_p (cc_src, SET_SRC (set)))
6914 found = true;
6915 else if (GET_CODE (cc_src) == COMPARE
6916 && GET_CODE (SET_SRC (set)) == COMPARE
6917 && mode != set_mode
6918 && rtx_equal_p (XEXP (cc_src, 0),
6919 XEXP (SET_SRC (set), 0))
6920 && rtx_equal_p (XEXP (cc_src, 1),
6921 XEXP (SET_SRC (set), 1)))
6924 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6925 if (comp_mode != VOIDmode
6926 && (can_change_mode || comp_mode == mode))
6927 found = true;
6930 if (found)
6932 found_equiv = true;
6933 if (insn_count < ARRAY_SIZE (insns))
6935 insns[insn_count] = insn;
6936 modes[insn_count] = set_mode;
6937 last_insns[insn_count] = end;
6938 ++insn_count;
6940 if (mode != comp_mode)
6942 gcc_assert (can_change_mode);
6943 mode = comp_mode;
6945 /* The modified insn will be re-recognized later. */
6946 PUT_MODE (cc_src, mode);
6949 else
6951 if (set_mode != mode)
6953 /* We found a matching expression in the
6954 wrong mode, but we don't have room to
6955 store it in the array. Punt. This case
6956 should be rare. */
6957 break;
6959 /* INSN sets CC_REG to a value equal to CC_SRC
6960 with the right mode. We can simply delete
6961 it. */
6962 delete_insn (insn);
6965 /* We found an instruction to delete. Keep looking,
6966 in the hopes of finding a three-way jump. */
6967 continue;
6970 /* We found an instruction which sets the condition
6971 code, so don't look any farther. */
6972 break;
6975 /* If INSN sets CC_REG in some other way, don't look any
6976 farther. */
6977 if (reg_set_p (cc_reg, insn))
6978 break;
6981 /* If we fell off the bottom of the block, we can keep looking
6982 through successors. We pass CAN_CHANGE_MODE as false because
6983 we aren't prepared to handle compatibility between the
6984 further blocks and this block. */
6985 if (insn == end)
6987 enum machine_mode submode;
6989 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6990 if (submode != VOIDmode)
6992 gcc_assert (submode == mode);
6993 found_equiv = true;
6994 can_change_mode = false;
6999 if (! found_equiv)
7000 return VOIDmode;
7002 /* Now INSN_COUNT is the number of instructions we found which set
7003 CC_REG to a value equivalent to CC_SRC. The instructions are in
7004 INSNS. The modes used by those instructions are in MODES. */
7006 newreg = NULL_RTX;
7007 for (i = 0; i < insn_count; ++i)
7009 if (modes[i] != mode)
7011 /* We need to change the mode of CC_REG in INSNS[i] and
7012 subsequent instructions. */
7013 if (! newreg)
7015 if (GET_MODE (cc_reg) == mode)
7016 newreg = cc_reg;
7017 else
7018 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7020 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7021 newreg);
7024 delete_insn (insns[i]);
7027 return mode;
7030 /* If we have a fixed condition code register (or two), walk through
7031 the instructions and try to eliminate duplicate assignments. */
7033 static void
7034 cse_condition_code_reg (void)
7036 unsigned int cc_regno_1;
7037 unsigned int cc_regno_2;
7038 rtx cc_reg_1;
7039 rtx cc_reg_2;
7040 basic_block bb;
7042 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7043 return;
7045 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7046 if (cc_regno_2 != INVALID_REGNUM)
7047 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7048 else
7049 cc_reg_2 = NULL_RTX;
7051 FOR_EACH_BB (bb)
7053 rtx last_insn;
7054 rtx cc_reg;
7055 rtx insn;
7056 rtx cc_src_insn;
7057 rtx cc_src;
7058 enum machine_mode mode;
7059 enum machine_mode orig_mode;
7061 /* Look for blocks which end with a conditional jump based on a
7062 condition code register. Then look for the instruction which
7063 sets the condition code register. Then look through the
7064 successor blocks for instructions which set the condition
7065 code register to the same value. There are other possible
7066 uses of the condition code register, but these are by far the
7067 most common and the ones which we are most likely to be able
7068 to optimize. */
7070 last_insn = BB_END (bb);
7071 if (!JUMP_P (last_insn))
7072 continue;
7074 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7075 cc_reg = cc_reg_1;
7076 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7077 cc_reg = cc_reg_2;
7078 else
7079 continue;
7081 cc_src_insn = NULL_RTX;
7082 cc_src = NULL_RTX;
7083 for (insn = PREV_INSN (last_insn);
7084 insn && insn != PREV_INSN (BB_HEAD (bb));
7085 insn = PREV_INSN (insn))
7087 rtx set;
7089 if (! INSN_P (insn))
7090 continue;
7091 set = single_set (insn);
7092 if (set
7093 && REG_P (SET_DEST (set))
7094 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7096 cc_src_insn = insn;
7097 cc_src = SET_SRC (set);
7098 break;
7100 else if (reg_set_p (cc_reg, insn))
7101 break;
7104 if (! cc_src_insn)
7105 continue;
7107 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7108 continue;
7110 /* Now CC_REG is a condition code register used for a
7111 conditional jump at the end of the block, and CC_SRC, in
7112 CC_SRC_INSN, is the value to which that condition code
7113 register is set, and CC_SRC is still meaningful at the end of
7114 the basic block. */
7116 orig_mode = GET_MODE (cc_src);
7117 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7118 if (mode != VOIDmode)
7120 gcc_assert (mode == GET_MODE (cc_src));
7121 if (mode != orig_mode)
7123 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7125 cse_change_cc_mode_insn (cc_src_insn, newreg);
7127 /* Do the same in the following insns that use the
7128 current value of CC_REG within BB. */
7129 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7130 NEXT_INSN (last_insn),
7131 newreg);
7138 /* Perform common subexpression elimination. Nonzero value from
7139 `cse_main' means that jumps were simplified and some code may now
7140 be unreachable, so do jump optimization again. */
7141 static bool
7142 gate_handle_cse (void)
7144 return optimize > 0;
7147 static unsigned int
7148 rest_of_handle_cse (void)
7150 int tem;
7152 if (dump_file)
7153 dump_flow_info (dump_file, dump_flags);
7155 reg_scan (get_insns (), max_reg_num ());
7157 tem = cse_main (get_insns (), max_reg_num ());
7158 if (tem)
7159 rebuild_jump_labels (get_insns ());
7160 if (purge_all_dead_edges ())
7161 delete_unreachable_blocks ();
7163 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7165 /* If we are not running more CSE passes, then we are no longer
7166 expecting CSE to be run. But always rerun it in a cheap mode. */
7167 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7169 if (tem)
7170 delete_dead_jumptables ();
7172 if (tem || optimize > 1)
7173 cleanup_cfg (CLEANUP_EXPENSIVE);
7174 return 0;
7177 struct tree_opt_pass pass_cse =
7179 "cse1", /* name */
7180 gate_handle_cse, /* gate */
7181 rest_of_handle_cse, /* execute */
7182 NULL, /* sub */
7183 NULL, /* next */
7184 0, /* static_pass_number */
7185 TV_CSE, /* tv_id */
7186 0, /* properties_required */
7187 0, /* properties_provided */
7188 0, /* properties_destroyed */
7189 0, /* todo_flags_start */
7190 TODO_dump_func |
7191 TODO_ggc_collect, /* todo_flags_finish */
7192 's' /* letter */
7196 static bool
7197 gate_handle_cse2 (void)
7199 return optimize > 0 && flag_rerun_cse_after_loop;
7202 /* Run second CSE pass after loop optimizations. */
7203 static unsigned int
7204 rest_of_handle_cse2 (void)
7206 int tem;
7208 if (dump_file)
7209 dump_flow_info (dump_file, dump_flags);
7211 tem = cse_main (get_insns (), max_reg_num ());
7213 /* Run a pass to eliminate duplicated assignments to condition code
7214 registers. We have to run this after bypass_jumps, because it
7215 makes it harder for that pass to determine whether a jump can be
7216 bypassed safely. */
7217 cse_condition_code_reg ();
7219 purge_all_dead_edges ();
7220 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7222 if (tem)
7224 timevar_push (TV_JUMP);
7225 rebuild_jump_labels (get_insns ());
7226 delete_dead_jumptables ();
7227 cleanup_cfg (CLEANUP_EXPENSIVE);
7228 timevar_pop (TV_JUMP);
7230 reg_scan (get_insns (), max_reg_num ());
7231 cse_not_expected = 1;
7232 return 0;
7236 struct tree_opt_pass pass_cse2 =
7238 "cse2", /* name */
7239 gate_handle_cse2, /* gate */
7240 rest_of_handle_cse2, /* execute */
7241 NULL, /* sub */
7242 NULL, /* next */
7243 0, /* static_pass_number */
7244 TV_CSE2, /* tv_id */
7245 0, /* properties_required */
7246 0, /* properties_provided */
7247 0, /* properties_destroyed */
7248 0, /* todo_flags_start */
7249 TODO_dump_func |
7250 TODO_ggc_collect, /* todo_flags_finish */
7251 't' /* letter */