/cp
[official-gcc.git] / gcc / tree-ssa-reassoc.c
blobb989ca55bb9caa55b6ab61abecf0002f03325261
1 /* Reassociation for trees.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "tree.h"
29 #include "stor-layout.h"
30 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-inline.h"
33 #include "pointer-set.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-fold.h"
37 #include "tree-eh.h"
38 #include "gimple-expr.h"
39 #include "is-a.h"
40 #include "gimple.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "gimple-ssa.h"
44 #include "tree-cfg.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "stringpool.h"
48 #include "tree-ssanames.h"
49 #include "tree-ssa-loop-niter.h"
50 #include "tree-ssa-loop.h"
51 #include "expr.h"
52 #include "tree-dfa.h"
53 #include "tree-ssa.h"
54 #include "tree-iterator.h"
55 #include "tree-pass.h"
56 #include "alloc-pool.h"
57 #include "langhooks.h"
58 #include "cfgloop.h"
59 #include "flags.h"
60 #include "target.h"
61 #include "params.h"
62 #include "diagnostic-core.h"
64 /* This is a simple global reassociation pass. It is, in part, based
65 on the LLVM pass of the same name (They do some things more/less
66 than we do, in different orders, etc).
68 It consists of five steps:
70 1. Breaking up subtract operations into addition + negate, where
71 it would promote the reassociation of adds.
73 2. Left linearization of the expression trees, so that (A+B)+(C+D)
74 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
75 During linearization, we place the operands of the binary
76 expressions into a vector of operand_entry_t
78 3. Optimization of the operand lists, eliminating things like a +
79 -a, a & a, etc.
81 3a. Combine repeated factors with the same occurrence counts
82 into a __builtin_powi call that will later be optimized into
83 an optimal number of multiplies.
85 4. Rewrite the expression trees we linearized and optimized so
86 they are in proper rank order.
88 5. Repropagate negates, as nothing else will clean it up ATM.
90 A bit of theory on #4, since nobody seems to write anything down
91 about why it makes sense to do it the way they do it:
93 We could do this much nicer theoretically, but don't (for reasons
94 explained after how to do it theoretically nice :P).
96 In order to promote the most redundancy elimination, you want
97 binary expressions whose operands are the same rank (or
98 preferably, the same value) exposed to the redundancy eliminator,
99 for possible elimination.
101 So the way to do this if we really cared, is to build the new op
102 tree from the leaves to the roots, merging as you go, and putting the
103 new op on the end of the worklist, until you are left with one
104 thing on the worklist.
106 IE if you have to rewrite the following set of operands (listed with
107 rank in parentheses), with opcode PLUS_EXPR:
109 a (1), b (1), c (1), d (2), e (2)
112 We start with our merge worklist empty, and the ops list with all of
113 those on it.
115 You want to first merge all leaves of the same rank, as much as
116 possible.
118 So first build a binary op of
120 mergetmp = a + b, and put "mergetmp" on the merge worklist.
122 Because there is no three operand form of PLUS_EXPR, c is not going to
123 be exposed to redundancy elimination as a rank 1 operand.
125 So you might as well throw it on the merge worklist (you could also
126 consider it to now be a rank two operand, and merge it with d and e,
127 but in this case, you then have evicted e from a binary op. So at
128 least in this situation, you can't win.)
130 Then build a binary op of d + e
131 mergetmp2 = d + e
133 and put mergetmp2 on the merge worklist.
135 so merge worklist = {mergetmp, c, mergetmp2}
137 Continue building binary ops of these operations until you have only
138 one operation left on the worklist.
140 So we have
142 build binary op
143 mergetmp3 = mergetmp + c
145 worklist = {mergetmp2, mergetmp3}
147 mergetmp4 = mergetmp2 + mergetmp3
149 worklist = {mergetmp4}
151 because we have one operation left, we can now just set the original
152 statement equal to the result of that operation.
154 This will at least expose a + b and d + e to redundancy elimination
155 as binary operations.
157 For extra points, you can reuse the old statements to build the
158 mergetmps, since you shouldn't run out.
160 So why don't we do this?
162 Because it's expensive, and rarely will help. Most trees we are
163 reassociating have 3 or less ops. If they have 2 ops, they already
164 will be written into a nice single binary op. If you have 3 ops, a
165 single simple check suffices to tell you whether the first two are of the
166 same rank. If so, you know to order it
168 mergetmp = op1 + op2
169 newstmt = mergetmp + op3
171 instead of
172 mergetmp = op2 + op3
173 newstmt = mergetmp + op1
175 If all three are of the same rank, you can't expose them all in a
176 single binary operator anyway, so the above is *still* the best you
177 can do.
179 Thus, this is what we do. When we have three ops left, we check to see
180 what order to put them in, and call it a day. As a nod to vector sum
181 reduction, we check if any of the ops are really a phi node that is a
182 destructive update for the associating op, and keep the destructive
183 update together for vector sum reduction recognition. */
186 /* Statistics */
187 static struct
189 int linearized;
190 int constants_eliminated;
191 int ops_eliminated;
192 int rewritten;
193 int pows_encountered;
194 int pows_created;
195 } reassociate_stats;
197 /* Operator, rank pair. */
198 typedef struct operand_entry
200 unsigned int rank;
201 int id;
202 tree op;
203 unsigned int count;
204 } *operand_entry_t;
206 static alloc_pool operand_entry_pool;
208 /* This is used to assign a unique ID to each struct operand_entry
209 so that qsort results are identical on different hosts. */
210 static int next_operand_entry_id;
212 /* Starting rank number for a given basic block, so that we can rank
213 operations using unmovable instructions in that BB based on the bb
214 depth. */
215 static long *bb_rank;
217 /* Operand->rank hashtable. */
218 static struct pointer_map_t *operand_rank;
220 /* Forward decls. */
221 static long get_rank (tree);
224 /* Bias amount for loop-carried phis. We want this to be larger than
225 the depth of any reassociation tree we can see, but not larger than
226 the rank difference between two blocks. */
227 #define PHI_LOOP_BIAS (1 << 15)
229 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
230 an innermost loop, and the phi has only a single use which is inside
231 the loop, then the rank is the block rank of the loop latch plus an
232 extra bias for the loop-carried dependence. This causes expressions
233 calculated into an accumulator variable to be independent for each
234 iteration of the loop. If STMT is some other phi, the rank is the
235 block rank of its containing block. */
236 static long
237 phi_rank (gimple stmt)
239 basic_block bb = gimple_bb (stmt);
240 struct loop *father = bb->loop_father;
241 tree res;
242 unsigned i;
243 use_operand_p use;
244 gimple use_stmt;
246 /* We only care about real loops (those with a latch). */
247 if (!father->latch)
248 return bb_rank[bb->index];
250 /* Interesting phis must be in headers of innermost loops. */
251 if (bb != father->header
252 || father->inner)
253 return bb_rank[bb->index];
255 /* Ignore virtual SSA_NAMEs. */
256 res = gimple_phi_result (stmt);
257 if (virtual_operand_p (res))
258 return bb_rank[bb->index];
260 /* The phi definition must have a single use, and that use must be
261 within the loop. Otherwise this isn't an accumulator pattern. */
262 if (!single_imm_use (res, &use, &use_stmt)
263 || gimple_bb (use_stmt)->loop_father != father)
264 return bb_rank[bb->index];
266 /* Look for phi arguments from within the loop. If found, bias this phi. */
267 for (i = 0; i < gimple_phi_num_args (stmt); i++)
269 tree arg = gimple_phi_arg_def (stmt, i);
270 if (TREE_CODE (arg) == SSA_NAME
271 && !SSA_NAME_IS_DEFAULT_DEF (arg))
273 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
274 if (gimple_bb (def_stmt)->loop_father == father)
275 return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
279 /* Must be an uninteresting phi. */
280 return bb_rank[bb->index];
283 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
284 loop-carried dependence of an innermost loop, return TRUE; else
285 return FALSE. */
286 static bool
287 loop_carried_phi (tree exp)
289 gimple phi_stmt;
290 long block_rank;
292 if (TREE_CODE (exp) != SSA_NAME
293 || SSA_NAME_IS_DEFAULT_DEF (exp))
294 return false;
296 phi_stmt = SSA_NAME_DEF_STMT (exp);
298 if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
299 return false;
301 /* Non-loop-carried phis have block rank. Loop-carried phis have
302 an additional bias added in. If this phi doesn't have block rank,
303 it's biased and should not be propagated. */
304 block_rank = bb_rank[gimple_bb (phi_stmt)->index];
306 if (phi_rank (phi_stmt) != block_rank)
307 return true;
309 return false;
312 /* Return the maximum of RANK and the rank that should be propagated
313 from expression OP. For most operands, this is just the rank of OP.
314 For loop-carried phis, the value is zero to avoid undoing the bias
315 in favor of the phi. */
316 static long
317 propagate_rank (long rank, tree op)
319 long op_rank;
321 if (loop_carried_phi (op))
322 return rank;
324 op_rank = get_rank (op);
326 return MAX (rank, op_rank);
329 /* Look up the operand rank structure for expression E. */
331 static inline long
332 find_operand_rank (tree e)
334 void **slot = pointer_map_contains (operand_rank, e);
335 return slot ? (long) (intptr_t) *slot : -1;
338 /* Insert {E,RANK} into the operand rank hashtable. */
340 static inline void
341 insert_operand_rank (tree e, long rank)
343 void **slot;
344 gcc_assert (rank > 0);
345 slot = pointer_map_insert (operand_rank, e);
346 gcc_assert (!*slot);
347 *slot = (void *) (intptr_t) rank;
350 /* Given an expression E, return the rank of the expression. */
352 static long
353 get_rank (tree e)
355 /* Constants have rank 0. */
356 if (is_gimple_min_invariant (e))
357 return 0;
359 /* SSA_NAME's have the rank of the expression they are the result
361 For globals and uninitialized values, the rank is 0.
362 For function arguments, use the pre-setup rank.
363 For PHI nodes, stores, asm statements, etc, we use the rank of
364 the BB.
365 For simple operations, the rank is the maximum rank of any of
366 its operands, or the bb_rank, whichever is less.
367 I make no claims that this is optimal, however, it gives good
368 results. */
370 /* We make an exception to the normal ranking system to break
371 dependences of accumulator variables in loops. Suppose we
372 have a simple one-block loop containing:
374 x_1 = phi(x_0, x_2)
375 b = a + x_1
376 c = b + d
377 x_2 = c + e
379 As shown, each iteration of the calculation into x is fully
380 dependent upon the iteration before it. We would prefer to
381 see this in the form:
383 x_1 = phi(x_0, x_2)
384 b = a + d
385 c = b + e
386 x_2 = c + x_1
388 If the loop is unrolled, the calculations of b and c from
389 different iterations can be interleaved.
391 To obtain this result during reassociation, we bias the rank
392 of the phi definition x_1 upward, when it is recognized as an
393 accumulator pattern. The artificial rank causes it to be
394 added last, providing the desired independence. */
396 if (TREE_CODE (e) == SSA_NAME)
398 gimple stmt;
399 long rank;
400 int i, n;
401 tree op;
403 if (SSA_NAME_IS_DEFAULT_DEF (e))
404 return find_operand_rank (e);
406 stmt = SSA_NAME_DEF_STMT (e);
407 if (gimple_code (stmt) == GIMPLE_PHI)
408 return phi_rank (stmt);
410 if (!is_gimple_assign (stmt)
411 || gimple_vdef (stmt))
412 return bb_rank[gimple_bb (stmt)->index];
414 /* If we already have a rank for this expression, use that. */
415 rank = find_operand_rank (e);
416 if (rank != -1)
417 return rank;
419 /* Otherwise, find the maximum rank for the operands. As an
420 exception, remove the bias from loop-carried phis when propagating
421 the rank so that dependent operations are not also biased. */
422 rank = 0;
423 if (gimple_assign_single_p (stmt))
425 tree rhs = gimple_assign_rhs1 (stmt);
426 n = TREE_OPERAND_LENGTH (rhs);
427 if (n == 0)
428 rank = propagate_rank (rank, rhs);
429 else
431 for (i = 0; i < n; i++)
433 op = TREE_OPERAND (rhs, i);
435 if (op != NULL_TREE)
436 rank = propagate_rank (rank, op);
440 else
442 n = gimple_num_ops (stmt);
443 for (i = 1; i < n; i++)
445 op = gimple_op (stmt, i);
446 gcc_assert (op);
447 rank = propagate_rank (rank, op);
451 if (dump_file && (dump_flags & TDF_DETAILS))
453 fprintf (dump_file, "Rank for ");
454 print_generic_expr (dump_file, e, 0);
455 fprintf (dump_file, " is %ld\n", (rank + 1));
458 /* Note the rank in the hashtable so we don't recompute it. */
459 insert_operand_rank (e, (rank + 1));
460 return (rank + 1);
463 /* Globals, etc, are rank 0 */
464 return 0;
468 /* We want integer ones to end up last no matter what, since they are
469 the ones we can do the most with. */
470 #define INTEGER_CONST_TYPE 1 << 3
471 #define FLOAT_CONST_TYPE 1 << 2
472 #define OTHER_CONST_TYPE 1 << 1
474 /* Classify an invariant tree into integer, float, or other, so that
475 we can sort them to be near other constants of the same type. */
476 static inline int
477 constant_type (tree t)
479 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
480 return INTEGER_CONST_TYPE;
481 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
482 return FLOAT_CONST_TYPE;
483 else
484 return OTHER_CONST_TYPE;
487 /* qsort comparison function to sort operand entries PA and PB by rank
488 so that the sorted array is ordered by rank in decreasing order. */
489 static int
490 sort_by_operand_rank (const void *pa, const void *pb)
492 const operand_entry_t oea = *(const operand_entry_t *)pa;
493 const operand_entry_t oeb = *(const operand_entry_t *)pb;
495 /* It's nicer for optimize_expression if constants that are likely
496 to fold when added/multiplied//whatever are put next to each
497 other. Since all constants have rank 0, order them by type. */
498 if (oeb->rank == 0 && oea->rank == 0)
500 if (constant_type (oeb->op) != constant_type (oea->op))
501 return constant_type (oeb->op) - constant_type (oea->op);
502 else
503 /* To make sorting result stable, we use unique IDs to determine
504 order. */
505 return oeb->id - oea->id;
508 /* Lastly, make sure the versions that are the same go next to each
509 other. We use SSA_NAME_VERSION because it's stable. */
510 if ((oeb->rank - oea->rank == 0)
511 && TREE_CODE (oea->op) == SSA_NAME
512 && TREE_CODE (oeb->op) == SSA_NAME)
514 if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
515 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
516 else
517 return oeb->id - oea->id;
520 if (oeb->rank != oea->rank)
521 return oeb->rank - oea->rank;
522 else
523 return oeb->id - oea->id;
526 /* Add an operand entry to *OPS for the tree operand OP. */
528 static void
529 add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
531 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
533 oe->op = op;
534 oe->rank = get_rank (op);
535 oe->id = next_operand_entry_id++;
536 oe->count = 1;
537 ops->safe_push (oe);
540 /* Add an operand entry to *OPS for the tree operand OP with repeat
541 count REPEAT. */
543 static void
544 add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
545 HOST_WIDE_INT repeat)
547 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
549 oe->op = op;
550 oe->rank = get_rank (op);
551 oe->id = next_operand_entry_id++;
552 oe->count = repeat;
553 ops->safe_push (oe);
555 reassociate_stats.pows_encountered++;
558 /* Return true if STMT is reassociable operation containing a binary
559 operation with tree code CODE, and is inside LOOP. */
561 static bool
562 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
564 basic_block bb = gimple_bb (stmt);
566 if (gimple_bb (stmt) == NULL)
567 return false;
569 if (!flow_bb_inside_loop_p (loop, bb))
570 return false;
572 if (is_gimple_assign (stmt)
573 && gimple_assign_rhs_code (stmt) == code
574 && has_single_use (gimple_assign_lhs (stmt)))
575 return true;
577 return false;
581 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
582 operand of the negate operation. Otherwise, return NULL. */
584 static tree
585 get_unary_op (tree name, enum tree_code opcode)
587 gimple stmt = SSA_NAME_DEF_STMT (name);
589 if (!is_gimple_assign (stmt))
590 return NULL_TREE;
592 if (gimple_assign_rhs_code (stmt) == opcode)
593 return gimple_assign_rhs1 (stmt);
594 return NULL_TREE;
597 /* If CURR and LAST are a pair of ops that OPCODE allows us to
598 eliminate through equivalences, do so, remove them from OPS, and
599 return true. Otherwise, return false. */
601 static bool
602 eliminate_duplicate_pair (enum tree_code opcode,
603 vec<operand_entry_t> *ops,
604 bool *all_done,
605 unsigned int i,
606 operand_entry_t curr,
607 operand_entry_t last)
610 /* If we have two of the same op, and the opcode is & |, min, or max,
611 we can eliminate one of them.
612 If we have two of the same op, and the opcode is ^, we can
613 eliminate both of them. */
615 if (last && last->op == curr->op)
617 switch (opcode)
619 case MAX_EXPR:
620 case MIN_EXPR:
621 case BIT_IOR_EXPR:
622 case BIT_AND_EXPR:
623 if (dump_file && (dump_flags & TDF_DETAILS))
625 fprintf (dump_file, "Equivalence: ");
626 print_generic_expr (dump_file, curr->op, 0);
627 fprintf (dump_file, " [&|minmax] ");
628 print_generic_expr (dump_file, last->op, 0);
629 fprintf (dump_file, " -> ");
630 print_generic_stmt (dump_file, last->op, 0);
633 ops->ordered_remove (i);
634 reassociate_stats.ops_eliminated ++;
636 return true;
638 case BIT_XOR_EXPR:
639 if (dump_file && (dump_flags & TDF_DETAILS))
641 fprintf (dump_file, "Equivalence: ");
642 print_generic_expr (dump_file, curr->op, 0);
643 fprintf (dump_file, " ^ ");
644 print_generic_expr (dump_file, last->op, 0);
645 fprintf (dump_file, " -> nothing\n");
648 reassociate_stats.ops_eliminated += 2;
650 if (ops->length () == 2)
652 ops->create (0);
653 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
654 *all_done = true;
656 else
658 ops->ordered_remove (i-1);
659 ops->ordered_remove (i-1);
662 return true;
664 default:
665 break;
668 return false;
671 static vec<tree> plus_negates;
673 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
674 expression, look in OPS for a corresponding positive operation to cancel
675 it out. If we find one, remove the other from OPS, replace
676 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
677 return false. */
679 static bool
680 eliminate_plus_minus_pair (enum tree_code opcode,
681 vec<operand_entry_t> *ops,
682 unsigned int currindex,
683 operand_entry_t curr)
685 tree negateop;
686 tree notop;
687 unsigned int i;
688 operand_entry_t oe;
690 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
691 return false;
693 negateop = get_unary_op (curr->op, NEGATE_EXPR);
694 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
695 if (negateop == NULL_TREE && notop == NULL_TREE)
696 return false;
698 /* Any non-negated version will have a rank that is one less than
699 the current rank. So once we hit those ranks, if we don't find
700 one, we can stop. */
702 for (i = currindex + 1;
703 ops->iterate (i, &oe)
704 && oe->rank >= curr->rank - 1 ;
705 i++)
707 if (oe->op == negateop)
710 if (dump_file && (dump_flags & TDF_DETAILS))
712 fprintf (dump_file, "Equivalence: ");
713 print_generic_expr (dump_file, negateop, 0);
714 fprintf (dump_file, " + -");
715 print_generic_expr (dump_file, oe->op, 0);
716 fprintf (dump_file, " -> 0\n");
719 ops->ordered_remove (i);
720 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
721 ops->ordered_remove (currindex);
722 reassociate_stats.ops_eliminated ++;
724 return true;
726 else if (oe->op == notop)
728 tree op_type = TREE_TYPE (oe->op);
730 if (dump_file && (dump_flags & TDF_DETAILS))
732 fprintf (dump_file, "Equivalence: ");
733 print_generic_expr (dump_file, notop, 0);
734 fprintf (dump_file, " + ~");
735 print_generic_expr (dump_file, oe->op, 0);
736 fprintf (dump_file, " -> -1\n");
739 ops->ordered_remove (i);
740 add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
741 ops->ordered_remove (currindex);
742 reassociate_stats.ops_eliminated ++;
744 return true;
748 /* CURR->OP is a negate expr in a plus expr: save it for later
749 inspection in repropagate_negates(). */
750 if (negateop != NULL_TREE)
751 plus_negates.safe_push (curr->op);
753 return false;
756 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
757 bitwise not expression, look in OPS for a corresponding operand to
758 cancel it out. If we find one, remove the other from OPS, replace
759 OPS[CURRINDEX] with 0, and return true. Otherwise, return
760 false. */
762 static bool
763 eliminate_not_pairs (enum tree_code opcode,
764 vec<operand_entry_t> *ops,
765 unsigned int currindex,
766 operand_entry_t curr)
768 tree notop;
769 unsigned int i;
770 operand_entry_t oe;
772 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
773 || TREE_CODE (curr->op) != SSA_NAME)
774 return false;
776 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
777 if (notop == NULL_TREE)
778 return false;
780 /* Any non-not version will have a rank that is one less than
781 the current rank. So once we hit those ranks, if we don't find
782 one, we can stop. */
784 for (i = currindex + 1;
785 ops->iterate (i, &oe)
786 && oe->rank >= curr->rank - 1;
787 i++)
789 if (oe->op == notop)
791 if (dump_file && (dump_flags & TDF_DETAILS))
793 fprintf (dump_file, "Equivalence: ");
794 print_generic_expr (dump_file, notop, 0);
795 if (opcode == BIT_AND_EXPR)
796 fprintf (dump_file, " & ~");
797 else if (opcode == BIT_IOR_EXPR)
798 fprintf (dump_file, " | ~");
799 print_generic_expr (dump_file, oe->op, 0);
800 if (opcode == BIT_AND_EXPR)
801 fprintf (dump_file, " -> 0\n");
802 else if (opcode == BIT_IOR_EXPR)
803 fprintf (dump_file, " -> -1\n");
806 if (opcode == BIT_AND_EXPR)
807 oe->op = build_zero_cst (TREE_TYPE (oe->op));
808 else if (opcode == BIT_IOR_EXPR)
809 oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
810 TYPE_PRECISION (TREE_TYPE (oe->op)));
812 reassociate_stats.ops_eliminated += ops->length () - 1;
813 ops->truncate (0);
814 ops->quick_push (oe);
815 return true;
819 return false;
822 /* Use constant value that may be present in OPS to try to eliminate
823 operands. Note that this function is only really used when we've
824 eliminated ops for other reasons, or merged constants. Across
825 single statements, fold already does all of this, plus more. There
826 is little point in duplicating logic, so I've only included the
827 identities that I could ever construct testcases to trigger. */
829 static void
830 eliminate_using_constants (enum tree_code opcode,
831 vec<operand_entry_t> *ops)
833 operand_entry_t oelast = ops->last ();
834 tree type = TREE_TYPE (oelast->op);
836 if (oelast->rank == 0
837 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
839 switch (opcode)
841 case BIT_AND_EXPR:
842 if (integer_zerop (oelast->op))
844 if (ops->length () != 1)
846 if (dump_file && (dump_flags & TDF_DETAILS))
847 fprintf (dump_file, "Found & 0, removing all other ops\n");
849 reassociate_stats.ops_eliminated += ops->length () - 1;
851 ops->truncate (0);
852 ops->quick_push (oelast);
853 return;
856 else if (integer_all_onesp (oelast->op))
858 if (ops->length () != 1)
860 if (dump_file && (dump_flags & TDF_DETAILS))
861 fprintf (dump_file, "Found & -1, removing\n");
862 ops->pop ();
863 reassociate_stats.ops_eliminated++;
866 break;
867 case BIT_IOR_EXPR:
868 if (integer_all_onesp (oelast->op))
870 if (ops->length () != 1)
872 if (dump_file && (dump_flags & TDF_DETAILS))
873 fprintf (dump_file, "Found | -1, removing all other ops\n");
875 reassociate_stats.ops_eliminated += ops->length () - 1;
877 ops->truncate (0);
878 ops->quick_push (oelast);
879 return;
882 else if (integer_zerop (oelast->op))
884 if (ops->length () != 1)
886 if (dump_file && (dump_flags & TDF_DETAILS))
887 fprintf (dump_file, "Found | 0, removing\n");
888 ops->pop ();
889 reassociate_stats.ops_eliminated++;
892 break;
893 case MULT_EXPR:
894 if (integer_zerop (oelast->op)
895 || (FLOAT_TYPE_P (type)
896 && !HONOR_NANS (TYPE_MODE (type))
897 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
898 && real_zerop (oelast->op)))
900 if (ops->length () != 1)
902 if (dump_file && (dump_flags & TDF_DETAILS))
903 fprintf (dump_file, "Found * 0, removing all other ops\n");
905 reassociate_stats.ops_eliminated += ops->length () - 1;
906 ops->truncate (1);
907 ops->quick_push (oelast);
908 return;
911 else if (integer_onep (oelast->op)
912 || (FLOAT_TYPE_P (type)
913 && !HONOR_SNANS (TYPE_MODE (type))
914 && real_onep (oelast->op)))
916 if (ops->length () != 1)
918 if (dump_file && (dump_flags & TDF_DETAILS))
919 fprintf (dump_file, "Found * 1, removing\n");
920 ops->pop ();
921 reassociate_stats.ops_eliminated++;
922 return;
925 break;
926 case BIT_XOR_EXPR:
927 case PLUS_EXPR:
928 case MINUS_EXPR:
929 if (integer_zerop (oelast->op)
930 || (FLOAT_TYPE_P (type)
931 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
932 && fold_real_zero_addition_p (type, oelast->op,
933 opcode == MINUS_EXPR)))
935 if (ops->length () != 1)
937 if (dump_file && (dump_flags & TDF_DETAILS))
938 fprintf (dump_file, "Found [|^+] 0, removing\n");
939 ops->pop ();
940 reassociate_stats.ops_eliminated++;
941 return;
944 break;
945 default:
946 break;
952 static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
953 bool, bool);
955 /* Structure for tracking and counting operands. */
956 typedef struct oecount_s {
957 int cnt;
958 int id;
959 enum tree_code oecode;
960 tree op;
961 } oecount;
964 /* The heap for the oecount hashtable and the sorted list of operands. */
965 static vec<oecount> cvec;
968 /* Oecount hashtable helpers. */
970 struct oecount_hasher : typed_noop_remove <void>
972 /* Note that this hash table stores integers, not pointers.
973 So, observe the casting in the member functions. */
974 typedef void value_type;
975 typedef void compare_type;
976 static inline hashval_t hash (const value_type *);
977 static inline bool equal (const value_type *, const compare_type *);
980 /* Hash function for oecount. */
982 inline hashval_t
983 oecount_hasher::hash (const value_type *p)
985 const oecount *c = &cvec[(size_t)p - 42];
986 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
989 /* Comparison function for oecount. */
991 inline bool
992 oecount_hasher::equal (const value_type *p1, const compare_type *p2)
994 const oecount *c1 = &cvec[(size_t)p1 - 42];
995 const oecount *c2 = &cvec[(size_t)p2 - 42];
996 return (c1->oecode == c2->oecode
997 && c1->op == c2->op);
1000 /* Comparison function for qsort sorting oecount elements by count. */
1002 static int
1003 oecount_cmp (const void *p1, const void *p2)
1005 const oecount *c1 = (const oecount *)p1;
1006 const oecount *c2 = (const oecount *)p2;
1007 if (c1->cnt != c2->cnt)
1008 return c1->cnt - c2->cnt;
1009 else
1010 /* If counts are identical, use unique IDs to stabilize qsort. */
1011 return c1->id - c2->id;
1014 /* Return TRUE iff STMT represents a builtin call that raises OP
1015 to some exponent. */
1017 static bool
1018 stmt_is_power_of_op (gimple stmt, tree op)
1020 tree fndecl;
1022 if (!is_gimple_call (stmt))
1023 return false;
1025 fndecl = gimple_call_fndecl (stmt);
1027 if (!fndecl
1028 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
1029 return false;
1031 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1033 CASE_FLT_FN (BUILT_IN_POW):
1034 CASE_FLT_FN (BUILT_IN_POWI):
1035 return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
1037 default:
1038 return false;
1042 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1043 in place and return the result. Assumes that stmt_is_power_of_op
1044 was previously called for STMT and returned TRUE. */
1046 static HOST_WIDE_INT
1047 decrement_power (gimple stmt)
1049 REAL_VALUE_TYPE c, cint;
1050 HOST_WIDE_INT power;
1051 tree arg1;
1053 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1055 CASE_FLT_FN (BUILT_IN_POW):
1056 arg1 = gimple_call_arg (stmt, 1);
1057 c = TREE_REAL_CST (arg1);
1058 power = real_to_integer (&c) - 1;
1059 real_from_integer (&cint, VOIDmode, power, 0, 0);
1060 gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
1061 return power;
1063 CASE_FLT_FN (BUILT_IN_POWI):
1064 arg1 = gimple_call_arg (stmt, 1);
1065 power = TREE_INT_CST_LOW (arg1) - 1;
1066 gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
1067 return power;
1069 default:
1070 gcc_unreachable ();
1074 /* Find the single immediate use of STMT's LHS, and replace it
1075 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1076 replace *DEF with OP as well. */
1078 static void
1079 propagate_op_to_single_use (tree op, gimple stmt, tree *def)
1081 tree lhs;
1082 gimple use_stmt;
1083 use_operand_p use;
1084 gimple_stmt_iterator gsi;
1086 if (is_gimple_call (stmt))
1087 lhs = gimple_call_lhs (stmt);
1088 else
1089 lhs = gimple_assign_lhs (stmt);
1091 gcc_assert (has_single_use (lhs));
1092 single_imm_use (lhs, &use, &use_stmt);
1093 if (lhs == *def)
1094 *def = op;
1095 SET_USE (use, op);
1096 if (TREE_CODE (op) != SSA_NAME)
1097 update_stmt (use_stmt);
1098 gsi = gsi_for_stmt (stmt);
1099 unlink_stmt_vdef (stmt);
1100 gsi_remove (&gsi, true);
1101 release_defs (stmt);
1104 /* Walks the linear chain with result *DEF searching for an operation
1105 with operand OP and code OPCODE removing that from the chain. *DEF
1106 is updated if there is only one operand but no operation left. */
1108 static void
1109 zero_one_operation (tree *def, enum tree_code opcode, tree op)
1111 gimple stmt = SSA_NAME_DEF_STMT (*def);
1115 tree name;
1117 if (opcode == MULT_EXPR
1118 && stmt_is_power_of_op (stmt, op))
1120 if (decrement_power (stmt) == 1)
1121 propagate_op_to_single_use (op, stmt, def);
1122 return;
1125 name = gimple_assign_rhs1 (stmt);
1127 /* If this is the operation we look for and one of the operands
1128 is ours simply propagate the other operand into the stmts
1129 single use. */
1130 if (gimple_assign_rhs_code (stmt) == opcode
1131 && (name == op
1132 || gimple_assign_rhs2 (stmt) == op))
1134 if (name == op)
1135 name = gimple_assign_rhs2 (stmt);
1136 propagate_op_to_single_use (name, stmt, def);
1137 return;
1140 /* We might have a multiply of two __builtin_pow* calls, and
1141 the operand might be hiding in the rightmost one. */
1142 if (opcode == MULT_EXPR
1143 && gimple_assign_rhs_code (stmt) == opcode
1144 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1145 && has_single_use (gimple_assign_rhs2 (stmt)))
1147 gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1148 if (stmt_is_power_of_op (stmt2, op))
1150 if (decrement_power (stmt2) == 1)
1151 propagate_op_to_single_use (op, stmt2, def);
1152 return;
1156 /* Continue walking the chain. */
1157 gcc_assert (name != op
1158 && TREE_CODE (name) == SSA_NAME);
1159 stmt = SSA_NAME_DEF_STMT (name);
1161 while (1);
1164 /* Returns true if statement S1 dominates statement S2. Like
1165 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1167 static bool
1168 reassoc_stmt_dominates_stmt_p (gimple s1, gimple s2)
1170 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1172 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1173 SSA_NAME. Assume it lives at the beginning of function and
1174 thus dominates everything. */
1175 if (!bb1 || s1 == s2)
1176 return true;
1178 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1179 if (!bb2)
1180 return false;
1182 if (bb1 == bb2)
1184 /* PHIs in the same basic block are assumed to be
1185 executed all in parallel, if only one stmt is a PHI,
1186 it dominates the other stmt in the same basic block. */
1187 if (gimple_code (s1) == GIMPLE_PHI)
1188 return true;
1190 if (gimple_code (s2) == GIMPLE_PHI)
1191 return false;
1193 gcc_assert (gimple_uid (s1) && gimple_uid (s2));
1195 if (gimple_uid (s1) < gimple_uid (s2))
1196 return true;
1198 if (gimple_uid (s1) > gimple_uid (s2))
1199 return false;
1201 gimple_stmt_iterator gsi = gsi_for_stmt (s1);
1202 unsigned int uid = gimple_uid (s1);
1203 for (gsi_next (&gsi); !gsi_end_p (gsi); gsi_next (&gsi))
1205 gimple s = gsi_stmt (gsi);
1206 if (gimple_uid (s) != uid)
1207 break;
1208 if (s == s2)
1209 return true;
1212 return false;
1215 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1218 /* Insert STMT after INSERT_POINT. */
1220 static void
1221 insert_stmt_after (gimple stmt, gimple insert_point)
1223 gimple_stmt_iterator gsi;
1224 basic_block bb;
1226 if (gimple_code (insert_point) == GIMPLE_PHI)
1227 bb = gimple_bb (insert_point);
1228 else if (!stmt_ends_bb_p (insert_point))
1230 gsi = gsi_for_stmt (insert_point);
1231 gimple_set_uid (stmt, gimple_uid (insert_point));
1232 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1233 return;
1235 else
1236 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1237 thus if it must end a basic block, it should be a call that can
1238 throw, or some assignment that can throw. If it throws, the LHS
1239 of it will not be initialized though, so only valid places using
1240 the SSA_NAME should be dominated by the fallthru edge. */
1241 bb = find_fallthru_edge (gimple_bb (insert_point)->succs)->dest;
1242 gsi = gsi_after_labels (bb);
1243 if (gsi_end_p (gsi))
1245 gimple_stmt_iterator gsi2 = gsi_last_bb (bb);
1246 gimple_set_uid (stmt,
1247 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1249 else
1250 gimple_set_uid (stmt, gimple_uid (gsi_stmt (gsi)));
1251 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1254 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1255 the result. Places the statement after the definition of either
1256 OP1 or OP2. Returns the new statement. */
1258 static gimple
1259 build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
1261 gimple op1def = NULL, op2def = NULL;
1262 gimple_stmt_iterator gsi;
1263 tree op;
1264 gimple sum;
1266 /* Create the addition statement. */
1267 op = make_ssa_name (type, NULL);
1268 sum = gimple_build_assign_with_ops (opcode, op, op1, op2);
1270 /* Find an insertion place and insert. */
1271 if (TREE_CODE (op1) == SSA_NAME)
1272 op1def = SSA_NAME_DEF_STMT (op1);
1273 if (TREE_CODE (op2) == SSA_NAME)
1274 op2def = SSA_NAME_DEF_STMT (op2);
1275 if ((!op1def || gimple_nop_p (op1def))
1276 && (!op2def || gimple_nop_p (op2def)))
1278 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1279 if (gsi_end_p (gsi))
1281 gimple_stmt_iterator gsi2
1282 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1283 gimple_set_uid (sum,
1284 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1286 else
1287 gimple_set_uid (sum, gimple_uid (gsi_stmt (gsi)));
1288 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1290 else
1292 gimple insert_point;
1293 if ((!op1def || gimple_nop_p (op1def))
1294 || (op2def && !gimple_nop_p (op2def)
1295 && reassoc_stmt_dominates_stmt_p (op1def, op2def)))
1296 insert_point = op2def;
1297 else
1298 insert_point = op1def;
1299 insert_stmt_after (sum, insert_point);
1301 update_stmt (sum);
1303 return sum;
1306 /* Perform un-distribution of divisions and multiplications.
1307 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1308 to (A + B) / X for real X.
1310 The algorithm is organized as follows.
1312 - First we walk the addition chain *OPS looking for summands that
1313 are defined by a multiplication or a real division. This results
1314 in the candidates bitmap with relevant indices into *OPS.
1316 - Second we build the chains of multiplications or divisions for
1317 these candidates, counting the number of occurrences of (operand, code)
1318 pairs in all of the candidates chains.
1320 - Third we sort the (operand, code) pairs by number of occurrence and
1321 process them starting with the pair with the most uses.
1323 * For each such pair we walk the candidates again to build a
1324 second candidate bitmap noting all multiplication/division chains
1325 that have at least one occurrence of (operand, code).
1327 * We build an alternate addition chain only covering these
1328 candidates with one (operand, code) operation removed from their
1329 multiplication/division chain.
1331 * The first candidate gets replaced by the alternate addition chain
1332 multiplied/divided by the operand.
1334 * All candidate chains get disabled for further processing and
1335 processing of (operand, code) pairs continues.
1337 The alternate addition chains built are re-processed by the main
1338 reassociation algorithm which allows optimizing a * x * y + b * y * x
1339 to (a + b ) * x * y in one invocation of the reassociation pass. */
1341 static bool
1342 undistribute_ops_list (enum tree_code opcode,
1343 vec<operand_entry_t> *ops, struct loop *loop)
1345 unsigned int length = ops->length ();
1346 operand_entry_t oe1;
1347 unsigned i, j;
1348 sbitmap candidates, candidates2;
1349 unsigned nr_candidates, nr_candidates2;
1350 sbitmap_iterator sbi0;
1351 vec<operand_entry_t> *subops;
1352 hash_table <oecount_hasher> ctable;
1353 bool changed = false;
1354 int next_oecount_id = 0;
1356 if (length <= 1
1357 || opcode != PLUS_EXPR)
1358 return false;
1360 /* Build a list of candidates to process. */
1361 candidates = sbitmap_alloc (length);
1362 bitmap_clear (candidates);
1363 nr_candidates = 0;
1364 FOR_EACH_VEC_ELT (*ops, i, oe1)
1366 enum tree_code dcode;
1367 gimple oe1def;
1369 if (TREE_CODE (oe1->op) != SSA_NAME)
1370 continue;
1371 oe1def = SSA_NAME_DEF_STMT (oe1->op);
1372 if (!is_gimple_assign (oe1def))
1373 continue;
1374 dcode = gimple_assign_rhs_code (oe1def);
1375 if ((dcode != MULT_EXPR
1376 && dcode != RDIV_EXPR)
1377 || !is_reassociable_op (oe1def, dcode, loop))
1378 continue;
1380 bitmap_set_bit (candidates, i);
1381 nr_candidates++;
1384 if (nr_candidates < 2)
1386 sbitmap_free (candidates);
1387 return false;
1390 if (dump_file && (dump_flags & TDF_DETAILS))
1392 fprintf (dump_file, "searching for un-distribute opportunities ");
1393 print_generic_expr (dump_file,
1394 (*ops)[bitmap_first_set_bit (candidates)]->op, 0);
1395 fprintf (dump_file, " %d\n", nr_candidates);
1398 /* Build linearized sub-operand lists and the counting table. */
1399 cvec.create (0);
1400 ctable.create (15);
1401 /* ??? Macro arguments cannot have multi-argument template types in
1402 them. This typedef is needed to workaround that limitation. */
1403 typedef vec<operand_entry_t> vec_operand_entry_t_heap;
1404 subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
1405 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1407 gimple oedef;
1408 enum tree_code oecode;
1409 unsigned j;
1411 oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
1412 oecode = gimple_assign_rhs_code (oedef);
1413 linearize_expr_tree (&subops[i], oedef,
1414 associative_tree_code (oecode), false);
1416 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1418 oecount c;
1419 void **slot;
1420 size_t idx;
1421 c.oecode = oecode;
1422 c.cnt = 1;
1423 c.id = next_oecount_id++;
1424 c.op = oe1->op;
1425 cvec.safe_push (c);
1426 idx = cvec.length () + 41;
1427 slot = ctable.find_slot ((void *)idx, INSERT);
1428 if (!*slot)
1430 *slot = (void *)idx;
1432 else
1434 cvec.pop ();
1435 cvec[(size_t)*slot - 42].cnt++;
1439 ctable.dispose ();
1441 /* Sort the counting table. */
1442 cvec.qsort (oecount_cmp);
1444 if (dump_file && (dump_flags & TDF_DETAILS))
1446 oecount *c;
1447 fprintf (dump_file, "Candidates:\n");
1448 FOR_EACH_VEC_ELT (cvec, j, c)
1450 fprintf (dump_file, " %u %s: ", c->cnt,
1451 c->oecode == MULT_EXPR
1452 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1453 print_generic_expr (dump_file, c->op, 0);
1454 fprintf (dump_file, "\n");
1458 /* Process the (operand, code) pairs in order of most occurrence. */
1459 candidates2 = sbitmap_alloc (length);
1460 while (!cvec.is_empty ())
1462 oecount *c = &cvec.last ();
1463 if (c->cnt < 2)
1464 break;
1466 /* Now collect the operands in the outer chain that contain
1467 the common operand in their inner chain. */
1468 bitmap_clear (candidates2);
1469 nr_candidates2 = 0;
1470 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1472 gimple oedef;
1473 enum tree_code oecode;
1474 unsigned j;
1475 tree op = (*ops)[i]->op;
1477 /* If we undistributed in this chain already this may be
1478 a constant. */
1479 if (TREE_CODE (op) != SSA_NAME)
1480 continue;
1482 oedef = SSA_NAME_DEF_STMT (op);
1483 oecode = gimple_assign_rhs_code (oedef);
1484 if (oecode != c->oecode)
1485 continue;
1487 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1489 if (oe1->op == c->op)
1491 bitmap_set_bit (candidates2, i);
1492 ++nr_candidates2;
1493 break;
1498 if (nr_candidates2 >= 2)
1500 operand_entry_t oe1, oe2;
1501 gimple prod;
1502 int first = bitmap_first_set_bit (candidates2);
1504 /* Build the new addition chain. */
1505 oe1 = (*ops)[first];
1506 if (dump_file && (dump_flags & TDF_DETAILS))
1508 fprintf (dump_file, "Building (");
1509 print_generic_expr (dump_file, oe1->op, 0);
1511 zero_one_operation (&oe1->op, c->oecode, c->op);
1512 EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
1514 gimple sum;
1515 oe2 = (*ops)[i];
1516 if (dump_file && (dump_flags & TDF_DETAILS))
1518 fprintf (dump_file, " + ");
1519 print_generic_expr (dump_file, oe2->op, 0);
1521 zero_one_operation (&oe2->op, c->oecode, c->op);
1522 sum = build_and_add_sum (TREE_TYPE (oe1->op),
1523 oe1->op, oe2->op, opcode);
1524 oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
1525 oe2->rank = 0;
1526 oe1->op = gimple_get_lhs (sum);
1529 /* Apply the multiplication/division. */
1530 prod = build_and_add_sum (TREE_TYPE (oe1->op),
1531 oe1->op, c->op, c->oecode);
1532 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1535 print_generic_expr (dump_file, c->op, 0);
1536 fprintf (dump_file, "\n");
1539 /* Record it in the addition chain and disable further
1540 undistribution with this op. */
1541 oe1->op = gimple_assign_lhs (prod);
1542 oe1->rank = get_rank (oe1->op);
1543 subops[first].release ();
1545 changed = true;
1548 cvec.pop ();
1551 for (i = 0; i < ops->length (); ++i)
1552 subops[i].release ();
1553 free (subops);
1554 cvec.release ();
1555 sbitmap_free (candidates);
1556 sbitmap_free (candidates2);
1558 return changed;
1561 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1562 expression, examine the other OPS to see if any of them are comparisons
1563 of the same values, which we may be able to combine or eliminate.
1564 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1566 static bool
1567 eliminate_redundant_comparison (enum tree_code opcode,
1568 vec<operand_entry_t> *ops,
1569 unsigned int currindex,
1570 operand_entry_t curr)
1572 tree op1, op2;
1573 enum tree_code lcode, rcode;
1574 gimple def1, def2;
1575 int i;
1576 operand_entry_t oe;
1578 if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
1579 return false;
1581 /* Check that CURR is a comparison. */
1582 if (TREE_CODE (curr->op) != SSA_NAME)
1583 return false;
1584 def1 = SSA_NAME_DEF_STMT (curr->op);
1585 if (!is_gimple_assign (def1))
1586 return false;
1587 lcode = gimple_assign_rhs_code (def1);
1588 if (TREE_CODE_CLASS (lcode) != tcc_comparison)
1589 return false;
1590 op1 = gimple_assign_rhs1 (def1);
1591 op2 = gimple_assign_rhs2 (def1);
1593 /* Now look for a similar comparison in the remaining OPS. */
1594 for (i = currindex + 1; ops->iterate (i, &oe); i++)
1596 tree t;
1598 if (TREE_CODE (oe->op) != SSA_NAME)
1599 continue;
1600 def2 = SSA_NAME_DEF_STMT (oe->op);
1601 if (!is_gimple_assign (def2))
1602 continue;
1603 rcode = gimple_assign_rhs_code (def2);
1604 if (TREE_CODE_CLASS (rcode) != tcc_comparison)
1605 continue;
1607 /* If we got here, we have a match. See if we can combine the
1608 two comparisons. */
1609 if (opcode == BIT_IOR_EXPR)
1610 t = maybe_fold_or_comparisons (lcode, op1, op2,
1611 rcode, gimple_assign_rhs1 (def2),
1612 gimple_assign_rhs2 (def2));
1613 else
1614 t = maybe_fold_and_comparisons (lcode, op1, op2,
1615 rcode, gimple_assign_rhs1 (def2),
1616 gimple_assign_rhs2 (def2));
1617 if (!t)
1618 continue;
1620 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1621 always give us a boolean_type_node value back. If the original
1622 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1623 we need to convert. */
1624 if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
1625 t = fold_convert (TREE_TYPE (curr->op), t);
1627 if (TREE_CODE (t) != INTEGER_CST
1628 && !operand_equal_p (t, curr->op, 0))
1630 enum tree_code subcode;
1631 tree newop1, newop2;
1632 if (!COMPARISON_CLASS_P (t))
1633 continue;
1634 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1635 STRIP_USELESS_TYPE_CONVERSION (newop1);
1636 STRIP_USELESS_TYPE_CONVERSION (newop2);
1637 if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
1638 continue;
1641 if (dump_file && (dump_flags & TDF_DETAILS))
1643 fprintf (dump_file, "Equivalence: ");
1644 print_generic_expr (dump_file, curr->op, 0);
1645 fprintf (dump_file, " %s ", op_symbol_code (opcode));
1646 print_generic_expr (dump_file, oe->op, 0);
1647 fprintf (dump_file, " -> ");
1648 print_generic_expr (dump_file, t, 0);
1649 fprintf (dump_file, "\n");
1652 /* Now we can delete oe, as it has been subsumed by the new combined
1653 expression t. */
1654 ops->ordered_remove (i);
1655 reassociate_stats.ops_eliminated ++;
1657 /* If t is the same as curr->op, we're done. Otherwise we must
1658 replace curr->op with t. Special case is if we got a constant
1659 back, in which case we add it to the end instead of in place of
1660 the current entry. */
1661 if (TREE_CODE (t) == INTEGER_CST)
1663 ops->ordered_remove (currindex);
1664 add_to_ops_vec (ops, t);
1666 else if (!operand_equal_p (t, curr->op, 0))
1668 gimple sum;
1669 enum tree_code subcode;
1670 tree newop1;
1671 tree newop2;
1672 gcc_assert (COMPARISON_CLASS_P (t));
1673 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1674 STRIP_USELESS_TYPE_CONVERSION (newop1);
1675 STRIP_USELESS_TYPE_CONVERSION (newop2);
1676 gcc_checking_assert (is_gimple_val (newop1)
1677 && is_gimple_val (newop2));
1678 sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
1679 curr->op = gimple_get_lhs (sum);
1681 return true;
1684 return false;
1687 /* Perform various identities and other optimizations on the list of
1688 operand entries, stored in OPS. The tree code for the binary
1689 operation between all the operands is OPCODE. */
1691 static void
1692 optimize_ops_list (enum tree_code opcode,
1693 vec<operand_entry_t> *ops)
1695 unsigned int length = ops->length ();
1696 unsigned int i;
1697 operand_entry_t oe;
1698 operand_entry_t oelast = NULL;
1699 bool iterate = false;
1701 if (length == 1)
1702 return;
1704 oelast = ops->last ();
1706 /* If the last two are constants, pop the constants off, merge them
1707 and try the next two. */
1708 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1710 operand_entry_t oelm1 = (*ops)[length - 2];
1712 if (oelm1->rank == 0
1713 && is_gimple_min_invariant (oelm1->op)
1714 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1715 TREE_TYPE (oelast->op)))
1717 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1718 oelm1->op, oelast->op);
1720 if (folded && is_gimple_min_invariant (folded))
1722 if (dump_file && (dump_flags & TDF_DETAILS))
1723 fprintf (dump_file, "Merging constants\n");
1725 ops->pop ();
1726 ops->pop ();
1728 add_to_ops_vec (ops, folded);
1729 reassociate_stats.constants_eliminated++;
1731 optimize_ops_list (opcode, ops);
1732 return;
1737 eliminate_using_constants (opcode, ops);
1738 oelast = NULL;
1740 for (i = 0; ops->iterate (i, &oe);)
1742 bool done = false;
1744 if (eliminate_not_pairs (opcode, ops, i, oe))
1745 return;
1746 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1747 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
1748 || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
1750 if (done)
1751 return;
1752 iterate = true;
1753 oelast = NULL;
1754 continue;
1756 oelast = oe;
1757 i++;
1760 length = ops->length ();
1761 oelast = ops->last ();
1763 if (iterate)
1764 optimize_ops_list (opcode, ops);
1767 /* The following functions are subroutines to optimize_range_tests and allow
1768 it to try to change a logical combination of comparisons into a range
1769 test.
1771 For example, both
1772 X == 2 || X == 5 || X == 3 || X == 4
1774 X >= 2 && X <= 5
1775 are converted to
1776 (unsigned) (X - 2) <= 3
1778 For more information see comments above fold_test_range in fold-const.c,
1779 this implementation is for GIMPLE. */
1781 struct range_entry
1783 tree exp;
1784 tree low;
1785 tree high;
1786 bool in_p;
1787 bool strict_overflow_p;
1788 unsigned int idx, next;
1791 /* This is similar to make_range in fold-const.c, but on top of
1792 GIMPLE instead of trees. If EXP is non-NULL, it should be
1793 an SSA_NAME and STMT argument is ignored, otherwise STMT
1794 argument should be a GIMPLE_COND. */
1796 static void
1797 init_range_entry (struct range_entry *r, tree exp, gimple stmt)
1799 int in_p;
1800 tree low, high;
1801 bool is_bool, strict_overflow_p;
1803 r->exp = NULL_TREE;
1804 r->in_p = false;
1805 r->strict_overflow_p = false;
1806 r->low = NULL_TREE;
1807 r->high = NULL_TREE;
1808 if (exp != NULL_TREE
1809 && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
1810 return;
1812 /* Start with simply saying "EXP != 0" and then look at the code of EXP
1813 and see if we can refine the range. Some of the cases below may not
1814 happen, but it doesn't seem worth worrying about this. We "continue"
1815 the outer loop when we've changed something; otherwise we "break"
1816 the switch, which will "break" the while. */
1817 low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
1818 high = low;
1819 in_p = 0;
1820 strict_overflow_p = false;
1821 is_bool = false;
1822 if (exp == NULL_TREE)
1823 is_bool = true;
1824 else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
1826 if (TYPE_UNSIGNED (TREE_TYPE (exp)))
1827 is_bool = true;
1828 else
1829 return;
1831 else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
1832 is_bool = true;
1834 while (1)
1836 enum tree_code code;
1837 tree arg0, arg1, exp_type;
1838 tree nexp;
1839 location_t loc;
1841 if (exp != NULL_TREE)
1843 if (TREE_CODE (exp) != SSA_NAME)
1844 break;
1846 stmt = SSA_NAME_DEF_STMT (exp);
1847 if (!is_gimple_assign (stmt))
1848 break;
1850 code = gimple_assign_rhs_code (stmt);
1851 arg0 = gimple_assign_rhs1 (stmt);
1852 arg1 = gimple_assign_rhs2 (stmt);
1853 exp_type = TREE_TYPE (exp);
1855 else
1857 code = gimple_cond_code (stmt);
1858 arg0 = gimple_cond_lhs (stmt);
1859 arg1 = gimple_cond_rhs (stmt);
1860 exp_type = boolean_type_node;
1863 if (TREE_CODE (arg0) != SSA_NAME)
1864 break;
1865 loc = gimple_location (stmt);
1866 switch (code)
1868 case BIT_NOT_EXPR:
1869 if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
1870 /* Ensure the range is either +[-,0], +[0,0],
1871 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
1872 -[1,1]. If it is e.g. +[-,-] or -[-,-]
1873 or similar expression of unconditional true or
1874 false, it should not be negated. */
1875 && ((high && integer_zerop (high))
1876 || (low && integer_onep (low))))
1878 in_p = !in_p;
1879 exp = arg0;
1880 continue;
1882 break;
1883 case SSA_NAME:
1884 exp = arg0;
1885 continue;
1886 CASE_CONVERT:
1887 if (is_bool)
1888 goto do_default;
1889 if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
1891 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
1892 is_bool = true;
1893 else
1894 return;
1896 else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
1897 is_bool = true;
1898 goto do_default;
1899 case EQ_EXPR:
1900 case NE_EXPR:
1901 case LT_EXPR:
1902 case LE_EXPR:
1903 case GE_EXPR:
1904 case GT_EXPR:
1905 is_bool = true;
1906 /* FALLTHRU */
1907 default:
1908 if (!is_bool)
1909 return;
1910 do_default:
1911 nexp = make_range_step (loc, code, arg0, arg1, exp_type,
1912 &low, &high, &in_p,
1913 &strict_overflow_p);
1914 if (nexp != NULL_TREE)
1916 exp = nexp;
1917 gcc_assert (TREE_CODE (exp) == SSA_NAME);
1918 continue;
1920 break;
1922 break;
1924 if (is_bool)
1926 r->exp = exp;
1927 r->in_p = in_p;
1928 r->low = low;
1929 r->high = high;
1930 r->strict_overflow_p = strict_overflow_p;
1934 /* Comparison function for qsort. Sort entries
1935 without SSA_NAME exp first, then with SSA_NAMEs sorted
1936 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
1937 by increasing ->low and if ->low is the same, by increasing
1938 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
1939 maximum. */
1941 static int
1942 range_entry_cmp (const void *a, const void *b)
1944 const struct range_entry *p = (const struct range_entry *) a;
1945 const struct range_entry *q = (const struct range_entry *) b;
1947 if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
1949 if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
1951 /* Group range_entries for the same SSA_NAME together. */
1952 if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
1953 return -1;
1954 else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
1955 return 1;
1956 /* If ->low is different, NULL low goes first, then by
1957 ascending low. */
1958 if (p->low != NULL_TREE)
1960 if (q->low != NULL_TREE)
1962 tree tem = fold_binary (LT_EXPR, boolean_type_node,
1963 p->low, q->low);
1964 if (tem && integer_onep (tem))
1965 return -1;
1966 tem = fold_binary (GT_EXPR, boolean_type_node,
1967 p->low, q->low);
1968 if (tem && integer_onep (tem))
1969 return 1;
1971 else
1972 return 1;
1974 else if (q->low != NULL_TREE)
1975 return -1;
1976 /* If ->high is different, NULL high goes last, before that by
1977 ascending high. */
1978 if (p->high != NULL_TREE)
1980 if (q->high != NULL_TREE)
1982 tree tem = fold_binary (LT_EXPR, boolean_type_node,
1983 p->high, q->high);
1984 if (tem && integer_onep (tem))
1985 return -1;
1986 tem = fold_binary (GT_EXPR, boolean_type_node,
1987 p->high, q->high);
1988 if (tem && integer_onep (tem))
1989 return 1;
1991 else
1992 return -1;
1994 else if (p->high != NULL_TREE)
1995 return 1;
1996 /* If both ranges are the same, sort below by ascending idx. */
1998 else
1999 return 1;
2001 else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2002 return -1;
2004 if (p->idx < q->idx)
2005 return -1;
2006 else
2008 gcc_checking_assert (p->idx > q->idx);
2009 return 1;
2013 /* Helper routine of optimize_range_test.
2014 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2015 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2016 OPCODE and OPS are arguments of optimize_range_tests. Return
2017 true if the range merge has been successful.
2018 If OPCODE is ERROR_MARK, this is called from within
2019 maybe_optimize_range_tests and is performing inter-bb range optimization.
2020 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2021 oe->rank. */
2023 static bool
2024 update_range_test (struct range_entry *range, struct range_entry *otherrange,
2025 unsigned int count, enum tree_code opcode,
2026 vec<operand_entry_t> *ops, tree exp, bool in_p,
2027 tree low, tree high, bool strict_overflow_p)
2029 operand_entry_t oe = (*ops)[range->idx];
2030 tree op = oe->op;
2031 gimple stmt = op ? SSA_NAME_DEF_STMT (op) :
2032 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2033 location_t loc = gimple_location (stmt);
2034 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2035 tree tem = build_range_check (loc, optype, exp, in_p, low, high);
2036 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
2037 gimple_stmt_iterator gsi;
2039 if (tem == NULL_TREE)
2040 return false;
2042 if (strict_overflow_p && issue_strict_overflow_warning (wc))
2043 warning_at (loc, OPT_Wstrict_overflow,
2044 "assuming signed overflow does not occur "
2045 "when simplifying range test");
2047 if (dump_file && (dump_flags & TDF_DETAILS))
2049 struct range_entry *r;
2050 fprintf (dump_file, "Optimizing range tests ");
2051 print_generic_expr (dump_file, range->exp, 0);
2052 fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
2053 print_generic_expr (dump_file, range->low, 0);
2054 fprintf (dump_file, ", ");
2055 print_generic_expr (dump_file, range->high, 0);
2056 fprintf (dump_file, "]");
2057 for (r = otherrange; r < otherrange + count; r++)
2059 fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
2060 print_generic_expr (dump_file, r->low, 0);
2061 fprintf (dump_file, ", ");
2062 print_generic_expr (dump_file, r->high, 0);
2063 fprintf (dump_file, "]");
2065 fprintf (dump_file, "\n into ");
2066 print_generic_expr (dump_file, tem, 0);
2067 fprintf (dump_file, "\n");
2070 if (opcode == BIT_IOR_EXPR
2071 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2072 tem = invert_truthvalue_loc (loc, tem);
2074 tem = fold_convert_loc (loc, optype, tem);
2075 gsi = gsi_for_stmt (stmt);
2076 /* In rare cases range->exp can be equal to lhs of stmt.
2077 In that case we have to insert after the stmt rather then before
2078 it. */
2079 if (op == range->exp)
2080 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, false,
2081 GSI_CONTINUE_LINKING);
2082 else
2084 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
2085 GSI_SAME_STMT);
2086 gsi_prev (&gsi);
2088 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2089 if (gimple_uid (gsi_stmt (gsi)))
2090 break;
2091 else
2092 gimple_set_uid (gsi_stmt (gsi), gimple_uid (stmt));
2094 oe->op = tem;
2095 range->exp = exp;
2096 range->low = low;
2097 range->high = high;
2098 range->in_p = in_p;
2099 range->strict_overflow_p = false;
2101 for (range = otherrange; range < otherrange + count; range++)
2103 oe = (*ops)[range->idx];
2104 /* Now change all the other range test immediate uses, so that
2105 those tests will be optimized away. */
2106 if (opcode == ERROR_MARK)
2108 if (oe->op)
2109 oe->op = build_int_cst (TREE_TYPE (oe->op),
2110 oe->rank == BIT_IOR_EXPR ? 0 : 1);
2111 else
2112 oe->op = (oe->rank == BIT_IOR_EXPR
2113 ? boolean_false_node : boolean_true_node);
2115 else
2116 oe->op = error_mark_node;
2117 range->exp = NULL_TREE;
2119 return true;
2122 /* Optimize X == CST1 || X == CST2
2123 if popcount (CST1 ^ CST2) == 1 into
2124 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2125 Similarly for ranges. E.g.
2126 X != 2 && X != 3 && X != 10 && X != 11
2127 will be transformed by the previous optimization into
2128 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2129 and this loop can transform that into
2130 !(((X & ~8) - 2U) <= 1U). */
2132 static bool
2133 optimize_range_tests_xor (enum tree_code opcode, tree type,
2134 tree lowi, tree lowj, tree highi, tree highj,
2135 vec<operand_entry_t> *ops,
2136 struct range_entry *rangei,
2137 struct range_entry *rangej)
2139 tree lowxor, highxor, tem, exp;
2140 /* Check highi ^ lowi == highj ^ lowj and
2141 popcount (highi ^ lowi) == 1. */
2142 lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
2143 if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
2144 return false;
2145 if (tree_log2 (lowxor) < 0)
2146 return false;
2147 highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
2148 if (!tree_int_cst_equal (lowxor, highxor))
2149 return false;
2151 tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
2152 exp = fold_build2 (BIT_AND_EXPR, type, rangei->exp, tem);
2153 lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
2154 highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
2155 if (update_range_test (rangei, rangej, 1, opcode, ops, exp,
2156 rangei->in_p, lowj, highj,
2157 rangei->strict_overflow_p
2158 || rangej->strict_overflow_p))
2159 return true;
2160 return false;
2163 /* Optimize X == CST1 || X == CST2
2164 if popcount (CST2 - CST1) == 1 into
2165 ((X - CST1) & ~(CST2 - CST1)) == 0.
2166 Similarly for ranges. E.g.
2167 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2168 || X == 75 || X == 45
2169 will be transformed by the previous optimization into
2170 (X - 43U) <= 3U || (X - 75U) <= 3U
2171 and this loop can transform that into
2172 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2173 static bool
2174 optimize_range_tests_diff (enum tree_code opcode, tree type,
2175 tree lowi, tree lowj, tree highi, tree highj,
2176 vec<operand_entry_t> *ops,
2177 struct range_entry *rangei,
2178 struct range_entry *rangej)
2180 tree tem1, tem2, mask;
2181 /* Check highi - lowi == highj - lowj. */
2182 tem1 = fold_binary (MINUS_EXPR, type, highi, lowi);
2183 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2184 return false;
2185 tem2 = fold_binary (MINUS_EXPR, type, highj, lowj);
2186 if (!tree_int_cst_equal (tem1, tem2))
2187 return false;
2188 /* Check popcount (lowj - lowi) == 1. */
2189 tem1 = fold_binary (MINUS_EXPR, type, lowj, lowi);
2190 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2191 return false;
2192 if (tree_log2 (tem1) < 0)
2193 return false;
2195 mask = fold_build1 (BIT_NOT_EXPR, type, tem1);
2196 tem1 = fold_binary (MINUS_EXPR, type, rangei->exp, lowi);
2197 tem1 = fold_build2 (BIT_AND_EXPR, type, tem1, mask);
2198 lowj = build_int_cst (type, 0);
2199 if (update_range_test (rangei, rangej, 1, opcode, ops, tem1,
2200 rangei->in_p, lowj, tem2,
2201 rangei->strict_overflow_p
2202 || rangej->strict_overflow_p))
2203 return true;
2204 return false;
2207 /* It does some common checks for function optimize_range_tests_xor and
2208 optimize_range_tests_diff.
2209 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2210 Else it calls optimize_range_tests_diff. */
2212 static bool
2213 optimize_range_tests_1 (enum tree_code opcode, int first, int length,
2214 bool optimize_xor, vec<operand_entry_t> *ops,
2215 struct range_entry *ranges)
2217 int i, j;
2218 bool any_changes = false;
2219 for (i = first; i < length; i++)
2221 tree lowi, highi, lowj, highj, type, tem;
2223 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2224 continue;
2225 type = TREE_TYPE (ranges[i].exp);
2226 if (!INTEGRAL_TYPE_P (type))
2227 continue;
2228 lowi = ranges[i].low;
2229 if (lowi == NULL_TREE)
2230 lowi = TYPE_MIN_VALUE (type);
2231 highi = ranges[i].high;
2232 if (highi == NULL_TREE)
2233 continue;
2234 for (j = i + 1; j < length && j < i + 64; j++)
2236 bool changes;
2237 if (ranges[i].exp != ranges[j].exp || ranges[j].in_p)
2238 continue;
2239 lowj = ranges[j].low;
2240 if (lowj == NULL_TREE)
2241 continue;
2242 highj = ranges[j].high;
2243 if (highj == NULL_TREE)
2244 highj = TYPE_MAX_VALUE (type);
2245 /* Check lowj > highi. */
2246 tem = fold_binary (GT_EXPR, boolean_type_node,
2247 lowj, highi);
2248 if (tem == NULL_TREE || !integer_onep (tem))
2249 continue;
2250 if (optimize_xor)
2251 changes = optimize_range_tests_xor (opcode, type, lowi, lowj,
2252 highi, highj, ops,
2253 ranges + i, ranges + j);
2254 else
2255 changes = optimize_range_tests_diff (opcode, type, lowi, lowj,
2256 highi, highj, ops,
2257 ranges + i, ranges + j);
2258 if (changes)
2260 any_changes = true;
2261 break;
2265 return any_changes;
2268 /* Optimize range tests, similarly how fold_range_test optimizes
2269 it on trees. The tree code for the binary
2270 operation between all the operands is OPCODE.
2271 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
2272 maybe_optimize_range_tests for inter-bb range optimization.
2273 In that case if oe->op is NULL, oe->id is bb->index whose
2274 GIMPLE_COND is && or ||ed into the test, and oe->rank says
2275 the actual opcode. */
2277 static bool
2278 optimize_range_tests (enum tree_code opcode,
2279 vec<operand_entry_t> *ops)
2281 unsigned int length = ops->length (), i, j, first;
2282 operand_entry_t oe;
2283 struct range_entry *ranges;
2284 bool any_changes = false;
2286 if (length == 1)
2287 return false;
2289 ranges = XNEWVEC (struct range_entry, length);
2290 for (i = 0; i < length; i++)
2292 oe = (*ops)[i];
2293 ranges[i].idx = i;
2294 init_range_entry (ranges + i, oe->op,
2295 oe->op ? NULL :
2296 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id)));
2297 /* For | invert it now, we will invert it again before emitting
2298 the optimized expression. */
2299 if (opcode == BIT_IOR_EXPR
2300 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2301 ranges[i].in_p = !ranges[i].in_p;
2304 qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
2305 for (i = 0; i < length; i++)
2306 if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
2307 break;
2309 /* Try to merge ranges. */
2310 for (first = i; i < length; i++)
2312 tree low = ranges[i].low;
2313 tree high = ranges[i].high;
2314 int in_p = ranges[i].in_p;
2315 bool strict_overflow_p = ranges[i].strict_overflow_p;
2316 int update_fail_count = 0;
2318 for (j = i + 1; j < length; j++)
2320 if (ranges[i].exp != ranges[j].exp)
2321 break;
2322 if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
2323 ranges[j].in_p, ranges[j].low, ranges[j].high))
2324 break;
2325 strict_overflow_p |= ranges[j].strict_overflow_p;
2328 if (j == i + 1)
2329 continue;
2331 if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
2332 ops, ranges[i].exp, in_p, low, high,
2333 strict_overflow_p))
2335 i = j - 1;
2336 any_changes = true;
2338 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
2339 while update_range_test would fail. */
2340 else if (update_fail_count == 64)
2341 i = j - 1;
2342 else
2343 ++update_fail_count;
2346 any_changes |= optimize_range_tests_1 (opcode, first, length, true,
2347 ops, ranges);
2349 if (BRANCH_COST (optimize_function_for_speed_p (cfun), false) >= 2)
2350 any_changes |= optimize_range_tests_1 (opcode, first, length, false,
2351 ops, ranges);
2353 if (any_changes && opcode != ERROR_MARK)
2355 j = 0;
2356 FOR_EACH_VEC_ELT (*ops, i, oe)
2358 if (oe->op == error_mark_node)
2359 continue;
2360 else if (i != j)
2361 (*ops)[j] = oe;
2362 j++;
2364 ops->truncate (j);
2367 XDELETEVEC (ranges);
2368 return any_changes;
2371 /* Return true if STMT is a cast like:
2372 <bb N>:
2374 _123 = (int) _234;
2376 <bb M>:
2377 # _345 = PHI <_123(N), 1(...), 1(...)>
2378 where _234 has bool type, _123 has single use and
2379 bb N has a single successor M. This is commonly used in
2380 the last block of a range test. */
2382 static bool
2383 final_range_test_p (gimple stmt)
2385 basic_block bb, rhs_bb;
2386 edge e;
2387 tree lhs, rhs;
2388 use_operand_p use_p;
2389 gimple use_stmt;
2391 if (!gimple_assign_cast_p (stmt))
2392 return false;
2393 bb = gimple_bb (stmt);
2394 if (!single_succ_p (bb))
2395 return false;
2396 e = single_succ_edge (bb);
2397 if (e->flags & EDGE_COMPLEX)
2398 return false;
2400 lhs = gimple_assign_lhs (stmt);
2401 rhs = gimple_assign_rhs1 (stmt);
2402 if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2403 || TREE_CODE (rhs) != SSA_NAME
2404 || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
2405 return false;
2407 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
2408 if (!single_imm_use (lhs, &use_p, &use_stmt))
2409 return false;
2411 if (gimple_code (use_stmt) != GIMPLE_PHI
2412 || gimple_bb (use_stmt) != e->dest)
2413 return false;
2415 /* And that the rhs is defined in the same loop. */
2416 rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
2417 if (rhs_bb == NULL
2418 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
2419 return false;
2421 return true;
2424 /* Return true if BB is suitable basic block for inter-bb range test
2425 optimization. If BACKWARD is true, BB should be the only predecessor
2426 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
2427 or compared with to find a common basic block to which all conditions
2428 branch to if true resp. false. If BACKWARD is false, TEST_BB should
2429 be the only predecessor of BB. */
2431 static bool
2432 suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
2433 bool backward)
2435 edge_iterator ei, ei2;
2436 edge e, e2;
2437 gimple stmt;
2438 gimple_stmt_iterator gsi;
2439 bool other_edge_seen = false;
2440 bool is_cond;
2442 if (test_bb == bb)
2443 return false;
2444 /* Check last stmt first. */
2445 stmt = last_stmt (bb);
2446 if (stmt == NULL
2447 || (gimple_code (stmt) != GIMPLE_COND
2448 && (backward || !final_range_test_p (stmt)))
2449 || gimple_visited_p (stmt)
2450 || stmt_could_throw_p (stmt)
2451 || *other_bb == bb)
2452 return false;
2453 is_cond = gimple_code (stmt) == GIMPLE_COND;
2454 if (is_cond)
2456 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
2457 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
2458 to *OTHER_BB (if not set yet, try to find it out). */
2459 if (EDGE_COUNT (bb->succs) != 2)
2460 return false;
2461 FOR_EACH_EDGE (e, ei, bb->succs)
2463 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2464 return false;
2465 if (e->dest == test_bb)
2467 if (backward)
2468 continue;
2469 else
2470 return false;
2472 if (e->dest == bb)
2473 return false;
2474 if (*other_bb == NULL)
2476 FOR_EACH_EDGE (e2, ei2, test_bb->succs)
2477 if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2478 return false;
2479 else if (e->dest == e2->dest)
2480 *other_bb = e->dest;
2481 if (*other_bb == NULL)
2482 return false;
2484 if (e->dest == *other_bb)
2485 other_edge_seen = true;
2486 else if (backward)
2487 return false;
2489 if (*other_bb == NULL || !other_edge_seen)
2490 return false;
2492 else if (single_succ (bb) != *other_bb)
2493 return false;
2495 /* Now check all PHIs of *OTHER_BB. */
2496 e = find_edge (bb, *other_bb);
2497 e2 = find_edge (test_bb, *other_bb);
2498 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2500 gimple phi = gsi_stmt (gsi);
2501 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
2502 corresponding to BB and TEST_BB predecessor must be the same. */
2503 if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
2504 gimple_phi_arg_def (phi, e2->dest_idx), 0))
2506 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
2507 one of the PHIs should have the lhs of the last stmt in
2508 that block as PHI arg and that PHI should have 0 or 1
2509 corresponding to it in all other range test basic blocks
2510 considered. */
2511 if (!is_cond)
2513 if (gimple_phi_arg_def (phi, e->dest_idx)
2514 == gimple_assign_lhs (stmt)
2515 && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
2516 || integer_onep (gimple_phi_arg_def (phi,
2517 e2->dest_idx))))
2518 continue;
2520 else
2522 gimple test_last = last_stmt (test_bb);
2523 if (gimple_code (test_last) != GIMPLE_COND
2524 && gimple_phi_arg_def (phi, e2->dest_idx)
2525 == gimple_assign_lhs (test_last)
2526 && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
2527 || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
2528 continue;
2531 return false;
2534 return true;
2537 /* Return true if BB doesn't have side-effects that would disallow
2538 range test optimization, all SSA_NAMEs set in the bb are consumed
2539 in the bb and there are no PHIs. */
2541 static bool
2542 no_side_effect_bb (basic_block bb)
2544 gimple_stmt_iterator gsi;
2545 gimple last;
2547 if (!gimple_seq_empty_p (phi_nodes (bb)))
2548 return false;
2549 last = last_stmt (bb);
2550 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2552 gimple stmt = gsi_stmt (gsi);
2553 tree lhs;
2554 imm_use_iterator imm_iter;
2555 use_operand_p use_p;
2557 if (is_gimple_debug (stmt))
2558 continue;
2559 if (gimple_has_side_effects (stmt))
2560 return false;
2561 if (stmt == last)
2562 return true;
2563 if (!is_gimple_assign (stmt))
2564 return false;
2565 lhs = gimple_assign_lhs (stmt);
2566 if (TREE_CODE (lhs) != SSA_NAME)
2567 return false;
2568 if (gimple_assign_rhs_could_trap_p (stmt))
2569 return false;
2570 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2572 gimple use_stmt = USE_STMT (use_p);
2573 if (is_gimple_debug (use_stmt))
2574 continue;
2575 if (gimple_bb (use_stmt) != bb)
2576 return false;
2579 return false;
2582 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
2583 return true and fill in *OPS recursively. */
2585 static bool
2586 get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
2587 struct loop *loop)
2589 gimple stmt = SSA_NAME_DEF_STMT (var);
2590 tree rhs[2];
2591 int i;
2593 if (!is_reassociable_op (stmt, code, loop))
2594 return false;
2596 rhs[0] = gimple_assign_rhs1 (stmt);
2597 rhs[1] = gimple_assign_rhs2 (stmt);
2598 gimple_set_visited (stmt, true);
2599 for (i = 0; i < 2; i++)
2600 if (TREE_CODE (rhs[i]) == SSA_NAME
2601 && !get_ops (rhs[i], code, ops, loop)
2602 && has_single_use (rhs[i]))
2604 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
2606 oe->op = rhs[i];
2607 oe->rank = code;
2608 oe->id = 0;
2609 oe->count = 1;
2610 ops->safe_push (oe);
2612 return true;
2615 /* Find the ops that were added by get_ops starting from VAR, see if
2616 they were changed during update_range_test and if yes, create new
2617 stmts. */
2619 static tree
2620 update_ops (tree var, enum tree_code code, vec<operand_entry_t> ops,
2621 unsigned int *pidx, struct loop *loop)
2623 gimple stmt = SSA_NAME_DEF_STMT (var);
2624 tree rhs[4];
2625 int i;
2627 if (!is_reassociable_op (stmt, code, loop))
2628 return NULL;
2630 rhs[0] = gimple_assign_rhs1 (stmt);
2631 rhs[1] = gimple_assign_rhs2 (stmt);
2632 rhs[2] = rhs[0];
2633 rhs[3] = rhs[1];
2634 for (i = 0; i < 2; i++)
2635 if (TREE_CODE (rhs[i]) == SSA_NAME)
2637 rhs[2 + i] = update_ops (rhs[i], code, ops, pidx, loop);
2638 if (rhs[2 + i] == NULL_TREE)
2640 if (has_single_use (rhs[i]))
2641 rhs[2 + i] = ops[(*pidx)++]->op;
2642 else
2643 rhs[2 + i] = rhs[i];
2646 if ((rhs[2] != rhs[0] || rhs[3] != rhs[1])
2647 && (rhs[2] != rhs[1] || rhs[3] != rhs[0]))
2649 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2650 var = make_ssa_name (TREE_TYPE (var), NULL);
2651 gimple g = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
2652 var, rhs[2], rhs[3]);
2653 gimple_set_uid (g, gimple_uid (stmt));
2654 gimple_set_visited (g, true);
2655 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2657 return var;
2660 /* Structure to track the initial value passed to get_ops and
2661 the range in the ops vector for each basic block. */
2663 struct inter_bb_range_test_entry
2665 tree op;
2666 unsigned int first_idx, last_idx;
2669 /* Inter-bb range test optimization. */
2671 static void
2672 maybe_optimize_range_tests (gimple stmt)
2674 basic_block first_bb = gimple_bb (stmt);
2675 basic_block last_bb = first_bb;
2676 basic_block other_bb = NULL;
2677 basic_block bb;
2678 edge_iterator ei;
2679 edge e;
2680 auto_vec<operand_entry_t> ops;
2681 auto_vec<inter_bb_range_test_entry> bbinfo;
2682 bool any_changes = false;
2684 /* Consider only basic blocks that end with GIMPLE_COND or
2685 a cast statement satisfying final_range_test_p. All
2686 but the last bb in the first_bb .. last_bb range
2687 should end with GIMPLE_COND. */
2688 if (gimple_code (stmt) == GIMPLE_COND)
2690 if (EDGE_COUNT (first_bb->succs) != 2)
2691 return;
2693 else if (final_range_test_p (stmt))
2694 other_bb = single_succ (first_bb);
2695 else
2696 return;
2698 if (stmt_could_throw_p (stmt))
2699 return;
2701 /* As relative ordering of post-dominator sons isn't fixed,
2702 maybe_optimize_range_tests can be called first on any
2703 bb in the range we want to optimize. So, start searching
2704 backwards, if first_bb can be set to a predecessor. */
2705 while (single_pred_p (first_bb))
2707 basic_block pred_bb = single_pred (first_bb);
2708 if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
2709 break;
2710 if (!no_side_effect_bb (first_bb))
2711 break;
2712 first_bb = pred_bb;
2714 /* If first_bb is last_bb, other_bb hasn't been computed yet.
2715 Before starting forward search in last_bb successors, find
2716 out the other_bb. */
2717 if (first_bb == last_bb)
2719 other_bb = NULL;
2720 /* As non-GIMPLE_COND last stmt always terminates the range,
2721 if forward search didn't discover anything, just give up. */
2722 if (gimple_code (stmt) != GIMPLE_COND)
2723 return;
2724 /* Look at both successors. Either it ends with a GIMPLE_COND
2725 and satisfies suitable_cond_bb, or ends with a cast and
2726 other_bb is that cast's successor. */
2727 FOR_EACH_EDGE (e, ei, first_bb->succs)
2728 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
2729 || e->dest == first_bb)
2730 return;
2731 else if (single_pred_p (e->dest))
2733 stmt = last_stmt (e->dest);
2734 if (stmt
2735 && gimple_code (stmt) == GIMPLE_COND
2736 && EDGE_COUNT (e->dest->succs) == 2)
2738 if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
2739 break;
2740 else
2741 other_bb = NULL;
2743 else if (stmt
2744 && final_range_test_p (stmt)
2745 && find_edge (first_bb, single_succ (e->dest)))
2747 other_bb = single_succ (e->dest);
2748 if (other_bb == first_bb)
2749 other_bb = NULL;
2752 if (other_bb == NULL)
2753 return;
2755 /* Now do the forward search, moving last_bb to successor bbs
2756 that aren't other_bb. */
2757 while (EDGE_COUNT (last_bb->succs) == 2)
2759 FOR_EACH_EDGE (e, ei, last_bb->succs)
2760 if (e->dest != other_bb)
2761 break;
2762 if (e == NULL)
2763 break;
2764 if (!single_pred_p (e->dest))
2765 break;
2766 if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
2767 break;
2768 if (!no_side_effect_bb (e->dest))
2769 break;
2770 last_bb = e->dest;
2772 if (first_bb == last_bb)
2773 return;
2774 /* Here basic blocks first_bb through last_bb's predecessor
2775 end with GIMPLE_COND, all of them have one of the edges to
2776 other_bb and another to another block in the range,
2777 all blocks except first_bb don't have side-effects and
2778 last_bb ends with either GIMPLE_COND, or cast satisfying
2779 final_range_test_p. */
2780 for (bb = last_bb; ; bb = single_pred (bb))
2782 enum tree_code code;
2783 tree lhs, rhs;
2784 inter_bb_range_test_entry bb_ent;
2786 bb_ent.op = NULL_TREE;
2787 bb_ent.first_idx = ops.length ();
2788 bb_ent.last_idx = bb_ent.first_idx;
2789 e = find_edge (bb, other_bb);
2790 stmt = last_stmt (bb);
2791 gimple_set_visited (stmt, true);
2792 if (gimple_code (stmt) != GIMPLE_COND)
2794 use_operand_p use_p;
2795 gimple phi;
2796 edge e2;
2797 unsigned int d;
2799 lhs = gimple_assign_lhs (stmt);
2800 rhs = gimple_assign_rhs1 (stmt);
2801 gcc_assert (bb == last_bb);
2803 /* stmt is
2804 _123 = (int) _234;
2806 followed by:
2807 <bb M>:
2808 # _345 = PHI <_123(N), 1(...), 1(...)>
2810 or 0 instead of 1. If it is 0, the _234
2811 range test is anded together with all the
2812 other range tests, if it is 1, it is ored with
2813 them. */
2814 single_imm_use (lhs, &use_p, &phi);
2815 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2816 e2 = find_edge (first_bb, other_bb);
2817 d = e2->dest_idx;
2818 gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
2819 if (integer_zerop (gimple_phi_arg_def (phi, d)))
2820 code = BIT_AND_EXPR;
2821 else
2823 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
2824 code = BIT_IOR_EXPR;
2827 /* If _234 SSA_NAME_DEF_STMT is
2828 _234 = _567 | _789;
2829 (or &, corresponding to 1/0 in the phi arguments,
2830 push into ops the individual range test arguments
2831 of the bitwise or resp. and, recursively. */
2832 if (!get_ops (rhs, code, &ops,
2833 loop_containing_stmt (stmt))
2834 && has_single_use (rhs))
2836 /* Otherwise, push the _234 range test itself. */
2837 operand_entry_t oe
2838 = (operand_entry_t) pool_alloc (operand_entry_pool);
2840 oe->op = rhs;
2841 oe->rank = code;
2842 oe->id = 0;
2843 oe->count = 1;
2844 ops.safe_push (oe);
2845 bb_ent.last_idx++;
2847 else
2848 bb_ent.last_idx = ops.length ();
2849 bb_ent.op = rhs;
2850 bbinfo.safe_push (bb_ent);
2851 continue;
2853 /* Otherwise stmt is GIMPLE_COND. */
2854 code = gimple_cond_code (stmt);
2855 lhs = gimple_cond_lhs (stmt);
2856 rhs = gimple_cond_rhs (stmt);
2857 if (TREE_CODE (lhs) == SSA_NAME
2858 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2859 && ((code != EQ_EXPR && code != NE_EXPR)
2860 || rhs != boolean_false_node
2861 /* Either push into ops the individual bitwise
2862 or resp. and operands, depending on which
2863 edge is other_bb. */
2864 || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
2865 ^ (code == EQ_EXPR))
2866 ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
2867 loop_containing_stmt (stmt))))
2869 /* Or push the GIMPLE_COND stmt itself. */
2870 operand_entry_t oe
2871 = (operand_entry_t) pool_alloc (operand_entry_pool);
2873 oe->op = NULL;
2874 oe->rank = (e->flags & EDGE_TRUE_VALUE)
2875 ? BIT_IOR_EXPR : BIT_AND_EXPR;
2876 /* oe->op = NULL signs that there is no SSA_NAME
2877 for the range test, and oe->id instead is the
2878 basic block number, at which's end the GIMPLE_COND
2879 is. */
2880 oe->id = bb->index;
2881 oe->count = 1;
2882 ops.safe_push (oe);
2883 bb_ent.op = NULL;
2884 bb_ent.last_idx++;
2886 else if (ops.length () > bb_ent.first_idx)
2888 bb_ent.op = lhs;
2889 bb_ent.last_idx = ops.length ();
2891 bbinfo.safe_push (bb_ent);
2892 if (bb == first_bb)
2893 break;
2895 if (ops.length () > 1)
2896 any_changes = optimize_range_tests (ERROR_MARK, &ops);
2897 if (any_changes)
2899 unsigned int idx;
2900 /* update_ops relies on has_single_use predicates returning the
2901 same values as it did during get_ops earlier. Additionally it
2902 never removes statements, only adds new ones and it should walk
2903 from the single imm use and check the predicate already before
2904 making those changes.
2905 On the other side, the handling of GIMPLE_COND directly can turn
2906 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
2907 it needs to be done in a separate loop afterwards. */
2908 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
2910 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
2911 && bbinfo[idx].op != NULL_TREE)
2913 tree new_op;
2915 stmt = last_stmt (bb);
2916 new_op = update_ops (bbinfo[idx].op,
2917 (enum tree_code)
2918 ops[bbinfo[idx].first_idx]->rank,
2919 ops, &bbinfo[idx].first_idx,
2920 loop_containing_stmt (stmt));
2921 if (new_op == NULL_TREE)
2923 gcc_assert (bb == last_bb);
2924 new_op = ops[bbinfo[idx].first_idx++]->op;
2926 if (bbinfo[idx].op != new_op)
2928 imm_use_iterator iter;
2929 use_operand_p use_p;
2930 gimple use_stmt, cast_stmt = NULL;
2932 FOR_EACH_IMM_USE_STMT (use_stmt, iter, bbinfo[idx].op)
2933 if (is_gimple_debug (use_stmt))
2934 continue;
2935 else if (gimple_code (use_stmt) == GIMPLE_COND
2936 || gimple_code (use_stmt) == GIMPLE_PHI)
2937 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2938 SET_USE (use_p, new_op);
2939 else if (gimple_assign_cast_p (use_stmt))
2940 cast_stmt = use_stmt;
2941 else
2942 gcc_unreachable ();
2943 if (cast_stmt)
2945 gcc_assert (bb == last_bb);
2946 tree lhs = gimple_assign_lhs (cast_stmt);
2947 tree new_lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
2948 enum tree_code rhs_code
2949 = gimple_assign_rhs_code (cast_stmt);
2950 gimple g;
2951 if (is_gimple_min_invariant (new_op))
2953 new_op = fold_convert (TREE_TYPE (lhs), new_op);
2954 g = gimple_build_assign (new_lhs, new_op);
2956 else
2957 g = gimple_build_assign_with_ops (rhs_code, new_lhs,
2958 new_op, NULL_TREE);
2959 gimple_stmt_iterator gsi = gsi_for_stmt (cast_stmt);
2960 gimple_set_uid (g, gimple_uid (cast_stmt));
2961 gimple_set_visited (g, true);
2962 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2963 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2964 if (is_gimple_debug (use_stmt))
2965 continue;
2966 else if (gimple_code (use_stmt) == GIMPLE_COND
2967 || gimple_code (use_stmt) == GIMPLE_PHI)
2968 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2969 SET_USE (use_p, new_lhs);
2970 else
2971 gcc_unreachable ();
2975 if (bb == first_bb)
2976 break;
2978 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
2980 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
2981 && bbinfo[idx].op == NULL_TREE
2982 && ops[bbinfo[idx].first_idx]->op != NULL_TREE)
2984 stmt = last_stmt (bb);
2985 if (integer_zerop (ops[bbinfo[idx].first_idx]->op))
2986 gimple_cond_make_false (stmt);
2987 else if (integer_onep (ops[bbinfo[idx].first_idx]->op))
2988 gimple_cond_make_true (stmt);
2989 else
2991 gimple_cond_set_code (stmt, NE_EXPR);
2992 gimple_cond_set_lhs (stmt, ops[bbinfo[idx].first_idx]->op);
2993 gimple_cond_set_rhs (stmt, boolean_false_node);
2995 update_stmt (stmt);
2997 if (bb == first_bb)
2998 break;
3003 /* Return true if OPERAND is defined by a PHI node which uses the LHS
3004 of STMT in it's operands. This is also known as a "destructive
3005 update" operation. */
3007 static bool
3008 is_phi_for_stmt (gimple stmt, tree operand)
3010 gimple def_stmt;
3011 tree lhs;
3012 use_operand_p arg_p;
3013 ssa_op_iter i;
3015 if (TREE_CODE (operand) != SSA_NAME)
3016 return false;
3018 lhs = gimple_assign_lhs (stmt);
3020 def_stmt = SSA_NAME_DEF_STMT (operand);
3021 if (gimple_code (def_stmt) != GIMPLE_PHI)
3022 return false;
3024 FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
3025 if (lhs == USE_FROM_PTR (arg_p))
3026 return true;
3027 return false;
3030 /* Remove def stmt of VAR if VAR has zero uses and recurse
3031 on rhs1 operand if so. */
3033 static void
3034 remove_visited_stmt_chain (tree var)
3036 gimple stmt;
3037 gimple_stmt_iterator gsi;
3039 while (1)
3041 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
3042 return;
3043 stmt = SSA_NAME_DEF_STMT (var);
3044 if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
3046 var = gimple_assign_rhs1 (stmt);
3047 gsi = gsi_for_stmt (stmt);
3048 gsi_remove (&gsi, true);
3049 release_defs (stmt);
3051 else
3052 return;
3056 /* This function checks three consequtive operands in
3057 passed operands vector OPS starting from OPINDEX and
3058 swaps two operands if it is profitable for binary operation
3059 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
3061 We pair ops with the same rank if possible.
3063 The alternative we try is to see if STMT is a destructive
3064 update style statement, which is like:
3065 b = phi (a, ...)
3066 a = c + b;
3067 In that case, we want to use the destructive update form to
3068 expose the possible vectorizer sum reduction opportunity.
3069 In that case, the third operand will be the phi node. This
3070 check is not performed if STMT is null.
3072 We could, of course, try to be better as noted above, and do a
3073 lot of work to try to find these opportunities in >3 operand
3074 cases, but it is unlikely to be worth it. */
3076 static void
3077 swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
3078 unsigned int opindex, gimple stmt)
3080 operand_entry_t oe1, oe2, oe3;
3082 oe1 = ops[opindex];
3083 oe2 = ops[opindex + 1];
3084 oe3 = ops[opindex + 2];
3086 if ((oe1->rank == oe2->rank
3087 && oe2->rank != oe3->rank)
3088 || (stmt && is_phi_for_stmt (stmt, oe3->op)
3089 && !is_phi_for_stmt (stmt, oe1->op)
3090 && !is_phi_for_stmt (stmt, oe2->op)))
3092 struct operand_entry temp = *oe3;
3093 oe3->op = oe1->op;
3094 oe3->rank = oe1->rank;
3095 oe1->op = temp.op;
3096 oe1->rank= temp.rank;
3098 else if ((oe1->rank == oe3->rank
3099 && oe2->rank != oe3->rank)
3100 || (stmt && is_phi_for_stmt (stmt, oe2->op)
3101 && !is_phi_for_stmt (stmt, oe1->op)
3102 && !is_phi_for_stmt (stmt, oe3->op)))
3104 struct operand_entry temp = *oe2;
3105 oe2->op = oe1->op;
3106 oe2->rank = oe1->rank;
3107 oe1->op = temp.op;
3108 oe1->rank = temp.rank;
3112 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
3113 two definitions, otherwise return STMT. */
3115 static inline gimple
3116 find_insert_point (gimple stmt, tree rhs1, tree rhs2)
3118 if (TREE_CODE (rhs1) == SSA_NAME
3119 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs1)))
3120 stmt = SSA_NAME_DEF_STMT (rhs1);
3121 if (TREE_CODE (rhs2) == SSA_NAME
3122 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs2)))
3123 stmt = SSA_NAME_DEF_STMT (rhs2);
3124 return stmt;
3127 /* Recursively rewrite our linearized statements so that the operators
3128 match those in OPS[OPINDEX], putting the computation in rank
3129 order. Return new lhs. */
3131 static tree
3132 rewrite_expr_tree (gimple stmt, unsigned int opindex,
3133 vec<operand_entry_t> ops, bool changed)
3135 tree rhs1 = gimple_assign_rhs1 (stmt);
3136 tree rhs2 = gimple_assign_rhs2 (stmt);
3137 tree lhs = gimple_assign_lhs (stmt);
3138 operand_entry_t oe;
3140 /* The final recursion case for this function is that you have
3141 exactly two operations left.
3142 If we had one exactly one op in the entire list to start with, we
3143 would have never called this function, and the tail recursion
3144 rewrites them one at a time. */
3145 if (opindex + 2 == ops.length ())
3147 operand_entry_t oe1, oe2;
3149 oe1 = ops[opindex];
3150 oe2 = ops[opindex + 1];
3152 if (rhs1 != oe1->op || rhs2 != oe2->op)
3154 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3155 unsigned int uid = gimple_uid (stmt);
3157 if (dump_file && (dump_flags & TDF_DETAILS))
3159 fprintf (dump_file, "Transforming ");
3160 print_gimple_stmt (dump_file, stmt, 0, 0);
3163 if (changed)
3165 gimple insert_point = find_insert_point (stmt, oe1->op, oe2->op);
3166 lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
3167 stmt
3168 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
3169 lhs, oe1->op, oe2->op);
3170 gimple_set_uid (stmt, uid);
3171 gimple_set_visited (stmt, true);
3172 if (insert_point == gsi_stmt (gsi))
3173 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3174 else
3175 insert_stmt_after (stmt, insert_point);
3177 else
3179 gcc_checking_assert (find_insert_point (stmt, oe1->op, oe2->op)
3180 == stmt);
3181 gimple_assign_set_rhs1 (stmt, oe1->op);
3182 gimple_assign_set_rhs2 (stmt, oe2->op);
3183 update_stmt (stmt);
3186 if (rhs1 != oe1->op && rhs1 != oe2->op)
3187 remove_visited_stmt_chain (rhs1);
3189 if (dump_file && (dump_flags & TDF_DETAILS))
3191 fprintf (dump_file, " into ");
3192 print_gimple_stmt (dump_file, stmt, 0, 0);
3195 return lhs;
3198 /* If we hit here, we should have 3 or more ops left. */
3199 gcc_assert (opindex + 2 < ops.length ());
3201 /* Rewrite the next operator. */
3202 oe = ops[opindex];
3204 /* Recurse on the LHS of the binary operator, which is guaranteed to
3205 be the non-leaf side. */
3206 tree new_rhs1
3207 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops,
3208 changed || oe->op != rhs2);
3210 if (oe->op != rhs2 || new_rhs1 != rhs1)
3212 if (dump_file && (dump_flags & TDF_DETAILS))
3214 fprintf (dump_file, "Transforming ");
3215 print_gimple_stmt (dump_file, stmt, 0, 0);
3218 /* If changed is false, this is either opindex == 0
3219 or all outer rhs2's were equal to corresponding oe->op,
3220 and powi_result is NULL.
3221 That means lhs is equivalent before and after reassociation.
3222 Otherwise ensure the old lhs SSA_NAME is not reused and
3223 create a new stmt as well, so that any debug stmts will be
3224 properly adjusted. */
3225 if (changed)
3227 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3228 unsigned int uid = gimple_uid (stmt);
3229 gimple insert_point = find_insert_point (stmt, new_rhs1, oe->op);
3231 lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
3232 stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
3233 lhs, new_rhs1, oe->op);
3234 gimple_set_uid (stmt, uid);
3235 gimple_set_visited (stmt, true);
3236 if (insert_point == gsi_stmt (gsi))
3237 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3238 else
3239 insert_stmt_after (stmt, insert_point);
3241 else
3243 gcc_checking_assert (find_insert_point (stmt, new_rhs1, oe->op)
3244 == stmt);
3245 gimple_assign_set_rhs1 (stmt, new_rhs1);
3246 gimple_assign_set_rhs2 (stmt, oe->op);
3247 update_stmt (stmt);
3250 if (dump_file && (dump_flags & TDF_DETAILS))
3252 fprintf (dump_file, " into ");
3253 print_gimple_stmt (dump_file, stmt, 0, 0);
3256 return lhs;
3259 /* Find out how many cycles we need to compute statements chain.
3260 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
3261 maximum number of independent statements we may execute per cycle. */
3263 static int
3264 get_required_cycles (int ops_num, int cpu_width)
3266 int res;
3267 int elog;
3268 unsigned int rest;
3270 /* While we have more than 2 * cpu_width operands
3271 we may reduce number of operands by cpu_width
3272 per cycle. */
3273 res = ops_num / (2 * cpu_width);
3275 /* Remained operands count may be reduced twice per cycle
3276 until we have only one operand. */
3277 rest = (unsigned)(ops_num - res * cpu_width);
3278 elog = exact_log2 (rest);
3279 if (elog >= 0)
3280 res += elog;
3281 else
3282 res += floor_log2 (rest) + 1;
3284 return res;
3287 /* Returns an optimal number of registers to use for computation of
3288 given statements. */
3290 static int
3291 get_reassociation_width (int ops_num, enum tree_code opc,
3292 enum machine_mode mode)
3294 int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
3295 int width;
3296 int width_min;
3297 int cycles_best;
3299 if (param_width > 0)
3300 width = param_width;
3301 else
3302 width = targetm.sched.reassociation_width (opc, mode);
3304 if (width == 1)
3305 return width;
3307 /* Get the minimal time required for sequence computation. */
3308 cycles_best = get_required_cycles (ops_num, width);
3310 /* Check if we may use less width and still compute sequence for
3311 the same time. It will allow us to reduce registers usage.
3312 get_required_cycles is monotonically increasing with lower width
3313 so we can perform a binary search for the minimal width that still
3314 results in the optimal cycle count. */
3315 width_min = 1;
3316 while (width > width_min)
3318 int width_mid = (width + width_min) / 2;
3320 if (get_required_cycles (ops_num, width_mid) == cycles_best)
3321 width = width_mid;
3322 else if (width_min < width_mid)
3323 width_min = width_mid;
3324 else
3325 break;
3328 return width;
3331 /* Recursively rewrite our linearized statements so that the operators
3332 match those in OPS[OPINDEX], putting the computation in rank
3333 order and trying to allow operations to be executed in
3334 parallel. */
3336 static void
3337 rewrite_expr_tree_parallel (gimple stmt, int width,
3338 vec<operand_entry_t> ops)
3340 enum tree_code opcode = gimple_assign_rhs_code (stmt);
3341 int op_num = ops.length ();
3342 int stmt_num = op_num - 1;
3343 gimple *stmts = XALLOCAVEC (gimple, stmt_num);
3344 int op_index = op_num - 1;
3345 int stmt_index = 0;
3346 int ready_stmts_end = 0;
3347 int i = 0;
3348 tree last_rhs1 = gimple_assign_rhs1 (stmt);
3350 /* We start expression rewriting from the top statements.
3351 So, in this loop we create a full list of statements
3352 we will work with. */
3353 stmts[stmt_num - 1] = stmt;
3354 for (i = stmt_num - 2; i >= 0; i--)
3355 stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
3357 for (i = 0; i < stmt_num; i++)
3359 tree op1, op2;
3361 /* Determine whether we should use results of
3362 already handled statements or not. */
3363 if (ready_stmts_end == 0
3364 && (i - stmt_index >= width || op_index < 1))
3365 ready_stmts_end = i;
3367 /* Now we choose operands for the next statement. Non zero
3368 value in ready_stmts_end means here that we should use
3369 the result of already generated statements as new operand. */
3370 if (ready_stmts_end > 0)
3372 op1 = gimple_assign_lhs (stmts[stmt_index++]);
3373 if (ready_stmts_end > stmt_index)
3374 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3375 else if (op_index >= 0)
3376 op2 = ops[op_index--]->op;
3377 else
3379 gcc_assert (stmt_index < i);
3380 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3383 if (stmt_index >= ready_stmts_end)
3384 ready_stmts_end = 0;
3386 else
3388 if (op_index > 1)
3389 swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
3390 op2 = ops[op_index--]->op;
3391 op1 = ops[op_index--]->op;
3394 /* If we emit the last statement then we should put
3395 operands into the last statement. It will also
3396 break the loop. */
3397 if (op_index < 0 && stmt_index == i)
3398 i = stmt_num - 1;
3400 if (dump_file && (dump_flags & TDF_DETAILS))
3402 fprintf (dump_file, "Transforming ");
3403 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3406 /* We keep original statement only for the last one. All
3407 others are recreated. */
3408 if (i == stmt_num - 1)
3410 gimple_assign_set_rhs1 (stmts[i], op1);
3411 gimple_assign_set_rhs2 (stmts[i], op2);
3412 update_stmt (stmts[i]);
3414 else
3415 stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
3417 if (dump_file && (dump_flags & TDF_DETAILS))
3419 fprintf (dump_file, " into ");
3420 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3424 remove_visited_stmt_chain (last_rhs1);
3427 /* Transform STMT, which is really (A +B) + (C + D) into the left
3428 linear form, ((A+B)+C)+D.
3429 Recurse on D if necessary. */
3431 static void
3432 linearize_expr (gimple stmt)
3434 gimple_stmt_iterator gsi;
3435 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3436 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3437 gimple oldbinrhs = binrhs;
3438 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3439 gimple newbinrhs = NULL;
3440 struct loop *loop = loop_containing_stmt (stmt);
3441 tree lhs = gimple_assign_lhs (stmt);
3443 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
3444 && is_reassociable_op (binrhs, rhscode, loop));
3446 gsi = gsi_for_stmt (stmt);
3448 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
3449 binrhs = gimple_build_assign_with_ops (gimple_assign_rhs_code (binrhs),
3450 make_ssa_name (TREE_TYPE (lhs), NULL),
3451 gimple_assign_lhs (binlhs),
3452 gimple_assign_rhs2 (binrhs));
3453 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
3454 gsi_insert_before (&gsi, binrhs, GSI_SAME_STMT);
3455 gimple_set_uid (binrhs, gimple_uid (stmt));
3457 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
3458 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3460 if (dump_file && (dump_flags & TDF_DETAILS))
3462 fprintf (dump_file, "Linearized: ");
3463 print_gimple_stmt (dump_file, stmt, 0, 0);
3466 reassociate_stats.linearized++;
3467 update_stmt (stmt);
3469 gsi = gsi_for_stmt (oldbinrhs);
3470 gsi_remove (&gsi, true);
3471 release_defs (oldbinrhs);
3473 gimple_set_visited (stmt, true);
3474 gimple_set_visited (binlhs, true);
3475 gimple_set_visited (binrhs, true);
3477 /* Tail recurse on the new rhs if it still needs reassociation. */
3478 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
3479 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
3480 want to change the algorithm while converting to tuples. */
3481 linearize_expr (stmt);
3484 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
3485 it. Otherwise, return NULL. */
3487 static gimple
3488 get_single_immediate_use (tree lhs)
3490 use_operand_p immuse;
3491 gimple immusestmt;
3493 if (TREE_CODE (lhs) == SSA_NAME
3494 && single_imm_use (lhs, &immuse, &immusestmt)
3495 && is_gimple_assign (immusestmt))
3496 return immusestmt;
3498 return NULL;
3501 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
3502 representing the negated value. Insertions of any necessary
3503 instructions go before GSI.
3504 This function is recursive in that, if you hand it "a_5" as the
3505 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
3506 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
3508 static tree
3509 negate_value (tree tonegate, gimple_stmt_iterator *gsip)
3511 gimple negatedefstmt = NULL;
3512 tree resultofnegate;
3513 gimple_stmt_iterator gsi;
3514 unsigned int uid;
3516 /* If we are trying to negate a name, defined by an add, negate the
3517 add operands instead. */
3518 if (TREE_CODE (tonegate) == SSA_NAME)
3519 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
3520 if (TREE_CODE (tonegate) == SSA_NAME
3521 && is_gimple_assign (negatedefstmt)
3522 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
3523 && has_single_use (gimple_assign_lhs (negatedefstmt))
3524 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
3526 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
3527 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
3528 tree lhs = gimple_assign_lhs (negatedefstmt);
3529 gimple g;
3531 gsi = gsi_for_stmt (negatedefstmt);
3532 rhs1 = negate_value (rhs1, &gsi);
3534 gsi = gsi_for_stmt (negatedefstmt);
3535 rhs2 = negate_value (rhs2, &gsi);
3537 gsi = gsi_for_stmt (negatedefstmt);
3538 lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
3539 gimple_set_visited (negatedefstmt, true);
3540 g = gimple_build_assign_with_ops (PLUS_EXPR, lhs, rhs1, rhs2);
3541 gimple_set_uid (g, gimple_uid (negatedefstmt));
3542 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3543 return lhs;
3546 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
3547 resultofnegate = force_gimple_operand_gsi (gsip, tonegate, true,
3548 NULL_TREE, true, GSI_SAME_STMT);
3549 gsi = *gsip;
3550 uid = gimple_uid (gsi_stmt (gsi));
3551 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3553 gimple stmt = gsi_stmt (gsi);
3554 if (gimple_uid (stmt) != 0)
3555 break;
3556 gimple_set_uid (stmt, uid);
3558 return resultofnegate;
3561 /* Return true if we should break up the subtract in STMT into an add
3562 with negate. This is true when we the subtract operands are really
3563 adds, or the subtract itself is used in an add expression. In
3564 either case, breaking up the subtract into an add with negate
3565 exposes the adds to reassociation. */
3567 static bool
3568 should_break_up_subtract (gimple stmt)
3570 tree lhs = gimple_assign_lhs (stmt);
3571 tree binlhs = gimple_assign_rhs1 (stmt);
3572 tree binrhs = gimple_assign_rhs2 (stmt);
3573 gimple immusestmt;
3574 struct loop *loop = loop_containing_stmt (stmt);
3576 if (TREE_CODE (binlhs) == SSA_NAME
3577 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
3578 return true;
3580 if (TREE_CODE (binrhs) == SSA_NAME
3581 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
3582 return true;
3584 if (TREE_CODE (lhs) == SSA_NAME
3585 && (immusestmt = get_single_immediate_use (lhs))
3586 && is_gimple_assign (immusestmt)
3587 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
3588 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
3589 return true;
3590 return false;
3593 /* Transform STMT from A - B into A + -B. */
3595 static void
3596 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
3598 tree rhs1 = gimple_assign_rhs1 (stmt);
3599 tree rhs2 = gimple_assign_rhs2 (stmt);
3601 if (dump_file && (dump_flags & TDF_DETAILS))
3603 fprintf (dump_file, "Breaking up subtract ");
3604 print_gimple_stmt (dump_file, stmt, 0, 0);
3607 rhs2 = negate_value (rhs2, gsip);
3608 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
3609 update_stmt (stmt);
3612 /* Determine whether STMT is a builtin call that raises an SSA name
3613 to an integer power and has only one use. If so, and this is early
3614 reassociation and unsafe math optimizations are permitted, place
3615 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
3616 If any of these conditions does not hold, return FALSE. */
3618 static bool
3619 acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
3621 tree fndecl, arg1;
3622 REAL_VALUE_TYPE c, cint;
3624 if (!first_pass_instance
3625 || !flag_unsafe_math_optimizations
3626 || !is_gimple_call (stmt)
3627 || !has_single_use (gimple_call_lhs (stmt)))
3628 return false;
3630 fndecl = gimple_call_fndecl (stmt);
3632 if (!fndecl
3633 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3634 return false;
3636 switch (DECL_FUNCTION_CODE (fndecl))
3638 CASE_FLT_FN (BUILT_IN_POW):
3639 *base = gimple_call_arg (stmt, 0);
3640 arg1 = gimple_call_arg (stmt, 1);
3642 if (TREE_CODE (arg1) != REAL_CST)
3643 return false;
3645 c = TREE_REAL_CST (arg1);
3647 if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
3648 return false;
3650 *exponent = real_to_integer (&c);
3651 real_from_integer (&cint, VOIDmode, *exponent,
3652 *exponent < 0 ? -1 : 0, 0);
3653 if (!real_identical (&c, &cint))
3654 return false;
3656 break;
3658 CASE_FLT_FN (BUILT_IN_POWI):
3659 *base = gimple_call_arg (stmt, 0);
3660 arg1 = gimple_call_arg (stmt, 1);
3662 if (!tree_fits_shwi_p (arg1))
3663 return false;
3665 *exponent = tree_to_shwi (arg1);
3666 break;
3668 default:
3669 return false;
3672 /* Expanding negative exponents is generally unproductive, so we don't
3673 complicate matters with those. Exponents of zero and one should
3674 have been handled by expression folding. */
3675 if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
3676 return false;
3678 return true;
3681 /* Recursively linearize a binary expression that is the RHS of STMT.
3682 Place the operands of the expression tree in the vector named OPS. */
3684 static void
3685 linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
3686 bool is_associative, bool set_visited)
3688 tree binlhs = gimple_assign_rhs1 (stmt);
3689 tree binrhs = gimple_assign_rhs2 (stmt);
3690 gimple binlhsdef = NULL, binrhsdef = NULL;
3691 bool binlhsisreassoc = false;
3692 bool binrhsisreassoc = false;
3693 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3694 struct loop *loop = loop_containing_stmt (stmt);
3695 tree base = NULL_TREE;
3696 HOST_WIDE_INT exponent = 0;
3698 if (set_visited)
3699 gimple_set_visited (stmt, true);
3701 if (TREE_CODE (binlhs) == SSA_NAME)
3703 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
3704 binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
3705 && !stmt_could_throw_p (binlhsdef));
3708 if (TREE_CODE (binrhs) == SSA_NAME)
3710 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
3711 binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
3712 && !stmt_could_throw_p (binrhsdef));
3715 /* If the LHS is not reassociable, but the RHS is, we need to swap
3716 them. If neither is reassociable, there is nothing we can do, so
3717 just put them in the ops vector. If the LHS is reassociable,
3718 linearize it. If both are reassociable, then linearize the RHS
3719 and the LHS. */
3721 if (!binlhsisreassoc)
3723 tree temp;
3725 /* If this is not a associative operation like division, give up. */
3726 if (!is_associative)
3728 add_to_ops_vec (ops, binrhs);
3729 return;
3732 if (!binrhsisreassoc)
3734 if (rhscode == MULT_EXPR
3735 && TREE_CODE (binrhs) == SSA_NAME
3736 && acceptable_pow_call (binrhsdef, &base, &exponent))
3738 add_repeat_to_ops_vec (ops, base, exponent);
3739 gimple_set_visited (binrhsdef, true);
3741 else
3742 add_to_ops_vec (ops, binrhs);
3744 if (rhscode == MULT_EXPR
3745 && TREE_CODE (binlhs) == SSA_NAME
3746 && acceptable_pow_call (binlhsdef, &base, &exponent))
3748 add_repeat_to_ops_vec (ops, base, exponent);
3749 gimple_set_visited (binlhsdef, true);
3751 else
3752 add_to_ops_vec (ops, binlhs);
3754 return;
3757 if (dump_file && (dump_flags & TDF_DETAILS))
3759 fprintf (dump_file, "swapping operands of ");
3760 print_gimple_stmt (dump_file, stmt, 0, 0);
3763 swap_ssa_operands (stmt,
3764 gimple_assign_rhs1_ptr (stmt),
3765 gimple_assign_rhs2_ptr (stmt));
3766 update_stmt (stmt);
3768 if (dump_file && (dump_flags & TDF_DETAILS))
3770 fprintf (dump_file, " is now ");
3771 print_gimple_stmt (dump_file, stmt, 0, 0);
3774 /* We want to make it so the lhs is always the reassociative op,
3775 so swap. */
3776 temp = binlhs;
3777 binlhs = binrhs;
3778 binrhs = temp;
3780 else if (binrhsisreassoc)
3782 linearize_expr (stmt);
3783 binlhs = gimple_assign_rhs1 (stmt);
3784 binrhs = gimple_assign_rhs2 (stmt);
3787 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
3788 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
3789 rhscode, loop));
3790 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
3791 is_associative, set_visited);
3793 if (rhscode == MULT_EXPR
3794 && TREE_CODE (binrhs) == SSA_NAME
3795 && acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
3797 add_repeat_to_ops_vec (ops, base, exponent);
3798 gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
3800 else
3801 add_to_ops_vec (ops, binrhs);
3804 /* Repropagate the negates back into subtracts, since no other pass
3805 currently does it. */
3807 static void
3808 repropagate_negates (void)
3810 unsigned int i = 0;
3811 tree negate;
3813 FOR_EACH_VEC_ELT (plus_negates, i, negate)
3815 gimple user = get_single_immediate_use (negate);
3817 if (!user || !is_gimple_assign (user))
3818 continue;
3820 /* The negate operand can be either operand of a PLUS_EXPR
3821 (it can be the LHS if the RHS is a constant for example).
3823 Force the negate operand to the RHS of the PLUS_EXPR, then
3824 transform the PLUS_EXPR into a MINUS_EXPR. */
3825 if (gimple_assign_rhs_code (user) == PLUS_EXPR)
3827 /* If the negated operand appears on the LHS of the
3828 PLUS_EXPR, exchange the operands of the PLUS_EXPR
3829 to force the negated operand to the RHS of the PLUS_EXPR. */
3830 if (gimple_assign_rhs1 (user) == negate)
3832 swap_ssa_operands (user,
3833 gimple_assign_rhs1_ptr (user),
3834 gimple_assign_rhs2_ptr (user));
3837 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
3838 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
3839 if (gimple_assign_rhs2 (user) == negate)
3841 tree rhs1 = gimple_assign_rhs1 (user);
3842 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
3843 gimple_stmt_iterator gsi = gsi_for_stmt (user);
3844 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
3845 update_stmt (user);
3848 else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
3850 if (gimple_assign_rhs1 (user) == negate)
3852 /* We have
3853 x = -a
3854 y = x - b
3855 which we transform into
3856 x = a + b
3857 y = -x .
3858 This pushes down the negate which we possibly can merge
3859 into some other operation, hence insert it into the
3860 plus_negates vector. */
3861 gimple feed = SSA_NAME_DEF_STMT (negate);
3862 tree a = gimple_assign_rhs1 (feed);
3863 tree b = gimple_assign_rhs2 (user);
3864 gimple_stmt_iterator gsi = gsi_for_stmt (feed);
3865 gimple_stmt_iterator gsi2 = gsi_for_stmt (user);
3866 tree x = make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed)), NULL);
3867 gimple g = gimple_build_assign_with_ops (PLUS_EXPR, x, a, b);
3868 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
3869 gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, x, NULL);
3870 user = gsi_stmt (gsi2);
3871 update_stmt (user);
3872 gsi_remove (&gsi, true);
3873 release_defs (feed);
3874 plus_negates.safe_push (gimple_assign_lhs (user));
3876 else
3878 /* Transform "x = -a; y = b - x" into "y = b + a", getting
3879 rid of one operation. */
3880 gimple feed = SSA_NAME_DEF_STMT (negate);
3881 tree a = gimple_assign_rhs1 (feed);
3882 tree rhs1 = gimple_assign_rhs1 (user);
3883 gimple_stmt_iterator gsi = gsi_for_stmt (user);
3884 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
3885 update_stmt (gsi_stmt (gsi));
3891 /* Returns true if OP is of a type for which we can do reassociation.
3892 That is for integral or non-saturating fixed-point types, and for
3893 floating point type when associative-math is enabled. */
3895 static bool
3896 can_reassociate_p (tree op)
3898 tree type = TREE_TYPE (op);
3899 if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
3900 || NON_SAT_FIXED_POINT_TYPE_P (type)
3901 || (flag_associative_math && FLOAT_TYPE_P (type)))
3902 return true;
3903 return false;
3906 /* Break up subtract operations in block BB.
3908 We do this top down because we don't know whether the subtract is
3909 part of a possible chain of reassociation except at the top.
3911 IE given
3912 d = f + g
3913 c = a + e
3914 b = c - d
3915 q = b - r
3916 k = t - q
3918 we want to break up k = t - q, but we won't until we've transformed q
3919 = b - r, which won't be broken up until we transform b = c - d.
3921 En passant, clear the GIMPLE visited flag on every statement
3922 and set UIDs within each basic block. */
3924 static void
3925 break_up_subtract_bb (basic_block bb)
3927 gimple_stmt_iterator gsi;
3928 basic_block son;
3929 unsigned int uid = 1;
3931 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3933 gimple stmt = gsi_stmt (gsi);
3934 gimple_set_visited (stmt, false);
3935 gimple_set_uid (stmt, uid++);
3937 if (!is_gimple_assign (stmt)
3938 || !can_reassociate_p (gimple_assign_lhs (stmt)))
3939 continue;
3941 /* Look for simple gimple subtract operations. */
3942 if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
3944 if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
3945 || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
3946 continue;
3948 /* Check for a subtract used only in an addition. If this
3949 is the case, transform it into add of a negate for better
3950 reassociation. IE transform C = A-B into C = A + -B if C
3951 is only used in an addition. */
3952 if (should_break_up_subtract (stmt))
3953 break_up_subtract (stmt, &gsi);
3955 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
3956 && can_reassociate_p (gimple_assign_rhs1 (stmt)))
3957 plus_negates.safe_push (gimple_assign_lhs (stmt));
3959 for (son = first_dom_son (CDI_DOMINATORS, bb);
3960 son;
3961 son = next_dom_son (CDI_DOMINATORS, son))
3962 break_up_subtract_bb (son);
3965 /* Used for repeated factor analysis. */
3966 struct repeat_factor_d
3968 /* An SSA name that occurs in a multiply chain. */
3969 tree factor;
3971 /* Cached rank of the factor. */
3972 unsigned rank;
3974 /* Number of occurrences of the factor in the chain. */
3975 HOST_WIDE_INT count;
3977 /* An SSA name representing the product of this factor and
3978 all factors appearing later in the repeated factor vector. */
3979 tree repr;
3982 typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
3983 typedef const struct repeat_factor_d *const_repeat_factor_t;
3986 static vec<repeat_factor> repeat_factor_vec;
3988 /* Used for sorting the repeat factor vector. Sort primarily by
3989 ascending occurrence count, secondarily by descending rank. */
3991 static int
3992 compare_repeat_factors (const void *x1, const void *x2)
3994 const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
3995 const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
3997 if (rf1->count != rf2->count)
3998 return rf1->count - rf2->count;
4000 return rf2->rank - rf1->rank;
4003 /* Look for repeated operands in OPS in the multiply tree rooted at
4004 STMT. Replace them with an optimal sequence of multiplies and powi
4005 builtin calls, and remove the used operands from OPS. Return an
4006 SSA name representing the value of the replacement sequence. */
4008 static tree
4009 attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
4011 unsigned i, j, vec_len;
4012 int ii;
4013 operand_entry_t oe;
4014 repeat_factor_t rf1, rf2;
4015 repeat_factor rfnew;
4016 tree result = NULL_TREE;
4017 tree target_ssa, iter_result;
4018 tree type = TREE_TYPE (gimple_get_lhs (stmt));
4019 tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
4020 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4021 gimple mul_stmt, pow_stmt;
4023 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
4024 target. */
4025 if (!powi_fndecl)
4026 return NULL_TREE;
4028 /* Allocate the repeated factor vector. */
4029 repeat_factor_vec.create (10);
4031 /* Scan the OPS vector for all SSA names in the product and build
4032 up a vector of occurrence counts for each factor. */
4033 FOR_EACH_VEC_ELT (*ops, i, oe)
4035 if (TREE_CODE (oe->op) == SSA_NAME)
4037 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4039 if (rf1->factor == oe->op)
4041 rf1->count += oe->count;
4042 break;
4046 if (j >= repeat_factor_vec.length ())
4048 rfnew.factor = oe->op;
4049 rfnew.rank = oe->rank;
4050 rfnew.count = oe->count;
4051 rfnew.repr = NULL_TREE;
4052 repeat_factor_vec.safe_push (rfnew);
4057 /* Sort the repeated factor vector by (a) increasing occurrence count,
4058 and (b) decreasing rank. */
4059 repeat_factor_vec.qsort (compare_repeat_factors);
4061 /* It is generally best to combine as many base factors as possible
4062 into a product before applying __builtin_powi to the result.
4063 However, the sort order chosen for the repeated factor vector
4064 allows us to cache partial results for the product of the base
4065 factors for subsequent use. When we already have a cached partial
4066 result from a previous iteration, it is best to make use of it
4067 before looking for another __builtin_pow opportunity.
4069 As an example, consider x * x * y * y * y * z * z * z * z.
4070 We want to first compose the product x * y * z, raise it to the
4071 second power, then multiply this by y * z, and finally multiply
4072 by z. This can be done in 5 multiplies provided we cache y * z
4073 for use in both expressions:
4075 t1 = y * z
4076 t2 = t1 * x
4077 t3 = t2 * t2
4078 t4 = t1 * t3
4079 result = t4 * z
4081 If we instead ignored the cached y * z and first multiplied by
4082 the __builtin_pow opportunity z * z, we would get the inferior:
4084 t1 = y * z
4085 t2 = t1 * x
4086 t3 = t2 * t2
4087 t4 = z * z
4088 t5 = t3 * t4
4089 result = t5 * y */
4091 vec_len = repeat_factor_vec.length ();
4093 /* Repeatedly look for opportunities to create a builtin_powi call. */
4094 while (true)
4096 HOST_WIDE_INT power;
4098 /* First look for the largest cached product of factors from
4099 preceding iterations. If found, create a builtin_powi for
4100 it if the minimum occurrence count for its factors is at
4101 least 2, or just use this cached product as our next
4102 multiplicand if the minimum occurrence count is 1. */
4103 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4105 if (rf1->repr && rf1->count > 0)
4106 break;
4109 if (j < vec_len)
4111 power = rf1->count;
4113 if (power == 1)
4115 iter_result = rf1->repr;
4117 if (dump_file && (dump_flags & TDF_DETAILS))
4119 unsigned elt;
4120 repeat_factor_t rf;
4121 fputs ("Multiplying by cached product ", dump_file);
4122 for (elt = j; elt < vec_len; elt++)
4124 rf = &repeat_factor_vec[elt];
4125 print_generic_expr (dump_file, rf->factor, 0);
4126 if (elt < vec_len - 1)
4127 fputs (" * ", dump_file);
4129 fputs ("\n", dump_file);
4132 else
4134 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4135 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4136 build_int_cst (integer_type_node,
4137 power));
4138 gimple_call_set_lhs (pow_stmt, iter_result);
4139 gimple_set_location (pow_stmt, gimple_location (stmt));
4140 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4142 if (dump_file && (dump_flags & TDF_DETAILS))
4144 unsigned elt;
4145 repeat_factor_t rf;
4146 fputs ("Building __builtin_pow call for cached product (",
4147 dump_file);
4148 for (elt = j; elt < vec_len; elt++)
4150 rf = &repeat_factor_vec[elt];
4151 print_generic_expr (dump_file, rf->factor, 0);
4152 if (elt < vec_len - 1)
4153 fputs (" * ", dump_file);
4155 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
4156 power);
4160 else
4162 /* Otherwise, find the first factor in the repeated factor
4163 vector whose occurrence count is at least 2. If no such
4164 factor exists, there are no builtin_powi opportunities
4165 remaining. */
4166 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4168 if (rf1->count >= 2)
4169 break;
4172 if (j >= vec_len)
4173 break;
4175 power = rf1->count;
4177 if (dump_file && (dump_flags & TDF_DETAILS))
4179 unsigned elt;
4180 repeat_factor_t rf;
4181 fputs ("Building __builtin_pow call for (", dump_file);
4182 for (elt = j; elt < vec_len; elt++)
4184 rf = &repeat_factor_vec[elt];
4185 print_generic_expr (dump_file, rf->factor, 0);
4186 if (elt < vec_len - 1)
4187 fputs (" * ", dump_file);
4189 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
4192 reassociate_stats.pows_created++;
4194 /* Visit each element of the vector in reverse order (so that
4195 high-occurrence elements are visited first, and within the
4196 same occurrence count, lower-ranked elements are visited
4197 first). Form a linear product of all elements in this order
4198 whose occurrencce count is at least that of element J.
4199 Record the SSA name representing the product of each element
4200 with all subsequent elements in the vector. */
4201 if (j == vec_len - 1)
4202 rf1->repr = rf1->factor;
4203 else
4205 for (ii = vec_len - 2; ii >= (int)j; ii--)
4207 tree op1, op2;
4209 rf1 = &repeat_factor_vec[ii];
4210 rf2 = &repeat_factor_vec[ii + 1];
4212 /* Init the last factor's representative to be itself. */
4213 if (!rf2->repr)
4214 rf2->repr = rf2->factor;
4216 op1 = rf1->factor;
4217 op2 = rf2->repr;
4219 target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
4220 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR,
4221 target_ssa,
4222 op1, op2);
4223 gimple_set_location (mul_stmt, gimple_location (stmt));
4224 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4225 rf1->repr = target_ssa;
4227 /* Don't reprocess the multiply we just introduced. */
4228 gimple_set_visited (mul_stmt, true);
4232 /* Form a call to __builtin_powi for the maximum product
4233 just formed, raised to the power obtained earlier. */
4234 rf1 = &repeat_factor_vec[j];
4235 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4236 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4237 build_int_cst (integer_type_node,
4238 power));
4239 gimple_call_set_lhs (pow_stmt, iter_result);
4240 gimple_set_location (pow_stmt, gimple_location (stmt));
4241 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4244 /* If we previously formed at least one other builtin_powi call,
4245 form the product of this one and those others. */
4246 if (result)
4248 tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
4249 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_result,
4250 result, iter_result);
4251 gimple_set_location (mul_stmt, gimple_location (stmt));
4252 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4253 gimple_set_visited (mul_stmt, true);
4254 result = new_result;
4256 else
4257 result = iter_result;
4259 /* Decrement the occurrence count of each element in the product
4260 by the count found above, and remove this many copies of each
4261 factor from OPS. */
4262 for (i = j; i < vec_len; i++)
4264 unsigned k = power;
4265 unsigned n;
4267 rf1 = &repeat_factor_vec[i];
4268 rf1->count -= power;
4270 FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
4272 if (oe->op == rf1->factor)
4274 if (oe->count <= k)
4276 ops->ordered_remove (n);
4277 k -= oe->count;
4279 if (k == 0)
4280 break;
4282 else
4284 oe->count -= k;
4285 break;
4292 /* At this point all elements in the repeated factor vector have a
4293 remaining occurrence count of 0 or 1, and those with a count of 1
4294 don't have cached representatives. Re-sort the ops vector and
4295 clean up. */
4296 ops->qsort (sort_by_operand_rank);
4297 repeat_factor_vec.release ();
4299 /* Return the final product computed herein. Note that there may
4300 still be some elements with single occurrence count left in OPS;
4301 those will be handled by the normal reassociation logic. */
4302 return result;
4305 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
4307 static void
4308 transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
4310 tree rhs1;
4312 if (dump_file && (dump_flags & TDF_DETAILS))
4314 fprintf (dump_file, "Transforming ");
4315 print_gimple_stmt (dump_file, stmt, 0, 0);
4318 rhs1 = gimple_assign_rhs1 (stmt);
4319 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
4320 update_stmt (stmt);
4321 remove_visited_stmt_chain (rhs1);
4323 if (dump_file && (dump_flags & TDF_DETAILS))
4325 fprintf (dump_file, " into ");
4326 print_gimple_stmt (dump_file, stmt, 0, 0);
4330 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
4332 static void
4333 transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
4334 tree rhs1, tree rhs2)
4336 if (dump_file && (dump_flags & TDF_DETAILS))
4338 fprintf (dump_file, "Transforming ");
4339 print_gimple_stmt (dump_file, stmt, 0, 0);
4342 gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
4343 update_stmt (gsi_stmt (*gsi));
4344 remove_visited_stmt_chain (rhs1);
4346 if (dump_file && (dump_flags & TDF_DETAILS))
4348 fprintf (dump_file, " into ");
4349 print_gimple_stmt (dump_file, stmt, 0, 0);
4353 /* Reassociate expressions in basic block BB and its post-dominator as
4354 children. */
4356 static void
4357 reassociate_bb (basic_block bb)
4359 gimple_stmt_iterator gsi;
4360 basic_block son;
4361 gimple stmt = last_stmt (bb);
4363 if (stmt && !gimple_visited_p (stmt))
4364 maybe_optimize_range_tests (stmt);
4366 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
4368 stmt = gsi_stmt (gsi);
4370 if (is_gimple_assign (stmt)
4371 && !stmt_could_throw_p (stmt))
4373 tree lhs, rhs1, rhs2;
4374 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4376 /* If this is not a gimple binary expression, there is
4377 nothing for us to do with it. */
4378 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
4379 continue;
4381 /* If this was part of an already processed statement,
4382 we don't need to touch it again. */
4383 if (gimple_visited_p (stmt))
4385 /* This statement might have become dead because of previous
4386 reassociations. */
4387 if (has_zero_uses (gimple_get_lhs (stmt)))
4389 gsi_remove (&gsi, true);
4390 release_defs (stmt);
4391 /* We might end up removing the last stmt above which
4392 places the iterator to the end of the sequence.
4393 Reset it to the last stmt in this case which might
4394 be the end of the sequence as well if we removed
4395 the last statement of the sequence. In which case
4396 we need to bail out. */
4397 if (gsi_end_p (gsi))
4399 gsi = gsi_last_bb (bb);
4400 if (gsi_end_p (gsi))
4401 break;
4404 continue;
4407 lhs = gimple_assign_lhs (stmt);
4408 rhs1 = gimple_assign_rhs1 (stmt);
4409 rhs2 = gimple_assign_rhs2 (stmt);
4411 /* For non-bit or min/max operations we can't associate
4412 all types. Verify that here. */
4413 if (rhs_code != BIT_IOR_EXPR
4414 && rhs_code != BIT_AND_EXPR
4415 && rhs_code != BIT_XOR_EXPR
4416 && rhs_code != MIN_EXPR
4417 && rhs_code != MAX_EXPR
4418 && (!can_reassociate_p (lhs)
4419 || !can_reassociate_p (rhs1)
4420 || !can_reassociate_p (rhs2)))
4421 continue;
4423 if (associative_tree_code (rhs_code))
4425 auto_vec<operand_entry_t> ops;
4426 tree powi_result = NULL_TREE;
4428 /* There may be no immediate uses left by the time we
4429 get here because we may have eliminated them all. */
4430 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
4431 continue;
4433 gimple_set_visited (stmt, true);
4434 linearize_expr_tree (&ops, stmt, true, true);
4435 ops.qsort (sort_by_operand_rank);
4436 optimize_ops_list (rhs_code, &ops);
4437 if (undistribute_ops_list (rhs_code, &ops,
4438 loop_containing_stmt (stmt)))
4440 ops.qsort (sort_by_operand_rank);
4441 optimize_ops_list (rhs_code, &ops);
4444 if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
4445 optimize_range_tests (rhs_code, &ops);
4447 if (first_pass_instance
4448 && rhs_code == MULT_EXPR
4449 && flag_unsafe_math_optimizations)
4450 powi_result = attempt_builtin_powi (stmt, &ops);
4452 /* If the operand vector is now empty, all operands were
4453 consumed by the __builtin_powi optimization. */
4454 if (ops.length () == 0)
4455 transform_stmt_to_copy (&gsi, stmt, powi_result);
4456 else if (ops.length () == 1)
4458 tree last_op = ops.last ()->op;
4460 if (powi_result)
4461 transform_stmt_to_multiply (&gsi, stmt, last_op,
4462 powi_result);
4463 else
4464 transform_stmt_to_copy (&gsi, stmt, last_op);
4466 else
4468 enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
4469 int ops_num = ops.length ();
4470 int width = get_reassociation_width (ops_num, rhs_code, mode);
4471 tree new_lhs = lhs;
4473 if (dump_file && (dump_flags & TDF_DETAILS))
4474 fprintf (dump_file,
4475 "Width = %d was chosen for reassociation\n", width);
4477 if (width > 1
4478 && ops.length () > 3)
4479 rewrite_expr_tree_parallel (stmt, width, ops);
4480 else
4482 /* When there are three operands left, we want
4483 to make sure the ones that get the double
4484 binary op are chosen wisely. */
4485 int len = ops.length ();
4486 if (len >= 3)
4487 swap_ops_for_binary_stmt (ops, len - 3, stmt);
4489 new_lhs = rewrite_expr_tree (stmt, 0, ops,
4490 powi_result != NULL);
4493 /* If we combined some repeated factors into a
4494 __builtin_powi call, multiply that result by the
4495 reassociated operands. */
4496 if (powi_result)
4498 gimple mul_stmt, lhs_stmt = SSA_NAME_DEF_STMT (lhs);
4499 tree type = TREE_TYPE (lhs);
4500 tree target_ssa = make_temp_ssa_name (type, NULL,
4501 "reassocpow");
4502 gimple_set_lhs (lhs_stmt, target_ssa);
4503 update_stmt (lhs_stmt);
4504 if (lhs != new_lhs)
4505 target_ssa = new_lhs;
4506 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, lhs,
4507 powi_result,
4508 target_ssa);
4509 gimple_set_location (mul_stmt, gimple_location (stmt));
4510 gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
4516 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
4517 son;
4518 son = next_dom_son (CDI_POST_DOMINATORS, son))
4519 reassociate_bb (son);
4522 void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
4523 void debug_ops_vector (vec<operand_entry_t> ops);
4525 /* Dump the operand entry vector OPS to FILE. */
4527 void
4528 dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
4530 operand_entry_t oe;
4531 unsigned int i;
4533 FOR_EACH_VEC_ELT (ops, i, oe)
4535 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
4536 print_generic_expr (file, oe->op, 0);
4540 /* Dump the operand entry vector OPS to STDERR. */
4542 DEBUG_FUNCTION void
4543 debug_ops_vector (vec<operand_entry_t> ops)
4545 dump_ops_vector (stderr, ops);
4548 static void
4549 do_reassoc (void)
4551 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4552 reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
4555 /* Initialize the reassociation pass. */
4557 static void
4558 init_reassoc (void)
4560 int i;
4561 long rank = 2;
4562 int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
4564 /* Find the loops, so that we can prevent moving calculations in
4565 them. */
4566 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4568 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
4570 operand_entry_pool = create_alloc_pool ("operand entry pool",
4571 sizeof (struct operand_entry), 30);
4572 next_operand_entry_id = 0;
4574 /* Reverse RPO (Reverse Post Order) will give us something where
4575 deeper loops come later. */
4576 pre_and_rev_post_order_compute (NULL, bbs, false);
4577 bb_rank = XCNEWVEC (long, last_basic_block_for_fn (cfun));
4578 operand_rank = pointer_map_create ();
4580 /* Give each default definition a distinct rank. This includes
4581 parameters and the static chain. Walk backwards over all
4582 SSA names so that we get proper rank ordering according
4583 to tree_swap_operands_p. */
4584 for (i = num_ssa_names - 1; i > 0; --i)
4586 tree name = ssa_name (i);
4587 if (name && SSA_NAME_IS_DEFAULT_DEF (name))
4588 insert_operand_rank (name, ++rank);
4591 /* Set up rank for each BB */
4592 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
4593 bb_rank[bbs[i]] = ++rank << 16;
4595 free (bbs);
4596 calculate_dominance_info (CDI_POST_DOMINATORS);
4597 plus_negates = vNULL;
4600 /* Cleanup after the reassociation pass, and print stats if
4601 requested. */
4603 static void
4604 fini_reassoc (void)
4606 statistics_counter_event (cfun, "Linearized",
4607 reassociate_stats.linearized);
4608 statistics_counter_event (cfun, "Constants eliminated",
4609 reassociate_stats.constants_eliminated);
4610 statistics_counter_event (cfun, "Ops eliminated",
4611 reassociate_stats.ops_eliminated);
4612 statistics_counter_event (cfun, "Statements rewritten",
4613 reassociate_stats.rewritten);
4614 statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
4615 reassociate_stats.pows_encountered);
4616 statistics_counter_event (cfun, "Built-in powi calls created",
4617 reassociate_stats.pows_created);
4619 pointer_map_destroy (operand_rank);
4620 free_alloc_pool (operand_entry_pool);
4621 free (bb_rank);
4622 plus_negates.release ();
4623 free_dominance_info (CDI_POST_DOMINATORS);
4624 loop_optimizer_finalize ();
4627 /* Gate and execute functions for Reassociation. */
4629 static unsigned int
4630 execute_reassoc (void)
4632 init_reassoc ();
4634 do_reassoc ();
4635 repropagate_negates ();
4637 fini_reassoc ();
4638 return 0;
4641 static bool
4642 gate_tree_ssa_reassoc (void)
4644 return flag_tree_reassoc != 0;
4647 namespace {
4649 const pass_data pass_data_reassoc =
4651 GIMPLE_PASS, /* type */
4652 "reassoc", /* name */
4653 OPTGROUP_NONE, /* optinfo_flags */
4654 true, /* has_gate */
4655 true, /* has_execute */
4656 TV_TREE_REASSOC, /* tv_id */
4657 ( PROP_cfg | PROP_ssa ), /* properties_required */
4658 0, /* properties_provided */
4659 0, /* properties_destroyed */
4660 0, /* todo_flags_start */
4661 ( TODO_verify_ssa
4662 | TODO_update_ssa_only_virtuals
4663 | TODO_verify_flow ), /* todo_flags_finish */
4666 class pass_reassoc : public gimple_opt_pass
4668 public:
4669 pass_reassoc (gcc::context *ctxt)
4670 : gimple_opt_pass (pass_data_reassoc, ctxt)
4673 /* opt_pass methods: */
4674 opt_pass * clone () { return new pass_reassoc (m_ctxt); }
4675 bool gate () { return gate_tree_ssa_reassoc (); }
4676 unsigned int execute () { return execute_reassoc (); }
4678 }; // class pass_reassoc
4680 } // anon namespace
4682 gimple_opt_pass *
4683 make_pass_reassoc (gcc::context *ctxt)
4685 return new pass_reassoc (ctxt);