Daily bump.
[official-gcc.git] / gcc / var-tracking.c
blob58dce1b654eba6d0055bebedab5b51503bd1f023
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
119 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
120 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
121 Currently the value is the same as IDENTIFIER_NODE, which has such
122 a property. If this compile time assertion ever fails, make sure that
123 the new tree code that equals (int) VALUE has the same property. */
124 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
126 /* Type of micro operation. */
127 enum micro_operation_type
129 MO_USE, /* Use location (REG or MEM). */
130 MO_USE_NO_VAR,/* Use location which is not associated with a variable
131 or the variable is not trackable. */
132 MO_VAL_USE, /* Use location which is associated with a value. */
133 MO_VAL_LOC, /* Use location which appears in a debug insn. */
134 MO_VAL_SET, /* Set location associated with a value. */
135 MO_SET, /* Set location. */
136 MO_COPY, /* Copy the same portion of a variable from one
137 location to another. */
138 MO_CLOBBER, /* Clobber location. */
139 MO_CALL, /* Call insn. */
140 MO_ADJUST /* Adjust stack pointer. */
144 static const char * const ATTRIBUTE_UNUSED
145 micro_operation_type_name[] = {
146 "MO_USE",
147 "MO_USE_NO_VAR",
148 "MO_VAL_USE",
149 "MO_VAL_LOC",
150 "MO_VAL_SET",
151 "MO_SET",
152 "MO_COPY",
153 "MO_CLOBBER",
154 "MO_CALL",
155 "MO_ADJUST"
158 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
159 Notes emitted as AFTER_CALL are to take effect during the call,
160 rather than after the call. */
161 enum emit_note_where
163 EMIT_NOTE_BEFORE_INSN,
164 EMIT_NOTE_AFTER_INSN,
165 EMIT_NOTE_AFTER_CALL_INSN
168 /* Structure holding information about micro operation. */
169 typedef struct micro_operation_def
171 /* Type of micro operation. */
172 enum micro_operation_type type;
174 /* The instruction which the micro operation is in, for MO_USE,
175 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
176 instruction or note in the original flow (before any var-tracking
177 notes are inserted, to simplify emission of notes), for MO_SET
178 and MO_CLOBBER. */
179 rtx insn;
181 union {
182 /* Location. For MO_SET and MO_COPY, this is the SET that
183 performs the assignment, if known, otherwise it is the target
184 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
185 CONCAT of the VALUE and the LOC associated with it. For
186 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
187 associated with it. */
188 rtx loc;
190 /* Stack adjustment. */
191 HOST_WIDE_INT adjust;
192 } u;
193 } micro_operation;
195 DEF_VEC_O(micro_operation);
196 DEF_VEC_ALLOC_O(micro_operation,heap);
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Structure for passing some other parameters to function
203 emit_note_insn_var_location. */
204 typedef struct emit_note_data_def
206 /* The instruction which the note will be emitted before/after. */
207 rtx insn;
209 /* Where the note will be emitted (before/after insn)? */
210 enum emit_note_where where;
212 /* The variables and values active at this point. */
213 htab_t vars;
214 } emit_note_data;
216 /* Description of location of a part of a variable. The content of a physical
217 register is described by a chain of these structures.
218 The chains are pretty short (usually 1 or 2 elements) and thus
219 chain is the best data structure. */
220 typedef struct attrs_def
222 /* Pointer to next member of the list. */
223 struct attrs_def *next;
225 /* The rtx of register. */
226 rtx loc;
228 /* The declaration corresponding to LOC. */
229 decl_or_value dv;
231 /* Offset from start of DECL. */
232 HOST_WIDE_INT offset;
233 } *attrs;
235 /* Structure holding a refcounted hash table. If refcount > 1,
236 it must be first unshared before modified. */
237 typedef struct shared_hash_def
239 /* Reference count. */
240 int refcount;
242 /* Actual hash table. */
243 htab_t htab;
244 } *shared_hash;
246 /* Structure holding the IN or OUT set for a basic block. */
247 typedef struct dataflow_set_def
249 /* Adjustment of stack offset. */
250 HOST_WIDE_INT stack_adjust;
252 /* Attributes for registers (lists of attrs). */
253 attrs regs[FIRST_PSEUDO_REGISTER];
255 /* Variable locations. */
256 shared_hash vars;
258 /* Vars that is being traversed. */
259 shared_hash traversed_vars;
260 } dataflow_set;
262 /* The structure (one for each basic block) containing the information
263 needed for variable tracking. */
264 typedef struct variable_tracking_info_def
266 /* The vector of micro operations. */
267 VEC(micro_operation, heap) *mos;
269 /* The IN and OUT set for dataflow analysis. */
270 dataflow_set in;
271 dataflow_set out;
273 /* The permanent-in dataflow set for this block. This is used to
274 hold values for which we had to compute entry values. ??? This
275 should probably be dynamically allocated, to avoid using more
276 memory in non-debug builds. */
277 dataflow_set *permp;
279 /* Has the block been visited in DFS? */
280 bool visited;
282 /* Has the block been flooded in VTA? */
283 bool flooded;
285 } *variable_tracking_info;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* Structure describing one part of variable. */
304 typedef struct variable_part_def
306 /* Chain of locations of the part. */
307 location_chain loc_chain;
309 /* Location which was last emitted to location list. */
310 rtx cur_loc;
312 /* The offset in the variable. */
313 HOST_WIDE_INT offset;
314 } variable_part;
316 /* Maximum number of location parts. */
317 #define MAX_VAR_PARTS 16
319 /* Structure describing where the variable is located. */
320 typedef struct variable_def
322 /* The declaration of the variable, or an RTL value being handled
323 like a declaration. */
324 decl_or_value dv;
326 /* Reference count. */
327 int refcount;
329 /* Number of variable parts. */
330 char n_var_parts;
332 /* True if this variable changed (any of its) cur_loc fields
333 during the current emit_notes_for_changes resp.
334 emit_notes_for_differences call. */
335 bool cur_loc_changed;
337 /* True if this variable_def struct is currently in the
338 changed_variables hash table. */
339 bool in_changed_variables;
341 /* The variable parts. */
342 variable_part var_part[1];
343 } *variable;
344 typedef const struct variable_def *const_variable;
346 /* Structure for chaining backlinks from referenced VALUEs to
347 DVs that are referencing them. */
348 typedef struct value_chain_def
350 /* Next value_chain entry. */
351 struct value_chain_def *next;
353 /* The declaration of the variable, or an RTL value
354 being handled like a declaration, whose var_parts[0].loc_chain
355 references the VALUE owning this value_chain. */
356 decl_or_value dv;
358 /* Reference count. */
359 int refcount;
360 } *value_chain;
361 typedef const struct value_chain_def *const_value_chain;
363 /* Pointer to the BB's information specific to variable tracking pass. */
364 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
366 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
367 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
369 /* Alloc pool for struct attrs_def. */
370 static alloc_pool attrs_pool;
372 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
373 static alloc_pool var_pool;
375 /* Alloc pool for struct variable_def with a single var_part entry. */
376 static alloc_pool valvar_pool;
378 /* Alloc pool for struct location_chain_def. */
379 static alloc_pool loc_chain_pool;
381 /* Alloc pool for struct shared_hash_def. */
382 static alloc_pool shared_hash_pool;
384 /* Alloc pool for struct value_chain_def. */
385 static alloc_pool value_chain_pool;
387 /* Changed variables, notes will be emitted for them. */
388 static htab_t changed_variables;
390 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
391 static htab_t value_chains;
393 /* Shall notes be emitted? */
394 static bool emit_notes;
396 /* Empty shared hashtable. */
397 static shared_hash empty_shared_hash;
399 /* Scratch register bitmap used by cselib_expand_value_rtx. */
400 static bitmap scratch_regs = NULL;
402 /* Variable used to tell whether cselib_process_insn called our hook. */
403 static bool cselib_hook_called;
405 /* Local function prototypes. */
406 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
407 HOST_WIDE_INT *);
408 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
409 HOST_WIDE_INT *);
410 static bool vt_stack_adjustments (void);
411 static hashval_t variable_htab_hash (const void *);
412 static int variable_htab_eq (const void *, const void *);
413 static void variable_htab_free (void *);
415 static void init_attrs_list_set (attrs *);
416 static void attrs_list_clear (attrs *);
417 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
418 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
419 static void attrs_list_copy (attrs *, attrs);
420 static void attrs_list_union (attrs *, attrs);
422 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
423 enum var_init_status);
424 static void vars_copy (htab_t, htab_t);
425 static tree var_debug_decl (tree);
426 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
427 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
428 enum var_init_status, rtx);
429 static void var_reg_delete (dataflow_set *, rtx, bool);
430 static void var_regno_delete (dataflow_set *, int);
431 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
432 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
433 enum var_init_status, rtx);
434 static void var_mem_delete (dataflow_set *, rtx, bool);
436 static void dataflow_set_init (dataflow_set *);
437 static void dataflow_set_clear (dataflow_set *);
438 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
439 static int variable_union_info_cmp_pos (const void *, const void *);
440 static void dataflow_set_union (dataflow_set *, dataflow_set *);
441 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
442 static bool canon_value_cmp (rtx, rtx);
443 static int loc_cmp (rtx, rtx);
444 static bool variable_part_different_p (variable_part *, variable_part *);
445 static bool onepart_variable_different_p (variable, variable);
446 static bool variable_different_p (variable, variable);
447 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
448 static void dataflow_set_destroy (dataflow_set *);
450 static bool contains_symbol_ref (rtx);
451 static bool track_expr_p (tree, bool);
452 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
453 static int add_uses (rtx *, void *);
454 static void add_uses_1 (rtx *, void *);
455 static void add_stores (rtx, const_rtx, void *);
456 static bool compute_bb_dataflow (basic_block);
457 static bool vt_find_locations (void);
459 static void dump_attrs_list (attrs);
460 static int dump_var_slot (void **, void *);
461 static void dump_var (variable);
462 static void dump_vars (htab_t);
463 static void dump_dataflow_set (dataflow_set *);
464 static void dump_dataflow_sets (void);
466 static void variable_was_changed (variable, dataflow_set *);
467 static void **set_slot_part (dataflow_set *, rtx, void **,
468 decl_or_value, HOST_WIDE_INT,
469 enum var_init_status, rtx);
470 static void set_variable_part (dataflow_set *, rtx,
471 decl_or_value, HOST_WIDE_INT,
472 enum var_init_status, rtx, enum insert_option);
473 static void **clobber_slot_part (dataflow_set *, rtx,
474 void **, HOST_WIDE_INT, rtx);
475 static void clobber_variable_part (dataflow_set *, rtx,
476 decl_or_value, HOST_WIDE_INT, rtx);
477 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
478 static void delete_variable_part (dataflow_set *, rtx,
479 decl_or_value, HOST_WIDE_INT);
480 static int emit_note_insn_var_location (void **, void *);
481 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
482 static int emit_notes_for_differences_1 (void **, void *);
483 static int emit_notes_for_differences_2 (void **, void *);
484 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
485 static void emit_notes_in_bb (basic_block, dataflow_set *);
486 static void vt_emit_notes (void);
488 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
489 static void vt_add_function_parameters (void);
490 static bool vt_initialize (void);
491 static void vt_finalize (void);
493 /* Given a SET, calculate the amount of stack adjustment it contains
494 PRE- and POST-modifying stack pointer.
495 This function is similar to stack_adjust_offset. */
497 static void
498 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
499 HOST_WIDE_INT *post)
501 rtx src = SET_SRC (pattern);
502 rtx dest = SET_DEST (pattern);
503 enum rtx_code code;
505 if (dest == stack_pointer_rtx)
507 /* (set (reg sp) (plus (reg sp) (const_int))) */
508 code = GET_CODE (src);
509 if (! (code == PLUS || code == MINUS)
510 || XEXP (src, 0) != stack_pointer_rtx
511 || !CONST_INT_P (XEXP (src, 1)))
512 return;
514 if (code == MINUS)
515 *post += INTVAL (XEXP (src, 1));
516 else
517 *post -= INTVAL (XEXP (src, 1));
519 else if (MEM_P (dest))
521 /* (set (mem (pre_dec (reg sp))) (foo)) */
522 src = XEXP (dest, 0);
523 code = GET_CODE (src);
525 switch (code)
527 case PRE_MODIFY:
528 case POST_MODIFY:
529 if (XEXP (src, 0) == stack_pointer_rtx)
531 rtx val = XEXP (XEXP (src, 1), 1);
532 /* We handle only adjustments by constant amount. */
533 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
534 CONST_INT_P (val));
536 if (code == PRE_MODIFY)
537 *pre -= INTVAL (val);
538 else
539 *post -= INTVAL (val);
540 break;
542 return;
544 case PRE_DEC:
545 if (XEXP (src, 0) == stack_pointer_rtx)
547 *pre += GET_MODE_SIZE (GET_MODE (dest));
548 break;
550 return;
552 case POST_DEC:
553 if (XEXP (src, 0) == stack_pointer_rtx)
555 *post += GET_MODE_SIZE (GET_MODE (dest));
556 break;
558 return;
560 case PRE_INC:
561 if (XEXP (src, 0) == stack_pointer_rtx)
563 *pre -= GET_MODE_SIZE (GET_MODE (dest));
564 break;
566 return;
568 case POST_INC:
569 if (XEXP (src, 0) == stack_pointer_rtx)
571 *post -= GET_MODE_SIZE (GET_MODE (dest));
572 break;
574 return;
576 default:
577 return;
582 /* Given an INSN, calculate the amount of stack adjustment it contains
583 PRE- and POST-modifying stack pointer. */
585 static void
586 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
587 HOST_WIDE_INT *post)
589 rtx pattern;
591 *pre = 0;
592 *post = 0;
594 pattern = PATTERN (insn);
595 if (RTX_FRAME_RELATED_P (insn))
597 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
598 if (expr)
599 pattern = XEXP (expr, 0);
602 if (GET_CODE (pattern) == SET)
603 stack_adjust_offset_pre_post (pattern, pre, post);
604 else if (GET_CODE (pattern) == PARALLEL
605 || GET_CODE (pattern) == SEQUENCE)
607 int i;
609 /* There may be stack adjustments inside compound insns. Search
610 for them. */
611 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
612 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
613 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
617 /* Compute stack adjustments for all blocks by traversing DFS tree.
618 Return true when the adjustments on all incoming edges are consistent.
619 Heavily borrowed from pre_and_rev_post_order_compute. */
621 static bool
622 vt_stack_adjustments (void)
624 edge_iterator *stack;
625 int sp;
627 /* Initialize entry block. */
628 VTI (ENTRY_BLOCK_PTR)->visited = true;
629 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
630 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 /* Allocate stack for back-tracking up CFG. */
633 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
634 sp = 0;
636 /* Push the first edge on to the stack. */
637 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
639 while (sp)
641 edge_iterator ei;
642 basic_block src;
643 basic_block dest;
645 /* Look at the edge on the top of the stack. */
646 ei = stack[sp - 1];
647 src = ei_edge (ei)->src;
648 dest = ei_edge (ei)->dest;
650 /* Check if the edge destination has been visited yet. */
651 if (!VTI (dest)->visited)
653 rtx insn;
654 HOST_WIDE_INT pre, post, offset;
655 VTI (dest)->visited = true;
656 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
658 if (dest != EXIT_BLOCK_PTR)
659 for (insn = BB_HEAD (dest);
660 insn != NEXT_INSN (BB_END (dest));
661 insn = NEXT_INSN (insn))
662 if (INSN_P (insn))
664 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
665 offset += pre + post;
668 VTI (dest)->out.stack_adjust = offset;
670 if (EDGE_COUNT (dest->succs) > 0)
671 /* Since the DEST node has been visited for the first
672 time, check its successors. */
673 stack[sp++] = ei_start (dest->succs);
675 else
677 /* Check whether the adjustments on the edges are the same. */
678 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
680 free (stack);
681 return false;
684 if (! ei_one_before_end_p (ei))
685 /* Go to the next edge. */
686 ei_next (&stack[sp - 1]);
687 else
688 /* Return to previous level if there are no more edges. */
689 sp--;
693 free (stack);
694 return true;
697 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
698 hard_frame_pointer_rtx is being mapped to it and offset for it. */
699 static rtx cfa_base_rtx;
700 static HOST_WIDE_INT cfa_base_offset;
702 /* Compute a CFA-based value for the stack pointer. */
704 static inline rtx
705 compute_cfa_pointer (HOST_WIDE_INT adjustment)
707 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
710 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
711 or -1 if the replacement shouldn't be done. */
712 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
714 /* Data for adjust_mems callback. */
716 struct adjust_mem_data
718 bool store;
719 enum machine_mode mem_mode;
720 HOST_WIDE_INT stack_adjust;
721 rtx side_effects;
724 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
725 transformation of wider mode arithmetics to narrower mode,
726 -1 if it is suitable and subexpressions shouldn't be
727 traversed and 0 if it is suitable and subexpressions should
728 be traversed. Called through for_each_rtx. */
730 static int
731 use_narrower_mode_test (rtx *loc, void *data)
733 rtx subreg = (rtx) data;
735 if (CONSTANT_P (*loc))
736 return -1;
737 switch (GET_CODE (*loc))
739 case REG:
740 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0))
741 return 1;
742 return -1;
743 case PLUS:
744 case MINUS:
745 case MULT:
746 return 0;
747 case ASHIFT:
748 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
749 return 1;
750 else
751 return -1;
752 default:
753 return 1;
757 /* Transform X into narrower mode MODE from wider mode WMODE. */
759 static rtx
760 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
762 rtx op0, op1;
763 if (CONSTANT_P (x))
764 return lowpart_subreg (mode, x, wmode);
765 switch (GET_CODE (x))
767 case REG:
768 return lowpart_subreg (mode, x, wmode);
769 case PLUS:
770 case MINUS:
771 case MULT:
772 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
773 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
774 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
775 case ASHIFT:
776 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
777 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
778 default:
779 gcc_unreachable ();
783 /* Helper function for adjusting used MEMs. */
785 static rtx
786 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
788 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
789 rtx mem, addr = loc, tem;
790 enum machine_mode mem_mode_save;
791 bool store_save;
792 switch (GET_CODE (loc))
794 case REG:
795 /* Don't do any sp or fp replacements outside of MEM addresses
796 on the LHS. */
797 if (amd->mem_mode == VOIDmode && amd->store)
798 return loc;
799 if (loc == stack_pointer_rtx
800 && !frame_pointer_needed
801 && cfa_base_rtx)
802 return compute_cfa_pointer (amd->stack_adjust);
803 else if (loc == hard_frame_pointer_rtx
804 && frame_pointer_needed
805 && hard_frame_pointer_adjustment != -1
806 && cfa_base_rtx)
807 return compute_cfa_pointer (hard_frame_pointer_adjustment);
808 return loc;
809 case MEM:
810 mem = loc;
811 if (!amd->store)
813 mem = targetm.delegitimize_address (mem);
814 if (mem != loc && !MEM_P (mem))
815 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
818 addr = XEXP (mem, 0);
819 mem_mode_save = amd->mem_mode;
820 amd->mem_mode = GET_MODE (mem);
821 store_save = amd->store;
822 amd->store = false;
823 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
824 amd->store = store_save;
825 amd->mem_mode = mem_mode_save;
826 if (mem == loc)
827 addr = targetm.delegitimize_address (addr);
828 if (addr != XEXP (mem, 0))
829 mem = replace_equiv_address_nv (mem, addr);
830 if (!amd->store)
831 mem = avoid_constant_pool_reference (mem);
832 return mem;
833 case PRE_INC:
834 case PRE_DEC:
835 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
836 GEN_INT (GET_CODE (loc) == PRE_INC
837 ? GET_MODE_SIZE (amd->mem_mode)
838 : -GET_MODE_SIZE (amd->mem_mode)));
839 case POST_INC:
840 case POST_DEC:
841 if (addr == loc)
842 addr = XEXP (loc, 0);
843 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
844 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
845 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
846 GEN_INT ((GET_CODE (loc) == PRE_INC
847 || GET_CODE (loc) == POST_INC)
848 ? GET_MODE_SIZE (amd->mem_mode)
849 : -GET_MODE_SIZE (amd->mem_mode)));
850 amd->side_effects = alloc_EXPR_LIST (0,
851 gen_rtx_SET (VOIDmode,
852 XEXP (loc, 0),
853 tem),
854 amd->side_effects);
855 return addr;
856 case PRE_MODIFY:
857 addr = XEXP (loc, 1);
858 case POST_MODIFY:
859 if (addr == loc)
860 addr = XEXP (loc, 0);
861 gcc_assert (amd->mem_mode != VOIDmode);
862 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
863 amd->side_effects = alloc_EXPR_LIST (0,
864 gen_rtx_SET (VOIDmode,
865 XEXP (loc, 0),
866 XEXP (loc, 1)),
867 amd->side_effects);
868 return addr;
869 case SUBREG:
870 /* First try without delegitimization of whole MEMs and
871 avoid_constant_pool_reference, which is more likely to succeed. */
872 store_save = amd->store;
873 amd->store = true;
874 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
875 data);
876 amd->store = store_save;
877 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
878 if (mem == SUBREG_REG (loc))
880 tem = loc;
881 goto finish_subreg;
883 tem = simplify_gen_subreg (GET_MODE (loc), mem,
884 GET_MODE (SUBREG_REG (loc)),
885 SUBREG_BYTE (loc));
886 if (tem)
887 goto finish_subreg;
888 tem = simplify_gen_subreg (GET_MODE (loc), addr,
889 GET_MODE (SUBREG_REG (loc)),
890 SUBREG_BYTE (loc));
891 if (tem == NULL_RTX)
892 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
893 finish_subreg:
894 if (MAY_HAVE_DEBUG_INSNS
895 && GET_CODE (tem) == SUBREG
896 && (GET_CODE (SUBREG_REG (tem)) == PLUS
897 || GET_CODE (SUBREG_REG (tem)) == MINUS
898 || GET_CODE (SUBREG_REG (tem)) == MULT
899 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
900 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
901 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
902 && GET_MODE_SIZE (GET_MODE (tem))
903 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
904 && subreg_lowpart_p (tem)
905 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
906 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
907 GET_MODE (SUBREG_REG (tem)));
908 return tem;
909 case ASM_OPERANDS:
910 /* Don't do any replacements in second and following
911 ASM_OPERANDS of inline-asm with multiple sets.
912 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
913 and ASM_OPERANDS_LABEL_VEC need to be equal between
914 all the ASM_OPERANDs in the insn and adjust_insn will
915 fix this up. */
916 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
917 return loc;
918 break;
919 default:
920 break;
922 return NULL_RTX;
925 /* Helper function for replacement of uses. */
927 static void
928 adjust_mem_uses (rtx *x, void *data)
930 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
931 if (new_x != *x)
932 validate_change (NULL_RTX, x, new_x, true);
935 /* Helper function for replacement of stores. */
937 static void
938 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
940 if (MEM_P (loc))
942 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
943 adjust_mems, data);
944 if (new_dest != SET_DEST (expr))
946 rtx xexpr = CONST_CAST_RTX (expr);
947 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
952 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
953 replace them with their value in the insn and add the side-effects
954 as other sets to the insn. */
956 static void
957 adjust_insn (basic_block bb, rtx insn)
959 struct adjust_mem_data amd;
960 rtx set;
961 amd.mem_mode = VOIDmode;
962 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
963 amd.side_effects = NULL_RTX;
965 amd.store = true;
966 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
968 amd.store = false;
969 if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && asm_noperands (PATTERN (insn)) > 0
971 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
973 rtx body, set0;
974 int i;
976 /* inline-asm with multiple sets is tiny bit more complicated,
977 because the 3 vectors in ASM_OPERANDS need to be shared between
978 all ASM_OPERANDS in the instruction. adjust_mems will
979 not touch ASM_OPERANDS other than the first one, asm_noperands
980 test above needs to be called before that (otherwise it would fail)
981 and afterwards this code fixes it up. */
982 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
983 body = PATTERN (insn);
984 set0 = XVECEXP (body, 0, 0);
985 gcc_checking_assert (GET_CODE (set0) == SET
986 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
987 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
988 for (i = 1; i < XVECLEN (body, 0); i++)
989 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
990 break;
991 else
993 set = XVECEXP (body, 0, i);
994 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
995 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
996 == i);
997 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
998 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
999 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1000 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1001 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1002 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1004 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1005 ASM_OPERANDS_INPUT_VEC (newsrc)
1006 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1007 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1008 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1009 ASM_OPERANDS_LABEL_VEC (newsrc)
1010 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1011 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1015 else
1016 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1018 /* For read-only MEMs containing some constant, prefer those
1019 constants. */
1020 set = single_set (insn);
1021 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1023 rtx note = find_reg_equal_equiv_note (insn);
1025 if (note && CONSTANT_P (XEXP (note, 0)))
1026 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1029 if (amd.side_effects)
1031 rtx *pat, new_pat, s;
1032 int i, oldn, newn;
1034 pat = &PATTERN (insn);
1035 if (GET_CODE (*pat) == COND_EXEC)
1036 pat = &COND_EXEC_CODE (*pat);
1037 if (GET_CODE (*pat) == PARALLEL)
1038 oldn = XVECLEN (*pat, 0);
1039 else
1040 oldn = 1;
1041 for (s = amd.side_effects, newn = 0; s; newn++)
1042 s = XEXP (s, 1);
1043 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1044 if (GET_CODE (*pat) == PARALLEL)
1045 for (i = 0; i < oldn; i++)
1046 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1047 else
1048 XVECEXP (new_pat, 0, 0) = *pat;
1049 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1050 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1051 free_EXPR_LIST_list (&amd.side_effects);
1052 validate_change (NULL_RTX, pat, new_pat, true);
1056 /* Return true if a decl_or_value DV is a DECL or NULL. */
1057 static inline bool
1058 dv_is_decl_p (decl_or_value dv)
1060 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1063 /* Return true if a decl_or_value is a VALUE rtl. */
1064 static inline bool
1065 dv_is_value_p (decl_or_value dv)
1067 return dv && !dv_is_decl_p (dv);
1070 /* Return the decl in the decl_or_value. */
1071 static inline tree
1072 dv_as_decl (decl_or_value dv)
1074 gcc_checking_assert (dv_is_decl_p (dv));
1075 return (tree) dv;
1078 /* Return the value in the decl_or_value. */
1079 static inline rtx
1080 dv_as_value (decl_or_value dv)
1082 gcc_checking_assert (dv_is_value_p (dv));
1083 return (rtx)dv;
1086 /* Return the opaque pointer in the decl_or_value. */
1087 static inline void *
1088 dv_as_opaque (decl_or_value dv)
1090 return dv;
1093 /* Return true if a decl_or_value must not have more than one variable
1094 part. */
1095 static inline bool
1096 dv_onepart_p (decl_or_value dv)
1098 tree decl;
1100 if (!MAY_HAVE_DEBUG_INSNS)
1101 return false;
1103 if (dv_is_value_p (dv))
1104 return true;
1106 decl = dv_as_decl (dv);
1108 if (!decl)
1109 return true;
1111 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1112 return true;
1114 return (target_for_debug_bind (decl) != NULL_TREE);
1117 /* Return the variable pool to be used for dv, depending on whether it
1118 can have multiple parts or not. */
1119 static inline alloc_pool
1120 dv_pool (decl_or_value dv)
1122 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1125 /* Build a decl_or_value out of a decl. */
1126 static inline decl_or_value
1127 dv_from_decl (tree decl)
1129 decl_or_value dv;
1130 dv = decl;
1131 gcc_checking_assert (dv_is_decl_p (dv));
1132 return dv;
1135 /* Build a decl_or_value out of a value. */
1136 static inline decl_or_value
1137 dv_from_value (rtx value)
1139 decl_or_value dv;
1140 dv = value;
1141 gcc_checking_assert (dv_is_value_p (dv));
1142 return dv;
1145 extern void debug_dv (decl_or_value dv);
1147 DEBUG_FUNCTION void
1148 debug_dv (decl_or_value dv)
1150 if (dv_is_value_p (dv))
1151 debug_rtx (dv_as_value (dv));
1152 else
1153 debug_generic_stmt (dv_as_decl (dv));
1156 typedef unsigned int dvuid;
1158 /* Return the uid of DV. */
1160 static inline dvuid
1161 dv_uid (decl_or_value dv)
1163 if (dv_is_value_p (dv))
1164 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1165 else
1166 return DECL_UID (dv_as_decl (dv));
1169 /* Compute the hash from the uid. */
1171 static inline hashval_t
1172 dv_uid2hash (dvuid uid)
1174 return uid;
1177 /* The hash function for a mask table in a shared_htab chain. */
1179 static inline hashval_t
1180 dv_htab_hash (decl_or_value dv)
1182 return dv_uid2hash (dv_uid (dv));
1185 /* The hash function for variable_htab, computes the hash value
1186 from the declaration of variable X. */
1188 static hashval_t
1189 variable_htab_hash (const void *x)
1191 const_variable const v = (const_variable) x;
1193 return dv_htab_hash (v->dv);
1196 /* Compare the declaration of variable X with declaration Y. */
1198 static int
1199 variable_htab_eq (const void *x, const void *y)
1201 const_variable const v = (const_variable) x;
1202 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1204 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1207 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1209 static void
1210 variable_htab_free (void *elem)
1212 int i;
1213 variable var = (variable) elem;
1214 location_chain node, next;
1216 gcc_checking_assert (var->refcount > 0);
1218 var->refcount--;
1219 if (var->refcount > 0)
1220 return;
1222 for (i = 0; i < var->n_var_parts; i++)
1224 for (node = var->var_part[i].loc_chain; node; node = next)
1226 next = node->next;
1227 pool_free (loc_chain_pool, node);
1229 var->var_part[i].loc_chain = NULL;
1231 pool_free (dv_pool (var->dv), var);
1234 /* The hash function for value_chains htab, computes the hash value
1235 from the VALUE. */
1237 static hashval_t
1238 value_chain_htab_hash (const void *x)
1240 const_value_chain const v = (const_value_chain) x;
1242 return dv_htab_hash (v->dv);
1245 /* Compare the VALUE X with VALUE Y. */
1247 static int
1248 value_chain_htab_eq (const void *x, const void *y)
1250 const_value_chain const v = (const_value_chain) x;
1251 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1253 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1256 /* Initialize the set (array) SET of attrs to empty lists. */
1258 static void
1259 init_attrs_list_set (attrs *set)
1261 int i;
1263 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1264 set[i] = NULL;
1267 /* Make the list *LISTP empty. */
1269 static void
1270 attrs_list_clear (attrs *listp)
1272 attrs list, next;
1274 for (list = *listp; list; list = next)
1276 next = list->next;
1277 pool_free (attrs_pool, list);
1279 *listp = NULL;
1282 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1284 static attrs
1285 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1287 for (; list; list = list->next)
1288 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1289 return list;
1290 return NULL;
1293 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1295 static void
1296 attrs_list_insert (attrs *listp, decl_or_value dv,
1297 HOST_WIDE_INT offset, rtx loc)
1299 attrs list;
1301 list = (attrs) pool_alloc (attrs_pool);
1302 list->loc = loc;
1303 list->dv = dv;
1304 list->offset = offset;
1305 list->next = *listp;
1306 *listp = list;
1309 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1311 static void
1312 attrs_list_copy (attrs *dstp, attrs src)
1314 attrs n;
1316 attrs_list_clear (dstp);
1317 for (; src; src = src->next)
1319 n = (attrs) pool_alloc (attrs_pool);
1320 n->loc = src->loc;
1321 n->dv = src->dv;
1322 n->offset = src->offset;
1323 n->next = *dstp;
1324 *dstp = n;
1328 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1330 static void
1331 attrs_list_union (attrs *dstp, attrs src)
1333 for (; src; src = src->next)
1335 if (!attrs_list_member (*dstp, src->dv, src->offset))
1336 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1340 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1341 *DSTP. */
1343 static void
1344 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1346 gcc_assert (!*dstp);
1347 for (; src; src = src->next)
1349 if (!dv_onepart_p (src->dv))
1350 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1352 for (src = src2; src; src = src->next)
1354 if (!dv_onepart_p (src->dv)
1355 && !attrs_list_member (*dstp, src->dv, src->offset))
1356 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1360 /* Shared hashtable support. */
1362 /* Return true if VARS is shared. */
1364 static inline bool
1365 shared_hash_shared (shared_hash vars)
1367 return vars->refcount > 1;
1370 /* Return the hash table for VARS. */
1372 static inline htab_t
1373 shared_hash_htab (shared_hash vars)
1375 return vars->htab;
1378 /* Return true if VAR is shared, or maybe because VARS is shared. */
1380 static inline bool
1381 shared_var_p (variable var, shared_hash vars)
1383 /* Don't count an entry in the changed_variables table as a duplicate. */
1384 return ((var->refcount > 1 + (int) var->in_changed_variables)
1385 || shared_hash_shared (vars));
1388 /* Copy variables into a new hash table. */
1390 static shared_hash
1391 shared_hash_unshare (shared_hash vars)
1393 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1394 gcc_assert (vars->refcount > 1);
1395 new_vars->refcount = 1;
1396 new_vars->htab
1397 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1398 variable_htab_eq, variable_htab_free);
1399 vars_copy (new_vars->htab, vars->htab);
1400 vars->refcount--;
1401 return new_vars;
1404 /* Increment reference counter on VARS and return it. */
1406 static inline shared_hash
1407 shared_hash_copy (shared_hash vars)
1409 vars->refcount++;
1410 return vars;
1413 /* Decrement reference counter and destroy hash table if not shared
1414 anymore. */
1416 static void
1417 shared_hash_destroy (shared_hash vars)
1419 gcc_checking_assert (vars->refcount > 0);
1420 if (--vars->refcount == 0)
1422 htab_delete (vars->htab);
1423 pool_free (shared_hash_pool, vars);
1427 /* Unshare *PVARS if shared and return slot for DV. If INS is
1428 INSERT, insert it if not already present. */
1430 static inline void **
1431 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1432 hashval_t dvhash, enum insert_option ins)
1434 if (shared_hash_shared (*pvars))
1435 *pvars = shared_hash_unshare (*pvars);
1436 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1439 static inline void **
1440 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1441 enum insert_option ins)
1443 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1446 /* Return slot for DV, if it is already present in the hash table.
1447 If it is not present, insert it only VARS is not shared, otherwise
1448 return NULL. */
1450 static inline void **
1451 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1453 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1454 shared_hash_shared (vars)
1455 ? NO_INSERT : INSERT);
1458 static inline void **
1459 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1461 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1464 /* Return slot for DV only if it is already present in the hash table. */
1466 static inline void **
1467 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1468 hashval_t dvhash)
1470 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1471 NO_INSERT);
1474 static inline void **
1475 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1477 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1480 /* Return variable for DV or NULL if not already present in the hash
1481 table. */
1483 static inline variable
1484 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1486 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1489 static inline variable
1490 shared_hash_find (shared_hash vars, decl_or_value dv)
1492 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1495 /* Return true if TVAL is better than CVAL as a canonival value. We
1496 choose lowest-numbered VALUEs, using the RTX address as a
1497 tie-breaker. The idea is to arrange them into a star topology,
1498 such that all of them are at most one step away from the canonical
1499 value, and the canonical value has backlinks to all of them, in
1500 addition to all the actual locations. We don't enforce this
1501 topology throughout the entire dataflow analysis, though.
1504 static inline bool
1505 canon_value_cmp (rtx tval, rtx cval)
1507 return !cval
1508 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1511 static bool dst_can_be_shared;
1513 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1515 static void **
1516 unshare_variable (dataflow_set *set, void **slot, variable var,
1517 enum var_init_status initialized)
1519 variable new_var;
1520 int i;
1522 new_var = (variable) pool_alloc (dv_pool (var->dv));
1523 new_var->dv = var->dv;
1524 new_var->refcount = 1;
1525 var->refcount--;
1526 new_var->n_var_parts = var->n_var_parts;
1527 new_var->cur_loc_changed = var->cur_loc_changed;
1528 var->cur_loc_changed = false;
1529 new_var->in_changed_variables = false;
1531 if (! flag_var_tracking_uninit)
1532 initialized = VAR_INIT_STATUS_INITIALIZED;
1534 for (i = 0; i < var->n_var_parts; i++)
1536 location_chain node;
1537 location_chain *nextp;
1539 new_var->var_part[i].offset = var->var_part[i].offset;
1540 nextp = &new_var->var_part[i].loc_chain;
1541 for (node = var->var_part[i].loc_chain; node; node = node->next)
1543 location_chain new_lc;
1545 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1546 new_lc->next = NULL;
1547 if (node->init > initialized)
1548 new_lc->init = node->init;
1549 else
1550 new_lc->init = initialized;
1551 if (node->set_src && !(MEM_P (node->set_src)))
1552 new_lc->set_src = node->set_src;
1553 else
1554 new_lc->set_src = NULL;
1555 new_lc->loc = node->loc;
1557 *nextp = new_lc;
1558 nextp = &new_lc->next;
1561 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1564 dst_can_be_shared = false;
1565 if (shared_hash_shared (set->vars))
1566 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1567 else if (set->traversed_vars && set->vars != set->traversed_vars)
1568 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1569 *slot = new_var;
1570 if (var->in_changed_variables)
1572 void **cslot
1573 = htab_find_slot_with_hash (changed_variables, var->dv,
1574 dv_htab_hash (var->dv), NO_INSERT);
1575 gcc_assert (*cslot == (void *) var);
1576 var->in_changed_variables = false;
1577 variable_htab_free (var);
1578 *cslot = new_var;
1579 new_var->in_changed_variables = true;
1581 return slot;
1584 /* Copy all variables from hash table SRC to hash table DST. */
1586 static void
1587 vars_copy (htab_t dst, htab_t src)
1589 htab_iterator hi;
1590 variable var;
1592 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1594 void **dstp;
1595 var->refcount++;
1596 dstp = htab_find_slot_with_hash (dst, var->dv,
1597 dv_htab_hash (var->dv),
1598 INSERT);
1599 *dstp = var;
1603 /* Map a decl to its main debug decl. */
1605 static inline tree
1606 var_debug_decl (tree decl)
1608 if (decl && DECL_P (decl)
1609 && DECL_DEBUG_EXPR_IS_FROM (decl))
1611 tree debugdecl = DECL_DEBUG_EXPR (decl);
1612 if (debugdecl && DECL_P (debugdecl))
1613 decl = debugdecl;
1616 return decl;
1619 /* Set the register LOC to contain DV, OFFSET. */
1621 static void
1622 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1623 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1624 enum insert_option iopt)
1626 attrs node;
1627 bool decl_p = dv_is_decl_p (dv);
1629 if (decl_p)
1630 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1632 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1633 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1634 && node->offset == offset)
1635 break;
1636 if (!node)
1637 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1638 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1641 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1643 static void
1644 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1645 rtx set_src)
1647 tree decl = REG_EXPR (loc);
1648 HOST_WIDE_INT offset = REG_OFFSET (loc);
1650 var_reg_decl_set (set, loc, initialized,
1651 dv_from_decl (decl), offset, set_src, INSERT);
1654 static enum var_init_status
1655 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1657 variable var;
1658 int i;
1659 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1661 if (! flag_var_tracking_uninit)
1662 return VAR_INIT_STATUS_INITIALIZED;
1664 var = shared_hash_find (set->vars, dv);
1665 if (var)
1667 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1669 location_chain nextp;
1670 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1671 if (rtx_equal_p (nextp->loc, loc))
1673 ret_val = nextp->init;
1674 break;
1679 return ret_val;
1682 /* Delete current content of register LOC in dataflow set SET and set
1683 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1684 MODIFY is true, any other live copies of the same variable part are
1685 also deleted from the dataflow set, otherwise the variable part is
1686 assumed to be copied from another location holding the same
1687 part. */
1689 static void
1690 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1691 enum var_init_status initialized, rtx set_src)
1693 tree decl = REG_EXPR (loc);
1694 HOST_WIDE_INT offset = REG_OFFSET (loc);
1695 attrs node, next;
1696 attrs *nextp;
1698 decl = var_debug_decl (decl);
1700 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1701 initialized = get_init_value (set, loc, dv_from_decl (decl));
1703 nextp = &set->regs[REGNO (loc)];
1704 for (node = *nextp; node; node = next)
1706 next = node->next;
1707 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1709 delete_variable_part (set, node->loc, node->dv, node->offset);
1710 pool_free (attrs_pool, node);
1711 *nextp = next;
1713 else
1715 node->loc = loc;
1716 nextp = &node->next;
1719 if (modify)
1720 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1721 var_reg_set (set, loc, initialized, set_src);
1724 /* Delete the association of register LOC in dataflow set SET with any
1725 variables that aren't onepart. If CLOBBER is true, also delete any
1726 other live copies of the same variable part, and delete the
1727 association with onepart dvs too. */
1729 static void
1730 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1732 attrs *nextp = &set->regs[REGNO (loc)];
1733 attrs node, next;
1735 if (clobber)
1737 tree decl = REG_EXPR (loc);
1738 HOST_WIDE_INT offset = REG_OFFSET (loc);
1740 decl = var_debug_decl (decl);
1742 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1745 for (node = *nextp; node; node = next)
1747 next = node->next;
1748 if (clobber || !dv_onepart_p (node->dv))
1750 delete_variable_part (set, node->loc, node->dv, node->offset);
1751 pool_free (attrs_pool, node);
1752 *nextp = next;
1754 else
1755 nextp = &node->next;
1759 /* Delete content of register with number REGNO in dataflow set SET. */
1761 static void
1762 var_regno_delete (dataflow_set *set, int regno)
1764 attrs *reg = &set->regs[regno];
1765 attrs node, next;
1767 for (node = *reg; node; node = next)
1769 next = node->next;
1770 delete_variable_part (set, node->loc, node->dv, node->offset);
1771 pool_free (attrs_pool, node);
1773 *reg = NULL;
1776 /* Set the location of DV, OFFSET as the MEM LOC. */
1778 static void
1779 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1780 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1781 enum insert_option iopt)
1783 if (dv_is_decl_p (dv))
1784 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1786 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1789 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1790 SET to LOC.
1791 Adjust the address first if it is stack pointer based. */
1793 static void
1794 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1795 rtx set_src)
1797 tree decl = MEM_EXPR (loc);
1798 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1800 var_mem_decl_set (set, loc, initialized,
1801 dv_from_decl (decl), offset, set_src, INSERT);
1804 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1805 dataflow set SET to LOC. If MODIFY is true, any other live copies
1806 of the same variable part are also deleted from the dataflow set,
1807 otherwise the variable part is assumed to be copied from another
1808 location holding the same part.
1809 Adjust the address first if it is stack pointer based. */
1811 static void
1812 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1813 enum var_init_status initialized, rtx set_src)
1815 tree decl = MEM_EXPR (loc);
1816 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1818 decl = var_debug_decl (decl);
1820 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1821 initialized = get_init_value (set, loc, dv_from_decl (decl));
1823 if (modify)
1824 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1825 var_mem_set (set, loc, initialized, set_src);
1828 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1829 true, also delete any other live copies of the same variable part.
1830 Adjust the address first if it is stack pointer based. */
1832 static void
1833 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1835 tree decl = MEM_EXPR (loc);
1836 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1838 decl = var_debug_decl (decl);
1839 if (clobber)
1840 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1841 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1844 /* Bind a value to a location it was just stored in. If MODIFIED
1845 holds, assume the location was modified, detaching it from any
1846 values bound to it. */
1848 static void
1849 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1851 cselib_val *v = CSELIB_VAL_PTR (val);
1853 gcc_assert (cselib_preserved_value_p (v));
1855 if (dump_file)
1857 fprintf (dump_file, "%i: ", INSN_UID (insn));
1858 print_inline_rtx (dump_file, val, 0);
1859 fprintf (dump_file, " stored in ");
1860 print_inline_rtx (dump_file, loc, 0);
1861 if (v->locs)
1863 struct elt_loc_list *l;
1864 for (l = v->locs; l; l = l->next)
1866 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1867 print_inline_rtx (dump_file, l->loc, 0);
1870 fprintf (dump_file, "\n");
1873 if (REG_P (loc))
1875 if (modified)
1876 var_regno_delete (set, REGNO (loc));
1877 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1878 dv_from_value (val), 0, NULL_RTX, INSERT);
1880 else if (MEM_P (loc))
1881 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1882 dv_from_value (val), 0, NULL_RTX, INSERT);
1883 else
1884 set_variable_part (set, loc, dv_from_value (val), 0,
1885 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1888 /* Reset this node, detaching all its equivalences. Return the slot
1889 in the variable hash table that holds dv, if there is one. */
1891 static void
1892 val_reset (dataflow_set *set, decl_or_value dv)
1894 variable var = shared_hash_find (set->vars, dv) ;
1895 location_chain node;
1896 rtx cval;
1898 if (!var || !var->n_var_parts)
1899 return;
1901 gcc_assert (var->n_var_parts == 1);
1903 cval = NULL;
1904 for (node = var->var_part[0].loc_chain; node; node = node->next)
1905 if (GET_CODE (node->loc) == VALUE
1906 && canon_value_cmp (node->loc, cval))
1907 cval = node->loc;
1909 for (node = var->var_part[0].loc_chain; node; node = node->next)
1910 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1912 /* Redirect the equivalence link to the new canonical
1913 value, or simply remove it if it would point at
1914 itself. */
1915 if (cval)
1916 set_variable_part (set, cval, dv_from_value (node->loc),
1917 0, node->init, node->set_src, NO_INSERT);
1918 delete_variable_part (set, dv_as_value (dv),
1919 dv_from_value (node->loc), 0);
1922 if (cval)
1924 decl_or_value cdv = dv_from_value (cval);
1926 /* Keep the remaining values connected, accummulating links
1927 in the canonical value. */
1928 for (node = var->var_part[0].loc_chain; node; node = node->next)
1930 if (node->loc == cval)
1931 continue;
1932 else if (GET_CODE (node->loc) == REG)
1933 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1934 node->set_src, NO_INSERT);
1935 else if (GET_CODE (node->loc) == MEM)
1936 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1937 node->set_src, NO_INSERT);
1938 else
1939 set_variable_part (set, node->loc, cdv, 0,
1940 node->init, node->set_src, NO_INSERT);
1944 /* We remove this last, to make sure that the canonical value is not
1945 removed to the point of requiring reinsertion. */
1946 if (cval)
1947 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1949 clobber_variable_part (set, NULL, dv, 0, NULL);
1951 /* ??? Should we make sure there aren't other available values or
1952 variables whose values involve this one other than by
1953 equivalence? E.g., at the very least we should reset MEMs, those
1954 shouldn't be too hard to find cselib-looking up the value as an
1955 address, then locating the resulting value in our own hash
1956 table. */
1959 /* Find the values in a given location and map the val to another
1960 value, if it is unique, or add the location as one holding the
1961 value. */
1963 static void
1964 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1966 decl_or_value dv = dv_from_value (val);
1968 if (dump_file && (dump_flags & TDF_DETAILS))
1970 if (insn)
1971 fprintf (dump_file, "%i: ", INSN_UID (insn));
1972 else
1973 fprintf (dump_file, "head: ");
1974 print_inline_rtx (dump_file, val, 0);
1975 fputs (" is at ", dump_file);
1976 print_inline_rtx (dump_file, loc, 0);
1977 fputc ('\n', dump_file);
1980 val_reset (set, dv);
1982 if (REG_P (loc))
1984 attrs node, found = NULL;
1986 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1987 if (dv_is_value_p (node->dv)
1988 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
1990 found = node;
1992 /* Map incoming equivalences. ??? Wouldn't it be nice if
1993 we just started sharing the location lists? Maybe a
1994 circular list ending at the value itself or some
1995 such. */
1996 set_variable_part (set, dv_as_value (node->dv),
1997 dv_from_value (val), node->offset,
1998 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1999 set_variable_part (set, val, node->dv, node->offset,
2000 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2003 /* If we didn't find any equivalence, we need to remember that
2004 this value is held in the named register. */
2005 if (!found)
2006 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2007 dv_from_value (val), 0, NULL_RTX, INSERT);
2009 else if (MEM_P (loc))
2010 /* ??? Merge equivalent MEMs. */
2011 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2012 dv_from_value (val), 0, NULL_RTX, INSERT);
2013 else
2014 /* ??? Merge equivalent expressions. */
2015 set_variable_part (set, loc, dv_from_value (val), 0,
2016 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2019 /* Initialize dataflow set SET to be empty.
2020 VARS_SIZE is the initial size of hash table VARS. */
2022 static void
2023 dataflow_set_init (dataflow_set *set)
2025 init_attrs_list_set (set->regs);
2026 set->vars = shared_hash_copy (empty_shared_hash);
2027 set->stack_adjust = 0;
2028 set->traversed_vars = NULL;
2031 /* Delete the contents of dataflow set SET. */
2033 static void
2034 dataflow_set_clear (dataflow_set *set)
2036 int i;
2038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2039 attrs_list_clear (&set->regs[i]);
2041 shared_hash_destroy (set->vars);
2042 set->vars = shared_hash_copy (empty_shared_hash);
2045 /* Copy the contents of dataflow set SRC to DST. */
2047 static void
2048 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2050 int i;
2052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2053 attrs_list_copy (&dst->regs[i], src->regs[i]);
2055 shared_hash_destroy (dst->vars);
2056 dst->vars = shared_hash_copy (src->vars);
2057 dst->stack_adjust = src->stack_adjust;
2060 /* Information for merging lists of locations for a given offset of variable.
2062 struct variable_union_info
2064 /* Node of the location chain. */
2065 location_chain lc;
2067 /* The sum of positions in the input chains. */
2068 int pos;
2070 /* The position in the chain of DST dataflow set. */
2071 int pos_dst;
2074 /* Buffer for location list sorting and its allocated size. */
2075 static struct variable_union_info *vui_vec;
2076 static int vui_allocated;
2078 /* Compare function for qsort, order the structures by POS element. */
2080 static int
2081 variable_union_info_cmp_pos (const void *n1, const void *n2)
2083 const struct variable_union_info *const i1 =
2084 (const struct variable_union_info *) n1;
2085 const struct variable_union_info *const i2 =
2086 ( const struct variable_union_info *) n2;
2088 if (i1->pos != i2->pos)
2089 return i1->pos - i2->pos;
2091 return (i1->pos_dst - i2->pos_dst);
2094 /* Compute union of location parts of variable *SLOT and the same variable
2095 from hash table DATA. Compute "sorted" union of the location chains
2096 for common offsets, i.e. the locations of a variable part are sorted by
2097 a priority where the priority is the sum of the positions in the 2 chains
2098 (if a location is only in one list the position in the second list is
2099 defined to be larger than the length of the chains).
2100 When we are updating the location parts the newest location is in the
2101 beginning of the chain, so when we do the described "sorted" union
2102 we keep the newest locations in the beginning. */
2104 static int
2105 variable_union (variable src, dataflow_set *set)
2107 variable dst;
2108 void **dstp;
2109 int i, j, k;
2111 dstp = shared_hash_find_slot (set->vars, src->dv);
2112 if (!dstp || !*dstp)
2114 src->refcount++;
2116 dst_can_be_shared = false;
2117 if (!dstp)
2118 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2120 *dstp = src;
2122 /* Continue traversing the hash table. */
2123 return 1;
2125 else
2126 dst = (variable) *dstp;
2128 gcc_assert (src->n_var_parts);
2130 /* We can combine one-part variables very efficiently, because their
2131 entries are in canonical order. */
2132 if (dv_onepart_p (src->dv))
2134 location_chain *nodep, dnode, snode;
2136 gcc_assert (src->n_var_parts == 1
2137 && dst->n_var_parts == 1);
2139 snode = src->var_part[0].loc_chain;
2140 gcc_assert (snode);
2142 restart_onepart_unshared:
2143 nodep = &dst->var_part[0].loc_chain;
2144 dnode = *nodep;
2145 gcc_assert (dnode);
2147 while (snode)
2149 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2151 if (r > 0)
2153 location_chain nnode;
2155 if (shared_var_p (dst, set->vars))
2157 dstp = unshare_variable (set, dstp, dst,
2158 VAR_INIT_STATUS_INITIALIZED);
2159 dst = (variable)*dstp;
2160 goto restart_onepart_unshared;
2163 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2164 nnode->loc = snode->loc;
2165 nnode->init = snode->init;
2166 if (!snode->set_src || MEM_P (snode->set_src))
2167 nnode->set_src = NULL;
2168 else
2169 nnode->set_src = snode->set_src;
2170 nnode->next = dnode;
2171 dnode = nnode;
2173 else if (r == 0)
2174 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2176 if (r >= 0)
2177 snode = snode->next;
2179 nodep = &dnode->next;
2180 dnode = *nodep;
2183 return 1;
2186 /* Count the number of location parts, result is K. */
2187 for (i = 0, j = 0, k = 0;
2188 i < src->n_var_parts && j < dst->n_var_parts; k++)
2190 if (src->var_part[i].offset == dst->var_part[j].offset)
2192 i++;
2193 j++;
2195 else if (src->var_part[i].offset < dst->var_part[j].offset)
2196 i++;
2197 else
2198 j++;
2200 k += src->n_var_parts - i;
2201 k += dst->n_var_parts - j;
2203 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2204 thus there are at most MAX_VAR_PARTS different offsets. */
2205 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2207 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2209 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2210 dst = (variable)*dstp;
2213 i = src->n_var_parts - 1;
2214 j = dst->n_var_parts - 1;
2215 dst->n_var_parts = k;
2217 for (k--; k >= 0; k--)
2219 location_chain node, node2;
2221 if (i >= 0 && j >= 0
2222 && src->var_part[i].offset == dst->var_part[j].offset)
2224 /* Compute the "sorted" union of the chains, i.e. the locations which
2225 are in both chains go first, they are sorted by the sum of
2226 positions in the chains. */
2227 int dst_l, src_l;
2228 int ii, jj, n;
2229 struct variable_union_info *vui;
2231 /* If DST is shared compare the location chains.
2232 If they are different we will modify the chain in DST with
2233 high probability so make a copy of DST. */
2234 if (shared_var_p (dst, set->vars))
2236 for (node = src->var_part[i].loc_chain,
2237 node2 = dst->var_part[j].loc_chain; node && node2;
2238 node = node->next, node2 = node2->next)
2240 if (!((REG_P (node2->loc)
2241 && REG_P (node->loc)
2242 && REGNO (node2->loc) == REGNO (node->loc))
2243 || rtx_equal_p (node2->loc, node->loc)))
2245 if (node2->init < node->init)
2246 node2->init = node->init;
2247 break;
2250 if (node || node2)
2252 dstp = unshare_variable (set, dstp, dst,
2253 VAR_INIT_STATUS_UNKNOWN);
2254 dst = (variable)*dstp;
2258 src_l = 0;
2259 for (node = src->var_part[i].loc_chain; node; node = node->next)
2260 src_l++;
2261 dst_l = 0;
2262 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2263 dst_l++;
2265 if (dst_l == 1)
2267 /* The most common case, much simpler, no qsort is needed. */
2268 location_chain dstnode = dst->var_part[j].loc_chain;
2269 dst->var_part[k].loc_chain = dstnode;
2270 dst->var_part[k].offset = dst->var_part[j].offset;
2271 node2 = dstnode;
2272 for (node = src->var_part[i].loc_chain; node; node = node->next)
2273 if (!((REG_P (dstnode->loc)
2274 && REG_P (node->loc)
2275 && REGNO (dstnode->loc) == REGNO (node->loc))
2276 || rtx_equal_p (dstnode->loc, node->loc)))
2278 location_chain new_node;
2280 /* Copy the location from SRC. */
2281 new_node = (location_chain) pool_alloc (loc_chain_pool);
2282 new_node->loc = node->loc;
2283 new_node->init = node->init;
2284 if (!node->set_src || MEM_P (node->set_src))
2285 new_node->set_src = NULL;
2286 else
2287 new_node->set_src = node->set_src;
2288 node2->next = new_node;
2289 node2 = new_node;
2291 node2->next = NULL;
2293 else
2295 if (src_l + dst_l > vui_allocated)
2297 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2298 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2299 vui_allocated);
2301 vui = vui_vec;
2303 /* Fill in the locations from DST. */
2304 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2305 node = node->next, jj++)
2307 vui[jj].lc = node;
2308 vui[jj].pos_dst = jj;
2310 /* Pos plus value larger than a sum of 2 valid positions. */
2311 vui[jj].pos = jj + src_l + dst_l;
2314 /* Fill in the locations from SRC. */
2315 n = dst_l;
2316 for (node = src->var_part[i].loc_chain, ii = 0; node;
2317 node = node->next, ii++)
2319 /* Find location from NODE. */
2320 for (jj = 0; jj < dst_l; jj++)
2322 if ((REG_P (vui[jj].lc->loc)
2323 && REG_P (node->loc)
2324 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2325 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2327 vui[jj].pos = jj + ii;
2328 break;
2331 if (jj >= dst_l) /* The location has not been found. */
2333 location_chain new_node;
2335 /* Copy the location from SRC. */
2336 new_node = (location_chain) pool_alloc (loc_chain_pool);
2337 new_node->loc = node->loc;
2338 new_node->init = node->init;
2339 if (!node->set_src || MEM_P (node->set_src))
2340 new_node->set_src = NULL;
2341 else
2342 new_node->set_src = node->set_src;
2343 vui[n].lc = new_node;
2344 vui[n].pos_dst = src_l + dst_l;
2345 vui[n].pos = ii + src_l + dst_l;
2346 n++;
2350 if (dst_l == 2)
2352 /* Special case still very common case. For dst_l == 2
2353 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2354 vui[i].pos == i + src_l + dst_l. */
2355 if (vui[0].pos > vui[1].pos)
2357 /* Order should be 1, 0, 2... */
2358 dst->var_part[k].loc_chain = vui[1].lc;
2359 vui[1].lc->next = vui[0].lc;
2360 if (n >= 3)
2362 vui[0].lc->next = vui[2].lc;
2363 vui[n - 1].lc->next = NULL;
2365 else
2366 vui[0].lc->next = NULL;
2367 ii = 3;
2369 else
2371 dst->var_part[k].loc_chain = vui[0].lc;
2372 if (n >= 3 && vui[2].pos < vui[1].pos)
2374 /* Order should be 0, 2, 1, 3... */
2375 vui[0].lc->next = vui[2].lc;
2376 vui[2].lc->next = vui[1].lc;
2377 if (n >= 4)
2379 vui[1].lc->next = vui[3].lc;
2380 vui[n - 1].lc->next = NULL;
2382 else
2383 vui[1].lc->next = NULL;
2384 ii = 4;
2386 else
2388 /* Order should be 0, 1, 2... */
2389 ii = 1;
2390 vui[n - 1].lc->next = NULL;
2393 for (; ii < n; ii++)
2394 vui[ii - 1].lc->next = vui[ii].lc;
2396 else
2398 qsort (vui, n, sizeof (struct variable_union_info),
2399 variable_union_info_cmp_pos);
2401 /* Reconnect the nodes in sorted order. */
2402 for (ii = 1; ii < n; ii++)
2403 vui[ii - 1].lc->next = vui[ii].lc;
2404 vui[n - 1].lc->next = NULL;
2405 dst->var_part[k].loc_chain = vui[0].lc;
2408 dst->var_part[k].offset = dst->var_part[j].offset;
2410 i--;
2411 j--;
2413 else if ((i >= 0 && j >= 0
2414 && src->var_part[i].offset < dst->var_part[j].offset)
2415 || i < 0)
2417 dst->var_part[k] = dst->var_part[j];
2418 j--;
2420 else if ((i >= 0 && j >= 0
2421 && src->var_part[i].offset > dst->var_part[j].offset)
2422 || j < 0)
2424 location_chain *nextp;
2426 /* Copy the chain from SRC. */
2427 nextp = &dst->var_part[k].loc_chain;
2428 for (node = src->var_part[i].loc_chain; node; node = node->next)
2430 location_chain new_lc;
2432 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2433 new_lc->next = NULL;
2434 new_lc->init = node->init;
2435 if (!node->set_src || MEM_P (node->set_src))
2436 new_lc->set_src = NULL;
2437 else
2438 new_lc->set_src = node->set_src;
2439 new_lc->loc = node->loc;
2441 *nextp = new_lc;
2442 nextp = &new_lc->next;
2445 dst->var_part[k].offset = src->var_part[i].offset;
2446 i--;
2448 dst->var_part[k].cur_loc = NULL;
2451 if (flag_var_tracking_uninit)
2452 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2454 location_chain node, node2;
2455 for (node = src->var_part[i].loc_chain; node; node = node->next)
2456 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2457 if (rtx_equal_p (node->loc, node2->loc))
2459 if (node->init > node2->init)
2460 node2->init = node->init;
2464 /* Continue traversing the hash table. */
2465 return 1;
2468 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2470 static void
2471 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2473 int i;
2475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2476 attrs_list_union (&dst->regs[i], src->regs[i]);
2478 if (dst->vars == empty_shared_hash)
2480 shared_hash_destroy (dst->vars);
2481 dst->vars = shared_hash_copy (src->vars);
2483 else
2485 htab_iterator hi;
2486 variable var;
2488 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2489 variable_union (var, dst);
2493 /* Whether the value is currently being expanded. */
2494 #define VALUE_RECURSED_INTO(x) \
2495 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2496 /* Whether the value is in changed_variables hash table. */
2497 #define VALUE_CHANGED(x) \
2498 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2499 /* Whether the decl is in changed_variables hash table. */
2500 #define DECL_CHANGED(x) TREE_VISITED (x)
2502 /* Record that DV has been added into resp. removed from changed_variables
2503 hashtable. */
2505 static inline void
2506 set_dv_changed (decl_or_value dv, bool newv)
2508 if (dv_is_value_p (dv))
2509 VALUE_CHANGED (dv_as_value (dv)) = newv;
2510 else
2511 DECL_CHANGED (dv_as_decl (dv)) = newv;
2514 /* Return true if DV is present in changed_variables hash table. */
2516 static inline bool
2517 dv_changed_p (decl_or_value dv)
2519 return (dv_is_value_p (dv)
2520 ? VALUE_CHANGED (dv_as_value (dv))
2521 : DECL_CHANGED (dv_as_decl (dv)));
2524 /* Return a location list node whose loc is rtx_equal to LOC, in the
2525 location list of a one-part variable or value VAR, or in that of
2526 any values recursively mentioned in the location lists. VARS must
2527 be in star-canonical form. */
2529 static location_chain
2530 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2532 location_chain node;
2533 enum rtx_code loc_code;
2535 if (!var)
2536 return NULL;
2538 gcc_checking_assert (dv_onepart_p (var->dv));
2540 if (!var->n_var_parts)
2541 return NULL;
2543 gcc_checking_assert (var->var_part[0].offset == 0);
2544 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2546 loc_code = GET_CODE (loc);
2547 for (node = var->var_part[0].loc_chain; node; node = node->next)
2549 decl_or_value dv;
2550 variable rvar;
2552 if (GET_CODE (node->loc) != loc_code)
2554 if (GET_CODE (node->loc) != VALUE)
2555 continue;
2557 else if (loc == node->loc)
2558 return node;
2559 else if (loc_code != VALUE)
2561 if (rtx_equal_p (loc, node->loc))
2562 return node;
2563 continue;
2566 /* Since we're in star-canonical form, we don't need to visit
2567 non-canonical nodes: one-part variables and non-canonical
2568 values would only point back to the canonical node. */
2569 if (dv_is_value_p (var->dv)
2570 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2572 /* Skip all subsequent VALUEs. */
2573 while (node->next && GET_CODE (node->next->loc) == VALUE)
2575 node = node->next;
2576 gcc_checking_assert (!canon_value_cmp (node->loc,
2577 dv_as_value (var->dv)));
2578 if (loc == node->loc)
2579 return node;
2581 continue;
2584 gcc_checking_assert (node == var->var_part[0].loc_chain);
2585 gcc_checking_assert (!node->next);
2587 dv = dv_from_value (node->loc);
2588 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2589 return find_loc_in_1pdv (loc, rvar, vars);
2592 return NULL;
2595 /* Hash table iteration argument passed to variable_merge. */
2596 struct dfset_merge
2598 /* The set in which the merge is to be inserted. */
2599 dataflow_set *dst;
2600 /* The set that we're iterating in. */
2601 dataflow_set *cur;
2602 /* The set that may contain the other dv we are to merge with. */
2603 dataflow_set *src;
2604 /* Number of onepart dvs in src. */
2605 int src_onepart_cnt;
2608 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2609 loc_cmp order, and it is maintained as such. */
2611 static void
2612 insert_into_intersection (location_chain *nodep, rtx loc,
2613 enum var_init_status status)
2615 location_chain node;
2616 int r;
2618 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2619 if ((r = loc_cmp (node->loc, loc)) == 0)
2621 node->init = MIN (node->init, status);
2622 return;
2624 else if (r > 0)
2625 break;
2627 node = (location_chain) pool_alloc (loc_chain_pool);
2629 node->loc = loc;
2630 node->set_src = NULL;
2631 node->init = status;
2632 node->next = *nodep;
2633 *nodep = node;
2636 /* Insert in DEST the intersection the locations present in both
2637 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2638 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2639 DSM->dst. */
2641 static void
2642 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2643 location_chain s1node, variable s2var)
2645 dataflow_set *s1set = dsm->cur;
2646 dataflow_set *s2set = dsm->src;
2647 location_chain found;
2649 if (s2var)
2651 location_chain s2node;
2653 gcc_checking_assert (dv_onepart_p (s2var->dv));
2655 if (s2var->n_var_parts)
2657 gcc_checking_assert (s2var->var_part[0].offset == 0);
2658 s2node = s2var->var_part[0].loc_chain;
2660 for (; s1node && s2node;
2661 s1node = s1node->next, s2node = s2node->next)
2662 if (s1node->loc != s2node->loc)
2663 break;
2664 else if (s1node->loc == val)
2665 continue;
2666 else
2667 insert_into_intersection (dest, s1node->loc,
2668 MIN (s1node->init, s2node->init));
2672 for (; s1node; s1node = s1node->next)
2674 if (s1node->loc == val)
2675 continue;
2677 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2678 shared_hash_htab (s2set->vars))))
2680 insert_into_intersection (dest, s1node->loc,
2681 MIN (s1node->init, found->init));
2682 continue;
2685 if (GET_CODE (s1node->loc) == VALUE
2686 && !VALUE_RECURSED_INTO (s1node->loc))
2688 decl_or_value dv = dv_from_value (s1node->loc);
2689 variable svar = shared_hash_find (s1set->vars, dv);
2690 if (svar)
2692 if (svar->n_var_parts == 1)
2694 VALUE_RECURSED_INTO (s1node->loc) = true;
2695 intersect_loc_chains (val, dest, dsm,
2696 svar->var_part[0].loc_chain,
2697 s2var);
2698 VALUE_RECURSED_INTO (s1node->loc) = false;
2703 /* ??? if the location is equivalent to any location in src,
2704 searched recursively
2706 add to dst the values needed to represent the equivalence
2708 telling whether locations S is equivalent to another dv's
2709 location list:
2711 for each location D in the list
2713 if S and D satisfy rtx_equal_p, then it is present
2715 else if D is a value, recurse without cycles
2717 else if S and D have the same CODE and MODE
2719 for each operand oS and the corresponding oD
2721 if oS and oD are not equivalent, then S an D are not equivalent
2723 else if they are RTX vectors
2725 if any vector oS element is not equivalent to its respective oD,
2726 then S and D are not equivalent
2734 /* Return -1 if X should be before Y in a location list for a 1-part
2735 variable, 1 if Y should be before X, and 0 if they're equivalent
2736 and should not appear in the list. */
2738 static int
2739 loc_cmp (rtx x, rtx y)
2741 int i, j, r;
2742 RTX_CODE code = GET_CODE (x);
2743 const char *fmt;
2745 if (x == y)
2746 return 0;
2748 if (REG_P (x))
2750 if (!REG_P (y))
2751 return -1;
2752 gcc_assert (GET_MODE (x) == GET_MODE (y));
2753 if (REGNO (x) == REGNO (y))
2754 return 0;
2755 else if (REGNO (x) < REGNO (y))
2756 return -1;
2757 else
2758 return 1;
2761 if (REG_P (y))
2762 return 1;
2764 if (MEM_P (x))
2766 if (!MEM_P (y))
2767 return -1;
2768 gcc_assert (GET_MODE (x) == GET_MODE (y));
2769 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2772 if (MEM_P (y))
2773 return 1;
2775 if (GET_CODE (x) == VALUE)
2777 if (GET_CODE (y) != VALUE)
2778 return -1;
2779 /* Don't assert the modes are the same, that is true only
2780 when not recursing. (subreg:QI (value:SI 1:1) 0)
2781 and (subreg:QI (value:DI 2:2) 0) can be compared,
2782 even when the modes are different. */
2783 if (canon_value_cmp (x, y))
2784 return -1;
2785 else
2786 return 1;
2789 if (GET_CODE (y) == VALUE)
2790 return 1;
2792 if (GET_CODE (x) == GET_CODE (y))
2793 /* Compare operands below. */;
2794 else if (GET_CODE (x) < GET_CODE (y))
2795 return -1;
2796 else
2797 return 1;
2799 gcc_assert (GET_MODE (x) == GET_MODE (y));
2801 if (GET_CODE (x) == DEBUG_EXPR)
2803 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2804 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2805 return -1;
2806 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2807 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2808 return 1;
2811 fmt = GET_RTX_FORMAT (code);
2812 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2813 switch (fmt[i])
2815 case 'w':
2816 if (XWINT (x, i) == XWINT (y, i))
2817 break;
2818 else if (XWINT (x, i) < XWINT (y, i))
2819 return -1;
2820 else
2821 return 1;
2823 case 'n':
2824 case 'i':
2825 if (XINT (x, i) == XINT (y, i))
2826 break;
2827 else if (XINT (x, i) < XINT (y, i))
2828 return -1;
2829 else
2830 return 1;
2832 case 'V':
2833 case 'E':
2834 /* Compare the vector length first. */
2835 if (XVECLEN (x, i) == XVECLEN (y, i))
2836 /* Compare the vectors elements. */;
2837 else if (XVECLEN (x, i) < XVECLEN (y, i))
2838 return -1;
2839 else
2840 return 1;
2842 for (j = 0; j < XVECLEN (x, i); j++)
2843 if ((r = loc_cmp (XVECEXP (x, i, j),
2844 XVECEXP (y, i, j))))
2845 return r;
2846 break;
2848 case 'e':
2849 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2850 return r;
2851 break;
2853 case 'S':
2854 case 's':
2855 if (XSTR (x, i) == XSTR (y, i))
2856 break;
2857 if (!XSTR (x, i))
2858 return -1;
2859 if (!XSTR (y, i))
2860 return 1;
2861 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2862 break;
2863 else if (r < 0)
2864 return -1;
2865 else
2866 return 1;
2868 case 'u':
2869 /* These are just backpointers, so they don't matter. */
2870 break;
2872 case '0':
2873 case 't':
2874 break;
2876 /* It is believed that rtx's at this level will never
2877 contain anything but integers and other rtx's,
2878 except for within LABEL_REFs and SYMBOL_REFs. */
2879 default:
2880 gcc_unreachable ();
2883 return 0;
2886 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2887 from VALUE to DVP. */
2889 static int
2890 add_value_chain (rtx *loc, void *dvp)
2892 decl_or_value dv, ldv;
2893 value_chain vc, nvc;
2894 void **slot;
2896 if (GET_CODE (*loc) == VALUE)
2897 ldv = dv_from_value (*loc);
2898 else if (GET_CODE (*loc) == DEBUG_EXPR)
2899 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2900 else
2901 return 0;
2903 if (dv_as_opaque (ldv) == dvp)
2904 return 0;
2906 dv = (decl_or_value) dvp;
2907 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2908 INSERT);
2909 if (!*slot)
2911 vc = (value_chain) pool_alloc (value_chain_pool);
2912 vc->dv = ldv;
2913 vc->next = NULL;
2914 vc->refcount = 0;
2915 *slot = (void *) vc;
2917 else
2919 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2920 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2921 break;
2922 if (vc)
2924 vc->refcount++;
2925 return 0;
2928 vc = (value_chain) *slot;
2929 nvc = (value_chain) pool_alloc (value_chain_pool);
2930 nvc->dv = dv;
2931 nvc->next = vc->next;
2932 nvc->refcount = 1;
2933 vc->next = nvc;
2934 return 0;
2937 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2938 from those VALUEs to DVP. */
2940 static void
2941 add_value_chains (decl_or_value dv, rtx loc)
2943 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2945 add_value_chain (&loc, dv_as_opaque (dv));
2946 return;
2948 if (REG_P (loc))
2949 return;
2950 if (MEM_P (loc))
2951 loc = XEXP (loc, 0);
2952 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2955 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2956 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2957 that is something we never can express in .debug_info and can prevent
2958 reverse ops from being used. */
2960 static void
2961 add_cselib_value_chains (decl_or_value dv)
2963 struct elt_loc_list **l;
2965 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2966 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2967 *l = (*l)->next;
2968 else
2970 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2971 l = &(*l)->next;
2975 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2976 from VALUE to DVP. */
2978 static int
2979 remove_value_chain (rtx *loc, void *dvp)
2981 decl_or_value dv, ldv;
2982 value_chain vc;
2983 void **slot;
2985 if (GET_CODE (*loc) == VALUE)
2986 ldv = dv_from_value (*loc);
2987 else if (GET_CODE (*loc) == DEBUG_EXPR)
2988 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2989 else
2990 return 0;
2992 if (dv_as_opaque (ldv) == dvp)
2993 return 0;
2995 dv = (decl_or_value) dvp;
2996 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2997 NO_INSERT);
2998 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
2999 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3001 value_chain dvc = vc->next;
3002 gcc_assert (dvc->refcount > 0);
3003 if (--dvc->refcount == 0)
3005 vc->next = dvc->next;
3006 pool_free (value_chain_pool, dvc);
3007 if (vc->next == NULL && vc == (value_chain) *slot)
3009 pool_free (value_chain_pool, vc);
3010 htab_clear_slot (value_chains, slot);
3013 return 0;
3015 gcc_unreachable ();
3018 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3019 from those VALUEs to DVP. */
3021 static void
3022 remove_value_chains (decl_or_value dv, rtx loc)
3024 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3026 remove_value_chain (&loc, dv_as_opaque (dv));
3027 return;
3029 if (REG_P (loc))
3030 return;
3031 if (MEM_P (loc))
3032 loc = XEXP (loc, 0);
3033 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3036 #if ENABLE_CHECKING
3037 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3038 VALUEs to DV. */
3040 static void
3041 remove_cselib_value_chains (decl_or_value dv)
3043 struct elt_loc_list *l;
3045 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3046 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3049 /* Check the order of entries in one-part variables. */
3051 static int
3052 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3054 variable var = (variable) *slot;
3055 decl_or_value dv = var->dv;
3056 location_chain node, next;
3058 #ifdef ENABLE_RTL_CHECKING
3059 int i;
3060 for (i = 0; i < var->n_var_parts; i++)
3061 gcc_assert (var->var_part[0].cur_loc == NULL);
3062 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3063 #endif
3065 if (!dv_onepart_p (dv))
3066 return 1;
3068 gcc_assert (var->n_var_parts == 1);
3069 node = var->var_part[0].loc_chain;
3070 gcc_assert (node);
3072 while ((next = node->next))
3074 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3075 node = next;
3078 return 1;
3080 #endif
3082 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3083 more likely to be chosen as canonical for an equivalence set.
3084 Ensure less likely values can reach more likely neighbors, making
3085 the connections bidirectional. */
3087 static int
3088 canonicalize_values_mark (void **slot, void *data)
3090 dataflow_set *set = (dataflow_set *)data;
3091 variable var = (variable) *slot;
3092 decl_or_value dv = var->dv;
3093 rtx val;
3094 location_chain node;
3096 if (!dv_is_value_p (dv))
3097 return 1;
3099 gcc_checking_assert (var->n_var_parts == 1);
3101 val = dv_as_value (dv);
3103 for (node = var->var_part[0].loc_chain; node; node = node->next)
3104 if (GET_CODE (node->loc) == VALUE)
3106 if (canon_value_cmp (node->loc, val))
3107 VALUE_RECURSED_INTO (val) = true;
3108 else
3110 decl_or_value odv = dv_from_value (node->loc);
3111 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3113 oslot = set_slot_part (set, val, oslot, odv, 0,
3114 node->init, NULL_RTX);
3116 VALUE_RECURSED_INTO (node->loc) = true;
3120 return 1;
3123 /* Remove redundant entries from equivalence lists in onepart
3124 variables, canonicalizing equivalence sets into star shapes. */
3126 static int
3127 canonicalize_values_star (void **slot, void *data)
3129 dataflow_set *set = (dataflow_set *)data;
3130 variable var = (variable) *slot;
3131 decl_or_value dv = var->dv;
3132 location_chain node;
3133 decl_or_value cdv;
3134 rtx val, cval;
3135 void **cslot;
3136 bool has_value;
3137 bool has_marks;
3139 if (!dv_onepart_p (dv))
3140 return 1;
3142 gcc_checking_assert (var->n_var_parts == 1);
3144 if (dv_is_value_p (dv))
3146 cval = dv_as_value (dv);
3147 if (!VALUE_RECURSED_INTO (cval))
3148 return 1;
3149 VALUE_RECURSED_INTO (cval) = false;
3151 else
3152 cval = NULL_RTX;
3154 restart:
3155 val = cval;
3156 has_value = false;
3157 has_marks = false;
3159 gcc_assert (var->n_var_parts == 1);
3161 for (node = var->var_part[0].loc_chain; node; node = node->next)
3162 if (GET_CODE (node->loc) == VALUE)
3164 has_value = true;
3165 if (VALUE_RECURSED_INTO (node->loc))
3166 has_marks = true;
3167 if (canon_value_cmp (node->loc, cval))
3168 cval = node->loc;
3171 if (!has_value)
3172 return 1;
3174 if (cval == val)
3176 if (!has_marks || dv_is_decl_p (dv))
3177 return 1;
3179 /* Keep it marked so that we revisit it, either after visiting a
3180 child node, or after visiting a new parent that might be
3181 found out. */
3182 VALUE_RECURSED_INTO (val) = true;
3184 for (node = var->var_part[0].loc_chain; node; node = node->next)
3185 if (GET_CODE (node->loc) == VALUE
3186 && VALUE_RECURSED_INTO (node->loc))
3188 cval = node->loc;
3189 restart_with_cval:
3190 VALUE_RECURSED_INTO (cval) = false;
3191 dv = dv_from_value (cval);
3192 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3193 if (!slot)
3195 gcc_assert (dv_is_decl_p (var->dv));
3196 /* The canonical value was reset and dropped.
3197 Remove it. */
3198 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3199 return 1;
3201 var = (variable)*slot;
3202 gcc_assert (dv_is_value_p (var->dv));
3203 if (var->n_var_parts == 0)
3204 return 1;
3205 gcc_assert (var->n_var_parts == 1);
3206 goto restart;
3209 VALUE_RECURSED_INTO (val) = false;
3211 return 1;
3214 /* Push values to the canonical one. */
3215 cdv = dv_from_value (cval);
3216 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3218 for (node = var->var_part[0].loc_chain; node; node = node->next)
3219 if (node->loc != cval)
3221 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3222 node->init, NULL_RTX);
3223 if (GET_CODE (node->loc) == VALUE)
3225 decl_or_value ndv = dv_from_value (node->loc);
3227 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3228 NO_INSERT);
3230 if (canon_value_cmp (node->loc, val))
3232 /* If it could have been a local minimum, it's not any more,
3233 since it's now neighbor to cval, so it may have to push
3234 to it. Conversely, if it wouldn't have prevailed over
3235 val, then whatever mark it has is fine: if it was to
3236 push, it will now push to a more canonical node, but if
3237 it wasn't, then it has already pushed any values it might
3238 have to. */
3239 VALUE_RECURSED_INTO (node->loc) = true;
3240 /* Make sure we visit node->loc by ensuring we cval is
3241 visited too. */
3242 VALUE_RECURSED_INTO (cval) = true;
3244 else if (!VALUE_RECURSED_INTO (node->loc))
3245 /* If we have no need to "recurse" into this node, it's
3246 already "canonicalized", so drop the link to the old
3247 parent. */
3248 clobber_variable_part (set, cval, ndv, 0, NULL);
3250 else if (GET_CODE (node->loc) == REG)
3252 attrs list = set->regs[REGNO (node->loc)], *listp;
3254 /* Change an existing attribute referring to dv so that it
3255 refers to cdv, removing any duplicate this might
3256 introduce, and checking that no previous duplicates
3257 existed, all in a single pass. */
3259 while (list)
3261 if (list->offset == 0
3262 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3263 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3264 break;
3266 list = list->next;
3269 gcc_assert (list);
3270 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3272 list->dv = cdv;
3273 for (listp = &list->next; (list = *listp); listp = &list->next)
3275 if (list->offset)
3276 continue;
3278 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3280 *listp = list->next;
3281 pool_free (attrs_pool, list);
3282 list = *listp;
3283 break;
3286 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3289 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3291 for (listp = &list->next; (list = *listp); listp = &list->next)
3293 if (list->offset)
3294 continue;
3296 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3298 *listp = list->next;
3299 pool_free (attrs_pool, list);
3300 list = *listp;
3301 break;
3304 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3307 else
3308 gcc_unreachable ();
3310 #if ENABLE_CHECKING
3311 while (list)
3313 if (list->offset == 0
3314 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3315 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3316 gcc_unreachable ();
3318 list = list->next;
3320 #endif
3324 if (val)
3325 cslot = set_slot_part (set, val, cslot, cdv, 0,
3326 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3328 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3330 /* Variable may have been unshared. */
3331 var = (variable)*slot;
3332 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3333 && var->var_part[0].loc_chain->next == NULL);
3335 if (VALUE_RECURSED_INTO (cval))
3336 goto restart_with_cval;
3338 return 1;
3341 /* Bind one-part variables to the canonical value in an equivalence
3342 set. Not doing this causes dataflow convergence failure in rare
3343 circumstances, see PR42873. Unfortunately we can't do this
3344 efficiently as part of canonicalize_values_star, since we may not
3345 have determined or even seen the canonical value of a set when we
3346 get to a variable that references another member of the set. */
3348 static int
3349 canonicalize_vars_star (void **slot, void *data)
3351 dataflow_set *set = (dataflow_set *)data;
3352 variable var = (variable) *slot;
3353 decl_or_value dv = var->dv;
3354 location_chain node;
3355 rtx cval;
3356 decl_or_value cdv;
3357 void **cslot;
3358 variable cvar;
3359 location_chain cnode;
3361 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3362 return 1;
3364 gcc_assert (var->n_var_parts == 1);
3366 node = var->var_part[0].loc_chain;
3368 if (GET_CODE (node->loc) != VALUE)
3369 return 1;
3371 gcc_assert (!node->next);
3372 cval = node->loc;
3374 /* Push values to the canonical one. */
3375 cdv = dv_from_value (cval);
3376 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3377 if (!cslot)
3378 return 1;
3379 cvar = (variable)*cslot;
3380 gcc_assert (cvar->n_var_parts == 1);
3382 cnode = cvar->var_part[0].loc_chain;
3384 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3385 that are not “more canonical” than it. */
3386 if (GET_CODE (cnode->loc) != VALUE
3387 || !canon_value_cmp (cnode->loc, cval))
3388 return 1;
3390 /* CVAL was found to be non-canonical. Change the variable to point
3391 to the canonical VALUE. */
3392 gcc_assert (!cnode->next);
3393 cval = cnode->loc;
3395 slot = set_slot_part (set, cval, slot, dv, 0,
3396 node->init, node->set_src);
3397 slot = clobber_slot_part (set, cval, slot, 0, node->set_src);
3399 return 1;
3402 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3403 corresponding entry in DSM->src. Multi-part variables are combined
3404 with variable_union, whereas onepart dvs are combined with
3405 intersection. */
3407 static int
3408 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3410 dataflow_set *dst = dsm->dst;
3411 void **dstslot;
3412 variable s2var, dvar = NULL;
3413 decl_or_value dv = s1var->dv;
3414 bool onepart = dv_onepart_p (dv);
3415 rtx val;
3416 hashval_t dvhash;
3417 location_chain node, *nodep;
3419 /* If the incoming onepart variable has an empty location list, then
3420 the intersection will be just as empty. For other variables,
3421 it's always union. */
3422 gcc_checking_assert (s1var->n_var_parts
3423 && s1var->var_part[0].loc_chain);
3425 if (!onepart)
3426 return variable_union (s1var, dst);
3428 gcc_checking_assert (s1var->n_var_parts == 1
3429 && s1var->var_part[0].offset == 0);
3431 dvhash = dv_htab_hash (dv);
3432 if (dv_is_value_p (dv))
3433 val = dv_as_value (dv);
3434 else
3435 val = NULL;
3437 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3438 if (!s2var)
3440 dst_can_be_shared = false;
3441 return 1;
3444 dsm->src_onepart_cnt--;
3445 gcc_assert (s2var->var_part[0].loc_chain
3446 && s2var->n_var_parts == 1
3447 && s2var->var_part[0].offset == 0);
3449 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3450 if (dstslot)
3452 dvar = (variable)*dstslot;
3453 gcc_assert (dvar->refcount == 1
3454 && dvar->n_var_parts == 1
3455 && dvar->var_part[0].offset == 0);
3456 nodep = &dvar->var_part[0].loc_chain;
3458 else
3460 nodep = &node;
3461 node = NULL;
3464 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3466 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3467 dvhash, INSERT);
3468 *dstslot = dvar = s2var;
3469 dvar->refcount++;
3471 else
3473 dst_can_be_shared = false;
3475 intersect_loc_chains (val, nodep, dsm,
3476 s1var->var_part[0].loc_chain, s2var);
3478 if (!dstslot)
3480 if (node)
3482 dvar = (variable) pool_alloc (dv_pool (dv));
3483 dvar->dv = dv;
3484 dvar->refcount = 1;
3485 dvar->n_var_parts = 1;
3486 dvar->cur_loc_changed = false;
3487 dvar->in_changed_variables = false;
3488 dvar->var_part[0].offset = 0;
3489 dvar->var_part[0].loc_chain = node;
3490 dvar->var_part[0].cur_loc = NULL;
3492 dstslot
3493 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3494 INSERT);
3495 gcc_assert (!*dstslot);
3496 *dstslot = dvar;
3498 else
3499 return 1;
3503 nodep = &dvar->var_part[0].loc_chain;
3504 while ((node = *nodep))
3506 location_chain *nextp = &node->next;
3508 if (GET_CODE (node->loc) == REG)
3510 attrs list;
3512 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3513 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3514 && dv_is_value_p (list->dv))
3515 break;
3517 if (!list)
3518 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3519 dv, 0, node->loc);
3520 /* If this value became canonical for another value that had
3521 this register, we want to leave it alone. */
3522 else if (dv_as_value (list->dv) != val)
3524 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3525 dstslot, dv, 0,
3526 node->init, NULL_RTX);
3527 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3529 /* Since nextp points into the removed node, we can't
3530 use it. The pointer to the next node moved to nodep.
3531 However, if the variable we're walking is unshared
3532 during our walk, we'll keep walking the location list
3533 of the previously-shared variable, in which case the
3534 node won't have been removed, and we'll want to skip
3535 it. That's why we test *nodep here. */
3536 if (*nodep != node)
3537 nextp = nodep;
3540 else
3541 /* Canonicalization puts registers first, so we don't have to
3542 walk it all. */
3543 break;
3544 nodep = nextp;
3547 if (dvar != (variable)*dstslot)
3548 dvar = (variable)*dstslot;
3549 nodep = &dvar->var_part[0].loc_chain;
3551 if (val)
3553 /* Mark all referenced nodes for canonicalization, and make sure
3554 we have mutual equivalence links. */
3555 VALUE_RECURSED_INTO (val) = true;
3556 for (node = *nodep; node; node = node->next)
3557 if (GET_CODE (node->loc) == VALUE)
3559 VALUE_RECURSED_INTO (node->loc) = true;
3560 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3561 node->init, NULL, INSERT);
3564 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3565 gcc_assert (*dstslot == dvar);
3566 canonicalize_values_star (dstslot, dst);
3567 gcc_checking_assert (dstslot
3568 == shared_hash_find_slot_noinsert_1 (dst->vars,
3569 dv, dvhash));
3570 dvar = (variable)*dstslot;
3572 else
3574 bool has_value = false, has_other = false;
3576 /* If we have one value and anything else, we're going to
3577 canonicalize this, so make sure all values have an entry in
3578 the table and are marked for canonicalization. */
3579 for (node = *nodep; node; node = node->next)
3581 if (GET_CODE (node->loc) == VALUE)
3583 /* If this was marked during register canonicalization,
3584 we know we have to canonicalize values. */
3585 if (has_value)
3586 has_other = true;
3587 has_value = true;
3588 if (has_other)
3589 break;
3591 else
3593 has_other = true;
3594 if (has_value)
3595 break;
3599 if (has_value && has_other)
3601 for (node = *nodep; node; node = node->next)
3603 if (GET_CODE (node->loc) == VALUE)
3605 decl_or_value dv = dv_from_value (node->loc);
3606 void **slot = NULL;
3608 if (shared_hash_shared (dst->vars))
3609 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3610 if (!slot)
3611 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3612 INSERT);
3613 if (!*slot)
3615 variable var = (variable) pool_alloc (dv_pool (dv));
3616 var->dv = dv;
3617 var->refcount = 1;
3618 var->n_var_parts = 1;
3619 var->cur_loc_changed = false;
3620 var->in_changed_variables = false;
3621 var->var_part[0].offset = 0;
3622 var->var_part[0].loc_chain = NULL;
3623 var->var_part[0].cur_loc = NULL;
3624 *slot = var;
3627 VALUE_RECURSED_INTO (node->loc) = true;
3631 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3632 gcc_assert (*dstslot == dvar);
3633 canonicalize_values_star (dstslot, dst);
3634 gcc_checking_assert (dstslot
3635 == shared_hash_find_slot_noinsert_1 (dst->vars,
3636 dv, dvhash));
3637 dvar = (variable)*dstslot;
3641 if (!onepart_variable_different_p (dvar, s2var))
3643 variable_htab_free (dvar);
3644 *dstslot = dvar = s2var;
3645 dvar->refcount++;
3647 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3649 variable_htab_free (dvar);
3650 *dstslot = dvar = s1var;
3651 dvar->refcount++;
3652 dst_can_be_shared = false;
3654 else
3655 dst_can_be_shared = false;
3657 return 1;
3660 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3661 multi-part variable. Unions of multi-part variables and
3662 intersections of one-part ones will be handled in
3663 variable_merge_over_cur(). */
3665 static int
3666 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3668 dataflow_set *dst = dsm->dst;
3669 decl_or_value dv = s2var->dv;
3670 bool onepart = dv_onepart_p (dv);
3672 if (!onepart)
3674 void **dstp = shared_hash_find_slot (dst->vars, dv);
3675 *dstp = s2var;
3676 s2var->refcount++;
3677 return 1;
3680 dsm->src_onepart_cnt++;
3681 return 1;
3684 /* Combine dataflow set information from SRC2 into DST, using PDST
3685 to carry over information across passes. */
3687 static void
3688 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3690 dataflow_set cur = *dst;
3691 dataflow_set *src1 = &cur;
3692 struct dfset_merge dsm;
3693 int i;
3694 size_t src1_elems, src2_elems;
3695 htab_iterator hi;
3696 variable var;
3698 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3699 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3700 dataflow_set_init (dst);
3701 dst->stack_adjust = cur.stack_adjust;
3702 shared_hash_destroy (dst->vars);
3703 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3704 dst->vars->refcount = 1;
3705 dst->vars->htab
3706 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3707 variable_htab_eq, variable_htab_free);
3709 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3710 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3712 dsm.dst = dst;
3713 dsm.src = src2;
3714 dsm.cur = src1;
3715 dsm.src_onepart_cnt = 0;
3717 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3718 variable_merge_over_src (var, &dsm);
3719 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3720 variable_merge_over_cur (var, &dsm);
3722 if (dsm.src_onepart_cnt)
3723 dst_can_be_shared = false;
3725 dataflow_set_destroy (src1);
3728 /* Mark register equivalences. */
3730 static void
3731 dataflow_set_equiv_regs (dataflow_set *set)
3733 int i;
3734 attrs list, *listp;
3736 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3738 rtx canon[NUM_MACHINE_MODES];
3740 /* If the list is empty or one entry, no need to canonicalize
3741 anything. */
3742 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3743 continue;
3745 memset (canon, 0, sizeof (canon));
3747 for (list = set->regs[i]; list; list = list->next)
3748 if (list->offset == 0 && dv_is_value_p (list->dv))
3750 rtx val = dv_as_value (list->dv);
3751 rtx *cvalp = &canon[(int)GET_MODE (val)];
3752 rtx cval = *cvalp;
3754 if (canon_value_cmp (val, cval))
3755 *cvalp = val;
3758 for (list = set->regs[i]; list; list = list->next)
3759 if (list->offset == 0 && dv_onepart_p (list->dv))
3761 rtx cval = canon[(int)GET_MODE (list->loc)];
3763 if (!cval)
3764 continue;
3766 if (dv_is_value_p (list->dv))
3768 rtx val = dv_as_value (list->dv);
3770 if (val == cval)
3771 continue;
3773 VALUE_RECURSED_INTO (val) = true;
3774 set_variable_part (set, val, dv_from_value (cval), 0,
3775 VAR_INIT_STATUS_INITIALIZED,
3776 NULL, NO_INSERT);
3779 VALUE_RECURSED_INTO (cval) = true;
3780 set_variable_part (set, cval, list->dv, 0,
3781 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3784 for (listp = &set->regs[i]; (list = *listp);
3785 listp = list ? &list->next : listp)
3786 if (list->offset == 0 && dv_onepart_p (list->dv))
3788 rtx cval = canon[(int)GET_MODE (list->loc)];
3789 void **slot;
3791 if (!cval)
3792 continue;
3794 if (dv_is_value_p (list->dv))
3796 rtx val = dv_as_value (list->dv);
3797 if (!VALUE_RECURSED_INTO (val))
3798 continue;
3801 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3802 canonicalize_values_star (slot, set);
3803 if (*listp != list)
3804 list = NULL;
3809 /* Remove any redundant values in the location list of VAR, which must
3810 be unshared and 1-part. */
3812 static void
3813 remove_duplicate_values (variable var)
3815 location_chain node, *nodep;
3817 gcc_assert (dv_onepart_p (var->dv));
3818 gcc_assert (var->n_var_parts == 1);
3819 gcc_assert (var->refcount == 1);
3821 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3823 if (GET_CODE (node->loc) == VALUE)
3825 if (VALUE_RECURSED_INTO (node->loc))
3827 /* Remove duplicate value node. */
3828 *nodep = node->next;
3829 pool_free (loc_chain_pool, node);
3830 continue;
3832 else
3833 VALUE_RECURSED_INTO (node->loc) = true;
3835 nodep = &node->next;
3838 for (node = var->var_part[0].loc_chain; node; node = node->next)
3839 if (GET_CODE (node->loc) == VALUE)
3841 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3842 VALUE_RECURSED_INTO (node->loc) = false;
3847 /* Hash table iteration argument passed to variable_post_merge. */
3848 struct dfset_post_merge
3850 /* The new input set for the current block. */
3851 dataflow_set *set;
3852 /* Pointer to the permanent input set for the current block, or
3853 NULL. */
3854 dataflow_set **permp;
3857 /* Create values for incoming expressions associated with one-part
3858 variables that don't have value numbers for them. */
3860 static int
3861 variable_post_merge_new_vals (void **slot, void *info)
3863 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3864 dataflow_set *set = dfpm->set;
3865 variable var = (variable)*slot;
3866 location_chain node;
3868 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3869 return 1;
3871 gcc_assert (var->n_var_parts == 1);
3873 if (dv_is_decl_p (var->dv))
3875 bool check_dupes = false;
3877 restart:
3878 for (node = var->var_part[0].loc_chain; node; node = node->next)
3880 if (GET_CODE (node->loc) == VALUE)
3881 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3882 else if (GET_CODE (node->loc) == REG)
3884 attrs att, *attp, *curp = NULL;
3886 if (var->refcount != 1)
3888 slot = unshare_variable (set, slot, var,
3889 VAR_INIT_STATUS_INITIALIZED);
3890 var = (variable)*slot;
3891 goto restart;
3894 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3895 attp = &att->next)
3896 if (att->offset == 0
3897 && GET_MODE (att->loc) == GET_MODE (node->loc))
3899 if (dv_is_value_p (att->dv))
3901 rtx cval = dv_as_value (att->dv);
3902 node->loc = cval;
3903 check_dupes = true;
3904 break;
3906 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3907 curp = attp;
3910 if (!curp)
3912 curp = attp;
3913 while (*curp)
3914 if ((*curp)->offset == 0
3915 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3916 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3917 break;
3918 else
3919 curp = &(*curp)->next;
3920 gcc_assert (*curp);
3923 if (!att)
3925 decl_or_value cdv;
3926 rtx cval;
3928 if (!*dfpm->permp)
3930 *dfpm->permp = XNEW (dataflow_set);
3931 dataflow_set_init (*dfpm->permp);
3934 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3935 att; att = att->next)
3936 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3938 gcc_assert (att->offset == 0
3939 && dv_is_value_p (att->dv));
3940 val_reset (set, att->dv);
3941 break;
3944 if (att)
3946 cdv = att->dv;
3947 cval = dv_as_value (cdv);
3949 else
3951 /* Create a unique value to hold this register,
3952 that ought to be found and reused in
3953 subsequent rounds. */
3954 cselib_val *v;
3955 gcc_assert (!cselib_lookup (node->loc,
3956 GET_MODE (node->loc), 0));
3957 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1);
3958 cselib_preserve_value (v);
3959 cselib_invalidate_rtx (node->loc);
3960 cval = v->val_rtx;
3961 cdv = dv_from_value (cval);
3962 if (dump_file)
3963 fprintf (dump_file,
3964 "Created new value %u:%u for reg %i\n",
3965 v->uid, v->hash, REGNO (node->loc));
3968 var_reg_decl_set (*dfpm->permp, node->loc,
3969 VAR_INIT_STATUS_INITIALIZED,
3970 cdv, 0, NULL, INSERT);
3972 node->loc = cval;
3973 check_dupes = true;
3976 /* Remove attribute referring to the decl, which now
3977 uses the value for the register, already existing or
3978 to be added when we bring perm in. */
3979 att = *curp;
3980 *curp = att->next;
3981 pool_free (attrs_pool, att);
3985 if (check_dupes)
3986 remove_duplicate_values (var);
3989 return 1;
3992 /* Reset values in the permanent set that are not associated with the
3993 chosen expression. */
3995 static int
3996 variable_post_merge_perm_vals (void **pslot, void *info)
3998 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3999 dataflow_set *set = dfpm->set;
4000 variable pvar = (variable)*pslot, var;
4001 location_chain pnode;
4002 decl_or_value dv;
4003 attrs att;
4005 gcc_assert (dv_is_value_p (pvar->dv)
4006 && pvar->n_var_parts == 1);
4007 pnode = pvar->var_part[0].loc_chain;
4008 gcc_assert (pnode
4009 && !pnode->next
4010 && REG_P (pnode->loc));
4012 dv = pvar->dv;
4014 var = shared_hash_find (set->vars, dv);
4015 if (var)
4017 /* Although variable_post_merge_new_vals may have made decls
4018 non-star-canonical, values that pre-existed in canonical form
4019 remain canonical, and newly-created values reference a single
4020 REG, so they are canonical as well. Since VAR has the
4021 location list for a VALUE, using find_loc_in_1pdv for it is
4022 fine, since VALUEs don't map back to DECLs. */
4023 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4024 return 1;
4025 val_reset (set, dv);
4028 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4029 if (att->offset == 0
4030 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4031 && dv_is_value_p (att->dv))
4032 break;
4034 /* If there is a value associated with this register already, create
4035 an equivalence. */
4036 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4038 rtx cval = dv_as_value (att->dv);
4039 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4040 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4041 NULL, INSERT);
4043 else if (!att)
4045 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4046 dv, 0, pnode->loc);
4047 variable_union (pvar, set);
4050 return 1;
4053 /* Just checking stuff and registering register attributes for
4054 now. */
4056 static void
4057 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4059 struct dfset_post_merge dfpm;
4061 dfpm.set = set;
4062 dfpm.permp = permp;
4064 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4065 &dfpm);
4066 if (*permp)
4067 htab_traverse (shared_hash_htab ((*permp)->vars),
4068 variable_post_merge_perm_vals, &dfpm);
4069 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4070 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4073 /* Return a node whose loc is a MEM that refers to EXPR in the
4074 location list of a one-part variable or value VAR, or in that of
4075 any values recursively mentioned in the location lists. */
4077 static location_chain
4078 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4080 location_chain node;
4081 decl_or_value dv;
4082 variable var;
4083 location_chain where = NULL;
4085 if (!val)
4086 return NULL;
4088 gcc_assert (GET_CODE (val) == VALUE
4089 && !VALUE_RECURSED_INTO (val));
4091 dv = dv_from_value (val);
4092 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4094 if (!var)
4095 return NULL;
4097 gcc_assert (dv_onepart_p (var->dv));
4099 if (!var->n_var_parts)
4100 return NULL;
4102 gcc_assert (var->var_part[0].offset == 0);
4104 VALUE_RECURSED_INTO (val) = true;
4106 for (node = var->var_part[0].loc_chain; node; node = node->next)
4107 if (MEM_P (node->loc) && MEM_EXPR (node->loc) == expr
4108 && MEM_OFFSET (node->loc) == 0)
4110 where = node;
4111 break;
4113 else if (GET_CODE (node->loc) == VALUE
4114 && !VALUE_RECURSED_INTO (node->loc)
4115 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4116 break;
4118 VALUE_RECURSED_INTO (val) = false;
4120 return where;
4123 /* Return TRUE if the value of MEM may vary across a call. */
4125 static bool
4126 mem_dies_at_call (rtx mem)
4128 tree expr = MEM_EXPR (mem);
4129 tree decl;
4131 if (!expr)
4132 return true;
4134 decl = get_base_address (expr);
4136 if (!decl)
4137 return true;
4139 if (!DECL_P (decl))
4140 return true;
4142 return (may_be_aliased (decl)
4143 || (!TREE_READONLY (decl) && is_global_var (decl)));
4146 /* Remove all MEMs from the location list of a hash table entry for a
4147 one-part variable, except those whose MEM attributes map back to
4148 the variable itself, directly or within a VALUE. */
4150 static int
4151 dataflow_set_preserve_mem_locs (void **slot, void *data)
4153 dataflow_set *set = (dataflow_set *) data;
4154 variable var = (variable) *slot;
4156 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4158 tree decl = dv_as_decl (var->dv);
4159 location_chain loc, *locp;
4160 bool changed = false;
4162 if (!var->n_var_parts)
4163 return 1;
4165 gcc_assert (var->n_var_parts == 1);
4167 if (shared_var_p (var, set->vars))
4169 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4171 /* We want to remove dying MEMs that doesn't refer to
4172 DECL. */
4173 if (GET_CODE (loc->loc) == MEM
4174 && (MEM_EXPR (loc->loc) != decl
4175 || MEM_OFFSET (loc->loc))
4176 && !mem_dies_at_call (loc->loc))
4177 break;
4178 /* We want to move here MEMs that do refer to DECL. */
4179 else if (GET_CODE (loc->loc) == VALUE
4180 && find_mem_expr_in_1pdv (decl, loc->loc,
4181 shared_hash_htab (set->vars)))
4182 break;
4185 if (!loc)
4186 return 1;
4188 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4189 var = (variable)*slot;
4190 gcc_assert (var->n_var_parts == 1);
4193 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4194 loc; loc = *locp)
4196 rtx old_loc = loc->loc;
4197 if (GET_CODE (old_loc) == VALUE)
4199 location_chain mem_node
4200 = find_mem_expr_in_1pdv (decl, loc->loc,
4201 shared_hash_htab (set->vars));
4203 /* ??? This picks up only one out of multiple MEMs that
4204 refer to the same variable. Do we ever need to be
4205 concerned about dealing with more than one, or, given
4206 that they should all map to the same variable
4207 location, their addresses will have been merged and
4208 they will be regarded as equivalent? */
4209 if (mem_node)
4211 loc->loc = mem_node->loc;
4212 loc->set_src = mem_node->set_src;
4213 loc->init = MIN (loc->init, mem_node->init);
4217 if (GET_CODE (loc->loc) != MEM
4218 || (MEM_EXPR (loc->loc) == decl
4219 && MEM_OFFSET (loc->loc) == 0)
4220 || !mem_dies_at_call (loc->loc))
4222 if (old_loc != loc->loc && emit_notes)
4224 if (old_loc == var->var_part[0].cur_loc)
4226 changed = true;
4227 var->var_part[0].cur_loc = NULL;
4228 var->cur_loc_changed = true;
4230 add_value_chains (var->dv, loc->loc);
4231 remove_value_chains (var->dv, old_loc);
4233 locp = &loc->next;
4234 continue;
4237 if (emit_notes)
4239 remove_value_chains (var->dv, old_loc);
4240 if (old_loc == var->var_part[0].cur_loc)
4242 changed = true;
4243 var->var_part[0].cur_loc = NULL;
4244 var->cur_loc_changed = true;
4247 *locp = loc->next;
4248 pool_free (loc_chain_pool, loc);
4251 if (!var->var_part[0].loc_chain)
4253 var->n_var_parts--;
4254 changed = true;
4256 if (changed)
4257 variable_was_changed (var, set);
4260 return 1;
4263 /* Remove all MEMs from the location list of a hash table entry for a
4264 value. */
4266 static int
4267 dataflow_set_remove_mem_locs (void **slot, void *data)
4269 dataflow_set *set = (dataflow_set *) data;
4270 variable var = (variable) *slot;
4272 if (dv_is_value_p (var->dv))
4274 location_chain loc, *locp;
4275 bool changed = false;
4277 gcc_assert (var->n_var_parts == 1);
4279 if (shared_var_p (var, set->vars))
4281 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4282 if (GET_CODE (loc->loc) == MEM
4283 && mem_dies_at_call (loc->loc))
4284 break;
4286 if (!loc)
4287 return 1;
4289 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4290 var = (variable)*slot;
4291 gcc_assert (var->n_var_parts == 1);
4294 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4295 loc; loc = *locp)
4297 if (GET_CODE (loc->loc) != MEM
4298 || !mem_dies_at_call (loc->loc))
4300 locp = &loc->next;
4301 continue;
4304 if (emit_notes)
4305 remove_value_chains (var->dv, loc->loc);
4306 *locp = loc->next;
4307 /* If we have deleted the location which was last emitted
4308 we have to emit new location so add the variable to set
4309 of changed variables. */
4310 if (var->var_part[0].cur_loc == loc->loc)
4312 changed = true;
4313 var->var_part[0].cur_loc = NULL;
4314 var->cur_loc_changed = true;
4316 pool_free (loc_chain_pool, loc);
4319 if (!var->var_part[0].loc_chain)
4321 var->n_var_parts--;
4322 changed = true;
4324 if (changed)
4325 variable_was_changed (var, set);
4328 return 1;
4331 /* Remove all variable-location information about call-clobbered
4332 registers, as well as associations between MEMs and VALUEs. */
4334 static void
4335 dataflow_set_clear_at_call (dataflow_set *set)
4337 int r;
4339 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4340 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4341 var_regno_delete (set, r);
4343 if (MAY_HAVE_DEBUG_INSNS)
4345 set->traversed_vars = set->vars;
4346 htab_traverse (shared_hash_htab (set->vars),
4347 dataflow_set_preserve_mem_locs, set);
4348 set->traversed_vars = set->vars;
4349 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4350 set);
4351 set->traversed_vars = NULL;
4355 static bool
4356 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4358 location_chain lc1, lc2;
4360 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4362 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4364 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4366 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4367 break;
4369 if (rtx_equal_p (lc1->loc, lc2->loc))
4370 break;
4372 if (!lc2)
4373 return true;
4375 return false;
4378 /* Return true if one-part variables VAR1 and VAR2 are different.
4379 They must be in canonical order. */
4381 static bool
4382 onepart_variable_different_p (variable var1, variable var2)
4384 location_chain lc1, lc2;
4386 if (var1 == var2)
4387 return false;
4389 gcc_assert (var1->n_var_parts == 1
4390 && var2->n_var_parts == 1);
4392 lc1 = var1->var_part[0].loc_chain;
4393 lc2 = var2->var_part[0].loc_chain;
4395 gcc_assert (lc1 && lc2);
4397 while (lc1 && lc2)
4399 if (loc_cmp (lc1->loc, lc2->loc))
4400 return true;
4401 lc1 = lc1->next;
4402 lc2 = lc2->next;
4405 return lc1 != lc2;
4408 /* Return true if variables VAR1 and VAR2 are different. */
4410 static bool
4411 variable_different_p (variable var1, variable var2)
4413 int i;
4415 if (var1 == var2)
4416 return false;
4418 if (var1->n_var_parts != var2->n_var_parts)
4419 return true;
4421 for (i = 0; i < var1->n_var_parts; i++)
4423 if (var1->var_part[i].offset != var2->var_part[i].offset)
4424 return true;
4425 /* One-part values have locations in a canonical order. */
4426 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4428 gcc_assert (var1->n_var_parts == 1
4429 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4430 return onepart_variable_different_p (var1, var2);
4432 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4433 return true;
4434 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4435 return true;
4437 return false;
4440 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4442 static bool
4443 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4445 htab_iterator hi;
4446 variable var1;
4448 if (old_set->vars == new_set->vars)
4449 return false;
4451 if (htab_elements (shared_hash_htab (old_set->vars))
4452 != htab_elements (shared_hash_htab (new_set->vars)))
4453 return true;
4455 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4457 htab_t htab = shared_hash_htab (new_set->vars);
4458 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4459 dv_htab_hash (var1->dv));
4460 if (!var2)
4462 if (dump_file && (dump_flags & TDF_DETAILS))
4464 fprintf (dump_file, "dataflow difference found: removal of:\n");
4465 dump_var (var1);
4467 return true;
4470 if (variable_different_p (var1, var2))
4472 if (dump_file && (dump_flags & TDF_DETAILS))
4474 fprintf (dump_file, "dataflow difference found: "
4475 "old and new follow:\n");
4476 dump_var (var1);
4477 dump_var (var2);
4479 return true;
4483 /* No need to traverse the second hashtab, if both have the same number
4484 of elements and the second one had all entries found in the first one,
4485 then it can't have any extra entries. */
4486 return false;
4489 /* Free the contents of dataflow set SET. */
4491 static void
4492 dataflow_set_destroy (dataflow_set *set)
4494 int i;
4496 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4497 attrs_list_clear (&set->regs[i]);
4499 shared_hash_destroy (set->vars);
4500 set->vars = NULL;
4503 /* Return true if RTL X contains a SYMBOL_REF. */
4505 static bool
4506 contains_symbol_ref (rtx x)
4508 const char *fmt;
4509 RTX_CODE code;
4510 int i;
4512 if (!x)
4513 return false;
4515 code = GET_CODE (x);
4516 if (code == SYMBOL_REF)
4517 return true;
4519 fmt = GET_RTX_FORMAT (code);
4520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4522 if (fmt[i] == 'e')
4524 if (contains_symbol_ref (XEXP (x, i)))
4525 return true;
4527 else if (fmt[i] == 'E')
4529 int j;
4530 for (j = 0; j < XVECLEN (x, i); j++)
4531 if (contains_symbol_ref (XVECEXP (x, i, j)))
4532 return true;
4536 return false;
4539 /* Shall EXPR be tracked? */
4541 static bool
4542 track_expr_p (tree expr, bool need_rtl)
4544 rtx decl_rtl;
4545 tree realdecl;
4547 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4548 return DECL_RTL_SET_P (expr);
4550 /* If EXPR is not a parameter or a variable do not track it. */
4551 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4552 return 0;
4554 /* It also must have a name... */
4555 if (!DECL_NAME (expr) && need_rtl)
4556 return 0;
4558 /* ... and a RTL assigned to it. */
4559 decl_rtl = DECL_RTL_IF_SET (expr);
4560 if (!decl_rtl && need_rtl)
4561 return 0;
4563 /* If this expression is really a debug alias of some other declaration, we
4564 don't need to track this expression if the ultimate declaration is
4565 ignored. */
4566 realdecl = expr;
4567 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4569 realdecl = DECL_DEBUG_EXPR (realdecl);
4570 if (realdecl == NULL_TREE)
4571 realdecl = expr;
4572 else if (!DECL_P (realdecl))
4574 if (handled_component_p (realdecl))
4576 HOST_WIDE_INT bitsize, bitpos, maxsize;
4577 tree innerdecl
4578 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4579 &maxsize);
4580 if (!DECL_P (innerdecl)
4581 || DECL_IGNORED_P (innerdecl)
4582 || TREE_STATIC (innerdecl)
4583 || bitsize <= 0
4584 || bitpos + bitsize > 256
4585 || bitsize != maxsize)
4586 return 0;
4587 else
4588 realdecl = expr;
4590 else
4591 return 0;
4595 /* Do not track EXPR if REALDECL it should be ignored for debugging
4596 purposes. */
4597 if (DECL_IGNORED_P (realdecl))
4598 return 0;
4600 /* Do not track global variables until we are able to emit correct location
4601 list for them. */
4602 if (TREE_STATIC (realdecl))
4603 return 0;
4605 /* When the EXPR is a DECL for alias of some variable (see example)
4606 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4607 DECL_RTL contains SYMBOL_REF.
4609 Example:
4610 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4611 char **_dl_argv;
4613 if (decl_rtl && MEM_P (decl_rtl)
4614 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4615 return 0;
4617 /* If RTX is a memory it should not be very large (because it would be
4618 an array or struct). */
4619 if (decl_rtl && MEM_P (decl_rtl))
4621 /* Do not track structures and arrays. */
4622 if (GET_MODE (decl_rtl) == BLKmode
4623 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4624 return 0;
4625 if (MEM_SIZE (decl_rtl)
4626 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4627 return 0;
4630 DECL_CHANGED (expr) = 0;
4631 DECL_CHANGED (realdecl) = 0;
4632 return 1;
4635 /* Determine whether a given LOC refers to the same variable part as
4636 EXPR+OFFSET. */
4638 static bool
4639 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4641 tree expr2;
4642 HOST_WIDE_INT offset2;
4644 if (! DECL_P (expr))
4645 return false;
4647 if (REG_P (loc))
4649 expr2 = REG_EXPR (loc);
4650 offset2 = REG_OFFSET (loc);
4652 else if (MEM_P (loc))
4654 expr2 = MEM_EXPR (loc);
4655 offset2 = INT_MEM_OFFSET (loc);
4657 else
4658 return false;
4660 if (! expr2 || ! DECL_P (expr2))
4661 return false;
4663 expr = var_debug_decl (expr);
4664 expr2 = var_debug_decl (expr2);
4666 return (expr == expr2 && offset == offset2);
4669 /* LOC is a REG or MEM that we would like to track if possible.
4670 If EXPR is null, we don't know what expression LOC refers to,
4671 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4672 LOC is an lvalue register.
4674 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4675 is something we can track. When returning true, store the mode of
4676 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4677 from EXPR in *OFFSET_OUT (if nonnull). */
4679 static bool
4680 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4681 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4683 enum machine_mode mode;
4685 if (expr == NULL || !track_expr_p (expr, true))
4686 return false;
4688 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4689 whole subreg, but only the old inner part is really relevant. */
4690 mode = GET_MODE (loc);
4691 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4693 enum machine_mode pseudo_mode;
4695 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4696 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4698 offset += byte_lowpart_offset (pseudo_mode, mode);
4699 mode = pseudo_mode;
4703 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4704 Do the same if we are storing to a register and EXPR occupies
4705 the whole of register LOC; in that case, the whole of EXPR is
4706 being changed. We exclude complex modes from the second case
4707 because the real and imaginary parts are represented as separate
4708 pseudo registers, even if the whole complex value fits into one
4709 hard register. */
4710 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4711 || (store_reg_p
4712 && !COMPLEX_MODE_P (DECL_MODE (expr))
4713 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4714 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4716 mode = DECL_MODE (expr);
4717 offset = 0;
4720 if (offset < 0 || offset >= MAX_VAR_PARTS)
4721 return false;
4723 if (mode_out)
4724 *mode_out = mode;
4725 if (offset_out)
4726 *offset_out = offset;
4727 return true;
4730 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4731 want to track. When returning nonnull, make sure that the attributes
4732 on the returned value are updated. */
4734 static rtx
4735 var_lowpart (enum machine_mode mode, rtx loc)
4737 unsigned int offset, reg_offset, regno;
4739 if (!REG_P (loc) && !MEM_P (loc))
4740 return NULL;
4742 if (GET_MODE (loc) == mode)
4743 return loc;
4745 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4747 if (MEM_P (loc))
4748 return adjust_address_nv (loc, mode, offset);
4750 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4751 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4752 reg_offset, mode);
4753 return gen_rtx_REG_offset (loc, mode, regno, offset);
4756 /* Carry information about uses and stores while walking rtx. */
4758 struct count_use_info
4760 /* The insn where the RTX is. */
4761 rtx insn;
4763 /* The basic block where insn is. */
4764 basic_block bb;
4766 /* The array of n_sets sets in the insn, as determined by cselib. */
4767 struct cselib_set *sets;
4768 int n_sets;
4770 /* True if we're counting stores, false otherwise. */
4771 bool store_p;
4774 /* Find a VALUE corresponding to X. */
4776 static inline cselib_val *
4777 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4779 int i;
4781 if (cui->sets)
4783 /* This is called after uses are set up and before stores are
4784 processed bycselib, so it's safe to look up srcs, but not
4785 dsts. So we look up expressions that appear in srcs or in
4786 dest expressions, but we search the sets array for dests of
4787 stores. */
4788 if (cui->store_p)
4790 for (i = 0; i < cui->n_sets; i++)
4791 if (cui->sets[i].dest == x)
4792 return cui->sets[i].src_elt;
4794 else
4795 return cselib_lookup (x, mode, 0);
4798 return NULL;
4801 /* Helper function to get mode of MEM's address. */
4803 static inline enum machine_mode
4804 get_address_mode (rtx mem)
4806 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4807 if (mode != VOIDmode)
4808 return mode;
4809 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4812 /* Replace all registers and addresses in an expression with VALUE
4813 expressions that map back to them, unless the expression is a
4814 register. If no mapping is or can be performed, returns NULL. */
4816 static rtx
4817 replace_expr_with_values (rtx loc)
4819 if (REG_P (loc))
4820 return NULL;
4821 else if (MEM_P (loc))
4823 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4824 get_address_mode (loc), 0);
4825 if (addr)
4826 return replace_equiv_address_nv (loc, addr->val_rtx);
4827 else
4828 return NULL;
4830 else
4831 return cselib_subst_to_values (loc);
4834 /* Determine what kind of micro operation to choose for a USE. Return
4835 MO_CLOBBER if no micro operation is to be generated. */
4837 static enum micro_operation_type
4838 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4840 tree expr;
4842 if (cui && cui->sets)
4844 if (GET_CODE (loc) == VAR_LOCATION)
4846 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4848 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4849 if (! VAR_LOC_UNKNOWN_P (ploc))
4851 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1);
4853 /* ??? flag_float_store and volatile mems are never
4854 given values, but we could in theory use them for
4855 locations. */
4856 gcc_assert (val || 1);
4858 return MO_VAL_LOC;
4860 else
4861 return MO_CLOBBER;
4864 if (REG_P (loc) || MEM_P (loc))
4866 if (modep)
4867 *modep = GET_MODE (loc);
4868 if (cui->store_p)
4870 if (REG_P (loc)
4871 || (find_use_val (loc, GET_MODE (loc), cui)
4872 && cselib_lookup (XEXP (loc, 0),
4873 get_address_mode (loc), 0)))
4874 return MO_VAL_SET;
4876 else
4878 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4880 if (val && !cselib_preserved_value_p (val))
4881 return MO_VAL_USE;
4886 if (REG_P (loc))
4888 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4890 if (loc == cfa_base_rtx)
4891 return MO_CLOBBER;
4892 expr = REG_EXPR (loc);
4894 if (!expr)
4895 return MO_USE_NO_VAR;
4896 else if (target_for_debug_bind (var_debug_decl (expr)))
4897 return MO_CLOBBER;
4898 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4899 false, modep, NULL))
4900 return MO_USE;
4901 else
4902 return MO_USE_NO_VAR;
4904 else if (MEM_P (loc))
4906 expr = MEM_EXPR (loc);
4908 if (!expr)
4909 return MO_CLOBBER;
4910 else if (target_for_debug_bind (var_debug_decl (expr)))
4911 return MO_CLOBBER;
4912 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4913 false, modep, NULL))
4914 return MO_USE;
4915 else
4916 return MO_CLOBBER;
4919 return MO_CLOBBER;
4922 /* Log to OUT information about micro-operation MOPT involving X in
4923 INSN of BB. */
4925 static inline void
4926 log_op_type (rtx x, basic_block bb, rtx insn,
4927 enum micro_operation_type mopt, FILE *out)
4929 fprintf (out, "bb %i op %i insn %i %s ",
4930 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4931 INSN_UID (insn), micro_operation_type_name[mopt]);
4932 print_inline_rtx (out, x, 2);
4933 fputc ('\n', out);
4936 /* Tell whether the CONCAT used to holds a VALUE and its location
4937 needs value resolution, i.e., an attempt of mapping the location
4938 back to other incoming values. */
4939 #define VAL_NEEDS_RESOLUTION(x) \
4940 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4941 /* Whether the location in the CONCAT is a tracked expression, that
4942 should also be handled like a MO_USE. */
4943 #define VAL_HOLDS_TRACK_EXPR(x) \
4944 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4945 /* Whether the location in the CONCAT should be handled like a MO_COPY
4946 as well. */
4947 #define VAL_EXPR_IS_COPIED(x) \
4948 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4949 /* Whether the location in the CONCAT should be handled like a
4950 MO_CLOBBER as well. */
4951 #define VAL_EXPR_IS_CLOBBERED(x) \
4952 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4953 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4954 a reverse operation that should be handled afterwards. */
4955 #define VAL_EXPR_HAS_REVERSE(x) \
4956 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4958 /* All preserved VALUEs. */
4959 static VEC (rtx, heap) *preserved_values;
4961 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4963 static void
4964 preserve_value (cselib_val *val)
4966 cselib_preserve_value (val);
4967 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4970 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4971 any rtxes not suitable for CONST use not replaced by VALUEs
4972 are discovered. */
4974 static int
4975 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
4977 if (*x == NULL_RTX)
4978 return 0;
4980 switch (GET_CODE (*x))
4982 case REG:
4983 case DEBUG_EXPR:
4984 case PC:
4985 case SCRATCH:
4986 case CC0:
4987 case ASM_INPUT:
4988 case ASM_OPERANDS:
4989 return 1;
4990 case MEM:
4991 return !MEM_READONLY_P (*x);
4992 default:
4993 return 0;
4997 /* Add uses (register and memory references) LOC which will be tracked
4998 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5000 static int
5001 add_uses (rtx *ploc, void *data)
5003 rtx loc = *ploc;
5004 enum machine_mode mode = VOIDmode;
5005 struct count_use_info *cui = (struct count_use_info *)data;
5006 enum micro_operation_type type = use_type (loc, cui, &mode);
5008 if (type != MO_CLOBBER)
5010 basic_block bb = cui->bb;
5011 micro_operation mo;
5013 mo.type = type;
5014 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5015 mo.insn = cui->insn;
5017 if (type == MO_VAL_LOC)
5019 rtx oloc = loc;
5020 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5021 cselib_val *val;
5023 gcc_assert (cui->sets);
5025 if (MEM_P (vloc)
5026 && !REG_P (XEXP (vloc, 0))
5027 && !MEM_P (XEXP (vloc, 0))
5028 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5029 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5030 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5032 rtx mloc = vloc;
5033 enum machine_mode address_mode = get_address_mode (mloc);
5034 cselib_val *val
5035 = cselib_lookup (XEXP (mloc, 0), address_mode, 0);
5037 if (val && !cselib_preserved_value_p (val))
5039 micro_operation moa;
5040 preserve_value (val);
5041 mloc = cselib_subst_to_values (XEXP (mloc, 0));
5042 moa.type = MO_VAL_USE;
5043 moa.insn = cui->insn;
5044 moa.u.loc = gen_rtx_CONCAT (address_mode,
5045 val->val_rtx, mloc);
5046 if (dump_file && (dump_flags & TDF_DETAILS))
5047 log_op_type (moa.u.loc, cui->bb, cui->insn,
5048 moa.type, dump_file);
5049 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5053 if (CONSTANT_P (vloc)
5054 && (GET_CODE (vloc) != CONST
5055 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5056 /* For constants don't look up any value. */;
5057 else if (!VAR_LOC_UNKNOWN_P (vloc)
5058 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5060 enum machine_mode mode2;
5061 enum micro_operation_type type2;
5062 rtx nloc = replace_expr_with_values (vloc);
5064 if (nloc)
5066 oloc = shallow_copy_rtx (oloc);
5067 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5070 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5072 type2 = use_type (vloc, 0, &mode2);
5074 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5075 || type2 == MO_CLOBBER);
5077 if (type2 == MO_CLOBBER
5078 && !cselib_preserved_value_p (val))
5080 VAL_NEEDS_RESOLUTION (oloc) = 1;
5081 preserve_value (val);
5084 else if (!VAR_LOC_UNKNOWN_P (vloc))
5086 oloc = shallow_copy_rtx (oloc);
5087 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5090 mo.u.loc = oloc;
5092 else if (type == MO_VAL_USE)
5094 enum machine_mode mode2 = VOIDmode;
5095 enum micro_operation_type type2;
5096 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5097 rtx vloc, oloc = loc, nloc;
5099 gcc_assert (cui->sets);
5101 if (MEM_P (oloc)
5102 && !REG_P (XEXP (oloc, 0))
5103 && !MEM_P (XEXP (oloc, 0))
5104 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5105 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5106 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5108 rtx mloc = oloc;
5109 enum machine_mode address_mode = get_address_mode (mloc);
5110 cselib_val *val
5111 = cselib_lookup (XEXP (mloc, 0), address_mode, 0);
5113 if (val && !cselib_preserved_value_p (val))
5115 micro_operation moa;
5116 preserve_value (val);
5117 mloc = cselib_subst_to_values (XEXP (mloc, 0));
5118 moa.type = MO_VAL_USE;
5119 moa.insn = cui->insn;
5120 moa.u.loc = gen_rtx_CONCAT (address_mode,
5121 val->val_rtx, mloc);
5122 if (dump_file && (dump_flags & TDF_DETAILS))
5123 log_op_type (moa.u.loc, cui->bb, cui->insn,
5124 moa.type, dump_file);
5125 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5129 type2 = use_type (loc, 0, &mode2);
5131 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5132 || type2 == MO_CLOBBER);
5134 if (type2 == MO_USE)
5135 vloc = var_lowpart (mode2, loc);
5136 else
5137 vloc = oloc;
5139 /* The loc of a MO_VAL_USE may have two forms:
5141 (concat val src): val is at src, a value-based
5142 representation.
5144 (concat (concat val use) src): same as above, with use as
5145 the MO_USE tracked value, if it differs from src.
5149 nloc = replace_expr_with_values (loc);
5150 if (!nloc)
5151 nloc = oloc;
5153 if (vloc != nloc)
5154 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5155 else
5156 oloc = val->val_rtx;
5158 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5160 if (type2 == MO_USE)
5161 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5162 if (!cselib_preserved_value_p (val))
5164 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5165 preserve_value (val);
5168 else
5169 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5171 if (dump_file && (dump_flags & TDF_DETAILS))
5172 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5173 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5176 return 0;
5179 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5181 static void
5182 add_uses_1 (rtx *x, void *cui)
5184 for_each_rtx (x, add_uses, cui);
5187 /* Attempt to reverse the EXPR operation in the debug info. Say for
5188 reg1 = reg2 + 6 even when reg2 is no longer live we
5189 can express its value as VAL - 6. */
5191 static rtx
5192 reverse_op (rtx val, const_rtx expr)
5194 rtx src, arg, ret;
5195 cselib_val *v;
5196 enum rtx_code code;
5198 if (GET_CODE (expr) != SET)
5199 return NULL_RTX;
5201 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5202 return NULL_RTX;
5204 src = SET_SRC (expr);
5205 switch (GET_CODE (src))
5207 case PLUS:
5208 case MINUS:
5209 case XOR:
5210 case NOT:
5211 case NEG:
5212 if (!REG_P (XEXP (src, 0)))
5213 return NULL_RTX;
5214 break;
5215 case SIGN_EXTEND:
5216 case ZERO_EXTEND:
5217 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5218 return NULL_RTX;
5219 break;
5220 default:
5221 return NULL_RTX;
5224 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5225 return NULL_RTX;
5227 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0);
5228 if (!v || !cselib_preserved_value_p (v))
5229 return NULL_RTX;
5231 switch (GET_CODE (src))
5233 case NOT:
5234 case NEG:
5235 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5236 return NULL_RTX;
5237 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5238 break;
5239 case SIGN_EXTEND:
5240 case ZERO_EXTEND:
5241 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5242 break;
5243 case XOR:
5244 code = XOR;
5245 goto binary;
5246 case PLUS:
5247 code = MINUS;
5248 goto binary;
5249 case MINUS:
5250 code = PLUS;
5251 goto binary;
5252 binary:
5253 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5254 return NULL_RTX;
5255 arg = XEXP (src, 1);
5256 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5258 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5259 if (arg == NULL_RTX)
5260 return NULL_RTX;
5261 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5262 return NULL_RTX;
5264 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5265 if (ret == val)
5266 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5267 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5268 breaks a lot of routines during var-tracking. */
5269 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5270 break;
5271 default:
5272 gcc_unreachable ();
5275 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5278 /* Add stores (register and memory references) LOC which will be tracked
5279 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5280 CUIP->insn is instruction which the LOC is part of. */
5282 static void
5283 add_stores (rtx loc, const_rtx expr, void *cuip)
5285 enum machine_mode mode = VOIDmode, mode2;
5286 struct count_use_info *cui = (struct count_use_info *)cuip;
5287 basic_block bb = cui->bb;
5288 micro_operation mo;
5289 rtx oloc = loc, nloc, src = NULL;
5290 enum micro_operation_type type = use_type (loc, cui, &mode);
5291 bool track_p = false;
5292 cselib_val *v;
5293 bool resolve, preserve;
5294 rtx reverse;
5296 if (type == MO_CLOBBER)
5297 return;
5299 mode2 = mode;
5301 if (REG_P (loc))
5303 gcc_assert (loc != cfa_base_rtx);
5304 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5305 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5306 || GET_CODE (expr) == CLOBBER)
5308 mo.type = MO_CLOBBER;
5309 mo.u.loc = loc;
5311 else
5313 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5314 src = var_lowpart (mode2, SET_SRC (expr));
5315 loc = var_lowpart (mode2, loc);
5317 if (src == NULL)
5319 mo.type = MO_SET;
5320 mo.u.loc = loc;
5322 else
5324 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5325 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5326 mo.type = MO_COPY;
5327 else
5328 mo.type = MO_SET;
5329 mo.u.loc = xexpr;
5332 mo.insn = cui->insn;
5334 else if (MEM_P (loc)
5335 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5336 || cui->sets))
5338 if (MEM_P (loc) && type == MO_VAL_SET
5339 && !REG_P (XEXP (loc, 0))
5340 && !MEM_P (XEXP (loc, 0))
5341 && (GET_CODE (XEXP (loc, 0)) != PLUS
5342 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5343 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5345 rtx mloc = loc;
5346 enum machine_mode address_mode = get_address_mode (mloc);
5347 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5348 address_mode, 0);
5350 if (val && !cselib_preserved_value_p (val))
5352 preserve_value (val);
5353 mo.type = MO_VAL_USE;
5354 mloc = cselib_subst_to_values (XEXP (mloc, 0));
5355 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5356 mo.insn = cui->insn;
5357 if (dump_file && (dump_flags & TDF_DETAILS))
5358 log_op_type (mo.u.loc, cui->bb, cui->insn,
5359 mo.type, dump_file);
5360 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5364 if (GET_CODE (expr) == CLOBBER || !track_p)
5366 mo.type = MO_CLOBBER;
5367 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5369 else
5371 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5372 src = var_lowpart (mode2, SET_SRC (expr));
5373 loc = var_lowpart (mode2, loc);
5375 if (src == NULL)
5377 mo.type = MO_SET;
5378 mo.u.loc = loc;
5380 else
5382 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5383 if (same_variable_part_p (SET_SRC (xexpr),
5384 MEM_EXPR (loc),
5385 INT_MEM_OFFSET (loc)))
5386 mo.type = MO_COPY;
5387 else
5388 mo.type = MO_SET;
5389 mo.u.loc = xexpr;
5392 mo.insn = cui->insn;
5394 else
5395 return;
5397 if (type != MO_VAL_SET)
5398 goto log_and_return;
5400 v = find_use_val (oloc, mode, cui);
5402 if (!v)
5403 goto log_and_return;
5405 resolve = preserve = !cselib_preserved_value_p (v);
5407 nloc = replace_expr_with_values (oloc);
5408 if (nloc)
5409 oloc = nloc;
5411 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5413 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0);
5415 gcc_assert (oval != v);
5416 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5418 if (!cselib_preserved_value_p (oval))
5420 micro_operation moa;
5422 preserve_value (oval);
5424 moa.type = MO_VAL_USE;
5425 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5426 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5427 moa.insn = cui->insn;
5429 if (dump_file && (dump_flags & TDF_DETAILS))
5430 log_op_type (moa.u.loc, cui->bb, cui->insn,
5431 moa.type, dump_file);
5432 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5435 resolve = false;
5437 else if (resolve && GET_CODE (mo.u.loc) == SET)
5439 nloc = replace_expr_with_values (SET_SRC (expr));
5441 /* Avoid the mode mismatch between oexpr and expr. */
5442 if (!nloc && mode != mode2)
5444 nloc = SET_SRC (expr);
5445 gcc_assert (oloc == SET_DEST (expr));
5448 if (nloc)
5449 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5450 else
5452 if (oloc == SET_DEST (mo.u.loc))
5453 /* No point in duplicating. */
5454 oloc = mo.u.loc;
5455 if (!REG_P (SET_SRC (mo.u.loc)))
5456 resolve = false;
5459 else if (!resolve)
5461 if (GET_CODE (mo.u.loc) == SET
5462 && oloc == SET_DEST (mo.u.loc))
5463 /* No point in duplicating. */
5464 oloc = mo.u.loc;
5466 else
5467 resolve = false;
5469 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5471 if (mo.u.loc != oloc)
5472 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5474 /* The loc of a MO_VAL_SET may have various forms:
5476 (concat val dst): dst now holds val
5478 (concat val (set dst src)): dst now holds val, copied from src
5480 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5481 after replacing mems and non-top-level regs with values.
5483 (concat (concat val dstv) (set dst src)): dst now holds val,
5484 copied from src. dstv is a value-based representation of dst, if
5485 it differs from dst. If resolution is needed, src is a REG, and
5486 its mode is the same as that of val.
5488 (concat (concat val (set dstv srcv)) (set dst src)): src
5489 copied to dst, holding val. dstv and srcv are value-based
5490 representations of dst and src, respectively.
5494 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5496 reverse = reverse_op (v->val_rtx, expr);
5497 if (reverse)
5499 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5500 VAL_EXPR_HAS_REVERSE (loc) = 1;
5504 mo.u.loc = loc;
5506 if (track_p)
5507 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5508 if (preserve)
5510 VAL_NEEDS_RESOLUTION (loc) = resolve;
5511 preserve_value (v);
5513 if (mo.type == MO_CLOBBER)
5514 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5515 if (mo.type == MO_COPY)
5516 VAL_EXPR_IS_COPIED (loc) = 1;
5518 mo.type = MO_VAL_SET;
5520 log_and_return:
5521 if (dump_file && (dump_flags & TDF_DETAILS))
5522 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5523 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5526 /* Callback for cselib_record_sets_hook, that records as micro
5527 operations uses and stores in an insn after cselib_record_sets has
5528 analyzed the sets in an insn, but before it modifies the stored
5529 values in the internal tables, unless cselib_record_sets doesn't
5530 call it directly (perhaps because we're not doing cselib in the
5531 first place, in which case sets and n_sets will be 0). */
5533 static void
5534 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5536 basic_block bb = BLOCK_FOR_INSN (insn);
5537 int n1, n2;
5538 struct count_use_info cui;
5539 micro_operation *mos;
5541 cselib_hook_called = true;
5543 cui.insn = insn;
5544 cui.bb = bb;
5545 cui.sets = sets;
5546 cui.n_sets = n_sets;
5548 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5549 cui.store_p = false;
5550 note_uses (&PATTERN (insn), add_uses_1, &cui);
5551 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5552 mos = VEC_address (micro_operation, VTI (bb)->mos);
5554 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5555 MO_VAL_LOC last. */
5556 while (n1 < n2)
5558 while (n1 < n2 && mos[n1].type == MO_USE)
5559 n1++;
5560 while (n1 < n2 && mos[n2].type != MO_USE)
5561 n2--;
5562 if (n1 < n2)
5564 micro_operation sw;
5566 sw = mos[n1];
5567 mos[n1] = mos[n2];
5568 mos[n2] = sw;
5572 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5573 while (n1 < n2)
5575 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5576 n1++;
5577 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5578 n2--;
5579 if (n1 < n2)
5581 micro_operation sw;
5583 sw = mos[n1];
5584 mos[n1] = mos[n2];
5585 mos[n2] = sw;
5589 if (CALL_P (insn))
5591 micro_operation mo;
5593 mo.type = MO_CALL;
5594 mo.insn = insn;
5595 mo.u.loc = NULL_RTX;
5597 if (dump_file && (dump_flags & TDF_DETAILS))
5598 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5599 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5602 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5603 /* This will record NEXT_INSN (insn), such that we can
5604 insert notes before it without worrying about any
5605 notes that MO_USEs might emit after the insn. */
5606 cui.store_p = true;
5607 note_stores (PATTERN (insn), add_stores, &cui);
5608 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5609 mos = VEC_address (micro_operation, VTI (bb)->mos);
5611 /* Order the MO_VAL_USEs first (note_stores does nothing
5612 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5613 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5614 while (n1 < n2)
5616 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5617 n1++;
5618 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5619 n2--;
5620 if (n1 < n2)
5622 micro_operation sw;
5624 sw = mos[n1];
5625 mos[n1] = mos[n2];
5626 mos[n2] = sw;
5630 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5631 while (n1 < n2)
5633 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5634 n1++;
5635 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5636 n2--;
5637 if (n1 < n2)
5639 micro_operation sw;
5641 sw = mos[n1];
5642 mos[n1] = mos[n2];
5643 mos[n2] = sw;
5648 static enum var_init_status
5649 find_src_status (dataflow_set *in, rtx src)
5651 tree decl = NULL_TREE;
5652 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5654 if (! flag_var_tracking_uninit)
5655 status = VAR_INIT_STATUS_INITIALIZED;
5657 if (src && REG_P (src))
5658 decl = var_debug_decl (REG_EXPR (src));
5659 else if (src && MEM_P (src))
5660 decl = var_debug_decl (MEM_EXPR (src));
5662 if (src && decl)
5663 status = get_init_value (in, src, dv_from_decl (decl));
5665 return status;
5668 /* SRC is the source of an assignment. Use SET to try to find what
5669 was ultimately assigned to SRC. Return that value if known,
5670 otherwise return SRC itself. */
5672 static rtx
5673 find_src_set_src (dataflow_set *set, rtx src)
5675 tree decl = NULL_TREE; /* The variable being copied around. */
5676 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
5677 variable var;
5678 location_chain nextp;
5679 int i;
5680 bool found;
5682 if (src && REG_P (src))
5683 decl = var_debug_decl (REG_EXPR (src));
5684 else if (src && MEM_P (src))
5685 decl = var_debug_decl (MEM_EXPR (src));
5687 if (src && decl)
5689 decl_or_value dv = dv_from_decl (decl);
5691 var = shared_hash_find (set->vars, dv);
5692 if (var)
5694 found = false;
5695 for (i = 0; i < var->n_var_parts && !found; i++)
5696 for (nextp = var->var_part[i].loc_chain; nextp && !found;
5697 nextp = nextp->next)
5698 if (rtx_equal_p (nextp->loc, src))
5700 set_src = nextp->set_src;
5701 found = true;
5707 return set_src;
5710 /* Compute the changes of variable locations in the basic block BB. */
5712 static bool
5713 compute_bb_dataflow (basic_block bb)
5715 unsigned int i;
5716 micro_operation *mo;
5717 bool changed;
5718 dataflow_set old_out;
5719 dataflow_set *in = &VTI (bb)->in;
5720 dataflow_set *out = &VTI (bb)->out;
5722 dataflow_set_init (&old_out);
5723 dataflow_set_copy (&old_out, out);
5724 dataflow_set_copy (out, in);
5726 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
5728 rtx insn = mo->insn;
5730 switch (mo->type)
5732 case MO_CALL:
5733 dataflow_set_clear_at_call (out);
5734 break;
5736 case MO_USE:
5738 rtx loc = mo->u.loc;
5740 if (REG_P (loc))
5741 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5742 else if (MEM_P (loc))
5743 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5745 break;
5747 case MO_VAL_LOC:
5749 rtx loc = mo->u.loc;
5750 rtx val, vloc;
5751 tree var;
5753 if (GET_CODE (loc) == CONCAT)
5755 val = XEXP (loc, 0);
5756 vloc = XEXP (loc, 1);
5758 else
5760 val = NULL_RTX;
5761 vloc = loc;
5764 var = PAT_VAR_LOCATION_DECL (vloc);
5766 clobber_variable_part (out, NULL_RTX,
5767 dv_from_decl (var), 0, NULL_RTX);
5768 if (val)
5770 if (VAL_NEEDS_RESOLUTION (loc))
5771 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
5772 set_variable_part (out, val, dv_from_decl (var), 0,
5773 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5774 INSERT);
5776 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
5777 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
5778 dv_from_decl (var), 0,
5779 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5780 INSERT);
5782 break;
5784 case MO_VAL_USE:
5786 rtx loc = mo->u.loc;
5787 rtx val, vloc, uloc;
5789 vloc = uloc = XEXP (loc, 1);
5790 val = XEXP (loc, 0);
5792 if (GET_CODE (val) == CONCAT)
5794 uloc = XEXP (val, 1);
5795 val = XEXP (val, 0);
5798 if (VAL_NEEDS_RESOLUTION (loc))
5799 val_resolve (out, val, vloc, insn);
5800 else
5801 val_store (out, val, uloc, insn, false);
5803 if (VAL_HOLDS_TRACK_EXPR (loc))
5805 if (GET_CODE (uloc) == REG)
5806 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5807 NULL);
5808 else if (GET_CODE (uloc) == MEM)
5809 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5810 NULL);
5813 break;
5815 case MO_VAL_SET:
5817 rtx loc = mo->u.loc;
5818 rtx val, vloc, uloc, reverse = NULL_RTX;
5820 vloc = loc;
5821 if (VAL_EXPR_HAS_REVERSE (loc))
5823 reverse = XEXP (loc, 1);
5824 vloc = XEXP (loc, 0);
5826 uloc = XEXP (vloc, 1);
5827 val = XEXP (vloc, 0);
5828 vloc = uloc;
5830 if (GET_CODE (val) == CONCAT)
5832 vloc = XEXP (val, 1);
5833 val = XEXP (val, 0);
5836 if (GET_CODE (vloc) == SET)
5838 rtx vsrc = SET_SRC (vloc);
5840 gcc_assert (val != vsrc);
5841 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
5843 vloc = SET_DEST (vloc);
5845 if (VAL_NEEDS_RESOLUTION (loc))
5846 val_resolve (out, val, vsrc, insn);
5848 else if (VAL_NEEDS_RESOLUTION (loc))
5850 gcc_assert (GET_CODE (uloc) == SET
5851 && GET_CODE (SET_SRC (uloc)) == REG);
5852 val_resolve (out, val, SET_SRC (uloc), insn);
5855 if (VAL_HOLDS_TRACK_EXPR (loc))
5857 if (VAL_EXPR_IS_CLOBBERED (loc))
5859 if (REG_P (uloc))
5860 var_reg_delete (out, uloc, true);
5861 else if (MEM_P (uloc))
5862 var_mem_delete (out, uloc, true);
5864 else
5866 bool copied_p = VAL_EXPR_IS_COPIED (loc);
5867 rtx set_src = NULL;
5868 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
5870 if (GET_CODE (uloc) == SET)
5872 set_src = SET_SRC (uloc);
5873 uloc = SET_DEST (uloc);
5876 if (copied_p)
5878 if (flag_var_tracking_uninit)
5880 status = find_src_status (in, set_src);
5882 if (status == VAR_INIT_STATUS_UNKNOWN)
5883 status = find_src_status (out, set_src);
5886 set_src = find_src_set_src (in, set_src);
5889 if (REG_P (uloc))
5890 var_reg_delete_and_set (out, uloc, !copied_p,
5891 status, set_src);
5892 else if (MEM_P (uloc))
5893 var_mem_delete_and_set (out, uloc, !copied_p,
5894 status, set_src);
5897 else if (REG_P (uloc))
5898 var_regno_delete (out, REGNO (uloc));
5900 val_store (out, val, vloc, insn, true);
5902 if (reverse)
5903 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
5904 insn, false);
5906 break;
5908 case MO_SET:
5910 rtx loc = mo->u.loc;
5911 rtx set_src = NULL;
5913 if (GET_CODE (loc) == SET)
5915 set_src = SET_SRC (loc);
5916 loc = SET_DEST (loc);
5919 if (REG_P (loc))
5920 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5921 set_src);
5922 else if (MEM_P (loc))
5923 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5924 set_src);
5926 break;
5928 case MO_COPY:
5930 rtx loc = mo->u.loc;
5931 enum var_init_status src_status;
5932 rtx set_src = NULL;
5934 if (GET_CODE (loc) == SET)
5936 set_src = SET_SRC (loc);
5937 loc = SET_DEST (loc);
5940 if (! flag_var_tracking_uninit)
5941 src_status = VAR_INIT_STATUS_INITIALIZED;
5942 else
5944 src_status = find_src_status (in, set_src);
5946 if (src_status == VAR_INIT_STATUS_UNKNOWN)
5947 src_status = find_src_status (out, set_src);
5950 set_src = find_src_set_src (in, set_src);
5952 if (REG_P (loc))
5953 var_reg_delete_and_set (out, loc, false, src_status, set_src);
5954 else if (MEM_P (loc))
5955 var_mem_delete_and_set (out, loc, false, src_status, set_src);
5957 break;
5959 case MO_USE_NO_VAR:
5961 rtx loc = mo->u.loc;
5963 if (REG_P (loc))
5964 var_reg_delete (out, loc, false);
5965 else if (MEM_P (loc))
5966 var_mem_delete (out, loc, false);
5968 break;
5970 case MO_CLOBBER:
5972 rtx loc = mo->u.loc;
5974 if (REG_P (loc))
5975 var_reg_delete (out, loc, true);
5976 else if (MEM_P (loc))
5977 var_mem_delete (out, loc, true);
5979 break;
5981 case MO_ADJUST:
5982 out->stack_adjust += mo->u.adjust;
5983 break;
5987 if (MAY_HAVE_DEBUG_INSNS)
5989 dataflow_set_equiv_regs (out);
5990 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
5991 out);
5992 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
5993 out);
5994 #if ENABLE_CHECKING
5995 htab_traverse (shared_hash_htab (out->vars),
5996 canonicalize_loc_order_check, out);
5997 #endif
5999 changed = dataflow_set_different (&old_out, out);
6000 dataflow_set_destroy (&old_out);
6001 return changed;
6004 /* Find the locations of variables in the whole function. */
6006 static bool
6007 vt_find_locations (void)
6009 fibheap_t worklist, pending, fibheap_swap;
6010 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6011 basic_block bb;
6012 edge e;
6013 int *bb_order;
6014 int *rc_order;
6015 int i;
6016 int htabsz = 0;
6017 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6018 bool success = true;
6020 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6021 /* Compute reverse completion order of depth first search of the CFG
6022 so that the data-flow runs faster. */
6023 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6024 bb_order = XNEWVEC (int, last_basic_block);
6025 pre_and_rev_post_order_compute (NULL, rc_order, false);
6026 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6027 bb_order[rc_order[i]] = i;
6028 free (rc_order);
6030 worklist = fibheap_new ();
6031 pending = fibheap_new ();
6032 visited = sbitmap_alloc (last_basic_block);
6033 in_worklist = sbitmap_alloc (last_basic_block);
6034 in_pending = sbitmap_alloc (last_basic_block);
6035 sbitmap_zero (in_worklist);
6037 FOR_EACH_BB (bb)
6038 fibheap_insert (pending, bb_order[bb->index], bb);
6039 sbitmap_ones (in_pending);
6041 while (success && !fibheap_empty (pending))
6043 fibheap_swap = pending;
6044 pending = worklist;
6045 worklist = fibheap_swap;
6046 sbitmap_swap = in_pending;
6047 in_pending = in_worklist;
6048 in_worklist = sbitmap_swap;
6050 sbitmap_zero (visited);
6052 while (!fibheap_empty (worklist))
6054 bb = (basic_block) fibheap_extract_min (worklist);
6055 RESET_BIT (in_worklist, bb->index);
6056 gcc_assert (!TEST_BIT (visited, bb->index));
6057 if (!TEST_BIT (visited, bb->index))
6059 bool changed;
6060 edge_iterator ei;
6061 int oldinsz, oldoutsz;
6063 SET_BIT (visited, bb->index);
6065 if (VTI (bb)->in.vars)
6067 htabsz
6068 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6069 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6070 oldinsz
6071 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6072 oldoutsz
6073 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6075 else
6076 oldinsz = oldoutsz = 0;
6078 if (MAY_HAVE_DEBUG_INSNS)
6080 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6081 bool first = true, adjust = false;
6083 /* Calculate the IN set as the intersection of
6084 predecessor OUT sets. */
6086 dataflow_set_clear (in);
6087 dst_can_be_shared = true;
6089 FOR_EACH_EDGE (e, ei, bb->preds)
6090 if (!VTI (e->src)->flooded)
6091 gcc_assert (bb_order[bb->index]
6092 <= bb_order[e->src->index]);
6093 else if (first)
6095 dataflow_set_copy (in, &VTI (e->src)->out);
6096 first_out = &VTI (e->src)->out;
6097 first = false;
6099 else
6101 dataflow_set_merge (in, &VTI (e->src)->out);
6102 adjust = true;
6105 if (adjust)
6107 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6108 #if ENABLE_CHECKING
6109 /* Merge and merge_adjust should keep entries in
6110 canonical order. */
6111 htab_traverse (shared_hash_htab (in->vars),
6112 canonicalize_loc_order_check,
6113 in);
6114 #endif
6115 if (dst_can_be_shared)
6117 shared_hash_destroy (in->vars);
6118 in->vars = shared_hash_copy (first_out->vars);
6122 VTI (bb)->flooded = true;
6124 else
6126 /* Calculate the IN set as union of predecessor OUT sets. */
6127 dataflow_set_clear (&VTI (bb)->in);
6128 FOR_EACH_EDGE (e, ei, bb->preds)
6129 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6132 changed = compute_bb_dataflow (bb);
6133 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6134 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6136 if (htabmax && htabsz > htabmax)
6138 if (MAY_HAVE_DEBUG_INSNS)
6139 inform (DECL_SOURCE_LOCATION (cfun->decl),
6140 "variable tracking size limit exceeded with "
6141 "-fvar-tracking-assignments, retrying without");
6142 else
6143 inform (DECL_SOURCE_LOCATION (cfun->decl),
6144 "variable tracking size limit exceeded");
6145 success = false;
6146 break;
6149 if (changed)
6151 FOR_EACH_EDGE (e, ei, bb->succs)
6153 if (e->dest == EXIT_BLOCK_PTR)
6154 continue;
6156 if (TEST_BIT (visited, e->dest->index))
6158 if (!TEST_BIT (in_pending, e->dest->index))
6160 /* Send E->DEST to next round. */
6161 SET_BIT (in_pending, e->dest->index);
6162 fibheap_insert (pending,
6163 bb_order[e->dest->index],
6164 e->dest);
6167 else if (!TEST_BIT (in_worklist, e->dest->index))
6169 /* Add E->DEST to current round. */
6170 SET_BIT (in_worklist, e->dest->index);
6171 fibheap_insert (worklist, bb_order[e->dest->index],
6172 e->dest);
6177 if (dump_file)
6178 fprintf (dump_file,
6179 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6180 bb->index,
6181 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6182 oldinsz,
6183 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6184 oldoutsz,
6185 (int)worklist->nodes, (int)pending->nodes, htabsz);
6187 if (dump_file && (dump_flags & TDF_DETAILS))
6189 fprintf (dump_file, "BB %i IN:\n", bb->index);
6190 dump_dataflow_set (&VTI (bb)->in);
6191 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6192 dump_dataflow_set (&VTI (bb)->out);
6198 if (success && MAY_HAVE_DEBUG_INSNS)
6199 FOR_EACH_BB (bb)
6200 gcc_assert (VTI (bb)->flooded);
6202 free (bb_order);
6203 fibheap_delete (worklist);
6204 fibheap_delete (pending);
6205 sbitmap_free (visited);
6206 sbitmap_free (in_worklist);
6207 sbitmap_free (in_pending);
6209 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6210 return success;
6213 /* Print the content of the LIST to dump file. */
6215 static void
6216 dump_attrs_list (attrs list)
6218 for (; list; list = list->next)
6220 if (dv_is_decl_p (list->dv))
6221 print_mem_expr (dump_file, dv_as_decl (list->dv));
6222 else
6223 print_rtl_single (dump_file, dv_as_value (list->dv));
6224 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6226 fprintf (dump_file, "\n");
6229 /* Print the information about variable *SLOT to dump file. */
6231 static int
6232 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6234 variable var = (variable) *slot;
6236 dump_var (var);
6238 /* Continue traversing the hash table. */
6239 return 1;
6242 /* Print the information about variable VAR to dump file. */
6244 static void
6245 dump_var (variable var)
6247 int i;
6248 location_chain node;
6250 if (dv_is_decl_p (var->dv))
6252 const_tree decl = dv_as_decl (var->dv);
6254 if (DECL_NAME (decl))
6256 fprintf (dump_file, " name: %s",
6257 IDENTIFIER_POINTER (DECL_NAME (decl)));
6258 if (dump_flags & TDF_UID)
6259 fprintf (dump_file, "D.%u", DECL_UID (decl));
6261 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6262 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6263 else
6264 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6265 fprintf (dump_file, "\n");
6267 else
6269 fputc (' ', dump_file);
6270 print_rtl_single (dump_file, dv_as_value (var->dv));
6273 for (i = 0; i < var->n_var_parts; i++)
6275 fprintf (dump_file, " offset %ld\n",
6276 (long) var->var_part[i].offset);
6277 for (node = var->var_part[i].loc_chain; node; node = node->next)
6279 fprintf (dump_file, " ");
6280 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6281 fprintf (dump_file, "[uninit]");
6282 print_rtl_single (dump_file, node->loc);
6287 /* Print the information about variables from hash table VARS to dump file. */
6289 static void
6290 dump_vars (htab_t vars)
6292 if (htab_elements (vars) > 0)
6294 fprintf (dump_file, "Variables:\n");
6295 htab_traverse (vars, dump_var_slot, NULL);
6299 /* Print the dataflow set SET to dump file. */
6301 static void
6302 dump_dataflow_set (dataflow_set *set)
6304 int i;
6306 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6307 set->stack_adjust);
6308 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6310 if (set->regs[i])
6312 fprintf (dump_file, "Reg %d:", i);
6313 dump_attrs_list (set->regs[i]);
6316 dump_vars (shared_hash_htab (set->vars));
6317 fprintf (dump_file, "\n");
6320 /* Print the IN and OUT sets for each basic block to dump file. */
6322 static void
6323 dump_dataflow_sets (void)
6325 basic_block bb;
6327 FOR_EACH_BB (bb)
6329 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6330 fprintf (dump_file, "IN:\n");
6331 dump_dataflow_set (&VTI (bb)->in);
6332 fprintf (dump_file, "OUT:\n");
6333 dump_dataflow_set (&VTI (bb)->out);
6337 /* Add variable VAR to the hash table of changed variables and
6338 if it has no locations delete it from SET's hash table. */
6340 static void
6341 variable_was_changed (variable var, dataflow_set *set)
6343 hashval_t hash = dv_htab_hash (var->dv);
6345 if (emit_notes)
6347 void **slot;
6348 bool old_cur_loc_changed = false;
6350 /* Remember this decl or VALUE has been added to changed_variables. */
6351 set_dv_changed (var->dv, true);
6353 slot = htab_find_slot_with_hash (changed_variables,
6354 var->dv,
6355 hash, INSERT);
6357 if (*slot)
6359 variable old_var = (variable) *slot;
6360 gcc_assert (old_var->in_changed_variables);
6361 old_var->in_changed_variables = false;
6362 old_cur_loc_changed = old_var->cur_loc_changed;
6363 variable_htab_free (*slot);
6365 if (set && var->n_var_parts == 0)
6367 variable empty_var;
6369 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6370 empty_var->dv = var->dv;
6371 empty_var->refcount = 1;
6372 empty_var->n_var_parts = 0;
6373 empty_var->cur_loc_changed = true;
6374 empty_var->in_changed_variables = true;
6375 *slot = empty_var;
6376 goto drop_var;
6378 else
6380 var->refcount++;
6381 var->in_changed_variables = true;
6382 /* If within processing one uop a variable is deleted
6383 and then readded, we need to assume it has changed. */
6384 if (old_cur_loc_changed)
6385 var->cur_loc_changed = true;
6386 *slot = var;
6389 else
6391 gcc_assert (set);
6392 if (var->n_var_parts == 0)
6394 void **slot;
6396 drop_var:
6397 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6398 if (slot)
6400 if (shared_hash_shared (set->vars))
6401 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6402 NO_INSERT);
6403 htab_clear_slot (shared_hash_htab (set->vars), slot);
6409 /* Look for the index in VAR->var_part corresponding to OFFSET.
6410 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6411 referenced int will be set to the index that the part has or should
6412 have, if it should be inserted. */
6414 static inline int
6415 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6416 int *insertion_point)
6418 int pos, low, high;
6420 /* Find the location part. */
6421 low = 0;
6422 high = var->n_var_parts;
6423 while (low != high)
6425 pos = (low + high) / 2;
6426 if (var->var_part[pos].offset < offset)
6427 low = pos + 1;
6428 else
6429 high = pos;
6431 pos = low;
6433 if (insertion_point)
6434 *insertion_point = pos;
6436 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6437 return pos;
6439 return -1;
6442 static void **
6443 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6444 decl_or_value dv, HOST_WIDE_INT offset,
6445 enum var_init_status initialized, rtx set_src)
6447 int pos;
6448 location_chain node, next;
6449 location_chain *nextp;
6450 variable var;
6451 bool onepart = dv_onepart_p (dv);
6453 gcc_assert (offset == 0 || !onepart);
6454 gcc_assert (loc != dv_as_opaque (dv));
6456 var = (variable) *slot;
6458 if (! flag_var_tracking_uninit)
6459 initialized = VAR_INIT_STATUS_INITIALIZED;
6461 if (!var)
6463 /* Create new variable information. */
6464 var = (variable) pool_alloc (dv_pool (dv));
6465 var->dv = dv;
6466 var->refcount = 1;
6467 var->n_var_parts = 1;
6468 var->cur_loc_changed = false;
6469 var->in_changed_variables = false;
6470 var->var_part[0].offset = offset;
6471 var->var_part[0].loc_chain = NULL;
6472 var->var_part[0].cur_loc = NULL;
6473 *slot = var;
6474 pos = 0;
6475 nextp = &var->var_part[0].loc_chain;
6477 else if (onepart)
6479 int r = -1, c = 0;
6481 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6483 pos = 0;
6485 if (GET_CODE (loc) == VALUE)
6487 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6488 nextp = &node->next)
6489 if (GET_CODE (node->loc) == VALUE)
6491 if (node->loc == loc)
6493 r = 0;
6494 break;
6496 if (canon_value_cmp (node->loc, loc))
6497 c++;
6498 else
6500 r = 1;
6501 break;
6504 else if (REG_P (node->loc) || MEM_P (node->loc))
6505 c++;
6506 else
6508 r = 1;
6509 break;
6512 else if (REG_P (loc))
6514 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6515 nextp = &node->next)
6516 if (REG_P (node->loc))
6518 if (REGNO (node->loc) < REGNO (loc))
6519 c++;
6520 else
6522 if (REGNO (node->loc) == REGNO (loc))
6523 r = 0;
6524 else
6525 r = 1;
6526 break;
6529 else
6531 r = 1;
6532 break;
6535 else if (MEM_P (loc))
6537 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6538 nextp = &node->next)
6539 if (REG_P (node->loc))
6540 c++;
6541 else if (MEM_P (node->loc))
6543 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6544 break;
6545 else
6546 c++;
6548 else
6550 r = 1;
6551 break;
6554 else
6555 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6556 nextp = &node->next)
6557 if ((r = loc_cmp (node->loc, loc)) >= 0)
6558 break;
6559 else
6560 c++;
6562 if (r == 0)
6563 return slot;
6565 if (shared_var_p (var, set->vars))
6567 slot = unshare_variable (set, slot, var, initialized);
6568 var = (variable)*slot;
6569 for (nextp = &var->var_part[0].loc_chain; c;
6570 nextp = &(*nextp)->next)
6571 c--;
6572 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6575 else
6577 int inspos = 0;
6579 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6581 pos = find_variable_location_part (var, offset, &inspos);
6583 if (pos >= 0)
6585 node = var->var_part[pos].loc_chain;
6587 if (node
6588 && ((REG_P (node->loc) && REG_P (loc)
6589 && REGNO (node->loc) == REGNO (loc))
6590 || rtx_equal_p (node->loc, loc)))
6592 /* LOC is in the beginning of the chain so we have nothing
6593 to do. */
6594 if (node->init < initialized)
6595 node->init = initialized;
6596 if (set_src != NULL)
6597 node->set_src = set_src;
6599 return slot;
6601 else
6603 /* We have to make a copy of a shared variable. */
6604 if (shared_var_p (var, set->vars))
6606 slot = unshare_variable (set, slot, var, initialized);
6607 var = (variable)*slot;
6611 else
6613 /* We have not found the location part, new one will be created. */
6615 /* We have to make a copy of the shared variable. */
6616 if (shared_var_p (var, set->vars))
6618 slot = unshare_variable (set, slot, var, initialized);
6619 var = (variable)*slot;
6622 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6623 thus there are at most MAX_VAR_PARTS different offsets. */
6624 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6625 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6627 /* We have to move the elements of array starting at index
6628 inspos to the next position. */
6629 for (pos = var->n_var_parts; pos > inspos; pos--)
6630 var->var_part[pos] = var->var_part[pos - 1];
6632 var->n_var_parts++;
6633 var->var_part[pos].offset = offset;
6634 var->var_part[pos].loc_chain = NULL;
6635 var->var_part[pos].cur_loc = NULL;
6638 /* Delete the location from the list. */
6639 nextp = &var->var_part[pos].loc_chain;
6640 for (node = var->var_part[pos].loc_chain; node; node = next)
6642 next = node->next;
6643 if ((REG_P (node->loc) && REG_P (loc)
6644 && REGNO (node->loc) == REGNO (loc))
6645 || rtx_equal_p (node->loc, loc))
6647 /* Save these values, to assign to the new node, before
6648 deleting this one. */
6649 if (node->init > initialized)
6650 initialized = node->init;
6651 if (node->set_src != NULL && set_src == NULL)
6652 set_src = node->set_src;
6653 if (var->var_part[pos].cur_loc == node->loc)
6655 var->var_part[pos].cur_loc = NULL;
6656 var->cur_loc_changed = true;
6658 pool_free (loc_chain_pool, node);
6659 *nextp = next;
6660 break;
6662 else
6663 nextp = &node->next;
6666 nextp = &var->var_part[pos].loc_chain;
6669 /* Add the location to the beginning. */
6670 node = (location_chain) pool_alloc (loc_chain_pool);
6671 node->loc = loc;
6672 node->init = initialized;
6673 node->set_src = set_src;
6674 node->next = *nextp;
6675 *nextp = node;
6677 if (onepart && emit_notes)
6678 add_value_chains (var->dv, loc);
6680 /* If no location was emitted do so. */
6681 if (var->var_part[pos].cur_loc == NULL)
6682 variable_was_changed (var, set);
6684 return slot;
6687 /* Set the part of variable's location in the dataflow set SET. The
6688 variable part is specified by variable's declaration in DV and
6689 offset OFFSET and the part's location by LOC. IOPT should be
6690 NO_INSERT if the variable is known to be in SET already and the
6691 variable hash table must not be resized, and INSERT otherwise. */
6693 static void
6694 set_variable_part (dataflow_set *set, rtx loc,
6695 decl_or_value dv, HOST_WIDE_INT offset,
6696 enum var_init_status initialized, rtx set_src,
6697 enum insert_option iopt)
6699 void **slot;
6701 if (iopt == NO_INSERT)
6702 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6703 else
6705 slot = shared_hash_find_slot (set->vars, dv);
6706 if (!slot)
6707 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
6709 slot = set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
6712 /* Remove all recorded register locations for the given variable part
6713 from dataflow set SET, except for those that are identical to loc.
6714 The variable part is specified by variable's declaration or value
6715 DV and offset OFFSET. */
6717 static void **
6718 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
6719 HOST_WIDE_INT offset, rtx set_src)
6721 variable var = (variable) *slot;
6722 int pos = find_variable_location_part (var, offset, NULL);
6724 if (pos >= 0)
6726 location_chain node, next;
6728 /* Remove the register locations from the dataflow set. */
6729 next = var->var_part[pos].loc_chain;
6730 for (node = next; node; node = next)
6732 next = node->next;
6733 if (node->loc != loc
6734 && (!flag_var_tracking_uninit
6735 || !set_src
6736 || MEM_P (set_src)
6737 || !rtx_equal_p (set_src, node->set_src)))
6739 if (REG_P (node->loc))
6741 attrs anode, anext;
6742 attrs *anextp;
6744 /* Remove the variable part from the register's
6745 list, but preserve any other variable parts
6746 that might be regarded as live in that same
6747 register. */
6748 anextp = &set->regs[REGNO (node->loc)];
6749 for (anode = *anextp; anode; anode = anext)
6751 anext = anode->next;
6752 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
6753 && anode->offset == offset)
6755 pool_free (attrs_pool, anode);
6756 *anextp = anext;
6758 else
6759 anextp = &anode->next;
6763 slot = delete_slot_part (set, node->loc, slot, offset);
6768 return slot;
6771 /* Remove all recorded register locations for the given variable part
6772 from dataflow set SET, except for those that are identical to loc.
6773 The variable part is specified by variable's declaration or value
6774 DV and offset OFFSET. */
6776 static void
6777 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6778 HOST_WIDE_INT offset, rtx set_src)
6780 void **slot;
6782 if (!dv_as_opaque (dv)
6783 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
6784 return;
6786 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6787 if (!slot)
6788 return;
6790 slot = clobber_slot_part (set, loc, slot, offset, set_src);
6793 /* Delete the part of variable's location from dataflow set SET. The
6794 variable part is specified by its SET->vars slot SLOT and offset
6795 OFFSET and the part's location by LOC. */
6797 static void **
6798 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
6799 HOST_WIDE_INT offset)
6801 variable var = (variable) *slot;
6802 int pos = find_variable_location_part (var, offset, NULL);
6804 if (pos >= 0)
6806 location_chain node, next;
6807 location_chain *nextp;
6808 bool changed;
6810 if (shared_var_p (var, set->vars))
6812 /* If the variable contains the location part we have to
6813 make a copy of the variable. */
6814 for (node = var->var_part[pos].loc_chain; node;
6815 node = node->next)
6817 if ((REG_P (node->loc) && REG_P (loc)
6818 && REGNO (node->loc) == REGNO (loc))
6819 || rtx_equal_p (node->loc, loc))
6821 slot = unshare_variable (set, slot, var,
6822 VAR_INIT_STATUS_UNKNOWN);
6823 var = (variable)*slot;
6824 break;
6829 /* Delete the location part. */
6830 changed = false;
6831 nextp = &var->var_part[pos].loc_chain;
6832 for (node = *nextp; node; node = next)
6834 next = node->next;
6835 if ((REG_P (node->loc) && REG_P (loc)
6836 && REGNO (node->loc) == REGNO (loc))
6837 || rtx_equal_p (node->loc, loc))
6839 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
6840 remove_value_chains (var->dv, node->loc);
6841 /* If we have deleted the location which was last emitted
6842 we have to emit new location so add the variable to set
6843 of changed variables. */
6844 if (var->var_part[pos].cur_loc == node->loc)
6846 changed = true;
6847 var->var_part[pos].cur_loc = NULL;
6848 var->cur_loc_changed = true;
6850 pool_free (loc_chain_pool, node);
6851 *nextp = next;
6852 break;
6854 else
6855 nextp = &node->next;
6858 if (var->var_part[pos].loc_chain == NULL)
6860 changed = true;
6861 var->n_var_parts--;
6862 if (emit_notes)
6863 var->cur_loc_changed = true;
6864 while (pos < var->n_var_parts)
6866 var->var_part[pos] = var->var_part[pos + 1];
6867 pos++;
6870 if (changed)
6871 variable_was_changed (var, set);
6874 return slot;
6877 /* Delete the part of variable's location from dataflow set SET. The
6878 variable part is specified by variable's declaration or value DV
6879 and offset OFFSET and the part's location by LOC. */
6881 static void
6882 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6883 HOST_WIDE_INT offset)
6885 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
6886 if (!slot)
6887 return;
6889 slot = delete_slot_part (set, loc, slot, offset);
6892 /* Structure for passing some other parameters to function
6893 vt_expand_loc_callback. */
6894 struct expand_loc_callback_data
6896 /* The variables and values active at this point. */
6897 htab_t vars;
6899 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
6900 Non-NULL should be returned if vt_expand_loc would return
6901 non-NULL in that case, NULL otherwise. cur_loc_changed should be
6902 computed and cur_loc recomputed when possible (but just once
6903 per emit_notes_for_changes call). */
6904 bool dummy;
6906 /* True if expansion of subexpressions had to recompute some
6907 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
6908 whose cur_loc has been already recomputed during current
6909 emit_notes_for_changes call. */
6910 bool cur_loc_changed;
6913 /* Callback for cselib_expand_value, that looks for expressions
6914 holding the value in the var-tracking hash tables. Return X for
6915 standard processing, anything else is to be used as-is. */
6917 static rtx
6918 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
6920 struct expand_loc_callback_data *elcd
6921 = (struct expand_loc_callback_data *) data;
6922 bool dummy = elcd->dummy;
6923 bool cur_loc_changed = elcd->cur_loc_changed;
6924 decl_or_value dv;
6925 variable var;
6926 location_chain loc;
6927 rtx result, subreg, xret;
6929 switch (GET_CODE (x))
6931 case SUBREG:
6932 if (dummy)
6934 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
6935 max_depth - 1,
6936 vt_expand_loc_callback, data))
6937 return pc_rtx;
6938 else
6939 return NULL;
6942 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
6943 max_depth - 1,
6944 vt_expand_loc_callback, data);
6946 if (!subreg)
6947 return NULL;
6949 result = simplify_gen_subreg (GET_MODE (x), subreg,
6950 GET_MODE (SUBREG_REG (x)),
6951 SUBREG_BYTE (x));
6953 /* Invalid SUBREGs are ok in debug info. ??? We could try
6954 alternate expansions for the VALUE as well. */
6955 if (!result)
6956 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
6958 return result;
6960 case DEBUG_EXPR:
6961 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
6962 xret = NULL;
6963 break;
6965 case VALUE:
6966 dv = dv_from_value (x);
6967 xret = x;
6968 break;
6970 default:
6971 return x;
6974 if (VALUE_RECURSED_INTO (x))
6975 return NULL;
6977 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
6979 if (!var)
6981 if (dummy && dv_changed_p (dv))
6982 elcd->cur_loc_changed = true;
6983 return xret;
6986 if (var->n_var_parts == 0)
6988 if (dummy)
6989 elcd->cur_loc_changed = true;
6990 return xret;
6993 gcc_assert (var->n_var_parts == 1);
6995 VALUE_RECURSED_INTO (x) = true;
6996 result = NULL;
6998 if (var->var_part[0].cur_loc)
7000 if (dummy)
7002 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7003 max_depth,
7004 vt_expand_loc_callback, data))
7005 result = pc_rtx;
7007 else
7008 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7009 max_depth,
7010 vt_expand_loc_callback, data);
7011 if (result)
7012 set_dv_changed (dv, false);
7014 if (!result && dv_changed_p (dv))
7016 set_dv_changed (dv, false);
7017 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7018 if (loc->loc == var->var_part[0].cur_loc)
7019 continue;
7020 else if (dummy)
7022 elcd->cur_loc_changed = cur_loc_changed;
7023 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7024 vt_expand_loc_callback,
7025 data))
7027 result = pc_rtx;
7028 break;
7031 else
7033 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7034 vt_expand_loc_callback, data);
7035 if (result)
7036 break;
7038 if (dummy && (result || var->var_part[0].cur_loc))
7039 var->cur_loc_changed = true;
7040 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7042 if (dummy)
7044 if (var->cur_loc_changed)
7045 elcd->cur_loc_changed = true;
7046 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7047 elcd->cur_loc_changed = cur_loc_changed;
7050 VALUE_RECURSED_INTO (x) = false;
7051 if (result)
7052 return result;
7053 else
7054 return xret;
7057 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7058 tables. */
7060 static rtx
7061 vt_expand_loc (rtx loc, htab_t vars)
7063 struct expand_loc_callback_data data;
7065 if (!MAY_HAVE_DEBUG_INSNS)
7066 return loc;
7068 data.vars = vars;
7069 data.dummy = false;
7070 data.cur_loc_changed = false;
7071 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, 8,
7072 vt_expand_loc_callback, &data);
7074 if (loc && MEM_P (loc))
7075 loc = targetm.delegitimize_address (loc);
7076 return loc;
7079 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7080 would succeed or not, without actually allocating new rtxes. */
7082 static bool
7083 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7085 struct expand_loc_callback_data data;
7086 bool ret;
7088 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7089 data.vars = vars;
7090 data.dummy = true;
7091 data.cur_loc_changed = false;
7092 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, 8,
7093 vt_expand_loc_callback, &data);
7094 *pcur_loc_changed = data.cur_loc_changed;
7095 return ret;
7098 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7099 additional parameters: WHERE specifies whether the note shall be emitted
7100 before or after instruction INSN. */
7102 static int
7103 emit_note_insn_var_location (void **varp, void *data)
7105 variable var = (variable) *varp;
7106 rtx insn = ((emit_note_data *)data)->insn;
7107 enum emit_note_where where = ((emit_note_data *)data)->where;
7108 htab_t vars = ((emit_note_data *)data)->vars;
7109 rtx note, note_vl;
7110 int i, j, n_var_parts;
7111 bool complete;
7112 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7113 HOST_WIDE_INT last_limit;
7114 tree type_size_unit;
7115 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7116 rtx loc[MAX_VAR_PARTS];
7117 tree decl;
7118 location_chain lc;
7120 if (dv_is_value_p (var->dv))
7121 goto value_or_debug_decl;
7123 decl = dv_as_decl (var->dv);
7125 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7126 goto value_or_debug_decl;
7128 complete = true;
7129 last_limit = 0;
7130 n_var_parts = 0;
7131 if (!MAY_HAVE_DEBUG_INSNS)
7133 for (i = 0; i < var->n_var_parts; i++)
7134 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7136 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7137 var->cur_loc_changed = true;
7139 if (var->n_var_parts == 0)
7140 var->cur_loc_changed = true;
7142 if (!var->cur_loc_changed)
7143 goto clear;
7144 for (i = 0; i < var->n_var_parts; i++)
7146 enum machine_mode mode, wider_mode;
7147 rtx loc2;
7149 if (last_limit < var->var_part[i].offset)
7151 complete = false;
7152 break;
7154 else if (last_limit > var->var_part[i].offset)
7155 continue;
7156 offsets[n_var_parts] = var->var_part[i].offset;
7157 if (!var->var_part[i].cur_loc)
7159 complete = false;
7160 continue;
7162 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars);
7163 if (!loc2)
7165 complete = false;
7166 continue;
7168 loc[n_var_parts] = loc2;
7169 mode = GET_MODE (var->var_part[i].cur_loc);
7170 if (mode == VOIDmode && dv_onepart_p (var->dv))
7171 mode = DECL_MODE (decl);
7172 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7173 if (var->var_part[i].cur_loc == lc->loc)
7175 initialized = lc->init;
7176 break;
7178 gcc_assert (lc);
7179 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7181 /* Attempt to merge adjacent registers or memory. */
7182 wider_mode = GET_MODE_WIDER_MODE (mode);
7183 for (j = i + 1; j < var->n_var_parts; j++)
7184 if (last_limit <= var->var_part[j].offset)
7185 break;
7186 if (j < var->n_var_parts
7187 && wider_mode != VOIDmode
7188 && var->var_part[j].cur_loc
7189 && mode == GET_MODE (var->var_part[j].cur_loc)
7190 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7191 && last_limit == var->var_part[j].offset
7192 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
7193 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7195 rtx new_loc = NULL;
7197 if (REG_P (loc[n_var_parts])
7198 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7199 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7200 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7201 == REGNO (loc2))
7203 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7204 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7205 mode, 0);
7206 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7207 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7208 if (new_loc)
7210 if (!REG_P (new_loc)
7211 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7212 new_loc = NULL;
7213 else
7214 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7217 else if (MEM_P (loc[n_var_parts])
7218 && GET_CODE (XEXP (loc2, 0)) == PLUS
7219 && REG_P (XEXP (XEXP (loc2, 0), 0))
7220 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7222 if ((REG_P (XEXP (loc[n_var_parts], 0))
7223 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7224 XEXP (XEXP (loc2, 0), 0))
7225 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7226 == GET_MODE_SIZE (mode))
7227 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7228 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7229 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7230 XEXP (XEXP (loc2, 0), 0))
7231 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7232 + GET_MODE_SIZE (mode)
7233 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7234 new_loc = adjust_address_nv (loc[n_var_parts],
7235 wider_mode, 0);
7238 if (new_loc)
7240 loc[n_var_parts] = new_loc;
7241 mode = wider_mode;
7242 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7243 i = j;
7246 ++n_var_parts;
7248 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7249 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7250 complete = false;
7252 if (! flag_var_tracking_uninit)
7253 initialized = VAR_INIT_STATUS_INITIALIZED;
7255 note_vl = NULL_RTX;
7256 if (!complete)
7257 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7258 (int) initialized);
7259 else if (n_var_parts == 1)
7261 rtx expr_list;
7263 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7264 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7265 else
7266 expr_list = loc[0];
7268 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7269 (int) initialized);
7271 else if (n_var_parts)
7273 rtx parallel;
7275 for (i = 0; i < n_var_parts; i++)
7276 loc[i]
7277 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7279 parallel = gen_rtx_PARALLEL (VOIDmode,
7280 gen_rtvec_v (n_var_parts, loc));
7281 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7282 parallel, (int) initialized);
7285 if (where != EMIT_NOTE_BEFORE_INSN)
7287 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7288 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7289 NOTE_DURING_CALL_P (note) = true;
7291 else
7293 /* Make sure that the call related notes come first. */
7294 while (NEXT_INSN (insn)
7295 && NOTE_P (insn)
7296 && NOTE_DURING_CALL_P (insn))
7297 insn = NEXT_INSN (insn);
7298 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7299 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7300 else
7301 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7303 NOTE_VAR_LOCATION (note) = note_vl;
7305 clear:
7306 set_dv_changed (var->dv, false);
7307 var->cur_loc_changed = false;
7308 gcc_assert (var->in_changed_variables);
7309 var->in_changed_variables = false;
7310 htab_clear_slot (changed_variables, varp);
7312 /* Continue traversing the hash table. */
7313 return 1;
7315 value_or_debug_decl:
7316 if (dv_changed_p (var->dv) && var->n_var_parts)
7318 location_chain lc;
7319 bool cur_loc_changed;
7321 if (var->var_part[0].cur_loc
7322 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7323 &cur_loc_changed))
7324 goto clear;
7325 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7326 if (lc->loc != var->var_part[0].cur_loc
7327 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7328 break;
7329 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7331 goto clear;
7334 DEF_VEC_P (variable);
7335 DEF_VEC_ALLOC_P (variable, heap);
7337 /* Stack of variable_def pointers that need processing with
7338 check_changed_vars_2. */
7340 static VEC (variable, heap) *changed_variables_stack;
7342 /* VALUEs with no variables that need set_dv_changed (val, false)
7343 called before check_changed_vars_3. */
7345 static VEC (rtx, heap) *changed_values_stack;
7347 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7349 static void
7350 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7352 value_chain vc
7353 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7355 if (vc == NULL)
7356 return;
7357 for (vc = vc->next; vc; vc = vc->next)
7358 if (!dv_changed_p (vc->dv))
7360 variable vcvar
7361 = (variable) htab_find_with_hash (htab, vc->dv,
7362 dv_htab_hash (vc->dv));
7363 if (vcvar)
7365 set_dv_changed (vc->dv, true);
7366 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7368 else if (dv_is_value_p (vc->dv))
7370 set_dv_changed (vc->dv, true);
7371 VEC_safe_push (rtx, heap, changed_values_stack,
7372 dv_as_value (vc->dv));
7373 check_changed_vars_0 (vc->dv, htab);
7378 /* Populate changed_variables_stack with variable_def pointers
7379 that need variable_was_changed called on them. */
7381 static int
7382 check_changed_vars_1 (void **slot, void *data)
7384 variable var = (variable) *slot;
7385 htab_t htab = (htab_t) data;
7387 if (dv_is_value_p (var->dv)
7388 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7389 check_changed_vars_0 (var->dv, htab);
7390 return 1;
7393 /* Add VAR to changed_variables and also for VALUEs add recursively
7394 all DVs that aren't in changed_variables yet but reference the
7395 VALUE from its loc_chain. */
7397 static void
7398 check_changed_vars_2 (variable var, htab_t htab)
7400 variable_was_changed (var, NULL);
7401 if (dv_is_value_p (var->dv)
7402 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7403 check_changed_vars_0 (var->dv, htab);
7406 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7407 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7408 it needs and are also in changed variables) and track whether
7409 cur_loc (or anything it uses to compute location) had to change
7410 during the current emit_notes_for_changes call. */
7412 static int
7413 check_changed_vars_3 (void **slot, void *data)
7415 variable var = (variable) *slot;
7416 htab_t vars = (htab_t) data;
7417 int i;
7418 location_chain lc;
7419 bool cur_loc_changed;
7421 if (dv_is_value_p (var->dv)
7422 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7423 return 1;
7425 for (i = 0; i < var->n_var_parts; i++)
7427 if (var->var_part[i].cur_loc
7428 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7429 &cur_loc_changed))
7431 if (cur_loc_changed)
7432 var->cur_loc_changed = true;
7433 continue;
7435 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7436 if (lc->loc != var->var_part[i].cur_loc
7437 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7438 break;
7439 if (lc || var->var_part[i].cur_loc)
7440 var->cur_loc_changed = true;
7441 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7443 if (var->n_var_parts == 0)
7444 var->cur_loc_changed = true;
7445 return 1;
7448 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7449 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7450 shall be emitted before of after instruction INSN. */
7452 static void
7453 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7454 shared_hash vars)
7456 emit_note_data data;
7457 htab_t htab = shared_hash_htab (vars);
7459 if (!htab_elements (changed_variables))
7460 return;
7462 if (MAY_HAVE_DEBUG_INSNS)
7464 /* Unfortunately this has to be done in two steps, because
7465 we can't traverse a hashtab into which we are inserting
7466 through variable_was_changed. */
7467 htab_traverse (changed_variables, check_changed_vars_1, htab);
7468 while (VEC_length (variable, changed_variables_stack) > 0)
7469 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7470 htab);
7471 while (VEC_length (rtx, changed_values_stack) > 0)
7472 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7473 false);
7474 htab_traverse (changed_variables, check_changed_vars_3, htab);
7477 data.insn = insn;
7478 data.where = where;
7479 data.vars = htab;
7481 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7484 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7485 same variable in hash table DATA or is not there at all. */
7487 static int
7488 emit_notes_for_differences_1 (void **slot, void *data)
7490 htab_t new_vars = (htab_t) data;
7491 variable old_var, new_var;
7493 old_var = (variable) *slot;
7494 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7495 dv_htab_hash (old_var->dv));
7497 if (!new_var)
7499 /* Variable has disappeared. */
7500 variable empty_var;
7502 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7503 empty_var->dv = old_var->dv;
7504 empty_var->refcount = 0;
7505 empty_var->n_var_parts = 0;
7506 empty_var->cur_loc_changed = false;
7507 empty_var->in_changed_variables = false;
7508 if (dv_onepart_p (old_var->dv))
7510 location_chain lc;
7512 gcc_assert (old_var->n_var_parts == 1);
7513 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7514 remove_value_chains (old_var->dv, lc->loc);
7516 variable_was_changed (empty_var, NULL);
7517 /* Continue traversing the hash table. */
7518 return 1;
7520 if (variable_different_p (old_var, new_var))
7522 if (dv_onepart_p (old_var->dv))
7524 location_chain lc1, lc2;
7526 gcc_assert (old_var->n_var_parts == 1
7527 && new_var->n_var_parts == 1);
7528 lc1 = old_var->var_part[0].loc_chain;
7529 lc2 = new_var->var_part[0].loc_chain;
7530 while (lc1
7531 && lc2
7532 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7533 || rtx_equal_p (lc1->loc, lc2->loc)))
7535 lc1 = lc1->next;
7536 lc2 = lc2->next;
7538 for (; lc2; lc2 = lc2->next)
7539 add_value_chains (old_var->dv, lc2->loc);
7540 for (; lc1; lc1 = lc1->next)
7541 remove_value_chains (old_var->dv, lc1->loc);
7543 variable_was_changed (new_var, NULL);
7545 /* Update cur_loc. */
7546 if (old_var != new_var)
7548 int i;
7549 for (i = 0; i < new_var->n_var_parts; i++)
7551 new_var->var_part[i].cur_loc = NULL;
7552 if (old_var->n_var_parts != new_var->n_var_parts
7553 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7554 new_var->cur_loc_changed = true;
7555 else if (old_var->var_part[i].cur_loc != NULL)
7557 location_chain lc;
7558 rtx cur_loc = old_var->var_part[i].cur_loc;
7560 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7561 if (lc->loc == cur_loc
7562 || rtx_equal_p (cur_loc, lc->loc))
7564 new_var->var_part[i].cur_loc = lc->loc;
7565 break;
7567 if (lc == NULL)
7568 new_var->cur_loc_changed = true;
7573 /* Continue traversing the hash table. */
7574 return 1;
7577 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7578 table DATA. */
7580 static int
7581 emit_notes_for_differences_2 (void **slot, void *data)
7583 htab_t old_vars = (htab_t) data;
7584 variable old_var, new_var;
7586 new_var = (variable) *slot;
7587 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7588 dv_htab_hash (new_var->dv));
7589 if (!old_var)
7591 int i;
7592 /* Variable has appeared. */
7593 if (dv_onepart_p (new_var->dv))
7595 location_chain lc;
7597 gcc_assert (new_var->n_var_parts == 1);
7598 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7599 add_value_chains (new_var->dv, lc->loc);
7601 for (i = 0; i < new_var->n_var_parts; i++)
7602 new_var->var_part[i].cur_loc = NULL;
7603 variable_was_changed (new_var, NULL);
7606 /* Continue traversing the hash table. */
7607 return 1;
7610 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7611 NEW_SET. */
7613 static void
7614 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7615 dataflow_set *new_set)
7617 htab_traverse (shared_hash_htab (old_set->vars),
7618 emit_notes_for_differences_1,
7619 shared_hash_htab (new_set->vars));
7620 htab_traverse (shared_hash_htab (new_set->vars),
7621 emit_notes_for_differences_2,
7622 shared_hash_htab (old_set->vars));
7623 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7626 /* Emit the notes for changes of location parts in the basic block BB. */
7628 static void
7629 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7631 unsigned int i;
7632 micro_operation *mo;
7634 dataflow_set_clear (set);
7635 dataflow_set_copy (set, &VTI (bb)->in);
7637 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7639 rtx insn = mo->insn;
7641 switch (mo->type)
7643 case MO_CALL:
7644 dataflow_set_clear_at_call (set);
7645 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
7646 break;
7648 case MO_USE:
7650 rtx loc = mo->u.loc;
7652 if (REG_P (loc))
7653 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7654 else
7655 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7657 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7659 break;
7661 case MO_VAL_LOC:
7663 rtx loc = mo->u.loc;
7664 rtx val, vloc;
7665 tree var;
7667 if (GET_CODE (loc) == CONCAT)
7669 val = XEXP (loc, 0);
7670 vloc = XEXP (loc, 1);
7672 else
7674 val = NULL_RTX;
7675 vloc = loc;
7678 var = PAT_VAR_LOCATION_DECL (vloc);
7680 clobber_variable_part (set, NULL_RTX,
7681 dv_from_decl (var), 0, NULL_RTX);
7682 if (val)
7684 if (VAL_NEEDS_RESOLUTION (loc))
7685 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
7686 set_variable_part (set, val, dv_from_decl (var), 0,
7687 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7688 INSERT);
7690 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
7691 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
7692 dv_from_decl (var), 0,
7693 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7694 INSERT);
7696 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7698 break;
7700 case MO_VAL_USE:
7702 rtx loc = mo->u.loc;
7703 rtx val, vloc, uloc;
7705 vloc = uloc = XEXP (loc, 1);
7706 val = XEXP (loc, 0);
7708 if (GET_CODE (val) == CONCAT)
7710 uloc = XEXP (val, 1);
7711 val = XEXP (val, 0);
7714 if (VAL_NEEDS_RESOLUTION (loc))
7715 val_resolve (set, val, vloc, insn);
7716 else
7717 val_store (set, val, uloc, insn, false);
7719 if (VAL_HOLDS_TRACK_EXPR (loc))
7721 if (GET_CODE (uloc) == REG)
7722 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7723 NULL);
7724 else if (GET_CODE (uloc) == MEM)
7725 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7726 NULL);
7729 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
7731 break;
7733 case MO_VAL_SET:
7735 rtx loc = mo->u.loc;
7736 rtx val, vloc, uloc, reverse = NULL_RTX;
7738 vloc = loc;
7739 if (VAL_EXPR_HAS_REVERSE (loc))
7741 reverse = XEXP (loc, 1);
7742 vloc = XEXP (loc, 0);
7744 uloc = XEXP (vloc, 1);
7745 val = XEXP (vloc, 0);
7746 vloc = uloc;
7748 if (GET_CODE (val) == CONCAT)
7750 vloc = XEXP (val, 1);
7751 val = XEXP (val, 0);
7754 if (GET_CODE (vloc) == SET)
7756 rtx vsrc = SET_SRC (vloc);
7758 gcc_assert (val != vsrc);
7759 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
7761 vloc = SET_DEST (vloc);
7763 if (VAL_NEEDS_RESOLUTION (loc))
7764 val_resolve (set, val, vsrc, insn);
7766 else if (VAL_NEEDS_RESOLUTION (loc))
7768 gcc_assert (GET_CODE (uloc) == SET
7769 && GET_CODE (SET_SRC (uloc)) == REG);
7770 val_resolve (set, val, SET_SRC (uloc), insn);
7773 if (VAL_HOLDS_TRACK_EXPR (loc))
7775 if (VAL_EXPR_IS_CLOBBERED (loc))
7777 if (REG_P (uloc))
7778 var_reg_delete (set, uloc, true);
7779 else if (MEM_P (uloc))
7780 var_mem_delete (set, uloc, true);
7782 else
7784 bool copied_p = VAL_EXPR_IS_COPIED (loc);
7785 rtx set_src = NULL;
7786 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
7788 if (GET_CODE (uloc) == SET)
7790 set_src = SET_SRC (uloc);
7791 uloc = SET_DEST (uloc);
7794 if (copied_p)
7796 status = find_src_status (set, set_src);
7798 set_src = find_src_set_src (set, set_src);
7801 if (REG_P (uloc))
7802 var_reg_delete_and_set (set, uloc, !copied_p,
7803 status, set_src);
7804 else if (MEM_P (uloc))
7805 var_mem_delete_and_set (set, uloc, !copied_p,
7806 status, set_src);
7809 else if (REG_P (uloc))
7810 var_regno_delete (set, REGNO (uloc));
7812 val_store (set, val, vloc, insn, true);
7814 if (reverse)
7815 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
7816 insn, false);
7818 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7819 set->vars);
7821 break;
7823 case MO_SET:
7825 rtx loc = mo->u.loc;
7826 rtx set_src = NULL;
7828 if (GET_CODE (loc) == SET)
7830 set_src = SET_SRC (loc);
7831 loc = SET_DEST (loc);
7834 if (REG_P (loc))
7835 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7836 set_src);
7837 else
7838 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7839 set_src);
7841 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7842 set->vars);
7844 break;
7846 case MO_COPY:
7848 rtx loc = mo->u.loc;
7849 enum var_init_status src_status;
7850 rtx set_src = NULL;
7852 if (GET_CODE (loc) == SET)
7854 set_src = SET_SRC (loc);
7855 loc = SET_DEST (loc);
7858 src_status = find_src_status (set, set_src);
7859 set_src = find_src_set_src (set, set_src);
7861 if (REG_P (loc))
7862 var_reg_delete_and_set (set, loc, false, src_status, set_src);
7863 else
7864 var_mem_delete_and_set (set, loc, false, src_status, set_src);
7866 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7867 set->vars);
7869 break;
7871 case MO_USE_NO_VAR:
7873 rtx loc = mo->u.loc;
7875 if (REG_P (loc))
7876 var_reg_delete (set, loc, false);
7877 else
7878 var_mem_delete (set, loc, false);
7880 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7882 break;
7884 case MO_CLOBBER:
7886 rtx loc = mo->u.loc;
7888 if (REG_P (loc))
7889 var_reg_delete (set, loc, true);
7890 else
7891 var_mem_delete (set, loc, true);
7893 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7894 set->vars);
7896 break;
7898 case MO_ADJUST:
7899 set->stack_adjust += mo->u.adjust;
7900 break;
7905 /* Emit notes for the whole function. */
7907 static void
7908 vt_emit_notes (void)
7910 basic_block bb;
7911 dataflow_set cur;
7913 gcc_assert (!htab_elements (changed_variables));
7915 /* Free memory occupied by the out hash tables, as they aren't used
7916 anymore. */
7917 FOR_EACH_BB (bb)
7918 dataflow_set_clear (&VTI (bb)->out);
7920 /* Enable emitting notes by functions (mainly by set_variable_part and
7921 delete_variable_part). */
7922 emit_notes = true;
7924 if (MAY_HAVE_DEBUG_INSNS)
7926 unsigned int i;
7927 rtx val;
7929 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
7930 add_cselib_value_chains (dv_from_value (val));
7931 changed_variables_stack = VEC_alloc (variable, heap, 40);
7932 changed_values_stack = VEC_alloc (rtx, heap, 40);
7935 dataflow_set_init (&cur);
7937 FOR_EACH_BB (bb)
7939 /* Emit the notes for changes of variable locations between two
7940 subsequent basic blocks. */
7941 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
7943 /* Emit the notes for the changes in the basic block itself. */
7944 emit_notes_in_bb (bb, &cur);
7946 /* Free memory occupied by the in hash table, we won't need it
7947 again. */
7948 dataflow_set_clear (&VTI (bb)->in);
7950 #ifdef ENABLE_CHECKING
7951 htab_traverse (shared_hash_htab (cur.vars),
7952 emit_notes_for_differences_1,
7953 shared_hash_htab (empty_shared_hash));
7954 if (MAY_HAVE_DEBUG_INSNS)
7956 unsigned int i;
7957 rtx val;
7959 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
7960 remove_cselib_value_chains (dv_from_value (val));
7961 gcc_assert (htab_elements (value_chains) == 0);
7963 #endif
7964 dataflow_set_destroy (&cur);
7966 if (MAY_HAVE_DEBUG_INSNS)
7968 VEC_free (variable, heap, changed_variables_stack);
7969 VEC_free (rtx, heap, changed_values_stack);
7972 emit_notes = false;
7975 /* If there is a declaration and offset associated with register/memory RTL
7976 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
7978 static bool
7979 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
7981 if (REG_P (rtl))
7983 if (REG_ATTRS (rtl))
7985 *declp = REG_EXPR (rtl);
7986 *offsetp = REG_OFFSET (rtl);
7987 return true;
7990 else if (MEM_P (rtl))
7992 if (MEM_ATTRS (rtl))
7994 *declp = MEM_EXPR (rtl);
7995 *offsetp = INT_MEM_OFFSET (rtl);
7996 return true;
7999 return false;
8002 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8004 static void
8005 vt_add_function_parameter (tree parm)
8007 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8008 rtx incoming = DECL_INCOMING_RTL (parm);
8009 tree decl;
8010 enum machine_mode mode;
8011 HOST_WIDE_INT offset;
8012 dataflow_set *out;
8013 decl_or_value dv;
8015 if (TREE_CODE (parm) != PARM_DECL)
8016 return;
8018 if (!decl_rtl || !incoming)
8019 return;
8021 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8022 return;
8024 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8026 if (REG_P (incoming) || MEM_P (incoming))
8028 /* This means argument is passed by invisible reference. */
8029 offset = 0;
8030 decl = parm;
8031 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8033 else
8035 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8036 return;
8037 offset += byte_lowpart_offset (GET_MODE (incoming),
8038 GET_MODE (decl_rtl));
8042 if (!decl)
8043 return;
8045 if (parm != decl)
8047 /* Assume that DECL_RTL was a pseudo that got spilled to
8048 memory. The spill slot sharing code will force the
8049 memory to reference spill_slot_decl (%sfp), so we don't
8050 match above. That's ok, the pseudo must have referenced
8051 the entire parameter, so just reset OFFSET. */
8052 gcc_assert (decl == get_spill_slot_decl (false));
8053 offset = 0;
8056 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8057 return;
8059 out = &VTI (ENTRY_BLOCK_PTR)->out;
8061 dv = dv_from_decl (parm);
8063 if (target_for_debug_bind (parm)
8064 /* We can't deal with these right now, because this kind of
8065 variable is single-part. ??? We could handle parallels
8066 that describe multiple locations for the same single
8067 value, but ATM we don't. */
8068 && GET_CODE (incoming) != PARALLEL)
8070 cselib_val *val;
8072 /* ??? We shouldn't ever hit this, but it may happen because
8073 arguments passed by invisible reference aren't dealt with
8074 above: incoming-rtl will have Pmode rather than the
8075 expected mode for the type. */
8076 if (offset)
8077 return;
8079 val = cselib_lookup (var_lowpart (mode, incoming), mode, true);
8081 /* ??? Float-typed values in memory are not handled by
8082 cselib. */
8083 if (val)
8085 preserve_value (val);
8086 set_variable_part (out, val->val_rtx, dv, offset,
8087 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8088 dv = dv_from_value (val->val_rtx);
8092 if (REG_P (incoming))
8094 incoming = var_lowpart (mode, incoming);
8095 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8096 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8097 incoming);
8098 set_variable_part (out, incoming, dv, offset,
8099 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8101 else if (MEM_P (incoming))
8103 incoming = var_lowpart (mode, incoming);
8104 set_variable_part (out, incoming, dv, offset,
8105 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8109 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8111 static void
8112 vt_add_function_parameters (void)
8114 tree parm;
8116 for (parm = DECL_ARGUMENTS (current_function_decl);
8117 parm; parm = DECL_CHAIN (parm))
8118 vt_add_function_parameter (parm);
8120 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8122 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8124 if (TREE_CODE (vexpr) == INDIRECT_REF)
8125 vexpr = TREE_OPERAND (vexpr, 0);
8127 if (TREE_CODE (vexpr) == PARM_DECL
8128 && DECL_ARTIFICIAL (vexpr)
8129 && !DECL_IGNORED_P (vexpr)
8130 && DECL_NAMELESS (vexpr))
8131 vt_add_function_parameter (vexpr);
8134 if (MAY_HAVE_DEBUG_INSNS)
8136 cselib_preserve_only_values ();
8137 cselib_reset_table (cselib_get_next_uid ());
8142 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8144 static bool
8145 fp_setter (rtx insn)
8147 rtx pat = PATTERN (insn);
8148 if (RTX_FRAME_RELATED_P (insn))
8150 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8151 if (expr)
8152 pat = XEXP (expr, 0);
8154 if (GET_CODE (pat) == SET)
8155 return SET_DEST (pat) == hard_frame_pointer_rtx;
8156 else if (GET_CODE (pat) == PARALLEL)
8158 int i;
8159 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8160 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8161 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8162 return true;
8164 return false;
8167 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8168 ensure it isn't flushed during cselib_reset_table.
8169 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8170 has been eliminated. */
8172 static void
8173 vt_init_cfa_base (void)
8175 cselib_val *val;
8177 #ifdef FRAME_POINTER_CFA_OFFSET
8178 cfa_base_rtx = frame_pointer_rtx;
8179 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8180 #else
8181 cfa_base_rtx = arg_pointer_rtx;
8182 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8183 #endif
8184 if (cfa_base_rtx == hard_frame_pointer_rtx
8185 || !fixed_regs[REGNO (cfa_base_rtx)])
8187 cfa_base_rtx = NULL_RTX;
8188 return;
8190 if (!MAY_HAVE_DEBUG_INSNS)
8191 return;
8193 /* Tell alias analysis that cfa_base_rtx should share
8194 find_base_term value with stack pointer or hard frame pointer. */
8195 vt_equate_reg_base_value (cfa_base_rtx,
8196 frame_pointer_needed
8197 ? hard_frame_pointer_rtx : stack_pointer_rtx);
8198 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8199 get_insns ());
8200 preserve_value (val);
8201 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8202 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8203 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8204 0, NULL_RTX, INSERT);
8207 /* Allocate and initialize the data structures for variable tracking
8208 and parse the RTL to get the micro operations. */
8210 static bool
8211 vt_initialize (void)
8213 basic_block bb, prologue_bb = NULL;
8214 HOST_WIDE_INT fp_cfa_offset = -1;
8216 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8218 attrs_pool = create_alloc_pool ("attrs_def pool",
8219 sizeof (struct attrs_def), 1024);
8220 var_pool = create_alloc_pool ("variable_def pool",
8221 sizeof (struct variable_def)
8222 + (MAX_VAR_PARTS - 1)
8223 * sizeof (((variable)NULL)->var_part[0]), 64);
8224 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8225 sizeof (struct location_chain_def),
8226 1024);
8227 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8228 sizeof (struct shared_hash_def), 256);
8229 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8230 empty_shared_hash->refcount = 1;
8231 empty_shared_hash->htab
8232 = htab_create (1, variable_htab_hash, variable_htab_eq,
8233 variable_htab_free);
8234 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8235 variable_htab_free);
8236 if (MAY_HAVE_DEBUG_INSNS)
8238 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8239 sizeof (struct value_chain_def),
8240 1024);
8241 value_chains = htab_create (32, value_chain_htab_hash,
8242 value_chain_htab_eq, NULL);
8245 /* Init the IN and OUT sets. */
8246 FOR_ALL_BB (bb)
8248 VTI (bb)->visited = false;
8249 VTI (bb)->flooded = false;
8250 dataflow_set_init (&VTI (bb)->in);
8251 dataflow_set_init (&VTI (bb)->out);
8252 VTI (bb)->permp = NULL;
8255 if (MAY_HAVE_DEBUG_INSNS)
8257 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8258 scratch_regs = BITMAP_ALLOC (NULL);
8259 valvar_pool = create_alloc_pool ("small variable_def pool",
8260 sizeof (struct variable_def), 256);
8261 preserved_values = VEC_alloc (rtx, heap, 256);
8263 else
8265 scratch_regs = NULL;
8266 valvar_pool = NULL;
8269 if (!frame_pointer_needed)
8271 rtx reg, elim;
8273 if (!vt_stack_adjustments ())
8274 return false;
8276 #ifdef FRAME_POINTER_CFA_OFFSET
8277 reg = frame_pointer_rtx;
8278 #else
8279 reg = arg_pointer_rtx;
8280 #endif
8281 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8282 if (elim != reg)
8284 if (GET_CODE (elim) == PLUS)
8285 elim = XEXP (elim, 0);
8286 if (elim == stack_pointer_rtx)
8287 vt_init_cfa_base ();
8290 else if (!crtl->stack_realign_tried)
8292 rtx reg, elim;
8294 #ifdef FRAME_POINTER_CFA_OFFSET
8295 reg = frame_pointer_rtx;
8296 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8297 #else
8298 reg = arg_pointer_rtx;
8299 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8300 #endif
8301 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8302 if (elim != reg)
8304 if (GET_CODE (elim) == PLUS)
8306 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8307 elim = XEXP (elim, 0);
8309 if (elim != hard_frame_pointer_rtx)
8310 fp_cfa_offset = -1;
8311 else
8312 prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8316 hard_frame_pointer_adjustment = -1;
8318 FOR_EACH_BB (bb)
8320 rtx insn;
8321 HOST_WIDE_INT pre, post = 0;
8322 basic_block first_bb, last_bb;
8324 if (MAY_HAVE_DEBUG_INSNS)
8326 cselib_record_sets_hook = add_with_sets;
8327 if (dump_file && (dump_flags & TDF_DETAILS))
8328 fprintf (dump_file, "first value: %i\n",
8329 cselib_get_next_uid ());
8332 first_bb = bb;
8333 for (;;)
8335 edge e;
8336 if (bb->next_bb == EXIT_BLOCK_PTR
8337 || ! single_pred_p (bb->next_bb))
8338 break;
8339 e = find_edge (bb, bb->next_bb);
8340 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8341 break;
8342 bb = bb->next_bb;
8344 last_bb = bb;
8346 /* Add the micro-operations to the vector. */
8347 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8349 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8350 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8351 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8352 insn = NEXT_INSN (insn))
8354 if (INSN_P (insn))
8356 if (!frame_pointer_needed)
8358 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8359 if (pre)
8361 micro_operation mo;
8362 mo.type = MO_ADJUST;
8363 mo.u.adjust = pre;
8364 mo.insn = insn;
8365 if (dump_file && (dump_flags & TDF_DETAILS))
8366 log_op_type (PATTERN (insn), bb, insn,
8367 MO_ADJUST, dump_file);
8368 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8369 &mo);
8370 VTI (bb)->out.stack_adjust += pre;
8374 cselib_hook_called = false;
8375 adjust_insn (bb, insn);
8376 if (MAY_HAVE_DEBUG_INSNS)
8378 cselib_process_insn (insn);
8379 if (dump_file && (dump_flags & TDF_DETAILS))
8381 print_rtl_single (dump_file, insn);
8382 dump_cselib_table (dump_file);
8385 if (!cselib_hook_called)
8386 add_with_sets (insn, 0, 0);
8387 cancel_changes (0);
8389 if (!frame_pointer_needed && post)
8391 micro_operation mo;
8392 mo.type = MO_ADJUST;
8393 mo.u.adjust = post;
8394 mo.insn = insn;
8395 if (dump_file && (dump_flags & TDF_DETAILS))
8396 log_op_type (PATTERN (insn), bb, insn,
8397 MO_ADJUST, dump_file);
8398 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8399 &mo);
8400 VTI (bb)->out.stack_adjust += post;
8403 if (bb == prologue_bb
8404 && hard_frame_pointer_adjustment == -1
8405 && RTX_FRAME_RELATED_P (insn)
8406 && fp_setter (insn))
8408 vt_init_cfa_base ();
8409 hard_frame_pointer_adjustment = fp_cfa_offset;
8413 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8416 bb = last_bb;
8418 if (MAY_HAVE_DEBUG_INSNS)
8420 cselib_preserve_only_values ();
8421 cselib_reset_table (cselib_get_next_uid ());
8422 cselib_record_sets_hook = NULL;
8426 hard_frame_pointer_adjustment = -1;
8427 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8428 vt_add_function_parameters ();
8429 cfa_base_rtx = NULL_RTX;
8430 return true;
8433 /* Get rid of all debug insns from the insn stream. */
8435 static void
8436 delete_debug_insns (void)
8438 basic_block bb;
8439 rtx insn, next;
8441 if (!MAY_HAVE_DEBUG_INSNS)
8442 return;
8444 FOR_EACH_BB (bb)
8446 FOR_BB_INSNS_SAFE (bb, insn, next)
8447 if (DEBUG_INSN_P (insn))
8448 delete_insn (insn);
8452 /* Run a fast, BB-local only version of var tracking, to take care of
8453 information that we don't do global analysis on, such that not all
8454 information is lost. If SKIPPED holds, we're skipping the global
8455 pass entirely, so we should try to use information it would have
8456 handled as well.. */
8458 static void
8459 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8461 /* ??? Just skip it all for now. */
8462 delete_debug_insns ();
8465 /* Free the data structures needed for variable tracking. */
8467 static void
8468 vt_finalize (void)
8470 basic_block bb;
8472 FOR_EACH_BB (bb)
8474 VEC_free (micro_operation, heap, VTI (bb)->mos);
8477 FOR_ALL_BB (bb)
8479 dataflow_set_destroy (&VTI (bb)->in);
8480 dataflow_set_destroy (&VTI (bb)->out);
8481 if (VTI (bb)->permp)
8483 dataflow_set_destroy (VTI (bb)->permp);
8484 XDELETE (VTI (bb)->permp);
8487 free_aux_for_blocks ();
8488 htab_delete (empty_shared_hash->htab);
8489 htab_delete (changed_variables);
8490 free_alloc_pool (attrs_pool);
8491 free_alloc_pool (var_pool);
8492 free_alloc_pool (loc_chain_pool);
8493 free_alloc_pool (shared_hash_pool);
8495 if (MAY_HAVE_DEBUG_INSNS)
8497 htab_delete (value_chains);
8498 free_alloc_pool (value_chain_pool);
8499 free_alloc_pool (valvar_pool);
8500 VEC_free (rtx, heap, preserved_values);
8501 cselib_finish ();
8502 BITMAP_FREE (scratch_regs);
8503 scratch_regs = NULL;
8506 if (vui_vec)
8507 XDELETEVEC (vui_vec);
8508 vui_vec = NULL;
8509 vui_allocated = 0;
8512 /* The entry point to variable tracking pass. */
8514 static inline unsigned int
8515 variable_tracking_main_1 (void)
8517 bool success;
8519 if (flag_var_tracking_assignments < 0)
8521 delete_debug_insns ();
8522 return 0;
8525 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
8527 vt_debug_insns_local (true);
8528 return 0;
8531 mark_dfs_back_edges ();
8532 if (!vt_initialize ())
8534 vt_finalize ();
8535 vt_debug_insns_local (true);
8536 return 0;
8539 success = vt_find_locations ();
8541 if (!success && flag_var_tracking_assignments > 0)
8543 vt_finalize ();
8545 delete_debug_insns ();
8547 /* This is later restored by our caller. */
8548 flag_var_tracking_assignments = 0;
8550 success = vt_initialize ();
8551 gcc_assert (success);
8553 success = vt_find_locations ();
8556 if (!success)
8558 vt_finalize ();
8559 vt_debug_insns_local (false);
8560 return 0;
8563 if (dump_file && (dump_flags & TDF_DETAILS))
8565 dump_dataflow_sets ();
8566 dump_flow_info (dump_file, dump_flags);
8569 timevar_push (TV_VAR_TRACKING_EMIT);
8570 vt_emit_notes ();
8571 timevar_pop (TV_VAR_TRACKING_EMIT);
8573 vt_finalize ();
8574 vt_debug_insns_local (false);
8575 return 0;
8578 unsigned int
8579 variable_tracking_main (void)
8581 unsigned int ret;
8582 int save = flag_var_tracking_assignments;
8584 ret = variable_tracking_main_1 ();
8586 flag_var_tracking_assignments = save;
8588 return ret;
8591 static bool
8592 gate_handle_var_tracking (void)
8594 return (flag_var_tracking);
8599 struct rtl_opt_pass pass_variable_tracking =
8602 RTL_PASS,
8603 "vartrack", /* name */
8604 gate_handle_var_tracking, /* gate */
8605 variable_tracking_main, /* execute */
8606 NULL, /* sub */
8607 NULL, /* next */
8608 0, /* static_pass_number */
8609 TV_VAR_TRACKING, /* tv_id */
8610 0, /* properties_required */
8611 0, /* properties_provided */
8612 0, /* properties_destroyed */
8613 0, /* todo_flags_start */
8614 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */