* gfortran.dg/debug/pr46756.f: Remove XFAIL for AIX.
[official-gcc.git] / gcc / ira.c
blobe16d062e35a82f60dd600e0792567cee0425982b
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1803 p++;
1804 if (*p)
1805 p++;
1808 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1810 if (!TEST_BIT (preferred, nalt)
1811 || TEST_HARD_REG_BIT (alts, nalt))
1812 continue;
1814 for (nop = 0; nop < recog_data.n_operands; nop++)
1816 int c, len;
1818 rtx op = recog_data.operand[nop];
1819 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1820 if (*p == 0 || *p == ',')
1821 continue;
1824 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1826 case '#':
1827 case ',':
1828 c = '\0';
1829 case '\0':
1830 len = 0;
1831 break;
1833 case '%':
1834 /* We only support one commutative marker, the
1835 first one. We already set commutative
1836 above. */
1837 if (commutative < 0)
1838 commutative = nop;
1839 break;
1841 case '0': case '1': case '2': case '3': case '4':
1842 case '5': case '6': case '7': case '8': case '9':
1843 goto op_success;
1844 break;
1846 case 'g':
1847 goto op_success;
1848 break;
1850 default:
1852 enum constraint_num cn = lookup_constraint (p);
1853 switch (get_constraint_type (cn))
1855 case CT_REGISTER:
1856 if (reg_class_for_constraint (cn) != NO_REGS)
1857 goto op_success;
1858 break;
1860 case CT_CONST_INT:
1861 if (CONST_INT_P (op)
1862 && (insn_const_int_ok_for_constraint
1863 (INTVAL (op), cn)))
1864 goto op_success;
1865 break;
1867 case CT_ADDRESS:
1868 case CT_MEMORY:
1869 goto op_success;
1871 case CT_FIXED_FORM:
1872 if (constraint_satisfied_p (op, cn))
1873 goto op_success;
1874 break;
1876 break;
1879 while (p += len, c);
1880 break;
1881 op_success:
1884 if (nop >= recog_data.n_operands)
1885 SET_HARD_REG_BIT (alts, nalt);
1887 if (commutative < 0)
1888 break;
1889 if (curr_swapped)
1890 break;
1891 std::swap (recog_data.operand[commutative],
1892 recog_data.operand[commutative + 1]);
1896 /* Return the number of the output non-early clobber operand which
1897 should be the same in any case as operand with number OP_NUM (or
1898 negative value if there is no such operand). The function takes
1899 only really possible alternatives into consideration. */
1901 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1903 int curr_alt, c, original, dup;
1904 bool ignore_p, use_commut_op_p;
1905 const char *str;
1907 if (op_num < 0 || recog_data.n_alternatives == 0)
1908 return -1;
1909 /* We should find duplications only for input operands. */
1910 if (recog_data.operand_type[op_num] != OP_IN)
1911 return -1;
1912 str = recog_data.constraints[op_num];
1913 use_commut_op_p = false;
1914 for (;;)
1916 rtx op = recog_data.operand[op_num];
1918 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1919 original = -1;;)
1921 c = *str;
1922 if (c == '\0')
1923 break;
1924 if (c == '#')
1925 ignore_p = true;
1926 else if (c == ',')
1928 curr_alt++;
1929 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1931 else if (! ignore_p)
1932 switch (c)
1934 case 'g':
1935 goto fail;
1936 default:
1938 enum constraint_num cn = lookup_constraint (str);
1939 enum reg_class cl = reg_class_for_constraint (cn);
1940 if (cl != NO_REGS
1941 && !targetm.class_likely_spilled_p (cl))
1942 goto fail;
1943 if (constraint_satisfied_p (op, cn))
1944 goto fail;
1945 break;
1948 case '0': case '1': case '2': case '3': case '4':
1949 case '5': case '6': case '7': case '8': case '9':
1950 if (original != -1 && original != c)
1951 goto fail;
1952 original = c;
1953 break;
1955 str += CONSTRAINT_LEN (c, str);
1957 if (original == -1)
1958 goto fail;
1959 dup = -1;
1960 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1961 *str != 0;
1962 str++)
1963 if (ignore_p)
1965 if (*str == ',')
1966 ignore_p = false;
1968 else if (*str == '#')
1969 ignore_p = true;
1970 else if (! ignore_p)
1972 if (*str == '=')
1973 dup = original - '0';
1974 /* It is better ignore an alternative with early clobber. */
1975 else if (*str == '&')
1976 goto fail;
1978 if (dup >= 0)
1979 return dup;
1980 fail:
1981 if (use_commut_op_p)
1982 break;
1983 use_commut_op_p = true;
1984 if (recog_data.constraints[op_num][0] == '%')
1985 str = recog_data.constraints[op_num + 1];
1986 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1987 str = recog_data.constraints[op_num - 1];
1988 else
1989 break;
1991 return -1;
1996 /* Search forward to see if the source register of a copy insn dies
1997 before either it or the destination register is modified, but don't
1998 scan past the end of the basic block. If so, we can replace the
1999 source with the destination and let the source die in the copy
2000 insn.
2002 This will reduce the number of registers live in that range and may
2003 enable the destination and the source coalescing, thus often saving
2004 one register in addition to a register-register copy. */
2006 static void
2007 decrease_live_ranges_number (void)
2009 basic_block bb;
2010 rtx_insn *insn;
2011 rtx set, src, dest, dest_death, note;
2012 rtx_insn *p, *q;
2013 int sregno, dregno;
2015 if (! flag_expensive_optimizations)
2016 return;
2018 if (ira_dump_file)
2019 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2021 FOR_EACH_BB_FN (bb, cfun)
2022 FOR_BB_INSNS (bb, insn)
2024 set = single_set (insn);
2025 if (! set)
2026 continue;
2027 src = SET_SRC (set);
2028 dest = SET_DEST (set);
2029 if (! REG_P (src) || ! REG_P (dest)
2030 || find_reg_note (insn, REG_DEAD, src))
2031 continue;
2032 sregno = REGNO (src);
2033 dregno = REGNO (dest);
2035 /* We don't want to mess with hard regs if register classes
2036 are small. */
2037 if (sregno == dregno
2038 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2039 && (sregno < FIRST_PSEUDO_REGISTER
2040 || dregno < FIRST_PSEUDO_REGISTER))
2041 /* We don't see all updates to SP if they are in an
2042 auto-inc memory reference, so we must disallow this
2043 optimization on them. */
2044 || sregno == STACK_POINTER_REGNUM
2045 || dregno == STACK_POINTER_REGNUM)
2046 continue;
2048 dest_death = NULL_RTX;
2050 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2052 if (! INSN_P (p))
2053 continue;
2054 if (BLOCK_FOR_INSN (p) != bb)
2055 break;
2057 if (reg_set_p (src, p) || reg_set_p (dest, p)
2058 /* If SRC is an asm-declared register, it must not be
2059 replaced in any asm. Unfortunately, the REG_EXPR
2060 tree for the asm variable may be absent in the SRC
2061 rtx, so we can't check the actual register
2062 declaration easily (the asm operand will have it,
2063 though). To avoid complicating the test for a rare
2064 case, we just don't perform register replacement
2065 for a hard reg mentioned in an asm. */
2066 || (sregno < FIRST_PSEUDO_REGISTER
2067 && asm_noperands (PATTERN (p)) >= 0
2068 && reg_overlap_mentioned_p (src, PATTERN (p)))
2069 /* Don't change hard registers used by a call. */
2070 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2071 && find_reg_fusage (p, USE, src))
2072 /* Don't change a USE of a register. */
2073 || (GET_CODE (PATTERN (p)) == USE
2074 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2075 break;
2077 /* See if all of SRC dies in P. This test is slightly
2078 more conservative than it needs to be. */
2079 if ((note = find_regno_note (p, REG_DEAD, sregno))
2080 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2082 int failed = 0;
2084 /* We can do the optimization. Scan forward from INSN
2085 again, replacing regs as we go. Set FAILED if a
2086 replacement can't be done. In that case, we can't
2087 move the death note for SRC. This should be
2088 rare. */
2090 /* Set to stop at next insn. */
2091 for (q = next_real_insn (insn);
2092 q != next_real_insn (p);
2093 q = next_real_insn (q))
2095 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2097 /* If SRC is a hard register, we might miss
2098 some overlapping registers with
2099 validate_replace_rtx, so we would have to
2100 undo it. We can't if DEST is present in
2101 the insn, so fail in that combination of
2102 cases. */
2103 if (sregno < FIRST_PSEUDO_REGISTER
2104 && reg_mentioned_p (dest, PATTERN (q)))
2105 failed = 1;
2107 /* Attempt to replace all uses. */
2108 else if (!validate_replace_rtx (src, dest, q))
2109 failed = 1;
2111 /* If this succeeded, but some part of the
2112 register is still present, undo the
2113 replacement. */
2114 else if (sregno < FIRST_PSEUDO_REGISTER
2115 && reg_overlap_mentioned_p (src, PATTERN (q)))
2117 validate_replace_rtx (dest, src, q);
2118 failed = 1;
2122 /* If DEST dies here, remove the death note and
2123 save it for later. Make sure ALL of DEST dies
2124 here; again, this is overly conservative. */
2125 if (! dest_death
2126 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2128 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2129 remove_note (q, dest_death);
2130 else
2132 failed = 1;
2133 dest_death = 0;
2138 if (! failed)
2140 /* Move death note of SRC from P to INSN. */
2141 remove_note (p, note);
2142 XEXP (note, 1) = REG_NOTES (insn);
2143 REG_NOTES (insn) = note;
2146 /* DEST is also dead if INSN has a REG_UNUSED note for
2147 DEST. */
2148 if (! dest_death
2149 && (dest_death
2150 = find_regno_note (insn, REG_UNUSED, dregno)))
2152 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2153 remove_note (insn, dest_death);
2156 /* Put death note of DEST on P if we saw it die. */
2157 if (dest_death)
2159 XEXP (dest_death, 1) = REG_NOTES (p);
2160 REG_NOTES (p) = dest_death;
2162 break;
2165 /* If SRC is a hard register which is set or killed in
2166 some other way, we can't do this optimization. */
2167 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2168 break;
2175 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2176 static bool
2177 ira_bad_reload_regno_1 (int regno, rtx x)
2179 int x_regno, n, i;
2180 ira_allocno_t a;
2181 enum reg_class pref;
2183 /* We only deal with pseudo regs. */
2184 if (! x || GET_CODE (x) != REG)
2185 return false;
2187 x_regno = REGNO (x);
2188 if (x_regno < FIRST_PSEUDO_REGISTER)
2189 return false;
2191 /* If the pseudo prefers REGNO explicitly, then do not consider
2192 REGNO a bad spill choice. */
2193 pref = reg_preferred_class (x_regno);
2194 if (reg_class_size[pref] == 1)
2195 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2197 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2198 poor choice for a reload regno. */
2199 a = ira_regno_allocno_map[x_regno];
2200 n = ALLOCNO_NUM_OBJECTS (a);
2201 for (i = 0; i < n; i++)
2203 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2204 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2205 return true;
2207 return false;
2210 /* Return nonzero if REGNO is a particularly bad choice for reloading
2211 IN or OUT. */
2212 bool
2213 ira_bad_reload_regno (int regno, rtx in, rtx out)
2215 return (ira_bad_reload_regno_1 (regno, in)
2216 || ira_bad_reload_regno_1 (regno, out));
2219 /* Add register clobbers from asm statements. */
2220 static void
2221 compute_regs_asm_clobbered (void)
2223 basic_block bb;
2225 FOR_EACH_BB_FN (bb, cfun)
2227 rtx_insn *insn;
2228 FOR_BB_INSNS_REVERSE (bb, insn)
2230 df_ref def;
2232 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2233 FOR_EACH_INSN_DEF (def, insn)
2235 unsigned int dregno = DF_REF_REGNO (def);
2236 if (HARD_REGISTER_NUM_P (dregno))
2237 add_to_hard_reg_set (&crtl->asm_clobbers,
2238 GET_MODE (DF_REF_REAL_REG (def)),
2239 dregno);
2246 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2247 REGS_EVER_LIVE. */
2248 void
2249 ira_setup_eliminable_regset (void)
2251 #ifdef ELIMINABLE_REGS
2252 int i;
2253 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2254 #endif
2255 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2256 sp for alloca. So we can't eliminate the frame pointer in that
2257 case. At some point, we should improve this by emitting the
2258 sp-adjusting insns for this case. */
2259 frame_pointer_needed
2260 = (! flag_omit_frame_pointer
2261 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2262 /* We need the frame pointer to catch stack overflow exceptions
2263 if the stack pointer is moving. */
2264 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2265 || crtl->accesses_prior_frames
2266 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2267 /* We need a frame pointer for all Cilk Plus functions that use
2268 Cilk keywords. */
2269 || (flag_cilkplus && cfun->is_cilk_function)
2270 || targetm.frame_pointer_required ());
2272 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2273 RTL is very small. So if we use frame pointer for RA and RTL
2274 actually prevents this, we will spill pseudos assigned to the
2275 frame pointer in LRA. */
2277 if (frame_pointer_needed)
2278 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2280 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2281 CLEAR_HARD_REG_SET (eliminable_regset);
2283 compute_regs_asm_clobbered ();
2285 /* Build the regset of all eliminable registers and show we can't
2286 use those that we already know won't be eliminated. */
2287 #ifdef ELIMINABLE_REGS
2288 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2290 bool cannot_elim
2291 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2292 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2294 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2296 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2298 if (cannot_elim)
2299 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2301 else if (cannot_elim)
2302 error ("%s cannot be used in asm here",
2303 reg_names[eliminables[i].from]);
2304 else
2305 df_set_regs_ever_live (eliminables[i].from, true);
2307 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2309 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2311 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2312 if (frame_pointer_needed)
2313 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2315 else if (frame_pointer_needed)
2316 error ("%s cannot be used in asm here",
2317 reg_names[HARD_FRAME_POINTER_REGNUM]);
2318 else
2319 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2322 #else
2323 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2325 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2326 if (frame_pointer_needed)
2327 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2329 else if (frame_pointer_needed)
2330 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2331 else
2332 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2333 #endif
2338 /* Vector of substitutions of register numbers,
2339 used to map pseudo regs into hardware regs.
2340 This is set up as a result of register allocation.
2341 Element N is the hard reg assigned to pseudo reg N,
2342 or is -1 if no hard reg was assigned.
2343 If N is a hard reg number, element N is N. */
2344 short *reg_renumber;
2346 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2347 the allocation found by IRA. */
2348 static void
2349 setup_reg_renumber (void)
2351 int regno, hard_regno;
2352 ira_allocno_t a;
2353 ira_allocno_iterator ai;
2355 caller_save_needed = 0;
2356 FOR_EACH_ALLOCNO (a, ai)
2358 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2359 continue;
2360 /* There are no caps at this point. */
2361 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2362 if (! ALLOCNO_ASSIGNED_P (a))
2363 /* It can happen if A is not referenced but partially anticipated
2364 somewhere in a region. */
2365 ALLOCNO_ASSIGNED_P (a) = true;
2366 ira_free_allocno_updated_costs (a);
2367 hard_regno = ALLOCNO_HARD_REGNO (a);
2368 regno = ALLOCNO_REGNO (a);
2369 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2370 if (hard_regno >= 0)
2372 int i, nwords;
2373 enum reg_class pclass;
2374 ira_object_t obj;
2376 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2377 nwords = ALLOCNO_NUM_OBJECTS (a);
2378 for (i = 0; i < nwords; i++)
2380 obj = ALLOCNO_OBJECT (a, i);
2381 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2382 reg_class_contents[pclass]);
2384 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2385 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2386 call_used_reg_set))
2388 ira_assert (!optimize || flag_caller_saves
2389 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2390 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2391 || regno >= ira_reg_equiv_len
2392 || ira_equiv_no_lvalue_p (regno));
2393 caller_save_needed = 1;
2399 /* Set up allocno assignment flags for further allocation
2400 improvements. */
2401 static void
2402 setup_allocno_assignment_flags (void)
2404 int hard_regno;
2405 ira_allocno_t a;
2406 ira_allocno_iterator ai;
2408 FOR_EACH_ALLOCNO (a, ai)
2410 if (! ALLOCNO_ASSIGNED_P (a))
2411 /* It can happen if A is not referenced but partially anticipated
2412 somewhere in a region. */
2413 ira_free_allocno_updated_costs (a);
2414 hard_regno = ALLOCNO_HARD_REGNO (a);
2415 /* Don't assign hard registers to allocnos which are destination
2416 of removed store at the end of loop. It has no sense to keep
2417 the same value in different hard registers. It is also
2418 impossible to assign hard registers correctly to such
2419 allocnos because the cost info and info about intersected
2420 calls are incorrect for them. */
2421 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2422 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2423 || (ALLOCNO_MEMORY_COST (a)
2424 - ALLOCNO_CLASS_COST (a)) < 0);
2425 ira_assert
2426 (hard_regno < 0
2427 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2428 reg_class_contents[ALLOCNO_CLASS (a)]));
2432 /* Evaluate overall allocation cost and the costs for using hard
2433 registers and memory for allocnos. */
2434 static void
2435 calculate_allocation_cost (void)
2437 int hard_regno, cost;
2438 ira_allocno_t a;
2439 ira_allocno_iterator ai;
2441 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2442 FOR_EACH_ALLOCNO (a, ai)
2444 hard_regno = ALLOCNO_HARD_REGNO (a);
2445 ira_assert (hard_regno < 0
2446 || (ira_hard_reg_in_set_p
2447 (hard_regno, ALLOCNO_MODE (a),
2448 reg_class_contents[ALLOCNO_CLASS (a)])));
2449 if (hard_regno < 0)
2451 cost = ALLOCNO_MEMORY_COST (a);
2452 ira_mem_cost += cost;
2454 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2456 cost = (ALLOCNO_HARD_REG_COSTS (a)
2457 [ira_class_hard_reg_index
2458 [ALLOCNO_CLASS (a)][hard_regno]]);
2459 ira_reg_cost += cost;
2461 else
2463 cost = ALLOCNO_CLASS_COST (a);
2464 ira_reg_cost += cost;
2466 ira_overall_cost += cost;
2469 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2471 fprintf (ira_dump_file,
2472 "+++Costs: overall %" PRId64
2473 ", reg %" PRId64
2474 ", mem %" PRId64
2475 ", ld %" PRId64
2476 ", st %" PRId64
2477 ", move %" PRId64,
2478 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2479 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2480 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2481 ira_move_loops_num, ira_additional_jumps_num);
2486 #ifdef ENABLE_IRA_CHECKING
2487 /* Check the correctness of the allocation. We do need this because
2488 of complicated code to transform more one region internal
2489 representation into one region representation. */
2490 static void
2491 check_allocation (void)
2493 ira_allocno_t a;
2494 int hard_regno, nregs, conflict_nregs;
2495 ira_allocno_iterator ai;
2497 FOR_EACH_ALLOCNO (a, ai)
2499 int n = ALLOCNO_NUM_OBJECTS (a);
2500 int i;
2502 if (ALLOCNO_CAP_MEMBER (a) != NULL
2503 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2504 continue;
2505 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2506 if (nregs == 1)
2507 /* We allocated a single hard register. */
2508 n = 1;
2509 else if (n > 1)
2510 /* We allocated multiple hard registers, and we will test
2511 conflicts in a granularity of single hard regs. */
2512 nregs = 1;
2514 for (i = 0; i < n; i++)
2516 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2517 ira_object_t conflict_obj;
2518 ira_object_conflict_iterator oci;
2519 int this_regno = hard_regno;
2520 if (n > 1)
2522 if (REG_WORDS_BIG_ENDIAN)
2523 this_regno += n - i - 1;
2524 else
2525 this_regno += i;
2527 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2529 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2530 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2531 if (conflict_hard_regno < 0)
2532 continue;
2534 conflict_nregs
2535 = (hard_regno_nregs
2536 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2538 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2539 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2541 if (REG_WORDS_BIG_ENDIAN)
2542 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2543 - OBJECT_SUBWORD (conflict_obj) - 1);
2544 else
2545 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2546 conflict_nregs = 1;
2549 if ((conflict_hard_regno <= this_regno
2550 && this_regno < conflict_hard_regno + conflict_nregs)
2551 || (this_regno <= conflict_hard_regno
2552 && conflict_hard_regno < this_regno + nregs))
2554 fprintf (stderr, "bad allocation for %d and %d\n",
2555 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2556 gcc_unreachable ();
2562 #endif
2564 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2565 be already calculated. */
2566 static void
2567 setup_reg_equiv_init (void)
2569 int i;
2570 int max_regno = max_reg_num ();
2572 for (i = 0; i < max_regno; i++)
2573 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2576 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2577 are insns which were generated for such movement. It is assumed
2578 that FROM_REGNO and TO_REGNO always have the same value at the
2579 point of any move containing such registers. This function is used
2580 to update equiv info for register shuffles on the region borders
2581 and for caller save/restore insns. */
2582 void
2583 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2585 rtx_insn *insn;
2586 rtx x, note;
2588 if (! ira_reg_equiv[from_regno].defined_p
2589 && (! ira_reg_equiv[to_regno].defined_p
2590 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2591 && ! MEM_READONLY_P (x))))
2592 return;
2593 insn = insns;
2594 if (NEXT_INSN (insn) != NULL_RTX)
2596 if (! ira_reg_equiv[to_regno].defined_p)
2598 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2599 return;
2601 ira_reg_equiv[to_regno].defined_p = false;
2602 ira_reg_equiv[to_regno].memory
2603 = ira_reg_equiv[to_regno].constant
2604 = ira_reg_equiv[to_regno].invariant
2605 = ira_reg_equiv[to_regno].init_insns = NULL;
2606 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2607 fprintf (ira_dump_file,
2608 " Invalidating equiv info for reg %d\n", to_regno);
2609 return;
2611 /* It is possible that FROM_REGNO still has no equivalence because
2612 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2613 insn was not processed yet. */
2614 if (ira_reg_equiv[from_regno].defined_p)
2616 ira_reg_equiv[to_regno].defined_p = true;
2617 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2619 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2620 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2621 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2622 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2623 ira_reg_equiv[to_regno].memory = x;
2624 if (! MEM_READONLY_P (x))
2625 /* We don't add the insn to insn init list because memory
2626 equivalence is just to say what memory is better to use
2627 when the pseudo is spilled. */
2628 return;
2630 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2632 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2633 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2634 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2635 ira_reg_equiv[to_regno].constant = x;
2637 else
2639 x = ira_reg_equiv[from_regno].invariant;
2640 ira_assert (x != NULL_RTX);
2641 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2642 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2643 ira_reg_equiv[to_regno].invariant = x;
2645 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2647 note = set_unique_reg_note (insn, REG_EQUIV, x);
2648 gcc_assert (note != NULL_RTX);
2649 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2651 fprintf (ira_dump_file,
2652 " Adding equiv note to insn %u for reg %d ",
2653 INSN_UID (insn), to_regno);
2654 dump_value_slim (ira_dump_file, x, 1);
2655 fprintf (ira_dump_file, "\n");
2659 ira_reg_equiv[to_regno].init_insns
2660 = gen_rtx_INSN_LIST (VOIDmode, insn,
2661 ira_reg_equiv[to_regno].init_insns);
2662 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2663 fprintf (ira_dump_file,
2664 " Adding equiv init move insn %u to reg %d\n",
2665 INSN_UID (insn), to_regno);
2668 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2669 by IRA. */
2670 static void
2671 fix_reg_equiv_init (void)
2673 int max_regno = max_reg_num ();
2674 int i, new_regno, max;
2675 rtx set;
2676 rtx_insn_list *x, *next, *prev;
2677 rtx_insn *insn;
2679 if (max_regno_before_ira < max_regno)
2681 max = vec_safe_length (reg_equivs);
2682 grow_reg_equivs ();
2683 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2684 for (prev = NULL, x = reg_equiv_init (i);
2685 x != NULL_RTX;
2686 x = next)
2688 next = x->next ();
2689 insn = x->insn ();
2690 set = single_set (insn);
2691 ira_assert (set != NULL_RTX
2692 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2693 if (REG_P (SET_DEST (set))
2694 && ((int) REGNO (SET_DEST (set)) == i
2695 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2696 new_regno = REGNO (SET_DEST (set));
2697 else if (REG_P (SET_SRC (set))
2698 && ((int) REGNO (SET_SRC (set)) == i
2699 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2700 new_regno = REGNO (SET_SRC (set));
2701 else
2702 gcc_unreachable ();
2703 if (new_regno == i)
2704 prev = x;
2705 else
2707 /* Remove the wrong list element. */
2708 if (prev == NULL_RTX)
2709 reg_equiv_init (i) = next;
2710 else
2711 XEXP (prev, 1) = next;
2712 XEXP (x, 1) = reg_equiv_init (new_regno);
2713 reg_equiv_init (new_regno) = x;
2719 #ifdef ENABLE_IRA_CHECKING
2720 /* Print redundant memory-memory copies. */
2721 static void
2722 print_redundant_copies (void)
2724 int hard_regno;
2725 ira_allocno_t a;
2726 ira_copy_t cp, next_cp;
2727 ira_allocno_iterator ai;
2729 FOR_EACH_ALLOCNO (a, ai)
2731 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2732 /* It is a cap. */
2733 continue;
2734 hard_regno = ALLOCNO_HARD_REGNO (a);
2735 if (hard_regno >= 0)
2736 continue;
2737 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2738 if (cp->first == a)
2739 next_cp = cp->next_first_allocno_copy;
2740 else
2742 next_cp = cp->next_second_allocno_copy;
2743 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2744 && cp->insn != NULL_RTX
2745 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2746 fprintf (ira_dump_file,
2747 " Redundant move from %d(freq %d):%d\n",
2748 INSN_UID (cp->insn), cp->freq, hard_regno);
2752 #endif
2754 /* Setup preferred and alternative classes for new pseudo-registers
2755 created by IRA starting with START. */
2756 static void
2757 setup_preferred_alternate_classes_for_new_pseudos (int start)
2759 int i, old_regno;
2760 int max_regno = max_reg_num ();
2762 for (i = start; i < max_regno; i++)
2764 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2765 ira_assert (i != old_regno);
2766 setup_reg_classes (i, reg_preferred_class (old_regno),
2767 reg_alternate_class (old_regno),
2768 reg_allocno_class (old_regno));
2769 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2770 fprintf (ira_dump_file,
2771 " New r%d: setting preferred %s, alternative %s\n",
2772 i, reg_class_names[reg_preferred_class (old_regno)],
2773 reg_class_names[reg_alternate_class (old_regno)]);
2778 /* The number of entries allocated in reg_info. */
2779 static int allocated_reg_info_size;
2781 /* Regional allocation can create new pseudo-registers. This function
2782 expands some arrays for pseudo-registers. */
2783 static void
2784 expand_reg_info (void)
2786 int i;
2787 int size = max_reg_num ();
2789 resize_reg_info ();
2790 for (i = allocated_reg_info_size; i < size; i++)
2791 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2792 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2793 allocated_reg_info_size = size;
2796 /* Return TRUE if there is too high register pressure in the function.
2797 It is used to decide when stack slot sharing is worth to do. */
2798 static bool
2799 too_high_register_pressure_p (void)
2801 int i;
2802 enum reg_class pclass;
2804 for (i = 0; i < ira_pressure_classes_num; i++)
2806 pclass = ira_pressure_classes[i];
2807 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2808 return true;
2810 return false;
2815 /* Indicate that hard register number FROM was eliminated and replaced with
2816 an offset from hard register number TO. The status of hard registers live
2817 at the start of a basic block is updated by replacing a use of FROM with
2818 a use of TO. */
2820 void
2821 mark_elimination (int from, int to)
2823 basic_block bb;
2824 bitmap r;
2826 FOR_EACH_BB_FN (bb, cfun)
2828 r = DF_LR_IN (bb);
2829 if (bitmap_bit_p (r, from))
2831 bitmap_clear_bit (r, from);
2832 bitmap_set_bit (r, to);
2834 if (! df_live)
2835 continue;
2836 r = DF_LIVE_IN (bb);
2837 if (bitmap_bit_p (r, from))
2839 bitmap_clear_bit (r, from);
2840 bitmap_set_bit (r, to);
2847 /* The length of the following array. */
2848 int ira_reg_equiv_len;
2850 /* Info about equiv. info for each register. */
2851 struct ira_reg_equiv_s *ira_reg_equiv;
2853 /* Expand ira_reg_equiv if necessary. */
2854 void
2855 ira_expand_reg_equiv (void)
2857 int old = ira_reg_equiv_len;
2859 if (ira_reg_equiv_len > max_reg_num ())
2860 return;
2861 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2862 ira_reg_equiv
2863 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2864 ira_reg_equiv_len
2865 * sizeof (struct ira_reg_equiv_s));
2866 gcc_assert (old < ira_reg_equiv_len);
2867 memset (ira_reg_equiv + old, 0,
2868 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2871 static void
2872 init_reg_equiv (void)
2874 ira_reg_equiv_len = 0;
2875 ira_reg_equiv = NULL;
2876 ira_expand_reg_equiv ();
2879 static void
2880 finish_reg_equiv (void)
2882 free (ira_reg_equiv);
2887 struct equivalence
2889 /* Set when a REG_EQUIV note is found or created. Use to
2890 keep track of what memory accesses might be created later,
2891 e.g. by reload. */
2892 rtx replacement;
2893 rtx *src_p;
2895 /* The list of each instruction which initializes this register.
2897 NULL indicates we know nothing about this register's equivalence
2898 properties.
2900 An INSN_LIST with a NULL insn indicates this pseudo is already
2901 known to not have a valid equivalence. */
2902 rtx_insn_list *init_insns;
2904 /* Loop depth is used to recognize equivalences which appear
2905 to be present within the same loop (or in an inner loop). */
2906 short loop_depth;
2907 /* Nonzero if this had a preexisting REG_EQUIV note. */
2908 unsigned char is_arg_equivalence : 1;
2909 /* Set when an attempt should be made to replace a register
2910 with the associated src_p entry. */
2911 unsigned char replace : 1;
2912 /* Set if this register has no known equivalence. */
2913 unsigned char no_equiv : 1;
2916 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2917 structure for that register. */
2918 static struct equivalence *reg_equiv;
2920 /* Used for communication between the following two functions: contains
2921 a MEM that we wish to ensure remains unchanged. */
2922 static rtx equiv_mem;
2924 /* Set nonzero if EQUIV_MEM is modified. */
2925 static int equiv_mem_modified;
2927 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2928 Called via note_stores. */
2929 static void
2930 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2931 void *data ATTRIBUTE_UNUSED)
2933 if ((REG_P (dest)
2934 && reg_overlap_mentioned_p (dest, equiv_mem))
2935 || (MEM_P (dest)
2936 && anti_dependence (equiv_mem, dest)))
2937 equiv_mem_modified = 1;
2940 /* Verify that no store between START and the death of REG invalidates
2941 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2942 by storing into an overlapping memory location, or with a non-const
2943 CALL_INSN.
2945 Return 1 if MEMREF remains valid. */
2946 static int
2947 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2949 rtx_insn *insn;
2950 rtx note;
2952 equiv_mem = memref;
2953 equiv_mem_modified = 0;
2955 /* If the memory reference has side effects or is volatile, it isn't a
2956 valid equivalence. */
2957 if (side_effects_p (memref))
2958 return 0;
2960 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2962 if (! INSN_P (insn))
2963 continue;
2965 if (find_reg_note (insn, REG_DEAD, reg))
2966 return 1;
2968 /* This used to ignore readonly memory and const/pure calls. The problem
2969 is the equivalent form may reference a pseudo which gets assigned a
2970 call clobbered hard reg. When we later replace REG with its
2971 equivalent form, the value in the call-clobbered reg has been
2972 changed and all hell breaks loose. */
2973 if (CALL_P (insn))
2974 return 0;
2976 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2978 /* If a register mentioned in MEMREF is modified via an
2979 auto-increment, we lose the equivalence. Do the same if one
2980 dies; although we could extend the life, it doesn't seem worth
2981 the trouble. */
2983 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2984 if ((REG_NOTE_KIND (note) == REG_INC
2985 || REG_NOTE_KIND (note) == REG_DEAD)
2986 && REG_P (XEXP (note, 0))
2987 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2988 return 0;
2991 return 0;
2994 /* Returns zero if X is known to be invariant. */
2995 static int
2996 equiv_init_varies_p (rtx x)
2998 RTX_CODE code = GET_CODE (x);
2999 int i;
3000 const char *fmt;
3002 switch (code)
3004 case MEM:
3005 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3007 case CONST:
3008 CASE_CONST_ANY:
3009 case SYMBOL_REF:
3010 case LABEL_REF:
3011 return 0;
3013 case REG:
3014 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3016 case ASM_OPERANDS:
3017 if (MEM_VOLATILE_P (x))
3018 return 1;
3020 /* Fall through. */
3022 default:
3023 break;
3026 fmt = GET_RTX_FORMAT (code);
3027 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3028 if (fmt[i] == 'e')
3030 if (equiv_init_varies_p (XEXP (x, i)))
3031 return 1;
3033 else if (fmt[i] == 'E')
3035 int j;
3036 for (j = 0; j < XVECLEN (x, i); j++)
3037 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3038 return 1;
3041 return 0;
3044 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3045 X is only movable if the registers it uses have equivalent initializations
3046 which appear to be within the same loop (or in an inner loop) and movable
3047 or if they are not candidates for local_alloc and don't vary. */
3048 static int
3049 equiv_init_movable_p (rtx x, int regno)
3051 int i, j;
3052 const char *fmt;
3053 enum rtx_code code = GET_CODE (x);
3055 switch (code)
3057 case SET:
3058 return equiv_init_movable_p (SET_SRC (x), regno);
3060 case CC0:
3061 case CLOBBER:
3062 return 0;
3064 case PRE_INC:
3065 case PRE_DEC:
3066 case POST_INC:
3067 case POST_DEC:
3068 case PRE_MODIFY:
3069 case POST_MODIFY:
3070 return 0;
3072 case REG:
3073 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3074 && reg_equiv[REGNO (x)].replace)
3075 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3076 && ! rtx_varies_p (x, 0)));
3078 case UNSPEC_VOLATILE:
3079 return 0;
3081 case ASM_OPERANDS:
3082 if (MEM_VOLATILE_P (x))
3083 return 0;
3085 /* Fall through. */
3087 default:
3088 break;
3091 fmt = GET_RTX_FORMAT (code);
3092 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3093 switch (fmt[i])
3095 case 'e':
3096 if (! equiv_init_movable_p (XEXP (x, i), regno))
3097 return 0;
3098 break;
3099 case 'E':
3100 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3101 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3102 return 0;
3103 break;
3106 return 1;
3109 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3110 true. */
3111 static int
3112 contains_replace_regs (rtx x)
3114 int i, j;
3115 const char *fmt;
3116 enum rtx_code code = GET_CODE (x);
3118 switch (code)
3120 case CONST:
3121 case LABEL_REF:
3122 case SYMBOL_REF:
3123 CASE_CONST_ANY:
3124 case PC:
3125 case CC0:
3126 case HIGH:
3127 return 0;
3129 case REG:
3130 return reg_equiv[REGNO (x)].replace;
3132 default:
3133 break;
3136 fmt = GET_RTX_FORMAT (code);
3137 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3138 switch (fmt[i])
3140 case 'e':
3141 if (contains_replace_regs (XEXP (x, i)))
3142 return 1;
3143 break;
3144 case 'E':
3145 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3146 if (contains_replace_regs (XVECEXP (x, i, j)))
3147 return 1;
3148 break;
3151 return 0;
3154 /* TRUE if X references a memory location that would be affected by a store
3155 to MEMREF. */
3156 static int
3157 memref_referenced_p (rtx memref, rtx x)
3159 int i, j;
3160 const char *fmt;
3161 enum rtx_code code = GET_CODE (x);
3163 switch (code)
3165 case CONST:
3166 case LABEL_REF:
3167 case SYMBOL_REF:
3168 CASE_CONST_ANY:
3169 case PC:
3170 case CC0:
3171 case HIGH:
3172 case LO_SUM:
3173 return 0;
3175 case REG:
3176 return (reg_equiv[REGNO (x)].replacement
3177 && memref_referenced_p (memref,
3178 reg_equiv[REGNO (x)].replacement));
3180 case MEM:
3181 if (true_dependence (memref, VOIDmode, x))
3182 return 1;
3183 break;
3185 case SET:
3186 /* If we are setting a MEM, it doesn't count (its address does), but any
3187 other SET_DEST that has a MEM in it is referencing the MEM. */
3188 if (MEM_P (SET_DEST (x)))
3190 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3191 return 1;
3193 else if (memref_referenced_p (memref, SET_DEST (x)))
3194 return 1;
3196 return memref_referenced_p (memref, SET_SRC (x));
3198 default:
3199 break;
3202 fmt = GET_RTX_FORMAT (code);
3203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3204 switch (fmt[i])
3206 case 'e':
3207 if (memref_referenced_p (memref, XEXP (x, i)))
3208 return 1;
3209 break;
3210 case 'E':
3211 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3212 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3213 return 1;
3214 break;
3217 return 0;
3220 /* TRUE if some insn in the range (START, END] references a memory location
3221 that would be affected by a store to MEMREF. */
3222 static int
3223 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3225 rtx_insn *insn;
3227 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3228 insn = NEXT_INSN (insn))
3230 if (!NONDEBUG_INSN_P (insn))
3231 continue;
3233 if (memref_referenced_p (memref, PATTERN (insn)))
3234 return 1;
3236 /* Nonconst functions may access memory. */
3237 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3238 return 1;
3241 return 0;
3244 /* Mark REG as having no known equivalence.
3245 Some instructions might have been processed before and furnished
3246 with REG_EQUIV notes for this register; these notes will have to be
3247 removed.
3248 STORE is the piece of RTL that does the non-constant / conflicting
3249 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3250 but needs to be there because this function is called from note_stores. */
3251 static void
3252 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3253 void *data ATTRIBUTE_UNUSED)
3255 int regno;
3256 rtx_insn_list *list;
3258 if (!REG_P (reg))
3259 return;
3260 regno = REGNO (reg);
3261 reg_equiv[regno].no_equiv = 1;
3262 list = reg_equiv[regno].init_insns;
3263 if (list && list->insn () == NULL)
3264 return;
3265 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3266 reg_equiv[regno].replacement = NULL_RTX;
3267 /* This doesn't matter for equivalences made for argument registers, we
3268 should keep their initialization insns. */
3269 if (reg_equiv[regno].is_arg_equivalence)
3270 return;
3271 ira_reg_equiv[regno].defined_p = false;
3272 ira_reg_equiv[regno].init_insns = NULL;
3273 for (; list; list = list->next ())
3275 rtx_insn *insn = list->insn ();
3276 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3280 /* Check whether the SUBREG is a paradoxical subreg and set the result
3281 in PDX_SUBREGS. */
3283 static void
3284 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3286 subrtx_iterator::array_type array;
3287 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3289 const_rtx subreg = *iter;
3290 if (GET_CODE (subreg) == SUBREG)
3292 const_rtx reg = SUBREG_REG (subreg);
3293 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3294 pdx_subregs[REGNO (reg)] = true;
3299 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3300 equivalent replacement. */
3302 static rtx
3303 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3305 if (REG_P (loc))
3307 bitmap cleared_regs = (bitmap) data;
3308 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3309 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3310 NULL_RTX, adjust_cleared_regs, data);
3312 return NULL_RTX;
3315 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3316 static int recorded_label_ref;
3318 /* Find registers that are equivalent to a single value throughout the
3319 compilation (either because they can be referenced in memory or are
3320 set once from a single constant). Lower their priority for a
3321 register.
3323 If such a register is only referenced once, try substituting its
3324 value into the using insn. If it succeeds, we can eliminate the
3325 register completely.
3327 Initialize init_insns in ira_reg_equiv array.
3329 Return non-zero if jump label rebuilding should be done. */
3330 static int
3331 update_equiv_regs (void)
3333 rtx_insn *insn;
3334 basic_block bb;
3335 int loop_depth;
3336 bitmap cleared_regs;
3337 bool *pdx_subregs;
3339 /* We need to keep track of whether or not we recorded a LABEL_REF so
3340 that we know if the jump optimizer needs to be rerun. */
3341 recorded_label_ref = 0;
3343 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3344 subreg. */
3345 pdx_subregs = XCNEWVEC (bool, max_regno);
3347 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3348 grow_reg_equivs ();
3350 init_alias_analysis ();
3352 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3353 paradoxical subreg. Don't set such reg equivalent to a mem,
3354 because lra will not substitute such equiv memory in order to
3355 prevent access beyond allocated memory for paradoxical memory subreg. */
3356 FOR_EACH_BB_FN (bb, cfun)
3357 FOR_BB_INSNS (bb, insn)
3358 if (NONDEBUG_INSN_P (insn))
3359 set_paradoxical_subreg (insn, pdx_subregs);
3361 /* Scan the insns and find which registers have equivalences. Do this
3362 in a separate scan of the insns because (due to -fcse-follow-jumps)
3363 a register can be set below its use. */
3364 FOR_EACH_BB_FN (bb, cfun)
3366 loop_depth = bb_loop_depth (bb);
3368 for (insn = BB_HEAD (bb);
3369 insn != NEXT_INSN (BB_END (bb));
3370 insn = NEXT_INSN (insn))
3372 rtx note;
3373 rtx set;
3374 rtx dest, src;
3375 int regno;
3377 if (! INSN_P (insn))
3378 continue;
3380 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3381 if (REG_NOTE_KIND (note) == REG_INC)
3382 no_equiv (XEXP (note, 0), note, NULL);
3384 set = single_set (insn);
3386 /* If this insn contains more (or less) than a single SET,
3387 only mark all destinations as having no known equivalence. */
3388 if (set == NULL_RTX)
3390 note_stores (PATTERN (insn), no_equiv, NULL);
3391 continue;
3393 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3395 int i;
3397 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3399 rtx part = XVECEXP (PATTERN (insn), 0, i);
3400 if (part != set)
3401 note_stores (part, no_equiv, NULL);
3405 dest = SET_DEST (set);
3406 src = SET_SRC (set);
3408 /* See if this is setting up the equivalence between an argument
3409 register and its stack slot. */
3410 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3411 if (note)
3413 gcc_assert (REG_P (dest));
3414 regno = REGNO (dest);
3416 /* Note that we don't want to clear init_insns in
3417 ira_reg_equiv even if there are multiple sets of this
3418 register. */
3419 reg_equiv[regno].is_arg_equivalence = 1;
3421 /* The insn result can have equivalence memory although
3422 the equivalence is not set up by the insn. We add
3423 this insn to init insns as it is a flag for now that
3424 regno has an equivalence. We will remove the insn
3425 from init insn list later. */
3426 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3427 ira_reg_equiv[regno].init_insns
3428 = gen_rtx_INSN_LIST (VOIDmode, insn,
3429 ira_reg_equiv[regno].init_insns);
3431 /* Continue normally in case this is a candidate for
3432 replacements. */
3435 if (!optimize)
3436 continue;
3438 /* We only handle the case of a pseudo register being set
3439 once, or always to the same value. */
3440 /* ??? The mn10200 port breaks if we add equivalences for
3441 values that need an ADDRESS_REGS register and set them equivalent
3442 to a MEM of a pseudo. The actual problem is in the over-conservative
3443 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3444 calculate_needs, but we traditionally work around this problem
3445 here by rejecting equivalences when the destination is in a register
3446 that's likely spilled. This is fragile, of course, since the
3447 preferred class of a pseudo depends on all instructions that set
3448 or use it. */
3450 if (!REG_P (dest)
3451 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3452 || (reg_equiv[regno].init_insns
3453 && reg_equiv[regno].init_insns->insn () == NULL)
3454 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3455 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3457 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3458 also set somewhere else to a constant. */
3459 note_stores (set, no_equiv, NULL);
3460 continue;
3463 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3464 if (MEM_P (src) && pdx_subregs[regno])
3466 note_stores (set, no_equiv, NULL);
3467 continue;
3470 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3472 /* cse sometimes generates function invariants, but doesn't put a
3473 REG_EQUAL note on the insn. Since this note would be redundant,
3474 there's no point creating it earlier than here. */
3475 if (! note && ! rtx_varies_p (src, 0))
3476 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3478 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3479 since it represents a function call. */
3480 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3481 note = NULL_RTX;
3483 if (DF_REG_DEF_COUNT (regno) != 1)
3485 bool equal_p = true;
3486 rtx_insn_list *list;
3488 /* If we have already processed this pseudo and determined it
3489 can not have an equivalence, then honor that decision. */
3490 if (reg_equiv[regno].no_equiv)
3491 continue;
3493 if (! note
3494 || rtx_varies_p (XEXP (note, 0), 0)
3495 || (reg_equiv[regno].replacement
3496 && ! rtx_equal_p (XEXP (note, 0),
3497 reg_equiv[regno].replacement)))
3499 no_equiv (dest, set, NULL);
3500 continue;
3503 list = reg_equiv[regno].init_insns;
3504 for (; list; list = list->next ())
3506 rtx note_tmp;
3507 rtx_insn *insn_tmp;
3509 insn_tmp = list->insn ();
3510 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3511 gcc_assert (note_tmp);
3512 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3514 equal_p = false;
3515 break;
3519 if (! equal_p)
3521 no_equiv (dest, set, NULL);
3522 continue;
3526 /* Record this insn as initializing this register. */
3527 reg_equiv[regno].init_insns
3528 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3530 /* If this register is known to be equal to a constant, record that
3531 it is always equivalent to the constant. */
3532 if (DF_REG_DEF_COUNT (regno) == 1
3533 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3535 rtx note_value = XEXP (note, 0);
3536 remove_note (insn, note);
3537 set_unique_reg_note (insn, REG_EQUIV, note_value);
3540 /* If this insn introduces a "constant" register, decrease the priority
3541 of that register. Record this insn if the register is only used once
3542 more and the equivalence value is the same as our source.
3544 The latter condition is checked for two reasons: First, it is an
3545 indication that it may be more efficient to actually emit the insn
3546 as written (if no registers are available, reload will substitute
3547 the equivalence). Secondly, it avoids problems with any registers
3548 dying in this insn whose death notes would be missed.
3550 If we don't have a REG_EQUIV note, see if this insn is loading
3551 a register used only in one basic block from a MEM. If so, and the
3552 MEM remains unchanged for the life of the register, add a REG_EQUIV
3553 note. */
3554 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3556 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3557 && MEM_P (SET_SRC (set))
3558 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3559 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3561 if (note)
3563 int regno = REGNO (dest);
3564 rtx x = XEXP (note, 0);
3566 /* If we haven't done so, record for reload that this is an
3567 equivalencing insn. */
3568 if (!reg_equiv[regno].is_arg_equivalence)
3569 ira_reg_equiv[regno].init_insns
3570 = gen_rtx_INSN_LIST (VOIDmode, insn,
3571 ira_reg_equiv[regno].init_insns);
3573 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3574 We might end up substituting the LABEL_REF for uses of the
3575 pseudo here or later. That kind of transformation may turn an
3576 indirect jump into a direct jump, in which case we must rerun the
3577 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3578 if (GET_CODE (x) == LABEL_REF
3579 || (GET_CODE (x) == CONST
3580 && GET_CODE (XEXP (x, 0)) == PLUS
3581 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3582 recorded_label_ref = 1;
3584 reg_equiv[regno].replacement = x;
3585 reg_equiv[regno].src_p = &SET_SRC (set);
3586 reg_equiv[regno].loop_depth = (short) loop_depth;
3588 /* Don't mess with things live during setjmp. */
3589 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3591 /* Note that the statement below does not affect the priority
3592 in local-alloc! */
3593 REG_LIVE_LENGTH (regno) *= 2;
3595 /* If the register is referenced exactly twice, meaning it is
3596 set once and used once, indicate that the reference may be
3597 replaced by the equivalence we computed above. Do this
3598 even if the register is only used in one block so that
3599 dependencies can be handled where the last register is
3600 used in a different block (i.e. HIGH / LO_SUM sequences)
3601 and to reduce the number of registers alive across
3602 calls. */
3604 if (REG_N_REFS (regno) == 2
3605 && (rtx_equal_p (x, src)
3606 || ! equiv_init_varies_p (src))
3607 && NONJUMP_INSN_P (insn)
3608 && equiv_init_movable_p (PATTERN (insn), regno))
3609 reg_equiv[regno].replace = 1;
3615 if (!optimize)
3616 goto out;
3618 /* A second pass, to gather additional equivalences with memory. This needs
3619 to be done after we know which registers we are going to replace. */
3621 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3623 rtx set, src, dest;
3624 unsigned regno;
3626 if (! INSN_P (insn))
3627 continue;
3629 set = single_set (insn);
3630 if (! set)
3631 continue;
3633 dest = SET_DEST (set);
3634 src = SET_SRC (set);
3636 /* If this sets a MEM to the contents of a REG that is only used
3637 in a single basic block, see if the register is always equivalent
3638 to that memory location and if moving the store from INSN to the
3639 insn that set REG is safe. If so, put a REG_EQUIV note on the
3640 initializing insn.
3642 Don't add a REG_EQUIV note if the insn already has one. The existing
3643 REG_EQUIV is likely more useful than the one we are adding.
3645 If one of the regs in the address has reg_equiv[REGNO].replace set,
3646 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3647 optimization may move the set of this register immediately before
3648 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3649 the mention in the REG_EQUIV note would be to an uninitialized
3650 pseudo. */
3652 if (MEM_P (dest) && REG_P (src)
3653 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3654 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3655 && DF_REG_DEF_COUNT (regno) == 1
3656 && reg_equiv[regno].init_insns != NULL
3657 && reg_equiv[regno].init_insns->insn () != NULL
3658 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3659 REG_EQUIV, NULL_RTX)
3660 && ! contains_replace_regs (XEXP (dest, 0))
3661 && ! pdx_subregs[regno])
3663 rtx_insn *init_insn =
3664 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3665 if (validate_equiv_mem (init_insn, src, dest)
3666 && ! memref_used_between_p (dest, init_insn, insn)
3667 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3668 multiple sets. */
3669 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3671 /* This insn makes the equivalence, not the one initializing
3672 the register. */
3673 ira_reg_equiv[regno].init_insns
3674 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3675 df_notes_rescan (init_insn);
3680 cleared_regs = BITMAP_ALLOC (NULL);
3681 /* Now scan all regs killed in an insn to see if any of them are
3682 registers only used that once. If so, see if we can replace the
3683 reference with the equivalent form. If we can, delete the
3684 initializing reference and this register will go away. If we
3685 can't replace the reference, and the initializing reference is
3686 within the same loop (or in an inner loop), then move the register
3687 initialization just before the use, so that they are in the same
3688 basic block. */
3689 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3691 loop_depth = bb_loop_depth (bb);
3692 for (insn = BB_END (bb);
3693 insn != PREV_INSN (BB_HEAD (bb));
3694 insn = PREV_INSN (insn))
3696 rtx link;
3698 if (! INSN_P (insn))
3699 continue;
3701 /* Don't substitute into a non-local goto, this confuses CFG. */
3702 if (JUMP_P (insn)
3703 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3704 continue;
3706 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3708 if (REG_NOTE_KIND (link) == REG_DEAD
3709 /* Make sure this insn still refers to the register. */
3710 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3712 int regno = REGNO (XEXP (link, 0));
3713 rtx equiv_insn;
3715 if (! reg_equiv[regno].replace
3716 || reg_equiv[regno].loop_depth < (short) loop_depth
3717 /* There is no sense to move insns if live range
3718 shrinkage or register pressure-sensitive
3719 scheduling were done because it will not
3720 improve allocation but worsen insn schedule
3721 with a big probability. */
3722 || flag_live_range_shrinkage
3723 || (flag_sched_pressure && flag_schedule_insns))
3724 continue;
3726 /* reg_equiv[REGNO].replace gets set only when
3727 REG_N_REFS[REGNO] is 2, i.e. the register is set
3728 once and used once. (If it were only set, but
3729 not used, flow would have deleted the setting
3730 insns.) Hence there can only be one insn in
3731 reg_equiv[REGNO].init_insns. */
3732 gcc_assert (reg_equiv[regno].init_insns
3733 && !XEXP (reg_equiv[regno].init_insns, 1));
3734 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3736 /* We may not move instructions that can throw, since
3737 that changes basic block boundaries and we are not
3738 prepared to adjust the CFG to match. */
3739 if (can_throw_internal (equiv_insn))
3740 continue;
3742 if (asm_noperands (PATTERN (equiv_insn)) < 0
3743 && validate_replace_rtx (regno_reg_rtx[regno],
3744 *(reg_equiv[regno].src_p), insn))
3746 rtx equiv_link;
3747 rtx last_link;
3748 rtx note;
3750 /* Find the last note. */
3751 for (last_link = link; XEXP (last_link, 1);
3752 last_link = XEXP (last_link, 1))
3755 /* Append the REG_DEAD notes from equiv_insn. */
3756 equiv_link = REG_NOTES (equiv_insn);
3757 while (equiv_link)
3759 note = equiv_link;
3760 equiv_link = XEXP (equiv_link, 1);
3761 if (REG_NOTE_KIND (note) == REG_DEAD)
3763 remove_note (equiv_insn, note);
3764 XEXP (last_link, 1) = note;
3765 XEXP (note, 1) = NULL_RTX;
3766 last_link = note;
3770 remove_death (regno, insn);
3771 SET_REG_N_REFS (regno, 0);
3772 REG_FREQ (regno) = 0;
3773 delete_insn (equiv_insn);
3775 reg_equiv[regno].init_insns
3776 = reg_equiv[regno].init_insns->next ();
3778 ira_reg_equiv[regno].init_insns = NULL;
3779 bitmap_set_bit (cleared_regs, regno);
3781 /* Move the initialization of the register to just before
3782 INSN. Update the flow information. */
3783 else if (prev_nondebug_insn (insn) != equiv_insn)
3785 rtx_insn *new_insn;
3787 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3788 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3789 REG_NOTES (equiv_insn) = 0;
3790 /* Rescan it to process the notes. */
3791 df_insn_rescan (new_insn);
3793 /* Make sure this insn is recognized before
3794 reload begins, otherwise
3795 eliminate_regs_in_insn will die. */
3796 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3798 delete_insn (equiv_insn);
3800 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3802 REG_BASIC_BLOCK (regno) = bb->index;
3803 REG_N_CALLS_CROSSED (regno) = 0;
3804 REG_FREQ_CALLS_CROSSED (regno) = 0;
3805 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3806 REG_LIVE_LENGTH (regno) = 2;
3808 if (insn == BB_HEAD (bb))
3809 BB_HEAD (bb) = PREV_INSN (insn);
3811 ira_reg_equiv[regno].init_insns
3812 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3813 bitmap_set_bit (cleared_regs, regno);
3820 if (!bitmap_empty_p (cleared_regs))
3822 FOR_EACH_BB_FN (bb, cfun)
3824 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3825 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3826 if (! df_live)
3827 continue;
3828 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3829 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3832 /* Last pass - adjust debug insns referencing cleared regs. */
3833 if (MAY_HAVE_DEBUG_INSNS)
3834 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3835 if (DEBUG_INSN_P (insn))
3837 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3838 INSN_VAR_LOCATION_LOC (insn)
3839 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3840 adjust_cleared_regs,
3841 (void *) cleared_regs);
3842 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3843 df_insn_rescan (insn);
3847 BITMAP_FREE (cleared_regs);
3849 out:
3850 /* Clean up. */
3852 end_alias_analysis ();
3853 free (reg_equiv);
3854 free (pdx_subregs);
3855 return recorded_label_ref;
3860 /* Set up fields memory, constant, and invariant from init_insns in
3861 the structures of array ira_reg_equiv. */
3862 static void
3863 setup_reg_equiv (void)
3865 int i;
3866 rtx_insn_list *elem, *prev_elem, *next_elem;
3867 rtx_insn *insn;
3868 rtx set, x;
3870 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3871 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3872 elem;
3873 prev_elem = elem, elem = next_elem)
3875 next_elem = elem->next ();
3876 insn = elem->insn ();
3877 set = single_set (insn);
3879 /* Init insns can set up equivalence when the reg is a destination or
3880 a source (in this case the destination is memory). */
3881 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3883 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3885 x = XEXP (x, 0);
3886 if (REG_P (SET_DEST (set))
3887 && REGNO (SET_DEST (set)) == (unsigned int) i
3888 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3890 /* This insn reporting the equivalence but
3891 actually not setting it. Remove it from the
3892 list. */
3893 if (prev_elem == NULL)
3894 ira_reg_equiv[i].init_insns = next_elem;
3895 else
3896 XEXP (prev_elem, 1) = next_elem;
3897 elem = prev_elem;
3900 else if (REG_P (SET_DEST (set))
3901 && REGNO (SET_DEST (set)) == (unsigned int) i)
3902 x = SET_SRC (set);
3903 else
3905 gcc_assert (REG_P (SET_SRC (set))
3906 && REGNO (SET_SRC (set)) == (unsigned int) i);
3907 x = SET_DEST (set);
3909 if (! function_invariant_p (x)
3910 || ! flag_pic
3911 /* A function invariant is often CONSTANT_P but may
3912 include a register. We promise to only pass
3913 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3914 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3916 /* It can happen that a REG_EQUIV note contains a MEM
3917 that is not a legitimate memory operand. As later
3918 stages of reload assume that all addresses found in
3919 the lra_regno_equiv_* arrays were originally
3920 legitimate, we ignore such REG_EQUIV notes. */
3921 if (memory_operand (x, VOIDmode))
3923 ira_reg_equiv[i].defined_p = true;
3924 ira_reg_equiv[i].memory = x;
3925 continue;
3927 else if (function_invariant_p (x))
3929 machine_mode mode;
3931 mode = GET_MODE (SET_DEST (set));
3932 if (GET_CODE (x) == PLUS
3933 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3934 /* This is PLUS of frame pointer and a constant,
3935 or fp, or argp. */
3936 ira_reg_equiv[i].invariant = x;
3937 else if (targetm.legitimate_constant_p (mode, x))
3938 ira_reg_equiv[i].constant = x;
3939 else
3941 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3942 if (ira_reg_equiv[i].memory == NULL_RTX)
3944 ira_reg_equiv[i].defined_p = false;
3945 ira_reg_equiv[i].init_insns = NULL;
3946 break;
3949 ira_reg_equiv[i].defined_p = true;
3950 continue;
3954 ira_reg_equiv[i].defined_p = false;
3955 ira_reg_equiv[i].init_insns = NULL;
3956 break;
3962 /* Print chain C to FILE. */
3963 static void
3964 print_insn_chain (FILE *file, struct insn_chain *c)
3966 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3967 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3968 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3972 /* Print all reload_insn_chains to FILE. */
3973 static void
3974 print_insn_chains (FILE *file)
3976 struct insn_chain *c;
3977 for (c = reload_insn_chain; c ; c = c->next)
3978 print_insn_chain (file, c);
3981 /* Return true if pseudo REGNO should be added to set live_throughout
3982 or dead_or_set of the insn chains for reload consideration. */
3983 static bool
3984 pseudo_for_reload_consideration_p (int regno)
3986 /* Consider spilled pseudos too for IRA because they still have a
3987 chance to get hard-registers in the reload when IRA is used. */
3988 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3991 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3992 REG to the number of nregs, and INIT_VALUE to get the
3993 initialization. ALLOCNUM need not be the regno of REG. */
3994 static void
3995 init_live_subregs (bool init_value, sbitmap *live_subregs,
3996 bitmap live_subregs_used, int allocnum, rtx reg)
3998 unsigned int regno = REGNO (SUBREG_REG (reg));
3999 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4001 gcc_assert (size > 0);
4003 /* Been there, done that. */
4004 if (bitmap_bit_p (live_subregs_used, allocnum))
4005 return;
4007 /* Create a new one. */
4008 if (live_subregs[allocnum] == NULL)
4009 live_subregs[allocnum] = sbitmap_alloc (size);
4011 /* If the entire reg was live before blasting into subregs, we need
4012 to init all of the subregs to ones else init to 0. */
4013 if (init_value)
4014 bitmap_ones (live_subregs[allocnum]);
4015 else
4016 bitmap_clear (live_subregs[allocnum]);
4018 bitmap_set_bit (live_subregs_used, allocnum);
4021 /* Walk the insns of the current function and build reload_insn_chain,
4022 and record register life information. */
4023 static void
4024 build_insn_chain (void)
4026 unsigned int i;
4027 struct insn_chain **p = &reload_insn_chain;
4028 basic_block bb;
4029 struct insn_chain *c = NULL;
4030 struct insn_chain *next = NULL;
4031 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4032 bitmap elim_regset = BITMAP_ALLOC (NULL);
4033 /* live_subregs is a vector used to keep accurate information about
4034 which hardregs are live in multiword pseudos. live_subregs and
4035 live_subregs_used are indexed by pseudo number. The live_subreg
4036 entry for a particular pseudo is only used if the corresponding
4037 element is non zero in live_subregs_used. The sbitmap size of
4038 live_subreg[allocno] is number of bytes that the pseudo can
4039 occupy. */
4040 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4041 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4044 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4045 bitmap_set_bit (elim_regset, i);
4046 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4048 bitmap_iterator bi;
4049 rtx_insn *insn;
4051 CLEAR_REG_SET (live_relevant_regs);
4052 bitmap_clear (live_subregs_used);
4054 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4056 if (i >= FIRST_PSEUDO_REGISTER)
4057 break;
4058 bitmap_set_bit (live_relevant_regs, i);
4061 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4062 FIRST_PSEUDO_REGISTER, i, bi)
4064 if (pseudo_for_reload_consideration_p (i))
4065 bitmap_set_bit (live_relevant_regs, i);
4068 FOR_BB_INSNS_REVERSE (bb, insn)
4070 if (!NOTE_P (insn) && !BARRIER_P (insn))
4072 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4073 df_ref def, use;
4075 c = new_insn_chain ();
4076 c->next = next;
4077 next = c;
4078 *p = c;
4079 p = &c->prev;
4081 c->insn = insn;
4082 c->block = bb->index;
4084 if (NONDEBUG_INSN_P (insn))
4085 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4087 unsigned int regno = DF_REF_REGNO (def);
4089 /* Ignore may clobbers because these are generated
4090 from calls. However, every other kind of def is
4091 added to dead_or_set. */
4092 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4094 if (regno < FIRST_PSEUDO_REGISTER)
4096 if (!fixed_regs[regno])
4097 bitmap_set_bit (&c->dead_or_set, regno);
4099 else if (pseudo_for_reload_consideration_p (regno))
4100 bitmap_set_bit (&c->dead_or_set, regno);
4103 if ((regno < FIRST_PSEUDO_REGISTER
4104 || reg_renumber[regno] >= 0
4105 || ira_conflicts_p)
4106 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4108 rtx reg = DF_REF_REG (def);
4110 /* We can model subregs, but not if they are
4111 wrapped in ZERO_EXTRACTS. */
4112 if (GET_CODE (reg) == SUBREG
4113 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4115 unsigned int start = SUBREG_BYTE (reg);
4116 unsigned int last = start
4117 + GET_MODE_SIZE (GET_MODE (reg));
4119 init_live_subregs
4120 (bitmap_bit_p (live_relevant_regs, regno),
4121 live_subregs, live_subregs_used, regno, reg);
4123 if (!DF_REF_FLAGS_IS_SET
4124 (def, DF_REF_STRICT_LOW_PART))
4126 /* Expand the range to cover entire words.
4127 Bytes added here are "don't care". */
4128 start
4129 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4130 last = ((last + UNITS_PER_WORD - 1)
4131 / UNITS_PER_WORD * UNITS_PER_WORD);
4134 /* Ignore the paradoxical bits. */
4135 if (last > SBITMAP_SIZE (live_subregs[regno]))
4136 last = SBITMAP_SIZE (live_subregs[regno]);
4138 while (start < last)
4140 bitmap_clear_bit (live_subregs[regno], start);
4141 start++;
4144 if (bitmap_empty_p (live_subregs[regno]))
4146 bitmap_clear_bit (live_subregs_used, regno);
4147 bitmap_clear_bit (live_relevant_regs, regno);
4149 else
4150 /* Set live_relevant_regs here because
4151 that bit has to be true to get us to
4152 look at the live_subregs fields. */
4153 bitmap_set_bit (live_relevant_regs, regno);
4155 else
4157 /* DF_REF_PARTIAL is generated for
4158 subregs, STRICT_LOW_PART, and
4159 ZERO_EXTRACT. We handle the subreg
4160 case above so here we have to keep from
4161 modeling the def as a killing def. */
4162 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4164 bitmap_clear_bit (live_subregs_used, regno);
4165 bitmap_clear_bit (live_relevant_regs, regno);
4171 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4172 bitmap_copy (&c->live_throughout, live_relevant_regs);
4174 if (NONDEBUG_INSN_P (insn))
4175 FOR_EACH_INSN_INFO_USE (use, insn_info)
4177 unsigned int regno = DF_REF_REGNO (use);
4178 rtx reg = DF_REF_REG (use);
4180 /* DF_REF_READ_WRITE on a use means that this use
4181 is fabricated from a def that is a partial set
4182 to a multiword reg. Here, we only model the
4183 subreg case that is not wrapped in ZERO_EXTRACT
4184 precisely so we do not need to look at the
4185 fabricated use. */
4186 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4187 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4188 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4189 continue;
4191 /* Add the last use of each var to dead_or_set. */
4192 if (!bitmap_bit_p (live_relevant_regs, regno))
4194 if (regno < FIRST_PSEUDO_REGISTER)
4196 if (!fixed_regs[regno])
4197 bitmap_set_bit (&c->dead_or_set, regno);
4199 else if (pseudo_for_reload_consideration_p (regno))
4200 bitmap_set_bit (&c->dead_or_set, regno);
4203 if (regno < FIRST_PSEUDO_REGISTER
4204 || pseudo_for_reload_consideration_p (regno))
4206 if (GET_CODE (reg) == SUBREG
4207 && !DF_REF_FLAGS_IS_SET (use,
4208 DF_REF_SIGN_EXTRACT
4209 | DF_REF_ZERO_EXTRACT))
4211 unsigned int start = SUBREG_BYTE (reg);
4212 unsigned int last = start
4213 + GET_MODE_SIZE (GET_MODE (reg));
4215 init_live_subregs
4216 (bitmap_bit_p (live_relevant_regs, regno),
4217 live_subregs, live_subregs_used, regno, reg);
4219 /* Ignore the paradoxical bits. */
4220 if (last > SBITMAP_SIZE (live_subregs[regno]))
4221 last = SBITMAP_SIZE (live_subregs[regno]);
4223 while (start < last)
4225 bitmap_set_bit (live_subregs[regno], start);
4226 start++;
4229 else
4230 /* Resetting the live_subregs_used is
4231 effectively saying do not use the subregs
4232 because we are reading the whole
4233 pseudo. */
4234 bitmap_clear_bit (live_subregs_used, regno);
4235 bitmap_set_bit (live_relevant_regs, regno);
4241 /* FIXME!! The following code is a disaster. Reload needs to see the
4242 labels and jump tables that are just hanging out in between
4243 the basic blocks. See pr33676. */
4244 insn = BB_HEAD (bb);
4246 /* Skip over the barriers and cruft. */
4247 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4248 || BLOCK_FOR_INSN (insn) == bb))
4249 insn = PREV_INSN (insn);
4251 /* While we add anything except barriers and notes, the focus is
4252 to get the labels and jump tables into the
4253 reload_insn_chain. */
4254 while (insn)
4256 if (!NOTE_P (insn) && !BARRIER_P (insn))
4258 if (BLOCK_FOR_INSN (insn))
4259 break;
4261 c = new_insn_chain ();
4262 c->next = next;
4263 next = c;
4264 *p = c;
4265 p = &c->prev;
4267 /* The block makes no sense here, but it is what the old
4268 code did. */
4269 c->block = bb->index;
4270 c->insn = insn;
4271 bitmap_copy (&c->live_throughout, live_relevant_regs);
4273 insn = PREV_INSN (insn);
4277 reload_insn_chain = c;
4278 *p = NULL;
4280 for (i = 0; i < (unsigned int) max_regno; i++)
4281 if (live_subregs[i] != NULL)
4282 sbitmap_free (live_subregs[i]);
4283 free (live_subregs);
4284 BITMAP_FREE (live_subregs_used);
4285 BITMAP_FREE (live_relevant_regs);
4286 BITMAP_FREE (elim_regset);
4288 if (dump_file)
4289 print_insn_chains (dump_file);
4292 /* Examine the rtx found in *LOC, which is read or written to as determined
4293 by TYPE. Return false if we find a reason why an insn containing this
4294 rtx should not be moved (such as accesses to non-constant memory), true
4295 otherwise. */
4296 static bool
4297 rtx_moveable_p (rtx *loc, enum op_type type)
4299 const char *fmt;
4300 rtx x = *loc;
4301 enum rtx_code code = GET_CODE (x);
4302 int i, j;
4304 code = GET_CODE (x);
4305 switch (code)
4307 case CONST:
4308 CASE_CONST_ANY:
4309 case SYMBOL_REF:
4310 case LABEL_REF:
4311 return true;
4313 case PC:
4314 return type == OP_IN;
4316 case CC0:
4317 return false;
4319 case REG:
4320 if (x == frame_pointer_rtx)
4321 return true;
4322 if (HARD_REGISTER_P (x))
4323 return false;
4325 return true;
4327 case MEM:
4328 if (type == OP_IN && MEM_READONLY_P (x))
4329 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4330 return false;
4332 case SET:
4333 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4334 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4336 case STRICT_LOW_PART:
4337 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4339 case ZERO_EXTRACT:
4340 case SIGN_EXTRACT:
4341 return (rtx_moveable_p (&XEXP (x, 0), type)
4342 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4343 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4345 case CLOBBER:
4346 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4348 case UNSPEC_VOLATILE:
4349 /* It is a bad idea to consider insns with such rtl
4350 as moveable ones. The insn scheduler also considers them as barrier
4351 for a reason. */
4352 return false;
4354 default:
4355 break;
4358 fmt = GET_RTX_FORMAT (code);
4359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4361 if (fmt[i] == 'e')
4363 if (!rtx_moveable_p (&XEXP (x, i), type))
4364 return false;
4366 else if (fmt[i] == 'E')
4367 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4369 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4370 return false;
4373 return true;
4376 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4377 to give dominance relationships between two insns I1 and I2. */
4378 static bool
4379 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4381 basic_block bb1 = BLOCK_FOR_INSN (i1);
4382 basic_block bb2 = BLOCK_FOR_INSN (i2);
4384 if (bb1 == bb2)
4385 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4386 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4389 /* Record the range of register numbers added by find_moveable_pseudos. */
4390 int first_moveable_pseudo, last_moveable_pseudo;
4392 /* These two vectors hold data for every register added by
4393 find_movable_pseudos, with index 0 holding data for the
4394 first_moveable_pseudo. */
4395 /* The original home register. */
4396 static vec<rtx> pseudo_replaced_reg;
4398 /* Look for instances where we have an instruction that is known to increase
4399 register pressure, and whose result is not used immediately. If it is
4400 possible to move the instruction downwards to just before its first use,
4401 split its lifetime into two ranges. We create a new pseudo to compute the
4402 value, and emit a move instruction just before the first use. If, after
4403 register allocation, the new pseudo remains unallocated, the function
4404 move_unallocated_pseudos then deletes the move instruction and places
4405 the computation just before the first use.
4407 Such a move is safe and profitable if all the input registers remain live
4408 and unchanged between the original computation and its first use. In such
4409 a situation, the computation is known to increase register pressure, and
4410 moving it is known to at least not worsen it.
4412 We restrict moves to only those cases where a register remains unallocated,
4413 in order to avoid interfering too much with the instruction schedule. As
4414 an exception, we may move insns which only modify their input register
4415 (typically induction variables), as this increases the freedom for our
4416 intended transformation, and does not limit the second instruction
4417 scheduler pass. */
4419 static void
4420 find_moveable_pseudos (void)
4422 unsigned i;
4423 int max_regs = max_reg_num ();
4424 int max_uid = get_max_uid ();
4425 basic_block bb;
4426 int *uid_luid = XNEWVEC (int, max_uid);
4427 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4428 /* A set of registers which are live but not modified throughout a block. */
4429 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4430 last_basic_block_for_fn (cfun));
4431 /* A set of registers which only exist in a given basic block. */
4432 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4433 last_basic_block_for_fn (cfun));
4434 /* A set of registers which are set once, in an instruction that can be
4435 moved freely downwards, but are otherwise transparent to a block. */
4436 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4437 last_basic_block_for_fn (cfun));
4438 bitmap_head live, used, set, interesting, unusable_as_input;
4439 bitmap_iterator bi;
4440 bitmap_initialize (&interesting, 0);
4442 first_moveable_pseudo = max_regs;
4443 pseudo_replaced_reg.release ();
4444 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4446 df_analyze ();
4447 calculate_dominance_info (CDI_DOMINATORS);
4449 i = 0;
4450 bitmap_initialize (&live, 0);
4451 bitmap_initialize (&used, 0);
4452 bitmap_initialize (&set, 0);
4453 bitmap_initialize (&unusable_as_input, 0);
4454 FOR_EACH_BB_FN (bb, cfun)
4456 rtx_insn *insn;
4457 bitmap transp = bb_transp_live + bb->index;
4458 bitmap moveable = bb_moveable_reg_sets + bb->index;
4459 bitmap local = bb_local + bb->index;
4461 bitmap_initialize (local, 0);
4462 bitmap_initialize (transp, 0);
4463 bitmap_initialize (moveable, 0);
4464 bitmap_copy (&live, df_get_live_out (bb));
4465 bitmap_and_into (&live, df_get_live_in (bb));
4466 bitmap_copy (transp, &live);
4467 bitmap_clear (moveable);
4468 bitmap_clear (&live);
4469 bitmap_clear (&used);
4470 bitmap_clear (&set);
4471 FOR_BB_INSNS (bb, insn)
4472 if (NONDEBUG_INSN_P (insn))
4474 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4475 df_ref def, use;
4477 uid_luid[INSN_UID (insn)] = i++;
4479 def = df_single_def (insn_info);
4480 use = df_single_use (insn_info);
4481 if (use
4482 && def
4483 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4484 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4485 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4487 unsigned regno = DF_REF_REGNO (use);
4488 bitmap_set_bit (moveable, regno);
4489 bitmap_set_bit (&set, regno);
4490 bitmap_set_bit (&used, regno);
4491 bitmap_clear_bit (transp, regno);
4492 continue;
4494 FOR_EACH_INSN_INFO_USE (use, insn_info)
4496 unsigned regno = DF_REF_REGNO (use);
4497 bitmap_set_bit (&used, regno);
4498 if (bitmap_clear_bit (moveable, regno))
4499 bitmap_clear_bit (transp, regno);
4502 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4504 unsigned regno = DF_REF_REGNO (def);
4505 bitmap_set_bit (&set, regno);
4506 bitmap_clear_bit (transp, regno);
4507 bitmap_clear_bit (moveable, regno);
4512 bitmap_clear (&live);
4513 bitmap_clear (&used);
4514 bitmap_clear (&set);
4516 FOR_EACH_BB_FN (bb, cfun)
4518 bitmap local = bb_local + bb->index;
4519 rtx_insn *insn;
4521 FOR_BB_INSNS (bb, insn)
4522 if (NONDEBUG_INSN_P (insn))
4524 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4525 rtx_insn *def_insn;
4526 rtx closest_use, note;
4527 df_ref def, use;
4528 unsigned regno;
4529 bool all_dominated, all_local;
4530 machine_mode mode;
4532 def = df_single_def (insn_info);
4533 /* There must be exactly one def in this insn. */
4534 if (!def || !single_set (insn))
4535 continue;
4536 /* This must be the only definition of the reg. We also limit
4537 which modes we deal with so that we can assume we can generate
4538 move instructions. */
4539 regno = DF_REF_REGNO (def);
4540 mode = GET_MODE (DF_REF_REG (def));
4541 if (DF_REG_DEF_COUNT (regno) != 1
4542 || !DF_REF_INSN_INFO (def)
4543 || HARD_REGISTER_NUM_P (regno)
4544 || DF_REG_EQ_USE_COUNT (regno) > 0
4545 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4546 continue;
4547 def_insn = DF_REF_INSN (def);
4549 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4550 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4551 break;
4553 if (note)
4555 if (dump_file)
4556 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4557 regno);
4558 bitmap_set_bit (&unusable_as_input, regno);
4559 continue;
4562 use = DF_REG_USE_CHAIN (regno);
4563 all_dominated = true;
4564 all_local = true;
4565 closest_use = NULL_RTX;
4566 for (; use; use = DF_REF_NEXT_REG (use))
4568 rtx_insn *insn;
4569 if (!DF_REF_INSN_INFO (use))
4571 all_dominated = false;
4572 all_local = false;
4573 break;
4575 insn = DF_REF_INSN (use);
4576 if (DEBUG_INSN_P (insn))
4577 continue;
4578 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4579 all_local = false;
4580 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4581 all_dominated = false;
4582 if (closest_use != insn && closest_use != const0_rtx)
4584 if (closest_use == NULL_RTX)
4585 closest_use = insn;
4586 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4587 closest_use = insn;
4588 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4589 closest_use = const0_rtx;
4592 if (!all_dominated)
4594 if (dump_file)
4595 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4596 regno);
4597 continue;
4599 if (all_local)
4600 bitmap_set_bit (local, regno);
4601 if (closest_use == const0_rtx || closest_use == NULL
4602 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4604 if (dump_file)
4605 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4606 closest_use == const0_rtx || closest_use == NULL
4607 ? " (no unique first use)" : "");
4608 continue;
4610 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4612 if (dump_file)
4613 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4614 regno);
4615 continue;
4618 bitmap_set_bit (&interesting, regno);
4619 /* If we get here, we know closest_use is a non-NULL insn
4620 (as opposed to const_0_rtx). */
4621 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4623 if (dump_file && (all_local || all_dominated))
4625 fprintf (dump_file, "Reg %u:", regno);
4626 if (all_local)
4627 fprintf (dump_file, " local to bb %d", bb->index);
4628 if (all_dominated)
4629 fprintf (dump_file, " def dominates all uses");
4630 if (closest_use != const0_rtx)
4631 fprintf (dump_file, " has unique first use");
4632 fputs ("\n", dump_file);
4637 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4639 df_ref def = DF_REG_DEF_CHAIN (i);
4640 rtx_insn *def_insn = DF_REF_INSN (def);
4641 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4642 bitmap def_bb_local = bb_local + def_block->index;
4643 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4644 bitmap def_bb_transp = bb_transp_live + def_block->index;
4645 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4646 rtx_insn *use_insn = closest_uses[i];
4647 df_ref use;
4648 bool all_ok = true;
4649 bool all_transp = true;
4651 if (!REG_P (DF_REF_REG (def)))
4652 continue;
4654 if (!local_to_bb_p)
4656 if (dump_file)
4657 fprintf (dump_file, "Reg %u not local to one basic block\n",
4659 continue;
4661 if (reg_equiv_init (i) != NULL_RTX)
4663 if (dump_file)
4664 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4666 continue;
4668 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4670 if (dump_file)
4671 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4672 INSN_UID (def_insn), i);
4673 continue;
4675 if (dump_file)
4676 fprintf (dump_file, "Examining insn %d, def for %d\n",
4677 INSN_UID (def_insn), i);
4678 FOR_EACH_INSN_USE (use, def_insn)
4680 unsigned regno = DF_REF_REGNO (use);
4681 if (bitmap_bit_p (&unusable_as_input, regno))
4683 all_ok = false;
4684 if (dump_file)
4685 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4686 break;
4688 if (!bitmap_bit_p (def_bb_transp, regno))
4690 if (bitmap_bit_p (def_bb_moveable, regno)
4691 && !control_flow_insn_p (use_insn)
4692 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4694 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4696 rtx_insn *x = NEXT_INSN (def_insn);
4697 while (!modified_in_p (DF_REF_REG (use), x))
4699 gcc_assert (x != use_insn);
4700 x = NEXT_INSN (x);
4702 if (dump_file)
4703 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4704 regno, INSN_UID (x));
4705 emit_insn_after (PATTERN (x), use_insn);
4706 set_insn_deleted (x);
4708 else
4710 if (dump_file)
4711 fprintf (dump_file, " input reg %u modified between def and use\n",
4712 regno);
4713 all_transp = false;
4716 else
4717 all_transp = false;
4720 if (!all_ok)
4721 continue;
4722 if (!dbg_cnt (ira_move))
4723 break;
4724 if (dump_file)
4725 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4727 if (all_transp)
4729 rtx def_reg = DF_REF_REG (def);
4730 rtx newreg = ira_create_new_reg (def_reg);
4731 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4733 unsigned nregno = REGNO (newreg);
4734 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4735 nregno -= max_regs;
4736 pseudo_replaced_reg[nregno] = def_reg;
4741 FOR_EACH_BB_FN (bb, cfun)
4743 bitmap_clear (bb_local + bb->index);
4744 bitmap_clear (bb_transp_live + bb->index);
4745 bitmap_clear (bb_moveable_reg_sets + bb->index);
4747 bitmap_clear (&interesting);
4748 bitmap_clear (&unusable_as_input);
4749 free (uid_luid);
4750 free (closest_uses);
4751 free (bb_local);
4752 free (bb_transp_live);
4753 free (bb_moveable_reg_sets);
4755 last_moveable_pseudo = max_reg_num ();
4757 fix_reg_equiv_init ();
4758 expand_reg_info ();
4759 regstat_free_n_sets_and_refs ();
4760 regstat_free_ri ();
4761 regstat_init_n_sets_and_refs ();
4762 regstat_compute_ri ();
4763 free_dominance_info (CDI_DOMINATORS);
4766 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4767 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4768 the destination. Otherwise return NULL. */
4770 static rtx
4771 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4773 rtx src = SET_SRC (set);
4774 rtx dest = SET_DEST (set);
4775 if (!REG_P (src) || !HARD_REGISTER_P (src)
4776 || !REG_P (dest) || HARD_REGISTER_P (dest)
4777 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4778 return NULL;
4779 return dest;
4782 /* If insn is interesting for parameter range-splitting shrink-wrapping
4783 preparation, i.e. it is a single set from a hard register to a pseudo, which
4784 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4785 parallel statement with only one such statement, return the destination.
4786 Otherwise return NULL. */
4788 static rtx
4789 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4791 if (!INSN_P (insn))
4792 return NULL;
4793 rtx pat = PATTERN (insn);
4794 if (GET_CODE (pat) == SET)
4795 return interesting_dest_for_shprep_1 (pat, call_dom);
4797 if (GET_CODE (pat) != PARALLEL)
4798 return NULL;
4799 rtx ret = NULL;
4800 for (int i = 0; i < XVECLEN (pat, 0); i++)
4802 rtx sub = XVECEXP (pat, 0, i);
4803 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4804 continue;
4805 if (GET_CODE (sub) != SET
4806 || side_effects_p (sub))
4807 return NULL;
4808 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4809 if (dest && ret)
4810 return NULL;
4811 if (dest)
4812 ret = dest;
4814 return ret;
4817 /* Split live ranges of pseudos that are loaded from hard registers in the
4818 first BB in a BB that dominates all non-sibling call if such a BB can be
4819 found and is not in a loop. Return true if the function has made any
4820 changes. */
4822 static bool
4823 split_live_ranges_for_shrink_wrap (void)
4825 basic_block bb, call_dom = NULL;
4826 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4827 rtx_insn *insn, *last_interesting_insn = NULL;
4828 bitmap_head need_new, reachable;
4829 vec<basic_block> queue;
4831 if (!SHRINK_WRAPPING_ENABLED)
4832 return false;
4834 bitmap_initialize (&need_new, 0);
4835 bitmap_initialize (&reachable, 0);
4836 queue.create (n_basic_blocks_for_fn (cfun));
4838 FOR_EACH_BB_FN (bb, cfun)
4839 FOR_BB_INSNS (bb, insn)
4840 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4842 if (bb == first)
4844 bitmap_clear (&need_new);
4845 bitmap_clear (&reachable);
4846 queue.release ();
4847 return false;
4850 bitmap_set_bit (&need_new, bb->index);
4851 bitmap_set_bit (&reachable, bb->index);
4852 queue.quick_push (bb);
4853 break;
4856 if (queue.is_empty ())
4858 bitmap_clear (&need_new);
4859 bitmap_clear (&reachable);
4860 queue.release ();
4861 return false;
4864 while (!queue.is_empty ())
4866 edge e;
4867 edge_iterator ei;
4869 bb = queue.pop ();
4870 FOR_EACH_EDGE (e, ei, bb->succs)
4871 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4872 && bitmap_set_bit (&reachable, e->dest->index))
4873 queue.quick_push (e->dest);
4875 queue.release ();
4877 FOR_BB_INSNS (first, insn)
4879 rtx dest = interesting_dest_for_shprep (insn, NULL);
4880 if (!dest)
4881 continue;
4883 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4885 bitmap_clear (&need_new);
4886 bitmap_clear (&reachable);
4887 return false;
4890 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4891 use;
4892 use = DF_REF_NEXT_REG (use))
4894 int ubbi = DF_REF_BB (use)->index;
4895 if (bitmap_bit_p (&reachable, ubbi))
4896 bitmap_set_bit (&need_new, ubbi);
4898 last_interesting_insn = insn;
4901 bitmap_clear (&reachable);
4902 if (!last_interesting_insn)
4904 bitmap_clear (&need_new);
4905 return false;
4908 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4909 bitmap_clear (&need_new);
4910 if (call_dom == first)
4911 return false;
4913 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4914 while (bb_loop_depth (call_dom) > 0)
4915 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4916 loop_optimizer_finalize ();
4918 if (call_dom == first)
4919 return false;
4921 calculate_dominance_info (CDI_POST_DOMINATORS);
4922 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4924 free_dominance_info (CDI_POST_DOMINATORS);
4925 return false;
4927 free_dominance_info (CDI_POST_DOMINATORS);
4929 if (dump_file)
4930 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4931 call_dom->index);
4933 bool ret = false;
4934 FOR_BB_INSNS (first, insn)
4936 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4937 if (!dest || dest == pic_offset_table_rtx)
4938 continue;
4940 rtx newreg = NULL_RTX;
4941 df_ref use, next;
4942 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4944 rtx_insn *uin = DF_REF_INSN (use);
4945 next = DF_REF_NEXT_REG (use);
4947 basic_block ubb = BLOCK_FOR_INSN (uin);
4948 if (ubb == call_dom
4949 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4951 if (!newreg)
4952 newreg = ira_create_new_reg (dest);
4953 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4957 if (newreg)
4959 rtx_insn *new_move = gen_move_insn (newreg, dest);
4960 emit_insn_after (new_move, bb_note (call_dom));
4961 if (dump_file)
4963 fprintf (dump_file, "Split live-range of register ");
4964 print_rtl_single (dump_file, dest);
4966 ret = true;
4969 if (insn == last_interesting_insn)
4970 break;
4972 apply_change_group ();
4973 return ret;
4976 /* Perform the second half of the transformation started in
4977 find_moveable_pseudos. We look for instances where the newly introduced
4978 pseudo remains unallocated, and remove it by moving the definition to
4979 just before its use, replacing the move instruction generated by
4980 find_moveable_pseudos. */
4981 static void
4982 move_unallocated_pseudos (void)
4984 int i;
4985 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4986 if (reg_renumber[i] < 0)
4988 int idx = i - first_moveable_pseudo;
4989 rtx other_reg = pseudo_replaced_reg[idx];
4990 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4991 /* The use must follow all definitions of OTHER_REG, so we can
4992 insert the new definition immediately after any of them. */
4993 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4994 rtx_insn *move_insn = DF_REF_INSN (other_def);
4995 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4996 rtx set;
4997 int success;
4999 if (dump_file)
5000 fprintf (dump_file, "moving def of %d (insn %d now) ",
5001 REGNO (other_reg), INSN_UID (def_insn));
5003 delete_insn (move_insn);
5004 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5005 delete_insn (DF_REF_INSN (other_def));
5006 delete_insn (def_insn);
5008 set = single_set (newinsn);
5009 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5010 gcc_assert (success);
5011 if (dump_file)
5012 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5013 INSN_UID (newinsn), i);
5014 SET_REG_N_REFS (i, 0);
5018 /* If the backend knows where to allocate pseudos for hard
5019 register initial values, register these allocations now. */
5020 static void
5021 allocate_initial_values (void)
5023 if (targetm.allocate_initial_value)
5025 rtx hreg, preg, x;
5026 int i, regno;
5028 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5030 if (! initial_value_entry (i, &hreg, &preg))
5031 break;
5033 x = targetm.allocate_initial_value (hreg);
5034 regno = REGNO (preg);
5035 if (x && REG_N_SETS (regno) <= 1)
5037 if (MEM_P (x))
5038 reg_equiv_memory_loc (regno) = x;
5039 else
5041 basic_block bb;
5042 int new_regno;
5044 gcc_assert (REG_P (x));
5045 new_regno = REGNO (x);
5046 reg_renumber[regno] = new_regno;
5047 /* Poke the regno right into regno_reg_rtx so that even
5048 fixed regs are accepted. */
5049 SET_REGNO (preg, new_regno);
5050 /* Update global register liveness information. */
5051 FOR_EACH_BB_FN (bb, cfun)
5053 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5054 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5055 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5056 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5062 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5063 &hreg, &preg));
5068 /* True when we use LRA instead of reload pass for the current
5069 function. */
5070 bool ira_use_lra_p;
5072 /* True if we have allocno conflicts. It is false for non-optimized
5073 mode or when the conflict table is too big. */
5074 bool ira_conflicts_p;
5076 /* Saved between IRA and reload. */
5077 static int saved_flag_ira_share_spill_slots;
5079 /* This is the main entry of IRA. */
5080 static void
5081 ira (FILE *f)
5083 bool loops_p;
5084 int ira_max_point_before_emit;
5085 int rebuild_p;
5086 bool saved_flag_caller_saves = flag_caller_saves;
5087 enum ira_region saved_flag_ira_region = flag_ira_region;
5089 /* Perform target specific PIC register initialization. */
5090 targetm.init_pic_reg ();
5092 ira_conflicts_p = optimize > 0;
5094 ira_use_lra_p = targetm.lra_p ();
5095 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5096 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5097 use simplified and faster algorithms in LRA. */
5098 lra_simple_p
5099 = (ira_use_lra_p
5100 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5101 if (lra_simple_p)
5103 /* It permits to skip live range splitting in LRA. */
5104 flag_caller_saves = false;
5105 /* There is no sense to do regional allocation when we use
5106 simplified LRA. */
5107 flag_ira_region = IRA_REGION_ONE;
5108 ira_conflicts_p = false;
5111 #ifndef IRA_NO_OBSTACK
5112 gcc_obstack_init (&ira_obstack);
5113 #endif
5114 bitmap_obstack_initialize (&ira_bitmap_obstack);
5116 /* LRA uses its own infrastructure to handle caller save registers. */
5117 if (flag_caller_saves && !ira_use_lra_p)
5118 init_caller_save ();
5120 if (flag_ira_verbose < 10)
5122 internal_flag_ira_verbose = flag_ira_verbose;
5123 ira_dump_file = f;
5125 else
5127 internal_flag_ira_verbose = flag_ira_verbose - 10;
5128 ira_dump_file = stderr;
5131 setup_prohibited_mode_move_regs ();
5132 decrease_live_ranges_number ();
5133 df_note_add_problem ();
5135 /* DF_LIVE can't be used in the register allocator, too many other
5136 parts of the compiler depend on using the "classic" liveness
5137 interpretation of the DF_LR problem. See PR38711.
5138 Remove the problem, so that we don't spend time updating it in
5139 any of the df_analyze() calls during IRA/LRA. */
5140 if (optimize > 1)
5141 df_remove_problem (df_live);
5142 gcc_checking_assert (df_live == NULL);
5144 if (flag_checking)
5145 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5147 df_analyze ();
5149 init_reg_equiv ();
5150 if (ira_conflicts_p)
5152 calculate_dominance_info (CDI_DOMINATORS);
5154 if (split_live_ranges_for_shrink_wrap ())
5155 df_analyze ();
5157 free_dominance_info (CDI_DOMINATORS);
5160 df_clear_flags (DF_NO_INSN_RESCAN);
5162 regstat_init_n_sets_and_refs ();
5163 regstat_compute_ri ();
5165 /* If we are not optimizing, then this is the only place before
5166 register allocation where dataflow is done. And that is needed
5167 to generate these warnings. */
5168 if (warn_clobbered)
5169 generate_setjmp_warnings ();
5171 /* Determine if the current function is a leaf before running IRA
5172 since this can impact optimizations done by the prologue and
5173 epilogue thus changing register elimination offsets. */
5174 crtl->is_leaf = leaf_function_p ();
5176 if (resize_reg_info () && flag_ira_loop_pressure)
5177 ira_set_pseudo_classes (true, ira_dump_file);
5179 rebuild_p = update_equiv_regs ();
5180 setup_reg_equiv ();
5181 setup_reg_equiv_init ();
5183 if (optimize && rebuild_p)
5185 timevar_push (TV_JUMP);
5186 rebuild_jump_labels (get_insns ());
5187 if (purge_all_dead_edges ())
5188 delete_unreachable_blocks ();
5189 timevar_pop (TV_JUMP);
5192 allocated_reg_info_size = max_reg_num ();
5194 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5195 df_analyze ();
5197 /* It is not worth to do such improvement when we use a simple
5198 allocation because of -O0 usage or because the function is too
5199 big. */
5200 if (ira_conflicts_p)
5201 find_moveable_pseudos ();
5203 max_regno_before_ira = max_reg_num ();
5204 ira_setup_eliminable_regset ();
5206 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5207 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5208 ira_move_loops_num = ira_additional_jumps_num = 0;
5210 ira_assert (current_loops == NULL);
5211 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5212 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5214 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5215 fprintf (ira_dump_file, "Building IRA IR\n");
5216 loops_p = ira_build ();
5218 ira_assert (ira_conflicts_p || !loops_p);
5220 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5221 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5222 /* It is just wasting compiler's time to pack spilled pseudos into
5223 stack slots in this case -- prohibit it. We also do this if
5224 there is setjmp call because a variable not modified between
5225 setjmp and longjmp the compiler is required to preserve its
5226 value and sharing slots does not guarantee it. */
5227 flag_ira_share_spill_slots = FALSE;
5229 ira_color ();
5231 ira_max_point_before_emit = ira_max_point;
5233 ira_initiate_emit_data ();
5235 ira_emit (loops_p);
5237 max_regno = max_reg_num ();
5238 if (ira_conflicts_p)
5240 if (! loops_p)
5242 if (! ira_use_lra_p)
5243 ira_initiate_assign ();
5245 else
5247 expand_reg_info ();
5249 if (ira_use_lra_p)
5251 ira_allocno_t a;
5252 ira_allocno_iterator ai;
5254 FOR_EACH_ALLOCNO (a, ai)
5256 int old_regno = ALLOCNO_REGNO (a);
5257 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5259 ALLOCNO_REGNO (a) = new_regno;
5261 if (old_regno != new_regno)
5262 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5263 reg_alternate_class (old_regno),
5264 reg_allocno_class (old_regno));
5268 else
5270 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5271 fprintf (ira_dump_file, "Flattening IR\n");
5272 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5274 /* New insns were generated: add notes and recalculate live
5275 info. */
5276 df_analyze ();
5278 /* ??? Rebuild the loop tree, but why? Does the loop tree
5279 change if new insns were generated? Can that be handled
5280 by updating the loop tree incrementally? */
5281 loop_optimizer_finalize ();
5282 free_dominance_info (CDI_DOMINATORS);
5283 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5284 | LOOPS_HAVE_RECORDED_EXITS);
5286 if (! ira_use_lra_p)
5288 setup_allocno_assignment_flags ();
5289 ira_initiate_assign ();
5290 ira_reassign_conflict_allocnos (max_regno);
5295 ira_finish_emit_data ();
5297 setup_reg_renumber ();
5299 calculate_allocation_cost ();
5301 #ifdef ENABLE_IRA_CHECKING
5302 if (ira_conflicts_p)
5303 check_allocation ();
5304 #endif
5306 if (max_regno != max_regno_before_ira)
5308 regstat_free_n_sets_and_refs ();
5309 regstat_free_ri ();
5310 regstat_init_n_sets_and_refs ();
5311 regstat_compute_ri ();
5314 overall_cost_before = ira_overall_cost;
5315 if (! ira_conflicts_p)
5316 grow_reg_equivs ();
5317 else
5319 fix_reg_equiv_init ();
5321 #ifdef ENABLE_IRA_CHECKING
5322 print_redundant_copies ();
5323 #endif
5324 if (! ira_use_lra_p)
5326 ira_spilled_reg_stack_slots_num = 0;
5327 ira_spilled_reg_stack_slots
5328 = ((struct ira_spilled_reg_stack_slot *)
5329 ira_allocate (max_regno
5330 * sizeof (struct ira_spilled_reg_stack_slot)));
5331 memset (ira_spilled_reg_stack_slots, 0,
5332 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5335 allocate_initial_values ();
5337 /* See comment for find_moveable_pseudos call. */
5338 if (ira_conflicts_p)
5339 move_unallocated_pseudos ();
5341 /* Restore original values. */
5342 if (lra_simple_p)
5344 flag_caller_saves = saved_flag_caller_saves;
5345 flag_ira_region = saved_flag_ira_region;
5349 static void
5350 do_reload (void)
5352 basic_block bb;
5353 bool need_dce;
5354 unsigned pic_offset_table_regno = INVALID_REGNUM;
5356 if (flag_ira_verbose < 10)
5357 ira_dump_file = dump_file;
5359 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5360 after reload to avoid possible wrong usages of hard reg assigned
5361 to it. */
5362 if (pic_offset_table_rtx
5363 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5364 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5366 timevar_push (TV_RELOAD);
5367 if (ira_use_lra_p)
5369 if (current_loops != NULL)
5371 loop_optimizer_finalize ();
5372 free_dominance_info (CDI_DOMINATORS);
5374 FOR_ALL_BB_FN (bb, cfun)
5375 bb->loop_father = NULL;
5376 current_loops = NULL;
5378 ira_destroy ();
5380 lra (ira_dump_file);
5381 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5382 LRA. */
5383 vec_free (reg_equivs);
5384 reg_equivs = NULL;
5385 need_dce = false;
5387 else
5389 df_set_flags (DF_NO_INSN_RESCAN);
5390 build_insn_chain ();
5392 need_dce = reload (get_insns (), ira_conflicts_p);
5396 timevar_pop (TV_RELOAD);
5398 timevar_push (TV_IRA);
5400 if (ira_conflicts_p && ! ira_use_lra_p)
5402 ira_free (ira_spilled_reg_stack_slots);
5403 ira_finish_assign ();
5406 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5407 && overall_cost_before != ira_overall_cost)
5408 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5409 ira_overall_cost);
5411 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5413 if (! ira_use_lra_p)
5415 ira_destroy ();
5416 if (current_loops != NULL)
5418 loop_optimizer_finalize ();
5419 free_dominance_info (CDI_DOMINATORS);
5421 FOR_ALL_BB_FN (bb, cfun)
5422 bb->loop_father = NULL;
5423 current_loops = NULL;
5425 regstat_free_ri ();
5426 regstat_free_n_sets_and_refs ();
5429 if (optimize)
5430 cleanup_cfg (CLEANUP_EXPENSIVE);
5432 finish_reg_equiv ();
5434 bitmap_obstack_release (&ira_bitmap_obstack);
5435 #ifndef IRA_NO_OBSTACK
5436 obstack_free (&ira_obstack, NULL);
5437 #endif
5439 /* The code after the reload has changed so much that at this point
5440 we might as well just rescan everything. Note that
5441 df_rescan_all_insns is not going to help here because it does not
5442 touch the artificial uses and defs. */
5443 df_finish_pass (true);
5444 df_scan_alloc (NULL);
5445 df_scan_blocks ();
5447 if (optimize > 1)
5449 df_live_add_problem ();
5450 df_live_set_all_dirty ();
5453 if (optimize)
5454 df_analyze ();
5456 if (need_dce && optimize)
5457 run_fast_dce ();
5459 /* Diagnose uses of the hard frame pointer when it is used as a global
5460 register. Often we can get away with letting the user appropriate
5461 the frame pointer, but we should let them know when code generation
5462 makes that impossible. */
5463 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5465 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5466 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5467 "frame pointer required, but reserved");
5468 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5471 if (pic_offset_table_regno != INVALID_REGNUM)
5472 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5474 timevar_pop (TV_IRA);
5477 /* Run the integrated register allocator. */
5479 namespace {
5481 const pass_data pass_data_ira =
5483 RTL_PASS, /* type */
5484 "ira", /* name */
5485 OPTGROUP_NONE, /* optinfo_flags */
5486 TV_IRA, /* tv_id */
5487 0, /* properties_required */
5488 0, /* properties_provided */
5489 0, /* properties_destroyed */
5490 0, /* todo_flags_start */
5491 TODO_do_not_ggc_collect, /* todo_flags_finish */
5494 class pass_ira : public rtl_opt_pass
5496 public:
5497 pass_ira (gcc::context *ctxt)
5498 : rtl_opt_pass (pass_data_ira, ctxt)
5501 /* opt_pass methods: */
5502 virtual bool gate (function *)
5504 return !targetm.no_register_allocation;
5506 virtual unsigned int execute (function *)
5508 ira (dump_file);
5509 return 0;
5512 }; // class pass_ira
5514 } // anon namespace
5516 rtl_opt_pass *
5517 make_pass_ira (gcc::context *ctxt)
5519 return new pass_ira (ctxt);
5522 namespace {
5524 const pass_data pass_data_reload =
5526 RTL_PASS, /* type */
5527 "reload", /* name */
5528 OPTGROUP_NONE, /* optinfo_flags */
5529 TV_RELOAD, /* tv_id */
5530 0, /* properties_required */
5531 0, /* properties_provided */
5532 0, /* properties_destroyed */
5533 0, /* todo_flags_start */
5534 0, /* todo_flags_finish */
5537 class pass_reload : public rtl_opt_pass
5539 public:
5540 pass_reload (gcc::context *ctxt)
5541 : rtl_opt_pass (pass_data_reload, ctxt)
5544 /* opt_pass methods: */
5545 virtual bool gate (function *)
5547 return !targetm.no_register_allocation;
5549 virtual unsigned int execute (function *)
5551 do_reload ();
5552 return 0;
5555 }; // class pass_reload
5557 } // anon namespace
5559 rtl_opt_pass *
5560 make_pass_reload (gcc::context *ctxt)
5562 return new pass_reload (ctxt);