Daily bump.
[official-gcc.git] / gcc / tree-data-ref.h
blobbcf8c02c4d045c25179f67ec2a6f88d59dadfcbd
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
25 #include "graphds.h"
26 #include "lambda.h"
27 #include "omega.h"
28 #include "tree-chrec.h"
31 innermost_loop_behavior describes the evolution of the address of the memory
32 reference in the innermost enclosing loop. The address is expressed as
33 BASE + STEP * # of iteration, and base is further decomposed as the base
34 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
35 constant offset (INIT). Examples, in loop nest
37 for (i = 0; i < 100; i++)
38 for (j = 3; j < 100; j++)
40 Example 1 Example 2
41 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
44 innermost_loop_behavior
45 base_address &a p
46 offset i * D_i x
47 init 3 * D_j + offsetof (b) 28
48 step D_j 4
51 struct innermost_loop_behavior
53 tree base_address;
54 tree offset;
55 tree init;
56 tree step;
58 /* Alignment information. ALIGNED_TO is set to the largest power of two
59 that divides OFFSET. */
60 tree aligned_to;
63 /* Describes the evolutions of indices of the memory reference. The indices
64 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66 (note that this reference does not have to be valid, if zero does not
67 belong to the range of the array; hence it is not recommended to use
68 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
69 set to the loop-invariant part of the address of the object, except for
70 the constant offset. For the examples above,
72 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
73 indices: {j_0, +, 1}_2 {16, +, 4}_2
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
78 struct indices
80 /* The object. */
81 tree base_object;
83 /* A list of chrecs. Access functions of the indices. */
84 VEC(tree,heap) *access_fns;
87 struct dr_alias
89 /* The alias information that should be used for new pointers to this
90 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
91 struct ptr_info_def *ptr_info;
93 /* The set of virtual operands corresponding to this memory reference,
94 serving as a description of the alias information for the memory
95 reference. This could be eliminated if we had alias oracle. */
96 bitmap vops;
99 /* Each vector of the access matrix represents a linear access
100 function for a subscript. First elements correspond to the
101 leftmost indices, ie. for a[i][j] the first vector corresponds to
102 the subscript in "i". The elements of a vector are relative to
103 the loop nests in which the data reference is considered,
104 i.e. the vector is relative to the SCoP that provides the context
105 in which this data reference occurs.
107 For example, in
109 | loop_1
110 | loop_2
111 | a[i+3][2*j+n-1]
113 if "i" varies in loop_1 and "j" varies in loop_2, the access
114 matrix with respect to the loop nest {loop_1, loop_2} is:
116 | loop_1 loop_2 param_n cst
117 | 1 0 0 3
118 | 0 2 1 -1
120 whereas the access matrix with respect to loop_2 considers "i" as
121 a parameter:
123 | loop_2 param_i param_n cst
124 | 0 1 0 3
125 | 2 0 1 -1
127 struct access_matrix
129 VEC (loop_p, heap) *loop_nest;
130 int nb_induction_vars;
131 VEC (tree, heap) *parameters;
132 VEC (lambda_vector, gc) *matrix;
135 #define AM_LOOP_NEST(M) (M)->loop_nest
136 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
137 #define AM_PARAMETERS(M) (M)->parameters
138 #define AM_MATRIX(M) (M)->matrix
139 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
140 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
141 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
142 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
143 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
145 /* Return the column in the access matrix of LOOP_NUM. */
147 static inline int
148 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
150 int i;
151 loop_p l;
153 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
154 if (l->num == loop_num)
155 return i;
157 gcc_unreachable();
160 int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
162 struct data_reference
164 /* A pointer to the statement that contains this DR. */
165 gimple stmt;
167 /* A pointer to the memory reference. */
168 tree ref;
170 /* Auxiliary info specific to a pass. */
171 void *aux;
173 /* True when the data reference is in RHS of a stmt. */
174 bool is_read;
176 /* Behavior of the memory reference in the innermost loop. */
177 struct innermost_loop_behavior innermost;
179 /* Subscripts of this data reference. */
180 struct indices indices;
182 /* Alias information for the data reference. */
183 struct dr_alias alias;
185 /* Matrix representation for the data access functions. */
186 struct access_matrix *access_matrix;
189 #define DR_STMT(DR) (DR)->stmt
190 #define DR_REF(DR) (DR)->ref
191 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
192 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
193 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
194 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
195 #define DR_IS_READ(DR) (DR)->is_read
196 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
197 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
198 #define DR_OFFSET(DR) (DR)->innermost.offset
199 #define DR_INIT(DR) (DR)->innermost.init
200 #define DR_STEP(DR) (DR)->innermost.step
201 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
202 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
203 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
205 typedef struct data_reference *data_reference_p;
206 DEF_VEC_P(data_reference_p);
207 DEF_VEC_ALLOC_P (data_reference_p, heap);
209 enum data_dependence_direction {
210 dir_positive,
211 dir_negative,
212 dir_equal,
213 dir_positive_or_negative,
214 dir_positive_or_equal,
215 dir_negative_or_equal,
216 dir_star,
217 dir_independent
220 /* The description of the grid of iterations that overlap. At most
221 two loops are considered at the same time just now, hence at most
222 two functions are needed. For each of the functions, we store
223 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
224 where x, y, ... are variables. */
226 #define MAX_DIM 2
228 /* Special values of N. */
229 #define NO_DEPENDENCE 0
230 #define NOT_KNOWN (MAX_DIM + 1)
231 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
232 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
233 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
235 typedef VEC (tree, heap) *affine_fn;
237 typedef struct
239 unsigned n;
240 affine_fn fns[MAX_DIM];
241 } conflict_function;
243 /* What is a subscript? Given two array accesses a subscript is the
244 tuple composed of the access functions for a given dimension.
245 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
246 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
247 are stored in the data_dependence_relation structure under the form
248 of an array of subscripts. */
250 struct subscript
252 /* A description of the iterations for which the elements are
253 accessed twice. */
254 conflict_function *conflicting_iterations_in_a;
255 conflict_function *conflicting_iterations_in_b;
257 /* This field stores the information about the iteration domain
258 validity of the dependence relation. */
259 tree last_conflict;
261 /* Distance from the iteration that access a conflicting element in
262 A to the iteration that access this same conflicting element in
263 B. The distance is a tree scalar expression, i.e. a constant or a
264 symbolic expression, but certainly not a chrec function. */
265 tree distance;
268 typedef struct subscript *subscript_p;
269 DEF_VEC_P(subscript_p);
270 DEF_VEC_ALLOC_P (subscript_p, heap);
272 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
273 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
274 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
275 #define SUB_DISTANCE(SUB) SUB->distance
277 /* A data_dependence_relation represents a relation between two
278 data_references A and B. */
280 struct data_dependence_relation
283 struct data_reference *a;
284 struct data_reference *b;
286 /* A "yes/no/maybe" field for the dependence relation:
288 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
289 relation between A and B, and the description of this relation
290 is given in the SUBSCRIPTS array,
292 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
293 SUBSCRIPTS is empty,
295 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
296 but the analyzer cannot be more specific. */
297 tree are_dependent;
299 /* For each subscript in the dependence test, there is an element in
300 this array. This is the attribute that labels the edge A->B of
301 the data_dependence_relation. */
302 VEC (subscript_p, heap) *subscripts;
304 /* The analyzed loop nest. */
305 VEC (loop_p, heap) *loop_nest;
307 /* The classic direction vector. */
308 VEC (lambda_vector, heap) *dir_vects;
310 /* The classic distance vector. */
311 VEC (lambda_vector, heap) *dist_vects;
313 /* An index in loop_nest for the innermost loop that varies for
314 this data dependence relation. */
315 unsigned inner_loop;
317 /* Is the dependence reversed with respect to the lexicographic order? */
318 bool reversed_p;
320 /* When the dependence relation is affine, it can be represented by
321 a distance vector. */
322 bool affine_p;
324 /* Set to true when the dependence relation is on the same data
325 access. */
326 bool self_reference_p;
329 typedef struct data_dependence_relation *ddr_p;
330 DEF_VEC_P(ddr_p);
331 DEF_VEC_ALLOC_P(ddr_p,heap);
333 #define DDR_A(DDR) DDR->a
334 #define DDR_B(DDR) DDR->b
335 #define DDR_AFFINE_P(DDR) DDR->affine_p
336 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
337 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
338 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
339 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
341 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
342 /* The size of the direction/distance vectors: the number of loops in
343 the loop nest. */
344 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
345 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
346 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
348 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
349 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
350 #define DDR_NUM_DIST_VECTS(DDR) \
351 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
352 #define DDR_NUM_DIR_VECTS(DDR) \
353 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
354 #define DDR_DIR_VECT(DDR, I) \
355 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
356 #define DDR_DIST_VECT(DDR, I) \
357 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
358 #define DDR_REVERSED_P(DDR) DDR->reversed_p
362 /* Describes a location of a memory reference. */
364 typedef struct data_ref_loc_d
366 /* Position of the memory reference. */
367 tree *pos;
369 /* True if the memory reference is read. */
370 bool is_read;
371 } data_ref_loc;
373 DEF_VEC_O (data_ref_loc);
374 DEF_VEC_ALLOC_O (data_ref_loc, heap);
376 bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
377 bool dr_analyze_innermost (struct data_reference *);
378 extern bool compute_data_dependences_for_loop (struct loop *, bool,
379 VEC (loop_p, heap) **,
380 VEC (data_reference_p, heap) **,
381 VEC (ddr_p, heap) **);
382 extern bool compute_data_dependences_for_bb (basic_block, bool,
383 VEC (data_reference_p, heap) **,
384 VEC (ddr_p, heap) **);
385 extern tree find_data_references_in_loop (struct loop *,
386 VEC (data_reference_p, heap) **);
387 extern void print_direction_vector (FILE *, lambda_vector, int);
388 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
389 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
390 extern void dump_subscript (FILE *, struct subscript *);
391 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
392 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
393 extern void dump_data_reference (FILE *, struct data_reference *);
394 extern void debug_data_reference (struct data_reference *);
395 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
396 extern void debug_data_references (VEC (data_reference_p, heap) *);
397 extern void debug_data_dependence_relation (struct data_dependence_relation *);
398 extern void dump_data_dependence_relation (FILE *,
399 struct data_dependence_relation *);
400 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
401 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
402 extern void dump_data_dependence_direction (FILE *,
403 enum data_dependence_direction);
404 extern void free_dependence_relation (struct data_dependence_relation *);
405 extern void free_dependence_relations (VEC (ddr_p, heap) *);
406 extern void free_data_ref (data_reference_p);
407 extern void free_data_refs (VEC (data_reference_p, heap) *);
408 extern bool find_data_references_in_stmt (struct loop *, gimple,
409 VEC (data_reference_p, heap) **);
410 extern bool graphite_find_data_references_in_stmt (struct loop *, gimple,
411 VEC (data_reference_p, heap) **);
412 struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
413 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
414 extern void compute_all_dependences (VEC (data_reference_p, heap) *,
415 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
416 bool);
418 extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
419 extern bool dr_may_alias_p (const struct data_reference *,
420 const struct data_reference *);
423 /* Return true when the base objects of data references A and B are
424 the same memory object. */
426 static inline bool
427 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
429 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
430 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
433 /* Return true when the data references A and B are accessing the same
434 memory object with the same access functions. */
436 static inline bool
437 same_data_refs (data_reference_p a, data_reference_p b)
439 unsigned int i;
441 /* The references are exactly the same. */
442 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
443 return true;
445 if (!same_data_refs_base_objects (a, b))
446 return false;
448 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
449 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
450 return false;
452 return true;
455 /* Return true when the DDR contains two data references that have the
456 same access functions. */
458 static inline bool
459 same_access_functions (const struct data_dependence_relation *ddr)
461 unsigned i;
463 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
464 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
465 DR_ACCESS_FN (DDR_B (ddr), i)))
466 return false;
468 return true;
471 /* Return true when DDR is an anti-dependence relation. */
473 static inline bool
474 ddr_is_anti_dependent (ddr_p ddr)
476 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
477 && DR_IS_READ (DDR_A (ddr))
478 && DR_IS_WRITE (DDR_B (ddr))
479 && !same_access_functions (ddr));
482 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
484 static inline bool
485 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
487 unsigned i;
488 ddr_p ddr;
490 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
491 if (ddr_is_anti_dependent (ddr))
492 return true;
494 return false;
497 /* Return the dependence level for the DDR relation. */
499 static inline unsigned
500 ddr_dependence_level (ddr_p ddr)
502 unsigned vector;
503 unsigned level = 0;
505 if (DDR_DIST_VECTS (ddr))
506 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
508 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
509 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
510 DDR_NB_LOOPS (ddr)));
511 return level;
516 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
517 typedef struct rdg_vertex
519 /* The statement represented by this vertex. */
520 gimple stmt;
522 /* True when the statement contains a write to memory. */
523 bool has_mem_write;
525 /* True when the statement contains a read from memory. */
526 bool has_mem_reads;
527 } *rdg_vertex_p;
529 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
530 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
531 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
532 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
533 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
534 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
536 void dump_rdg_vertex (FILE *, struct graph *, int);
537 void debug_rdg_vertex (struct graph *, int);
538 void dump_rdg_component (FILE *, struct graph *, int, bitmap);
539 void debug_rdg_component (struct graph *, int);
540 void dump_rdg (FILE *, struct graph *);
541 void debug_rdg (struct graph *);
542 int rdg_vertex_for_stmt (struct graph *, gimple);
544 /* Data dependence type. */
546 enum rdg_dep_type
548 /* Read After Write (RAW). */
549 flow_dd = 'f',
551 /* Write After Read (WAR). */
552 anti_dd = 'a',
554 /* Write After Write (WAW). */
555 output_dd = 'o',
557 /* Read After Read (RAR). */
558 input_dd = 'i'
561 /* Dependence information attached to an edge of the RDG. */
563 typedef struct rdg_edge
565 /* Type of the dependence. */
566 enum rdg_dep_type type;
568 /* Levels of the dependence: the depth of the loops that carry the
569 dependence. */
570 unsigned level;
572 /* Dependence relation between data dependences, NULL when one of
573 the vertices is a scalar. */
574 ddr_p relation;
575 } *rdg_edge_p;
577 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
578 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
579 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
581 struct graph *build_rdg (struct loop *,
582 VEC (loop_p, heap) **,
583 VEC (ddr_p, heap) **,
584 VEC (data_reference_p, heap) **);
585 struct graph *build_empty_rdg (int);
586 void free_rdg (struct graph *);
588 /* Return the index of the variable VAR in the LOOP_NEST array. */
590 static inline int
591 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
593 struct loop *loopi;
594 int var_index;
596 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
597 var_index++)
598 if (loopi->num == var)
599 break;
601 return var_index;
604 void stores_from_loop (struct loop *, VEC (gimple, heap) **);
605 void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
606 void remove_similar_memory_refs (VEC (gimple, heap) **);
607 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
608 bool have_similar_memory_accesses (gimple, gimple);
609 bool stmt_with_adjacent_zero_store_dr_p (gimple);
611 /* Returns true when STRIDE is equal in absolute value to the size of
612 the unit type of TYPE. */
614 static inline bool
615 stride_of_unit_type_p (tree stride, tree type)
617 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
618 stride),
619 TYPE_SIZE_UNIT (type));
622 /* Determines whether RDG vertices V1 and V2 access to similar memory
623 locations, in which case they have to be in the same partition. */
625 static inline bool
626 rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
628 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
629 RDG_STMT (rdg, v2));
632 /* In lambda-code.c */
633 bool lambda_transform_legal_p (lambda_trans_matrix, int,
634 VEC (ddr_p, heap) *);
635 void lambda_collect_parameters (VEC (data_reference_p, heap) *,
636 VEC (tree, heap) **);
637 bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
638 VEC (tree, heap) *,
639 VEC (loop_p, heap) *,
640 struct obstack *);
642 /* In tree-data-ref.c */
643 void split_constant_offset (tree , tree *, tree *);
645 /* Strongly connected components of the reduced data dependence graph. */
647 typedef struct rdg_component
649 int num;
650 VEC (int, heap) *vertices;
651 } *rdgc;
653 DEF_VEC_P (rdgc);
654 DEF_VEC_ALLOC_P (rdgc, heap);
656 DEF_VEC_P (bitmap);
657 DEF_VEC_ALLOC_P (bitmap, heap);
659 #endif /* GCC_TREE_DATA_REF_H */