/cp
[official-gcc.git] / gcc / ifcvt.c
blob51293651e9cc5fe63491bd6e45756ccb69a1fd74
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
66 #define IFCVT_MULTIPLE_DUMPS 1
68 #define NULL_BLOCK ((basic_block) NULL)
70 /* True if after combine pass. */
71 static bool ifcvt_after_combine;
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block *, rtx, rtx, rtx, int, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
111 /* Count the number of non-jump active insns in BB. */
113 static int
114 count_bb_insns (const_basic_block bb)
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
119 while (1)
121 if (active_insn_p (insn) && !JUMP_P (insn))
122 count++;
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
129 return count;
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
147 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
148 applied to insn_rtx_cost when optimizing for size. Only do
149 this after combine because if-conversion might interfere with
150 passes before combine.
152 Use optimize_function_for_speed_p instead of the pre-defined
153 variable speed to make sure it is set to same value for all
154 basic blocks in one if-conversion transformation. */
155 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
156 scale = REG_BR_PROB_BASE;
157 /* Our branch probability/scaling factors are just estimates and don't
158 account for cases where we can get speculation for free and other
159 secondary benefits. So we fudge the scale factor to make speculating
160 appear a little more profitable when optimizing for performance. */
161 else
162 scale += REG_BR_PROB_BASE / 8;
165 max_cost *= scale;
167 while (1)
169 if (NONJUMP_INSN_P (insn))
171 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
172 if (cost == 0)
173 return false;
175 /* If this instruction is the load or set of a "stack" register,
176 such as a floating point register on x87, then the cost of
177 speculatively executing this insn may need to include
178 the additional cost of popping its result off of the
179 register stack. Unfortunately, correctly recognizing and
180 accounting for this additional overhead is tricky, so for
181 now we simply prohibit such speculative execution. */
182 #ifdef STACK_REGS
184 rtx set = single_set (insn);
185 if (set && STACK_REG_P (SET_DEST (set)))
186 return false;
188 #endif
190 count += cost;
191 if (count >= max_cost)
192 return false;
194 else if (CALL_P (insn))
195 return false;
197 if (insn == BB_END (bb))
198 break;
199 insn = NEXT_INSN (insn);
202 return true;
205 /* Return the first non-jump active insn in the basic block. */
207 static rtx
208 first_active_insn (basic_block bb)
210 rtx insn = BB_HEAD (bb);
212 if (LABEL_P (insn))
214 if (insn == BB_END (bb))
215 return NULL_RTX;
216 insn = NEXT_INSN (insn);
219 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
221 if (insn == BB_END (bb))
222 return NULL_RTX;
223 insn = NEXT_INSN (insn);
226 if (JUMP_P (insn))
227 return NULL_RTX;
229 return insn;
232 /* Return the last non-jump active (non-jump) insn in the basic block. */
234 static rtx
235 last_active_insn (basic_block bb, int skip_use_p)
237 rtx insn = BB_END (bb);
238 rtx head = BB_HEAD (bb);
240 while (NOTE_P (insn)
241 || JUMP_P (insn)
242 || DEBUG_INSN_P (insn)
243 || (skip_use_p
244 && NONJUMP_INSN_P (insn)
245 && GET_CODE (PATTERN (insn)) == USE))
247 if (insn == head)
248 return NULL_RTX;
249 insn = PREV_INSN (insn);
252 if (LABEL_P (insn))
253 return NULL_RTX;
255 return insn;
258 /* Return the active insn before INSN inside basic block CURR_BB. */
260 static rtx
261 find_active_insn_before (basic_block curr_bb, rtx insn)
263 if (!insn || insn == BB_HEAD (curr_bb))
264 return NULL_RTX;
266 while ((insn = PREV_INSN (insn)) != NULL_RTX)
268 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
269 break;
271 /* No other active insn all the way to the start of the basic block. */
272 if (insn == BB_HEAD (curr_bb))
273 return NULL_RTX;
276 return insn;
279 /* Return the active insn after INSN inside basic block CURR_BB. */
281 static rtx
282 find_active_insn_after (basic_block curr_bb, rtx insn)
284 if (!insn || insn == BB_END (curr_bb))
285 return NULL_RTX;
287 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
289 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
290 break;
292 /* No other active insn all the way to the end of the basic block. */
293 if (insn == BB_END (curr_bb))
294 return NULL_RTX;
297 return insn;
300 /* Return the basic block reached by falling though the basic block BB. */
302 static basic_block
303 block_fallthru (basic_block bb)
305 edge e = find_fallthru_edge (bb->succs);
307 return (e) ? e->dest : NULL_BLOCK;
310 /* Go through a bunch of insns, converting them to conditional
311 execution format if possible. Return TRUE if all of the non-note
312 insns were processed. */
314 static int
315 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
316 /* if block information */rtx start,
317 /* first insn to look at */rtx end,
318 /* last insn to look at */rtx test,
319 /* conditional execution test */int prob_val,
320 /* probability of branch taken. */int mod_ok)
322 int must_be_last = FALSE;
323 rtx insn;
324 rtx xtest;
325 rtx pattern;
327 if (!start || !end)
328 return FALSE;
330 for (insn = start; ; insn = NEXT_INSN (insn))
332 /* dwarf2out can't cope with conditional prologues. */
333 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
334 return FALSE;
336 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
337 goto insn_done;
339 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
341 /* Remove USE insns that get in the way. */
342 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
344 /* ??? Ug. Actually unlinking the thing is problematic,
345 given what we'd have to coordinate with our callers. */
346 SET_INSN_DELETED (insn);
347 goto insn_done;
350 /* Last insn wasn't last? */
351 if (must_be_last)
352 return FALSE;
354 if (modified_in_p (test, insn))
356 if (!mod_ok)
357 return FALSE;
358 must_be_last = TRUE;
361 /* Now build the conditional form of the instruction. */
362 pattern = PATTERN (insn);
363 xtest = copy_rtx (test);
365 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
366 two conditions. */
367 if (GET_CODE (pattern) == COND_EXEC)
369 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
370 return FALSE;
372 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
373 COND_EXEC_TEST (pattern));
374 pattern = COND_EXEC_CODE (pattern);
377 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
379 /* If the machine needs to modify the insn being conditionally executed,
380 say for example to force a constant integer operand into a temp
381 register, do so here. */
382 #ifdef IFCVT_MODIFY_INSN
383 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
384 if (! pattern)
385 return FALSE;
386 #endif
388 validate_change (insn, &PATTERN (insn), pattern, 1);
390 if (CALL_P (insn) && prob_val >= 0)
391 validate_change (insn, &REG_NOTES (insn),
392 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
393 prob_val, REG_NOTES (insn)), 1);
395 insn_done:
396 if (insn == end)
397 break;
400 return TRUE;
403 /* Return the condition for a jump. Do not do any special processing. */
405 static rtx
406 cond_exec_get_condition (rtx jump)
408 rtx test_if, cond;
410 if (any_condjump_p (jump))
411 test_if = SET_SRC (pc_set (jump));
412 else
413 return NULL_RTX;
414 cond = XEXP (test_if, 0);
416 /* If this branches to JUMP_LABEL when the condition is false,
417 reverse the condition. */
418 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
419 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
421 enum rtx_code rev = reversed_comparison_code (cond, jump);
422 if (rev == UNKNOWN)
423 return NULL_RTX;
425 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
426 XEXP (cond, 1));
429 return cond;
432 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
433 to conditional execution. Return TRUE if we were successful at
434 converting the block. */
436 static int
437 cond_exec_process_if_block (ce_if_block * ce_info,
438 /* if block information */int do_multiple_p)
440 basic_block test_bb = ce_info->test_bb; /* last test block */
441 basic_block then_bb = ce_info->then_bb; /* THEN */
442 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
443 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
444 rtx then_start; /* first insn in THEN block */
445 rtx then_end; /* last insn + 1 in THEN block */
446 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
447 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
448 int max; /* max # of insns to convert. */
449 int then_mod_ok; /* whether conditional mods are ok in THEN */
450 rtx true_expr; /* test for else block insns */
451 rtx false_expr; /* test for then block insns */
452 int true_prob_val; /* probability of else block */
453 int false_prob_val; /* probability of then block */
454 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
455 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
456 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
457 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
458 int then_n_insns, else_n_insns, n_insns;
459 enum rtx_code false_code;
460 rtx note;
462 /* If test is comprised of && or || elements, and we've failed at handling
463 all of them together, just use the last test if it is the special case of
464 && elements without an ELSE block. */
465 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
467 if (else_bb || ! ce_info->and_and_p)
468 return FALSE;
470 ce_info->test_bb = test_bb = ce_info->last_test_bb;
471 ce_info->num_multiple_test_blocks = 0;
472 ce_info->num_and_and_blocks = 0;
473 ce_info->num_or_or_blocks = 0;
476 /* Find the conditional jump to the ELSE or JOIN part, and isolate
477 the test. */
478 test_expr = cond_exec_get_condition (BB_END (test_bb));
479 if (! test_expr)
480 return FALSE;
482 /* If the conditional jump is more than just a conditional jump,
483 then we can not do conditional execution conversion on this block. */
484 if (! onlyjump_p (BB_END (test_bb)))
485 return FALSE;
487 /* Collect the bounds of where we're to search, skipping any labels, jumps
488 and notes at the beginning and end of the block. Then count the total
489 number of insns and see if it is small enough to convert. */
490 then_start = first_active_insn (then_bb);
491 then_end = last_active_insn (then_bb, TRUE);
492 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
493 n_insns = then_n_insns;
494 max = MAX_CONDITIONAL_EXECUTE;
496 if (else_bb)
498 int n_matching;
500 max *= 2;
501 else_start = first_active_insn (else_bb);
502 else_end = last_active_insn (else_bb, TRUE);
503 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
504 n_insns += else_n_insns;
506 /* Look for matching sequences at the head and tail of the two blocks,
507 and limit the range of insns to be converted if possible. */
508 n_matching = flow_find_cross_jump (then_bb, else_bb,
509 &then_first_tail, &else_first_tail,
510 NULL);
511 if (then_first_tail == BB_HEAD (then_bb))
512 then_start = then_end = NULL_RTX;
513 if (else_first_tail == BB_HEAD (else_bb))
514 else_start = else_end = NULL_RTX;
516 if (n_matching > 0)
518 if (then_end)
519 then_end = find_active_insn_before (then_bb, then_first_tail);
520 if (else_end)
521 else_end = find_active_insn_before (else_bb, else_first_tail);
522 n_insns -= 2 * n_matching;
525 if (then_start
526 && else_start
527 && then_n_insns > n_matching
528 && else_n_insns > n_matching)
530 int longest_match = MIN (then_n_insns - n_matching,
531 else_n_insns - n_matching);
532 n_matching
533 = flow_find_head_matching_sequence (then_bb, else_bb,
534 &then_last_head,
535 &else_last_head,
536 longest_match);
538 if (n_matching > 0)
540 rtx insn;
542 /* We won't pass the insns in the head sequence to
543 cond_exec_process_insns, so we need to test them here
544 to make sure that they don't clobber the condition. */
545 for (insn = BB_HEAD (then_bb);
546 insn != NEXT_INSN (then_last_head);
547 insn = NEXT_INSN (insn))
548 if (!LABEL_P (insn) && !NOTE_P (insn)
549 && !DEBUG_INSN_P (insn)
550 && modified_in_p (test_expr, insn))
551 return FALSE;
554 if (then_last_head == then_end)
555 then_start = then_end = NULL_RTX;
556 if (else_last_head == else_end)
557 else_start = else_end = NULL_RTX;
559 if (n_matching > 0)
561 if (then_start)
562 then_start = find_active_insn_after (then_bb, then_last_head);
563 if (else_start)
564 else_start = find_active_insn_after (else_bb, else_last_head);
565 n_insns -= 2 * n_matching;
570 if (n_insns > max)
571 return FALSE;
573 /* Map test_expr/test_jump into the appropriate MD tests to use on
574 the conditionally executed code. */
576 true_expr = test_expr;
578 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
579 if (false_code != UNKNOWN)
580 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
581 XEXP (true_expr, 0), XEXP (true_expr, 1));
582 else
583 false_expr = NULL_RTX;
585 #ifdef IFCVT_MODIFY_TESTS
586 /* If the machine description needs to modify the tests, such as setting a
587 conditional execution register from a comparison, it can do so here. */
588 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
590 /* See if the conversion failed. */
591 if (!true_expr || !false_expr)
592 goto fail;
593 #endif
595 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
596 if (note)
598 true_prob_val = XINT (note, 0);
599 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
601 else
603 true_prob_val = -1;
604 false_prob_val = -1;
607 /* If we have && or || tests, do them here. These tests are in the adjacent
608 blocks after the first block containing the test. */
609 if (ce_info->num_multiple_test_blocks > 0)
611 basic_block bb = test_bb;
612 basic_block last_test_bb = ce_info->last_test_bb;
614 if (! false_expr)
615 goto fail;
619 rtx start, end;
620 rtx t, f;
621 enum rtx_code f_code;
623 bb = block_fallthru (bb);
624 start = first_active_insn (bb);
625 end = last_active_insn (bb, TRUE);
626 if (start
627 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
628 false_prob_val, FALSE))
629 goto fail;
631 /* If the conditional jump is more than just a conditional jump, then
632 we can not do conditional execution conversion on this block. */
633 if (! onlyjump_p (BB_END (bb)))
634 goto fail;
636 /* Find the conditional jump and isolate the test. */
637 t = cond_exec_get_condition (BB_END (bb));
638 if (! t)
639 goto fail;
641 f_code = reversed_comparison_code (t, BB_END (bb));
642 if (f_code == UNKNOWN)
643 goto fail;
645 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
646 if (ce_info->and_and_p)
648 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
649 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
651 else
653 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
654 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
657 /* If the machine description needs to modify the tests, such as
658 setting a conditional execution register from a comparison, it can
659 do so here. */
660 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
661 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
663 /* See if the conversion failed. */
664 if (!t || !f)
665 goto fail;
666 #endif
668 true_expr = t;
669 false_expr = f;
671 while (bb != last_test_bb);
674 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
675 on then THEN block. */
676 then_mod_ok = (else_bb == NULL_BLOCK);
678 /* Go through the THEN and ELSE blocks converting the insns if possible
679 to conditional execution. */
681 if (then_end
682 && (! false_expr
683 || ! cond_exec_process_insns (ce_info, then_start, then_end,
684 false_expr, false_prob_val,
685 then_mod_ok)))
686 goto fail;
688 if (else_bb && else_end
689 && ! cond_exec_process_insns (ce_info, else_start, else_end,
690 true_expr, true_prob_val, TRUE))
691 goto fail;
693 /* If we cannot apply the changes, fail. Do not go through the normal fail
694 processing, since apply_change_group will call cancel_changes. */
695 if (! apply_change_group ())
697 #ifdef IFCVT_MODIFY_CANCEL
698 /* Cancel any machine dependent changes. */
699 IFCVT_MODIFY_CANCEL (ce_info);
700 #endif
701 return FALSE;
704 #ifdef IFCVT_MODIFY_FINAL
705 /* Do any machine dependent final modifications. */
706 IFCVT_MODIFY_FINAL (ce_info);
707 #endif
709 /* Conversion succeeded. */
710 if (dump_file)
711 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
712 n_insns, (n_insns == 1) ? " was" : "s were");
714 /* Merge the blocks! If we had matching sequences, make sure to delete one
715 copy at the appropriate location first: delete the copy in the THEN branch
716 for a tail sequence so that the remaining one is executed last for both
717 branches, and delete the copy in the ELSE branch for a head sequence so
718 that the remaining one is executed first for both branches. */
719 if (then_first_tail)
721 rtx from = then_first_tail;
722 if (!INSN_P (from))
723 from = find_active_insn_after (then_bb, from);
724 delete_insn_chain (from, BB_END (then_bb), false);
726 if (else_last_head)
727 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
729 merge_if_block (ce_info);
730 cond_exec_changed_p = TRUE;
731 return TRUE;
733 fail:
734 #ifdef IFCVT_MODIFY_CANCEL
735 /* Cancel any machine dependent changes. */
736 IFCVT_MODIFY_CANCEL (ce_info);
737 #endif
739 cancel_changes (0);
740 return FALSE;
743 /* Used by noce_process_if_block to communicate with its subroutines.
745 The subroutines know that A and B may be evaluated freely. They
746 know that X is a register. They should insert new instructions
747 before cond_earliest. */
749 struct noce_if_info
751 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
752 basic_block test_bb, then_bb, else_bb, join_bb;
754 /* The jump that ends TEST_BB. */
755 rtx jump;
757 /* The jump condition. */
758 rtx cond;
760 /* New insns should be inserted before this one. */
761 rtx cond_earliest;
763 /* Insns in the THEN and ELSE block. There is always just this
764 one insns in those blocks. The insns are single_set insns.
765 If there was no ELSE block, INSN_B is the last insn before
766 COND_EARLIEST, or NULL_RTX. In the former case, the insn
767 operands are still valid, as if INSN_B was moved down below
768 the jump. */
769 rtx insn_a, insn_b;
771 /* The SET_SRC of INSN_A and INSN_B. */
772 rtx a, b;
774 /* The SET_DEST of INSN_A. */
775 rtx x;
777 /* True if this if block is not canonical. In the canonical form of
778 if blocks, the THEN_BB is the block reached via the fallthru edge
779 from TEST_BB. For the noce transformations, we allow the symmetric
780 form as well. */
781 bool then_else_reversed;
783 /* Estimated cost of the particular branch instruction. */
784 int branch_cost;
787 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
788 static int noce_try_move (struct noce_if_info *);
789 static int noce_try_store_flag (struct noce_if_info *);
790 static int noce_try_addcc (struct noce_if_info *);
791 static int noce_try_store_flag_constants (struct noce_if_info *);
792 static int noce_try_store_flag_mask (struct noce_if_info *);
793 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
794 rtx, rtx, rtx);
795 static int noce_try_cmove (struct noce_if_info *);
796 static int noce_try_cmove_arith (struct noce_if_info *);
797 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
798 static int noce_try_minmax (struct noce_if_info *);
799 static int noce_try_abs (struct noce_if_info *);
800 static int noce_try_sign_mask (struct noce_if_info *);
802 /* Helper function for noce_try_store_flag*. */
804 static rtx
805 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
806 int normalize)
808 rtx cond = if_info->cond;
809 int cond_complex;
810 enum rtx_code code;
812 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
813 || ! general_operand (XEXP (cond, 1), VOIDmode));
815 /* If earliest == jump, or when the condition is complex, try to
816 build the store_flag insn directly. */
818 if (cond_complex)
820 rtx set = pc_set (if_info->jump);
821 cond = XEXP (SET_SRC (set), 0);
822 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
823 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
824 reversep = !reversep;
825 if (if_info->then_else_reversed)
826 reversep = !reversep;
829 if (reversep)
830 code = reversed_comparison_code (cond, if_info->jump);
831 else
832 code = GET_CODE (cond);
834 if ((if_info->cond_earliest == if_info->jump || cond_complex)
835 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
837 rtx tmp;
839 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
840 XEXP (cond, 1));
841 tmp = gen_rtx_SET (VOIDmode, x, tmp);
843 start_sequence ();
844 tmp = emit_insn (tmp);
846 if (recog_memoized (tmp) >= 0)
848 tmp = get_insns ();
849 end_sequence ();
850 emit_insn (tmp);
852 if_info->cond_earliest = if_info->jump;
854 return x;
857 end_sequence ();
860 /* Don't even try if the comparison operands or the mode of X are weird. */
861 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
862 return NULL_RTX;
864 return emit_store_flag (x, code, XEXP (cond, 0),
865 XEXP (cond, 1), VOIDmode,
866 (code == LTU || code == LEU
867 || code == GEU || code == GTU), normalize);
870 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
871 X is the destination/target and Y is the value to copy. */
873 static void
874 noce_emit_move_insn (rtx x, rtx y)
876 enum machine_mode outmode;
877 rtx outer, inner;
878 int bitpos;
880 if (GET_CODE (x) != STRICT_LOW_PART)
882 rtx seq, insn, target;
883 optab ot;
885 start_sequence ();
886 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
887 otherwise construct a suitable SET pattern ourselves. */
888 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
889 ? emit_move_insn (x, y)
890 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
891 seq = get_insns ();
892 end_sequence ();
894 if (recog_memoized (insn) <= 0)
896 if (GET_CODE (x) == ZERO_EXTRACT)
898 rtx op = XEXP (x, 0);
899 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
900 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
902 /* store_bit_field expects START to be relative to
903 BYTES_BIG_ENDIAN and adjusts this value for machines with
904 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
905 invoke store_bit_field again it is necessary to have the START
906 value from the first call. */
907 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
909 if (MEM_P (op))
910 start = BITS_PER_UNIT - start - size;
911 else
913 gcc_assert (REG_P (op));
914 start = BITS_PER_WORD - start - size;
918 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
919 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
920 return;
923 switch (GET_RTX_CLASS (GET_CODE (y)))
925 case RTX_UNARY:
926 ot = code_to_optab (GET_CODE (y));
927 if (ot)
929 start_sequence ();
930 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
931 if (target != NULL_RTX)
933 if (target != x)
934 emit_move_insn (x, target);
935 seq = get_insns ();
937 end_sequence ();
939 break;
941 case RTX_BIN_ARITH:
942 case RTX_COMM_ARITH:
943 ot = code_to_optab (GET_CODE (y));
944 if (ot)
946 start_sequence ();
947 target = expand_binop (GET_MODE (y), ot,
948 XEXP (y, 0), XEXP (y, 1),
949 x, 0, OPTAB_DIRECT);
950 if (target != NULL_RTX)
952 if (target != x)
953 emit_move_insn (x, target);
954 seq = get_insns ();
956 end_sequence ();
958 break;
960 default:
961 break;
965 emit_insn (seq);
966 return;
969 outer = XEXP (x, 0);
970 inner = XEXP (outer, 0);
971 outmode = GET_MODE (outer);
972 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
973 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
974 0, 0, outmode, y);
977 /* Return sequence of instructions generated by if conversion. This
978 function calls end_sequence() to end the current stream, ensures
979 that are instructions are unshared, recognizable non-jump insns.
980 On failure, this function returns a NULL_RTX. */
982 static rtx
983 end_ifcvt_sequence (struct noce_if_info *if_info)
985 rtx insn;
986 rtx seq = get_insns ();
988 set_used_flags (if_info->x);
989 set_used_flags (if_info->cond);
990 set_used_flags (if_info->a);
991 set_used_flags (if_info->b);
992 unshare_all_rtl_in_chain (seq);
993 end_sequence ();
995 /* Make sure that all of the instructions emitted are recognizable,
996 and that we haven't introduced a new jump instruction.
997 As an exercise for the reader, build a general mechanism that
998 allows proper placement of required clobbers. */
999 for (insn = seq; insn; insn = NEXT_INSN (insn))
1000 if (JUMP_P (insn)
1001 || recog_memoized (insn) == -1)
1002 return NULL_RTX;
1004 return seq;
1007 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1008 "if (a == b) x = a; else x = b" into "x = b". */
1010 static int
1011 noce_try_move (struct noce_if_info *if_info)
1013 rtx cond = if_info->cond;
1014 enum rtx_code code = GET_CODE (cond);
1015 rtx y, seq;
1017 if (code != NE && code != EQ)
1018 return FALSE;
1020 /* This optimization isn't valid if either A or B could be a NaN
1021 or a signed zero. */
1022 if (HONOR_NANS (GET_MODE (if_info->x))
1023 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1024 return FALSE;
1026 /* Check whether the operands of the comparison are A and in
1027 either order. */
1028 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1029 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1030 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1031 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1033 y = (code == EQ) ? if_info->a : if_info->b;
1035 /* Avoid generating the move if the source is the destination. */
1036 if (! rtx_equal_p (if_info->x, y))
1038 start_sequence ();
1039 noce_emit_move_insn (if_info->x, y);
1040 seq = end_ifcvt_sequence (if_info);
1041 if (!seq)
1042 return FALSE;
1044 emit_insn_before_setloc (seq, if_info->jump,
1045 INSN_LOCATION (if_info->insn_a));
1047 return TRUE;
1049 return FALSE;
1052 /* Convert "if (test) x = 1; else x = 0".
1054 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1055 tried in noce_try_store_flag_constants after noce_try_cmove has had
1056 a go at the conversion. */
1058 static int
1059 noce_try_store_flag (struct noce_if_info *if_info)
1061 int reversep;
1062 rtx target, seq;
1064 if (CONST_INT_P (if_info->b)
1065 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1066 && if_info->a == const0_rtx)
1067 reversep = 0;
1068 else if (if_info->b == const0_rtx
1069 && CONST_INT_P (if_info->a)
1070 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1071 && (reversed_comparison_code (if_info->cond, if_info->jump)
1072 != UNKNOWN))
1073 reversep = 1;
1074 else
1075 return FALSE;
1077 start_sequence ();
1079 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1080 if (target)
1082 if (target != if_info->x)
1083 noce_emit_move_insn (if_info->x, target);
1085 seq = end_ifcvt_sequence (if_info);
1086 if (! seq)
1087 return FALSE;
1089 emit_insn_before_setloc (seq, if_info->jump,
1090 INSN_LOCATION (if_info->insn_a));
1091 return TRUE;
1093 else
1095 end_sequence ();
1096 return FALSE;
1100 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1102 static int
1103 noce_try_store_flag_constants (struct noce_if_info *if_info)
1105 rtx target, seq;
1106 int reversep;
1107 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1108 int normalize, can_reverse;
1109 enum machine_mode mode;
1111 if (CONST_INT_P (if_info->a)
1112 && CONST_INT_P (if_info->b))
1114 mode = GET_MODE (if_info->x);
1115 ifalse = INTVAL (if_info->a);
1116 itrue = INTVAL (if_info->b);
1118 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1119 /* Make sure we can represent the difference between the two values. */
1120 if ((diff > 0)
1121 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1122 return FALSE;
1124 diff = trunc_int_for_mode (diff, mode);
1126 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1127 != UNKNOWN);
1129 reversep = 0;
1130 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1131 normalize = 0;
1132 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1133 && (STORE_FLAG_VALUE == 1
1134 || if_info->branch_cost >= 2))
1135 normalize = 1;
1136 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1137 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1138 normalize = 1, reversep = 1;
1139 else if (itrue == -1
1140 && (STORE_FLAG_VALUE == -1
1141 || if_info->branch_cost >= 2))
1142 normalize = -1;
1143 else if (ifalse == -1 && can_reverse
1144 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1145 normalize = -1, reversep = 1;
1146 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1147 || if_info->branch_cost >= 3)
1148 normalize = -1;
1149 else
1150 return FALSE;
1152 if (reversep)
1154 tmp = itrue; itrue = ifalse; ifalse = tmp;
1155 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1158 start_sequence ();
1159 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1160 if (! target)
1162 end_sequence ();
1163 return FALSE;
1166 /* if (test) x = 3; else x = 4;
1167 => x = 3 + (test == 0); */
1168 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1170 target = expand_simple_binop (mode,
1171 (diff == STORE_FLAG_VALUE
1172 ? PLUS : MINUS),
1173 gen_int_mode (ifalse, mode), target,
1174 if_info->x, 0, OPTAB_WIDEN);
1177 /* if (test) x = 8; else x = 0;
1178 => x = (test != 0) << 3; */
1179 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1181 target = expand_simple_binop (mode, ASHIFT,
1182 target, GEN_INT (tmp), if_info->x, 0,
1183 OPTAB_WIDEN);
1186 /* if (test) x = -1; else x = b;
1187 => x = -(test != 0) | b; */
1188 else if (itrue == -1)
1190 target = expand_simple_binop (mode, IOR,
1191 target, gen_int_mode (ifalse, mode),
1192 if_info->x, 0, OPTAB_WIDEN);
1195 /* if (test) x = a; else x = b;
1196 => x = (-(test != 0) & (b - a)) + a; */
1197 else
1199 target = expand_simple_binop (mode, AND,
1200 target, gen_int_mode (diff, mode),
1201 if_info->x, 0, OPTAB_WIDEN);
1202 if (target)
1203 target = expand_simple_binop (mode, PLUS,
1204 target, gen_int_mode (ifalse, mode),
1205 if_info->x, 0, OPTAB_WIDEN);
1208 if (! target)
1210 end_sequence ();
1211 return FALSE;
1214 if (target != if_info->x)
1215 noce_emit_move_insn (if_info->x, target);
1217 seq = end_ifcvt_sequence (if_info);
1218 if (!seq)
1219 return FALSE;
1221 emit_insn_before_setloc (seq, if_info->jump,
1222 INSN_LOCATION (if_info->insn_a));
1223 return TRUE;
1226 return FALSE;
1229 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1230 similarly for "foo--". */
1232 static int
1233 noce_try_addcc (struct noce_if_info *if_info)
1235 rtx target, seq;
1236 int subtract, normalize;
1238 if (GET_CODE (if_info->a) == PLUS
1239 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1240 && (reversed_comparison_code (if_info->cond, if_info->jump)
1241 != UNKNOWN))
1243 rtx cond = if_info->cond;
1244 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1246 /* First try to use addcc pattern. */
1247 if (general_operand (XEXP (cond, 0), VOIDmode)
1248 && general_operand (XEXP (cond, 1), VOIDmode))
1250 start_sequence ();
1251 target = emit_conditional_add (if_info->x, code,
1252 XEXP (cond, 0),
1253 XEXP (cond, 1),
1254 VOIDmode,
1255 if_info->b,
1256 XEXP (if_info->a, 1),
1257 GET_MODE (if_info->x),
1258 (code == LTU || code == GEU
1259 || code == LEU || code == GTU));
1260 if (target)
1262 if (target != if_info->x)
1263 noce_emit_move_insn (if_info->x, target);
1265 seq = end_ifcvt_sequence (if_info);
1266 if (!seq)
1267 return FALSE;
1269 emit_insn_before_setloc (seq, if_info->jump,
1270 INSN_LOCATION (if_info->insn_a));
1271 return TRUE;
1273 end_sequence ();
1276 /* If that fails, construct conditional increment or decrement using
1277 setcc. */
1278 if (if_info->branch_cost >= 2
1279 && (XEXP (if_info->a, 1) == const1_rtx
1280 || XEXP (if_info->a, 1) == constm1_rtx))
1282 start_sequence ();
1283 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1284 subtract = 0, normalize = 0;
1285 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1286 subtract = 1, normalize = 0;
1287 else
1288 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1291 target = noce_emit_store_flag (if_info,
1292 gen_reg_rtx (GET_MODE (if_info->x)),
1293 1, normalize);
1295 if (target)
1296 target = expand_simple_binop (GET_MODE (if_info->x),
1297 subtract ? MINUS : PLUS,
1298 if_info->b, target, if_info->x,
1299 0, OPTAB_WIDEN);
1300 if (target)
1302 if (target != if_info->x)
1303 noce_emit_move_insn (if_info->x, target);
1305 seq = end_ifcvt_sequence (if_info);
1306 if (!seq)
1307 return FALSE;
1309 emit_insn_before_setloc (seq, if_info->jump,
1310 INSN_LOCATION (if_info->insn_a));
1311 return TRUE;
1313 end_sequence ();
1317 return FALSE;
1320 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1322 static int
1323 noce_try_store_flag_mask (struct noce_if_info *if_info)
1325 rtx target, seq;
1326 int reversep;
1328 reversep = 0;
1329 if ((if_info->branch_cost >= 2
1330 || STORE_FLAG_VALUE == -1)
1331 && ((if_info->a == const0_rtx
1332 && rtx_equal_p (if_info->b, if_info->x))
1333 || ((reversep = (reversed_comparison_code (if_info->cond,
1334 if_info->jump)
1335 != UNKNOWN))
1336 && if_info->b == const0_rtx
1337 && rtx_equal_p (if_info->a, if_info->x))))
1339 start_sequence ();
1340 target = noce_emit_store_flag (if_info,
1341 gen_reg_rtx (GET_MODE (if_info->x)),
1342 reversep, -1);
1343 if (target)
1344 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1345 if_info->x,
1346 target, if_info->x, 0,
1347 OPTAB_WIDEN);
1349 if (target)
1351 if (target != if_info->x)
1352 noce_emit_move_insn (if_info->x, target);
1354 seq = end_ifcvt_sequence (if_info);
1355 if (!seq)
1356 return FALSE;
1358 emit_insn_before_setloc (seq, if_info->jump,
1359 INSN_LOCATION (if_info->insn_a));
1360 return TRUE;
1363 end_sequence ();
1366 return FALSE;
1369 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1371 static rtx
1372 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1373 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1375 rtx target ATTRIBUTE_UNUSED;
1376 int unsignedp ATTRIBUTE_UNUSED;
1378 /* If earliest == jump, try to build the cmove insn directly.
1379 This is helpful when combine has created some complex condition
1380 (like for alpha's cmovlbs) that we can't hope to regenerate
1381 through the normal interface. */
1383 if (if_info->cond_earliest == if_info->jump)
1385 rtx tmp;
1387 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1388 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1389 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1391 start_sequence ();
1392 tmp = emit_insn (tmp);
1394 if (recog_memoized (tmp) >= 0)
1396 tmp = get_insns ();
1397 end_sequence ();
1398 emit_insn (tmp);
1400 return x;
1403 end_sequence ();
1406 /* Don't even try if the comparison operands are weird. */
1407 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1408 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1409 return NULL_RTX;
1411 #if HAVE_conditional_move
1412 unsignedp = (code == LTU || code == GEU
1413 || code == LEU || code == GTU);
1415 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1416 vtrue, vfalse, GET_MODE (x),
1417 unsignedp);
1418 if (target)
1419 return target;
1421 /* We might be faced with a situation like:
1423 x = (reg:M TARGET)
1424 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1425 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1427 We can't do a conditional move in mode M, but it's possible that we
1428 could do a conditional move in mode N instead and take a subreg of
1429 the result.
1431 If we can't create new pseudos, though, don't bother. */
1432 if (reload_completed)
1433 return NULL_RTX;
1435 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1437 rtx reg_vtrue = SUBREG_REG (vtrue);
1438 rtx reg_vfalse = SUBREG_REG (vfalse);
1439 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1440 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1441 rtx promoted_target;
1443 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1444 || byte_vtrue != byte_vfalse
1445 || (SUBREG_PROMOTED_VAR_P (vtrue)
1446 != SUBREG_PROMOTED_VAR_P (vfalse))
1447 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1448 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1449 return NULL_RTX;
1451 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1453 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1454 VOIDmode, reg_vtrue, reg_vfalse,
1455 GET_MODE (reg_vtrue), unsignedp);
1456 /* Nope, couldn't do it in that mode either. */
1457 if (!target)
1458 return NULL_RTX;
1460 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1461 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1462 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1463 emit_move_insn (x, target);
1464 return x;
1466 else
1467 return NULL_RTX;
1468 #else
1469 /* We'll never get here, as noce_process_if_block doesn't call the
1470 functions involved. Ifdef code, however, should be discouraged
1471 because it leads to typos in the code not selected. However,
1472 emit_conditional_move won't exist either. */
1473 return NULL_RTX;
1474 #endif
1477 /* Try only simple constants and registers here. More complex cases
1478 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1479 has had a go at it. */
1481 static int
1482 noce_try_cmove (struct noce_if_info *if_info)
1484 enum rtx_code code;
1485 rtx target, seq;
1487 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1488 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1490 start_sequence ();
1492 code = GET_CODE (if_info->cond);
1493 target = noce_emit_cmove (if_info, if_info->x, code,
1494 XEXP (if_info->cond, 0),
1495 XEXP (if_info->cond, 1),
1496 if_info->a, if_info->b);
1498 if (target)
1500 if (target != if_info->x)
1501 noce_emit_move_insn (if_info->x, target);
1503 seq = end_ifcvt_sequence (if_info);
1504 if (!seq)
1505 return FALSE;
1507 emit_insn_before_setloc (seq, if_info->jump,
1508 INSN_LOCATION (if_info->insn_a));
1509 return TRUE;
1511 else
1513 end_sequence ();
1514 return FALSE;
1518 return FALSE;
1521 /* Try more complex cases involving conditional_move. */
1523 static int
1524 noce_try_cmove_arith (struct noce_if_info *if_info)
1526 rtx a = if_info->a;
1527 rtx b = if_info->b;
1528 rtx x = if_info->x;
1529 rtx orig_a, orig_b;
1530 rtx insn_a, insn_b;
1531 rtx tmp, target;
1532 int is_mem = 0;
1533 int insn_cost;
1534 enum rtx_code code;
1536 /* A conditional move from two memory sources is equivalent to a
1537 conditional on their addresses followed by a load. Don't do this
1538 early because it'll screw alias analysis. Note that we've
1539 already checked for no side effects. */
1540 /* ??? FIXME: Magic number 5. */
1541 if (cse_not_expected
1542 && MEM_P (a) && MEM_P (b)
1543 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1544 && if_info->branch_cost >= 5)
1546 enum machine_mode address_mode = get_address_mode (a);
1548 a = XEXP (a, 0);
1549 b = XEXP (b, 0);
1550 x = gen_reg_rtx (address_mode);
1551 is_mem = 1;
1554 /* ??? We could handle this if we knew that a load from A or B could
1555 not trap or fault. This is also true if we've already loaded
1556 from the address along the path from ENTRY. */
1557 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1558 return FALSE;
1560 /* if (test) x = a + b; else x = c - d;
1561 => y = a + b;
1562 x = c - d;
1563 if (test)
1564 x = y;
1567 code = GET_CODE (if_info->cond);
1568 insn_a = if_info->insn_a;
1569 insn_b = if_info->insn_b;
1571 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1572 if insn_rtx_cost can't be estimated. */
1573 if (insn_a)
1575 insn_cost
1576 = insn_rtx_cost (PATTERN (insn_a),
1577 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1578 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1579 return FALSE;
1581 else
1582 insn_cost = 0;
1584 if (insn_b)
1586 insn_cost
1587 += insn_rtx_cost (PATTERN (insn_b),
1588 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1589 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1590 return FALSE;
1593 /* Possibly rearrange operands to make things come out more natural. */
1594 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1596 int reversep = 0;
1597 if (rtx_equal_p (b, x))
1598 reversep = 1;
1599 else if (general_operand (b, GET_MODE (b)))
1600 reversep = 1;
1602 if (reversep)
1604 code = reversed_comparison_code (if_info->cond, if_info->jump);
1605 tmp = a, a = b, b = tmp;
1606 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1610 start_sequence ();
1612 orig_a = a;
1613 orig_b = b;
1615 /* If either operand is complex, load it into a register first.
1616 The best way to do this is to copy the original insn. In this
1617 way we preserve any clobbers etc that the insn may have had.
1618 This is of course not possible in the IS_MEM case. */
1619 if (! general_operand (a, GET_MODE (a)))
1621 rtx set;
1623 if (is_mem)
1625 tmp = gen_reg_rtx (GET_MODE (a));
1626 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1628 else if (! insn_a)
1629 goto end_seq_and_fail;
1630 else
1632 a = gen_reg_rtx (GET_MODE (a));
1633 tmp = copy_rtx (insn_a);
1634 set = single_set (tmp);
1635 SET_DEST (set) = a;
1636 tmp = emit_insn (PATTERN (tmp));
1638 if (recog_memoized (tmp) < 0)
1639 goto end_seq_and_fail;
1641 if (! general_operand (b, GET_MODE (b)))
1643 rtx set, last;
1645 if (is_mem)
1647 tmp = gen_reg_rtx (GET_MODE (b));
1648 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1650 else if (! insn_b)
1651 goto end_seq_and_fail;
1652 else
1654 b = gen_reg_rtx (GET_MODE (b));
1655 tmp = copy_rtx (insn_b);
1656 set = single_set (tmp);
1657 SET_DEST (set) = b;
1658 tmp = PATTERN (tmp);
1661 /* If insn to set up A clobbers any registers B depends on, try to
1662 swap insn that sets up A with the one that sets up B. If even
1663 that doesn't help, punt. */
1664 last = get_last_insn ();
1665 if (last && modified_in_p (orig_b, last))
1667 tmp = emit_insn_before (tmp, get_insns ());
1668 if (modified_in_p (orig_a, tmp))
1669 goto end_seq_and_fail;
1671 else
1672 tmp = emit_insn (tmp);
1674 if (recog_memoized (tmp) < 0)
1675 goto end_seq_and_fail;
1678 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1679 XEXP (if_info->cond, 1), a, b);
1681 if (! target)
1682 goto end_seq_and_fail;
1684 /* If we're handling a memory for above, emit the load now. */
1685 if (is_mem)
1687 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1689 /* Copy over flags as appropriate. */
1690 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1691 MEM_VOLATILE_P (tmp) = 1;
1692 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1693 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1694 set_mem_align (tmp,
1695 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1697 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1698 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1700 noce_emit_move_insn (if_info->x, tmp);
1702 else if (target != x)
1703 noce_emit_move_insn (x, target);
1705 tmp = end_ifcvt_sequence (if_info);
1706 if (!tmp)
1707 return FALSE;
1709 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1710 return TRUE;
1712 end_seq_and_fail:
1713 end_sequence ();
1714 return FALSE;
1717 /* For most cases, the simplified condition we found is the best
1718 choice, but this is not the case for the min/max/abs transforms.
1719 For these we wish to know that it is A or B in the condition. */
1721 static rtx
1722 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1723 rtx *earliest)
1725 rtx cond, set, insn;
1726 int reverse;
1728 /* If target is already mentioned in the known condition, return it. */
1729 if (reg_mentioned_p (target, if_info->cond))
1731 *earliest = if_info->cond_earliest;
1732 return if_info->cond;
1735 set = pc_set (if_info->jump);
1736 cond = XEXP (SET_SRC (set), 0);
1737 reverse
1738 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1739 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1740 if (if_info->then_else_reversed)
1741 reverse = !reverse;
1743 /* If we're looking for a constant, try to make the conditional
1744 have that constant in it. There are two reasons why it may
1745 not have the constant we want:
1747 1. GCC may have needed to put the constant in a register, because
1748 the target can't compare directly against that constant. For
1749 this case, we look for a SET immediately before the comparison
1750 that puts a constant in that register.
1752 2. GCC may have canonicalized the conditional, for example
1753 replacing "if x < 4" with "if x <= 3". We can undo that (or
1754 make equivalent types of changes) to get the constants we need
1755 if they're off by one in the right direction. */
1757 if (CONST_INT_P (target))
1759 enum rtx_code code = GET_CODE (if_info->cond);
1760 rtx op_a = XEXP (if_info->cond, 0);
1761 rtx op_b = XEXP (if_info->cond, 1);
1762 rtx prev_insn;
1764 /* First, look to see if we put a constant in a register. */
1765 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1766 if (prev_insn
1767 && BLOCK_FOR_INSN (prev_insn)
1768 == BLOCK_FOR_INSN (if_info->cond_earliest)
1769 && INSN_P (prev_insn)
1770 && GET_CODE (PATTERN (prev_insn)) == SET)
1772 rtx src = find_reg_equal_equiv_note (prev_insn);
1773 if (!src)
1774 src = SET_SRC (PATTERN (prev_insn));
1775 if (CONST_INT_P (src))
1777 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1778 op_a = src;
1779 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1780 op_b = src;
1782 if (CONST_INT_P (op_a))
1784 rtx tmp = op_a;
1785 op_a = op_b;
1786 op_b = tmp;
1787 code = swap_condition (code);
1792 /* Now, look to see if we can get the right constant by
1793 adjusting the conditional. */
1794 if (CONST_INT_P (op_b))
1796 HOST_WIDE_INT desired_val = INTVAL (target);
1797 HOST_WIDE_INT actual_val = INTVAL (op_b);
1799 switch (code)
1801 case LT:
1802 if (actual_val == desired_val + 1)
1804 code = LE;
1805 op_b = GEN_INT (desired_val);
1807 break;
1808 case LE:
1809 if (actual_val == desired_val - 1)
1811 code = LT;
1812 op_b = GEN_INT (desired_val);
1814 break;
1815 case GT:
1816 if (actual_val == desired_val - 1)
1818 code = GE;
1819 op_b = GEN_INT (desired_val);
1821 break;
1822 case GE:
1823 if (actual_val == desired_val + 1)
1825 code = GT;
1826 op_b = GEN_INT (desired_val);
1828 break;
1829 default:
1830 break;
1834 /* If we made any changes, generate a new conditional that is
1835 equivalent to what we started with, but has the right
1836 constants in it. */
1837 if (code != GET_CODE (if_info->cond)
1838 || op_a != XEXP (if_info->cond, 0)
1839 || op_b != XEXP (if_info->cond, 1))
1841 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1842 *earliest = if_info->cond_earliest;
1843 return cond;
1847 cond = canonicalize_condition (if_info->jump, cond, reverse,
1848 earliest, target, false, true);
1849 if (! cond || ! reg_mentioned_p (target, cond))
1850 return NULL;
1852 /* We almost certainly searched back to a different place.
1853 Need to re-verify correct lifetimes. */
1855 /* X may not be mentioned in the range (cond_earliest, jump]. */
1856 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1857 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1858 return NULL;
1860 /* A and B may not be modified in the range [cond_earliest, jump). */
1861 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1862 if (INSN_P (insn)
1863 && (modified_in_p (if_info->a, insn)
1864 || modified_in_p (if_info->b, insn)))
1865 return NULL;
1867 return cond;
1870 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1872 static int
1873 noce_try_minmax (struct noce_if_info *if_info)
1875 rtx cond, earliest, target, seq;
1876 enum rtx_code code, op;
1877 int unsignedp;
1879 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1880 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1881 to get the target to tell us... */
1882 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1883 || HONOR_NANS (GET_MODE (if_info->x)))
1884 return FALSE;
1886 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1887 if (!cond)
1888 return FALSE;
1890 /* Verify the condition is of the form we expect, and canonicalize
1891 the comparison code. */
1892 code = GET_CODE (cond);
1893 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1895 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1896 return FALSE;
1898 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1900 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1901 return FALSE;
1902 code = swap_condition (code);
1904 else
1905 return FALSE;
1907 /* Determine what sort of operation this is. Note that the code is for
1908 a taken branch, so the code->operation mapping appears backwards. */
1909 switch (code)
1911 case LT:
1912 case LE:
1913 case UNLT:
1914 case UNLE:
1915 op = SMAX;
1916 unsignedp = 0;
1917 break;
1918 case GT:
1919 case GE:
1920 case UNGT:
1921 case UNGE:
1922 op = SMIN;
1923 unsignedp = 0;
1924 break;
1925 case LTU:
1926 case LEU:
1927 op = UMAX;
1928 unsignedp = 1;
1929 break;
1930 case GTU:
1931 case GEU:
1932 op = UMIN;
1933 unsignedp = 1;
1934 break;
1935 default:
1936 return FALSE;
1939 start_sequence ();
1941 target = expand_simple_binop (GET_MODE (if_info->x), op,
1942 if_info->a, if_info->b,
1943 if_info->x, unsignedp, OPTAB_WIDEN);
1944 if (! target)
1946 end_sequence ();
1947 return FALSE;
1949 if (target != if_info->x)
1950 noce_emit_move_insn (if_info->x, target);
1952 seq = end_ifcvt_sequence (if_info);
1953 if (!seq)
1954 return FALSE;
1956 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1957 if_info->cond = cond;
1958 if_info->cond_earliest = earliest;
1960 return TRUE;
1963 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1964 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1965 etc. */
1967 static int
1968 noce_try_abs (struct noce_if_info *if_info)
1970 rtx cond, earliest, target, seq, a, b, c;
1971 int negate;
1972 bool one_cmpl = false;
1974 /* Reject modes with signed zeros. */
1975 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1976 return FALSE;
1978 /* Recognize A and B as constituting an ABS or NABS. The canonical
1979 form is a branch around the negation, taken when the object is the
1980 first operand of a comparison against 0 that evaluates to true. */
1981 a = if_info->a;
1982 b = if_info->b;
1983 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1984 negate = 0;
1985 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1987 c = a; a = b; b = c;
1988 negate = 1;
1990 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1992 negate = 0;
1993 one_cmpl = true;
1995 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1997 c = a; a = b; b = c;
1998 negate = 1;
1999 one_cmpl = true;
2001 else
2002 return FALSE;
2004 cond = noce_get_alt_condition (if_info, b, &earliest);
2005 if (!cond)
2006 return FALSE;
2008 /* Verify the condition is of the form we expect. */
2009 if (rtx_equal_p (XEXP (cond, 0), b))
2010 c = XEXP (cond, 1);
2011 else if (rtx_equal_p (XEXP (cond, 1), b))
2013 c = XEXP (cond, 0);
2014 negate = !negate;
2016 else
2017 return FALSE;
2019 /* Verify that C is zero. Search one step backward for a
2020 REG_EQUAL note or a simple source if necessary. */
2021 if (REG_P (c))
2023 rtx set, insn = prev_nonnote_insn (earliest);
2024 if (insn
2025 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2026 && (set = single_set (insn))
2027 && rtx_equal_p (SET_DEST (set), c))
2029 rtx note = find_reg_equal_equiv_note (insn);
2030 if (note)
2031 c = XEXP (note, 0);
2032 else
2033 c = SET_SRC (set);
2035 else
2036 return FALSE;
2038 if (MEM_P (c)
2039 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2040 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2041 c = get_pool_constant (XEXP (c, 0));
2043 /* Work around funny ideas get_condition has wrt canonicalization.
2044 Note that these rtx constants are known to be CONST_INT, and
2045 therefore imply integer comparisons. */
2046 if (c == constm1_rtx && GET_CODE (cond) == GT)
2048 else if (c == const1_rtx && GET_CODE (cond) == LT)
2050 else if (c != CONST0_RTX (GET_MODE (b)))
2051 return FALSE;
2053 /* Determine what sort of operation this is. */
2054 switch (GET_CODE (cond))
2056 case LT:
2057 case LE:
2058 case UNLT:
2059 case UNLE:
2060 negate = !negate;
2061 break;
2062 case GT:
2063 case GE:
2064 case UNGT:
2065 case UNGE:
2066 break;
2067 default:
2068 return FALSE;
2071 start_sequence ();
2072 if (one_cmpl)
2073 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2074 if_info->x);
2075 else
2076 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2078 /* ??? It's a quandary whether cmove would be better here, especially
2079 for integers. Perhaps combine will clean things up. */
2080 if (target && negate)
2082 if (one_cmpl)
2083 target = expand_simple_unop (GET_MODE (target), NOT, target,
2084 if_info->x, 0);
2085 else
2086 target = expand_simple_unop (GET_MODE (target), NEG, target,
2087 if_info->x, 0);
2090 if (! target)
2092 end_sequence ();
2093 return FALSE;
2096 if (target != if_info->x)
2097 noce_emit_move_insn (if_info->x, target);
2099 seq = end_ifcvt_sequence (if_info);
2100 if (!seq)
2101 return FALSE;
2103 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2104 if_info->cond = cond;
2105 if_info->cond_earliest = earliest;
2107 return TRUE;
2110 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2112 static int
2113 noce_try_sign_mask (struct noce_if_info *if_info)
2115 rtx cond, t, m, c, seq;
2116 enum machine_mode mode;
2117 enum rtx_code code;
2118 bool t_unconditional;
2120 cond = if_info->cond;
2121 code = GET_CODE (cond);
2122 m = XEXP (cond, 0);
2123 c = XEXP (cond, 1);
2125 t = NULL_RTX;
2126 if (if_info->a == const0_rtx)
2128 if ((code == LT && c == const0_rtx)
2129 || (code == LE && c == constm1_rtx))
2130 t = if_info->b;
2132 else if (if_info->b == const0_rtx)
2134 if ((code == GE && c == const0_rtx)
2135 || (code == GT && c == constm1_rtx))
2136 t = if_info->a;
2139 if (! t || side_effects_p (t))
2140 return FALSE;
2142 /* We currently don't handle different modes. */
2143 mode = GET_MODE (t);
2144 if (GET_MODE (m) != mode)
2145 return FALSE;
2147 /* This is only profitable if T is unconditionally executed/evaluated in the
2148 original insn sequence or T is cheap. The former happens if B is the
2149 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2150 INSN_B which can happen for e.g. conditional stores to memory. For the
2151 cost computation use the block TEST_BB where the evaluation will end up
2152 after the transformation. */
2153 t_unconditional =
2154 (t == if_info->b
2155 && (if_info->insn_b == NULL_RTX
2156 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2157 if (!(t_unconditional
2158 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2159 < COSTS_N_INSNS (2))))
2160 return FALSE;
2162 start_sequence ();
2163 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2164 "(signed) m >> 31" directly. This benefits targets with specialized
2165 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2166 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2167 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2168 : NULL_RTX;
2170 if (!t)
2172 end_sequence ();
2173 return FALSE;
2176 noce_emit_move_insn (if_info->x, t);
2178 seq = end_ifcvt_sequence (if_info);
2179 if (!seq)
2180 return FALSE;
2182 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2183 return TRUE;
2187 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2188 transformations. */
2190 static int
2191 noce_try_bitop (struct noce_if_info *if_info)
2193 rtx cond, x, a, result, seq;
2194 enum machine_mode mode;
2195 enum rtx_code code;
2196 int bitnum;
2198 x = if_info->x;
2199 cond = if_info->cond;
2200 code = GET_CODE (cond);
2202 /* Check for no else condition. */
2203 if (! rtx_equal_p (x, if_info->b))
2204 return FALSE;
2206 /* Check for a suitable condition. */
2207 if (code != NE && code != EQ)
2208 return FALSE;
2209 if (XEXP (cond, 1) != const0_rtx)
2210 return FALSE;
2211 cond = XEXP (cond, 0);
2213 /* ??? We could also handle AND here. */
2214 if (GET_CODE (cond) == ZERO_EXTRACT)
2216 if (XEXP (cond, 1) != const1_rtx
2217 || !CONST_INT_P (XEXP (cond, 2))
2218 || ! rtx_equal_p (x, XEXP (cond, 0)))
2219 return FALSE;
2220 bitnum = INTVAL (XEXP (cond, 2));
2221 mode = GET_MODE (x);
2222 if (BITS_BIG_ENDIAN)
2223 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2224 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2225 return FALSE;
2227 else
2228 return FALSE;
2230 a = if_info->a;
2231 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2233 /* Check for "if (X & C) x = x op C". */
2234 if (! rtx_equal_p (x, XEXP (a, 0))
2235 || !CONST_INT_P (XEXP (a, 1))
2236 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2237 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2238 return FALSE;
2240 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2241 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2242 if (GET_CODE (a) == IOR)
2243 result = (code == NE) ? a : NULL_RTX;
2244 else if (code == NE)
2246 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2247 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2248 result = simplify_gen_binary (IOR, mode, x, result);
2250 else
2252 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2253 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2254 result = simplify_gen_binary (AND, mode, x, result);
2257 else if (GET_CODE (a) == AND)
2259 /* Check for "if (X & C) x &= ~C". */
2260 if (! rtx_equal_p (x, XEXP (a, 0))
2261 || !CONST_INT_P (XEXP (a, 1))
2262 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2263 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2264 return FALSE;
2266 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2267 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2268 result = (code == EQ) ? a : NULL_RTX;
2270 else
2271 return FALSE;
2273 if (result)
2275 start_sequence ();
2276 noce_emit_move_insn (x, result);
2277 seq = end_ifcvt_sequence (if_info);
2278 if (!seq)
2279 return FALSE;
2281 emit_insn_before_setloc (seq, if_info->jump,
2282 INSN_LOCATION (if_info->insn_a));
2284 return TRUE;
2288 /* Similar to get_condition, only the resulting condition must be
2289 valid at JUMP, instead of at EARLIEST.
2291 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2292 THEN block of the caller, and we have to reverse the condition. */
2294 static rtx
2295 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2297 rtx cond, set, tmp;
2298 bool reverse;
2300 if (! any_condjump_p (jump))
2301 return NULL_RTX;
2303 set = pc_set (jump);
2305 /* If this branches to JUMP_LABEL when the condition is false,
2306 reverse the condition. */
2307 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2308 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2310 /* We may have to reverse because the caller's if block is not canonical,
2311 i.e. the THEN block isn't the fallthrough block for the TEST block
2312 (see find_if_header). */
2313 if (then_else_reversed)
2314 reverse = !reverse;
2316 /* If the condition variable is a register and is MODE_INT, accept it. */
2318 cond = XEXP (SET_SRC (set), 0);
2319 tmp = XEXP (cond, 0);
2320 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2321 && (GET_MODE (tmp) != BImode
2322 || !targetm.small_register_classes_for_mode_p (BImode)))
2324 *earliest = jump;
2326 if (reverse)
2327 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2328 GET_MODE (cond), tmp, XEXP (cond, 1));
2329 return cond;
2332 /* Otherwise, fall back on canonicalize_condition to do the dirty
2333 work of manipulating MODE_CC values and COMPARE rtx codes. */
2334 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2335 NULL_RTX, false, true);
2337 /* We don't handle side-effects in the condition, like handling
2338 REG_INC notes and making sure no duplicate conditions are emitted. */
2339 if (tmp != NULL_RTX && side_effects_p (tmp))
2340 return NULL_RTX;
2342 return tmp;
2345 /* Return true if OP is ok for if-then-else processing. */
2347 static int
2348 noce_operand_ok (const_rtx op)
2350 if (side_effects_p (op))
2351 return FALSE;
2353 /* We special-case memories, so handle any of them with
2354 no address side effects. */
2355 if (MEM_P (op))
2356 return ! side_effects_p (XEXP (op, 0));
2358 return ! may_trap_p (op);
2361 /* Return true if a write into MEM may trap or fault. */
2363 static bool
2364 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2366 rtx addr;
2368 if (MEM_READONLY_P (mem))
2369 return true;
2371 if (may_trap_or_fault_p (mem))
2372 return true;
2374 addr = XEXP (mem, 0);
2376 /* Call target hook to avoid the effects of -fpic etc.... */
2377 addr = targetm.delegitimize_address (addr);
2379 while (addr)
2380 switch (GET_CODE (addr))
2382 case CONST:
2383 case PRE_DEC:
2384 case PRE_INC:
2385 case POST_DEC:
2386 case POST_INC:
2387 case POST_MODIFY:
2388 addr = XEXP (addr, 0);
2389 break;
2390 case LO_SUM:
2391 case PRE_MODIFY:
2392 addr = XEXP (addr, 1);
2393 break;
2394 case PLUS:
2395 if (CONST_INT_P (XEXP (addr, 1)))
2396 addr = XEXP (addr, 0);
2397 else
2398 return false;
2399 break;
2400 case LABEL_REF:
2401 return true;
2402 case SYMBOL_REF:
2403 if (SYMBOL_REF_DECL (addr)
2404 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2405 return true;
2406 return false;
2407 default:
2408 return false;
2411 return false;
2414 /* Return whether we can use store speculation for MEM. TOP_BB is the
2415 basic block above the conditional block where we are considering
2416 doing the speculative store. We look for whether MEM is set
2417 unconditionally later in the function. */
2419 static bool
2420 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2422 basic_block dominator;
2424 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2425 dominator != NULL;
2426 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2428 rtx insn;
2430 FOR_BB_INSNS (dominator, insn)
2432 /* If we see something that might be a memory barrier, we
2433 have to stop looking. Even if the MEM is set later in
2434 the function, we still don't want to set it
2435 unconditionally before the barrier. */
2436 if (INSN_P (insn)
2437 && (volatile_insn_p (PATTERN (insn))
2438 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2439 return false;
2441 if (memory_must_be_modified_in_insn_p (mem, insn))
2442 return true;
2443 if (modified_in_p (XEXP (mem, 0), insn))
2444 return false;
2449 return false;
2452 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2453 it without using conditional execution. Return TRUE if we were successful
2454 at converting the block. */
2456 static int
2457 noce_process_if_block (struct noce_if_info *if_info)
2459 basic_block test_bb = if_info->test_bb; /* test block */
2460 basic_block then_bb = if_info->then_bb; /* THEN */
2461 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2462 basic_block join_bb = if_info->join_bb; /* JOIN */
2463 rtx jump = if_info->jump;
2464 rtx cond = if_info->cond;
2465 rtx insn_a, insn_b;
2466 rtx set_a, set_b;
2467 rtx orig_x, x, a, b;
2469 /* We're looking for patterns of the form
2471 (1) if (...) x = a; else x = b;
2472 (2) x = b; if (...) x = a;
2473 (3) if (...) x = a; // as if with an initial x = x.
2475 The later patterns require jumps to be more expensive.
2477 ??? For future expansion, look for multiple X in such patterns. */
2479 /* Look for one of the potential sets. */
2480 insn_a = first_active_insn (then_bb);
2481 if (! insn_a
2482 || insn_a != last_active_insn (then_bb, FALSE)
2483 || (set_a = single_set (insn_a)) == NULL_RTX)
2484 return FALSE;
2486 x = SET_DEST (set_a);
2487 a = SET_SRC (set_a);
2489 /* Look for the other potential set. Make sure we've got equivalent
2490 destinations. */
2491 /* ??? This is overconservative. Storing to two different mems is
2492 as easy as conditionally computing the address. Storing to a
2493 single mem merely requires a scratch memory to use as one of the
2494 destination addresses; often the memory immediately below the
2495 stack pointer is available for this. */
2496 set_b = NULL_RTX;
2497 if (else_bb)
2499 insn_b = first_active_insn (else_bb);
2500 if (! insn_b
2501 || insn_b != last_active_insn (else_bb, FALSE)
2502 || (set_b = single_set (insn_b)) == NULL_RTX
2503 || ! rtx_equal_p (x, SET_DEST (set_b)))
2504 return FALSE;
2506 else
2508 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2509 /* We're going to be moving the evaluation of B down from above
2510 COND_EARLIEST to JUMP. Make sure the relevant data is still
2511 intact. */
2512 if (! insn_b
2513 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2514 || !NONJUMP_INSN_P (insn_b)
2515 || (set_b = single_set (insn_b)) == NULL_RTX
2516 || ! rtx_equal_p (x, SET_DEST (set_b))
2517 || ! noce_operand_ok (SET_SRC (set_b))
2518 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2519 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2520 /* Avoid extending the lifetime of hard registers on small
2521 register class machines. */
2522 || (REG_P (SET_SRC (set_b))
2523 && HARD_REGISTER_P (SET_SRC (set_b))
2524 && targetm.small_register_classes_for_mode_p
2525 (GET_MODE (SET_SRC (set_b))))
2526 /* Likewise with X. In particular this can happen when
2527 noce_get_condition looks farther back in the instruction
2528 stream than one might expect. */
2529 || reg_overlap_mentioned_p (x, cond)
2530 || reg_overlap_mentioned_p (x, a)
2531 || modified_between_p (x, insn_b, jump))
2532 insn_b = set_b = NULL_RTX;
2535 /* If x has side effects then only the if-then-else form is safe to
2536 convert. But even in that case we would need to restore any notes
2537 (such as REG_INC) at then end. That can be tricky if
2538 noce_emit_move_insn expands to more than one insn, so disable the
2539 optimization entirely for now if there are side effects. */
2540 if (side_effects_p (x))
2541 return FALSE;
2543 b = (set_b ? SET_SRC (set_b) : x);
2545 /* Only operate on register destinations, and even then avoid extending
2546 the lifetime of hard registers on small register class machines. */
2547 orig_x = x;
2548 if (!REG_P (x)
2549 || (HARD_REGISTER_P (x)
2550 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2552 if (GET_MODE (x) == BLKmode)
2553 return FALSE;
2555 if (GET_CODE (x) == ZERO_EXTRACT
2556 && (!CONST_INT_P (XEXP (x, 1))
2557 || !CONST_INT_P (XEXP (x, 2))))
2558 return FALSE;
2560 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2561 ? XEXP (x, 0) : x));
2564 /* Don't operate on sources that may trap or are volatile. */
2565 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2566 return FALSE;
2568 retry:
2569 /* Set up the info block for our subroutines. */
2570 if_info->insn_a = insn_a;
2571 if_info->insn_b = insn_b;
2572 if_info->x = x;
2573 if_info->a = a;
2574 if_info->b = b;
2576 /* Try optimizations in some approximation of a useful order. */
2577 /* ??? Should first look to see if X is live incoming at all. If it
2578 isn't, we don't need anything but an unconditional set. */
2580 /* Look and see if A and B are really the same. Avoid creating silly
2581 cmove constructs that no one will fix up later. */
2582 if (rtx_equal_p (a, b))
2584 /* If we have an INSN_B, we don't have to create any new rtl. Just
2585 move the instruction that we already have. If we don't have an
2586 INSN_B, that means that A == X, and we've got a noop move. In
2587 that case don't do anything and let the code below delete INSN_A. */
2588 if (insn_b && else_bb)
2590 rtx note;
2592 if (else_bb && insn_b == BB_END (else_bb))
2593 BB_END (else_bb) = PREV_INSN (insn_b);
2594 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2596 /* If there was a REG_EQUAL note, delete it since it may have been
2597 true due to this insn being after a jump. */
2598 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2599 remove_note (insn_b, note);
2601 insn_b = NULL_RTX;
2603 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2604 x must be executed twice. */
2605 else if (insn_b && side_effects_p (orig_x))
2606 return FALSE;
2608 x = orig_x;
2609 goto success;
2612 if (!set_b && MEM_P (orig_x))
2614 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2615 for optimizations if writing to x may trap or fault,
2616 i.e. it's a memory other than a static var or a stack slot,
2617 is misaligned on strict aligned machines or is read-only. If
2618 x is a read-only memory, then the program is valid only if we
2619 avoid the store into it. If there are stores on both the
2620 THEN and ELSE arms, then we can go ahead with the conversion;
2621 either the program is broken, or the condition is always
2622 false such that the other memory is selected. */
2623 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2624 return FALSE;
2626 /* Avoid store speculation: given "if (...) x = a" where x is a
2627 MEM, we only want to do the store if x is always set
2628 somewhere in the function. This avoids cases like
2629 if (pthread_mutex_trylock(mutex))
2630 ++global_variable;
2631 where we only want global_variable to be changed if the mutex
2632 is held. FIXME: This should ideally be expressed directly in
2633 RTL somehow. */
2634 if (!noce_can_store_speculate_p (test_bb, orig_x))
2635 return FALSE;
2638 if (noce_try_move (if_info))
2639 goto success;
2640 if (noce_try_store_flag (if_info))
2641 goto success;
2642 if (noce_try_bitop (if_info))
2643 goto success;
2644 if (noce_try_minmax (if_info))
2645 goto success;
2646 if (noce_try_abs (if_info))
2647 goto success;
2648 if (HAVE_conditional_move
2649 && noce_try_cmove (if_info))
2650 goto success;
2651 if (! targetm.have_conditional_execution ())
2653 if (noce_try_store_flag_constants (if_info))
2654 goto success;
2655 if (noce_try_addcc (if_info))
2656 goto success;
2657 if (noce_try_store_flag_mask (if_info))
2658 goto success;
2659 if (HAVE_conditional_move
2660 && noce_try_cmove_arith (if_info))
2661 goto success;
2662 if (noce_try_sign_mask (if_info))
2663 goto success;
2666 if (!else_bb && set_b)
2668 insn_b = set_b = NULL_RTX;
2669 b = orig_x;
2670 goto retry;
2673 return FALSE;
2675 success:
2677 /* If we used a temporary, fix it up now. */
2678 if (orig_x != x)
2680 rtx seq;
2682 start_sequence ();
2683 noce_emit_move_insn (orig_x, x);
2684 seq = get_insns ();
2685 set_used_flags (orig_x);
2686 unshare_all_rtl_in_chain (seq);
2687 end_sequence ();
2689 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2692 /* The original THEN and ELSE blocks may now be removed. The test block
2693 must now jump to the join block. If the test block and the join block
2694 can be merged, do so. */
2695 if (else_bb)
2697 delete_basic_block (else_bb);
2698 num_true_changes++;
2700 else
2701 remove_edge (find_edge (test_bb, join_bb));
2703 remove_edge (find_edge (then_bb, join_bb));
2704 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2705 delete_basic_block (then_bb);
2706 num_true_changes++;
2708 if (can_merge_blocks_p (test_bb, join_bb))
2710 merge_blocks (test_bb, join_bb);
2711 num_true_changes++;
2714 num_updated_if_blocks++;
2715 return TRUE;
2718 /* Check whether a block is suitable for conditional move conversion.
2719 Every insn must be a simple set of a register to a constant or a
2720 register. For each assignment, store the value in the pointer map
2721 VALS, keyed indexed by register pointer, then store the register
2722 pointer in REGS. COND is the condition we will test. */
2724 static int
2725 check_cond_move_block (basic_block bb,
2726 struct pointer_map_t *vals,
2727 vec<rtx> *regs,
2728 rtx cond)
2730 rtx insn;
2732 /* We can only handle simple jumps at the end of the basic block.
2733 It is almost impossible to update the CFG otherwise. */
2734 insn = BB_END (bb);
2735 if (JUMP_P (insn) && !onlyjump_p (insn))
2736 return FALSE;
2738 FOR_BB_INSNS (bb, insn)
2740 rtx set, dest, src;
2741 void **slot;
2743 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2744 continue;
2745 set = single_set (insn);
2746 if (!set)
2747 return FALSE;
2749 dest = SET_DEST (set);
2750 src = SET_SRC (set);
2751 if (!REG_P (dest)
2752 || (HARD_REGISTER_P (dest)
2753 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2754 return FALSE;
2756 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2757 return FALSE;
2759 if (side_effects_p (src) || side_effects_p (dest))
2760 return FALSE;
2762 if (may_trap_p (src) || may_trap_p (dest))
2763 return FALSE;
2765 /* Don't try to handle this if the source register was
2766 modified earlier in the block. */
2767 if ((REG_P (src)
2768 && pointer_map_contains (vals, src))
2769 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2770 && pointer_map_contains (vals, SUBREG_REG (src))))
2771 return FALSE;
2773 /* Don't try to handle this if the destination register was
2774 modified earlier in the block. */
2775 if (pointer_map_contains (vals, dest))
2776 return FALSE;
2778 /* Don't try to handle this if the condition uses the
2779 destination register. */
2780 if (reg_overlap_mentioned_p (dest, cond))
2781 return FALSE;
2783 /* Don't try to handle this if the source register is modified
2784 later in the block. */
2785 if (!CONSTANT_P (src)
2786 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2787 return FALSE;
2789 slot = pointer_map_insert (vals, (void *) dest);
2790 *slot = (void *) src;
2792 regs->safe_push (dest);
2795 return TRUE;
2798 /* Given a basic block BB suitable for conditional move conversion,
2799 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2800 the register values depending on COND, emit the insns in the block as
2801 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2802 processed. The caller has started a sequence for the conversion.
2803 Return true if successful, false if something goes wrong. */
2805 static bool
2806 cond_move_convert_if_block (struct noce_if_info *if_infop,
2807 basic_block bb, rtx cond,
2808 struct pointer_map_t *then_vals,
2809 struct pointer_map_t *else_vals,
2810 bool else_block_p)
2812 enum rtx_code code;
2813 rtx insn, cond_arg0, cond_arg1;
2815 code = GET_CODE (cond);
2816 cond_arg0 = XEXP (cond, 0);
2817 cond_arg1 = XEXP (cond, 1);
2819 FOR_BB_INSNS (bb, insn)
2821 rtx set, target, dest, t, e;
2822 void **then_slot, **else_slot;
2824 /* ??? Maybe emit conditional debug insn? */
2825 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2826 continue;
2827 set = single_set (insn);
2828 gcc_assert (set && REG_P (SET_DEST (set)));
2830 dest = SET_DEST (set);
2832 then_slot = pointer_map_contains (then_vals, dest);
2833 else_slot = pointer_map_contains (else_vals, dest);
2834 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2835 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2837 if (else_block_p)
2839 /* If this register was set in the then block, we already
2840 handled this case there. */
2841 if (t)
2842 continue;
2843 t = dest;
2844 gcc_assert (e);
2846 else
2848 gcc_assert (t);
2849 if (!e)
2850 e = dest;
2853 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2854 t, e);
2855 if (!target)
2856 return false;
2858 if (target != dest)
2859 noce_emit_move_insn (dest, target);
2862 return true;
2865 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2866 it using only conditional moves. Return TRUE if we were successful at
2867 converting the block. */
2869 static int
2870 cond_move_process_if_block (struct noce_if_info *if_info)
2872 basic_block test_bb = if_info->test_bb;
2873 basic_block then_bb = if_info->then_bb;
2874 basic_block else_bb = if_info->else_bb;
2875 basic_block join_bb = if_info->join_bb;
2876 rtx jump = if_info->jump;
2877 rtx cond = if_info->cond;
2878 rtx seq, loc_insn;
2879 rtx reg;
2880 int c;
2881 struct pointer_map_t *then_vals;
2882 struct pointer_map_t *else_vals;
2883 vec<rtx> then_regs = vNULL;
2884 vec<rtx> else_regs = vNULL;
2885 unsigned int i;
2886 int success_p = FALSE;
2888 /* Build a mapping for each block to the value used for each
2889 register. */
2890 then_vals = pointer_map_create ();
2891 else_vals = pointer_map_create ();
2893 /* Make sure the blocks are suitable. */
2894 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2895 || (else_bb
2896 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2897 goto done;
2899 /* Make sure the blocks can be used together. If the same register
2900 is set in both blocks, and is not set to a constant in both
2901 cases, then both blocks must set it to the same register. We
2902 have already verified that if it is set to a register, that the
2903 source register does not change after the assignment. Also count
2904 the number of registers set in only one of the blocks. */
2905 c = 0;
2906 FOR_EACH_VEC_ELT (then_regs, i, reg)
2908 void **then_slot = pointer_map_contains (then_vals, reg);
2909 void **else_slot = pointer_map_contains (else_vals, reg);
2911 gcc_checking_assert (then_slot);
2912 if (!else_slot)
2913 ++c;
2914 else
2916 rtx then_val = (rtx) *then_slot;
2917 rtx else_val = (rtx) *else_slot;
2918 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2919 && !rtx_equal_p (then_val, else_val))
2920 goto done;
2924 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2925 FOR_EACH_VEC_ELT (else_regs, i, reg)
2927 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2928 if (!pointer_map_contains (then_vals, reg))
2929 ++c;
2932 /* Make sure it is reasonable to convert this block. What matters
2933 is the number of assignments currently made in only one of the
2934 branches, since if we convert we are going to always execute
2935 them. */
2936 if (c > MAX_CONDITIONAL_EXECUTE)
2937 goto done;
2939 /* Try to emit the conditional moves. First do the then block,
2940 then do anything left in the else blocks. */
2941 start_sequence ();
2942 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2943 then_vals, else_vals, false)
2944 || (else_bb
2945 && !cond_move_convert_if_block (if_info, else_bb, cond,
2946 then_vals, else_vals, true)))
2948 end_sequence ();
2949 goto done;
2951 seq = end_ifcvt_sequence (if_info);
2952 if (!seq)
2953 goto done;
2955 loc_insn = first_active_insn (then_bb);
2956 if (!loc_insn)
2958 loc_insn = first_active_insn (else_bb);
2959 gcc_assert (loc_insn);
2961 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2963 if (else_bb)
2965 delete_basic_block (else_bb);
2966 num_true_changes++;
2968 else
2969 remove_edge (find_edge (test_bb, join_bb));
2971 remove_edge (find_edge (then_bb, join_bb));
2972 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2973 delete_basic_block (then_bb);
2974 num_true_changes++;
2976 if (can_merge_blocks_p (test_bb, join_bb))
2978 merge_blocks (test_bb, join_bb);
2979 num_true_changes++;
2982 num_updated_if_blocks++;
2984 success_p = TRUE;
2986 done:
2987 pointer_map_destroy (then_vals);
2988 pointer_map_destroy (else_vals);
2989 then_regs.release ();
2990 else_regs.release ();
2991 return success_p;
2995 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2996 IF-THEN-ELSE-JOIN block.
2998 If so, we'll try to convert the insns to not require the branch,
2999 using only transformations that do not require conditional execution.
3001 Return TRUE if we were successful at converting the block. */
3003 static int
3004 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3005 int pass)
3007 basic_block then_bb, else_bb, join_bb;
3008 bool then_else_reversed = false;
3009 rtx jump, cond;
3010 rtx cond_earliest;
3011 struct noce_if_info if_info;
3013 /* We only ever should get here before reload. */
3014 gcc_assert (!reload_completed);
3016 /* Recognize an IF-THEN-ELSE-JOIN block. */
3017 if (single_pred_p (then_edge->dest)
3018 && single_succ_p (then_edge->dest)
3019 && single_pred_p (else_edge->dest)
3020 && single_succ_p (else_edge->dest)
3021 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3023 then_bb = then_edge->dest;
3024 else_bb = else_edge->dest;
3025 join_bb = single_succ (then_bb);
3027 /* Recognize an IF-THEN-JOIN block. */
3028 else if (single_pred_p (then_edge->dest)
3029 && single_succ_p (then_edge->dest)
3030 && single_succ (then_edge->dest) == else_edge->dest)
3032 then_bb = then_edge->dest;
3033 else_bb = NULL_BLOCK;
3034 join_bb = else_edge->dest;
3036 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3037 of basic blocks in cfglayout mode does not matter, so the fallthrough
3038 edge can go to any basic block (and not just to bb->next_bb, like in
3039 cfgrtl mode). */
3040 else if (single_pred_p (else_edge->dest)
3041 && single_succ_p (else_edge->dest)
3042 && single_succ (else_edge->dest) == then_edge->dest)
3044 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3045 To make this work, we have to invert the THEN and ELSE blocks
3046 and reverse the jump condition. */
3047 then_bb = else_edge->dest;
3048 else_bb = NULL_BLOCK;
3049 join_bb = single_succ (then_bb);
3050 then_else_reversed = true;
3052 else
3053 /* Not a form we can handle. */
3054 return FALSE;
3056 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3057 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3058 return FALSE;
3059 if (else_bb
3060 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3061 return FALSE;
3063 num_possible_if_blocks++;
3065 if (dump_file)
3067 fprintf (dump_file,
3068 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3069 (else_bb) ? "-ELSE" : "",
3070 pass, test_bb->index, then_bb->index);
3072 if (else_bb)
3073 fprintf (dump_file, ", else %d", else_bb->index);
3075 fprintf (dump_file, ", join %d\n", join_bb->index);
3078 /* If the conditional jump is more than just a conditional
3079 jump, then we can not do if-conversion on this block. */
3080 jump = BB_END (test_bb);
3081 if (! onlyjump_p (jump))
3082 return FALSE;
3084 /* If this is not a standard conditional jump, we can't parse it. */
3085 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3086 if (!cond)
3087 return FALSE;
3089 /* We must be comparing objects whose modes imply the size. */
3090 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3091 return FALSE;
3093 /* Initialize an IF_INFO struct to pass around. */
3094 memset (&if_info, 0, sizeof if_info);
3095 if_info.test_bb = test_bb;
3096 if_info.then_bb = then_bb;
3097 if_info.else_bb = else_bb;
3098 if_info.join_bb = join_bb;
3099 if_info.cond = cond;
3100 if_info.cond_earliest = cond_earliest;
3101 if_info.jump = jump;
3102 if_info.then_else_reversed = then_else_reversed;
3103 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3104 predictable_edge_p (then_edge));
3106 /* Do the real work. */
3108 if (noce_process_if_block (&if_info))
3109 return TRUE;
3111 if (HAVE_conditional_move
3112 && cond_move_process_if_block (&if_info))
3113 return TRUE;
3115 return FALSE;
3119 /* Merge the blocks and mark for local life update. */
3121 static void
3122 merge_if_block (struct ce_if_block * ce_info)
3124 basic_block test_bb = ce_info->test_bb; /* last test block */
3125 basic_block then_bb = ce_info->then_bb; /* THEN */
3126 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3127 basic_block join_bb = ce_info->join_bb; /* join block */
3128 basic_block combo_bb;
3130 /* All block merging is done into the lower block numbers. */
3132 combo_bb = test_bb;
3133 df_set_bb_dirty (test_bb);
3135 /* Merge any basic blocks to handle && and || subtests. Each of
3136 the blocks are on the fallthru path from the predecessor block. */
3137 if (ce_info->num_multiple_test_blocks > 0)
3139 basic_block bb = test_bb;
3140 basic_block last_test_bb = ce_info->last_test_bb;
3141 basic_block fallthru = block_fallthru (bb);
3145 bb = fallthru;
3146 fallthru = block_fallthru (bb);
3147 merge_blocks (combo_bb, bb);
3148 num_true_changes++;
3150 while (bb != last_test_bb);
3153 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3154 label, but it might if there were || tests. That label's count should be
3155 zero, and it normally should be removed. */
3157 if (then_bb)
3159 /* If THEN_BB has no successors, then there's a BARRIER after it.
3160 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3161 is no longer needed, and in fact it is incorrect to leave it in
3162 the insn stream. */
3163 if (EDGE_COUNT (then_bb->succs) == 0
3164 && EDGE_COUNT (combo_bb->succs) > 1)
3166 rtx end = NEXT_INSN (BB_END (then_bb));
3167 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3168 end = NEXT_INSN (end);
3170 if (end && BARRIER_P (end))
3171 delete_insn (end);
3173 merge_blocks (combo_bb, then_bb);
3174 num_true_changes++;
3177 /* The ELSE block, if it existed, had a label. That label count
3178 will almost always be zero, but odd things can happen when labels
3179 get their addresses taken. */
3180 if (else_bb)
3182 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3183 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3184 is no longer needed, and in fact it is incorrect to leave it in
3185 the insn stream. */
3186 if (EDGE_COUNT (else_bb->succs) == 0
3187 && EDGE_COUNT (combo_bb->succs) > 1)
3189 rtx end = NEXT_INSN (BB_END (else_bb));
3190 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3191 end = NEXT_INSN (end);
3193 if (end && BARRIER_P (end))
3194 delete_insn (end);
3196 merge_blocks (combo_bb, else_bb);
3197 num_true_changes++;
3200 /* If there was no join block reported, that means it was not adjacent
3201 to the others, and so we cannot merge them. */
3203 if (! join_bb)
3205 rtx last = BB_END (combo_bb);
3207 /* The outgoing edge for the current COMBO block should already
3208 be correct. Verify this. */
3209 if (EDGE_COUNT (combo_bb->succs) == 0)
3210 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3211 || (NONJUMP_INSN_P (last)
3212 && GET_CODE (PATTERN (last)) == TRAP_IF
3213 && (TRAP_CONDITION (PATTERN (last))
3214 == const_true_rtx)));
3216 else
3217 /* There should still be something at the end of the THEN or ELSE
3218 blocks taking us to our final destination. */
3219 gcc_assert (JUMP_P (last)
3220 || (EDGE_SUCC (combo_bb, 0)->dest
3221 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3222 && CALL_P (last)
3223 && SIBLING_CALL_P (last))
3224 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3225 && can_throw_internal (last)));
3228 /* The JOIN block may have had quite a number of other predecessors too.
3229 Since we've already merged the TEST, THEN and ELSE blocks, we should
3230 have only one remaining edge from our if-then-else diamond. If there
3231 is more than one remaining edge, it must come from elsewhere. There
3232 may be zero incoming edges if the THEN block didn't actually join
3233 back up (as with a call to a non-return function). */
3234 else if (EDGE_COUNT (join_bb->preds) < 2
3235 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3237 /* We can merge the JOIN cleanly and update the dataflow try
3238 again on this pass.*/
3239 merge_blocks (combo_bb, join_bb);
3240 num_true_changes++;
3242 else
3244 /* We cannot merge the JOIN. */
3246 /* The outgoing edge for the current COMBO block should already
3247 be correct. Verify this. */
3248 gcc_assert (single_succ_p (combo_bb)
3249 && single_succ (combo_bb) == join_bb);
3251 /* Remove the jump and cruft from the end of the COMBO block. */
3252 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3253 tidy_fallthru_edge (single_succ_edge (combo_bb));
3256 num_updated_if_blocks++;
3259 /* Find a block ending in a simple IF condition and try to transform it
3260 in some way. When converting a multi-block condition, put the new code
3261 in the first such block and delete the rest. Return a pointer to this
3262 first block if some transformation was done. Return NULL otherwise. */
3264 static basic_block
3265 find_if_header (basic_block test_bb, int pass)
3267 ce_if_block ce_info;
3268 edge then_edge;
3269 edge else_edge;
3271 /* The kind of block we're looking for has exactly two successors. */
3272 if (EDGE_COUNT (test_bb->succs) != 2)
3273 return NULL;
3275 then_edge = EDGE_SUCC (test_bb, 0);
3276 else_edge = EDGE_SUCC (test_bb, 1);
3278 if (df_get_bb_dirty (then_edge->dest))
3279 return NULL;
3280 if (df_get_bb_dirty (else_edge->dest))
3281 return NULL;
3283 /* Neither edge should be abnormal. */
3284 if ((then_edge->flags & EDGE_COMPLEX)
3285 || (else_edge->flags & EDGE_COMPLEX))
3286 return NULL;
3288 /* Nor exit the loop. */
3289 if ((then_edge->flags & EDGE_LOOP_EXIT)
3290 || (else_edge->flags & EDGE_LOOP_EXIT))
3291 return NULL;
3293 /* The THEN edge is canonically the one that falls through. */
3294 if (then_edge->flags & EDGE_FALLTHRU)
3296 else if (else_edge->flags & EDGE_FALLTHRU)
3298 edge e = else_edge;
3299 else_edge = then_edge;
3300 then_edge = e;
3302 else
3303 /* Otherwise this must be a multiway branch of some sort. */
3304 return NULL;
3306 memset (&ce_info, 0, sizeof (ce_info));
3307 ce_info.test_bb = test_bb;
3308 ce_info.then_bb = then_edge->dest;
3309 ce_info.else_bb = else_edge->dest;
3310 ce_info.pass = pass;
3312 #ifdef IFCVT_MACHDEP_INIT
3313 IFCVT_MACHDEP_INIT (&ce_info);
3314 #endif
3316 if (!reload_completed
3317 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3318 goto success;
3320 if (reload_completed
3321 && targetm.have_conditional_execution ()
3322 && cond_exec_find_if_block (&ce_info))
3323 goto success;
3325 if (HAVE_trap
3326 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3327 && find_cond_trap (test_bb, then_edge, else_edge))
3328 goto success;
3330 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3331 && (reload_completed || !targetm.have_conditional_execution ()))
3333 if (find_if_case_1 (test_bb, then_edge, else_edge))
3334 goto success;
3335 if (find_if_case_2 (test_bb, then_edge, else_edge))
3336 goto success;
3339 return NULL;
3341 success:
3342 if (dump_file)
3343 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3344 /* Set this so we continue looking. */
3345 cond_exec_changed_p = TRUE;
3346 return ce_info.test_bb;
3349 /* Return true if a block has two edges, one of which falls through to the next
3350 block, and the other jumps to a specific block, so that we can tell if the
3351 block is part of an && test or an || test. Returns either -1 or the number
3352 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3354 static int
3355 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3357 edge cur_edge;
3358 int fallthru_p = FALSE;
3359 int jump_p = FALSE;
3360 rtx insn;
3361 rtx end;
3362 int n_insns = 0;
3363 edge_iterator ei;
3365 if (!cur_bb || !target_bb)
3366 return -1;
3368 /* If no edges, obviously it doesn't jump or fallthru. */
3369 if (EDGE_COUNT (cur_bb->succs) == 0)
3370 return FALSE;
3372 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3374 if (cur_edge->flags & EDGE_COMPLEX)
3375 /* Anything complex isn't what we want. */
3376 return -1;
3378 else if (cur_edge->flags & EDGE_FALLTHRU)
3379 fallthru_p = TRUE;
3381 else if (cur_edge->dest == target_bb)
3382 jump_p = TRUE;
3384 else
3385 return -1;
3388 if ((jump_p & fallthru_p) == 0)
3389 return -1;
3391 /* Don't allow calls in the block, since this is used to group && and ||
3392 together for conditional execution support. ??? we should support
3393 conditional execution support across calls for IA-64 some day, but
3394 for now it makes the code simpler. */
3395 end = BB_END (cur_bb);
3396 insn = BB_HEAD (cur_bb);
3398 while (insn != NULL_RTX)
3400 if (CALL_P (insn))
3401 return -1;
3403 if (INSN_P (insn)
3404 && !JUMP_P (insn)
3405 && !DEBUG_INSN_P (insn)
3406 && GET_CODE (PATTERN (insn)) != USE
3407 && GET_CODE (PATTERN (insn)) != CLOBBER)
3408 n_insns++;
3410 if (insn == end)
3411 break;
3413 insn = NEXT_INSN (insn);
3416 return n_insns;
3419 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3420 block. If so, we'll try to convert the insns to not require the branch.
3421 Return TRUE if we were successful at converting the block. */
3423 static int
3424 cond_exec_find_if_block (struct ce_if_block * ce_info)
3426 basic_block test_bb = ce_info->test_bb;
3427 basic_block then_bb = ce_info->then_bb;
3428 basic_block else_bb = ce_info->else_bb;
3429 basic_block join_bb = NULL_BLOCK;
3430 edge cur_edge;
3431 basic_block next;
3432 edge_iterator ei;
3434 ce_info->last_test_bb = test_bb;
3436 /* We only ever should get here after reload,
3437 and if we have conditional execution. */
3438 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3440 /* Discover if any fall through predecessors of the current test basic block
3441 were && tests (which jump to the else block) or || tests (which jump to
3442 the then block). */
3443 if (single_pred_p (test_bb)
3444 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3446 basic_block bb = single_pred (test_bb);
3447 basic_block target_bb;
3448 int max_insns = MAX_CONDITIONAL_EXECUTE;
3449 int n_insns;
3451 /* Determine if the preceding block is an && or || block. */
3452 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3454 ce_info->and_and_p = TRUE;
3455 target_bb = else_bb;
3457 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3459 ce_info->and_and_p = FALSE;
3460 target_bb = then_bb;
3462 else
3463 target_bb = NULL_BLOCK;
3465 if (target_bb && n_insns <= max_insns)
3467 int total_insns = 0;
3468 int blocks = 0;
3470 ce_info->last_test_bb = test_bb;
3472 /* Found at least one && or || block, look for more. */
3475 ce_info->test_bb = test_bb = bb;
3476 total_insns += n_insns;
3477 blocks++;
3479 if (!single_pred_p (bb))
3480 break;
3482 bb = single_pred (bb);
3483 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3485 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3487 ce_info->num_multiple_test_blocks = blocks;
3488 ce_info->num_multiple_test_insns = total_insns;
3490 if (ce_info->and_and_p)
3491 ce_info->num_and_and_blocks = blocks;
3492 else
3493 ce_info->num_or_or_blocks = blocks;
3497 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3498 other than any || blocks which jump to the THEN block. */
3499 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3500 return FALSE;
3502 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3503 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3505 if (cur_edge->flags & EDGE_COMPLEX)
3506 return FALSE;
3509 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3511 if (cur_edge->flags & EDGE_COMPLEX)
3512 return FALSE;
3515 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3516 if (EDGE_COUNT (then_bb->succs) > 0
3517 && (!single_succ_p (then_bb)
3518 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3519 || (epilogue_completed
3520 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3521 return FALSE;
3523 /* If the THEN block has no successors, conditional execution can still
3524 make a conditional call. Don't do this unless the ELSE block has
3525 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3526 Check for the last insn of the THEN block being an indirect jump, which
3527 is listed as not having any successors, but confuses the rest of the CE
3528 code processing. ??? we should fix this in the future. */
3529 if (EDGE_COUNT (then_bb->succs) == 0)
3531 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3533 rtx last_insn = BB_END (then_bb);
3535 while (last_insn
3536 && NOTE_P (last_insn)
3537 && last_insn != BB_HEAD (then_bb))
3538 last_insn = PREV_INSN (last_insn);
3540 if (last_insn
3541 && JUMP_P (last_insn)
3542 && ! simplejump_p (last_insn))
3543 return FALSE;
3545 join_bb = else_bb;
3546 else_bb = NULL_BLOCK;
3548 else
3549 return FALSE;
3552 /* If the THEN block's successor is the other edge out of the TEST block,
3553 then we have an IF-THEN combo without an ELSE. */
3554 else if (single_succ (then_bb) == else_bb)
3556 join_bb = else_bb;
3557 else_bb = NULL_BLOCK;
3560 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3561 has exactly one predecessor and one successor, and the outgoing edge
3562 is not complex, then we have an IF-THEN-ELSE combo. */
3563 else if (single_succ_p (else_bb)
3564 && single_succ (then_bb) == single_succ (else_bb)
3565 && single_pred_p (else_bb)
3566 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3567 && !(epilogue_completed
3568 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3569 join_bb = single_succ (else_bb);
3571 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3572 else
3573 return FALSE;
3575 num_possible_if_blocks++;
3577 if (dump_file)
3579 fprintf (dump_file,
3580 "\nIF-THEN%s block found, pass %d, start block %d "
3581 "[insn %d], then %d [%d]",
3582 (else_bb) ? "-ELSE" : "",
3583 ce_info->pass,
3584 test_bb->index,
3585 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3586 then_bb->index,
3587 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3589 if (else_bb)
3590 fprintf (dump_file, ", else %d [%d]",
3591 else_bb->index,
3592 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3594 fprintf (dump_file, ", join %d [%d]",
3595 join_bb->index,
3596 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3598 if (ce_info->num_multiple_test_blocks > 0)
3599 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3600 ce_info->num_multiple_test_blocks,
3601 (ce_info->and_and_p) ? "&&" : "||",
3602 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3603 ce_info->last_test_bb->index,
3604 ((BB_HEAD (ce_info->last_test_bb))
3605 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3606 : -1));
3608 fputc ('\n', dump_file);
3611 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3612 first condition for free, since we've already asserted that there's a
3613 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3614 we checked the FALLTHRU flag, those are already adjacent to the last IF
3615 block. */
3616 /* ??? As an enhancement, move the ELSE block. Have to deal with
3617 BLOCK notes, if by no other means than backing out the merge if they
3618 exist. Sticky enough I don't want to think about it now. */
3619 next = then_bb;
3620 if (else_bb && (next = next->next_bb) != else_bb)
3621 return FALSE;
3622 if ((next = next->next_bb) != join_bb
3623 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3625 if (else_bb)
3626 join_bb = NULL;
3627 else
3628 return FALSE;
3631 /* Do the real work. */
3633 ce_info->else_bb = else_bb;
3634 ce_info->join_bb = join_bb;
3636 /* If we have && and || tests, try to first handle combining the && and ||
3637 tests into the conditional code, and if that fails, go back and handle
3638 it without the && and ||, which at present handles the && case if there
3639 was no ELSE block. */
3640 if (cond_exec_process_if_block (ce_info, TRUE))
3641 return TRUE;
3643 if (ce_info->num_multiple_test_blocks)
3645 cancel_changes (0);
3647 if (cond_exec_process_if_block (ce_info, FALSE))
3648 return TRUE;
3651 return FALSE;
3654 /* Convert a branch over a trap, or a branch
3655 to a trap, into a conditional trap. */
3657 static int
3658 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3660 basic_block then_bb = then_edge->dest;
3661 basic_block else_bb = else_edge->dest;
3662 basic_block other_bb, trap_bb;
3663 rtx trap, jump, cond, cond_earliest, seq;
3664 enum rtx_code code;
3666 /* Locate the block with the trap instruction. */
3667 /* ??? While we look for no successors, we really ought to allow
3668 EH successors. Need to fix merge_if_block for that to work. */
3669 if ((trap = block_has_only_trap (then_bb)) != NULL)
3670 trap_bb = then_bb, other_bb = else_bb;
3671 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3672 trap_bb = else_bb, other_bb = then_bb;
3673 else
3674 return FALSE;
3676 if (dump_file)
3678 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3679 test_bb->index, trap_bb->index);
3682 /* If this is not a standard conditional jump, we can't parse it. */
3683 jump = BB_END (test_bb);
3684 cond = noce_get_condition (jump, &cond_earliest, false);
3685 if (! cond)
3686 return FALSE;
3688 /* If the conditional jump is more than just a conditional jump, then
3689 we can not do if-conversion on this block. */
3690 if (! onlyjump_p (jump))
3691 return FALSE;
3693 /* We must be comparing objects whose modes imply the size. */
3694 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3695 return FALSE;
3697 /* Reverse the comparison code, if necessary. */
3698 code = GET_CODE (cond);
3699 if (then_bb == trap_bb)
3701 code = reversed_comparison_code (cond, jump);
3702 if (code == UNKNOWN)
3703 return FALSE;
3706 /* Attempt to generate the conditional trap. */
3707 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3708 copy_rtx (XEXP (cond, 1)),
3709 TRAP_CODE (PATTERN (trap)));
3710 if (seq == NULL)
3711 return FALSE;
3713 /* Emit the new insns before cond_earliest. */
3714 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3716 /* Delete the trap block if possible. */
3717 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3718 df_set_bb_dirty (test_bb);
3719 df_set_bb_dirty (then_bb);
3720 df_set_bb_dirty (else_bb);
3722 if (EDGE_COUNT (trap_bb->preds) == 0)
3724 delete_basic_block (trap_bb);
3725 num_true_changes++;
3728 /* Wire together the blocks again. */
3729 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3730 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3731 else if (trap_bb == then_bb)
3733 rtx lab, newjump;
3735 lab = JUMP_LABEL (jump);
3736 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3737 LABEL_NUSES (lab) += 1;
3738 JUMP_LABEL (newjump) = lab;
3739 emit_barrier_after (newjump);
3741 delete_insn (jump);
3743 if (can_merge_blocks_p (test_bb, other_bb))
3745 merge_blocks (test_bb, other_bb);
3746 num_true_changes++;
3749 num_updated_if_blocks++;
3750 return TRUE;
3753 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3754 return it. */
3756 static rtx
3757 block_has_only_trap (basic_block bb)
3759 rtx trap;
3761 /* We're not the exit block. */
3762 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3763 return NULL_RTX;
3765 /* The block must have no successors. */
3766 if (EDGE_COUNT (bb->succs) > 0)
3767 return NULL_RTX;
3769 /* The only instruction in the THEN block must be the trap. */
3770 trap = first_active_insn (bb);
3771 if (! (trap == BB_END (bb)
3772 && GET_CODE (PATTERN (trap)) == TRAP_IF
3773 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3774 return NULL_RTX;
3776 return trap;
3779 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3780 transformable, but not necessarily the other. There need be no
3781 JOIN block.
3783 Return TRUE if we were successful at converting the block.
3785 Cases we'd like to look at:
3788 if (test) goto over; // x not live
3789 x = a;
3790 goto label;
3791 over:
3793 becomes
3795 x = a;
3796 if (! test) goto label;
3799 if (test) goto E; // x not live
3800 x = big();
3801 goto L;
3803 x = b;
3804 goto M;
3806 becomes
3808 x = b;
3809 if (test) goto M;
3810 x = big();
3811 goto L;
3813 (3) // This one's really only interesting for targets that can do
3814 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3815 // it results in multiple branches on a cache line, which often
3816 // does not sit well with predictors.
3818 if (test1) goto E; // predicted not taken
3819 x = a;
3820 if (test2) goto F;
3823 x = b;
3826 becomes
3828 x = a;
3829 if (test1) goto E;
3830 if (test2) goto F;
3832 Notes:
3834 (A) Don't do (2) if the branch is predicted against the block we're
3835 eliminating. Do it anyway if we can eliminate a branch; this requires
3836 that the sole successor of the eliminated block postdominate the other
3837 side of the if.
3839 (B) With CE, on (3) we can steal from both sides of the if, creating
3841 if (test1) x = a;
3842 if (!test1) x = b;
3843 if (test1) goto J;
3844 if (test2) goto F;
3848 Again, this is most useful if J postdominates.
3850 (C) CE substitutes for helpful life information.
3852 (D) These heuristics need a lot of work. */
3854 /* Tests for case 1 above. */
3856 static int
3857 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3859 basic_block then_bb = then_edge->dest;
3860 basic_block else_bb = else_edge->dest;
3861 basic_block new_bb;
3862 int then_bb_index, then_prob;
3863 rtx else_target = NULL_RTX;
3865 /* If we are partitioning hot/cold basic blocks, we don't want to
3866 mess up unconditional or indirect jumps that cross between hot
3867 and cold sections.
3869 Basic block partitioning may result in some jumps that appear to
3870 be optimizable (or blocks that appear to be mergeable), but which really
3871 must be left untouched (they are required to make it safely across
3872 partition boundaries). See the comments at the top of
3873 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3875 if ((BB_END (then_bb)
3876 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3877 || (BB_END (test_bb)
3878 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3879 || (BB_END (else_bb)
3880 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3881 NULL_RTX)))
3882 return FALSE;
3884 /* THEN has one successor. */
3885 if (!single_succ_p (then_bb))
3886 return FALSE;
3888 /* THEN does not fall through, but is not strange either. */
3889 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3890 return FALSE;
3892 /* THEN has one predecessor. */
3893 if (!single_pred_p (then_bb))
3894 return FALSE;
3896 /* THEN must do something. */
3897 if (forwarder_block_p (then_bb))
3898 return FALSE;
3900 num_possible_if_blocks++;
3901 if (dump_file)
3902 fprintf (dump_file,
3903 "\nIF-CASE-1 found, start %d, then %d\n",
3904 test_bb->index, then_bb->index);
3906 if (then_edge->probability)
3907 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3908 else
3909 then_prob = REG_BR_PROB_BASE / 2;
3911 /* We're speculating from the THEN path, we want to make sure the cost
3912 of speculation is within reason. */
3913 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3914 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3915 predictable_edge_p (then_edge)))))
3916 return FALSE;
3918 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3920 rtx jump = BB_END (else_edge->src);
3921 gcc_assert (JUMP_P (jump));
3922 else_target = JUMP_LABEL (jump);
3925 /* Registers set are dead, or are predicable. */
3926 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3927 single_succ_edge (then_bb), 1))
3928 return FALSE;
3930 /* Conversion went ok, including moving the insns and fixing up the
3931 jump. Adjust the CFG to match. */
3933 /* We can avoid creating a new basic block if then_bb is immediately
3934 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3935 through to else_bb. */
3937 if (then_bb->next_bb == else_bb
3938 && then_bb->prev_bb == test_bb
3939 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3941 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3942 new_bb = 0;
3944 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3945 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3946 else_bb, else_target);
3947 else
3948 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3949 else_bb);
3951 df_set_bb_dirty (test_bb);
3952 df_set_bb_dirty (else_bb);
3954 then_bb_index = then_bb->index;
3955 delete_basic_block (then_bb);
3957 /* Make rest of code believe that the newly created block is the THEN_BB
3958 block we removed. */
3959 if (new_bb)
3961 df_bb_replace (then_bb_index, new_bb);
3962 /* This should have been done above via force_nonfallthru_and_redirect
3963 (possibly called from redirect_edge_and_branch_force). */
3964 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
3967 num_true_changes++;
3968 num_updated_if_blocks++;
3970 return TRUE;
3973 /* Test for case 2 above. */
3975 static int
3976 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3978 basic_block then_bb = then_edge->dest;
3979 basic_block else_bb = else_edge->dest;
3980 edge else_succ;
3981 int then_prob, else_prob;
3983 /* We do not want to speculate (empty) loop latches. */
3984 if (current_loops
3985 && else_bb->loop_father->latch == else_bb)
3986 return FALSE;
3988 /* If we are partitioning hot/cold basic blocks, we don't want to
3989 mess up unconditional or indirect jumps that cross between hot
3990 and cold sections.
3992 Basic block partitioning may result in some jumps that appear to
3993 be optimizable (or blocks that appear to be mergeable), but which really
3994 must be left untouched (they are required to make it safely across
3995 partition boundaries). See the comments at the top of
3996 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3998 if ((BB_END (then_bb)
3999 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
4000 || (BB_END (test_bb)
4001 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
4002 || (BB_END (else_bb)
4003 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
4004 NULL_RTX)))
4005 return FALSE;
4007 /* ELSE has one successor. */
4008 if (!single_succ_p (else_bb))
4009 return FALSE;
4010 else
4011 else_succ = single_succ_edge (else_bb);
4013 /* ELSE outgoing edge is not complex. */
4014 if (else_succ->flags & EDGE_COMPLEX)
4015 return FALSE;
4017 /* ELSE has one predecessor. */
4018 if (!single_pred_p (else_bb))
4019 return FALSE;
4021 /* THEN is not EXIT. */
4022 if (then_bb->index < NUM_FIXED_BLOCKS)
4023 return FALSE;
4025 if (else_edge->probability)
4027 else_prob = else_edge->probability;
4028 then_prob = REG_BR_PROB_BASE - else_prob;
4030 else
4032 else_prob = REG_BR_PROB_BASE / 2;
4033 then_prob = REG_BR_PROB_BASE / 2;
4036 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4037 if (else_prob > then_prob)
4039 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4040 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4041 else_succ->dest))
4043 else
4044 return FALSE;
4046 num_possible_if_blocks++;
4047 if (dump_file)
4048 fprintf (dump_file,
4049 "\nIF-CASE-2 found, start %d, else %d\n",
4050 test_bb->index, else_bb->index);
4052 /* We're speculating from the ELSE path, we want to make sure the cost
4053 of speculation is within reason. */
4054 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4055 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4056 predictable_edge_p (else_edge)))))
4057 return FALSE;
4059 /* Registers set are dead, or are predicable. */
4060 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4061 return FALSE;
4063 /* Conversion went ok, including moving the insns and fixing up the
4064 jump. Adjust the CFG to match. */
4066 df_set_bb_dirty (test_bb);
4067 df_set_bb_dirty (then_bb);
4068 delete_basic_block (else_bb);
4070 num_true_changes++;
4071 num_updated_if_blocks++;
4073 /* ??? We may now fallthru from one of THEN's successors into a join
4074 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4076 return TRUE;
4079 /* Used by the code above to perform the actual rtl transformations.
4080 Return TRUE if successful.
4082 TEST_BB is the block containing the conditional branch. MERGE_BB
4083 is the block containing the code to manipulate. DEST_EDGE is an
4084 edge representing a jump to the join block; after the conversion,
4085 TEST_BB should be branching to its destination.
4086 REVERSEP is true if the sense of the branch should be reversed. */
4088 static int
4089 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4090 basic_block other_bb, edge dest_edge, int reversep)
4092 basic_block new_dest = dest_edge->dest;
4093 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4094 bitmap merge_set = NULL;
4095 /* Number of pending changes. */
4096 int n_validated_changes = 0;
4097 rtx new_dest_label = NULL_RTX;
4099 jump = BB_END (test_bb);
4101 /* Find the extent of the real code in the merge block. */
4102 head = BB_HEAD (merge_bb);
4103 end = BB_END (merge_bb);
4105 while (DEBUG_INSN_P (end) && end != head)
4106 end = PREV_INSN (end);
4108 /* If merge_bb ends with a tablejump, predicating/moving insn's
4109 into test_bb and then deleting merge_bb will result in the jumptable
4110 that follows merge_bb being removed along with merge_bb and then we
4111 get an unresolved reference to the jumptable. */
4112 if (tablejump_p (end, NULL, NULL))
4113 return FALSE;
4115 if (LABEL_P (head))
4116 head = NEXT_INSN (head);
4117 while (DEBUG_INSN_P (head) && head != end)
4118 head = NEXT_INSN (head);
4119 if (NOTE_P (head))
4121 if (head == end)
4123 head = end = NULL_RTX;
4124 goto no_body;
4126 head = NEXT_INSN (head);
4127 while (DEBUG_INSN_P (head) && head != end)
4128 head = NEXT_INSN (head);
4131 if (JUMP_P (end))
4133 if (head == end)
4135 head = end = NULL_RTX;
4136 goto no_body;
4138 end = PREV_INSN (end);
4139 while (DEBUG_INSN_P (end) && end != head)
4140 end = PREV_INSN (end);
4143 /* Disable handling dead code by conditional execution if the machine needs
4144 to do anything funny with the tests, etc. */
4145 #ifndef IFCVT_MODIFY_TESTS
4146 if (targetm.have_conditional_execution ())
4148 /* In the conditional execution case, we have things easy. We know
4149 the condition is reversible. We don't have to check life info
4150 because we're going to conditionally execute the code anyway.
4151 All that's left is making sure the insns involved can actually
4152 be predicated. */
4154 rtx cond;
4156 cond = cond_exec_get_condition (jump);
4157 if (! cond)
4158 return FALSE;
4160 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4161 int prob_val = (note ? XINT (note, 0) : -1);
4163 if (reversep)
4165 enum rtx_code rev = reversed_comparison_code (cond, jump);
4166 if (rev == UNKNOWN)
4167 return FALSE;
4168 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4169 XEXP (cond, 1));
4170 if (prob_val >= 0)
4171 prob_val = REG_BR_PROB_BASE - prob_val;
4174 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4175 && verify_changes (0))
4176 n_validated_changes = num_validated_changes ();
4177 else
4178 cancel_changes (0);
4180 earliest = jump;
4182 #endif
4184 /* If we allocated new pseudos (e.g. in the conditional move
4185 expander called from noce_emit_cmove), we must resize the
4186 array first. */
4187 if (max_regno < max_reg_num ())
4188 max_regno = max_reg_num ();
4190 /* Try the NCE path if the CE path did not result in any changes. */
4191 if (n_validated_changes == 0)
4193 rtx cond, insn;
4194 regset live;
4195 bool success;
4197 /* In the non-conditional execution case, we have to verify that there
4198 are no trapping operations, no calls, no references to memory, and
4199 that any registers modified are dead at the branch site. */
4201 if (!any_condjump_p (jump))
4202 return FALSE;
4204 /* Find the extent of the conditional. */
4205 cond = noce_get_condition (jump, &earliest, false);
4206 if (!cond)
4207 return FALSE;
4209 live = BITMAP_ALLOC (&reg_obstack);
4210 simulate_backwards_to_point (merge_bb, live, end);
4211 success = can_move_insns_across (head, end, earliest, jump,
4212 merge_bb, live,
4213 df_get_live_in (other_bb), NULL);
4214 BITMAP_FREE (live);
4215 if (!success)
4216 return FALSE;
4218 /* Collect the set of registers set in MERGE_BB. */
4219 merge_set = BITMAP_ALLOC (&reg_obstack);
4221 FOR_BB_INSNS (merge_bb, insn)
4222 if (NONDEBUG_INSN_P (insn))
4223 df_simulate_find_defs (insn, merge_set);
4225 #ifdef HAVE_simple_return
4226 /* If shrink-wrapping, disable this optimization when test_bb is
4227 the first basic block and merge_bb exits. The idea is to not
4228 move code setting up a return register as that may clobber a
4229 register used to pass function parameters, which then must be
4230 saved in caller-saved regs. A caller-saved reg requires the
4231 prologue, killing a shrink-wrap opportunity. */
4232 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4233 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4234 && single_succ_p (new_dest)
4235 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4236 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4238 regset return_regs;
4239 unsigned int i;
4241 return_regs = BITMAP_ALLOC (&reg_obstack);
4243 /* Start off with the intersection of regs used to pass
4244 params and regs used to return values. */
4245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4246 if (FUNCTION_ARG_REGNO_P (i)
4247 && targetm.calls.function_value_regno_p (i))
4248 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4250 bitmap_and_into (return_regs,
4251 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4252 bitmap_and_into (return_regs,
4253 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4254 if (!bitmap_empty_p (return_regs))
4256 FOR_BB_INSNS_REVERSE (new_dest, insn)
4257 if (NONDEBUG_INSN_P (insn))
4259 df_ref *def_rec;
4260 unsigned int uid = INSN_UID (insn);
4262 /* If this insn sets any reg in return_regs.. */
4263 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4265 df_ref def = *def_rec;
4266 unsigned r = DF_REF_REGNO (def);
4268 if (bitmap_bit_p (return_regs, r))
4269 break;
4271 /* ..then add all reg uses to the set of regs
4272 we're interested in. */
4273 if (*def_rec)
4274 df_simulate_uses (insn, return_regs);
4276 if (bitmap_intersect_p (merge_set, return_regs))
4278 BITMAP_FREE (return_regs);
4279 BITMAP_FREE (merge_set);
4280 return FALSE;
4283 BITMAP_FREE (return_regs);
4285 #endif
4288 no_body:
4289 /* We don't want to use normal invert_jump or redirect_jump because
4290 we don't want to delete_insn called. Also, we want to do our own
4291 change group management. */
4293 old_dest = JUMP_LABEL (jump);
4294 if (other_bb != new_dest)
4296 if (JUMP_P (BB_END (dest_edge->src)))
4297 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4298 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4299 new_dest_label = ret_rtx;
4300 else
4301 new_dest_label = block_label (new_dest);
4303 if (reversep
4304 ? ! invert_jump_1 (jump, new_dest_label)
4305 : ! redirect_jump_1 (jump, new_dest_label))
4306 goto cancel;
4309 if (verify_changes (n_validated_changes))
4310 confirm_change_group ();
4311 else
4312 goto cancel;
4314 if (other_bb != new_dest)
4316 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4318 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4319 if (reversep)
4321 gcov_type count, probability;
4322 count = BRANCH_EDGE (test_bb)->count;
4323 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4324 FALLTHRU_EDGE (test_bb)->count = count;
4325 probability = BRANCH_EDGE (test_bb)->probability;
4326 BRANCH_EDGE (test_bb)->probability
4327 = FALLTHRU_EDGE (test_bb)->probability;
4328 FALLTHRU_EDGE (test_bb)->probability = probability;
4329 update_br_prob_note (test_bb);
4333 /* Move the insns out of MERGE_BB to before the branch. */
4334 if (head != NULL)
4336 rtx insn;
4338 if (end == BB_END (merge_bb))
4339 BB_END (merge_bb) = PREV_INSN (head);
4341 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4342 notes being moved might become invalid. */
4343 insn = head;
4346 rtx note, set;
4348 if (! INSN_P (insn))
4349 continue;
4350 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4351 if (! note)
4352 continue;
4353 set = single_set (insn);
4354 if (!set || !function_invariant_p (SET_SRC (set))
4355 || !function_invariant_p (XEXP (note, 0)))
4356 remove_note (insn, note);
4357 } while (insn != end && (insn = NEXT_INSN (insn)));
4359 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4360 notes referring to the registers being set might become invalid. */
4361 if (merge_set)
4363 unsigned i;
4364 bitmap_iterator bi;
4366 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4367 remove_reg_equal_equiv_notes_for_regno (i);
4369 BITMAP_FREE (merge_set);
4372 reorder_insns (head, end, PREV_INSN (earliest));
4375 /* Remove the jump and edge if we can. */
4376 if (other_bb == new_dest)
4378 delete_insn (jump);
4379 remove_edge (BRANCH_EDGE (test_bb));
4380 /* ??? Can't merge blocks here, as then_bb is still in use.
4381 At minimum, the merge will get done just before bb-reorder. */
4384 return TRUE;
4386 cancel:
4387 cancel_changes (0);
4389 if (merge_set)
4390 BITMAP_FREE (merge_set);
4392 return FALSE;
4395 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4396 we are after combine pass. */
4398 static void
4399 if_convert (bool after_combine)
4401 basic_block bb;
4402 int pass;
4404 if (optimize == 1)
4406 df_live_add_problem ();
4407 df_live_set_all_dirty ();
4410 /* Record whether we are after combine pass. */
4411 ifcvt_after_combine = after_combine;
4412 num_possible_if_blocks = 0;
4413 num_updated_if_blocks = 0;
4414 num_true_changes = 0;
4416 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4417 mark_loop_exit_edges ();
4418 loop_optimizer_finalize ();
4419 free_dominance_info (CDI_DOMINATORS);
4421 /* Compute postdominators. */
4422 calculate_dominance_info (CDI_POST_DOMINATORS);
4424 df_set_flags (DF_LR_RUN_DCE);
4426 /* Go through each of the basic blocks looking for things to convert. If we
4427 have conditional execution, we make multiple passes to allow us to handle
4428 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4429 pass = 0;
4432 df_analyze ();
4433 /* Only need to do dce on the first pass. */
4434 df_clear_flags (DF_LR_RUN_DCE);
4435 cond_exec_changed_p = FALSE;
4436 pass++;
4438 #ifdef IFCVT_MULTIPLE_DUMPS
4439 if (dump_file && pass > 1)
4440 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4441 #endif
4443 FOR_EACH_BB_FN (bb, cfun)
4445 basic_block new_bb;
4446 while (!df_get_bb_dirty (bb)
4447 && (new_bb = find_if_header (bb, pass)) != NULL)
4448 bb = new_bb;
4451 #ifdef IFCVT_MULTIPLE_DUMPS
4452 if (dump_file && cond_exec_changed_p)
4453 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4454 #endif
4456 while (cond_exec_changed_p);
4458 #ifdef IFCVT_MULTIPLE_DUMPS
4459 if (dump_file)
4460 fprintf (dump_file, "\n\n========== no more changes\n");
4461 #endif
4463 free_dominance_info (CDI_POST_DOMINATORS);
4465 if (dump_file)
4466 fflush (dump_file);
4468 clear_aux_for_blocks ();
4470 /* If we allocated new pseudos, we must resize the array for sched1. */
4471 if (max_regno < max_reg_num ())
4472 max_regno = max_reg_num ();
4474 /* Write the final stats. */
4475 if (dump_file && num_possible_if_blocks > 0)
4477 fprintf (dump_file,
4478 "\n%d possible IF blocks searched.\n",
4479 num_possible_if_blocks);
4480 fprintf (dump_file,
4481 "%d IF blocks converted.\n",
4482 num_updated_if_blocks);
4483 fprintf (dump_file,
4484 "%d true changes made.\n\n\n",
4485 num_true_changes);
4488 if (optimize == 1)
4489 df_remove_problem (df_live);
4491 #ifdef ENABLE_CHECKING
4492 verify_flow_info ();
4493 #endif
4496 static bool
4497 gate_handle_if_conversion (void)
4499 return (optimize > 0)
4500 && dbg_cnt (if_conversion);
4503 /* If-conversion and CFG cleanup. */
4504 static unsigned int
4505 rest_of_handle_if_conversion (void)
4507 if (flag_if_conversion)
4509 if (dump_file)
4511 dump_reg_info (dump_file);
4512 dump_flow_info (dump_file, dump_flags);
4514 cleanup_cfg (CLEANUP_EXPENSIVE);
4515 if_convert (false);
4518 cleanup_cfg (0);
4519 return 0;
4522 namespace {
4524 const pass_data pass_data_rtl_ifcvt =
4526 RTL_PASS, /* type */
4527 "ce1", /* name */
4528 OPTGROUP_NONE, /* optinfo_flags */
4529 true, /* has_gate */
4530 true, /* has_execute */
4531 TV_IFCVT, /* tv_id */
4532 0, /* properties_required */
4533 0, /* properties_provided */
4534 0, /* properties_destroyed */
4535 0, /* todo_flags_start */
4536 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
4539 class pass_rtl_ifcvt : public rtl_opt_pass
4541 public:
4542 pass_rtl_ifcvt (gcc::context *ctxt)
4543 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4546 /* opt_pass methods: */
4547 bool gate () { return gate_handle_if_conversion (); }
4548 unsigned int execute () { return rest_of_handle_if_conversion (); }
4550 }; // class pass_rtl_ifcvt
4552 } // anon namespace
4554 rtl_opt_pass *
4555 make_pass_rtl_ifcvt (gcc::context *ctxt)
4557 return new pass_rtl_ifcvt (ctxt);
4560 static bool
4561 gate_handle_if_after_combine (void)
4563 return optimize > 0 && flag_if_conversion
4564 && dbg_cnt (if_after_combine);
4568 /* Rerun if-conversion, as combine may have simplified things enough
4569 to now meet sequence length restrictions. */
4570 static unsigned int
4571 rest_of_handle_if_after_combine (void)
4573 if_convert (true);
4574 return 0;
4577 namespace {
4579 const pass_data pass_data_if_after_combine =
4581 RTL_PASS, /* type */
4582 "ce2", /* name */
4583 OPTGROUP_NONE, /* optinfo_flags */
4584 true, /* has_gate */
4585 true, /* has_execute */
4586 TV_IFCVT, /* tv_id */
4587 0, /* properties_required */
4588 0, /* properties_provided */
4589 0, /* properties_destroyed */
4590 0, /* todo_flags_start */
4591 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4594 class pass_if_after_combine : public rtl_opt_pass
4596 public:
4597 pass_if_after_combine (gcc::context *ctxt)
4598 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4601 /* opt_pass methods: */
4602 bool gate () { return gate_handle_if_after_combine (); }
4603 unsigned int execute () { return rest_of_handle_if_after_combine (); }
4605 }; // class pass_if_after_combine
4607 } // anon namespace
4609 rtl_opt_pass *
4610 make_pass_if_after_combine (gcc::context *ctxt)
4612 return new pass_if_after_combine (ctxt);
4616 static bool
4617 gate_handle_if_after_reload (void)
4619 return optimize > 0 && flag_if_conversion2
4620 && dbg_cnt (if_after_reload);
4623 static unsigned int
4624 rest_of_handle_if_after_reload (void)
4626 if_convert (true);
4627 return 0;
4631 namespace {
4633 const pass_data pass_data_if_after_reload =
4635 RTL_PASS, /* type */
4636 "ce3", /* name */
4637 OPTGROUP_NONE, /* optinfo_flags */
4638 true, /* has_gate */
4639 true, /* has_execute */
4640 TV_IFCVT2, /* tv_id */
4641 0, /* properties_required */
4642 0, /* properties_provided */
4643 0, /* properties_destroyed */
4644 0, /* todo_flags_start */
4645 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4648 class pass_if_after_reload : public rtl_opt_pass
4650 public:
4651 pass_if_after_reload (gcc::context *ctxt)
4652 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4655 /* opt_pass methods: */
4656 bool gate () { return gate_handle_if_after_reload (); }
4657 unsigned int execute () { return rest_of_handle_if_after_reload (); }
4659 }; // class pass_if_after_reload
4661 } // anon namespace
4663 rtl_opt_pass *
4664 make_pass_if_after_reload (gcc::context *ctxt)
4666 return new pass_if_after_reload (ctxt);