Update count_scale for AutoFDO to prevent over-scale.
[official-gcc.git] / gcc-4_8 / gcc / alias.c
blob54dd6664e6f02076b4825b1e3b6bb5c56d028b94
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "function.h"
29 #include "alias.h"
30 #include "emit-rtl.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "flags.h"
35 #include "diagnostic-core.h"
36 #include "cselib.h"
37 #include "splay-tree.h"
38 #include "ggc.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "cgraph.h"
44 #include "df.h"
45 #include "tree-ssa-alias.h"
46 #include "pointer-set.h"
47 #include "tree-flow.h"
49 /* The aliasing API provided here solves related but different problems:
51 Say there exists (in c)
53 struct X {
54 struct Y y1;
55 struct Z z2;
56 } x1, *px1, *px2;
58 struct Y y2, *py;
59 struct Z z2, *pz;
62 py = &x1.y1;
63 px2 = &x1;
65 Consider the four questions:
67 Can a store to x1 interfere with px2->y1?
68 Can a store to x1 interfere with px2->z2?
69 Can a store to x1 change the value pointed to by with py?
70 Can a store to x1 change the value pointed to by with pz?
72 The answer to these questions can be yes, yes, yes, and maybe.
74 The first two questions can be answered with a simple examination
75 of the type system. If structure X contains a field of type Y then
76 a store through a pointer to an X can overwrite any field that is
77 contained (recursively) in an X (unless we know that px1 != px2).
79 The last two questions can be solved in the same way as the first
80 two questions but this is too conservative. The observation is
81 that in some cases we can know which (if any) fields are addressed
82 and if those addresses are used in bad ways. This analysis may be
83 language specific. In C, arbitrary operations may be applied to
84 pointers. However, there is some indication that this may be too
85 conservative for some C++ types.
87 The pass ipa-type-escape does this analysis for the types whose
88 instances do not escape across the compilation boundary.
90 Historically in GCC, these two problems were combined and a single
91 data structure that was used to represent the solution to these
92 problems. We now have two similar but different data structures,
93 The data structure to solve the last two questions is similar to
94 the first, but does not contain the fields whose address are never
95 taken. For types that do escape the compilation unit, the data
96 structures will have identical information.
99 /* The alias sets assigned to MEMs assist the back-end in determining
100 which MEMs can alias which other MEMs. In general, two MEMs in
101 different alias sets cannot alias each other, with one important
102 exception. Consider something like:
104 struct S { int i; double d; };
106 a store to an `S' can alias something of either type `int' or type
107 `double'. (However, a store to an `int' cannot alias a `double'
108 and vice versa.) We indicate this via a tree structure that looks
109 like:
110 struct S
113 |/_ _\|
114 int double
116 (The arrows are directed and point downwards.)
117 In this situation we say the alias set for `struct S' is the
118 `superset' and that those for `int' and `double' are `subsets'.
120 To see whether two alias sets can point to the same memory, we must
121 see if either alias set is a subset of the other. We need not trace
122 past immediate descendants, however, since we propagate all
123 grandchildren up one level.
125 Alias set zero is implicitly a superset of all other alias sets.
126 However, this is no actual entry for alias set zero. It is an
127 error to attempt to explicitly construct a subset of zero. */
129 struct GTY(()) alias_set_entry_d {
130 /* The alias set number, as stored in MEM_ALIAS_SET. */
131 alias_set_type alias_set;
133 /* Nonzero if would have a child of zero: this effectively makes this
134 alias set the same as alias set zero. */
135 int has_zero_child;
137 /* The children of the alias set. These are not just the immediate
138 children, but, in fact, all descendants. So, if we have:
140 struct T { struct S s; float f; }
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
144 splay_tree GTY((param1_is (int), param2_is (int))) children;
146 typedef struct alias_set_entry_d *alias_set_entry;
148 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
149 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
150 static void record_set (rtx, const_rtx, void *);
151 static int base_alias_check (rtx, rtx, enum machine_mode,
152 enum machine_mode);
153 static rtx find_base_value (rtx);
154 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
155 static int insert_subset_children (splay_tree_node, void*);
156 static alias_set_entry get_alias_set_entry (alias_set_type);
157 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx, const_rtx, int);
161 static void memory_modified_1 (rtx, const_rtx, void *);
163 /* Set up all info needed to perform alias analysis on memory references. */
165 /* Returns the size in bytes of the mode of X. */
166 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
168 /* Cap the number of passes we make over the insns propagating alias
169 information through set chains.
170 ??? 10 is a completely arbitrary choice. This should be based on the
171 maximum loop depth in the CFG, but we do not have this information
172 available (even if current_loops _is_ available). */
173 #define MAX_ALIAS_LOOP_PASSES 10
175 /* reg_base_value[N] gives an address to which register N is related.
176 If all sets after the first add or subtract to the current value
177 or otherwise modify it so it does not point to a different top level
178 object, reg_base_value[N] is equal to the address part of the source
179 of the first set.
181 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
182 expressions represent three types of base:
184 1. incoming arguments. There is just one ADDRESS to represent all
185 arguments, since we do not know at this level whether accesses
186 based on different arguments can alias. The ADDRESS has id 0.
188 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
189 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
190 Each of these rtxes has a separate ADDRESS associated with it,
191 each with a negative id.
193 GCC is (and is required to be) precise in which register it
194 chooses to access a particular region of stack. We can therefore
195 assume that accesses based on one of these rtxes do not alias
196 accesses based on another of these rtxes.
198 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
199 Each such piece of memory has a separate ADDRESS associated
200 with it, each with an id greater than 0.
202 Accesses based on one ADDRESS do not alias accesses based on other
203 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
204 alias globals either; the ADDRESSes have Pmode to indicate this.
205 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
206 indicate this. */
208 static GTY(()) vec<rtx, va_gc> *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* The single VOIDmode ADDRESS that represents all argument bases.
212 It has id 0. */
213 static GTY(()) rtx arg_base_value;
215 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
216 static int unique_id;
218 /* We preserve the copy of old array around to avoid amount of garbage
219 produced. About 8% of garbage produced were attributed to this
220 array. */
221 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
223 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
224 registers. */
225 #define UNIQUE_BASE_VALUE_SP -1
226 #define UNIQUE_BASE_VALUE_ARGP -2
227 #define UNIQUE_BASE_VALUE_FP -3
228 #define UNIQUE_BASE_VALUE_HFP -4
230 #define static_reg_base_value \
231 (this_target_rtl->x_static_reg_base_value)
233 #define REG_BASE_VALUE(X) \
234 (REGNO (X) < vec_safe_length (reg_base_value) \
235 ? (*reg_base_value)[REGNO (X)] : 0)
237 /* Vector indexed by N giving the initial (unchanging) value known for
238 pseudo-register N. This vector is initialized in init_alias_analysis,
239 and does not change until end_alias_analysis is called. */
240 static GTY(()) vec<rtx, va_gc> *reg_known_value;
242 /* Vector recording for each reg_known_value whether it is due to a
243 REG_EQUIV note. Future passes (viz., reload) may replace the
244 pseudo with the equivalent expression and so we account for the
245 dependences that would be introduced if that happens.
247 The REG_EQUIV notes created in assign_parms may mention the arg
248 pointer, and there are explicit insns in the RTL that modify the
249 arg pointer. Thus we must ensure that such insns don't get
250 scheduled across each other because that would invalidate the
251 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
252 wrong, but solving the problem in the scheduler will likely give
253 better code, so we do it here. */
254 static sbitmap reg_known_equiv_p;
256 /* True when scanning insns from the start of the rtl to the
257 NOTE_INSN_FUNCTION_BEG note. */
258 static bool copying_arguments;
261 /* The splay-tree used to store the various alias set entries. */
262 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
264 /* Build a decomposed reference object for querying the alias-oracle
265 from the MEM rtx and store it in *REF.
266 Returns false if MEM is not suitable for the alias-oracle. */
268 static bool
269 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271 tree expr = MEM_EXPR (mem);
272 tree base;
274 if (!expr)
275 return false;
277 ao_ref_init (ref, expr);
279 /* Get the base of the reference and see if we have to reject or
280 adjust it. */
281 base = ao_ref_base (ref);
282 if (base == NULL_TREE)
283 return false;
285 /* The tree oracle doesn't like bases that are neither decls
286 nor indirect references of SSA names. */
287 if (!(DECL_P (base)
288 || (TREE_CODE (base) == MEM_REF
289 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
290 || (TREE_CODE (base) == TARGET_MEM_REF
291 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
292 return false;
294 /* If this is a reference based on a partitioned decl replace the
295 base with a MEM_REF of the pointer representative we
296 created during stack slot partitioning. */
297 if (TREE_CODE (base) == VAR_DECL
298 && ! is_global_var (base)
299 && cfun->gimple_df->decls_to_pointers != NULL)
301 void *namep;
302 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
303 if (namep)
304 ref->base = build_simple_mem_ref (*(tree *)namep);
307 ref->ref_alias_set = MEM_ALIAS_SET (mem);
309 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
310 is conservative, so trust it. */
311 if (!MEM_OFFSET_KNOWN_P (mem)
312 || !MEM_SIZE_KNOWN_P (mem))
313 return true;
315 /* If the base decl is a parameter we can have negative MEM_OFFSET in
316 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
317 here. */
318 if (MEM_OFFSET (mem) < 0
319 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
320 return true;
322 /* Otherwise continue and refine size and offset we got from analyzing
323 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
325 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
326 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
328 /* The MEM may extend into adjacent fields, so adjust max_size if
329 necessary. */
330 if (ref->max_size != -1
331 && ref->size > ref->max_size)
332 ref->max_size = ref->size;
334 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
335 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
336 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
337 && (ref->offset < 0
338 || (DECL_P (ref->base)
339 && (!host_integerp (DECL_SIZE (ref->base), 1)
340 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
341 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
342 return false;
344 return true;
347 /* Query the alias-oracle on whether the two memory rtx X and MEM may
348 alias. If TBAA_P is set also apply TBAA. Returns true if the
349 two rtxen may alias, false otherwise. */
351 static bool
352 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
354 ao_ref ref1, ref2;
356 if (!ao_ref_from_mem (&ref1, x)
357 || !ao_ref_from_mem (&ref2, mem))
358 return true;
360 return refs_may_alias_p_1 (&ref1, &ref2,
361 tbaa_p
362 && MEM_ALIAS_SET (x) != 0
363 && MEM_ALIAS_SET (mem) != 0);
366 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
367 such an entry, or NULL otherwise. */
369 static inline alias_set_entry
370 get_alias_set_entry (alias_set_type alias_set)
372 return (*alias_sets)[alias_set];
375 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
376 the two MEMs cannot alias each other. */
378 static inline int
379 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
381 /* Perform a basic sanity check. Namely, that there are no alias sets
382 if we're not using strict aliasing. This helps to catch bugs
383 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
384 where a MEM is allocated in some way other than by the use of
385 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
386 use alias sets to indicate that spilled registers cannot alias each
387 other, we might need to remove this check. */
388 gcc_assert (flag_strict_aliasing
389 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
391 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
394 /* Insert the NODE into the splay tree given by DATA. Used by
395 record_alias_subset via splay_tree_foreach. */
397 static int
398 insert_subset_children (splay_tree_node node, void *data)
400 splay_tree_insert ((splay_tree) data, node->key, node->value);
402 return 0;
405 /* Return true if the first alias set is a subset of the second. */
407 bool
408 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
410 alias_set_entry ase;
412 /* Everything is a subset of the "aliases everything" set. */
413 if (set2 == 0)
414 return true;
416 /* Otherwise, check if set1 is a subset of set2. */
417 ase = get_alias_set_entry (set2);
418 if (ase != 0
419 && (ase->has_zero_child
420 || splay_tree_lookup (ase->children,
421 (splay_tree_key) set1)))
422 return true;
423 return false;
426 /* Return 1 if the two specified alias sets may conflict. */
429 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
431 alias_set_entry ase;
433 /* The easy case. */
434 if (alias_sets_must_conflict_p (set1, set2))
435 return 1;
437 /* See if the first alias set is a subset of the second. */
438 ase = get_alias_set_entry (set1);
439 if (ase != 0
440 && (ase->has_zero_child
441 || splay_tree_lookup (ase->children,
442 (splay_tree_key) set2)))
443 return 1;
445 /* Now do the same, but with the alias sets reversed. */
446 ase = get_alias_set_entry (set2);
447 if (ase != 0
448 && (ase->has_zero_child
449 || splay_tree_lookup (ase->children,
450 (splay_tree_key) set1)))
451 return 1;
453 /* The two alias sets are distinct and neither one is the
454 child of the other. Therefore, they cannot conflict. */
455 return 0;
458 /* Return 1 if the two specified alias sets will always conflict. */
461 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
463 if (set1 == 0 || set2 == 0 || set1 == set2)
464 return 1;
466 return 0;
469 /* Return 1 if any MEM object of type T1 will always conflict (using the
470 dependency routines in this file) with any MEM object of type T2.
471 This is used when allocating temporary storage. If T1 and/or T2 are
472 NULL_TREE, it means we know nothing about the storage. */
475 objects_must_conflict_p (tree t1, tree t2)
477 alias_set_type set1, set2;
479 /* If neither has a type specified, we don't know if they'll conflict
480 because we may be using them to store objects of various types, for
481 example the argument and local variables areas of inlined functions. */
482 if (t1 == 0 && t2 == 0)
483 return 0;
485 /* If they are the same type, they must conflict. */
486 if (t1 == t2
487 /* Likewise if both are volatile. */
488 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
489 return 1;
491 set1 = t1 ? get_alias_set (t1) : 0;
492 set2 = t2 ? get_alias_set (t2) : 0;
494 /* We can't use alias_sets_conflict_p because we must make sure
495 that every subtype of t1 will conflict with every subtype of
496 t2 for which a pair of subobjects of these respective subtypes
497 overlaps on the stack. */
498 return alias_sets_must_conflict_p (set1, set2);
501 /* Return true if all nested component references handled by
502 get_inner_reference in T are such that we should use the alias set
503 provided by the object at the heart of T.
505 This is true for non-addressable components (which don't have their
506 own alias set), as well as components of objects in alias set zero.
507 This later point is a special case wherein we wish to override the
508 alias set used by the component, but we don't have per-FIELD_DECL
509 assignable alias sets. */
511 bool
512 component_uses_parent_alias_set (const_tree t)
514 while (1)
516 /* If we're at the end, it vacuously uses its own alias set. */
517 if (!handled_component_p (t))
518 return false;
520 switch (TREE_CODE (t))
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
524 return true;
525 break;
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
530 return true;
531 break;
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
537 default:
538 /* Bitfields and casts are never addressable. */
539 return true;
542 t = TREE_OPERAND (t, 0);
543 if (get_alias_set (TREE_TYPE (t)) == 0)
544 return true;
549 /* Return whether the pointer-type T effective for aliasing may
550 access everything and thus the reference has to be assigned
551 alias-set zero. */
553 static bool
554 ref_all_alias_ptr_type_p (const_tree t)
556 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
557 || TYPE_REF_CAN_ALIAS_ALL (t));
560 /* Return the alias set for the memory pointed to by T, which may be
561 either a type or an expression. Return -1 if there is nothing
562 special about dereferencing T. */
564 static alias_set_type
565 get_deref_alias_set_1 (tree t)
567 /* All we care about is the type. */
568 if (! TYPE_P (t))
569 t = TREE_TYPE (t);
571 /* If we have an INDIRECT_REF via a void pointer, we don't
572 know anything about what that might alias. Likewise if the
573 pointer is marked that way. */
574 if (ref_all_alias_ptr_type_p (t))
575 return 0;
577 return -1;
580 /* Return the alias set for the memory pointed to by T, which may be
581 either a type or an expression. */
583 alias_set_type
584 get_deref_alias_set (tree t)
586 /* If we're not doing any alias analysis, just assume everything
587 aliases everything else. */
588 if (!flag_strict_aliasing)
589 return 0;
591 alias_set_type set = get_deref_alias_set_1 (t);
593 /* Fall back to the alias-set of the pointed-to type. */
594 if (set == -1)
596 if (! TYPE_P (t))
597 t = TREE_TYPE (t);
598 set = get_alias_set (TREE_TYPE (t));
601 return set;
604 /* Return the pointer-type relevant for TBAA purposes from the
605 memory reference tree *T or NULL_TREE in which case *T is
606 adjusted to point to the outermost component reference that
607 can be used for assigning an alias set. */
609 static tree
610 reference_alias_ptr_type_1 (tree *t)
612 tree inner;
614 /* Get the base object of the reference. */
615 inner = *t;
616 while (handled_component_p (inner))
618 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
619 the type of any component references that wrap it to
620 determine the alias-set. */
621 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
622 *t = TREE_OPERAND (inner, 0);
623 inner = TREE_OPERAND (inner, 0);
626 /* Handle pointer dereferences here, they can override the
627 alias-set. */
628 if (INDIRECT_REF_P (inner)
629 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
630 return TREE_TYPE (TREE_OPERAND (inner, 0));
631 else if (TREE_CODE (inner) == TARGET_MEM_REF)
632 return TREE_TYPE (TMR_OFFSET (inner));
633 else if (TREE_CODE (inner) == MEM_REF
634 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
635 return TREE_TYPE (TREE_OPERAND (inner, 1));
637 /* If the innermost reference is a MEM_REF that has a
638 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
639 using the memory access type for determining the alias-set. */
640 if (TREE_CODE (inner) == MEM_REF
641 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
642 != TYPE_MAIN_VARIANT
643 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
644 return TREE_TYPE (TREE_OPERAND (inner, 1));
646 /* Otherwise, pick up the outermost object that we could have a pointer
647 to, processing conversions as above. */
648 /* ??? Ick, this is worse than quadratic! */
649 while (component_uses_parent_alias_set (*t))
651 *t = TREE_OPERAND (*t, 0);
652 STRIP_NOPS (*t);
655 return NULL_TREE;
659 /* Return the pointer-type relevant for TBAA purposes from the
660 gimple memory reference tree T. This is the type to be used for
661 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
662 and guarantees that get_alias_set will return the same alias
663 set for T and the replacement. */
665 tree
666 reference_alias_ptr_type (tree t)
668 tree ptype = reference_alias_ptr_type_1 (&t);
669 /* If there is a given pointer type for aliasing purposes, return it. */
670 if (ptype != NULL_TREE)
671 return ptype;
673 /* Otherwise build one from the outermost component reference we
674 may use. */
675 if (TREE_CODE (t) == MEM_REF
676 || TREE_CODE (t) == TARGET_MEM_REF)
677 return TREE_TYPE (TREE_OPERAND (t, 1));
678 else
679 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
682 /* Return whether the pointer-types T1 and T2 used to determine
683 two alias sets of two references will yield the same answer
684 from get_deref_alias_set. */
686 bool
687 alias_ptr_types_compatible_p (tree t1, tree t2)
689 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
690 return true;
692 if (ref_all_alias_ptr_type_p (t1)
693 || ref_all_alias_ptr_type_p (t2))
694 return false;
696 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
697 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
700 /* Return the alias set for T, which may be either a type or an
701 expression. Call language-specific routine for help, if needed. */
703 alias_set_type
704 get_alias_set (tree t)
706 alias_set_type set;
708 /* If we're not doing any alias analysis, just assume everything
709 aliases everything else. Also return 0 if this or its type is
710 an error. */
711 if (! flag_strict_aliasing || t == error_mark_node
712 || (! TYPE_P (t)
713 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
714 return 0;
716 /* We can be passed either an expression or a type. This and the
717 language-specific routine may make mutually-recursive calls to each other
718 to figure out what to do. At each juncture, we see if this is a tree
719 that the language may need to handle specially. First handle things that
720 aren't types. */
721 if (! TYPE_P (t))
723 /* Give the language a chance to do something with this tree
724 before we look at it. */
725 STRIP_NOPS (t);
726 set = lang_hooks.get_alias_set (t);
727 if (set != -1)
728 return set;
730 /* Get the alias pointer-type to use or the outermost object
731 that we could have a pointer to. */
732 tree ptype = reference_alias_ptr_type_1 (&t);
733 if (ptype != NULL)
734 return get_deref_alias_set (ptype);
736 /* If we've already determined the alias set for a decl, just return
737 it. This is necessary for C++ anonymous unions, whose component
738 variables don't look like union members (boo!). */
739 if (TREE_CODE (t) == VAR_DECL
740 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
741 return MEM_ALIAS_SET (DECL_RTL (t));
743 /* Now all we care about is the type. */
744 t = TREE_TYPE (t);
747 /* Variant qualifiers don't affect the alias set, so get the main
748 variant. */
749 t = TYPE_MAIN_VARIANT (t);
751 /* Always use the canonical type as well. If this is a type that
752 requires structural comparisons to identify compatible types
753 use alias set zero. */
754 if (TYPE_STRUCTURAL_EQUALITY_P (t))
756 /* Allow the language to specify another alias set for this
757 type. */
758 set = lang_hooks.get_alias_set (t);
759 if (set != -1)
760 return set;
761 return 0;
764 t = TYPE_CANONICAL (t);
766 /* The canonical type should not require structural equality checks. */
767 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
769 /* If this is a type with a known alias set, return it. */
770 if (TYPE_ALIAS_SET_KNOWN_P (t))
771 return TYPE_ALIAS_SET (t);
773 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
774 if (!COMPLETE_TYPE_P (t))
776 /* For arrays with unknown size the conservative answer is the
777 alias set of the element type. */
778 if (TREE_CODE (t) == ARRAY_TYPE)
779 return get_alias_set (TREE_TYPE (t));
781 /* But return zero as a conservative answer for incomplete types. */
782 return 0;
785 /* See if the language has special handling for this type. */
786 set = lang_hooks.get_alias_set (t);
787 if (set != -1)
788 return set;
790 /* There are no objects of FUNCTION_TYPE, so there's no point in
791 using up an alias set for them. (There are, of course, pointers
792 and references to functions, but that's different.) */
793 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
794 set = 0;
796 /* Unless the language specifies otherwise, let vector types alias
797 their components. This avoids some nasty type punning issues in
798 normal usage. And indeed lets vectors be treated more like an
799 array slice. */
800 else if (TREE_CODE (t) == VECTOR_TYPE)
801 set = get_alias_set (TREE_TYPE (t));
803 /* Unless the language specifies otherwise, treat array types the
804 same as their components. This avoids the asymmetry we get
805 through recording the components. Consider accessing a
806 character(kind=1) through a reference to a character(kind=1)[1:1].
807 Or consider if we want to assign integer(kind=4)[0:D.1387] and
808 integer(kind=4)[4] the same alias set or not.
809 Just be pragmatic here and make sure the array and its element
810 type get the same alias set assigned. */
811 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
812 set = get_alias_set (TREE_TYPE (t));
814 /* From the former common C and C++ langhook implementation:
816 Unfortunately, there is no canonical form of a pointer type.
817 In particular, if we have `typedef int I', then `int *', and
818 `I *' are different types. So, we have to pick a canonical
819 representative. We do this below.
821 Technically, this approach is actually more conservative that
822 it needs to be. In particular, `const int *' and `int *'
823 should be in different alias sets, according to the C and C++
824 standard, since their types are not the same, and so,
825 technically, an `int **' and `const int **' cannot point at
826 the same thing.
828 But, the standard is wrong. In particular, this code is
829 legal C++:
831 int *ip;
832 int **ipp = &ip;
833 const int* const* cipp = ipp;
834 And, it doesn't make sense for that to be legal unless you
835 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
836 the pointed-to types. This issue has been reported to the
837 C++ committee.
839 In addition to the above canonicalization issue, with LTO
840 we should also canonicalize `T (*)[]' to `T *' avoiding
841 alias issues with pointer-to element types and pointer-to
842 array types.
844 Likewise we need to deal with the situation of incomplete
845 pointed-to types and make `*(struct X **)&a' and
846 `*(struct X {} **)&a' alias. Otherwise we will have to
847 guarantee that all pointer-to incomplete type variants
848 will be replaced by pointer-to complete type variants if
849 they are available.
851 With LTO the convenient situation of using `void *' to
852 access and store any pointer type will also become
853 more apparent (and `void *' is just another pointer-to
854 incomplete type). Assigning alias-set zero to `void *'
855 and all pointer-to incomplete types is a not appealing
856 solution. Assigning an effective alias-set zero only
857 affecting pointers might be - by recording proper subset
858 relationships of all pointer alias-sets.
860 Pointer-to function types are another grey area which
861 needs caution. Globbing them all into one alias-set
862 or the above effective zero set would work.
864 For now just assign the same alias-set to all pointers.
865 That's simple and avoids all the above problems. */
866 else if (POINTER_TYPE_P (t)
867 && t != ptr_type_node)
868 set = get_alias_set (ptr_type_node);
870 /* Otherwise make a new alias set for this type. */
871 else
873 /* Each canonical type gets its own alias set, so canonical types
874 shouldn't form a tree. It doesn't really matter for types
875 we handle specially above, so only check it where it possibly
876 would result in a bogus alias set. */
877 gcc_checking_assert (TYPE_CANONICAL (t) == t);
879 set = new_alias_set ();
882 TYPE_ALIAS_SET (t) = set;
884 /* If this is an aggregate type or a complex type, we must record any
885 component aliasing information. */
886 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
887 record_component_aliases (t);
889 return set;
892 /* Return a brand-new alias set. */
894 alias_set_type
895 new_alias_set (void)
897 if (flag_strict_aliasing)
899 if (alias_sets == 0)
900 vec_safe_push (alias_sets, (alias_set_entry) 0);
901 vec_safe_push (alias_sets, (alias_set_entry) 0);
902 return alias_sets->length () - 1;
904 else
905 return 0;
908 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
909 not everything that aliases SUPERSET also aliases SUBSET. For example,
910 in C, a store to an `int' can alias a load of a structure containing an
911 `int', and vice versa. But it can't alias a load of a 'double' member
912 of the same structure. Here, the structure would be the SUPERSET and
913 `int' the SUBSET. This relationship is also described in the comment at
914 the beginning of this file.
916 This function should be called only once per SUPERSET/SUBSET pair.
918 It is illegal for SUPERSET to be zero; everything is implicitly a
919 subset of alias set zero. */
921 void
922 record_alias_subset (alias_set_type superset, alias_set_type subset)
924 alias_set_entry superset_entry;
925 alias_set_entry subset_entry;
927 /* It is possible in complex type situations for both sets to be the same,
928 in which case we can ignore this operation. */
929 if (superset == subset)
930 return;
932 gcc_assert (superset);
934 superset_entry = get_alias_set_entry (superset);
935 if (superset_entry == 0)
937 /* Create an entry for the SUPERSET, so that we have a place to
938 attach the SUBSET. */
939 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
940 superset_entry->alias_set = superset;
941 superset_entry->children
942 = splay_tree_new_ggc (splay_tree_compare_ints,
943 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
944 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
945 superset_entry->has_zero_child = 0;
946 (*alias_sets)[superset] = superset_entry;
949 if (subset == 0)
950 superset_entry->has_zero_child = 1;
951 else
953 subset_entry = get_alias_set_entry (subset);
954 /* If there is an entry for the subset, enter all of its children
955 (if they are not already present) as children of the SUPERSET. */
956 if (subset_entry)
958 if (subset_entry->has_zero_child)
959 superset_entry->has_zero_child = 1;
961 splay_tree_foreach (subset_entry->children, insert_subset_children,
962 superset_entry->children);
965 /* Enter the SUBSET itself as a child of the SUPERSET. */
966 splay_tree_insert (superset_entry->children,
967 (splay_tree_key) subset, 0);
971 /* Record that component types of TYPE, if any, are part of that type for
972 aliasing purposes. For record types, we only record component types
973 for fields that are not marked non-addressable. For array types, we
974 only record the component type if it is not marked non-aliased. */
976 void
977 record_component_aliases (tree type)
979 alias_set_type superset = get_alias_set (type);
980 tree field;
982 if (superset == 0)
983 return;
985 switch (TREE_CODE (type))
987 case RECORD_TYPE:
988 case UNION_TYPE:
989 case QUAL_UNION_TYPE:
990 /* Recursively record aliases for the base classes, if there are any. */
991 if (TYPE_BINFO (type))
993 int i;
994 tree binfo, base_binfo;
996 for (binfo = TYPE_BINFO (type), i = 0;
997 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
998 record_alias_subset (superset,
999 get_alias_set (BINFO_TYPE (base_binfo)));
1001 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1002 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1003 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1004 break;
1006 case COMPLEX_TYPE:
1007 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1008 break;
1010 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1011 element type. */
1013 default:
1014 break;
1018 /* Allocate an alias set for use in storing and reading from the varargs
1019 spill area. */
1021 static GTY(()) alias_set_type varargs_set = -1;
1023 alias_set_type
1024 get_varargs_alias_set (void)
1026 #if 1
1027 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1028 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1029 consistently use the varargs alias set for loads from the varargs
1030 area. So don't use it anywhere. */
1031 return 0;
1032 #else
1033 if (varargs_set == -1)
1034 varargs_set = new_alias_set ();
1036 return varargs_set;
1037 #endif
1040 /* Likewise, but used for the fixed portions of the frame, e.g., register
1041 save areas. */
1043 static GTY(()) alias_set_type frame_set = -1;
1045 alias_set_type
1046 get_frame_alias_set (void)
1048 if (frame_set == -1)
1049 frame_set = new_alias_set ();
1051 return frame_set;
1054 /* Create a new, unique base with id ID. */
1056 static rtx
1057 unique_base_value (HOST_WIDE_INT id)
1059 return gen_rtx_ADDRESS (Pmode, id);
1062 /* Return true if accesses based on any other base value cannot alias
1063 those based on X. */
1065 static bool
1066 unique_base_value_p (rtx x)
1068 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1071 /* Return true if X is known to be a base value. */
1073 static bool
1074 known_base_value_p (rtx x)
1076 switch (GET_CODE (x))
1078 case LABEL_REF:
1079 case SYMBOL_REF:
1080 return true;
1082 case ADDRESS:
1083 /* Arguments may or may not be bases; we don't know for sure. */
1084 return GET_MODE (x) != VOIDmode;
1086 default:
1087 return false;
1091 /* Inside SRC, the source of a SET, find a base address. */
1093 static rtx
1094 find_base_value (rtx src)
1096 unsigned int regno;
1098 #if defined (FIND_BASE_TERM)
1099 /* Try machine-dependent ways to find the base term. */
1100 src = FIND_BASE_TERM (src);
1101 #endif
1103 switch (GET_CODE (src))
1105 case SYMBOL_REF:
1106 case LABEL_REF:
1107 return src;
1109 case REG:
1110 regno = REGNO (src);
1111 /* At the start of a function, argument registers have known base
1112 values which may be lost later. Returning an ADDRESS
1113 expression here allows optimization based on argument values
1114 even when the argument registers are used for other purposes. */
1115 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1116 return new_reg_base_value[regno];
1118 /* If a pseudo has a known base value, return it. Do not do this
1119 for non-fixed hard regs since it can result in a circular
1120 dependency chain for registers which have values at function entry.
1122 The test above is not sufficient because the scheduler may move
1123 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1124 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1125 && regno < vec_safe_length (reg_base_value))
1127 /* If we're inside init_alias_analysis, use new_reg_base_value
1128 to reduce the number of relaxation iterations. */
1129 if (new_reg_base_value && new_reg_base_value[regno]
1130 && DF_REG_DEF_COUNT (regno) == 1)
1131 return new_reg_base_value[regno];
1133 if ((*reg_base_value)[regno])
1134 return (*reg_base_value)[regno];
1137 return 0;
1139 case MEM:
1140 /* Check for an argument passed in memory. Only record in the
1141 copying-arguments block; it is too hard to track changes
1142 otherwise. */
1143 if (copying_arguments
1144 && (XEXP (src, 0) == arg_pointer_rtx
1145 || (GET_CODE (XEXP (src, 0)) == PLUS
1146 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1147 return arg_base_value;
1148 return 0;
1150 case CONST:
1151 src = XEXP (src, 0);
1152 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1153 break;
1155 /* ... fall through ... */
1157 case PLUS:
1158 case MINUS:
1160 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1162 /* If either operand is a REG that is a known pointer, then it
1163 is the base. */
1164 if (REG_P (src_0) && REG_POINTER (src_0))
1165 return find_base_value (src_0);
1166 if (REG_P (src_1) && REG_POINTER (src_1))
1167 return find_base_value (src_1);
1169 /* If either operand is a REG, then see if we already have
1170 a known value for it. */
1171 if (REG_P (src_0))
1173 temp = find_base_value (src_0);
1174 if (temp != 0)
1175 src_0 = temp;
1178 if (REG_P (src_1))
1180 temp = find_base_value (src_1);
1181 if (temp!= 0)
1182 src_1 = temp;
1185 /* If either base is named object or a special address
1186 (like an argument or stack reference), then use it for the
1187 base term. */
1188 if (src_0 != 0 && known_base_value_p (src_0))
1189 return src_0;
1191 if (src_1 != 0 && known_base_value_p (src_1))
1192 return src_1;
1194 /* Guess which operand is the base address:
1195 If either operand is a symbol, then it is the base. If
1196 either operand is a CONST_INT, then the other is the base. */
1197 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1198 return find_base_value (src_0);
1199 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1200 return find_base_value (src_1);
1202 return 0;
1205 case LO_SUM:
1206 /* The standard form is (lo_sum reg sym) so look only at the
1207 second operand. */
1208 return find_base_value (XEXP (src, 1));
1210 case AND:
1211 /* If the second operand is constant set the base
1212 address to the first operand. */
1213 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1214 return find_base_value (XEXP (src, 0));
1215 return 0;
1217 case TRUNCATE:
1218 /* As we do not know which address space the pointer is referring to, we can
1219 handle this only if the target does not support different pointer or
1220 address modes depending on the address space. */
1221 if (!target_default_pointer_address_modes_p ())
1222 break;
1223 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1224 break;
1225 /* Fall through. */
1226 case HIGH:
1227 case PRE_INC:
1228 case PRE_DEC:
1229 case POST_INC:
1230 case POST_DEC:
1231 case PRE_MODIFY:
1232 case POST_MODIFY:
1233 return find_base_value (XEXP (src, 0));
1235 case ZERO_EXTEND:
1236 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1237 /* As we do not know which address space the pointer is referring to, we can
1238 handle this only if the target does not support different pointer or
1239 address modes depending on the address space. */
1240 if (!target_default_pointer_address_modes_p ())
1241 break;
1244 rtx temp = find_base_value (XEXP (src, 0));
1246 if (temp != 0 && CONSTANT_P (temp))
1247 temp = convert_memory_address (Pmode, temp);
1249 return temp;
1252 default:
1253 break;
1256 return 0;
1259 /* Called from init_alias_analysis indirectly through note_stores,
1260 or directly if DEST is a register with a REG_NOALIAS note attached.
1261 SET is null in the latter case. */
1263 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1264 register N has been set in this function. */
1265 static sbitmap reg_seen;
1267 static void
1268 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1270 unsigned regno;
1271 rtx src;
1272 int n;
1274 if (!REG_P (dest))
1275 return;
1277 regno = REGNO (dest);
1279 gcc_checking_assert (regno < reg_base_value->length ());
1281 /* If this spans multiple hard registers, then we must indicate that every
1282 register has an unusable value. */
1283 if (regno < FIRST_PSEUDO_REGISTER)
1284 n = hard_regno_nregs[regno][GET_MODE (dest)];
1285 else
1286 n = 1;
1287 if (n != 1)
1289 while (--n >= 0)
1291 bitmap_set_bit (reg_seen, regno + n);
1292 new_reg_base_value[regno + n] = 0;
1294 return;
1297 if (set)
1299 /* A CLOBBER wipes out any old value but does not prevent a previously
1300 unset register from acquiring a base address (i.e. reg_seen is not
1301 set). */
1302 if (GET_CODE (set) == CLOBBER)
1304 new_reg_base_value[regno] = 0;
1305 return;
1307 src = SET_SRC (set);
1309 else
1311 /* There's a REG_NOALIAS note against DEST. */
1312 if (bitmap_bit_p (reg_seen, regno))
1314 new_reg_base_value[regno] = 0;
1315 return;
1317 bitmap_set_bit (reg_seen, regno);
1318 new_reg_base_value[regno] = unique_base_value (unique_id++);
1319 return;
1322 /* If this is not the first set of REGNO, see whether the new value
1323 is related to the old one. There are two cases of interest:
1325 (1) The register might be assigned an entirely new value
1326 that has the same base term as the original set.
1328 (2) The set might be a simple self-modification that
1329 cannot change REGNO's base value.
1331 If neither case holds, reject the original base value as invalid.
1332 Note that the following situation is not detected:
1334 extern int x, y; int *p = &x; p += (&y-&x);
1336 ANSI C does not allow computing the difference of addresses
1337 of distinct top level objects. */
1338 if (new_reg_base_value[regno] != 0
1339 && find_base_value (src) != new_reg_base_value[regno])
1340 switch (GET_CODE (src))
1342 case LO_SUM:
1343 case MINUS:
1344 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1345 new_reg_base_value[regno] = 0;
1346 break;
1347 case PLUS:
1348 /* If the value we add in the PLUS is also a valid base value,
1349 this might be the actual base value, and the original value
1350 an index. */
1352 rtx other = NULL_RTX;
1354 if (XEXP (src, 0) == dest)
1355 other = XEXP (src, 1);
1356 else if (XEXP (src, 1) == dest)
1357 other = XEXP (src, 0);
1359 if (! other || find_base_value (other))
1360 new_reg_base_value[regno] = 0;
1361 break;
1363 case AND:
1364 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1365 new_reg_base_value[regno] = 0;
1366 break;
1367 default:
1368 new_reg_base_value[regno] = 0;
1369 break;
1371 /* If this is the first set of a register, record the value. */
1372 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1373 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1374 new_reg_base_value[regno] = find_base_value (src);
1376 bitmap_set_bit (reg_seen, regno);
1379 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1380 using hard registers with non-null REG_BASE_VALUE for renaming. */
1382 get_reg_base_value (unsigned int regno)
1384 return (*reg_base_value)[regno];
1387 /* If a value is known for REGNO, return it. */
1390 get_reg_known_value (unsigned int regno)
1392 if (regno >= FIRST_PSEUDO_REGISTER)
1394 regno -= FIRST_PSEUDO_REGISTER;
1395 if (regno < vec_safe_length (reg_known_value))
1396 return (*reg_known_value)[regno];
1398 return NULL;
1401 /* Set it. */
1403 static void
1404 set_reg_known_value (unsigned int regno, rtx val)
1406 if (regno >= FIRST_PSEUDO_REGISTER)
1408 regno -= FIRST_PSEUDO_REGISTER;
1409 if (regno < vec_safe_length (reg_known_value))
1410 (*reg_known_value)[regno] = val;
1414 /* Similarly for reg_known_equiv_p. */
1416 bool
1417 get_reg_known_equiv_p (unsigned int regno)
1419 if (regno >= FIRST_PSEUDO_REGISTER)
1421 regno -= FIRST_PSEUDO_REGISTER;
1422 if (regno < vec_safe_length (reg_known_value))
1423 return bitmap_bit_p (reg_known_equiv_p, regno);
1425 return false;
1428 static void
1429 set_reg_known_equiv_p (unsigned int regno, bool val)
1431 if (regno >= FIRST_PSEUDO_REGISTER)
1433 regno -= FIRST_PSEUDO_REGISTER;
1434 if (regno < vec_safe_length (reg_known_value))
1436 if (val)
1437 bitmap_set_bit (reg_known_equiv_p, regno);
1438 else
1439 bitmap_clear_bit (reg_known_equiv_p, regno);
1445 /* Returns a canonical version of X, from the point of view alias
1446 analysis. (For example, if X is a MEM whose address is a register,
1447 and the register has a known value (say a SYMBOL_REF), then a MEM
1448 whose address is the SYMBOL_REF is returned.) */
1451 canon_rtx (rtx x)
1453 /* Recursively look for equivalences. */
1454 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1456 rtx t = get_reg_known_value (REGNO (x));
1457 if (t == x)
1458 return x;
1459 if (t)
1460 return canon_rtx (t);
1463 if (GET_CODE (x) == PLUS)
1465 rtx x0 = canon_rtx (XEXP (x, 0));
1466 rtx x1 = canon_rtx (XEXP (x, 1));
1468 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1470 if (CONST_INT_P (x0))
1471 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1472 else if (CONST_INT_P (x1))
1473 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1474 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1478 /* This gives us much better alias analysis when called from
1479 the loop optimizer. Note we want to leave the original
1480 MEM alone, but need to return the canonicalized MEM with
1481 all the flags with their original values. */
1482 else if (MEM_P (x))
1483 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1485 return x;
1488 /* Return 1 if X and Y are identical-looking rtx's.
1489 Expect that X and Y has been already canonicalized.
1491 We use the data in reg_known_value above to see if two registers with
1492 different numbers are, in fact, equivalent. */
1494 static int
1495 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1497 int i;
1498 int j;
1499 enum rtx_code code;
1500 const char *fmt;
1502 if (x == 0 && y == 0)
1503 return 1;
1504 if (x == 0 || y == 0)
1505 return 0;
1507 if (x == y)
1508 return 1;
1510 code = GET_CODE (x);
1511 /* Rtx's of different codes cannot be equal. */
1512 if (code != GET_CODE (y))
1513 return 0;
1515 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1516 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1518 if (GET_MODE (x) != GET_MODE (y))
1519 return 0;
1521 /* Some RTL can be compared without a recursive examination. */
1522 switch (code)
1524 case REG:
1525 return REGNO (x) == REGNO (y);
1527 case LABEL_REF:
1528 return XEXP (x, 0) == XEXP (y, 0);
1530 case SYMBOL_REF:
1531 return XSTR (x, 0) == XSTR (y, 0);
1533 case ENTRY_VALUE:
1534 /* This is magic, don't go through canonicalization et al. */
1535 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1537 case VALUE:
1538 CASE_CONST_UNIQUE:
1539 /* There's no need to compare the contents of CONST_DOUBLEs or
1540 CONST_INTs because pointer equality is a good enough
1541 comparison for these nodes. */
1542 return 0;
1544 default:
1545 break;
1548 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1549 if (code == PLUS)
1550 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1551 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1552 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1553 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1554 /* For commutative operations, the RTX match if the operand match in any
1555 order. Also handle the simple binary and unary cases without a loop. */
1556 if (COMMUTATIVE_P (x))
1558 rtx xop0 = canon_rtx (XEXP (x, 0));
1559 rtx yop0 = canon_rtx (XEXP (y, 0));
1560 rtx yop1 = canon_rtx (XEXP (y, 1));
1562 return ((rtx_equal_for_memref_p (xop0, yop0)
1563 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1564 || (rtx_equal_for_memref_p (xop0, yop1)
1565 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1567 else if (NON_COMMUTATIVE_P (x))
1569 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1570 canon_rtx (XEXP (y, 0)))
1571 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1572 canon_rtx (XEXP (y, 1))));
1574 else if (UNARY_P (x))
1575 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1576 canon_rtx (XEXP (y, 0)));
1578 /* Compare the elements. If any pair of corresponding elements
1579 fail to match, return 0 for the whole things.
1581 Limit cases to types which actually appear in addresses. */
1583 fmt = GET_RTX_FORMAT (code);
1584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1586 switch (fmt[i])
1588 case 'i':
1589 if (XINT (x, i) != XINT (y, i))
1590 return 0;
1591 break;
1593 case 'E':
1594 /* Two vectors must have the same length. */
1595 if (XVECLEN (x, i) != XVECLEN (y, i))
1596 return 0;
1598 /* And the corresponding elements must match. */
1599 for (j = 0; j < XVECLEN (x, i); j++)
1600 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1601 canon_rtx (XVECEXP (y, i, j))) == 0)
1602 return 0;
1603 break;
1605 case 'e':
1606 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1607 canon_rtx (XEXP (y, i))) == 0)
1608 return 0;
1609 break;
1611 /* This can happen for asm operands. */
1612 case 's':
1613 if (strcmp (XSTR (x, i), XSTR (y, i)))
1614 return 0;
1615 break;
1617 /* This can happen for an asm which clobbers memory. */
1618 case '0':
1619 break;
1621 /* It is believed that rtx's at this level will never
1622 contain anything but integers and other rtx's,
1623 except for within LABEL_REFs and SYMBOL_REFs. */
1624 default:
1625 gcc_unreachable ();
1628 return 1;
1631 static rtx
1632 find_base_term (rtx x)
1634 cselib_val *val;
1635 struct elt_loc_list *l, *f;
1636 rtx ret;
1638 #if defined (FIND_BASE_TERM)
1639 /* Try machine-dependent ways to find the base term. */
1640 x = FIND_BASE_TERM (x);
1641 #endif
1643 switch (GET_CODE (x))
1645 case REG:
1646 return REG_BASE_VALUE (x);
1648 case TRUNCATE:
1649 /* As we do not know which address space the pointer is referring to, we can
1650 handle this only if the target does not support different pointer or
1651 address modes depending on the address space. */
1652 if (!target_default_pointer_address_modes_p ())
1653 return 0;
1654 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1655 return 0;
1656 /* Fall through. */
1657 case HIGH:
1658 case PRE_INC:
1659 case PRE_DEC:
1660 case POST_INC:
1661 case POST_DEC:
1662 case PRE_MODIFY:
1663 case POST_MODIFY:
1664 return find_base_term (XEXP (x, 0));
1666 case ZERO_EXTEND:
1667 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1668 /* As we do not know which address space the pointer is referring to, we can
1669 handle this only if the target does not support different pointer or
1670 address modes depending on the address space. */
1671 if (!target_default_pointer_address_modes_p ())
1672 return 0;
1675 rtx temp = find_base_term (XEXP (x, 0));
1677 if (temp != 0 && CONSTANT_P (temp))
1678 temp = convert_memory_address (Pmode, temp);
1680 return temp;
1683 case VALUE:
1684 val = CSELIB_VAL_PTR (x);
1685 ret = NULL_RTX;
1687 if (!val)
1688 return ret;
1690 if (cselib_sp_based_value_p (val))
1691 return static_reg_base_value[STACK_POINTER_REGNUM];
1693 f = val->locs;
1694 /* Temporarily reset val->locs to avoid infinite recursion. */
1695 val->locs = NULL;
1697 for (l = f; l; l = l->next)
1698 if (GET_CODE (l->loc) == VALUE
1699 && CSELIB_VAL_PTR (l->loc)->locs
1700 && !CSELIB_VAL_PTR (l->loc)->locs->next
1701 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1702 continue;
1703 else if ((ret = find_base_term (l->loc)) != 0)
1704 break;
1706 val->locs = f;
1707 return ret;
1709 case LO_SUM:
1710 /* The standard form is (lo_sum reg sym) so look only at the
1711 second operand. */
1712 return find_base_term (XEXP (x, 1));
1714 case CONST:
1715 x = XEXP (x, 0);
1716 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1717 return 0;
1718 /* Fall through. */
1719 case PLUS:
1720 case MINUS:
1722 rtx tmp1 = XEXP (x, 0);
1723 rtx tmp2 = XEXP (x, 1);
1725 /* This is a little bit tricky since we have to determine which of
1726 the two operands represents the real base address. Otherwise this
1727 routine may return the index register instead of the base register.
1729 That may cause us to believe no aliasing was possible, when in
1730 fact aliasing is possible.
1732 We use a few simple tests to guess the base register. Additional
1733 tests can certainly be added. For example, if one of the operands
1734 is a shift or multiply, then it must be the index register and the
1735 other operand is the base register. */
1737 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1738 return find_base_term (tmp2);
1740 /* If either operand is known to be a pointer, then use it
1741 to determine the base term. */
1742 if (REG_P (tmp1) && REG_POINTER (tmp1))
1744 rtx base = find_base_term (tmp1);
1745 if (base)
1746 return base;
1749 if (REG_P (tmp2) && REG_POINTER (tmp2))
1751 rtx base = find_base_term (tmp2);
1752 if (base)
1753 return base;
1756 /* Neither operand was known to be a pointer. Go ahead and find the
1757 base term for both operands. */
1758 tmp1 = find_base_term (tmp1);
1759 tmp2 = find_base_term (tmp2);
1761 /* If either base term is named object or a special address
1762 (like an argument or stack reference), then use it for the
1763 base term. */
1764 if (tmp1 != 0 && known_base_value_p (tmp1))
1765 return tmp1;
1767 if (tmp2 != 0 && known_base_value_p (tmp2))
1768 return tmp2;
1770 /* We could not determine which of the two operands was the
1771 base register and which was the index. So we can determine
1772 nothing from the base alias check. */
1773 return 0;
1776 case AND:
1777 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1778 return find_base_term (XEXP (x, 0));
1779 return 0;
1781 case SYMBOL_REF:
1782 case LABEL_REF:
1783 return x;
1785 default:
1786 return 0;
1790 /* Return true if accesses to address X may alias accesses based
1791 on the stack pointer. */
1793 bool
1794 may_be_sp_based_p (rtx x)
1796 rtx base = find_base_term (x);
1797 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1800 /* Return 0 if the addresses X and Y are known to point to different
1801 objects, 1 if they might be pointers to the same object. */
1803 static int
1804 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1805 enum machine_mode y_mode)
1807 rtx x_base = find_base_term (x);
1808 rtx y_base = find_base_term (y);
1810 /* If the address itself has no known base see if a known equivalent
1811 value has one. If either address still has no known base, nothing
1812 is known about aliasing. */
1813 if (x_base == 0)
1815 rtx x_c;
1817 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1818 return 1;
1820 x_base = find_base_term (x_c);
1821 if (x_base == 0)
1822 return 1;
1825 if (y_base == 0)
1827 rtx y_c;
1828 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1829 return 1;
1831 y_base = find_base_term (y_c);
1832 if (y_base == 0)
1833 return 1;
1836 /* If the base addresses are equal nothing is known about aliasing. */
1837 if (rtx_equal_p (x_base, y_base))
1838 return 1;
1840 /* The base addresses are different expressions. If they are not accessed
1841 via AND, there is no conflict. We can bring knowledge of object
1842 alignment into play here. For example, on alpha, "char a, b;" can
1843 alias one another, though "char a; long b;" cannot. AND addesses may
1844 implicitly alias surrounding objects; i.e. unaligned access in DImode
1845 via AND address can alias all surrounding object types except those
1846 with aligment 8 or higher. */
1847 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1848 return 1;
1849 if (GET_CODE (x) == AND
1850 && (!CONST_INT_P (XEXP (x, 1))
1851 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1852 return 1;
1853 if (GET_CODE (y) == AND
1854 && (!CONST_INT_P (XEXP (y, 1))
1855 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1856 return 1;
1858 /* Differing symbols not accessed via AND never alias. */
1859 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1860 return 0;
1862 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1863 return 0;
1865 return 1;
1868 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1869 whose UID is greater than the int uid that D points to. */
1871 static int
1872 refs_newer_value_cb (rtx *x, void *d)
1874 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1875 return 1;
1877 return 0;
1880 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1881 that of V. */
1883 static bool
1884 refs_newer_value_p (rtx expr, rtx v)
1886 int minuid = CSELIB_VAL_PTR (v)->uid;
1888 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1891 /* Convert the address X into something we can use. This is done by returning
1892 it unchanged unless it is a value; in the latter case we call cselib to get
1893 a more useful rtx. */
1896 get_addr (rtx x)
1898 cselib_val *v;
1899 struct elt_loc_list *l;
1901 if (GET_CODE (x) != VALUE)
1902 return x;
1903 v = CSELIB_VAL_PTR (x);
1904 if (v)
1906 bool have_equivs = cselib_have_permanent_equivalences ();
1907 if (have_equivs)
1908 v = canonical_cselib_val (v);
1909 for (l = v->locs; l; l = l->next)
1910 if (CONSTANT_P (l->loc))
1911 return l->loc;
1912 for (l = v->locs; l; l = l->next)
1913 if (!REG_P (l->loc) && !MEM_P (l->loc)
1914 /* Avoid infinite recursion when potentially dealing with
1915 var-tracking artificial equivalences, by skipping the
1916 equivalences themselves, and not choosing expressions
1917 that refer to newer VALUEs. */
1918 && (!have_equivs
1919 || (GET_CODE (l->loc) != VALUE
1920 && !refs_newer_value_p (l->loc, x))))
1921 return l->loc;
1922 if (have_equivs)
1924 for (l = v->locs; l; l = l->next)
1925 if (REG_P (l->loc)
1926 || (GET_CODE (l->loc) != VALUE
1927 && !refs_newer_value_p (l->loc, x)))
1928 return l->loc;
1929 /* Return the canonical value. */
1930 return v->val_rtx;
1932 if (v->locs)
1933 return v->locs->loc;
1935 return x;
1938 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1939 where SIZE is the size in bytes of the memory reference. If ADDR
1940 is not modified by the memory reference then ADDR is returned. */
1942 static rtx
1943 addr_side_effect_eval (rtx addr, int size, int n_refs)
1945 int offset = 0;
1947 switch (GET_CODE (addr))
1949 case PRE_INC:
1950 offset = (n_refs + 1) * size;
1951 break;
1952 case PRE_DEC:
1953 offset = -(n_refs + 1) * size;
1954 break;
1955 case POST_INC:
1956 offset = n_refs * size;
1957 break;
1958 case POST_DEC:
1959 offset = -n_refs * size;
1960 break;
1962 default:
1963 return addr;
1966 if (offset)
1967 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1968 GEN_INT (offset));
1969 else
1970 addr = XEXP (addr, 0);
1971 addr = canon_rtx (addr);
1973 return addr;
1976 /* Return TRUE if an object X sized at XSIZE bytes and another object
1977 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1978 any of the sizes is zero, assume an overlap, otherwise use the
1979 absolute value of the sizes as the actual sizes. */
1981 static inline bool
1982 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1984 return (xsize == 0 || ysize == 0
1985 || (c >= 0
1986 ? (abs (xsize) > c)
1987 : (abs (ysize) > -c)));
1990 /* Return one if X and Y (memory addresses) reference the
1991 same location in memory or if the references overlap.
1992 Return zero if they do not overlap, else return
1993 minus one in which case they still might reference the same location.
1995 C is an offset accumulator. When
1996 C is nonzero, we are testing aliases between X and Y + C.
1997 XSIZE is the size in bytes of the X reference,
1998 similarly YSIZE is the size in bytes for Y.
1999 Expect that canon_rtx has been already called for X and Y.
2001 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2002 referenced (the reference was BLKmode), so make the most pessimistic
2003 assumptions.
2005 If XSIZE or YSIZE is negative, we may access memory outside the object
2006 being referenced as a side effect. This can happen when using AND to
2007 align memory references, as is done on the Alpha.
2009 Nice to notice that varying addresses cannot conflict with fp if no
2010 local variables had their addresses taken, but that's too hard now.
2012 ??? Contrary to the tree alias oracle this does not return
2013 one for X + non-constant and Y + non-constant when X and Y are equal.
2014 If that is fixed the TBAA hack for union type-punning can be removed. */
2016 static int
2017 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2019 if (GET_CODE (x) == VALUE)
2021 if (REG_P (y))
2023 struct elt_loc_list *l = NULL;
2024 if (CSELIB_VAL_PTR (x))
2025 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2026 l; l = l->next)
2027 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2028 break;
2029 if (l)
2030 x = y;
2031 else
2032 x = get_addr (x);
2034 /* Don't call get_addr if y is the same VALUE. */
2035 else if (x != y)
2036 x = get_addr (x);
2038 if (GET_CODE (y) == VALUE)
2040 if (REG_P (x))
2042 struct elt_loc_list *l = NULL;
2043 if (CSELIB_VAL_PTR (y))
2044 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2045 l; l = l->next)
2046 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2047 break;
2048 if (l)
2049 y = x;
2050 else
2051 y = get_addr (y);
2053 /* Don't call get_addr if x is the same VALUE. */
2054 else if (y != x)
2055 y = get_addr (y);
2057 if (GET_CODE (x) == HIGH)
2058 x = XEXP (x, 0);
2059 else if (GET_CODE (x) == LO_SUM)
2060 x = XEXP (x, 1);
2061 else
2062 x = addr_side_effect_eval (x, abs (xsize), 0);
2063 if (GET_CODE (y) == HIGH)
2064 y = XEXP (y, 0);
2065 else if (GET_CODE (y) == LO_SUM)
2066 y = XEXP (y, 1);
2067 else
2068 y = addr_side_effect_eval (y, abs (ysize), 0);
2070 if (rtx_equal_for_memref_p (x, y))
2072 return offset_overlap_p (c, xsize, ysize);
2075 /* This code used to check for conflicts involving stack references and
2076 globals but the base address alias code now handles these cases. */
2078 if (GET_CODE (x) == PLUS)
2080 /* The fact that X is canonicalized means that this
2081 PLUS rtx is canonicalized. */
2082 rtx x0 = XEXP (x, 0);
2083 rtx x1 = XEXP (x, 1);
2085 if (GET_CODE (y) == PLUS)
2087 /* The fact that Y is canonicalized means that this
2088 PLUS rtx is canonicalized. */
2089 rtx y0 = XEXP (y, 0);
2090 rtx y1 = XEXP (y, 1);
2092 if (rtx_equal_for_memref_p (x1, y1))
2093 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2094 if (rtx_equal_for_memref_p (x0, y0))
2095 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2096 if (CONST_INT_P (x1))
2098 if (CONST_INT_P (y1))
2099 return memrefs_conflict_p (xsize, x0, ysize, y0,
2100 c - INTVAL (x1) + INTVAL (y1));
2101 else
2102 return memrefs_conflict_p (xsize, x0, ysize, y,
2103 c - INTVAL (x1));
2105 else if (CONST_INT_P (y1))
2106 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2108 return -1;
2110 else if (CONST_INT_P (x1))
2111 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2113 else if (GET_CODE (y) == PLUS)
2115 /* The fact that Y is canonicalized means that this
2116 PLUS rtx is canonicalized. */
2117 rtx y0 = XEXP (y, 0);
2118 rtx y1 = XEXP (y, 1);
2120 if (CONST_INT_P (y1))
2121 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2122 else
2123 return -1;
2126 if (GET_CODE (x) == GET_CODE (y))
2127 switch (GET_CODE (x))
2129 case MULT:
2131 /* Handle cases where we expect the second operands to be the
2132 same, and check only whether the first operand would conflict
2133 or not. */
2134 rtx x0, y0;
2135 rtx x1 = canon_rtx (XEXP (x, 1));
2136 rtx y1 = canon_rtx (XEXP (y, 1));
2137 if (! rtx_equal_for_memref_p (x1, y1))
2138 return -1;
2139 x0 = canon_rtx (XEXP (x, 0));
2140 y0 = canon_rtx (XEXP (y, 0));
2141 if (rtx_equal_for_memref_p (x0, y0))
2142 return offset_overlap_p (c, xsize, ysize);
2144 /* Can't properly adjust our sizes. */
2145 if (!CONST_INT_P (x1))
2146 return -1;
2147 xsize /= INTVAL (x1);
2148 ysize /= INTVAL (x1);
2149 c /= INTVAL (x1);
2150 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2153 default:
2154 break;
2157 /* Deal with alignment ANDs by adjusting offset and size so as to
2158 cover the maximum range, without taking any previously known
2159 alignment into account. Make a size negative after such an
2160 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2161 assume a potential overlap, because they may end up in contiguous
2162 memory locations and the stricter-alignment access may span over
2163 part of both. */
2164 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2166 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2167 unsigned HOST_WIDE_INT uc = sc;
2168 if (sc < 0 && -uc == (uc & -uc))
2170 if (xsize > 0)
2171 xsize = -xsize;
2172 if (xsize)
2173 xsize += sc + 1;
2174 c -= sc + 1;
2175 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2176 ysize, y, c);
2179 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2181 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2182 unsigned HOST_WIDE_INT uc = sc;
2183 if (sc < 0 && -uc == (uc & -uc))
2185 if (ysize > 0)
2186 ysize = -ysize;
2187 if (ysize)
2188 ysize += sc + 1;
2189 c += sc + 1;
2190 return memrefs_conflict_p (xsize, x,
2191 ysize, canon_rtx (XEXP (y, 0)), c);
2195 if (CONSTANT_P (x))
2197 if (CONST_INT_P (x) && CONST_INT_P (y))
2199 c += (INTVAL (y) - INTVAL (x));
2200 return offset_overlap_p (c, xsize, ysize);
2203 if (GET_CODE (x) == CONST)
2205 if (GET_CODE (y) == CONST)
2206 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2207 ysize, canon_rtx (XEXP (y, 0)), c);
2208 else
2209 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2210 ysize, y, c);
2212 if (GET_CODE (y) == CONST)
2213 return memrefs_conflict_p (xsize, x, ysize,
2214 canon_rtx (XEXP (y, 0)), c);
2216 /* Assume a potential overlap for symbolic addresses that went
2217 through alignment adjustments (i.e., that have negative
2218 sizes), because we can't know how far they are from each
2219 other. */
2220 if (CONSTANT_P (y))
2221 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2223 return -1;
2226 return -1;
2229 /* Functions to compute memory dependencies.
2231 Since we process the insns in execution order, we can build tables
2232 to keep track of what registers are fixed (and not aliased), what registers
2233 are varying in known ways, and what registers are varying in unknown
2234 ways.
2236 If both memory references are volatile, then there must always be a
2237 dependence between the two references, since their order can not be
2238 changed. A volatile and non-volatile reference can be interchanged
2239 though.
2241 We also must allow AND addresses, because they may generate accesses
2242 outside the object being referenced. This is used to generate aligned
2243 addresses from unaligned addresses, for instance, the alpha
2244 storeqi_unaligned pattern. */
2246 /* Read dependence: X is read after read in MEM takes place. There can
2247 only be a dependence here if both reads are volatile, or if either is
2248 an explicit barrier. */
2251 read_dependence (const_rtx mem, const_rtx x)
2253 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2254 return true;
2255 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2256 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2257 return true;
2258 return false;
2261 /* Return true if we can determine that the fields referenced cannot
2262 overlap for any pair of objects. */
2264 static bool
2265 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2267 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2268 const_tree fieldx, fieldy, typex, typey, orig_y;
2270 if (!flag_strict_aliasing
2271 || !x || !y
2272 || TREE_CODE (x) != COMPONENT_REF
2273 || TREE_CODE (y) != COMPONENT_REF)
2274 return false;
2278 /* The comparison has to be done at a common type, since we don't
2279 know how the inheritance hierarchy works. */
2280 orig_y = y;
2283 fieldx = TREE_OPERAND (x, 1);
2284 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2286 y = orig_y;
2289 fieldy = TREE_OPERAND (y, 1);
2290 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2292 if (typex == typey)
2293 goto found;
2295 y = TREE_OPERAND (y, 0);
2297 while (y && TREE_CODE (y) == COMPONENT_REF);
2299 x = TREE_OPERAND (x, 0);
2301 while (x && TREE_CODE (x) == COMPONENT_REF);
2302 /* Never found a common type. */
2303 return false;
2305 found:
2306 /* If we're left with accessing different fields of a structure, then no
2307 possible overlap, unless they are both bitfields. */
2308 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2309 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2311 /* The comparison on the current field failed. If we're accessing
2312 a very nested structure, look at the next outer level. */
2313 x = TREE_OPERAND (x, 0);
2314 y = TREE_OPERAND (y, 0);
2316 while (x && y
2317 && TREE_CODE (x) == COMPONENT_REF
2318 && TREE_CODE (y) == COMPONENT_REF);
2320 return false;
2323 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2325 static tree
2326 decl_for_component_ref (tree x)
2330 x = TREE_OPERAND (x, 0);
2332 while (x && TREE_CODE (x) == COMPONENT_REF);
2334 return x && DECL_P (x) ? x : NULL_TREE;
2337 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2338 for the offset of the field reference. *KNOWN_P says whether the
2339 offset is known. */
2341 static void
2342 adjust_offset_for_component_ref (tree x, bool *known_p,
2343 HOST_WIDE_INT *offset)
2345 if (!*known_p)
2346 return;
2349 tree xoffset = component_ref_field_offset (x);
2350 tree field = TREE_OPERAND (x, 1);
2352 if (! host_integerp (xoffset, 1))
2354 *known_p = false;
2355 return;
2357 *offset += (tree_low_cst (xoffset, 1)
2358 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2359 / BITS_PER_UNIT));
2361 x = TREE_OPERAND (x, 0);
2363 while (x && TREE_CODE (x) == COMPONENT_REF);
2366 /* Return nonzero if we can determine the exprs corresponding to memrefs
2367 X and Y and they do not overlap.
2368 If LOOP_VARIANT is set, skip offset-based disambiguation */
2371 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2373 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2374 rtx rtlx, rtly;
2375 rtx basex, basey;
2376 bool moffsetx_known_p, moffsety_known_p;
2377 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2378 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2380 /* Unless both have exprs, we can't tell anything. */
2381 if (exprx == 0 || expry == 0)
2382 return 0;
2384 /* For spill-slot accesses make sure we have valid offsets. */
2385 if ((exprx == get_spill_slot_decl (false)
2386 && ! MEM_OFFSET_KNOWN_P (x))
2387 || (expry == get_spill_slot_decl (false)
2388 && ! MEM_OFFSET_KNOWN_P (y)))
2389 return 0;
2391 /* If the field reference test failed, look at the DECLs involved. */
2392 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2393 if (moffsetx_known_p)
2394 moffsetx = MEM_OFFSET (x);
2395 if (TREE_CODE (exprx) == COMPONENT_REF)
2397 tree t = decl_for_component_ref (exprx);
2398 if (! t)
2399 return 0;
2400 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2401 exprx = t;
2404 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2405 if (moffsety_known_p)
2406 moffsety = MEM_OFFSET (y);
2407 if (TREE_CODE (expry) == COMPONENT_REF)
2409 tree t = decl_for_component_ref (expry);
2410 if (! t)
2411 return 0;
2412 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2413 expry = t;
2416 if (! DECL_P (exprx) || ! DECL_P (expry))
2417 return 0;
2419 /* With invalid code we can end up storing into the constant pool.
2420 Bail out to avoid ICEing when creating RTL for this.
2421 See gfortran.dg/lto/20091028-2_0.f90. */
2422 if (TREE_CODE (exprx) == CONST_DECL
2423 || TREE_CODE (expry) == CONST_DECL)
2424 return 1;
2426 rtlx = DECL_RTL (exprx);
2427 rtly = DECL_RTL (expry);
2429 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2430 can't overlap unless they are the same because we never reuse that part
2431 of the stack frame used for locals for spilled pseudos. */
2432 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2433 && ! rtx_equal_p (rtlx, rtly))
2434 return 1;
2436 /* If we have MEMs referring to different address spaces (which can
2437 potentially overlap), we cannot easily tell from the addresses
2438 whether the references overlap. */
2439 if (MEM_P (rtlx) && MEM_P (rtly)
2440 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2441 return 0;
2443 /* Get the base and offsets of both decls. If either is a register, we
2444 know both are and are the same, so use that as the base. The only
2445 we can avoid overlap is if we can deduce that they are nonoverlapping
2446 pieces of that decl, which is very rare. */
2447 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2448 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2449 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2451 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2452 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2453 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2455 /* If the bases are different, we know they do not overlap if both
2456 are constants or if one is a constant and the other a pointer into the
2457 stack frame. Otherwise a different base means we can't tell if they
2458 overlap or not. */
2459 if (! rtx_equal_p (basex, basey))
2460 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2461 || (CONSTANT_P (basex) && REG_P (basey)
2462 && REGNO_PTR_FRAME_P (REGNO (basey)))
2463 || (CONSTANT_P (basey) && REG_P (basex)
2464 && REGNO_PTR_FRAME_P (REGNO (basex))));
2466 /* Offset based disambiguation not appropriate for loop invariant */
2467 if (loop_invariant)
2468 return 0;
2470 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2471 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2472 : -1);
2473 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2474 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2475 : -1);
2477 /* If we have an offset for either memref, it can update the values computed
2478 above. */
2479 if (moffsetx_known_p)
2480 offsetx += moffsetx, sizex -= moffsetx;
2481 if (moffsety_known_p)
2482 offsety += moffsety, sizey -= moffsety;
2484 /* If a memref has both a size and an offset, we can use the smaller size.
2485 We can't do this if the offset isn't known because we must view this
2486 memref as being anywhere inside the DECL's MEM. */
2487 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2488 sizex = MEM_SIZE (x);
2489 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2490 sizey = MEM_SIZE (y);
2492 /* Put the values of the memref with the lower offset in X's values. */
2493 if (offsetx > offsety)
2495 tem = offsetx, offsetx = offsety, offsety = tem;
2496 tem = sizex, sizex = sizey, sizey = tem;
2499 /* If we don't know the size of the lower-offset value, we can't tell
2500 if they conflict. Otherwise, we do the test. */
2501 return sizex >= 0 && offsety >= offsetx + sizex;
2504 /* Helper for true_dependence and canon_true_dependence.
2505 Checks for true dependence: X is read after store in MEM takes place.
2507 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2508 NULL_RTX, and the canonical addresses of MEM and X are both computed
2509 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2511 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2513 Returns 1 if there is a true dependence, 0 otherwise. */
2515 static int
2516 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2517 const_rtx x, rtx x_addr, bool mem_canonicalized)
2519 rtx base;
2520 int ret;
2522 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2523 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2525 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2526 return 1;
2528 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2529 This is used in epilogue deallocation functions, and in cselib. */
2530 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2531 return 1;
2532 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2533 return 1;
2534 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2535 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2536 return 1;
2538 /* Read-only memory is by definition never modified, and therefore can't
2539 conflict with anything. We don't expect to find read-only set on MEM,
2540 but stupid user tricks can produce them, so don't die. */
2541 if (MEM_READONLY_P (x))
2542 return 0;
2544 /* If we have MEMs referring to different address spaces (which can
2545 potentially overlap), we cannot easily tell from the addresses
2546 whether the references overlap. */
2547 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2548 return 1;
2550 if (! mem_addr)
2552 mem_addr = XEXP (mem, 0);
2553 if (mem_mode == VOIDmode)
2554 mem_mode = GET_MODE (mem);
2557 if (! x_addr)
2559 x_addr = XEXP (x, 0);
2560 if (!((GET_CODE (x_addr) == VALUE
2561 && GET_CODE (mem_addr) != VALUE
2562 && reg_mentioned_p (x_addr, mem_addr))
2563 || (GET_CODE (x_addr) != VALUE
2564 && GET_CODE (mem_addr) == VALUE
2565 && reg_mentioned_p (mem_addr, x_addr))))
2567 x_addr = get_addr (x_addr);
2568 if (! mem_canonicalized)
2569 mem_addr = get_addr (mem_addr);
2573 base = find_base_term (x_addr);
2574 if (base && (GET_CODE (base) == LABEL_REF
2575 || (GET_CODE (base) == SYMBOL_REF
2576 && CONSTANT_POOL_ADDRESS_P (base))))
2577 return 0;
2579 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2580 return 0;
2582 x_addr = canon_rtx (x_addr);
2583 if (!mem_canonicalized)
2584 mem_addr = canon_rtx (mem_addr);
2586 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2587 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2588 return ret;
2590 if (mems_in_disjoint_alias_sets_p (x, mem))
2591 return 0;
2593 if (nonoverlapping_memrefs_p (mem, x, false))
2594 return 0;
2596 if (nonoverlapping_component_refs_p (mem, x))
2597 return 0;
2599 return rtx_refs_may_alias_p (x, mem, true);
2602 /* True dependence: X is read after store in MEM takes place. */
2605 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2607 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2608 x, NULL_RTX, /*mem_canonicalized=*/false);
2611 /* Canonical true dependence: X is read after store in MEM takes place.
2612 Variant of true_dependence which assumes MEM has already been
2613 canonicalized (hence we no longer do that here).
2614 The mem_addr argument has been added, since true_dependence_1 computed
2615 this value prior to canonicalizing. */
2618 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2619 const_rtx x, rtx x_addr)
2621 return true_dependence_1 (mem, mem_mode, mem_addr,
2622 x, x_addr, /*mem_canonicalized=*/true);
2625 /* Returns nonzero if a write to X might alias a previous read from
2626 (or, if WRITEP is nonzero, a write to) MEM. */
2628 static int
2629 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2631 rtx x_addr, mem_addr;
2632 rtx base;
2633 int ret;
2635 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2636 return 1;
2638 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2639 This is used in epilogue deallocation functions. */
2640 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2641 return 1;
2642 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2643 return 1;
2644 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2645 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2646 return 1;
2648 /* A read from read-only memory can't conflict with read-write memory. */
2649 if (!writep && MEM_READONLY_P (mem))
2650 return 0;
2652 /* If we have MEMs referring to different address spaces (which can
2653 potentially overlap), we cannot easily tell from the addresses
2654 whether the references overlap. */
2655 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2656 return 1;
2658 x_addr = XEXP (x, 0);
2659 mem_addr = XEXP (mem, 0);
2660 if (!((GET_CODE (x_addr) == VALUE
2661 && GET_CODE (mem_addr) != VALUE
2662 && reg_mentioned_p (x_addr, mem_addr))
2663 || (GET_CODE (x_addr) != VALUE
2664 && GET_CODE (mem_addr) == VALUE
2665 && reg_mentioned_p (mem_addr, x_addr))))
2667 x_addr = get_addr (x_addr);
2668 mem_addr = get_addr (mem_addr);
2671 if (! writep)
2673 base = find_base_term (mem_addr);
2674 if (base && (GET_CODE (base) == LABEL_REF
2675 || (GET_CODE (base) == SYMBOL_REF
2676 && CONSTANT_POOL_ADDRESS_P (base))))
2677 return 0;
2680 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2681 GET_MODE (mem)))
2682 return 0;
2684 x_addr = canon_rtx (x_addr);
2685 mem_addr = canon_rtx (mem_addr);
2687 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2688 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2689 return ret;
2691 if (nonoverlapping_memrefs_p (x, mem, false))
2692 return 0;
2694 return rtx_refs_may_alias_p (x, mem, false);
2697 /* Anti dependence: X is written after read in MEM takes place. */
2700 anti_dependence (const_rtx mem, const_rtx x)
2702 return write_dependence_p (mem, x, /*writep=*/0);
2705 /* Output dependence: X is written after store in MEM takes place. */
2708 output_dependence (const_rtx mem, const_rtx x)
2710 return write_dependence_p (mem, x, /*writep=*/1);
2715 /* Check whether X may be aliased with MEM. Don't do offset-based
2716 memory disambiguation & TBAA. */
2718 may_alias_p (const_rtx mem, const_rtx x)
2720 rtx x_addr, mem_addr;
2722 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2723 return 1;
2725 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2726 This is used in epilogue deallocation functions. */
2727 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2728 return 1;
2729 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2730 return 1;
2731 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2732 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2733 return 1;
2735 /* Read-only memory is by definition never modified, and therefore can't
2736 conflict with anything. We don't expect to find read-only set on MEM,
2737 but stupid user tricks can produce them, so don't die. */
2738 if (MEM_READONLY_P (x))
2739 return 0;
2741 /* If we have MEMs referring to different address spaces (which can
2742 potentially overlap), we cannot easily tell from the addresses
2743 whether the references overlap. */
2744 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2745 return 1;
2747 x_addr = XEXP (x, 0);
2748 mem_addr = XEXP (mem, 0);
2749 if (!((GET_CODE (x_addr) == VALUE
2750 && GET_CODE (mem_addr) != VALUE
2751 && reg_mentioned_p (x_addr, mem_addr))
2752 || (GET_CODE (x_addr) != VALUE
2753 && GET_CODE (mem_addr) == VALUE
2754 && reg_mentioned_p (mem_addr, x_addr))))
2756 x_addr = get_addr (x_addr);
2757 mem_addr = get_addr (mem_addr);
2760 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2761 return 0;
2763 x_addr = canon_rtx (x_addr);
2764 mem_addr = canon_rtx (mem_addr);
2766 if (nonoverlapping_memrefs_p (mem, x, true))
2767 return 0;
2769 /* TBAA not valid for loop_invarint */
2770 return rtx_refs_may_alias_p (x, mem, false);
2773 void
2774 init_alias_target (void)
2776 int i;
2778 if (!arg_base_value)
2779 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2781 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2783 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2784 /* Check whether this register can hold an incoming pointer
2785 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2786 numbers, so translate if necessary due to register windows. */
2787 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2788 && HARD_REGNO_MODE_OK (i, Pmode))
2789 static_reg_base_value[i] = arg_base_value;
2791 static_reg_base_value[STACK_POINTER_REGNUM]
2792 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2793 static_reg_base_value[ARG_POINTER_REGNUM]
2794 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2795 static_reg_base_value[FRAME_POINTER_REGNUM]
2796 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2797 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2798 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2799 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2800 #endif
2803 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2804 to be memory reference. */
2805 static bool memory_modified;
2806 static void
2807 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2809 if (MEM_P (x))
2811 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2812 memory_modified = true;
2817 /* Return true when INSN possibly modify memory contents of MEM
2818 (i.e. address can be modified). */
2819 bool
2820 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2822 if (!INSN_P (insn))
2823 return false;
2824 memory_modified = false;
2825 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2826 return memory_modified;
2829 /* Return TRUE if the destination of a set is rtx identical to
2830 ITEM. */
2831 static inline bool
2832 set_dest_equal_p (const_rtx set, const_rtx item)
2834 rtx dest = SET_DEST (set);
2835 return rtx_equal_p (dest, item);
2838 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2839 *DEFINITELY* modify the memory contents of MEM. */
2840 bool
2841 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2843 if (!INSN_P (insn))
2844 return false;
2845 insn = PATTERN (insn);
2846 if (GET_CODE (insn) == SET)
2847 return set_dest_equal_p (insn, mem);
2848 else if (GET_CODE (insn) == PARALLEL)
2850 int i;
2851 for (i = 0; i < XVECLEN (insn, 0); i++)
2853 rtx sub = XVECEXP (insn, 0, i);
2854 if (GET_CODE (sub) == SET
2855 && set_dest_equal_p (sub, mem))
2856 return true;
2859 return false;
2862 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2863 array. */
2865 void
2866 init_alias_analysis (void)
2868 unsigned int maxreg = max_reg_num ();
2869 int changed, pass;
2870 int i;
2871 unsigned int ui;
2872 rtx insn, val;
2873 int rpo_cnt;
2874 int *rpo;
2876 timevar_push (TV_ALIAS_ANALYSIS);
2878 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2879 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2880 bitmap_clear (reg_known_equiv_p);
2882 /* If we have memory allocated from the previous run, use it. */
2883 if (old_reg_base_value)
2884 reg_base_value = old_reg_base_value;
2886 if (reg_base_value)
2887 reg_base_value->truncate (0);
2889 vec_safe_grow_cleared (reg_base_value, maxreg);
2891 new_reg_base_value = XNEWVEC (rtx, maxreg);
2892 reg_seen = sbitmap_alloc (maxreg);
2894 /* The basic idea is that each pass through this loop will use the
2895 "constant" information from the previous pass to propagate alias
2896 information through another level of assignments.
2898 The propagation is done on the CFG in reverse post-order, to propagate
2899 things forward as far as possible in each iteration.
2901 This could get expensive if the assignment chains are long. Maybe
2902 we should throttle the number of iterations, possibly based on
2903 the optimization level or flag_expensive_optimizations.
2905 We could propagate more information in the first pass by making use
2906 of DF_REG_DEF_COUNT to determine immediately that the alias information
2907 for a pseudo is "constant".
2909 A program with an uninitialized variable can cause an infinite loop
2910 here. Instead of doing a full dataflow analysis to detect such problems
2911 we just cap the number of iterations for the loop.
2913 The state of the arrays for the set chain in question does not matter
2914 since the program has undefined behavior. */
2916 rpo = XNEWVEC (int, n_basic_blocks);
2917 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2919 pass = 0;
2922 /* Assume nothing will change this iteration of the loop. */
2923 changed = 0;
2925 /* We want to assign the same IDs each iteration of this loop, so
2926 start counting from one each iteration of the loop. */
2927 unique_id = 1;
2929 /* We're at the start of the function each iteration through the
2930 loop, so we're copying arguments. */
2931 copying_arguments = true;
2933 /* Wipe the potential alias information clean for this pass. */
2934 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2936 /* Wipe the reg_seen array clean. */
2937 bitmap_clear (reg_seen);
2939 /* Initialize the alias information for this pass. */
2940 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2941 if (static_reg_base_value[i])
2943 new_reg_base_value[i] = static_reg_base_value[i];
2944 bitmap_set_bit (reg_seen, i);
2947 /* Walk the insns adding values to the new_reg_base_value array. */
2948 for (i = 0; i < rpo_cnt; i++)
2950 basic_block bb = BASIC_BLOCK (rpo[i]);
2951 FOR_BB_INSNS (bb, insn)
2953 if (NONDEBUG_INSN_P (insn))
2955 rtx note, set;
2957 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2958 /* The prologue/epilogue insns are not threaded onto the
2959 insn chain until after reload has completed. Thus,
2960 there is no sense wasting time checking if INSN is in
2961 the prologue/epilogue until after reload has completed. */
2962 if (reload_completed
2963 && prologue_epilogue_contains (insn))
2964 continue;
2965 #endif
2967 /* If this insn has a noalias note, process it, Otherwise,
2968 scan for sets. A simple set will have no side effects
2969 which could change the base value of any other register. */
2971 if (GET_CODE (PATTERN (insn)) == SET
2972 && REG_NOTES (insn) != 0
2973 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2974 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2975 else
2976 note_stores (PATTERN (insn), record_set, NULL);
2978 set = single_set (insn);
2980 if (set != 0
2981 && REG_P (SET_DEST (set))
2982 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2984 unsigned int regno = REGNO (SET_DEST (set));
2985 rtx src = SET_SRC (set);
2986 rtx t;
2988 note = find_reg_equal_equiv_note (insn);
2989 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2990 && DF_REG_DEF_COUNT (regno) != 1)
2991 note = NULL_RTX;
2993 if (note != NULL_RTX
2994 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2995 && ! rtx_varies_p (XEXP (note, 0), 1)
2996 && ! reg_overlap_mentioned_p (SET_DEST (set),
2997 XEXP (note, 0)))
2999 set_reg_known_value (regno, XEXP (note, 0));
3000 set_reg_known_equiv_p (regno,
3001 REG_NOTE_KIND (note) == REG_EQUIV);
3003 else if (DF_REG_DEF_COUNT (regno) == 1
3004 && GET_CODE (src) == PLUS
3005 && REG_P (XEXP (src, 0))
3006 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3007 && CONST_INT_P (XEXP (src, 1)))
3009 t = plus_constant (GET_MODE (src), t,
3010 INTVAL (XEXP (src, 1)));
3011 set_reg_known_value (regno, t);
3012 set_reg_known_equiv_p (regno, false);
3014 else if (DF_REG_DEF_COUNT (regno) == 1
3015 && ! rtx_varies_p (src, 1))
3017 set_reg_known_value (regno, src);
3018 set_reg_known_equiv_p (regno, false);
3022 else if (NOTE_P (insn)
3023 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3024 copying_arguments = false;
3028 /* Now propagate values from new_reg_base_value to reg_base_value. */
3029 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3031 for (ui = 0; ui < maxreg; ui++)
3033 if (new_reg_base_value[ui]
3034 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3035 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3037 (*reg_base_value)[ui] = new_reg_base_value[ui];
3038 changed = 1;
3042 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3043 XDELETEVEC (rpo);
3045 /* Fill in the remaining entries. */
3046 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3048 int regno = i + FIRST_PSEUDO_REGISTER;
3049 if (! val)
3050 set_reg_known_value (regno, regno_reg_rtx[regno]);
3053 /* Clean up. */
3054 free (new_reg_base_value);
3055 new_reg_base_value = 0;
3056 sbitmap_free (reg_seen);
3057 reg_seen = 0;
3058 timevar_pop (TV_ALIAS_ANALYSIS);
3061 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3062 Special API for var-tracking pass purposes. */
3064 void
3065 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3067 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3070 void
3071 end_alias_analysis (void)
3073 old_reg_base_value = reg_base_value;
3074 vec_free (reg_known_value);
3075 sbitmap_free (reg_known_equiv_p);
3078 #include "gt-alias.h"