/cp
[official-gcc.git] / gcc / expr.c
blob878a51b2510f794864098913b03a3a1c08092105
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
29 #include "attribs.h"
30 #include "varasm.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "langhooks.h"
47 #include "intl.h"
48 #include "tm_p.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
57 #include "cgraph.h"
58 #include "tree-ssanames.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "timevar.h"
62 #include "df.h"
63 #include "diagnostic.h"
64 #include "tree-ssa-live.h"
65 #include "tree-outof-ssa.h"
66 #include "target-globals.h"
67 #include "params.h"
68 #include "tree-ssa-address.h"
69 #include "cfgexpand.h"
71 /* Decide whether a function's arguments should be processed
72 from first to last or from last to first.
74 They should if the stack and args grow in opposite directions, but
75 only if we have push insns. */
77 #ifdef PUSH_ROUNDING
79 #ifndef PUSH_ARGS_REVERSED
80 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
81 #define PUSH_ARGS_REVERSED /* If it's last to first. */
82 #endif
83 #endif
85 #endif
87 #ifndef STACK_PUSH_CODE
88 #ifdef STACK_GROWS_DOWNWARD
89 #define STACK_PUSH_CODE PRE_DEC
90 #else
91 #define STACK_PUSH_CODE PRE_INC
92 #endif
93 #endif
96 /* If this is nonzero, we do not bother generating VOLATILE
97 around volatile memory references, and we are willing to
98 output indirect addresses. If cse is to follow, we reject
99 indirect addresses so a useful potential cse is generated;
100 if it is used only once, instruction combination will produce
101 the same indirect address eventually. */
102 int cse_not_expected;
104 /* This structure is used by move_by_pieces to describe the move to
105 be performed. */
106 struct move_by_pieces_d
108 rtx to;
109 rtx to_addr;
110 int autinc_to;
111 int explicit_inc_to;
112 rtx from;
113 rtx from_addr;
114 int autinc_from;
115 int explicit_inc_from;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 int reverse;
121 /* This structure is used by store_by_pieces to describe the clear to
122 be performed. */
124 struct store_by_pieces_d
126 rtx to;
127 rtx to_addr;
128 int autinc_to;
129 int explicit_inc_to;
130 unsigned HOST_WIDE_INT len;
131 HOST_WIDE_INT offset;
132 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
133 void *constfundata;
134 int reverse;
137 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
138 struct move_by_pieces_d *);
139 static bool block_move_libcall_safe_for_call_parm (void);
140 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
141 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
142 unsigned HOST_WIDE_INT);
143 static tree emit_block_move_libcall_fn (int);
144 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
145 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
146 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
147 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
148 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
149 struct store_by_pieces_d *);
150 static tree clear_storage_libcall_fn (int);
151 static rtx compress_float_constant (rtx, rtx);
152 static rtx get_subtarget (rtx);
153 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
154 HOST_WIDE_INT, enum machine_mode,
155 tree, int, alias_set_type);
156 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
157 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
158 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
159 enum machine_mode, tree, alias_set_type, bool);
161 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
163 static int is_aligning_offset (const_tree, const_tree);
164 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
165 enum expand_modifier);
166 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
167 static rtx do_store_flag (sepops, rtx, enum machine_mode);
168 #ifdef PUSH_ROUNDING
169 static void emit_single_push_insn (enum machine_mode, rtx, tree);
170 #endif
171 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx, int);
172 static rtx const_vector_from_tree (tree);
173 static void write_complex_part (rtx, rtx, bool);
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
181 #endif
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
189 #endif
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero. */
193 #ifndef SET_BY_PIECES_P
194 #define SET_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
197 #endif
199 /* This macro is used to determine whether store_by_pieces should be
200 called to "memcpy" storage when the source is a constant string. */
201 #ifndef STORE_BY_PIECES_P
202 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
203 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
204 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
205 #endif
207 /* This is run to set up which modes can be used
208 directly in memory and to initialize the block move optab. It is run
209 at the beginning of compilation and when the target is reinitialized. */
211 void
212 init_expr_target (void)
214 rtx insn, pat;
215 enum machine_mode mode;
216 int num_clobbers;
217 rtx mem, mem1;
218 rtx reg;
220 /* Try indexing by frame ptr and try by stack ptr.
221 It is known that on the Convex the stack ptr isn't a valid index.
222 With luck, one or the other is valid on any machine. */
223 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
224 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
226 /* A scratch register we can modify in-place below to avoid
227 useless RTL allocations. */
228 reg = gen_rtx_REG (VOIDmode, -1);
230 insn = rtx_alloc (INSN);
231 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
232 PATTERN (insn) = pat;
234 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
235 mode = (enum machine_mode) ((int) mode + 1))
237 int regno;
239 direct_load[(int) mode] = direct_store[(int) mode] = 0;
240 PUT_MODE (mem, mode);
241 PUT_MODE (mem1, mode);
242 PUT_MODE (reg, mode);
244 /* See if there is some register that can be used in this mode and
245 directly loaded or stored from memory. */
247 if (mode != VOIDmode && mode != BLKmode)
248 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
249 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
250 regno++)
252 if (! HARD_REGNO_MODE_OK (regno, mode))
253 continue;
255 SET_REGNO (reg, regno);
257 SET_SRC (pat) = mem;
258 SET_DEST (pat) = reg;
259 if (recog (pat, insn, &num_clobbers) >= 0)
260 direct_load[(int) mode] = 1;
262 SET_SRC (pat) = mem1;
263 SET_DEST (pat) = reg;
264 if (recog (pat, insn, &num_clobbers) >= 0)
265 direct_load[(int) mode] = 1;
267 SET_SRC (pat) = reg;
268 SET_DEST (pat) = mem;
269 if (recog (pat, insn, &num_clobbers) >= 0)
270 direct_store[(int) mode] = 1;
272 SET_SRC (pat) = reg;
273 SET_DEST (pat) = mem1;
274 if (recog (pat, insn, &num_clobbers) >= 0)
275 direct_store[(int) mode] = 1;
279 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
282 mode = GET_MODE_WIDER_MODE (mode))
284 enum machine_mode srcmode;
285 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
286 srcmode = GET_MODE_WIDER_MODE (srcmode))
288 enum insn_code ic;
290 ic = can_extend_p (mode, srcmode, 0);
291 if (ic == CODE_FOR_nothing)
292 continue;
294 PUT_MODE (mem, srcmode);
296 if (insn_operand_matches (ic, 1, mem))
297 float_extend_from_mem[mode][srcmode] = true;
302 /* This is run at the start of compiling a function. */
304 void
305 init_expr (void)
307 memset (&crtl->expr, 0, sizeof (crtl->expr));
310 /* Copy data from FROM to TO, where the machine modes are not the same.
311 Both modes may be integer, or both may be floating, or both may be
312 fixed-point.
313 UNSIGNEDP should be nonzero if FROM is an unsigned type.
314 This causes zero-extension instead of sign-extension. */
316 void
317 convert_move (rtx to, rtx from, int unsignedp)
319 enum machine_mode to_mode = GET_MODE (to);
320 enum machine_mode from_mode = GET_MODE (from);
321 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
322 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
323 enum insn_code code;
324 rtx libcall;
326 /* rtx code for making an equivalent value. */
327 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
328 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
331 gcc_assert (to_real == from_real);
332 gcc_assert (to_mode != BLKmode);
333 gcc_assert (from_mode != BLKmode);
335 /* If the source and destination are already the same, then there's
336 nothing to do. */
337 if (to == from)
338 return;
340 /* If FROM is a SUBREG that indicates that we have already done at least
341 the required extension, strip it. We don't handle such SUBREGs as
342 TO here. */
344 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
345 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
346 >= GET_MODE_PRECISION (to_mode))
347 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
348 from = gen_lowpart (to_mode, from), from_mode = to_mode;
350 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
352 if (to_mode == from_mode
353 || (from_mode == VOIDmode && CONSTANT_P (from)))
355 emit_move_insn (to, from);
356 return;
359 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
361 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
363 if (VECTOR_MODE_P (to_mode))
364 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
365 else
366 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
368 emit_move_insn (to, from);
369 return;
372 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
374 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
375 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
376 return;
379 if (to_real)
381 rtx value, insns;
382 convert_optab tab;
384 gcc_assert ((GET_MODE_PRECISION (from_mode)
385 != GET_MODE_PRECISION (to_mode))
386 || (DECIMAL_FLOAT_MODE_P (from_mode)
387 != DECIMAL_FLOAT_MODE_P (to_mode)));
389 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
390 /* Conversion between decimal float and binary float, same size. */
391 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
392 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
393 tab = sext_optab;
394 else
395 tab = trunc_optab;
397 /* Try converting directly if the insn is supported. */
399 code = convert_optab_handler (tab, to_mode, from_mode);
400 if (code != CODE_FOR_nothing)
402 emit_unop_insn (code, to, from,
403 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
404 return;
407 /* Otherwise use a libcall. */
408 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall);
413 start_sequence ();
414 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
415 1, from, from_mode);
416 insns = get_insns ();
417 end_sequence ();
418 emit_libcall_block (insns, to, value,
419 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
420 from)
421 : gen_rtx_FLOAT_EXTEND (to_mode, from));
422 return;
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
433 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
434 != CODE_FOR_nothing);
436 if (full_mode != from_mode)
437 from = convert_to_mode (full_mode, from, unsignedp);
438 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
439 to, from, UNKNOWN);
440 return;
442 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
444 rtx new_from;
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
447 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
448 enum insn_code icode;
450 icode = convert_optab_handler (ctab, full_mode, from_mode);
451 gcc_assert (icode != CODE_FOR_nothing);
453 if (to_mode == full_mode)
455 emit_unop_insn (icode, to, from, UNKNOWN);
456 return;
459 new_from = gen_reg_rtx (full_mode);
460 emit_unop_insn (icode, new_from, from, UNKNOWN);
462 /* else proceed to integer conversions below. */
463 from_mode = full_mode;
464 from = new_from;
467 /* Make sure both are fixed-point modes or both are not. */
468 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
469 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
470 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
472 /* If we widen from_mode to to_mode and they are in the same class,
473 we won't saturate the result.
474 Otherwise, always saturate the result to play safe. */
475 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
476 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
477 expand_fixed_convert (to, from, 0, 0);
478 else
479 expand_fixed_convert (to, from, 0, 1);
480 return;
483 /* Now both modes are integers. */
485 /* Handle expanding beyond a word. */
486 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
487 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
489 rtx insns;
490 rtx lowpart;
491 rtx fill_value;
492 rtx lowfrom;
493 int i;
494 enum machine_mode lowpart_mode;
495 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
497 /* Try converting directly if the insn is supported. */
498 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
499 != CODE_FOR_nothing)
501 /* If FROM is a SUBREG, put it into a register. Do this
502 so that we always generate the same set of insns for
503 better cse'ing; if an intermediate assignment occurred,
504 we won't be doing the operation directly on the SUBREG. */
505 if (optimize > 0 && GET_CODE (from) == SUBREG)
506 from = force_reg (from_mode, from);
507 emit_unop_insn (code, to, from, equiv_code);
508 return;
510 /* Next, try converting via full word. */
511 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
512 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
513 != CODE_FOR_nothing))
515 rtx word_to = gen_reg_rtx (word_mode);
516 if (REG_P (to))
518 if (reg_overlap_mentioned_p (to, from))
519 from = force_reg (from_mode, from);
520 emit_clobber (to);
522 convert_move (word_to, from, unsignedp);
523 emit_unop_insn (code, to, word_to, equiv_code);
524 return;
527 /* No special multiword conversion insn; do it by hand. */
528 start_sequence ();
530 /* Since we will turn this into a no conflict block, we must ensure the
531 the source does not overlap the target so force it into an isolated
532 register when maybe so. Likewise for any MEM input, since the
533 conversion sequence might require several references to it and we
534 must ensure we're getting the same value every time. */
536 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
537 from = force_reg (from_mode, from);
539 /* Get a copy of FROM widened to a word, if necessary. */
540 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
541 lowpart_mode = word_mode;
542 else
543 lowpart_mode = from_mode;
545 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
547 lowpart = gen_lowpart (lowpart_mode, to);
548 emit_move_insn (lowpart, lowfrom);
550 /* Compute the value to put in each remaining word. */
551 if (unsignedp)
552 fill_value = const0_rtx;
553 else
554 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
555 LT, lowfrom, const0_rtx,
556 VOIDmode, 0, -1);
558 /* Fill the remaining words. */
559 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
561 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
562 rtx subword = operand_subword (to, index, 1, to_mode);
564 gcc_assert (subword);
566 if (fill_value != subword)
567 emit_move_insn (subword, fill_value);
570 insns = get_insns ();
571 end_sequence ();
573 emit_insn (insns);
574 return;
577 /* Truncating multi-word to a word or less. */
578 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
579 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
581 if (!((MEM_P (from)
582 && ! MEM_VOLATILE_P (from)
583 && direct_load[(int) to_mode]
584 && ! mode_dependent_address_p (XEXP (from, 0),
585 MEM_ADDR_SPACE (from)))
586 || REG_P (from)
587 || GET_CODE (from) == SUBREG))
588 from = force_reg (from_mode, from);
589 convert_move (to, gen_lowpart (word_mode, from), 0);
590 return;
593 /* Now follow all the conversions between integers
594 no more than a word long. */
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
598 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
600 if (!((MEM_P (from)
601 && ! MEM_VOLATILE_P (from)
602 && direct_load[(int) to_mode]
603 && ! mode_dependent_address_p (XEXP (from, 0),
604 MEM_ADDR_SPACE (from)))
605 || REG_P (from)
606 || GET_CODE (from) == SUBREG))
607 from = force_reg (from_mode, from);
608 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
610 from = copy_to_reg (from);
611 emit_move_insn (to, gen_lowpart (to_mode, from));
612 return;
615 /* Handle extension. */
616 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
618 /* Convert directly if that works. */
619 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
620 != CODE_FOR_nothing)
622 emit_unop_insn (code, to, from, equiv_code);
623 return;
625 else
627 enum machine_mode intermediate;
628 rtx tmp;
629 int shift_amount;
631 /* Search for a mode to convert via. */
632 for (intermediate = from_mode; intermediate != VOIDmode;
633 intermediate = GET_MODE_WIDER_MODE (intermediate))
634 if (((can_extend_p (to_mode, intermediate, unsignedp)
635 != CODE_FOR_nothing)
636 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
637 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
638 && (can_extend_p (intermediate, from_mode, unsignedp)
639 != CODE_FOR_nothing))
641 convert_move (to, convert_to_mode (intermediate, from,
642 unsignedp), unsignedp);
643 return;
646 /* No suitable intermediate mode.
647 Generate what we need with shifts. */
648 shift_amount = (GET_MODE_PRECISION (to_mode)
649 - GET_MODE_PRECISION (from_mode));
650 from = gen_lowpart (to_mode, force_reg (from_mode, from));
651 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
652 to, unsignedp);
653 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
654 to, unsignedp);
655 if (tmp != to)
656 emit_move_insn (to, tmp);
657 return;
661 /* Support special truncate insns for certain modes. */
662 if (convert_optab_handler (trunc_optab, to_mode,
663 from_mode) != CODE_FOR_nothing)
665 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
666 to, from, UNKNOWN);
667 return;
670 /* Handle truncation of volatile memrefs, and so on;
671 the things that couldn't be truncated directly,
672 and for which there was no special instruction.
674 ??? Code above formerly short-circuited this, for most integer
675 mode pairs, with a force_reg in from_mode followed by a recursive
676 call to this routine. Appears always to have been wrong. */
677 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
679 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
680 emit_move_insn (to, temp);
681 return;
684 /* Mode combination is not recognized. */
685 gcc_unreachable ();
688 /* Return an rtx for a value that would result
689 from converting X to mode MODE.
690 Both X and MODE may be floating, or both integer.
691 UNSIGNEDP is nonzero if X is an unsigned value.
692 This can be done by referring to a part of X in place
693 or by copying to a new temporary with conversion. */
696 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
698 return convert_modes (mode, VOIDmode, x, unsignedp);
701 /* Return an rtx for a value that would result
702 from converting X from mode OLDMODE to mode MODE.
703 Both modes may be floating, or both integer.
704 UNSIGNEDP is nonzero if X is an unsigned value.
706 This can be done by referring to a part of X in place
707 or by copying to a new temporary with conversion.
709 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
712 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
714 rtx temp;
716 /* If FROM is a SUBREG that indicates that we have already done at least
717 the required extension, strip it. */
719 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
720 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
721 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
722 x = gen_lowpart (mode, SUBREG_REG (x));
724 if (GET_MODE (x) != VOIDmode)
725 oldmode = GET_MODE (x);
727 if (mode == oldmode)
728 return x;
730 /* There is one case that we must handle specially: If we are converting
731 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
732 we are to interpret the constant as unsigned, gen_lowpart will do
733 the wrong if the constant appears negative. What we want to do is
734 make the high-order word of the constant zero, not all ones. */
736 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
737 && GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT
738 && CONST_INT_P (x) && INTVAL (x) < 0)
740 double_int val = double_int::from_uhwi (INTVAL (x));
742 /* We need to zero extend VAL. */
743 if (oldmode != VOIDmode)
744 val = val.zext (GET_MODE_BITSIZE (oldmode));
746 return immed_double_int_const (val, mode);
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
754 if ((CONST_INT_P (x)
755 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
756 || (GET_MODE_CLASS (mode) == MODE_INT
757 && GET_MODE_CLASS (oldmode) == MODE_INT
758 && (CONST_DOUBLE_AS_INT_P (x)
759 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
760 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
761 && direct_load[(int) mode])
762 || (REG_P (x)
763 && (! HARD_REGISTER_P (x)
764 || HARD_REGNO_MODE_OK (REGNO (x), mode))
765 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
766 GET_MODE (x))))))))
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (CONST_INT_P (x) && oldmode != VOIDmode
772 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
774 HOST_WIDE_INT val = INTVAL (x);
776 /* We must sign or zero-extend in this case. Start by
777 zero-extending, then sign extend if we need to. */
778 val &= GET_MODE_MASK (oldmode);
779 if (! unsignedp
780 && val_signbit_known_set_p (oldmode, val))
781 val |= ~GET_MODE_MASK (oldmode);
783 return gen_int_mode (val, mode);
786 return gen_lowpart (mode, x);
789 /* Converting from integer constant into mode is always equivalent to an
790 subreg operation. */
791 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
793 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
794 return simplify_gen_subreg (mode, x, oldmode, 0);
797 temp = gen_reg_rtx (mode);
798 convert_move (temp, x, unsignedp);
799 return temp;
802 /* Return the largest alignment we can use for doing a move (or store)
803 of MAX_PIECES. ALIGN is the largest alignment we could use. */
805 static unsigned int
806 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
808 enum machine_mode tmode;
810 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
811 if (align >= GET_MODE_ALIGNMENT (tmode))
812 align = GET_MODE_ALIGNMENT (tmode);
813 else
815 enum machine_mode tmode, xmode;
817 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
818 tmode != VOIDmode;
819 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
820 if (GET_MODE_SIZE (tmode) > max_pieces
821 || SLOW_UNALIGNED_ACCESS (tmode, align))
822 break;
824 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
827 return align;
830 /* Return the widest integer mode no wider than SIZE. If no such mode
831 can be found, return VOIDmode. */
833 static enum machine_mode
834 widest_int_mode_for_size (unsigned int size)
836 enum machine_mode tmode, mode = VOIDmode;
838 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
839 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
840 if (GET_MODE_SIZE (tmode) < size)
841 mode = tmode;
843 return mode;
846 /* STORE_MAX_PIECES is the number of bytes at a time that we can
847 store efficiently. Due to internal GCC limitations, this is
848 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
849 for an immediate constant. */
851 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
853 /* Determine whether the LEN bytes can be moved by using several move
854 instructions. Return nonzero if a call to move_by_pieces should
855 succeed. */
858 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED,
859 unsigned int align ATTRIBUTE_UNUSED)
861 return MOVE_BY_PIECES_P (len, align);
864 /* Generate several move instructions to copy LEN bytes from block FROM to
865 block TO. (These are MEM rtx's with BLKmode).
867 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
868 used to push FROM to the stack.
870 ALIGN is maximum stack alignment we can assume.
872 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
873 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
874 stpcpy. */
877 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
878 unsigned int align, int endp)
880 struct move_by_pieces_d data;
881 enum machine_mode to_addr_mode;
882 enum machine_mode from_addr_mode = get_address_mode (from);
883 rtx to_addr, from_addr = XEXP (from, 0);
884 unsigned int max_size = MOVE_MAX_PIECES + 1;
885 enum insn_code icode;
887 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
889 data.offset = 0;
890 data.from_addr = from_addr;
891 if (to)
893 to_addr_mode = get_address_mode (to);
894 to_addr = XEXP (to, 0);
895 data.to = to;
896 data.autinc_to
897 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
898 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
899 data.reverse
900 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
902 else
904 to_addr_mode = VOIDmode;
905 to_addr = NULL_RTX;
906 data.to = NULL_RTX;
907 data.autinc_to = 1;
908 #ifdef STACK_GROWS_DOWNWARD
909 data.reverse = 1;
910 #else
911 data.reverse = 0;
912 #endif
914 data.to_addr = to_addr;
915 data.from = from;
916 data.autinc_from
917 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
918 || GET_CODE (from_addr) == POST_INC
919 || GET_CODE (from_addr) == POST_DEC);
921 data.explicit_inc_from = 0;
922 data.explicit_inc_to = 0;
923 if (data.reverse) data.offset = len;
924 data.len = len;
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data.autinc_from && data.autinc_to)
930 && move_by_pieces_ninsns (len, align, max_size) > 2)
932 /* Find the mode of the largest move...
933 MODE might not be used depending on the definitions of the
934 USE_* macros below. */
935 enum machine_mode mode ATTRIBUTE_UNUSED
936 = widest_int_mode_for_size (max_size);
938 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode,
941 plus_constant (from_addr_mode,
942 from_addr, len));
943 data.autinc_from = 1;
944 data.explicit_inc_from = -1;
946 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
948 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
949 data.autinc_from = 1;
950 data.explicit_inc_from = 1;
952 if (!data.autinc_from && CONSTANT_P (from_addr))
953 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
954 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
956 data.to_addr = copy_to_mode_reg (to_addr_mode,
957 plus_constant (to_addr_mode,
958 to_addr, len));
959 data.autinc_to = 1;
960 data.explicit_inc_to = -1;
962 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
964 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
965 data.autinc_to = 1;
966 data.explicit_inc_to = 1;
968 if (!data.autinc_to && CONSTANT_P (to_addr))
969 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
972 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1 && data.len > 0)
979 enum machine_mode mode = widest_int_mode_for_size (max_size);
981 if (mode == VOIDmode)
982 break;
984 icode = optab_handler (mov_optab, mode);
985 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
986 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
988 max_size = GET_MODE_SIZE (mode);
991 /* The code above should have handled everything. */
992 gcc_assert (!data.len);
994 if (endp)
996 rtx to1;
998 gcc_assert (!data.reverse);
999 if (data.autinc_to)
1001 if (endp == 2)
1003 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1004 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1005 else
1006 data.to_addr = copy_to_mode_reg (to_addr_mode,
1007 plus_constant (to_addr_mode,
1008 data.to_addr,
1009 -1));
1011 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1012 data.offset);
1014 else
1016 if (endp == 2)
1017 --data.offset;
1018 to1 = adjust_address (data.to, QImode, data.offset);
1020 return to1;
1022 else
1023 return data.to;
1026 /* Return number of insns required to move L bytes by pieces.
1027 ALIGN (in bits) is maximum alignment we can assume. */
1029 unsigned HOST_WIDE_INT
1030 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1031 unsigned int max_size)
1033 unsigned HOST_WIDE_INT n_insns = 0;
1035 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1037 while (max_size > 1 && l > 0)
1039 enum machine_mode mode;
1040 enum insn_code icode;
1042 mode = widest_int_mode_for_size (max_size);
1044 if (mode == VOIDmode)
1045 break;
1047 icode = optab_handler (mov_optab, mode);
1048 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1049 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1051 max_size = GET_MODE_SIZE (mode);
1054 gcc_assert (!l);
1055 return n_insns;
1058 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1059 with move instructions for mode MODE. GENFUN is the gen_... function
1060 to make a move insn for that mode. DATA has all the other info. */
1062 static void
1063 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1064 struct move_by_pieces_d *data)
1066 unsigned int size = GET_MODE_SIZE (mode);
1067 rtx to1 = NULL_RTX, from1;
1069 while (data->len >= size)
1071 if (data->reverse)
1072 data->offset -= size;
1074 if (data->to)
1076 if (data->autinc_to)
1077 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1078 data->offset);
1079 else
1080 to1 = adjust_address (data->to, mode, data->offset);
1083 if (data->autinc_from)
1084 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1085 data->offset);
1086 else
1087 from1 = adjust_address (data->from, mode, data->offset);
1089 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1090 emit_insn (gen_add2_insn (data->to_addr,
1091 gen_int_mode (-(HOST_WIDE_INT) size,
1092 GET_MODE (data->to_addr))));
1093 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1094 emit_insn (gen_add2_insn (data->from_addr,
1095 gen_int_mode (-(HOST_WIDE_INT) size,
1096 GET_MODE (data->from_addr))));
1098 if (data->to)
1099 emit_insn ((*genfun) (to1, from1));
1100 else
1102 #ifdef PUSH_ROUNDING
1103 emit_single_push_insn (mode, from1, NULL);
1104 #else
1105 gcc_unreachable ();
1106 #endif
1109 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 gen_int_mode (size,
1112 GET_MODE (data->to_addr))));
1113 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1114 emit_insn (gen_add2_insn (data->from_addr,
1115 gen_int_mode (size,
1116 GET_MODE (data->from_addr))));
1118 if (! data->reverse)
1119 data->offset += size;
1121 data->len -= size;
1125 /* Emit code to move a block Y to a block X. This may be done with
1126 string-move instructions, with multiple scalar move instructions,
1127 or with a library call.
1129 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1130 SIZE is an rtx that says how long they are.
1131 ALIGN is the maximum alignment we can assume they have.
1132 METHOD describes what kind of copy this is, and what mechanisms may be used.
1133 MIN_SIZE is the minimal size of block to move
1134 MAX_SIZE is the maximal size of block to move, if it can not be represented
1135 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1137 Return the address of the new block, if memcpy is called and returns it,
1138 0 otherwise. */
1141 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1142 unsigned int expected_align, HOST_WIDE_INT expected_size,
1143 unsigned HOST_WIDE_INT min_size,
1144 unsigned HOST_WIDE_INT max_size,
1145 unsigned HOST_WIDE_INT probable_max_size)
1147 bool may_use_call;
1148 rtx retval = 0;
1149 unsigned int align;
1151 gcc_assert (size);
1152 if (CONST_INT_P (size)
1153 && INTVAL (size) == 0)
1154 return 0;
1156 switch (method)
1158 case BLOCK_OP_NORMAL:
1159 case BLOCK_OP_TAILCALL:
1160 may_use_call = true;
1161 break;
1163 case BLOCK_OP_CALL_PARM:
1164 may_use_call = block_move_libcall_safe_for_call_parm ();
1166 /* Make inhibit_defer_pop nonzero around the library call
1167 to force it to pop the arguments right away. */
1168 NO_DEFER_POP;
1169 break;
1171 case BLOCK_OP_NO_LIBCALL:
1172 may_use_call = false;
1173 break;
1175 default:
1176 gcc_unreachable ();
1179 gcc_assert (MEM_P (x) && MEM_P (y));
1180 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1181 gcc_assert (align >= BITS_PER_UNIT);
1183 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1184 block copy is more efficient for other large modes, e.g. DCmode. */
1185 x = adjust_address (x, BLKmode, 0);
1186 y = adjust_address (y, BLKmode, 0);
1188 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1189 can be incorrect is coming from __builtin_memcpy. */
1190 if (CONST_INT_P (size))
1192 x = shallow_copy_rtx (x);
1193 y = shallow_copy_rtx (y);
1194 set_mem_size (x, INTVAL (size));
1195 set_mem_size (y, INTVAL (size));
1198 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1199 move_by_pieces (x, y, INTVAL (size), align, 0);
1200 else if (emit_block_move_via_movmem (x, y, size, align,
1201 expected_align, expected_size,
1202 min_size, max_size, probable_max_size))
1204 else if (may_use_call
1205 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1206 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1208 /* Since x and y are passed to a libcall, mark the corresponding
1209 tree EXPR as addressable. */
1210 tree y_expr = MEM_EXPR (y);
1211 tree x_expr = MEM_EXPR (x);
1212 if (y_expr)
1213 mark_addressable (y_expr);
1214 if (x_expr)
1215 mark_addressable (x_expr);
1216 retval = emit_block_move_via_libcall (x, y, size,
1217 method == BLOCK_OP_TAILCALL);
1220 else
1221 emit_block_move_via_loop (x, y, size, align);
1223 if (method == BLOCK_OP_CALL_PARM)
1224 OK_DEFER_POP;
1226 return retval;
1230 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1232 unsigned HOST_WIDE_INT max, min = 0;
1233 if (GET_CODE (size) == CONST_INT)
1234 min = max = UINTVAL (size);
1235 else
1236 max = GET_MODE_MASK (GET_MODE (size));
1237 return emit_block_move_hints (x, y, size, method, 0, -1,
1238 min, max, max);
1241 /* A subroutine of emit_block_move. Returns true if calling the
1242 block move libcall will not clobber any parameters which may have
1243 already been placed on the stack. */
1245 static bool
1246 block_move_libcall_safe_for_call_parm (void)
1248 #if defined (REG_PARM_STACK_SPACE)
1249 tree fn;
1250 #endif
1252 /* If arguments are pushed on the stack, then they're safe. */
1253 if (PUSH_ARGS)
1254 return true;
1256 /* If registers go on the stack anyway, any argument is sure to clobber
1257 an outgoing argument. */
1258 #if defined (REG_PARM_STACK_SPACE)
1259 fn = emit_block_move_libcall_fn (false);
1260 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1261 depend on its argument. */
1262 (void) fn;
1263 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1264 && REG_PARM_STACK_SPACE (fn) != 0)
1265 return false;
1266 #endif
1268 /* If any argument goes in memory, then it might clobber an outgoing
1269 argument. */
1271 CUMULATIVE_ARGS args_so_far_v;
1272 cumulative_args_t args_so_far;
1273 tree fn, arg;
1275 fn = emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1277 args_so_far = pack_cumulative_args (&args_so_far_v);
1279 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1280 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1282 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1283 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1284 NULL_TREE, true);
1285 if (!tmp || !REG_P (tmp))
1286 return false;
1287 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1288 return false;
1289 targetm.calls.function_arg_advance (args_so_far, mode,
1290 NULL_TREE, true);
1293 return true;
1296 /* A subroutine of emit_block_move. Expand a movmem pattern;
1297 return true if successful. */
1299 static bool
1300 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1301 unsigned int expected_align, HOST_WIDE_INT expected_size,
1302 unsigned HOST_WIDE_INT min_size,
1303 unsigned HOST_WIDE_INT max_size,
1304 unsigned HOST_WIDE_INT probable_max_size)
1306 int save_volatile_ok = volatile_ok;
1307 enum machine_mode mode;
1309 if (expected_align < align)
1310 expected_align = align;
1311 if (expected_size != -1)
1313 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1314 expected_size = probable_max_size;
1315 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1316 expected_size = min_size;
1319 /* Since this is a move insn, we don't care about volatility. */
1320 volatile_ok = 1;
1322 /* Try the most limited insn first, because there's no point
1323 including more than one in the machine description unless
1324 the more limited one has some advantage. */
1326 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1327 mode = GET_MODE_WIDER_MODE (mode))
1329 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1331 if (code != CODE_FOR_nothing
1332 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1333 here because if SIZE is less than the mode mask, as it is
1334 returned by the macro, it will definitely be less than the
1335 actual mode mask. Since SIZE is within the Pmode address
1336 space, we limit MODE to Pmode. */
1337 && ((CONST_INT_P (size)
1338 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1339 <= (GET_MODE_MASK (mode) >> 1)))
1340 || max_size <= (GET_MODE_MASK (mode) >> 1)
1341 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1343 struct expand_operand ops[9];
1344 unsigned int nops;
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1350 nops = insn_data[(int) code].n_generator_args;
1351 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1353 create_fixed_operand (&ops[0], x);
1354 create_fixed_operand (&ops[1], y);
1355 /* The check above guarantees that this size conversion is valid. */
1356 create_convert_operand_to (&ops[2], size, mode, true);
1357 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1358 if (nops >= 6)
1360 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1361 create_integer_operand (&ops[5], expected_size);
1363 if (nops >= 8)
1365 create_integer_operand (&ops[6], min_size);
1366 /* If we can not represent the maximal size,
1367 make parameter NULL. */
1368 if ((HOST_WIDE_INT) max_size != -1)
1369 create_integer_operand (&ops[7], max_size);
1370 else
1371 create_fixed_operand (&ops[7], NULL);
1373 if (nops == 9)
1375 /* If we can not represent the maximal size,
1376 make parameter NULL. */
1377 if ((HOST_WIDE_INT) probable_max_size != -1)
1378 create_integer_operand (&ops[8], probable_max_size);
1379 else
1380 create_fixed_operand (&ops[8], NULL);
1382 if (maybe_expand_insn (code, nops, ops))
1384 volatile_ok = save_volatile_ok;
1385 return true;
1390 volatile_ok = save_volatile_ok;
1391 return false;
1394 /* A subroutine of emit_block_move. Expand a call to memcpy.
1395 Return the return value from memcpy, 0 otherwise. */
1398 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1400 rtx dst_addr, src_addr;
1401 tree call_expr, fn, src_tree, dst_tree, size_tree;
1402 enum machine_mode size_mode;
1403 rtx retval;
1405 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1406 pseudos. We can then place those new pseudos into a VAR_DECL and
1407 use them later. */
1409 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1410 src_addr = copy_addr_to_reg (XEXP (src, 0));
1412 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1413 src_addr = convert_memory_address (ptr_mode, src_addr);
1415 dst_tree = make_tree (ptr_type_node, dst_addr);
1416 src_tree = make_tree (ptr_type_node, src_addr);
1418 size_mode = TYPE_MODE (sizetype);
1420 size = convert_to_mode (size_mode, size, 1);
1421 size = copy_to_mode_reg (size_mode, size);
1423 /* It is incorrect to use the libcall calling conventions to call
1424 memcpy in this context. This could be a user call to memcpy and
1425 the user may wish to examine the return value from memcpy. For
1426 targets where libcalls and normal calls have different conventions
1427 for returning pointers, we could end up generating incorrect code. */
1429 size_tree = make_tree (sizetype, size);
1431 fn = emit_block_move_libcall_fn (true);
1432 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1433 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1435 retval = expand_normal (call_expr);
1437 return retval;
1440 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1441 for the function we use for block copies. */
1443 static GTY(()) tree block_move_fn;
1445 void
1446 init_block_move_fn (const char *asmspec)
1448 if (!block_move_fn)
1450 tree args, fn, attrs, attr_args;
1452 fn = get_identifier ("memcpy");
1453 args = build_function_type_list (ptr_type_node, ptr_type_node,
1454 const_ptr_type_node, sizetype,
1455 NULL_TREE);
1457 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1458 DECL_EXTERNAL (fn) = 1;
1459 TREE_PUBLIC (fn) = 1;
1460 DECL_ARTIFICIAL (fn) = 1;
1461 TREE_NOTHROW (fn) = 1;
1462 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1463 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1465 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1466 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1468 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1470 block_move_fn = fn;
1473 if (asmspec)
1474 set_user_assembler_name (block_move_fn, asmspec);
1477 static tree
1478 emit_block_move_libcall_fn (int for_call)
1480 static bool emitted_extern;
1482 if (!block_move_fn)
1483 init_block_move_fn (NULL);
1485 if (for_call && !emitted_extern)
1487 emitted_extern = true;
1488 make_decl_rtl (block_move_fn);
1491 return block_move_fn;
1494 /* A subroutine of emit_block_move. Copy the data via an explicit
1495 loop. This is used only when libcalls are forbidden. */
1496 /* ??? It'd be nice to copy in hunks larger than QImode. */
1498 static void
1499 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1500 unsigned int align ATTRIBUTE_UNUSED)
1502 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1503 enum machine_mode x_addr_mode = get_address_mode (x);
1504 enum machine_mode y_addr_mode = get_address_mode (y);
1505 enum machine_mode iter_mode;
1507 iter_mode = GET_MODE (size);
1508 if (iter_mode == VOIDmode)
1509 iter_mode = word_mode;
1511 top_label = gen_label_rtx ();
1512 cmp_label = gen_label_rtx ();
1513 iter = gen_reg_rtx (iter_mode);
1515 emit_move_insn (iter, const0_rtx);
1517 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1518 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1519 do_pending_stack_adjust ();
1521 emit_jump (cmp_label);
1522 emit_label (top_label);
1524 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1525 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1527 if (x_addr_mode != y_addr_mode)
1528 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1529 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1531 x = change_address (x, QImode, x_addr);
1532 y = change_address (y, QImode, y_addr);
1534 emit_move_insn (x, y);
1536 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1537 true, OPTAB_LIB_WIDEN);
1538 if (tmp != iter)
1539 emit_move_insn (iter, tmp);
1541 emit_label (cmp_label);
1543 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1544 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1547 /* Copy all or part of a value X into registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1550 void
1551 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1553 int i;
1554 #ifdef HAVE_load_multiple
1555 rtx pat;
1556 rtx last;
1557 #endif
1559 if (nregs == 0)
1560 return;
1562 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1563 x = validize_mem (force_const_mem (mode, x));
1565 /* See if the machine can do this with a load multiple insn. */
1566 #ifdef HAVE_load_multiple
1567 if (HAVE_load_multiple)
1569 last = get_last_insn ();
1570 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1571 GEN_INT (nregs));
1572 if (pat)
1574 emit_insn (pat);
1575 return;
1577 else
1578 delete_insns_since (last);
1580 #endif
1582 for (i = 0; i < nregs; i++)
1583 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1584 operand_subword_force (x, i, mode));
1587 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1588 The number of registers to be filled is NREGS. */
1590 void
1591 move_block_from_reg (int regno, rtx x, int nregs)
1593 int i;
1595 if (nregs == 0)
1596 return;
1598 /* See if the machine can do this with a store multiple insn. */
1599 #ifdef HAVE_store_multiple
1600 if (HAVE_store_multiple)
1602 rtx last = get_last_insn ();
1603 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1604 GEN_INT (nregs));
1605 if (pat)
1607 emit_insn (pat);
1608 return;
1610 else
1611 delete_insns_since (last);
1613 #endif
1615 for (i = 0; i < nregs; i++)
1617 rtx tem = operand_subword (x, i, 1, BLKmode);
1619 gcc_assert (tem);
1621 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1625 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1626 ORIG, where ORIG is a non-consecutive group of registers represented by
1627 a PARALLEL. The clone is identical to the original except in that the
1628 original set of registers is replaced by a new set of pseudo registers.
1629 The new set has the same modes as the original set. */
1632 gen_group_rtx (rtx orig)
1634 int i, length;
1635 rtx *tmps;
1637 gcc_assert (GET_CODE (orig) == PARALLEL);
1639 length = XVECLEN (orig, 0);
1640 tmps = XALLOCAVEC (rtx, length);
1642 /* Skip a NULL entry in first slot. */
1643 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1645 if (i)
1646 tmps[0] = 0;
1648 for (; i < length; i++)
1650 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1651 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1653 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1656 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1659 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1660 except that values are placed in TMPS[i], and must later be moved
1661 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1663 static void
1664 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1666 rtx src;
1667 int start, i;
1668 enum machine_mode m = GET_MODE (orig_src);
1670 gcc_assert (GET_CODE (dst) == PARALLEL);
1672 if (m != VOIDmode
1673 && !SCALAR_INT_MODE_P (m)
1674 && !MEM_P (orig_src)
1675 && GET_CODE (orig_src) != CONCAT)
1677 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1678 if (imode == BLKmode)
1679 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1680 else
1681 src = gen_reg_rtx (imode);
1682 if (imode != BLKmode)
1683 src = gen_lowpart (GET_MODE (orig_src), src);
1684 emit_move_insn (src, orig_src);
1685 /* ...and back again. */
1686 if (imode != BLKmode)
1687 src = gen_lowpart (imode, src);
1688 emit_group_load_1 (tmps, dst, src, type, ssize);
1689 return;
1692 /* Check for a NULL entry, used to indicate that the parameter goes
1693 both on the stack and in registers. */
1694 if (XEXP (XVECEXP (dst, 0, 0), 0))
1695 start = 0;
1696 else
1697 start = 1;
1699 /* Process the pieces. */
1700 for (i = start; i < XVECLEN (dst, 0); i++)
1702 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1703 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1704 unsigned int bytelen = GET_MODE_SIZE (mode);
1705 int shift = 0;
1707 /* Handle trailing fragments that run over the size of the struct. */
1708 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1710 /* Arrange to shift the fragment to where it belongs.
1711 extract_bit_field loads to the lsb of the reg. */
1712 if (
1713 #ifdef BLOCK_REG_PADDING
1714 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1715 == (BYTES_BIG_ENDIAN ? upward : downward)
1716 #else
1717 BYTES_BIG_ENDIAN
1718 #endif
1720 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1721 bytelen = ssize - bytepos;
1722 gcc_assert (bytelen > 0);
1725 /* If we won't be loading directly from memory, protect the real source
1726 from strange tricks we might play; but make sure that the source can
1727 be loaded directly into the destination. */
1728 src = orig_src;
1729 if (!MEM_P (orig_src)
1730 && (!CONSTANT_P (orig_src)
1731 || (GET_MODE (orig_src) != mode
1732 && GET_MODE (orig_src) != VOIDmode)))
1734 if (GET_MODE (orig_src) == VOIDmode)
1735 src = gen_reg_rtx (mode);
1736 else
1737 src = gen_reg_rtx (GET_MODE (orig_src));
1739 emit_move_insn (src, orig_src);
1742 /* Optimize the access just a bit. */
1743 if (MEM_P (src)
1744 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1745 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1746 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1747 && bytelen == GET_MODE_SIZE (mode))
1749 tmps[i] = gen_reg_rtx (mode);
1750 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1752 else if (COMPLEX_MODE_P (mode)
1753 && GET_MODE (src) == mode
1754 && bytelen == GET_MODE_SIZE (mode))
1755 /* Let emit_move_complex do the bulk of the work. */
1756 tmps[i] = src;
1757 else if (GET_CODE (src) == CONCAT)
1759 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1760 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1762 if ((bytepos == 0 && bytelen == slen0)
1763 || (bytepos != 0 && bytepos + bytelen <= slen))
1765 /* The following assumes that the concatenated objects all
1766 have the same size. In this case, a simple calculation
1767 can be used to determine the object and the bit field
1768 to be extracted. */
1769 tmps[i] = XEXP (src, bytepos / slen0);
1770 if (! CONSTANT_P (tmps[i])
1771 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1772 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1773 (bytepos % slen0) * BITS_PER_UNIT,
1774 1, NULL_RTX, mode, mode);
1776 else
1778 rtx mem;
1780 gcc_assert (!bytepos);
1781 mem = assign_stack_temp (GET_MODE (src), slen);
1782 emit_move_insn (mem, src);
1783 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1784 0, 1, NULL_RTX, mode, mode);
1787 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1788 SIMD register, which is currently broken. While we get GCC
1789 to emit proper RTL for these cases, let's dump to memory. */
1790 else if (VECTOR_MODE_P (GET_MODE (dst))
1791 && REG_P (src))
1793 int slen = GET_MODE_SIZE (GET_MODE (src));
1794 rtx mem;
1796 mem = assign_stack_temp (GET_MODE (src), slen);
1797 emit_move_insn (mem, src);
1798 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1800 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1801 && XVECLEN (dst, 0) > 1)
1802 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1803 else if (CONSTANT_P (src))
1805 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1807 if (len == ssize)
1808 tmps[i] = src;
1809 else
1811 rtx first, second;
1813 gcc_assert (2 * len == ssize);
1814 split_double (src, &first, &second);
1815 if (i)
1816 tmps[i] = second;
1817 else
1818 tmps[i] = first;
1821 else if (REG_P (src) && GET_MODE (src) == mode)
1822 tmps[i] = src;
1823 else
1824 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1825 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1826 mode, mode);
1828 if (shift)
1829 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1830 shift, tmps[i], 0);
1834 /* Emit code to move a block SRC of type TYPE to a block DST,
1835 where DST is non-consecutive registers represented by a PARALLEL.
1836 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1837 if not known. */
1839 void
1840 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1842 rtx *tmps;
1843 int i;
1845 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1846 emit_group_load_1 (tmps, dst, src, type, ssize);
1848 /* Copy the extracted pieces into the proper (probable) hard regs. */
1849 for (i = 0; i < XVECLEN (dst, 0); i++)
1851 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1852 if (d == NULL)
1853 continue;
1854 emit_move_insn (d, tmps[i]);
1858 /* Similar, but load SRC into new pseudos in a format that looks like
1859 PARALLEL. This can later be fed to emit_group_move to get things
1860 in the right place. */
1863 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1865 rtvec vec;
1866 int i;
1868 vec = rtvec_alloc (XVECLEN (parallel, 0));
1869 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1871 /* Convert the vector to look just like the original PARALLEL, except
1872 with the computed values. */
1873 for (i = 0; i < XVECLEN (parallel, 0); i++)
1875 rtx e = XVECEXP (parallel, 0, i);
1876 rtx d = XEXP (e, 0);
1878 if (d)
1880 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1881 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1883 RTVEC_ELT (vec, i) = e;
1886 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1889 /* Emit code to move a block SRC to block DST, where SRC and DST are
1890 non-consecutive groups of registers, each represented by a PARALLEL. */
1892 void
1893 emit_group_move (rtx dst, rtx src)
1895 int i;
1897 gcc_assert (GET_CODE (src) == PARALLEL
1898 && GET_CODE (dst) == PARALLEL
1899 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1901 /* Skip first entry if NULL. */
1902 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1903 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1904 XEXP (XVECEXP (src, 0, i), 0));
1907 /* Move a group of registers represented by a PARALLEL into pseudos. */
1910 emit_group_move_into_temps (rtx src)
1912 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1913 int i;
1915 for (i = 0; i < XVECLEN (src, 0); i++)
1917 rtx e = XVECEXP (src, 0, i);
1918 rtx d = XEXP (e, 0);
1920 if (d)
1921 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1922 RTVEC_ELT (vec, i) = e;
1925 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1928 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1929 where SRC is non-consecutive registers represented by a PARALLEL.
1930 SSIZE represents the total size of block ORIG_DST, or -1 if not
1931 known. */
1933 void
1934 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1936 rtx *tmps, dst;
1937 int start, finish, i;
1938 enum machine_mode m = GET_MODE (orig_dst);
1940 gcc_assert (GET_CODE (src) == PARALLEL);
1942 if (!SCALAR_INT_MODE_P (m)
1943 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1945 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1946 if (imode == BLKmode)
1947 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1948 else
1949 dst = gen_reg_rtx (imode);
1950 emit_group_store (dst, src, type, ssize);
1951 if (imode != BLKmode)
1952 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1953 emit_move_insn (orig_dst, dst);
1954 return;
1957 /* Check for a NULL entry, used to indicate that the parameter goes
1958 both on the stack and in registers. */
1959 if (XEXP (XVECEXP (src, 0, 0), 0))
1960 start = 0;
1961 else
1962 start = 1;
1963 finish = XVECLEN (src, 0);
1965 tmps = XALLOCAVEC (rtx, finish);
1967 /* Copy the (probable) hard regs into pseudos. */
1968 for (i = start; i < finish; i++)
1970 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1971 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1973 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1974 emit_move_insn (tmps[i], reg);
1976 else
1977 tmps[i] = reg;
1980 /* If we won't be storing directly into memory, protect the real destination
1981 from strange tricks we might play. */
1982 dst = orig_dst;
1983 if (GET_CODE (dst) == PARALLEL)
1985 rtx temp;
1987 /* We can get a PARALLEL dst if there is a conditional expression in
1988 a return statement. In that case, the dst and src are the same,
1989 so no action is necessary. */
1990 if (rtx_equal_p (dst, src))
1991 return;
1993 /* It is unclear if we can ever reach here, but we may as well handle
1994 it. Allocate a temporary, and split this into a store/load to/from
1995 the temporary. */
1997 temp = assign_stack_temp (GET_MODE (dst), ssize);
1998 emit_group_store (temp, src, type, ssize);
1999 emit_group_load (dst, temp, type, ssize);
2000 return;
2002 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2004 enum machine_mode outer = GET_MODE (dst);
2005 enum machine_mode inner;
2006 HOST_WIDE_INT bytepos;
2007 bool done = false;
2008 rtx temp;
2010 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2011 dst = gen_reg_rtx (outer);
2013 /* Make life a bit easier for combine. */
2014 /* If the first element of the vector is the low part
2015 of the destination mode, use a paradoxical subreg to
2016 initialize the destination. */
2017 if (start < finish)
2019 inner = GET_MODE (tmps[start]);
2020 bytepos = subreg_lowpart_offset (inner, outer);
2021 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2023 temp = simplify_gen_subreg (outer, tmps[start],
2024 inner, 0);
2025 if (temp)
2027 emit_move_insn (dst, temp);
2028 done = true;
2029 start++;
2034 /* If the first element wasn't the low part, try the last. */
2035 if (!done
2036 && start < finish - 1)
2038 inner = GET_MODE (tmps[finish - 1]);
2039 bytepos = subreg_lowpart_offset (inner, outer);
2040 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2042 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2043 inner, 0);
2044 if (temp)
2046 emit_move_insn (dst, temp);
2047 done = true;
2048 finish--;
2053 /* Otherwise, simply initialize the result to zero. */
2054 if (!done)
2055 emit_move_insn (dst, CONST0_RTX (outer));
2058 /* Process the pieces. */
2059 for (i = start; i < finish; i++)
2061 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2062 enum machine_mode mode = GET_MODE (tmps[i]);
2063 unsigned int bytelen = GET_MODE_SIZE (mode);
2064 unsigned int adj_bytelen;
2065 rtx dest = dst;
2067 /* Handle trailing fragments that run over the size of the struct. */
2068 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2069 adj_bytelen = ssize - bytepos;
2070 else
2071 adj_bytelen = bytelen;
2073 if (GET_CODE (dst) == CONCAT)
2075 if (bytepos + adj_bytelen
2076 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2077 dest = XEXP (dst, 0);
2078 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2080 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2081 dest = XEXP (dst, 1);
2083 else
2085 enum machine_mode dest_mode = GET_MODE (dest);
2086 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2088 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2090 if (GET_MODE_ALIGNMENT (dest_mode)
2091 >= GET_MODE_ALIGNMENT (tmp_mode))
2093 dest = assign_stack_temp (dest_mode,
2094 GET_MODE_SIZE (dest_mode));
2095 emit_move_insn (adjust_address (dest,
2096 tmp_mode,
2097 bytepos),
2098 tmps[i]);
2099 dst = dest;
2101 else
2103 dest = assign_stack_temp (tmp_mode,
2104 GET_MODE_SIZE (tmp_mode));
2105 emit_move_insn (dest, tmps[i]);
2106 dst = adjust_address (dest, dest_mode, bytepos);
2108 break;
2112 /* Handle trailing fragments that run over the size of the struct. */
2113 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2115 /* store_bit_field always takes its value from the lsb.
2116 Move the fragment to the lsb if it's not already there. */
2117 if (
2118 #ifdef BLOCK_REG_PADDING
2119 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2120 == (BYTES_BIG_ENDIAN ? upward : downward)
2121 #else
2122 BYTES_BIG_ENDIAN
2123 #endif
2126 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2127 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2128 shift, tmps[i], 0);
2131 /* Make sure not to write past the end of the struct. */
2132 store_bit_field (dest,
2133 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2134 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2135 VOIDmode, tmps[i]);
2138 /* Optimize the access just a bit. */
2139 else if (MEM_P (dest)
2140 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2141 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2142 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2143 && bytelen == GET_MODE_SIZE (mode))
2144 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2146 else
2147 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2148 0, 0, mode, tmps[i]);
2151 /* Copy from the pseudo into the (probable) hard reg. */
2152 if (orig_dst != dst)
2153 emit_move_insn (orig_dst, dst);
2156 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2157 of the value stored in X. */
2160 maybe_emit_group_store (rtx x, tree type)
2162 enum machine_mode mode = TYPE_MODE (type);
2163 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2164 if (GET_CODE (x) == PARALLEL)
2166 rtx result = gen_reg_rtx (mode);
2167 emit_group_store (result, x, type, int_size_in_bytes (type));
2168 return result;
2170 return x;
2173 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2175 This is used on targets that return BLKmode values in registers. */
2177 void
2178 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2180 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2181 rtx src = NULL, dst = NULL;
2182 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2183 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2184 enum machine_mode mode = GET_MODE (srcreg);
2185 enum machine_mode tmode = GET_MODE (target);
2186 enum machine_mode copy_mode;
2188 /* BLKmode registers created in the back-end shouldn't have survived. */
2189 gcc_assert (mode != BLKmode);
2191 /* If the structure doesn't take up a whole number of words, see whether
2192 SRCREG is padded on the left or on the right. If it's on the left,
2193 set PADDING_CORRECTION to the number of bits to skip.
2195 In most ABIs, the structure will be returned at the least end of
2196 the register, which translates to right padding on little-endian
2197 targets and left padding on big-endian targets. The opposite
2198 holds if the structure is returned at the most significant
2199 end of the register. */
2200 if (bytes % UNITS_PER_WORD != 0
2201 && (targetm.calls.return_in_msb (type)
2202 ? !BYTES_BIG_ENDIAN
2203 : BYTES_BIG_ENDIAN))
2204 padding_correction
2205 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2207 /* We can use a single move if we have an exact mode for the size. */
2208 else if (MEM_P (target)
2209 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2210 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2211 && bytes == GET_MODE_SIZE (mode))
2213 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2214 return;
2217 /* And if we additionally have the same mode for a register. */
2218 else if (REG_P (target)
2219 && GET_MODE (target) == mode
2220 && bytes == GET_MODE_SIZE (mode))
2222 emit_move_insn (target, srcreg);
2223 return;
2226 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2227 into a new pseudo which is a full word. */
2228 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2230 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2231 mode = word_mode;
2234 /* Copy the structure BITSIZE bits at a time. If the target lives in
2235 memory, take care of not reading/writing past its end by selecting
2236 a copy mode suited to BITSIZE. This should always be possible given
2237 how it is computed.
2239 If the target lives in register, make sure not to select a copy mode
2240 larger than the mode of the register.
2242 We could probably emit more efficient code for machines which do not use
2243 strict alignment, but it doesn't seem worth the effort at the current
2244 time. */
2246 copy_mode = word_mode;
2247 if (MEM_P (target))
2249 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2250 if (mem_mode != BLKmode)
2251 copy_mode = mem_mode;
2253 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2254 copy_mode = tmode;
2256 for (bitpos = 0, xbitpos = padding_correction;
2257 bitpos < bytes * BITS_PER_UNIT;
2258 bitpos += bitsize, xbitpos += bitsize)
2260 /* We need a new source operand each time xbitpos is on a
2261 word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2264 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2266 /* We need a new destination operand each time bitpos is on
2267 a word boundary. */
2268 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2269 dst = target;
2270 else if (bitpos % BITS_PER_WORD == 0)
2271 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2273 /* Use xbitpos for the source extraction (right justified) and
2274 bitpos for the destination store (left justified). */
2275 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2276 extract_bit_field (src, bitsize,
2277 xbitpos % BITS_PER_WORD, 1,
2278 NULL_RTX, copy_mode, copy_mode));
2282 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2283 register if it contains any data, otherwise return null.
2285 This is used on targets that return BLKmode values in registers. */
2288 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2290 int i, n_regs;
2291 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2292 unsigned int bitsize;
2293 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2294 enum machine_mode dst_mode;
2296 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2298 x = expand_normal (src);
2300 bytes = int_size_in_bytes (TREE_TYPE (src));
2301 if (bytes == 0)
2302 return NULL_RTX;
2304 /* If the structure doesn't take up a whole number of words, see
2305 whether the register value should be padded on the left or on
2306 the right. Set PADDING_CORRECTION to the number of padding
2307 bits needed on the left side.
2309 In most ABIs, the structure will be returned at the least end of
2310 the register, which translates to right padding on little-endian
2311 targets and left padding on big-endian targets. The opposite
2312 holds if the structure is returned at the most significant
2313 end of the register. */
2314 if (bytes % UNITS_PER_WORD != 0
2315 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2316 ? !BYTES_BIG_ENDIAN
2317 : BYTES_BIG_ENDIAN))
2318 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2319 * BITS_PER_UNIT));
2321 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2322 dst_words = XALLOCAVEC (rtx, n_regs);
2323 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2325 /* Copy the structure BITSIZE bits at a time. */
2326 for (bitpos = 0, xbitpos = padding_correction;
2327 bitpos < bytes * BITS_PER_UNIT;
2328 bitpos += bitsize, xbitpos += bitsize)
2330 /* We need a new destination pseudo each time xbitpos is
2331 on a word boundary and when xbitpos == padding_correction
2332 (the first time through). */
2333 if (xbitpos % BITS_PER_WORD == 0
2334 || xbitpos == padding_correction)
2336 /* Generate an appropriate register. */
2337 dst_word = gen_reg_rtx (word_mode);
2338 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2340 /* Clear the destination before we move anything into it. */
2341 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2344 /* We need a new source operand each time bitpos is on a word
2345 boundary. */
2346 if (bitpos % BITS_PER_WORD == 0)
2347 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2349 /* Use bitpos for the source extraction (left justified) and
2350 xbitpos for the destination store (right justified). */
2351 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2352 0, 0, word_mode,
2353 extract_bit_field (src_word, bitsize,
2354 bitpos % BITS_PER_WORD, 1,
2355 NULL_RTX, word_mode, word_mode));
2358 if (mode == BLKmode)
2360 /* Find the smallest integer mode large enough to hold the
2361 entire structure. */
2362 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2363 mode != VOIDmode;
2364 mode = GET_MODE_WIDER_MODE (mode))
2365 /* Have we found a large enough mode? */
2366 if (GET_MODE_SIZE (mode) >= bytes)
2367 break;
2369 /* A suitable mode should have been found. */
2370 gcc_assert (mode != VOIDmode);
2373 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2374 dst_mode = word_mode;
2375 else
2376 dst_mode = mode;
2377 dst = gen_reg_rtx (dst_mode);
2379 for (i = 0; i < n_regs; i++)
2380 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2382 if (mode != dst_mode)
2383 dst = gen_lowpart (mode, dst);
2385 return dst;
2388 /* Add a USE expression for REG to the (possibly empty) list pointed
2389 to by CALL_FUSAGE. REG must denote a hard register. */
2391 void
2392 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2394 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2396 *call_fusage
2397 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2400 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2401 starting at REGNO. All of these registers must be hard registers. */
2403 void
2404 use_regs (rtx *call_fusage, int regno, int nregs)
2406 int i;
2408 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2410 for (i = 0; i < nregs; i++)
2411 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2414 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2415 PARALLEL REGS. This is for calls that pass values in multiple
2416 non-contiguous locations. The Irix 6 ABI has examples of this. */
2418 void
2419 use_group_regs (rtx *call_fusage, rtx regs)
2421 int i;
2423 for (i = 0; i < XVECLEN (regs, 0); i++)
2425 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2427 /* A NULL entry means the parameter goes both on the stack and in
2428 registers. This can also be a MEM for targets that pass values
2429 partially on the stack and partially in registers. */
2430 if (reg != 0 && REG_P (reg))
2431 use_reg (call_fusage, reg);
2435 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2436 assigment and the code of the expresion on the RHS is CODE. Return
2437 NULL otherwise. */
2439 static gimple
2440 get_def_for_expr (tree name, enum tree_code code)
2442 gimple def_stmt;
2444 if (TREE_CODE (name) != SSA_NAME)
2445 return NULL;
2447 def_stmt = get_gimple_for_ssa_name (name);
2448 if (!def_stmt
2449 || gimple_assign_rhs_code (def_stmt) != code)
2450 return NULL;
2452 return def_stmt;
2455 #ifdef HAVE_conditional_move
2456 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2457 assigment and the class of the expresion on the RHS is CLASS. Return
2458 NULL otherwise. */
2460 static gimple
2461 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2463 gimple def_stmt;
2465 if (TREE_CODE (name) != SSA_NAME)
2466 return NULL;
2468 def_stmt = get_gimple_for_ssa_name (name);
2469 if (!def_stmt
2470 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2471 return NULL;
2473 return def_stmt;
2475 #endif
2478 /* Determine whether the LEN bytes generated by CONSTFUN can be
2479 stored to memory using several move instructions. CONSTFUNDATA is
2480 a pointer which will be passed as argument in every CONSTFUN call.
2481 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2482 a memset operation and false if it's a copy of a constant string.
2483 Return nonzero if a call to store_by_pieces should succeed. */
2486 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2487 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2488 void *constfundata, unsigned int align, bool memsetp)
2490 unsigned HOST_WIDE_INT l;
2491 unsigned int max_size;
2492 HOST_WIDE_INT offset = 0;
2493 enum machine_mode mode;
2494 enum insn_code icode;
2495 int reverse;
2496 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2497 rtx cst ATTRIBUTE_UNUSED;
2499 if (len == 0)
2500 return 1;
2502 if (! (memsetp
2503 ? SET_BY_PIECES_P (len, align)
2504 : STORE_BY_PIECES_P (len, align)))
2505 return 0;
2507 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2509 /* We would first store what we can in the largest integer mode, then go to
2510 successively smaller modes. */
2512 for (reverse = 0;
2513 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2514 reverse++)
2516 l = len;
2517 max_size = STORE_MAX_PIECES + 1;
2518 while (max_size > 1 && l > 0)
2520 mode = widest_int_mode_for_size (max_size);
2522 if (mode == VOIDmode)
2523 break;
2525 icode = optab_handler (mov_optab, mode);
2526 if (icode != CODE_FOR_nothing
2527 && align >= GET_MODE_ALIGNMENT (mode))
2529 unsigned int size = GET_MODE_SIZE (mode);
2531 while (l >= size)
2533 if (reverse)
2534 offset -= size;
2536 cst = (*constfun) (constfundata, offset, mode);
2537 if (!targetm.legitimate_constant_p (mode, cst))
2538 return 0;
2540 if (!reverse)
2541 offset += size;
2543 l -= size;
2547 max_size = GET_MODE_SIZE (mode);
2550 /* The code above should have handled everything. */
2551 gcc_assert (!l);
2554 return 1;
2557 /* Generate several move instructions to store LEN bytes generated by
2558 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2559 pointer which will be passed as argument in every CONSTFUN call.
2560 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2561 a memset operation and false if it's a copy of a constant string.
2562 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2563 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2564 stpcpy. */
2567 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2568 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2569 void *constfundata, unsigned int align, bool memsetp, int endp)
2571 enum machine_mode to_addr_mode = get_address_mode (to);
2572 struct store_by_pieces_d data;
2574 if (len == 0)
2576 gcc_assert (endp != 2);
2577 return to;
2580 gcc_assert (memsetp
2581 ? SET_BY_PIECES_P (len, align)
2582 : STORE_BY_PIECES_P (len, align));
2583 data.constfun = constfun;
2584 data.constfundata = constfundata;
2585 data.len = len;
2586 data.to = to;
2587 store_by_pieces_1 (&data, align);
2588 if (endp)
2590 rtx to1;
2592 gcc_assert (!data.reverse);
2593 if (data.autinc_to)
2595 if (endp == 2)
2597 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2598 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2599 else
2600 data.to_addr = copy_to_mode_reg (to_addr_mode,
2601 plus_constant (to_addr_mode,
2602 data.to_addr,
2603 -1));
2605 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2606 data.offset);
2608 else
2610 if (endp == 2)
2611 --data.offset;
2612 to1 = adjust_address (data.to, QImode, data.offset);
2614 return to1;
2616 else
2617 return data.to;
2620 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2621 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2623 static void
2624 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2626 struct store_by_pieces_d data;
2628 if (len == 0)
2629 return;
2631 data.constfun = clear_by_pieces_1;
2632 data.constfundata = NULL;
2633 data.len = len;
2634 data.to = to;
2635 store_by_pieces_1 (&data, align);
2638 /* Callback routine for clear_by_pieces.
2639 Return const0_rtx unconditionally. */
2641 static rtx
2642 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2643 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2644 enum machine_mode mode ATTRIBUTE_UNUSED)
2646 return const0_rtx;
2649 /* Subroutine of clear_by_pieces and store_by_pieces.
2650 Generate several move instructions to store LEN bytes of block TO. (A MEM
2651 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2653 static void
2654 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2655 unsigned int align ATTRIBUTE_UNUSED)
2657 enum machine_mode to_addr_mode = get_address_mode (data->to);
2658 rtx to_addr = XEXP (data->to, 0);
2659 unsigned int max_size = STORE_MAX_PIECES + 1;
2660 enum insn_code icode;
2662 data->offset = 0;
2663 data->to_addr = to_addr;
2664 data->autinc_to
2665 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2666 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2668 data->explicit_inc_to = 0;
2669 data->reverse
2670 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2671 if (data->reverse)
2672 data->offset = data->len;
2674 /* If storing requires more than two move insns,
2675 copy addresses to registers (to make displacements shorter)
2676 and use post-increment if available. */
2677 if (!data->autinc_to
2678 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2680 /* Determine the main mode we'll be using.
2681 MODE might not be used depending on the definitions of the
2682 USE_* macros below. */
2683 enum machine_mode mode ATTRIBUTE_UNUSED
2684 = widest_int_mode_for_size (max_size);
2686 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2688 data->to_addr = copy_to_mode_reg (to_addr_mode,
2689 plus_constant (to_addr_mode,
2690 to_addr,
2691 data->len));
2692 data->autinc_to = 1;
2693 data->explicit_inc_to = -1;
2696 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2697 && ! data->autinc_to)
2699 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2700 data->autinc_to = 1;
2701 data->explicit_inc_to = 1;
2704 if ( !data->autinc_to && CONSTANT_P (to_addr))
2705 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2708 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2710 /* First store what we can in the largest integer mode, then go to
2711 successively smaller modes. */
2713 while (max_size > 1 && data->len > 0)
2715 enum machine_mode mode = widest_int_mode_for_size (max_size);
2717 if (mode == VOIDmode)
2718 break;
2720 icode = optab_handler (mov_optab, mode);
2721 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2722 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2724 max_size = GET_MODE_SIZE (mode);
2727 /* The code above should have handled everything. */
2728 gcc_assert (!data->len);
2731 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2732 with move instructions for mode MODE. GENFUN is the gen_... function
2733 to make a move insn for that mode. DATA has all the other info. */
2735 static void
2736 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2737 struct store_by_pieces_d *data)
2739 unsigned int size = GET_MODE_SIZE (mode);
2740 rtx to1, cst;
2742 while (data->len >= size)
2744 if (data->reverse)
2745 data->offset -= size;
2747 if (data->autinc_to)
2748 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2749 data->offset);
2750 else
2751 to1 = adjust_address (data->to, mode, data->offset);
2753 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2754 emit_insn (gen_add2_insn (data->to_addr,
2755 gen_int_mode (-(HOST_WIDE_INT) size,
2756 GET_MODE (data->to_addr))));
2758 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2759 emit_insn ((*genfun) (to1, cst));
2761 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2762 emit_insn (gen_add2_insn (data->to_addr,
2763 gen_int_mode (size,
2764 GET_MODE (data->to_addr))));
2766 if (! data->reverse)
2767 data->offset += size;
2769 data->len -= size;
2773 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2774 its length in bytes. */
2777 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2778 unsigned int expected_align, HOST_WIDE_INT expected_size,
2779 unsigned HOST_WIDE_INT min_size,
2780 unsigned HOST_WIDE_INT max_size,
2781 unsigned HOST_WIDE_INT probable_max_size)
2783 enum machine_mode mode = GET_MODE (object);
2784 unsigned int align;
2786 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2788 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2789 just move a zero. Otherwise, do this a piece at a time. */
2790 if (mode != BLKmode
2791 && CONST_INT_P (size)
2792 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2794 rtx zero = CONST0_RTX (mode);
2795 if (zero != NULL)
2797 emit_move_insn (object, zero);
2798 return NULL;
2801 if (COMPLEX_MODE_P (mode))
2803 zero = CONST0_RTX (GET_MODE_INNER (mode));
2804 if (zero != NULL)
2806 write_complex_part (object, zero, 0);
2807 write_complex_part (object, zero, 1);
2808 return NULL;
2813 if (size == const0_rtx)
2814 return NULL;
2816 align = MEM_ALIGN (object);
2818 if (CONST_INT_P (size)
2819 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2820 clear_by_pieces (object, INTVAL (size), align);
2821 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2822 expected_align, expected_size,
2823 min_size, max_size, probable_max_size))
2825 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2826 return set_storage_via_libcall (object, size, const0_rtx,
2827 method == BLOCK_OP_TAILCALL);
2828 else
2829 gcc_unreachable ();
2831 return NULL;
2835 clear_storage (rtx object, rtx size, enum block_op_methods method)
2837 unsigned HOST_WIDE_INT max, min = 0;
2838 if (GET_CODE (size) == CONST_INT)
2839 min = max = UINTVAL (size);
2840 else
2841 max = GET_MODE_MASK (GET_MODE (size));
2842 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2846 /* A subroutine of clear_storage. Expand a call to memset.
2847 Return the return value of memset, 0 otherwise. */
2850 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2852 tree call_expr, fn, object_tree, size_tree, val_tree;
2853 enum machine_mode size_mode;
2854 rtx retval;
2856 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2857 place those into new pseudos into a VAR_DECL and use them later. */
2859 object = copy_addr_to_reg (XEXP (object, 0));
2861 size_mode = TYPE_MODE (sizetype);
2862 size = convert_to_mode (size_mode, size, 1);
2863 size = copy_to_mode_reg (size_mode, size);
2865 /* It is incorrect to use the libcall calling conventions to call
2866 memset in this context. This could be a user call to memset and
2867 the user may wish to examine the return value from memset. For
2868 targets where libcalls and normal calls have different conventions
2869 for returning pointers, we could end up generating incorrect code. */
2871 object_tree = make_tree (ptr_type_node, object);
2872 if (!CONST_INT_P (val))
2873 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2874 size_tree = make_tree (sizetype, size);
2875 val_tree = make_tree (integer_type_node, val);
2877 fn = clear_storage_libcall_fn (true);
2878 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2879 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2881 retval = expand_normal (call_expr);
2883 return retval;
2886 /* A subroutine of set_storage_via_libcall. Create the tree node
2887 for the function we use for block clears. */
2889 tree block_clear_fn;
2891 void
2892 init_block_clear_fn (const char *asmspec)
2894 if (!block_clear_fn)
2896 tree fn, args;
2898 fn = get_identifier ("memset");
2899 args = build_function_type_list (ptr_type_node, ptr_type_node,
2900 integer_type_node, sizetype,
2901 NULL_TREE);
2903 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2904 DECL_EXTERNAL (fn) = 1;
2905 TREE_PUBLIC (fn) = 1;
2906 DECL_ARTIFICIAL (fn) = 1;
2907 TREE_NOTHROW (fn) = 1;
2908 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2909 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2911 block_clear_fn = fn;
2914 if (asmspec)
2915 set_user_assembler_name (block_clear_fn, asmspec);
2918 static tree
2919 clear_storage_libcall_fn (int for_call)
2921 static bool emitted_extern;
2923 if (!block_clear_fn)
2924 init_block_clear_fn (NULL);
2926 if (for_call && !emitted_extern)
2928 emitted_extern = true;
2929 make_decl_rtl (block_clear_fn);
2932 return block_clear_fn;
2935 /* Expand a setmem pattern; return true if successful. */
2937 bool
2938 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2939 unsigned int expected_align, HOST_WIDE_INT expected_size,
2940 unsigned HOST_WIDE_INT min_size,
2941 unsigned HOST_WIDE_INT max_size,
2942 unsigned HOST_WIDE_INT probable_max_size)
2944 /* Try the most limited insn first, because there's no point
2945 including more than one in the machine description unless
2946 the more limited one has some advantage. */
2948 enum machine_mode mode;
2950 if (expected_align < align)
2951 expected_align = align;
2952 if (expected_size != -1)
2954 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2955 expected_size = max_size;
2956 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2957 expected_size = min_size;
2960 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2961 mode = GET_MODE_WIDER_MODE (mode))
2963 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2965 if (code != CODE_FOR_nothing
2966 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2967 here because if SIZE is less than the mode mask, as it is
2968 returned by the macro, it will definitely be less than the
2969 actual mode mask. Since SIZE is within the Pmode address
2970 space, we limit MODE to Pmode. */
2971 && ((CONST_INT_P (size)
2972 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2973 <= (GET_MODE_MASK (mode) >> 1)))
2974 || max_size <= (GET_MODE_MASK (mode) >> 1)
2975 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2977 struct expand_operand ops[9];
2978 unsigned int nops;
2980 nops = insn_data[(int) code].n_generator_args;
2981 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2983 create_fixed_operand (&ops[0], object);
2984 /* The check above guarantees that this size conversion is valid. */
2985 create_convert_operand_to (&ops[1], size, mode, true);
2986 create_convert_operand_from (&ops[2], val, byte_mode, true);
2987 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2988 if (nops >= 6)
2990 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2991 create_integer_operand (&ops[5], expected_size);
2993 if (nops >= 8)
2995 create_integer_operand (&ops[6], min_size);
2996 /* If we can not represent the maximal size,
2997 make parameter NULL. */
2998 if ((HOST_WIDE_INT) max_size != -1)
2999 create_integer_operand (&ops[7], max_size);
3000 else
3001 create_fixed_operand (&ops[7], NULL);
3003 if (nops == 9)
3005 /* If we can not represent the maximal size,
3006 make parameter NULL. */
3007 if ((HOST_WIDE_INT) probable_max_size != -1)
3008 create_integer_operand (&ops[8], probable_max_size);
3009 else
3010 create_fixed_operand (&ops[8], NULL);
3012 if (maybe_expand_insn (code, nops, ops))
3013 return true;
3017 return false;
3021 /* Write to one of the components of the complex value CPLX. Write VAL to
3022 the real part if IMAG_P is false, and the imaginary part if its true. */
3024 static void
3025 write_complex_part (rtx cplx, rtx val, bool imag_p)
3027 enum machine_mode cmode;
3028 enum machine_mode imode;
3029 unsigned ibitsize;
3031 if (GET_CODE (cplx) == CONCAT)
3033 emit_move_insn (XEXP (cplx, imag_p), val);
3034 return;
3037 cmode = GET_MODE (cplx);
3038 imode = GET_MODE_INNER (cmode);
3039 ibitsize = GET_MODE_BITSIZE (imode);
3041 /* For MEMs simplify_gen_subreg may generate an invalid new address
3042 because, e.g., the original address is considered mode-dependent
3043 by the target, which restricts simplify_subreg from invoking
3044 adjust_address_nv. Instead of preparing fallback support for an
3045 invalid address, we call adjust_address_nv directly. */
3046 if (MEM_P (cplx))
3048 emit_move_insn (adjust_address_nv (cplx, imode,
3049 imag_p ? GET_MODE_SIZE (imode) : 0),
3050 val);
3051 return;
3054 /* If the sub-object is at least word sized, then we know that subregging
3055 will work. This special case is important, since store_bit_field
3056 wants to operate on integer modes, and there's rarely an OImode to
3057 correspond to TCmode. */
3058 if (ibitsize >= BITS_PER_WORD
3059 /* For hard regs we have exact predicates. Assume we can split
3060 the original object if it spans an even number of hard regs.
3061 This special case is important for SCmode on 64-bit platforms
3062 where the natural size of floating-point regs is 32-bit. */
3063 || (REG_P (cplx)
3064 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3065 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3067 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3068 imag_p ? GET_MODE_SIZE (imode) : 0);
3069 if (part)
3071 emit_move_insn (part, val);
3072 return;
3074 else
3075 /* simplify_gen_subreg may fail for sub-word MEMs. */
3076 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3079 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3082 /* Extract one of the components of the complex value CPLX. Extract the
3083 real part if IMAG_P is false, and the imaginary part if it's true. */
3085 static rtx
3086 read_complex_part (rtx cplx, bool imag_p)
3088 enum machine_mode cmode, imode;
3089 unsigned ibitsize;
3091 if (GET_CODE (cplx) == CONCAT)
3092 return XEXP (cplx, imag_p);
3094 cmode = GET_MODE (cplx);
3095 imode = GET_MODE_INNER (cmode);
3096 ibitsize = GET_MODE_BITSIZE (imode);
3098 /* Special case reads from complex constants that got spilled to memory. */
3099 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3101 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3102 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3104 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3105 if (CONSTANT_CLASS_P (part))
3106 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3110 /* For MEMs simplify_gen_subreg may generate an invalid new address
3111 because, e.g., the original address is considered mode-dependent
3112 by the target, which restricts simplify_subreg from invoking
3113 adjust_address_nv. Instead of preparing fallback support for an
3114 invalid address, we call adjust_address_nv directly. */
3115 if (MEM_P (cplx))
3116 return adjust_address_nv (cplx, imode,
3117 imag_p ? GET_MODE_SIZE (imode) : 0);
3119 /* If the sub-object is at least word sized, then we know that subregging
3120 will work. This special case is important, since extract_bit_field
3121 wants to operate on integer modes, and there's rarely an OImode to
3122 correspond to TCmode. */
3123 if (ibitsize >= BITS_PER_WORD
3124 /* For hard regs we have exact predicates. Assume we can split
3125 the original object if it spans an even number of hard regs.
3126 This special case is important for SCmode on 64-bit platforms
3127 where the natural size of floating-point regs is 32-bit. */
3128 || (REG_P (cplx)
3129 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3130 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3132 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3133 imag_p ? GET_MODE_SIZE (imode) : 0);
3134 if (ret)
3135 return ret;
3136 else
3137 /* simplify_gen_subreg may fail for sub-word MEMs. */
3138 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3141 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3142 true, NULL_RTX, imode, imode);
3145 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3146 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3147 represented in NEW_MODE. If FORCE is true, this will never happen, as
3148 we'll force-create a SUBREG if needed. */
3150 static rtx
3151 emit_move_change_mode (enum machine_mode new_mode,
3152 enum machine_mode old_mode, rtx x, bool force)
3154 rtx ret;
3156 if (push_operand (x, GET_MODE (x)))
3158 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3159 MEM_COPY_ATTRIBUTES (ret, x);
3161 else if (MEM_P (x))
3163 /* We don't have to worry about changing the address since the
3164 size in bytes is supposed to be the same. */
3165 if (reload_in_progress)
3167 /* Copy the MEM to change the mode and move any
3168 substitutions from the old MEM to the new one. */
3169 ret = adjust_address_nv (x, new_mode, 0);
3170 copy_replacements (x, ret);
3172 else
3173 ret = adjust_address (x, new_mode, 0);
3175 else
3177 /* Note that we do want simplify_subreg's behavior of validating
3178 that the new mode is ok for a hard register. If we were to use
3179 simplify_gen_subreg, we would create the subreg, but would
3180 probably run into the target not being able to implement it. */
3181 /* Except, of course, when FORCE is true, when this is exactly what
3182 we want. Which is needed for CCmodes on some targets. */
3183 if (force)
3184 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3185 else
3186 ret = simplify_subreg (new_mode, x, old_mode, 0);
3189 return ret;
3192 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3193 an integer mode of the same size as MODE. Returns the instruction
3194 emitted, or NULL if such a move could not be generated. */
3196 static rtx
3197 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3199 enum machine_mode imode;
3200 enum insn_code code;
3202 /* There must exist a mode of the exact size we require. */
3203 imode = int_mode_for_mode (mode);
3204 if (imode == BLKmode)
3205 return NULL_RTX;
3207 /* The target must support moves in this mode. */
3208 code = optab_handler (mov_optab, imode);
3209 if (code == CODE_FOR_nothing)
3210 return NULL_RTX;
3212 x = emit_move_change_mode (imode, mode, x, force);
3213 if (x == NULL_RTX)
3214 return NULL_RTX;
3215 y = emit_move_change_mode (imode, mode, y, force);
3216 if (y == NULL_RTX)
3217 return NULL_RTX;
3218 return emit_insn (GEN_FCN (code) (x, y));
3221 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3222 Return an equivalent MEM that does not use an auto-increment. */
3224 static rtx
3225 emit_move_resolve_push (enum machine_mode mode, rtx x)
3227 enum rtx_code code = GET_CODE (XEXP (x, 0));
3228 HOST_WIDE_INT adjust;
3229 rtx temp;
3231 adjust = GET_MODE_SIZE (mode);
3232 #ifdef PUSH_ROUNDING
3233 adjust = PUSH_ROUNDING (adjust);
3234 #endif
3235 if (code == PRE_DEC || code == POST_DEC)
3236 adjust = -adjust;
3237 else if (code == PRE_MODIFY || code == POST_MODIFY)
3239 rtx expr = XEXP (XEXP (x, 0), 1);
3240 HOST_WIDE_INT val;
3242 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3243 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3244 val = INTVAL (XEXP (expr, 1));
3245 if (GET_CODE (expr) == MINUS)
3246 val = -val;
3247 gcc_assert (adjust == val || adjust == -val);
3248 adjust = val;
3251 /* Do not use anti_adjust_stack, since we don't want to update
3252 stack_pointer_delta. */
3253 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3254 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3255 0, OPTAB_LIB_WIDEN);
3256 if (temp != stack_pointer_rtx)
3257 emit_move_insn (stack_pointer_rtx, temp);
3259 switch (code)
3261 case PRE_INC:
3262 case PRE_DEC:
3263 case PRE_MODIFY:
3264 temp = stack_pointer_rtx;
3265 break;
3266 case POST_INC:
3267 case POST_DEC:
3268 case POST_MODIFY:
3269 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3270 break;
3271 default:
3272 gcc_unreachable ();
3275 return replace_equiv_address (x, temp);
3278 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3279 X is known to satisfy push_operand, and MODE is known to be complex.
3280 Returns the last instruction emitted. */
3283 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3285 enum machine_mode submode = GET_MODE_INNER (mode);
3286 bool imag_first;
3288 #ifdef PUSH_ROUNDING
3289 unsigned int submodesize = GET_MODE_SIZE (submode);
3291 /* In case we output to the stack, but the size is smaller than the
3292 machine can push exactly, we need to use move instructions. */
3293 if (PUSH_ROUNDING (submodesize) != submodesize)
3295 x = emit_move_resolve_push (mode, x);
3296 return emit_move_insn (x, y);
3298 #endif
3300 /* Note that the real part always precedes the imag part in memory
3301 regardless of machine's endianness. */
3302 switch (GET_CODE (XEXP (x, 0)))
3304 case PRE_DEC:
3305 case POST_DEC:
3306 imag_first = true;
3307 break;
3308 case PRE_INC:
3309 case POST_INC:
3310 imag_first = false;
3311 break;
3312 default:
3313 gcc_unreachable ();
3316 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3317 read_complex_part (y, imag_first));
3318 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3319 read_complex_part (y, !imag_first));
3322 /* A subroutine of emit_move_complex. Perform the move from Y to X
3323 via two moves of the parts. Returns the last instruction emitted. */
3326 emit_move_complex_parts (rtx x, rtx y)
3328 /* Show the output dies here. This is necessary for SUBREGs
3329 of pseudos since we cannot track their lifetimes correctly;
3330 hard regs shouldn't appear here except as return values. */
3331 if (!reload_completed && !reload_in_progress
3332 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3333 emit_clobber (x);
3335 write_complex_part (x, read_complex_part (y, false), false);
3336 write_complex_part (x, read_complex_part (y, true), true);
3338 return get_last_insn ();
3341 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3342 MODE is known to be complex. Returns the last instruction emitted. */
3344 static rtx
3345 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3347 bool try_int;
3349 /* Need to take special care for pushes, to maintain proper ordering
3350 of the data, and possibly extra padding. */
3351 if (push_operand (x, mode))
3352 return emit_move_complex_push (mode, x, y);
3354 /* See if we can coerce the target into moving both values at once, except
3355 for floating point where we favor moving as parts if this is easy. */
3356 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3357 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3358 && !(REG_P (x)
3359 && HARD_REGISTER_P (x)
3360 && hard_regno_nregs[REGNO (x)][mode] == 1)
3361 && !(REG_P (y)
3362 && HARD_REGISTER_P (y)
3363 && hard_regno_nregs[REGNO (y)][mode] == 1))
3364 try_int = false;
3365 /* Not possible if the values are inherently not adjacent. */
3366 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3367 try_int = false;
3368 /* Is possible if both are registers (or subregs of registers). */
3369 else if (register_operand (x, mode) && register_operand (y, mode))
3370 try_int = true;
3371 /* If one of the operands is a memory, and alignment constraints
3372 are friendly enough, we may be able to do combined memory operations.
3373 We do not attempt this if Y is a constant because that combination is
3374 usually better with the by-parts thing below. */
3375 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3376 && (!STRICT_ALIGNMENT
3377 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3378 try_int = true;
3379 else
3380 try_int = false;
3382 if (try_int)
3384 rtx ret;
3386 /* For memory to memory moves, optimal behavior can be had with the
3387 existing block move logic. */
3388 if (MEM_P (x) && MEM_P (y))
3390 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3391 BLOCK_OP_NO_LIBCALL);
3392 return get_last_insn ();
3395 ret = emit_move_via_integer (mode, x, y, true);
3396 if (ret)
3397 return ret;
3400 return emit_move_complex_parts (x, y);
3403 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3404 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3406 static rtx
3407 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3409 rtx ret;
3411 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3412 if (mode != CCmode)
3414 enum insn_code code = optab_handler (mov_optab, CCmode);
3415 if (code != CODE_FOR_nothing)
3417 x = emit_move_change_mode (CCmode, mode, x, true);
3418 y = emit_move_change_mode (CCmode, mode, y, true);
3419 return emit_insn (GEN_FCN (code) (x, y));
3423 /* Otherwise, find the MODE_INT mode of the same width. */
3424 ret = emit_move_via_integer (mode, x, y, false);
3425 gcc_assert (ret != NULL);
3426 return ret;
3429 /* Return true if word I of OP lies entirely in the
3430 undefined bits of a paradoxical subreg. */
3432 static bool
3433 undefined_operand_subword_p (const_rtx op, int i)
3435 enum machine_mode innermode, innermostmode;
3436 int offset;
3437 if (GET_CODE (op) != SUBREG)
3438 return false;
3439 innermode = GET_MODE (op);
3440 innermostmode = GET_MODE (SUBREG_REG (op));
3441 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3442 /* The SUBREG_BYTE represents offset, as if the value were stored in
3443 memory, except for a paradoxical subreg where we define
3444 SUBREG_BYTE to be 0; undo this exception as in
3445 simplify_subreg. */
3446 if (SUBREG_BYTE (op) == 0
3447 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3449 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3450 if (WORDS_BIG_ENDIAN)
3451 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3452 if (BYTES_BIG_ENDIAN)
3453 offset += difference % UNITS_PER_WORD;
3455 if (offset >= GET_MODE_SIZE (innermostmode)
3456 || offset <= -GET_MODE_SIZE (word_mode))
3457 return true;
3458 return false;
3461 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3462 MODE is any multi-word or full-word mode that lacks a move_insn
3463 pattern. Note that you will get better code if you define such
3464 patterns, even if they must turn into multiple assembler instructions. */
3466 static rtx
3467 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3469 rtx last_insn = 0;
3470 rtx seq, inner;
3471 bool need_clobber;
3472 int i;
3474 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3476 /* If X is a push on the stack, do the push now and replace
3477 X with a reference to the stack pointer. */
3478 if (push_operand (x, mode))
3479 x = emit_move_resolve_push (mode, x);
3481 /* If we are in reload, see if either operand is a MEM whose address
3482 is scheduled for replacement. */
3483 if (reload_in_progress && MEM_P (x)
3484 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3485 x = replace_equiv_address_nv (x, inner);
3486 if (reload_in_progress && MEM_P (y)
3487 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3488 y = replace_equiv_address_nv (y, inner);
3490 start_sequence ();
3492 need_clobber = false;
3493 for (i = 0;
3494 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3495 i++)
3497 rtx xpart = operand_subword (x, i, 1, mode);
3498 rtx ypart;
3500 /* Do not generate code for a move if it would come entirely
3501 from the undefined bits of a paradoxical subreg. */
3502 if (undefined_operand_subword_p (y, i))
3503 continue;
3505 ypart = operand_subword (y, i, 1, mode);
3507 /* If we can't get a part of Y, put Y into memory if it is a
3508 constant. Otherwise, force it into a register. Then we must
3509 be able to get a part of Y. */
3510 if (ypart == 0 && CONSTANT_P (y))
3512 y = use_anchored_address (force_const_mem (mode, y));
3513 ypart = operand_subword (y, i, 1, mode);
3515 else if (ypart == 0)
3516 ypart = operand_subword_force (y, i, mode);
3518 gcc_assert (xpart && ypart);
3520 need_clobber |= (GET_CODE (xpart) == SUBREG);
3522 last_insn = emit_move_insn (xpart, ypart);
3525 seq = get_insns ();
3526 end_sequence ();
3528 /* Show the output dies here. This is necessary for SUBREGs
3529 of pseudos since we cannot track their lifetimes correctly;
3530 hard regs shouldn't appear here except as return values.
3531 We never want to emit such a clobber after reload. */
3532 if (x != y
3533 && ! (reload_in_progress || reload_completed)
3534 && need_clobber != 0)
3535 emit_clobber (x);
3537 emit_insn (seq);
3539 return last_insn;
3542 /* Low level part of emit_move_insn.
3543 Called just like emit_move_insn, but assumes X and Y
3544 are basically valid. */
3547 emit_move_insn_1 (rtx x, rtx y)
3549 enum machine_mode mode = GET_MODE (x);
3550 enum insn_code code;
3552 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3554 code = optab_handler (mov_optab, mode);
3555 if (code != CODE_FOR_nothing)
3556 return emit_insn (GEN_FCN (code) (x, y));
3558 /* Expand complex moves by moving real part and imag part. */
3559 if (COMPLEX_MODE_P (mode))
3560 return emit_move_complex (mode, x, y);
3562 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3563 || ALL_FIXED_POINT_MODE_P (mode))
3565 rtx result = emit_move_via_integer (mode, x, y, true);
3567 /* If we can't find an integer mode, use multi words. */
3568 if (result)
3569 return result;
3570 else
3571 return emit_move_multi_word (mode, x, y);
3574 if (GET_MODE_CLASS (mode) == MODE_CC)
3575 return emit_move_ccmode (mode, x, y);
3577 /* Try using a move pattern for the corresponding integer mode. This is
3578 only safe when simplify_subreg can convert MODE constants into integer
3579 constants. At present, it can only do this reliably if the value
3580 fits within a HOST_WIDE_INT. */
3581 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3583 rtx ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3585 if (ret)
3587 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3588 return ret;
3592 return emit_move_multi_word (mode, x, y);
3595 /* Generate code to copy Y into X.
3596 Both Y and X must have the same mode, except that
3597 Y can be a constant with VOIDmode.
3598 This mode cannot be BLKmode; use emit_block_move for that.
3600 Return the last instruction emitted. */
3603 emit_move_insn (rtx x, rtx y)
3605 enum machine_mode mode = GET_MODE (x);
3606 rtx y_cst = NULL_RTX;
3607 rtx last_insn, set;
3609 gcc_assert (mode != BLKmode
3610 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3612 if (CONSTANT_P (y))
3614 if (optimize
3615 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3616 && (last_insn = compress_float_constant (x, y)))
3617 return last_insn;
3619 y_cst = y;
3621 if (!targetm.legitimate_constant_p (mode, y))
3623 y = force_const_mem (mode, y);
3625 /* If the target's cannot_force_const_mem prevented the spill,
3626 assume that the target's move expanders will also take care
3627 of the non-legitimate constant. */
3628 if (!y)
3629 y = y_cst;
3630 else
3631 y = use_anchored_address (y);
3635 /* If X or Y are memory references, verify that their addresses are valid
3636 for the machine. */
3637 if (MEM_P (x)
3638 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3639 MEM_ADDR_SPACE (x))
3640 && ! push_operand (x, GET_MODE (x))))
3641 x = validize_mem (x);
3643 if (MEM_P (y)
3644 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3645 MEM_ADDR_SPACE (y)))
3646 y = validize_mem (y);
3648 gcc_assert (mode != BLKmode);
3650 last_insn = emit_move_insn_1 (x, y);
3652 if (y_cst && REG_P (x)
3653 && (set = single_set (last_insn)) != NULL_RTX
3654 && SET_DEST (set) == x
3655 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3656 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3658 return last_insn;
3661 /* If Y is representable exactly in a narrower mode, and the target can
3662 perform the extension directly from constant or memory, then emit the
3663 move as an extension. */
3665 static rtx
3666 compress_float_constant (rtx x, rtx y)
3668 enum machine_mode dstmode = GET_MODE (x);
3669 enum machine_mode orig_srcmode = GET_MODE (y);
3670 enum machine_mode srcmode;
3671 REAL_VALUE_TYPE r;
3672 int oldcost, newcost;
3673 bool speed = optimize_insn_for_speed_p ();
3675 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3677 if (targetm.legitimate_constant_p (dstmode, y))
3678 oldcost = set_src_cost (y, speed);
3679 else
3680 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3682 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3683 srcmode != orig_srcmode;
3684 srcmode = GET_MODE_WIDER_MODE (srcmode))
3686 enum insn_code ic;
3687 rtx trunc_y, last_insn;
3689 /* Skip if the target can't extend this way. */
3690 ic = can_extend_p (dstmode, srcmode, 0);
3691 if (ic == CODE_FOR_nothing)
3692 continue;
3694 /* Skip if the narrowed value isn't exact. */
3695 if (! exact_real_truncate (srcmode, &r))
3696 continue;
3698 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3700 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3702 /* Skip if the target needs extra instructions to perform
3703 the extension. */
3704 if (!insn_operand_matches (ic, 1, trunc_y))
3705 continue;
3706 /* This is valid, but may not be cheaper than the original. */
3707 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3708 speed);
3709 if (oldcost < newcost)
3710 continue;
3712 else if (float_extend_from_mem[dstmode][srcmode])
3714 trunc_y = force_const_mem (srcmode, trunc_y);
3715 /* This is valid, but may not be cheaper than the original. */
3716 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3717 speed);
3718 if (oldcost < newcost)
3719 continue;
3720 trunc_y = validize_mem (trunc_y);
3722 else
3723 continue;
3725 /* For CSE's benefit, force the compressed constant pool entry
3726 into a new pseudo. This constant may be used in different modes,
3727 and if not, combine will put things back together for us. */
3728 trunc_y = force_reg (srcmode, trunc_y);
3729 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3730 last_insn = get_last_insn ();
3732 if (REG_P (x))
3733 set_unique_reg_note (last_insn, REG_EQUAL, y);
3735 return last_insn;
3738 return NULL_RTX;
3741 /* Pushing data onto the stack. */
3743 /* Push a block of length SIZE (perhaps variable)
3744 and return an rtx to address the beginning of the block.
3745 The value may be virtual_outgoing_args_rtx.
3747 EXTRA is the number of bytes of padding to push in addition to SIZE.
3748 BELOW nonzero means this padding comes at low addresses;
3749 otherwise, the padding comes at high addresses. */
3752 push_block (rtx size, int extra, int below)
3754 rtx temp;
3756 size = convert_modes (Pmode, ptr_mode, size, 1);
3757 if (CONSTANT_P (size))
3758 anti_adjust_stack (plus_constant (Pmode, size, extra));
3759 else if (REG_P (size) && extra == 0)
3760 anti_adjust_stack (size);
3761 else
3763 temp = copy_to_mode_reg (Pmode, size);
3764 if (extra != 0)
3765 temp = expand_binop (Pmode, add_optab, temp,
3766 gen_int_mode (extra, Pmode),
3767 temp, 0, OPTAB_LIB_WIDEN);
3768 anti_adjust_stack (temp);
3771 #ifndef STACK_GROWS_DOWNWARD
3772 if (0)
3773 #else
3774 if (1)
3775 #endif
3777 temp = virtual_outgoing_args_rtx;
3778 if (extra != 0 && below)
3779 temp = plus_constant (Pmode, temp, extra);
3781 else
3783 if (CONST_INT_P (size))
3784 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3785 -INTVAL (size) - (below ? 0 : extra));
3786 else if (extra != 0 && !below)
3787 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3788 negate_rtx (Pmode, plus_constant (Pmode, size,
3789 extra)));
3790 else
3791 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3792 negate_rtx (Pmode, size));
3795 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3798 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3800 static rtx
3801 mem_autoinc_base (rtx mem)
3803 if (MEM_P (mem))
3805 rtx addr = XEXP (mem, 0);
3806 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3807 return XEXP (addr, 0);
3809 return NULL;
3812 /* A utility routine used here, in reload, and in try_split. The insns
3813 after PREV up to and including LAST are known to adjust the stack,
3814 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3815 placing notes as appropriate. PREV may be NULL, indicating the
3816 entire insn sequence prior to LAST should be scanned.
3818 The set of allowed stack pointer modifications is small:
3819 (1) One or more auto-inc style memory references (aka pushes),
3820 (2) One or more addition/subtraction with the SP as destination,
3821 (3) A single move insn with the SP as destination,
3822 (4) A call_pop insn,
3823 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3825 Insns in the sequence that do not modify the SP are ignored,
3826 except for noreturn calls.
3828 The return value is the amount of adjustment that can be trivially
3829 verified, via immediate operand or auto-inc. If the adjustment
3830 cannot be trivially extracted, the return value is INT_MIN. */
3832 HOST_WIDE_INT
3833 find_args_size_adjust (rtx insn)
3835 rtx dest, set, pat;
3836 int i;
3838 pat = PATTERN (insn);
3839 set = NULL;
3841 /* Look for a call_pop pattern. */
3842 if (CALL_P (insn))
3844 /* We have to allow non-call_pop patterns for the case
3845 of emit_single_push_insn of a TLS address. */
3846 if (GET_CODE (pat) != PARALLEL)
3847 return 0;
3849 /* All call_pop have a stack pointer adjust in the parallel.
3850 The call itself is always first, and the stack adjust is
3851 usually last, so search from the end. */
3852 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3854 set = XVECEXP (pat, 0, i);
3855 if (GET_CODE (set) != SET)
3856 continue;
3857 dest = SET_DEST (set);
3858 if (dest == stack_pointer_rtx)
3859 break;
3861 /* We'd better have found the stack pointer adjust. */
3862 if (i == 0)
3863 return 0;
3864 /* Fall through to process the extracted SET and DEST
3865 as if it was a standalone insn. */
3867 else if (GET_CODE (pat) == SET)
3868 set = pat;
3869 else if ((set = single_set (insn)) != NULL)
3871 else if (GET_CODE (pat) == PARALLEL)
3873 /* ??? Some older ports use a parallel with a stack adjust
3874 and a store for a PUSH_ROUNDING pattern, rather than a
3875 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3876 /* ??? See h8300 and m68k, pushqi1. */
3877 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3879 set = XVECEXP (pat, 0, i);
3880 if (GET_CODE (set) != SET)
3881 continue;
3882 dest = SET_DEST (set);
3883 if (dest == stack_pointer_rtx)
3884 break;
3886 /* We do not expect an auto-inc of the sp in the parallel. */
3887 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3888 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3889 != stack_pointer_rtx);
3891 if (i < 0)
3892 return 0;
3894 else
3895 return 0;
3897 dest = SET_DEST (set);
3899 /* Look for direct modifications of the stack pointer. */
3900 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3902 /* Look for a trivial adjustment, otherwise assume nothing. */
3903 /* Note that the SPU restore_stack_block pattern refers to
3904 the stack pointer in V4SImode. Consider that non-trivial. */
3905 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3906 && GET_CODE (SET_SRC (set)) == PLUS
3907 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3908 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3909 return INTVAL (XEXP (SET_SRC (set), 1));
3910 /* ??? Reload can generate no-op moves, which will be cleaned
3911 up later. Recognize it and continue searching. */
3912 else if (rtx_equal_p (dest, SET_SRC (set)))
3913 return 0;
3914 else
3915 return HOST_WIDE_INT_MIN;
3917 else
3919 rtx mem, addr;
3921 /* Otherwise only think about autoinc patterns. */
3922 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3924 mem = dest;
3925 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3926 != stack_pointer_rtx);
3928 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3929 mem = SET_SRC (set);
3930 else
3931 return 0;
3933 addr = XEXP (mem, 0);
3934 switch (GET_CODE (addr))
3936 case PRE_INC:
3937 case POST_INC:
3938 return GET_MODE_SIZE (GET_MODE (mem));
3939 case PRE_DEC:
3940 case POST_DEC:
3941 return -GET_MODE_SIZE (GET_MODE (mem));
3942 case PRE_MODIFY:
3943 case POST_MODIFY:
3944 addr = XEXP (addr, 1);
3945 gcc_assert (GET_CODE (addr) == PLUS);
3946 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3947 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3948 return INTVAL (XEXP (addr, 1));
3949 default:
3950 gcc_unreachable ();
3956 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3958 int args_size = end_args_size;
3959 bool saw_unknown = false;
3960 rtx insn;
3962 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3964 HOST_WIDE_INT this_delta;
3966 if (!NONDEBUG_INSN_P (insn))
3967 continue;
3969 this_delta = find_args_size_adjust (insn);
3970 if (this_delta == 0)
3972 if (!CALL_P (insn)
3973 || ACCUMULATE_OUTGOING_ARGS
3974 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3975 continue;
3978 gcc_assert (!saw_unknown);
3979 if (this_delta == HOST_WIDE_INT_MIN)
3980 saw_unknown = true;
3982 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3983 #ifdef STACK_GROWS_DOWNWARD
3984 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
3985 #endif
3986 args_size -= this_delta;
3989 return saw_unknown ? INT_MIN : args_size;
3992 #ifdef PUSH_ROUNDING
3993 /* Emit single push insn. */
3995 static void
3996 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3998 rtx dest_addr;
3999 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4000 rtx dest;
4001 enum insn_code icode;
4003 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4004 /* If there is push pattern, use it. Otherwise try old way of throwing
4005 MEM representing push operation to move expander. */
4006 icode = optab_handler (push_optab, mode);
4007 if (icode != CODE_FOR_nothing)
4009 struct expand_operand ops[1];
4011 create_input_operand (&ops[0], x, mode);
4012 if (maybe_expand_insn (icode, 1, ops))
4013 return;
4015 if (GET_MODE_SIZE (mode) == rounded_size)
4016 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4017 /* If we are to pad downward, adjust the stack pointer first and
4018 then store X into the stack location using an offset. This is
4019 because emit_move_insn does not know how to pad; it does not have
4020 access to type. */
4021 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4023 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4024 HOST_WIDE_INT offset;
4026 emit_move_insn (stack_pointer_rtx,
4027 expand_binop (Pmode,
4028 #ifdef STACK_GROWS_DOWNWARD
4029 sub_optab,
4030 #else
4031 add_optab,
4032 #endif
4033 stack_pointer_rtx,
4034 gen_int_mode (rounded_size, Pmode),
4035 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4037 offset = (HOST_WIDE_INT) padding_size;
4038 #ifdef STACK_GROWS_DOWNWARD
4039 if (STACK_PUSH_CODE == POST_DEC)
4040 /* We have already decremented the stack pointer, so get the
4041 previous value. */
4042 offset += (HOST_WIDE_INT) rounded_size;
4043 #else
4044 if (STACK_PUSH_CODE == POST_INC)
4045 /* We have already incremented the stack pointer, so get the
4046 previous value. */
4047 offset -= (HOST_WIDE_INT) rounded_size;
4048 #endif
4049 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4050 gen_int_mode (offset, Pmode));
4052 else
4054 #ifdef STACK_GROWS_DOWNWARD
4055 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4056 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4057 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4058 Pmode));
4059 #else
4060 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4061 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4062 gen_int_mode (rounded_size, Pmode));
4063 #endif
4064 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4067 dest = gen_rtx_MEM (mode, dest_addr);
4069 if (type != 0)
4071 set_mem_attributes (dest, type, 1);
4073 if (flag_optimize_sibling_calls)
4074 /* Function incoming arguments may overlap with sibling call
4075 outgoing arguments and we cannot allow reordering of reads
4076 from function arguments with stores to outgoing arguments
4077 of sibling calls. */
4078 set_mem_alias_set (dest, 0);
4080 emit_move_insn (dest, x);
4083 /* Emit and annotate a single push insn. */
4085 static void
4086 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
4088 int delta, old_delta = stack_pointer_delta;
4089 rtx prev = get_last_insn ();
4090 rtx last;
4092 emit_single_push_insn_1 (mode, x, type);
4094 last = get_last_insn ();
4096 /* Notice the common case where we emitted exactly one insn. */
4097 if (PREV_INSN (last) == prev)
4099 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4100 return;
4103 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4104 gcc_assert (delta == INT_MIN || delta == old_delta);
4106 #endif
4108 /* Generate code to push X onto the stack, assuming it has mode MODE and
4109 type TYPE.
4110 MODE is redundant except when X is a CONST_INT (since they don't
4111 carry mode info).
4112 SIZE is an rtx for the size of data to be copied (in bytes),
4113 needed only if X is BLKmode.
4115 ALIGN (in bits) is maximum alignment we can assume.
4117 If PARTIAL and REG are both nonzero, then copy that many of the first
4118 bytes of X into registers starting with REG, and push the rest of X.
4119 The amount of space pushed is decreased by PARTIAL bytes.
4120 REG must be a hard register in this case.
4121 If REG is zero but PARTIAL is not, take any all others actions for an
4122 argument partially in registers, but do not actually load any
4123 registers.
4125 EXTRA is the amount in bytes of extra space to leave next to this arg.
4126 This is ignored if an argument block has already been allocated.
4128 On a machine that lacks real push insns, ARGS_ADDR is the address of
4129 the bottom of the argument block for this call. We use indexing off there
4130 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4131 argument block has not been preallocated.
4133 ARGS_SO_FAR is the size of args previously pushed for this call.
4135 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4136 for arguments passed in registers. If nonzero, it will be the number
4137 of bytes required. */
4139 void
4140 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
4141 unsigned int align, int partial, rtx reg, int extra,
4142 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4143 rtx alignment_pad)
4145 rtx xinner;
4146 enum direction stack_direction
4147 #ifdef STACK_GROWS_DOWNWARD
4148 = downward;
4149 #else
4150 = upward;
4151 #endif
4153 /* Decide where to pad the argument: `downward' for below,
4154 `upward' for above, or `none' for don't pad it.
4155 Default is below for small data on big-endian machines; else above. */
4156 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4158 /* Invert direction if stack is post-decrement.
4159 FIXME: why? */
4160 if (STACK_PUSH_CODE == POST_DEC)
4161 if (where_pad != none)
4162 where_pad = (where_pad == downward ? upward : downward);
4164 xinner = x;
4166 if (mode == BLKmode
4167 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4169 /* Copy a block into the stack, entirely or partially. */
4171 rtx temp;
4172 int used;
4173 int offset;
4174 int skip;
4176 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4177 used = partial - offset;
4179 if (mode != BLKmode)
4181 /* A value is to be stored in an insufficiently aligned
4182 stack slot; copy via a suitably aligned slot if
4183 necessary. */
4184 size = GEN_INT (GET_MODE_SIZE (mode));
4185 if (!MEM_P (xinner))
4187 temp = assign_temp (type, 1, 1);
4188 emit_move_insn (temp, xinner);
4189 xinner = temp;
4193 gcc_assert (size);
4195 /* USED is now the # of bytes we need not copy to the stack
4196 because registers will take care of them. */
4198 if (partial != 0)
4199 xinner = adjust_address (xinner, BLKmode, used);
4201 /* If the partial register-part of the arg counts in its stack size,
4202 skip the part of stack space corresponding to the registers.
4203 Otherwise, start copying to the beginning of the stack space,
4204 by setting SKIP to 0. */
4205 skip = (reg_parm_stack_space == 0) ? 0 : used;
4207 #ifdef PUSH_ROUNDING
4208 /* Do it with several push insns if that doesn't take lots of insns
4209 and if there is no difficulty with push insns that skip bytes
4210 on the stack for alignment purposes. */
4211 if (args_addr == 0
4212 && PUSH_ARGS
4213 && CONST_INT_P (size)
4214 && skip == 0
4215 && MEM_ALIGN (xinner) >= align
4216 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4217 /* Here we avoid the case of a structure whose weak alignment
4218 forces many pushes of a small amount of data,
4219 and such small pushes do rounding that causes trouble. */
4220 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4221 || align >= BIGGEST_ALIGNMENT
4222 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4223 == (align / BITS_PER_UNIT)))
4224 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4226 /* Push padding now if padding above and stack grows down,
4227 or if padding below and stack grows up.
4228 But if space already allocated, this has already been done. */
4229 if (extra && args_addr == 0
4230 && where_pad != none && where_pad != stack_direction)
4231 anti_adjust_stack (GEN_INT (extra));
4233 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4235 else
4236 #endif /* PUSH_ROUNDING */
4238 rtx target;
4240 /* Otherwise make space on the stack and copy the data
4241 to the address of that space. */
4243 /* Deduct words put into registers from the size we must copy. */
4244 if (partial != 0)
4246 if (CONST_INT_P (size))
4247 size = GEN_INT (INTVAL (size) - used);
4248 else
4249 size = expand_binop (GET_MODE (size), sub_optab, size,
4250 gen_int_mode (used, GET_MODE (size)),
4251 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4254 /* Get the address of the stack space.
4255 In this case, we do not deal with EXTRA separately.
4256 A single stack adjust will do. */
4257 if (! args_addr)
4259 temp = push_block (size, extra, where_pad == downward);
4260 extra = 0;
4262 else if (CONST_INT_P (args_so_far))
4263 temp = memory_address (BLKmode,
4264 plus_constant (Pmode, args_addr,
4265 skip + INTVAL (args_so_far)));
4266 else
4267 temp = memory_address (BLKmode,
4268 plus_constant (Pmode,
4269 gen_rtx_PLUS (Pmode,
4270 args_addr,
4271 args_so_far),
4272 skip));
4274 if (!ACCUMULATE_OUTGOING_ARGS)
4276 /* If the source is referenced relative to the stack pointer,
4277 copy it to another register to stabilize it. We do not need
4278 to do this if we know that we won't be changing sp. */
4280 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4281 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4282 temp = copy_to_reg (temp);
4285 target = gen_rtx_MEM (BLKmode, temp);
4287 /* We do *not* set_mem_attributes here, because incoming arguments
4288 may overlap with sibling call outgoing arguments and we cannot
4289 allow reordering of reads from function arguments with stores
4290 to outgoing arguments of sibling calls. We do, however, want
4291 to record the alignment of the stack slot. */
4292 /* ALIGN may well be better aligned than TYPE, e.g. due to
4293 PARM_BOUNDARY. Assume the caller isn't lying. */
4294 set_mem_align (target, align);
4296 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4299 else if (partial > 0)
4301 /* Scalar partly in registers. */
4303 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4304 int i;
4305 int not_stack;
4306 /* # bytes of start of argument
4307 that we must make space for but need not store. */
4308 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4309 int args_offset = INTVAL (args_so_far);
4310 int skip;
4312 /* Push padding now if padding above and stack grows down,
4313 or if padding below and stack grows up.
4314 But if space already allocated, this has already been done. */
4315 if (extra && args_addr == 0
4316 && where_pad != none && where_pad != stack_direction)
4317 anti_adjust_stack (GEN_INT (extra));
4319 /* If we make space by pushing it, we might as well push
4320 the real data. Otherwise, we can leave OFFSET nonzero
4321 and leave the space uninitialized. */
4322 if (args_addr == 0)
4323 offset = 0;
4325 /* Now NOT_STACK gets the number of words that we don't need to
4326 allocate on the stack. Convert OFFSET to words too. */
4327 not_stack = (partial - offset) / UNITS_PER_WORD;
4328 offset /= UNITS_PER_WORD;
4330 /* If the partial register-part of the arg counts in its stack size,
4331 skip the part of stack space corresponding to the registers.
4332 Otherwise, start copying to the beginning of the stack space,
4333 by setting SKIP to 0. */
4334 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4336 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4337 x = validize_mem (force_const_mem (mode, x));
4339 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4340 SUBREGs of such registers are not allowed. */
4341 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4342 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4343 x = copy_to_reg (x);
4345 /* Loop over all the words allocated on the stack for this arg. */
4346 /* We can do it by words, because any scalar bigger than a word
4347 has a size a multiple of a word. */
4348 #ifndef PUSH_ARGS_REVERSED
4349 for (i = not_stack; i < size; i++)
4350 #else
4351 for (i = size - 1; i >= not_stack; i--)
4352 #endif
4353 if (i >= not_stack + offset)
4354 emit_push_insn (operand_subword_force (x, i, mode),
4355 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4356 0, args_addr,
4357 GEN_INT (args_offset + ((i - not_stack + skip)
4358 * UNITS_PER_WORD)),
4359 reg_parm_stack_space, alignment_pad);
4361 else
4363 rtx addr;
4364 rtx dest;
4366 /* Push padding now if padding above and stack grows down,
4367 or if padding below and stack grows up.
4368 But if space already allocated, this has already been done. */
4369 if (extra && args_addr == 0
4370 && where_pad != none && where_pad != stack_direction)
4371 anti_adjust_stack (GEN_INT (extra));
4373 #ifdef PUSH_ROUNDING
4374 if (args_addr == 0 && PUSH_ARGS)
4375 emit_single_push_insn (mode, x, type);
4376 else
4377 #endif
4379 if (CONST_INT_P (args_so_far))
4380 addr
4381 = memory_address (mode,
4382 plus_constant (Pmode, args_addr,
4383 INTVAL (args_so_far)));
4384 else
4385 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4386 args_so_far));
4387 dest = gen_rtx_MEM (mode, addr);
4389 /* We do *not* set_mem_attributes here, because incoming arguments
4390 may overlap with sibling call outgoing arguments and we cannot
4391 allow reordering of reads from function arguments with stores
4392 to outgoing arguments of sibling calls. We do, however, want
4393 to record the alignment of the stack slot. */
4394 /* ALIGN may well be better aligned than TYPE, e.g. due to
4395 PARM_BOUNDARY. Assume the caller isn't lying. */
4396 set_mem_align (dest, align);
4398 emit_move_insn (dest, x);
4402 /* If part should go in registers, copy that part
4403 into the appropriate registers. Do this now, at the end,
4404 since mem-to-mem copies above may do function calls. */
4405 if (partial > 0 && reg != 0)
4407 /* Handle calls that pass values in multiple non-contiguous locations.
4408 The Irix 6 ABI has examples of this. */
4409 if (GET_CODE (reg) == PARALLEL)
4410 emit_group_load (reg, x, type, -1);
4411 else
4413 gcc_assert (partial % UNITS_PER_WORD == 0);
4414 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4418 if (extra && args_addr == 0 && where_pad == stack_direction)
4419 anti_adjust_stack (GEN_INT (extra));
4421 if (alignment_pad && args_addr == 0)
4422 anti_adjust_stack (alignment_pad);
4425 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4426 operations. */
4428 static rtx
4429 get_subtarget (rtx x)
4431 return (optimize
4432 || x == 0
4433 /* Only registers can be subtargets. */
4434 || !REG_P (x)
4435 /* Don't use hard regs to avoid extending their life. */
4436 || REGNO (x) < FIRST_PSEUDO_REGISTER
4437 ? 0 : x);
4440 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4441 FIELD is a bitfield. Returns true if the optimization was successful,
4442 and there's nothing else to do. */
4444 static bool
4445 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4446 unsigned HOST_WIDE_INT bitpos,
4447 unsigned HOST_WIDE_INT bitregion_start,
4448 unsigned HOST_WIDE_INT bitregion_end,
4449 enum machine_mode mode1, rtx str_rtx,
4450 tree to, tree src)
4452 enum machine_mode str_mode = GET_MODE (str_rtx);
4453 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4454 tree op0, op1;
4455 rtx value, result;
4456 optab binop;
4457 gimple srcstmt;
4458 enum tree_code code;
4460 if (mode1 != VOIDmode
4461 || bitsize >= BITS_PER_WORD
4462 || str_bitsize > BITS_PER_WORD
4463 || TREE_SIDE_EFFECTS (to)
4464 || TREE_THIS_VOLATILE (to))
4465 return false;
4467 STRIP_NOPS (src);
4468 if (TREE_CODE (src) != SSA_NAME)
4469 return false;
4470 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4471 return false;
4473 srcstmt = get_gimple_for_ssa_name (src);
4474 if (!srcstmt
4475 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4476 return false;
4478 code = gimple_assign_rhs_code (srcstmt);
4480 op0 = gimple_assign_rhs1 (srcstmt);
4482 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4483 to find its initialization. Hopefully the initialization will
4484 be from a bitfield load. */
4485 if (TREE_CODE (op0) == SSA_NAME)
4487 gimple op0stmt = get_gimple_for_ssa_name (op0);
4489 /* We want to eventually have OP0 be the same as TO, which
4490 should be a bitfield. */
4491 if (!op0stmt
4492 || !is_gimple_assign (op0stmt)
4493 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4494 return false;
4495 op0 = gimple_assign_rhs1 (op0stmt);
4498 op1 = gimple_assign_rhs2 (srcstmt);
4500 if (!operand_equal_p (to, op0, 0))
4501 return false;
4503 if (MEM_P (str_rtx))
4505 unsigned HOST_WIDE_INT offset1;
4507 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4508 str_mode = word_mode;
4509 str_mode = get_best_mode (bitsize, bitpos,
4510 bitregion_start, bitregion_end,
4511 MEM_ALIGN (str_rtx), str_mode, 0);
4512 if (str_mode == VOIDmode)
4513 return false;
4514 str_bitsize = GET_MODE_BITSIZE (str_mode);
4516 offset1 = bitpos;
4517 bitpos %= str_bitsize;
4518 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4519 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4521 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4522 return false;
4524 /* If the bit field covers the whole REG/MEM, store_field
4525 will likely generate better code. */
4526 if (bitsize >= str_bitsize)
4527 return false;
4529 /* We can't handle fields split across multiple entities. */
4530 if (bitpos + bitsize > str_bitsize)
4531 return false;
4533 if (BYTES_BIG_ENDIAN)
4534 bitpos = str_bitsize - bitpos - bitsize;
4536 switch (code)
4538 case PLUS_EXPR:
4539 case MINUS_EXPR:
4540 /* For now, just optimize the case of the topmost bitfield
4541 where we don't need to do any masking and also
4542 1 bit bitfields where xor can be used.
4543 We might win by one instruction for the other bitfields
4544 too if insv/extv instructions aren't used, so that
4545 can be added later. */
4546 if (bitpos + bitsize != str_bitsize
4547 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4548 break;
4550 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4551 value = convert_modes (str_mode,
4552 TYPE_MODE (TREE_TYPE (op1)), value,
4553 TYPE_UNSIGNED (TREE_TYPE (op1)));
4555 /* We may be accessing data outside the field, which means
4556 we can alias adjacent data. */
4557 if (MEM_P (str_rtx))
4559 str_rtx = shallow_copy_rtx (str_rtx);
4560 set_mem_alias_set (str_rtx, 0);
4561 set_mem_expr (str_rtx, 0);
4564 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4565 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4567 value = expand_and (str_mode, value, const1_rtx, NULL);
4568 binop = xor_optab;
4570 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4571 result = expand_binop (str_mode, binop, str_rtx,
4572 value, str_rtx, 1, OPTAB_WIDEN);
4573 if (result != str_rtx)
4574 emit_move_insn (str_rtx, result);
4575 return true;
4577 case BIT_IOR_EXPR:
4578 case BIT_XOR_EXPR:
4579 if (TREE_CODE (op1) != INTEGER_CST)
4580 break;
4581 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4582 value = convert_modes (str_mode,
4583 TYPE_MODE (TREE_TYPE (op1)), value,
4584 TYPE_UNSIGNED (TREE_TYPE (op1)));
4586 /* We may be accessing data outside the field, which means
4587 we can alias adjacent data. */
4588 if (MEM_P (str_rtx))
4590 str_rtx = shallow_copy_rtx (str_rtx);
4591 set_mem_alias_set (str_rtx, 0);
4592 set_mem_expr (str_rtx, 0);
4595 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4596 if (bitpos + bitsize != str_bitsize)
4598 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4599 str_mode);
4600 value = expand_and (str_mode, value, mask, NULL_RTX);
4602 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4603 result = expand_binop (str_mode, binop, str_rtx,
4604 value, str_rtx, 1, OPTAB_WIDEN);
4605 if (result != str_rtx)
4606 emit_move_insn (str_rtx, result);
4607 return true;
4609 default:
4610 break;
4613 return false;
4616 /* In the C++ memory model, consecutive bit fields in a structure are
4617 considered one memory location.
4619 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4620 returns the bit range of consecutive bits in which this COMPONENT_REF
4621 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4622 and *OFFSET may be adjusted in the process.
4624 If the access does not need to be restricted, 0 is returned in both
4625 *BITSTART and *BITEND. */
4627 static void
4628 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4629 unsigned HOST_WIDE_INT *bitend,
4630 tree exp,
4631 HOST_WIDE_INT *bitpos,
4632 tree *offset)
4634 HOST_WIDE_INT bitoffset;
4635 tree field, repr;
4637 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4639 field = TREE_OPERAND (exp, 1);
4640 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4641 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4642 need to limit the range we can access. */
4643 if (!repr)
4645 *bitstart = *bitend = 0;
4646 return;
4649 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4650 part of a larger bit field, then the representative does not serve any
4651 useful purpose. This can occur in Ada. */
4652 if (handled_component_p (TREE_OPERAND (exp, 0)))
4654 enum machine_mode rmode;
4655 HOST_WIDE_INT rbitsize, rbitpos;
4656 tree roffset;
4657 int unsignedp;
4658 int volatilep = 0;
4659 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4660 &roffset, &rmode, &unsignedp, &volatilep, false);
4661 if ((rbitpos % BITS_PER_UNIT) != 0)
4663 *bitstart = *bitend = 0;
4664 return;
4668 /* Compute the adjustment to bitpos from the offset of the field
4669 relative to the representative. DECL_FIELD_OFFSET of field and
4670 repr are the same by construction if they are not constants,
4671 see finish_bitfield_layout. */
4672 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4673 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4674 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4675 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4676 else
4677 bitoffset = 0;
4678 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4679 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4681 /* If the adjustment is larger than bitpos, we would have a negative bit
4682 position for the lower bound and this may wreak havoc later. Adjust
4683 offset and bitpos to make the lower bound non-negative in that case. */
4684 if (bitoffset > *bitpos)
4686 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4687 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4689 *bitpos += adjust;
4690 if (*offset == NULL_TREE)
4691 *offset = size_int (-adjust / BITS_PER_UNIT);
4692 else
4693 *offset
4694 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4695 *bitstart = 0;
4697 else
4698 *bitstart = *bitpos - bitoffset;
4700 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4703 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4704 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4705 DECL_RTL was not set yet, return NORTL. */
4707 static inline bool
4708 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4710 if (TREE_CODE (addr) != ADDR_EXPR)
4711 return false;
4713 tree base = TREE_OPERAND (addr, 0);
4715 if (!DECL_P (base)
4716 || TREE_ADDRESSABLE (base)
4717 || DECL_MODE (base) == BLKmode)
4718 return false;
4720 if (!DECL_RTL_SET_P (base))
4721 return nortl;
4723 return (!MEM_P (DECL_RTL (base)));
4726 /* Returns true if the MEM_REF REF refers to an object that does not
4727 reside in memory and has non-BLKmode. */
4729 static inline bool
4730 mem_ref_refers_to_non_mem_p (tree ref)
4732 tree base = TREE_OPERAND (ref, 0);
4733 return addr_expr_of_non_mem_decl_p_1 (base, false);
4736 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4737 is true, try generating a nontemporal store. */
4739 void
4740 expand_assignment (tree to, tree from, bool nontemporal)
4742 rtx to_rtx = 0;
4743 rtx result;
4744 enum machine_mode mode;
4745 unsigned int align;
4746 enum insn_code icode;
4748 /* Don't crash if the lhs of the assignment was erroneous. */
4749 if (TREE_CODE (to) == ERROR_MARK)
4751 expand_normal (from);
4752 return;
4755 /* Optimize away no-op moves without side-effects. */
4756 if (operand_equal_p (to, from, 0))
4757 return;
4759 /* Handle misaligned stores. */
4760 mode = TYPE_MODE (TREE_TYPE (to));
4761 if ((TREE_CODE (to) == MEM_REF
4762 || TREE_CODE (to) == TARGET_MEM_REF)
4763 && mode != BLKmode
4764 && !mem_ref_refers_to_non_mem_p (to)
4765 && ((align = get_object_alignment (to))
4766 < GET_MODE_ALIGNMENT (mode))
4767 && (((icode = optab_handler (movmisalign_optab, mode))
4768 != CODE_FOR_nothing)
4769 || SLOW_UNALIGNED_ACCESS (mode, align)))
4771 rtx reg, mem;
4773 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4774 reg = force_not_mem (reg);
4775 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4777 if (icode != CODE_FOR_nothing)
4779 struct expand_operand ops[2];
4781 create_fixed_operand (&ops[0], mem);
4782 create_input_operand (&ops[1], reg, mode);
4783 /* The movmisalign<mode> pattern cannot fail, else the assignment
4784 would silently be omitted. */
4785 expand_insn (icode, 2, ops);
4787 else
4788 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4789 return;
4792 /* Assignment of a structure component needs special treatment
4793 if the structure component's rtx is not simply a MEM.
4794 Assignment of an array element at a constant index, and assignment of
4795 an array element in an unaligned packed structure field, has the same
4796 problem. Same for (partially) storing into a non-memory object. */
4797 if (handled_component_p (to)
4798 || (TREE_CODE (to) == MEM_REF
4799 && mem_ref_refers_to_non_mem_p (to))
4800 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4802 enum machine_mode mode1;
4803 HOST_WIDE_INT bitsize, bitpos;
4804 unsigned HOST_WIDE_INT bitregion_start = 0;
4805 unsigned HOST_WIDE_INT bitregion_end = 0;
4806 tree offset;
4807 int unsignedp;
4808 int volatilep = 0;
4809 tree tem;
4811 push_temp_slots ();
4812 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4813 &unsignedp, &volatilep, true);
4815 /* Make sure bitpos is not negative, it can wreak havoc later. */
4816 if (bitpos < 0)
4818 gcc_assert (offset == NULL_TREE);
4819 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4820 ? 3 : exact_log2 (BITS_PER_UNIT)));
4821 bitpos &= BITS_PER_UNIT - 1;
4824 if (TREE_CODE (to) == COMPONENT_REF
4825 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4826 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4827 /* The C++ memory model naturally applies to byte-aligned fields.
4828 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4829 BITSIZE are not byte-aligned, there is no need to limit the range
4830 we can access. This can occur with packed structures in Ada. */
4831 else if (bitsize > 0
4832 && bitsize % BITS_PER_UNIT == 0
4833 && bitpos % BITS_PER_UNIT == 0)
4835 bitregion_start = bitpos;
4836 bitregion_end = bitpos + bitsize - 1;
4839 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4841 /* If the field has a mode, we want to access it in the
4842 field's mode, not the computed mode.
4843 If a MEM has VOIDmode (external with incomplete type),
4844 use BLKmode for it instead. */
4845 if (MEM_P (to_rtx))
4847 if (mode1 != VOIDmode)
4848 to_rtx = adjust_address (to_rtx, mode1, 0);
4849 else if (GET_MODE (to_rtx) == VOIDmode)
4850 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4853 if (offset != 0)
4855 enum machine_mode address_mode;
4856 rtx offset_rtx;
4858 if (!MEM_P (to_rtx))
4860 /* We can get constant negative offsets into arrays with broken
4861 user code. Translate this to a trap instead of ICEing. */
4862 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4863 expand_builtin_trap ();
4864 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4867 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4868 address_mode = get_address_mode (to_rtx);
4869 if (GET_MODE (offset_rtx) != address_mode)
4870 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4872 /* The check for a constant address in TO_RTX not having VOIDmode
4873 is probably no longer necessary. */
4874 if (MEM_P (to_rtx)
4875 && GET_MODE (to_rtx) == BLKmode
4876 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4877 && bitsize > 0
4878 && (bitpos % bitsize) == 0
4879 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4880 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4882 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4883 bitregion_start = 0;
4884 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4885 bitregion_end -= bitpos;
4886 bitpos = 0;
4889 to_rtx = offset_address (to_rtx, offset_rtx,
4890 highest_pow2_factor_for_target (to,
4891 offset));
4894 /* No action is needed if the target is not a memory and the field
4895 lies completely outside that target. This can occur if the source
4896 code contains an out-of-bounds access to a small array. */
4897 if (!MEM_P (to_rtx)
4898 && GET_MODE (to_rtx) != BLKmode
4899 && (unsigned HOST_WIDE_INT) bitpos
4900 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4902 expand_normal (from);
4903 result = NULL;
4905 /* Handle expand_expr of a complex value returning a CONCAT. */
4906 else if (GET_CODE (to_rtx) == CONCAT)
4908 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4909 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4910 && bitpos == 0
4911 && bitsize == mode_bitsize)
4912 result = store_expr (from, to_rtx, false, nontemporal);
4913 else if (bitsize == mode_bitsize / 2
4914 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4915 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4916 nontemporal);
4917 else if (bitpos + bitsize <= mode_bitsize / 2)
4918 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4919 bitregion_start, bitregion_end,
4920 mode1, from,
4921 get_alias_set (to), nontemporal);
4922 else if (bitpos >= mode_bitsize / 2)
4923 result = store_field (XEXP (to_rtx, 1), bitsize,
4924 bitpos - mode_bitsize / 2,
4925 bitregion_start, bitregion_end,
4926 mode1, from,
4927 get_alias_set (to), nontemporal);
4928 else if (bitpos == 0 && bitsize == mode_bitsize)
4930 rtx from_rtx;
4931 result = expand_normal (from);
4932 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4933 TYPE_MODE (TREE_TYPE (from)), 0);
4934 emit_move_insn (XEXP (to_rtx, 0),
4935 read_complex_part (from_rtx, false));
4936 emit_move_insn (XEXP (to_rtx, 1),
4937 read_complex_part (from_rtx, true));
4939 else
4941 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4942 GET_MODE_SIZE (GET_MODE (to_rtx)));
4943 write_complex_part (temp, XEXP (to_rtx, 0), false);
4944 write_complex_part (temp, XEXP (to_rtx, 1), true);
4945 result = store_field (temp, bitsize, bitpos,
4946 bitregion_start, bitregion_end,
4947 mode1, from,
4948 get_alias_set (to), nontemporal);
4949 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4950 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4953 else
4955 if (MEM_P (to_rtx))
4957 /* If the field is at offset zero, we could have been given the
4958 DECL_RTX of the parent struct. Don't munge it. */
4959 to_rtx = shallow_copy_rtx (to_rtx);
4960 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4961 if (volatilep)
4962 MEM_VOLATILE_P (to_rtx) = 1;
4965 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4966 bitregion_start, bitregion_end,
4967 mode1,
4968 to_rtx, to, from))
4969 result = NULL;
4970 else
4971 result = store_field (to_rtx, bitsize, bitpos,
4972 bitregion_start, bitregion_end,
4973 mode1, from,
4974 get_alias_set (to), nontemporal);
4977 if (result)
4978 preserve_temp_slots (result);
4979 pop_temp_slots ();
4980 return;
4983 /* If the rhs is a function call and its value is not an aggregate,
4984 call the function before we start to compute the lhs.
4985 This is needed for correct code for cases such as
4986 val = setjmp (buf) on machines where reference to val
4987 requires loading up part of an address in a separate insn.
4989 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4990 since it might be a promoted variable where the zero- or sign- extension
4991 needs to be done. Handling this in the normal way is safe because no
4992 computation is done before the call. The same is true for SSA names. */
4993 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4994 && COMPLETE_TYPE_P (TREE_TYPE (from))
4995 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4996 && ! (((TREE_CODE (to) == VAR_DECL
4997 || TREE_CODE (to) == PARM_DECL
4998 || TREE_CODE (to) == RESULT_DECL)
4999 && REG_P (DECL_RTL (to)))
5000 || TREE_CODE (to) == SSA_NAME))
5002 rtx value;
5004 push_temp_slots ();
5005 value = expand_normal (from);
5006 if (to_rtx == 0)
5007 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5009 /* Handle calls that return values in multiple non-contiguous locations.
5010 The Irix 6 ABI has examples of this. */
5011 if (GET_CODE (to_rtx) == PARALLEL)
5013 if (GET_CODE (value) == PARALLEL)
5014 emit_group_move (to_rtx, value);
5015 else
5016 emit_group_load (to_rtx, value, TREE_TYPE (from),
5017 int_size_in_bytes (TREE_TYPE (from)));
5019 else if (GET_CODE (value) == PARALLEL)
5020 emit_group_store (to_rtx, value, TREE_TYPE (from),
5021 int_size_in_bytes (TREE_TYPE (from)));
5022 else if (GET_MODE (to_rtx) == BLKmode)
5024 /* Handle calls that return BLKmode values in registers. */
5025 if (REG_P (value))
5026 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5027 else
5028 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5030 else
5032 if (POINTER_TYPE_P (TREE_TYPE (to)))
5033 value = convert_memory_address_addr_space
5034 (GET_MODE (to_rtx), value,
5035 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5037 emit_move_insn (to_rtx, value);
5039 preserve_temp_slots (to_rtx);
5040 pop_temp_slots ();
5041 return;
5044 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5045 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5047 /* Don't move directly into a return register. */
5048 if (TREE_CODE (to) == RESULT_DECL
5049 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5051 rtx temp;
5053 push_temp_slots ();
5055 /* If the source is itself a return value, it still is in a pseudo at
5056 this point so we can move it back to the return register directly. */
5057 if (REG_P (to_rtx)
5058 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5059 && TREE_CODE (from) != CALL_EXPR)
5060 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5061 else
5062 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5064 /* Handle calls that return values in multiple non-contiguous locations.
5065 The Irix 6 ABI has examples of this. */
5066 if (GET_CODE (to_rtx) == PARALLEL)
5068 if (GET_CODE (temp) == PARALLEL)
5069 emit_group_move (to_rtx, temp);
5070 else
5071 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5072 int_size_in_bytes (TREE_TYPE (from)));
5074 else if (temp)
5075 emit_move_insn (to_rtx, temp);
5077 preserve_temp_slots (to_rtx);
5078 pop_temp_slots ();
5079 return;
5082 /* In case we are returning the contents of an object which overlaps
5083 the place the value is being stored, use a safe function when copying
5084 a value through a pointer into a structure value return block. */
5085 if (TREE_CODE (to) == RESULT_DECL
5086 && TREE_CODE (from) == INDIRECT_REF
5087 && ADDR_SPACE_GENERIC_P
5088 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5089 && refs_may_alias_p (to, from)
5090 && cfun->returns_struct
5091 && !cfun->returns_pcc_struct)
5093 rtx from_rtx, size;
5095 push_temp_slots ();
5096 size = expr_size (from);
5097 from_rtx = expand_normal (from);
5099 emit_library_call (memmove_libfunc, LCT_NORMAL,
5100 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5101 XEXP (from_rtx, 0), Pmode,
5102 convert_to_mode (TYPE_MODE (sizetype),
5103 size, TYPE_UNSIGNED (sizetype)),
5104 TYPE_MODE (sizetype));
5106 preserve_temp_slots (to_rtx);
5107 pop_temp_slots ();
5108 return;
5111 /* Compute FROM and store the value in the rtx we got. */
5113 push_temp_slots ();
5114 result = store_expr (from, to_rtx, 0, nontemporal);
5115 preserve_temp_slots (result);
5116 pop_temp_slots ();
5117 return;
5120 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5121 succeeded, false otherwise. */
5123 bool
5124 emit_storent_insn (rtx to, rtx from)
5126 struct expand_operand ops[2];
5127 enum machine_mode mode = GET_MODE (to);
5128 enum insn_code code = optab_handler (storent_optab, mode);
5130 if (code == CODE_FOR_nothing)
5131 return false;
5133 create_fixed_operand (&ops[0], to);
5134 create_input_operand (&ops[1], from, mode);
5135 return maybe_expand_insn (code, 2, ops);
5138 /* Generate code for computing expression EXP,
5139 and storing the value into TARGET.
5141 If the mode is BLKmode then we may return TARGET itself.
5142 It turns out that in BLKmode it doesn't cause a problem.
5143 because C has no operators that could combine two different
5144 assignments into the same BLKmode object with different values
5145 with no sequence point. Will other languages need this to
5146 be more thorough?
5148 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5149 stack, and block moves may need to be treated specially.
5151 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5154 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5156 rtx temp;
5157 rtx alt_rtl = NULL_RTX;
5158 location_t loc = curr_insn_location ();
5160 if (VOID_TYPE_P (TREE_TYPE (exp)))
5162 /* C++ can generate ?: expressions with a throw expression in one
5163 branch and an rvalue in the other. Here, we resolve attempts to
5164 store the throw expression's nonexistent result. */
5165 gcc_assert (!call_param_p);
5166 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5167 return NULL_RTX;
5169 if (TREE_CODE (exp) == COMPOUND_EXPR)
5171 /* Perform first part of compound expression, then assign from second
5172 part. */
5173 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5174 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5175 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5176 nontemporal);
5178 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5180 /* For conditional expression, get safe form of the target. Then
5181 test the condition, doing the appropriate assignment on either
5182 side. This avoids the creation of unnecessary temporaries.
5183 For non-BLKmode, it is more efficient not to do this. */
5185 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
5187 do_pending_stack_adjust ();
5188 NO_DEFER_POP;
5189 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5190 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5191 nontemporal);
5192 emit_jump_insn (gen_jump (lab2));
5193 emit_barrier ();
5194 emit_label (lab1);
5195 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5196 nontemporal);
5197 emit_label (lab2);
5198 OK_DEFER_POP;
5200 return NULL_RTX;
5202 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5203 /* If this is a scalar in a register that is stored in a wider mode
5204 than the declared mode, compute the result into its declared mode
5205 and then convert to the wider mode. Our value is the computed
5206 expression. */
5208 rtx inner_target = 0;
5210 /* We can do the conversion inside EXP, which will often result
5211 in some optimizations. Do the conversion in two steps: first
5212 change the signedness, if needed, then the extend. But don't
5213 do this if the type of EXP is a subtype of something else
5214 since then the conversion might involve more than just
5215 converting modes. */
5216 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5217 && TREE_TYPE (TREE_TYPE (exp)) == 0
5218 && GET_MODE_PRECISION (GET_MODE (target))
5219 == TYPE_PRECISION (TREE_TYPE (exp)))
5221 if (TYPE_UNSIGNED (TREE_TYPE (exp))
5222 != SUBREG_PROMOTED_UNSIGNED_P (target))
5224 /* Some types, e.g. Fortran's logical*4, won't have a signed
5225 version, so use the mode instead. */
5226 tree ntype
5227 = (signed_or_unsigned_type_for
5228 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
5229 if (ntype == NULL)
5230 ntype = lang_hooks.types.type_for_mode
5231 (TYPE_MODE (TREE_TYPE (exp)),
5232 SUBREG_PROMOTED_UNSIGNED_P (target));
5234 exp = fold_convert_loc (loc, ntype, exp);
5237 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5238 (GET_MODE (SUBREG_REG (target)),
5239 SUBREG_PROMOTED_UNSIGNED_P (target)),
5240 exp);
5242 inner_target = SUBREG_REG (target);
5245 temp = expand_expr (exp, inner_target, VOIDmode,
5246 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5248 /* If TEMP is a VOIDmode constant, use convert_modes to make
5249 sure that we properly convert it. */
5250 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5252 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5253 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
5254 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5255 GET_MODE (target), temp,
5256 SUBREG_PROMOTED_UNSIGNED_P (target));
5259 convert_move (SUBREG_REG (target), temp,
5260 SUBREG_PROMOTED_UNSIGNED_P (target));
5262 return NULL_RTX;
5264 else if ((TREE_CODE (exp) == STRING_CST
5265 || (TREE_CODE (exp) == MEM_REF
5266 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5267 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5268 == STRING_CST
5269 && integer_zerop (TREE_OPERAND (exp, 1))))
5270 && !nontemporal && !call_param_p
5271 && MEM_P (target))
5273 /* Optimize initialization of an array with a STRING_CST. */
5274 HOST_WIDE_INT exp_len, str_copy_len;
5275 rtx dest_mem;
5276 tree str = TREE_CODE (exp) == STRING_CST
5277 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5279 exp_len = int_expr_size (exp);
5280 if (exp_len <= 0)
5281 goto normal_expr;
5283 if (TREE_STRING_LENGTH (str) <= 0)
5284 goto normal_expr;
5286 str_copy_len = strlen (TREE_STRING_POINTER (str));
5287 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5288 goto normal_expr;
5290 str_copy_len = TREE_STRING_LENGTH (str);
5291 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5292 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5294 str_copy_len += STORE_MAX_PIECES - 1;
5295 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5297 str_copy_len = MIN (str_copy_len, exp_len);
5298 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5299 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5300 MEM_ALIGN (target), false))
5301 goto normal_expr;
5303 dest_mem = target;
5305 dest_mem = store_by_pieces (dest_mem,
5306 str_copy_len, builtin_strncpy_read_str,
5307 CONST_CAST (char *,
5308 TREE_STRING_POINTER (str)),
5309 MEM_ALIGN (target), false,
5310 exp_len > str_copy_len ? 1 : 0);
5311 if (exp_len > str_copy_len)
5312 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5313 GEN_INT (exp_len - str_copy_len),
5314 BLOCK_OP_NORMAL);
5315 return NULL_RTX;
5317 else
5319 rtx tmp_target;
5321 normal_expr:
5322 /* If we want to use a nontemporal store, force the value to
5323 register first. */
5324 tmp_target = nontemporal ? NULL_RTX : target;
5325 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5326 (call_param_p
5327 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5328 &alt_rtl, false);
5331 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5332 the same as that of TARGET, adjust the constant. This is needed, for
5333 example, in case it is a CONST_DOUBLE and we want only a word-sized
5334 value. */
5335 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5336 && TREE_CODE (exp) != ERROR_MARK
5337 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5338 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5339 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5341 /* If value was not generated in the target, store it there.
5342 Convert the value to TARGET's type first if necessary and emit the
5343 pending incrementations that have been queued when expanding EXP.
5344 Note that we cannot emit the whole queue blindly because this will
5345 effectively disable the POST_INC optimization later.
5347 If TEMP and TARGET compare equal according to rtx_equal_p, but
5348 one or both of them are volatile memory refs, we have to distinguish
5349 two cases:
5350 - expand_expr has used TARGET. In this case, we must not generate
5351 another copy. This can be detected by TARGET being equal according
5352 to == .
5353 - expand_expr has not used TARGET - that means that the source just
5354 happens to have the same RTX form. Since temp will have been created
5355 by expand_expr, it will compare unequal according to == .
5356 We must generate a copy in this case, to reach the correct number
5357 of volatile memory references. */
5359 if ((! rtx_equal_p (temp, target)
5360 || (temp != target && (side_effects_p (temp)
5361 || side_effects_p (target))))
5362 && TREE_CODE (exp) != ERROR_MARK
5363 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5364 but TARGET is not valid memory reference, TEMP will differ
5365 from TARGET although it is really the same location. */
5366 && !(alt_rtl
5367 && rtx_equal_p (alt_rtl, target)
5368 && !side_effects_p (alt_rtl)
5369 && !side_effects_p (target))
5370 /* If there's nothing to copy, don't bother. Don't call
5371 expr_size unless necessary, because some front-ends (C++)
5372 expr_size-hook must not be given objects that are not
5373 supposed to be bit-copied or bit-initialized. */
5374 && expr_size (exp) != const0_rtx)
5376 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5378 if (GET_MODE (target) == BLKmode)
5380 /* Handle calls that return BLKmode values in registers. */
5381 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5382 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5383 else
5384 store_bit_field (target,
5385 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5386 0, 0, 0, GET_MODE (temp), temp);
5388 else
5389 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5392 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5394 /* Handle copying a string constant into an array. The string
5395 constant may be shorter than the array. So copy just the string's
5396 actual length, and clear the rest. First get the size of the data
5397 type of the string, which is actually the size of the target. */
5398 rtx size = expr_size (exp);
5400 if (CONST_INT_P (size)
5401 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5402 emit_block_move (target, temp, size,
5403 (call_param_p
5404 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5405 else
5407 enum machine_mode pointer_mode
5408 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5409 enum machine_mode address_mode = get_address_mode (target);
5411 /* Compute the size of the data to copy from the string. */
5412 tree copy_size
5413 = size_binop_loc (loc, MIN_EXPR,
5414 make_tree (sizetype, size),
5415 size_int (TREE_STRING_LENGTH (exp)));
5416 rtx copy_size_rtx
5417 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5418 (call_param_p
5419 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5420 rtx label = 0;
5422 /* Copy that much. */
5423 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5424 TYPE_UNSIGNED (sizetype));
5425 emit_block_move (target, temp, copy_size_rtx,
5426 (call_param_p
5427 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5429 /* Figure out how much is left in TARGET that we have to clear.
5430 Do all calculations in pointer_mode. */
5431 if (CONST_INT_P (copy_size_rtx))
5433 size = plus_constant (address_mode, size,
5434 -INTVAL (copy_size_rtx));
5435 target = adjust_address (target, BLKmode,
5436 INTVAL (copy_size_rtx));
5438 else
5440 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5441 copy_size_rtx, NULL_RTX, 0,
5442 OPTAB_LIB_WIDEN);
5444 if (GET_MODE (copy_size_rtx) != address_mode)
5445 copy_size_rtx = convert_to_mode (address_mode,
5446 copy_size_rtx,
5447 TYPE_UNSIGNED (sizetype));
5449 target = offset_address (target, copy_size_rtx,
5450 highest_pow2_factor (copy_size));
5451 label = gen_label_rtx ();
5452 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5453 GET_MODE (size), 0, label);
5456 if (size != const0_rtx)
5457 clear_storage (target, size, BLOCK_OP_NORMAL);
5459 if (label)
5460 emit_label (label);
5463 /* Handle calls that return values in multiple non-contiguous locations.
5464 The Irix 6 ABI has examples of this. */
5465 else if (GET_CODE (target) == PARALLEL)
5467 if (GET_CODE (temp) == PARALLEL)
5468 emit_group_move (target, temp);
5469 else
5470 emit_group_load (target, temp, TREE_TYPE (exp),
5471 int_size_in_bytes (TREE_TYPE (exp)));
5473 else if (GET_CODE (temp) == PARALLEL)
5474 emit_group_store (target, temp, TREE_TYPE (exp),
5475 int_size_in_bytes (TREE_TYPE (exp)));
5476 else if (GET_MODE (temp) == BLKmode)
5477 emit_block_move (target, temp, expr_size (exp),
5478 (call_param_p
5479 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5480 /* If we emit a nontemporal store, there is nothing else to do. */
5481 else if (nontemporal && emit_storent_insn (target, temp))
5483 else
5485 temp = force_operand (temp, target);
5486 if (temp != target)
5487 emit_move_insn (target, temp);
5491 return NULL_RTX;
5494 /* Return true if field F of structure TYPE is a flexible array. */
5496 static bool
5497 flexible_array_member_p (const_tree f, const_tree type)
5499 const_tree tf;
5501 tf = TREE_TYPE (f);
5502 return (DECL_CHAIN (f) == NULL
5503 && TREE_CODE (tf) == ARRAY_TYPE
5504 && TYPE_DOMAIN (tf)
5505 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5506 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5507 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5508 && int_size_in_bytes (type) >= 0);
5511 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5512 must have in order for it to completely initialize a value of type TYPE.
5513 Return -1 if the number isn't known.
5515 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5517 static HOST_WIDE_INT
5518 count_type_elements (const_tree type, bool for_ctor_p)
5520 switch (TREE_CODE (type))
5522 case ARRAY_TYPE:
5524 tree nelts;
5526 nelts = array_type_nelts (type);
5527 if (nelts && tree_fits_uhwi_p (nelts))
5529 unsigned HOST_WIDE_INT n;
5531 n = tree_to_uhwi (nelts) + 1;
5532 if (n == 0 || for_ctor_p)
5533 return n;
5534 else
5535 return n * count_type_elements (TREE_TYPE (type), false);
5537 return for_ctor_p ? -1 : 1;
5540 case RECORD_TYPE:
5542 unsigned HOST_WIDE_INT n;
5543 tree f;
5545 n = 0;
5546 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5547 if (TREE_CODE (f) == FIELD_DECL)
5549 if (!for_ctor_p)
5550 n += count_type_elements (TREE_TYPE (f), false);
5551 else if (!flexible_array_member_p (f, type))
5552 /* Don't count flexible arrays, which are not supposed
5553 to be initialized. */
5554 n += 1;
5557 return n;
5560 case UNION_TYPE:
5561 case QUAL_UNION_TYPE:
5563 tree f;
5564 HOST_WIDE_INT n, m;
5566 gcc_assert (!for_ctor_p);
5567 /* Estimate the number of scalars in each field and pick the
5568 maximum. Other estimates would do instead; the idea is simply
5569 to make sure that the estimate is not sensitive to the ordering
5570 of the fields. */
5571 n = 1;
5572 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5573 if (TREE_CODE (f) == FIELD_DECL)
5575 m = count_type_elements (TREE_TYPE (f), false);
5576 /* If the field doesn't span the whole union, add an extra
5577 scalar for the rest. */
5578 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5579 TYPE_SIZE (type)) != 1)
5580 m++;
5581 if (n < m)
5582 n = m;
5584 return n;
5587 case COMPLEX_TYPE:
5588 return 2;
5590 case VECTOR_TYPE:
5591 return TYPE_VECTOR_SUBPARTS (type);
5593 case INTEGER_TYPE:
5594 case REAL_TYPE:
5595 case FIXED_POINT_TYPE:
5596 case ENUMERAL_TYPE:
5597 case BOOLEAN_TYPE:
5598 case POINTER_TYPE:
5599 case OFFSET_TYPE:
5600 case REFERENCE_TYPE:
5601 case NULLPTR_TYPE:
5602 return 1;
5604 case ERROR_MARK:
5605 return 0;
5607 case VOID_TYPE:
5608 case METHOD_TYPE:
5609 case FUNCTION_TYPE:
5610 case LANG_TYPE:
5611 default:
5612 gcc_unreachable ();
5616 /* Helper for categorize_ctor_elements. Identical interface. */
5618 static bool
5619 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5620 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5622 unsigned HOST_WIDE_INT idx;
5623 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5624 tree value, purpose, elt_type;
5626 /* Whether CTOR is a valid constant initializer, in accordance with what
5627 initializer_constant_valid_p does. If inferred from the constructor
5628 elements, true until proven otherwise. */
5629 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5630 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5632 nz_elts = 0;
5633 init_elts = 0;
5634 num_fields = 0;
5635 elt_type = NULL_TREE;
5637 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5639 HOST_WIDE_INT mult = 1;
5641 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5643 tree lo_index = TREE_OPERAND (purpose, 0);
5644 tree hi_index = TREE_OPERAND (purpose, 1);
5646 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5647 mult = (tree_to_uhwi (hi_index)
5648 - tree_to_uhwi (lo_index) + 1);
5650 num_fields += mult;
5651 elt_type = TREE_TYPE (value);
5653 switch (TREE_CODE (value))
5655 case CONSTRUCTOR:
5657 HOST_WIDE_INT nz = 0, ic = 0;
5659 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5660 p_complete);
5662 nz_elts += mult * nz;
5663 init_elts += mult * ic;
5665 if (const_from_elts_p && const_p)
5666 const_p = const_elt_p;
5668 break;
5670 case INTEGER_CST:
5671 case REAL_CST:
5672 case FIXED_CST:
5673 if (!initializer_zerop (value))
5674 nz_elts += mult;
5675 init_elts += mult;
5676 break;
5678 case STRING_CST:
5679 nz_elts += mult * TREE_STRING_LENGTH (value);
5680 init_elts += mult * TREE_STRING_LENGTH (value);
5681 break;
5683 case COMPLEX_CST:
5684 if (!initializer_zerop (TREE_REALPART (value)))
5685 nz_elts += mult;
5686 if (!initializer_zerop (TREE_IMAGPART (value)))
5687 nz_elts += mult;
5688 init_elts += mult;
5689 break;
5691 case VECTOR_CST:
5693 unsigned i;
5694 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5696 tree v = VECTOR_CST_ELT (value, i);
5697 if (!initializer_zerop (v))
5698 nz_elts += mult;
5699 init_elts += mult;
5702 break;
5704 default:
5706 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5707 nz_elts += mult * tc;
5708 init_elts += mult * tc;
5710 if (const_from_elts_p && const_p)
5711 const_p = initializer_constant_valid_p (value, elt_type)
5712 != NULL_TREE;
5714 break;
5718 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5719 num_fields, elt_type))
5720 *p_complete = false;
5722 *p_nz_elts += nz_elts;
5723 *p_init_elts += init_elts;
5725 return const_p;
5728 /* Examine CTOR to discover:
5729 * how many scalar fields are set to nonzero values,
5730 and place it in *P_NZ_ELTS;
5731 * how many scalar fields in total are in CTOR,
5732 and place it in *P_ELT_COUNT.
5733 * whether the constructor is complete -- in the sense that every
5734 meaningful byte is explicitly given a value --
5735 and place it in *P_COMPLETE.
5737 Return whether or not CTOR is a valid static constant initializer, the same
5738 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5740 bool
5741 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5742 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5744 *p_nz_elts = 0;
5745 *p_init_elts = 0;
5746 *p_complete = true;
5748 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5751 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5752 of which had type LAST_TYPE. Each element was itself a complete
5753 initializer, in the sense that every meaningful byte was explicitly
5754 given a value. Return true if the same is true for the constructor
5755 as a whole. */
5757 bool
5758 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5759 const_tree last_type)
5761 if (TREE_CODE (type) == UNION_TYPE
5762 || TREE_CODE (type) == QUAL_UNION_TYPE)
5764 if (num_elts == 0)
5765 return false;
5767 gcc_assert (num_elts == 1 && last_type);
5769 /* ??? We could look at each element of the union, and find the
5770 largest element. Which would avoid comparing the size of the
5771 initialized element against any tail padding in the union.
5772 Doesn't seem worth the effort... */
5773 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5776 return count_type_elements (type, true) == num_elts;
5779 /* Return 1 if EXP contains mostly (3/4) zeros. */
5781 static int
5782 mostly_zeros_p (const_tree exp)
5784 if (TREE_CODE (exp) == CONSTRUCTOR)
5786 HOST_WIDE_INT nz_elts, init_elts;
5787 bool complete_p;
5789 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5790 return !complete_p || nz_elts < init_elts / 4;
5793 return initializer_zerop (exp);
5796 /* Return 1 if EXP contains all zeros. */
5798 static int
5799 all_zeros_p (const_tree exp)
5801 if (TREE_CODE (exp) == CONSTRUCTOR)
5803 HOST_WIDE_INT nz_elts, init_elts;
5804 bool complete_p;
5806 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5807 return nz_elts == 0;
5810 return initializer_zerop (exp);
5813 /* Helper function for store_constructor.
5814 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5815 CLEARED is as for store_constructor.
5816 ALIAS_SET is the alias set to use for any stores.
5818 This provides a recursive shortcut back to store_constructor when it isn't
5819 necessary to go through store_field. This is so that we can pass through
5820 the cleared field to let store_constructor know that we may not have to
5821 clear a substructure if the outer structure has already been cleared. */
5823 static void
5824 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5825 HOST_WIDE_INT bitpos, enum machine_mode mode,
5826 tree exp, int cleared, alias_set_type alias_set)
5828 if (TREE_CODE (exp) == CONSTRUCTOR
5829 /* We can only call store_constructor recursively if the size and
5830 bit position are on a byte boundary. */
5831 && bitpos % BITS_PER_UNIT == 0
5832 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5833 /* If we have a nonzero bitpos for a register target, then we just
5834 let store_field do the bitfield handling. This is unlikely to
5835 generate unnecessary clear instructions anyways. */
5836 && (bitpos == 0 || MEM_P (target)))
5838 if (MEM_P (target))
5839 target
5840 = adjust_address (target,
5841 GET_MODE (target) == BLKmode
5842 || 0 != (bitpos
5843 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5844 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5847 /* Update the alias set, if required. */
5848 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5849 && MEM_ALIAS_SET (target) != 0)
5851 target = copy_rtx (target);
5852 set_mem_alias_set (target, alias_set);
5855 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5857 else
5858 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5862 /* Returns the number of FIELD_DECLs in TYPE. */
5864 static int
5865 fields_length (const_tree type)
5867 tree t = TYPE_FIELDS (type);
5868 int count = 0;
5870 for (; t; t = DECL_CHAIN (t))
5871 if (TREE_CODE (t) == FIELD_DECL)
5872 ++count;
5874 return count;
5878 /* Store the value of constructor EXP into the rtx TARGET.
5879 TARGET is either a REG or a MEM; we know it cannot conflict, since
5880 safe_from_p has been called.
5881 CLEARED is true if TARGET is known to have been zero'd.
5882 SIZE is the number of bytes of TARGET we are allowed to modify: this
5883 may not be the same as the size of EXP if we are assigning to a field
5884 which has been packed to exclude padding bits. */
5886 static void
5887 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5889 tree type = TREE_TYPE (exp);
5890 #ifdef WORD_REGISTER_OPERATIONS
5891 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5892 #endif
5894 switch (TREE_CODE (type))
5896 case RECORD_TYPE:
5897 case UNION_TYPE:
5898 case QUAL_UNION_TYPE:
5900 unsigned HOST_WIDE_INT idx;
5901 tree field, value;
5903 /* If size is zero or the target is already cleared, do nothing. */
5904 if (size == 0 || cleared)
5905 cleared = 1;
5906 /* We either clear the aggregate or indicate the value is dead. */
5907 else if ((TREE_CODE (type) == UNION_TYPE
5908 || TREE_CODE (type) == QUAL_UNION_TYPE)
5909 && ! CONSTRUCTOR_ELTS (exp))
5910 /* If the constructor is empty, clear the union. */
5912 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5913 cleared = 1;
5916 /* If we are building a static constructor into a register,
5917 set the initial value as zero so we can fold the value into
5918 a constant. But if more than one register is involved,
5919 this probably loses. */
5920 else if (REG_P (target) && TREE_STATIC (exp)
5921 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5923 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5924 cleared = 1;
5927 /* If the constructor has fewer fields than the structure or
5928 if we are initializing the structure to mostly zeros, clear
5929 the whole structure first. Don't do this if TARGET is a
5930 register whose mode size isn't equal to SIZE since
5931 clear_storage can't handle this case. */
5932 else if (size > 0
5933 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
5934 != fields_length (type))
5935 || mostly_zeros_p (exp))
5936 && (!REG_P (target)
5937 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5938 == size)))
5940 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5941 cleared = 1;
5944 if (REG_P (target) && !cleared)
5945 emit_clobber (target);
5947 /* Store each element of the constructor into the
5948 corresponding field of TARGET. */
5949 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5951 enum machine_mode mode;
5952 HOST_WIDE_INT bitsize;
5953 HOST_WIDE_INT bitpos = 0;
5954 tree offset;
5955 rtx to_rtx = target;
5957 /* Just ignore missing fields. We cleared the whole
5958 structure, above, if any fields are missing. */
5959 if (field == 0)
5960 continue;
5962 if (cleared && initializer_zerop (value))
5963 continue;
5965 if (tree_fits_uhwi_p (DECL_SIZE (field)))
5966 bitsize = tree_to_uhwi (DECL_SIZE (field));
5967 else
5968 bitsize = -1;
5970 mode = DECL_MODE (field);
5971 if (DECL_BIT_FIELD (field))
5972 mode = VOIDmode;
5974 offset = DECL_FIELD_OFFSET (field);
5975 if (tree_fits_shwi_p (offset)
5976 && tree_fits_shwi_p (bit_position (field)))
5978 bitpos = int_bit_position (field);
5979 offset = 0;
5981 else
5982 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
5984 if (offset)
5986 enum machine_mode address_mode;
5987 rtx offset_rtx;
5989 offset
5990 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5991 make_tree (TREE_TYPE (exp),
5992 target));
5994 offset_rtx = expand_normal (offset);
5995 gcc_assert (MEM_P (to_rtx));
5997 address_mode = get_address_mode (to_rtx);
5998 if (GET_MODE (offset_rtx) != address_mode)
5999 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6001 to_rtx = offset_address (to_rtx, offset_rtx,
6002 highest_pow2_factor (offset));
6005 #ifdef WORD_REGISTER_OPERATIONS
6006 /* If this initializes a field that is smaller than a
6007 word, at the start of a word, try to widen it to a full
6008 word. This special case allows us to output C++ member
6009 function initializations in a form that the optimizers
6010 can understand. */
6011 if (REG_P (target)
6012 && bitsize < BITS_PER_WORD
6013 && bitpos % BITS_PER_WORD == 0
6014 && GET_MODE_CLASS (mode) == MODE_INT
6015 && TREE_CODE (value) == INTEGER_CST
6016 && exp_size >= 0
6017 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6019 tree type = TREE_TYPE (value);
6021 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6023 type = lang_hooks.types.type_for_mode
6024 (word_mode, TYPE_UNSIGNED (type));
6025 value = fold_convert (type, value);
6028 if (BYTES_BIG_ENDIAN)
6029 value
6030 = fold_build2 (LSHIFT_EXPR, type, value,
6031 build_int_cst (type,
6032 BITS_PER_WORD - bitsize));
6033 bitsize = BITS_PER_WORD;
6034 mode = word_mode;
6036 #endif
6038 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6039 && DECL_NONADDRESSABLE_P (field))
6041 to_rtx = copy_rtx (to_rtx);
6042 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6045 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6046 value, cleared,
6047 get_alias_set (TREE_TYPE (field)));
6049 break;
6051 case ARRAY_TYPE:
6053 tree value, index;
6054 unsigned HOST_WIDE_INT i;
6055 int need_to_clear;
6056 tree domain;
6057 tree elttype = TREE_TYPE (type);
6058 int const_bounds_p;
6059 HOST_WIDE_INT minelt = 0;
6060 HOST_WIDE_INT maxelt = 0;
6062 domain = TYPE_DOMAIN (type);
6063 const_bounds_p = (TYPE_MIN_VALUE (domain)
6064 && TYPE_MAX_VALUE (domain)
6065 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6066 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6068 /* If we have constant bounds for the range of the type, get them. */
6069 if (const_bounds_p)
6071 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6072 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6075 /* If the constructor has fewer elements than the array, clear
6076 the whole array first. Similarly if this is static
6077 constructor of a non-BLKmode object. */
6078 if (cleared)
6079 need_to_clear = 0;
6080 else if (REG_P (target) && TREE_STATIC (exp))
6081 need_to_clear = 1;
6082 else
6084 unsigned HOST_WIDE_INT idx;
6085 tree index, value;
6086 HOST_WIDE_INT count = 0, zero_count = 0;
6087 need_to_clear = ! const_bounds_p;
6089 /* This loop is a more accurate version of the loop in
6090 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6091 is also needed to check for missing elements. */
6092 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6094 HOST_WIDE_INT this_node_count;
6096 if (need_to_clear)
6097 break;
6099 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6101 tree lo_index = TREE_OPERAND (index, 0);
6102 tree hi_index = TREE_OPERAND (index, 1);
6104 if (! tree_fits_uhwi_p (lo_index)
6105 || ! tree_fits_uhwi_p (hi_index))
6107 need_to_clear = 1;
6108 break;
6111 this_node_count = (tree_to_uhwi (hi_index)
6112 - tree_to_uhwi (lo_index) + 1);
6114 else
6115 this_node_count = 1;
6117 count += this_node_count;
6118 if (mostly_zeros_p (value))
6119 zero_count += this_node_count;
6122 /* Clear the entire array first if there are any missing
6123 elements, or if the incidence of zero elements is >=
6124 75%. */
6125 if (! need_to_clear
6126 && (count < maxelt - minelt + 1
6127 || 4 * zero_count >= 3 * count))
6128 need_to_clear = 1;
6131 if (need_to_clear && size > 0)
6133 if (REG_P (target))
6134 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6135 else
6136 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6137 cleared = 1;
6140 if (!cleared && REG_P (target))
6141 /* Inform later passes that the old value is dead. */
6142 emit_clobber (target);
6144 /* Store each element of the constructor into the
6145 corresponding element of TARGET, determined by counting the
6146 elements. */
6147 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6149 enum machine_mode mode;
6150 HOST_WIDE_INT bitsize;
6151 HOST_WIDE_INT bitpos;
6152 rtx xtarget = target;
6154 if (cleared && initializer_zerop (value))
6155 continue;
6157 mode = TYPE_MODE (elttype);
6158 if (mode == BLKmode)
6159 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6160 ? tree_to_uhwi (TYPE_SIZE (elttype))
6161 : -1);
6162 else
6163 bitsize = GET_MODE_BITSIZE (mode);
6165 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6167 tree lo_index = TREE_OPERAND (index, 0);
6168 tree hi_index = TREE_OPERAND (index, 1);
6169 rtx index_r, pos_rtx;
6170 HOST_WIDE_INT lo, hi, count;
6171 tree position;
6173 /* If the range is constant and "small", unroll the loop. */
6174 if (const_bounds_p
6175 && tree_fits_shwi_p (lo_index)
6176 && tree_fits_shwi_p (hi_index)
6177 && (lo = tree_to_shwi (lo_index),
6178 hi = tree_to_shwi (hi_index),
6179 count = hi - lo + 1,
6180 (!MEM_P (target)
6181 || count <= 2
6182 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6183 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6184 <= 40 * 8)))))
6186 lo -= minelt; hi -= minelt;
6187 for (; lo <= hi; lo++)
6189 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6191 if (MEM_P (target)
6192 && !MEM_KEEP_ALIAS_SET_P (target)
6193 && TREE_CODE (type) == ARRAY_TYPE
6194 && TYPE_NONALIASED_COMPONENT (type))
6196 target = copy_rtx (target);
6197 MEM_KEEP_ALIAS_SET_P (target) = 1;
6200 store_constructor_field
6201 (target, bitsize, bitpos, mode, value, cleared,
6202 get_alias_set (elttype));
6205 else
6207 rtx loop_start = gen_label_rtx ();
6208 rtx loop_end = gen_label_rtx ();
6209 tree exit_cond;
6211 expand_normal (hi_index);
6213 index = build_decl (EXPR_LOCATION (exp),
6214 VAR_DECL, NULL_TREE, domain);
6215 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6216 SET_DECL_RTL (index, index_r);
6217 store_expr (lo_index, index_r, 0, false);
6219 /* Build the head of the loop. */
6220 do_pending_stack_adjust ();
6221 emit_label (loop_start);
6223 /* Assign value to element index. */
6224 position =
6225 fold_convert (ssizetype,
6226 fold_build2 (MINUS_EXPR,
6227 TREE_TYPE (index),
6228 index,
6229 TYPE_MIN_VALUE (domain)));
6231 position =
6232 size_binop (MULT_EXPR, position,
6233 fold_convert (ssizetype,
6234 TYPE_SIZE_UNIT (elttype)));
6236 pos_rtx = expand_normal (position);
6237 xtarget = offset_address (target, pos_rtx,
6238 highest_pow2_factor (position));
6239 xtarget = adjust_address (xtarget, mode, 0);
6240 if (TREE_CODE (value) == CONSTRUCTOR)
6241 store_constructor (value, xtarget, cleared,
6242 bitsize / BITS_PER_UNIT);
6243 else
6244 store_expr (value, xtarget, 0, false);
6246 /* Generate a conditional jump to exit the loop. */
6247 exit_cond = build2 (LT_EXPR, integer_type_node,
6248 index, hi_index);
6249 jumpif (exit_cond, loop_end, -1);
6251 /* Update the loop counter, and jump to the head of
6252 the loop. */
6253 expand_assignment (index,
6254 build2 (PLUS_EXPR, TREE_TYPE (index),
6255 index, integer_one_node),
6256 false);
6258 emit_jump (loop_start);
6260 /* Build the end of the loop. */
6261 emit_label (loop_end);
6264 else if ((index != 0 && ! tree_fits_shwi_p (index))
6265 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6267 tree position;
6269 if (index == 0)
6270 index = ssize_int (1);
6272 if (minelt)
6273 index = fold_convert (ssizetype,
6274 fold_build2 (MINUS_EXPR,
6275 TREE_TYPE (index),
6276 index,
6277 TYPE_MIN_VALUE (domain)));
6279 position =
6280 size_binop (MULT_EXPR, index,
6281 fold_convert (ssizetype,
6282 TYPE_SIZE_UNIT (elttype)));
6283 xtarget = offset_address (target,
6284 expand_normal (position),
6285 highest_pow2_factor (position));
6286 xtarget = adjust_address (xtarget, mode, 0);
6287 store_expr (value, xtarget, 0, false);
6289 else
6291 if (index != 0)
6292 bitpos = ((tree_to_shwi (index) - minelt)
6293 * tree_to_uhwi (TYPE_SIZE (elttype)));
6294 else
6295 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6297 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6298 && TREE_CODE (type) == ARRAY_TYPE
6299 && TYPE_NONALIASED_COMPONENT (type))
6301 target = copy_rtx (target);
6302 MEM_KEEP_ALIAS_SET_P (target) = 1;
6304 store_constructor_field (target, bitsize, bitpos, mode, value,
6305 cleared, get_alias_set (elttype));
6308 break;
6311 case VECTOR_TYPE:
6313 unsigned HOST_WIDE_INT idx;
6314 constructor_elt *ce;
6315 int i;
6316 int need_to_clear;
6317 int icode = CODE_FOR_nothing;
6318 tree elttype = TREE_TYPE (type);
6319 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6320 enum machine_mode eltmode = TYPE_MODE (elttype);
6321 HOST_WIDE_INT bitsize;
6322 HOST_WIDE_INT bitpos;
6323 rtvec vector = NULL;
6324 unsigned n_elts;
6325 alias_set_type alias;
6327 gcc_assert (eltmode != BLKmode);
6329 n_elts = TYPE_VECTOR_SUBPARTS (type);
6330 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6332 enum machine_mode mode = GET_MODE (target);
6334 icode = (int) optab_handler (vec_init_optab, mode);
6335 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6336 if (icode != CODE_FOR_nothing)
6338 tree value;
6340 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6341 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6343 icode = CODE_FOR_nothing;
6344 break;
6347 if (icode != CODE_FOR_nothing)
6349 unsigned int i;
6351 vector = rtvec_alloc (n_elts);
6352 for (i = 0; i < n_elts; i++)
6353 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6357 /* If the constructor has fewer elements than the vector,
6358 clear the whole array first. Similarly if this is static
6359 constructor of a non-BLKmode object. */
6360 if (cleared)
6361 need_to_clear = 0;
6362 else if (REG_P (target) && TREE_STATIC (exp))
6363 need_to_clear = 1;
6364 else
6366 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6367 tree value;
6369 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6371 int n_elts_here = tree_to_uhwi
6372 (int_const_binop (TRUNC_DIV_EXPR,
6373 TYPE_SIZE (TREE_TYPE (value)),
6374 TYPE_SIZE (elttype)));
6376 count += n_elts_here;
6377 if (mostly_zeros_p (value))
6378 zero_count += n_elts_here;
6381 /* Clear the entire vector first if there are any missing elements,
6382 or if the incidence of zero elements is >= 75%. */
6383 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6386 if (need_to_clear && size > 0 && !vector)
6388 if (REG_P (target))
6389 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6390 else
6391 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6392 cleared = 1;
6395 /* Inform later passes that the old value is dead. */
6396 if (!cleared && !vector && REG_P (target))
6397 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6399 if (MEM_P (target))
6400 alias = MEM_ALIAS_SET (target);
6401 else
6402 alias = get_alias_set (elttype);
6404 /* Store each element of the constructor into the corresponding
6405 element of TARGET, determined by counting the elements. */
6406 for (idx = 0, i = 0;
6407 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6408 idx++, i += bitsize / elt_size)
6410 HOST_WIDE_INT eltpos;
6411 tree value = ce->value;
6413 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6414 if (cleared && initializer_zerop (value))
6415 continue;
6417 if (ce->index)
6418 eltpos = tree_to_uhwi (ce->index);
6419 else
6420 eltpos = i;
6422 if (vector)
6424 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6425 elements. */
6426 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6427 RTVEC_ELT (vector, eltpos)
6428 = expand_normal (value);
6430 else
6432 enum machine_mode value_mode =
6433 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6434 ? TYPE_MODE (TREE_TYPE (value))
6435 : eltmode;
6436 bitpos = eltpos * elt_size;
6437 store_constructor_field (target, bitsize, bitpos, value_mode,
6438 value, cleared, alias);
6442 if (vector)
6443 emit_insn (GEN_FCN (icode)
6444 (target,
6445 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6446 break;
6449 default:
6450 gcc_unreachable ();
6454 /* Store the value of EXP (an expression tree)
6455 into a subfield of TARGET which has mode MODE and occupies
6456 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6457 If MODE is VOIDmode, it means that we are storing into a bit-field.
6459 BITREGION_START is bitpos of the first bitfield in this region.
6460 BITREGION_END is the bitpos of the ending bitfield in this region.
6461 These two fields are 0, if the C++ memory model does not apply,
6462 or we are not interested in keeping track of bitfield regions.
6464 Always return const0_rtx unless we have something particular to
6465 return.
6467 ALIAS_SET is the alias set for the destination. This value will
6468 (in general) be different from that for TARGET, since TARGET is a
6469 reference to the containing structure.
6471 If NONTEMPORAL is true, try generating a nontemporal store. */
6473 static rtx
6474 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6475 unsigned HOST_WIDE_INT bitregion_start,
6476 unsigned HOST_WIDE_INT bitregion_end,
6477 enum machine_mode mode, tree exp,
6478 alias_set_type alias_set, bool nontemporal)
6480 if (TREE_CODE (exp) == ERROR_MARK)
6481 return const0_rtx;
6483 /* If we have nothing to store, do nothing unless the expression has
6484 side-effects. */
6485 if (bitsize == 0)
6486 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6488 if (GET_CODE (target) == CONCAT)
6490 /* We're storing into a struct containing a single __complex. */
6492 gcc_assert (!bitpos);
6493 return store_expr (exp, target, 0, nontemporal);
6496 /* If the structure is in a register or if the component
6497 is a bit field, we cannot use addressing to access it.
6498 Use bit-field techniques or SUBREG to store in it. */
6500 if (mode == VOIDmode
6501 || (mode != BLKmode && ! direct_store[(int) mode]
6502 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6503 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6504 || REG_P (target)
6505 || GET_CODE (target) == SUBREG
6506 /* If the field isn't aligned enough to store as an ordinary memref,
6507 store it as a bit field. */
6508 || (mode != BLKmode
6509 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6510 || bitpos % GET_MODE_ALIGNMENT (mode))
6511 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6512 || (bitpos % BITS_PER_UNIT != 0)))
6513 || (bitsize >= 0 && mode != BLKmode
6514 && GET_MODE_BITSIZE (mode) > bitsize)
6515 /* If the RHS and field are a constant size and the size of the
6516 RHS isn't the same size as the bitfield, we must use bitfield
6517 operations. */
6518 || (bitsize >= 0
6519 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6520 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6521 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6522 decl we must use bitfield operations. */
6523 || (bitsize >= 0
6524 && TREE_CODE (exp) == MEM_REF
6525 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6526 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6527 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6528 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6530 rtx temp;
6531 gimple nop_def;
6533 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6534 implies a mask operation. If the precision is the same size as
6535 the field we're storing into, that mask is redundant. This is
6536 particularly common with bit field assignments generated by the
6537 C front end. */
6538 nop_def = get_def_for_expr (exp, NOP_EXPR);
6539 if (nop_def)
6541 tree type = TREE_TYPE (exp);
6542 if (INTEGRAL_TYPE_P (type)
6543 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6544 && bitsize == TYPE_PRECISION (type))
6546 tree op = gimple_assign_rhs1 (nop_def);
6547 type = TREE_TYPE (op);
6548 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6549 exp = op;
6553 temp = expand_normal (exp);
6555 /* If BITSIZE is narrower than the size of the type of EXP
6556 we will be narrowing TEMP. Normally, what's wanted are the
6557 low-order bits. However, if EXP's type is a record and this is
6558 big-endian machine, we want the upper BITSIZE bits. */
6559 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6560 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6561 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6562 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6563 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6564 NULL_RTX, 1);
6566 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6567 if (mode != VOIDmode && mode != BLKmode
6568 && mode != TYPE_MODE (TREE_TYPE (exp)))
6569 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6571 /* If the modes of TEMP and TARGET are both BLKmode, both
6572 must be in memory and BITPOS must be aligned on a byte
6573 boundary. If so, we simply do a block copy. Likewise
6574 for a BLKmode-like TARGET. */
6575 if (GET_MODE (temp) == BLKmode
6576 && (GET_MODE (target) == BLKmode
6577 || (MEM_P (target)
6578 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6579 && (bitpos % BITS_PER_UNIT) == 0
6580 && (bitsize % BITS_PER_UNIT) == 0)))
6582 gcc_assert (MEM_P (target) && MEM_P (temp)
6583 && (bitpos % BITS_PER_UNIT) == 0);
6585 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6586 emit_block_move (target, temp,
6587 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6588 / BITS_PER_UNIT),
6589 BLOCK_OP_NORMAL);
6591 return const0_rtx;
6594 /* Handle calls that return values in multiple non-contiguous locations.
6595 The Irix 6 ABI has examples of this. */
6596 if (GET_CODE (temp) == PARALLEL)
6598 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6599 rtx temp_target;
6600 if (mode == BLKmode)
6601 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6602 temp_target = gen_reg_rtx (mode);
6603 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6604 temp = temp_target;
6606 else if (mode == BLKmode)
6608 /* Handle calls that return BLKmode values in registers. */
6609 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6611 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6612 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6613 temp = temp_target;
6615 else
6617 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6618 rtx temp_target;
6619 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6620 temp_target = gen_reg_rtx (mode);
6621 temp_target
6622 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6623 temp_target, mode, mode);
6624 temp = temp_target;
6628 /* Store the value in the bitfield. */
6629 store_bit_field (target, bitsize, bitpos,
6630 bitregion_start, bitregion_end,
6631 mode, temp);
6633 return const0_rtx;
6635 else
6637 /* Now build a reference to just the desired component. */
6638 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6640 if (to_rtx == target)
6641 to_rtx = copy_rtx (to_rtx);
6643 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6644 set_mem_alias_set (to_rtx, alias_set);
6646 return store_expr (exp, to_rtx, 0, nontemporal);
6650 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6651 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6652 codes and find the ultimate containing object, which we return.
6654 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6655 bit position, and *PUNSIGNEDP to the signedness of the field.
6656 If the position of the field is variable, we store a tree
6657 giving the variable offset (in units) in *POFFSET.
6658 This offset is in addition to the bit position.
6659 If the position is not variable, we store 0 in *POFFSET.
6661 If any of the extraction expressions is volatile,
6662 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6664 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6665 Otherwise, it is a mode that can be used to access the field.
6667 If the field describes a variable-sized object, *PMODE is set to
6668 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6669 this case, but the address of the object can be found.
6671 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6672 look through nodes that serve as markers of a greater alignment than
6673 the one that can be deduced from the expression. These nodes make it
6674 possible for front-ends to prevent temporaries from being created by
6675 the middle-end on alignment considerations. For that purpose, the
6676 normal operating mode at high-level is to always pass FALSE so that
6677 the ultimate containing object is really returned; moreover, the
6678 associated predicate handled_component_p will always return TRUE
6679 on these nodes, thus indicating that they are essentially handled
6680 by get_inner_reference. TRUE should only be passed when the caller
6681 is scanning the expression in order to build another representation
6682 and specifically knows how to handle these nodes; as such, this is
6683 the normal operating mode in the RTL expanders. */
6685 tree
6686 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6687 HOST_WIDE_INT *pbitpos, tree *poffset,
6688 enum machine_mode *pmode, int *punsignedp,
6689 int *pvolatilep, bool keep_aligning)
6691 tree size_tree = 0;
6692 enum machine_mode mode = VOIDmode;
6693 bool blkmode_bitfield = false;
6694 tree offset = size_zero_node;
6695 double_int bit_offset = double_int_zero;
6697 /* First get the mode, signedness, and size. We do this from just the
6698 outermost expression. */
6699 *pbitsize = -1;
6700 if (TREE_CODE (exp) == COMPONENT_REF)
6702 tree field = TREE_OPERAND (exp, 1);
6703 size_tree = DECL_SIZE (field);
6704 if (flag_strict_volatile_bitfields > 0
6705 && TREE_THIS_VOLATILE (exp)
6706 && DECL_BIT_FIELD_TYPE (field)
6707 && DECL_MODE (field) != BLKmode)
6708 /* Volatile bitfields should be accessed in the mode of the
6709 field's type, not the mode computed based on the bit
6710 size. */
6711 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6712 else if (!DECL_BIT_FIELD (field))
6713 mode = DECL_MODE (field);
6714 else if (DECL_MODE (field) == BLKmode)
6715 blkmode_bitfield = true;
6717 *punsignedp = DECL_UNSIGNED (field);
6719 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6721 size_tree = TREE_OPERAND (exp, 1);
6722 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6723 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6725 /* For vector types, with the correct size of access, use the mode of
6726 inner type. */
6727 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6728 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6729 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6730 mode = TYPE_MODE (TREE_TYPE (exp));
6732 else
6734 mode = TYPE_MODE (TREE_TYPE (exp));
6735 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6737 if (mode == BLKmode)
6738 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6739 else
6740 *pbitsize = GET_MODE_BITSIZE (mode);
6743 if (size_tree != 0)
6745 if (! tree_fits_uhwi_p (size_tree))
6746 mode = BLKmode, *pbitsize = -1;
6747 else
6748 *pbitsize = tree_to_uhwi (size_tree);
6751 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6752 and find the ultimate containing object. */
6753 while (1)
6755 switch (TREE_CODE (exp))
6757 case BIT_FIELD_REF:
6758 bit_offset += tree_to_double_int (TREE_OPERAND (exp, 2));
6759 break;
6761 case COMPONENT_REF:
6763 tree field = TREE_OPERAND (exp, 1);
6764 tree this_offset = component_ref_field_offset (exp);
6766 /* If this field hasn't been filled in yet, don't go past it.
6767 This should only happen when folding expressions made during
6768 type construction. */
6769 if (this_offset == 0)
6770 break;
6772 offset = size_binop (PLUS_EXPR, offset, this_offset);
6773 bit_offset += tree_to_double_int (DECL_FIELD_BIT_OFFSET (field));
6775 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6777 break;
6779 case ARRAY_REF:
6780 case ARRAY_RANGE_REF:
6782 tree index = TREE_OPERAND (exp, 1);
6783 tree low_bound = array_ref_low_bound (exp);
6784 tree unit_size = array_ref_element_size (exp);
6786 /* We assume all arrays have sizes that are a multiple of a byte.
6787 First subtract the lower bound, if any, in the type of the
6788 index, then convert to sizetype and multiply by the size of
6789 the array element. */
6790 if (! integer_zerop (low_bound))
6791 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6792 index, low_bound);
6794 offset = size_binop (PLUS_EXPR, offset,
6795 size_binop (MULT_EXPR,
6796 fold_convert (sizetype, index),
6797 unit_size));
6799 break;
6801 case REALPART_EXPR:
6802 break;
6804 case IMAGPART_EXPR:
6805 bit_offset += double_int::from_uhwi (*pbitsize);
6806 break;
6808 case VIEW_CONVERT_EXPR:
6809 if (keep_aligning && STRICT_ALIGNMENT
6810 && (TYPE_ALIGN (TREE_TYPE (exp))
6811 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6812 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6813 < BIGGEST_ALIGNMENT)
6814 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6815 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6816 goto done;
6817 break;
6819 case MEM_REF:
6820 /* Hand back the decl for MEM[&decl, off]. */
6821 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6823 tree off = TREE_OPERAND (exp, 1);
6824 if (!integer_zerop (off))
6826 double_int boff, coff = mem_ref_offset (exp);
6827 boff = coff.lshift (BITS_PER_UNIT == 8
6828 ? 3 : exact_log2 (BITS_PER_UNIT));
6829 bit_offset += boff;
6831 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6833 goto done;
6835 default:
6836 goto done;
6839 /* If any reference in the chain is volatile, the effect is volatile. */
6840 if (TREE_THIS_VOLATILE (exp))
6841 *pvolatilep = 1;
6843 exp = TREE_OPERAND (exp, 0);
6845 done:
6847 /* If OFFSET is constant, see if we can return the whole thing as a
6848 constant bit position. Make sure to handle overflow during
6849 this conversion. */
6850 if (TREE_CODE (offset) == INTEGER_CST)
6852 double_int tem = tree_to_double_int (offset);
6853 tem = tem.sext (TYPE_PRECISION (sizetype));
6854 tem = tem.lshift (BITS_PER_UNIT == 8 ? 3 : exact_log2 (BITS_PER_UNIT));
6855 tem += bit_offset;
6856 if (tem.fits_shwi ())
6858 *pbitpos = tem.to_shwi ();
6859 *poffset = offset = NULL_TREE;
6863 /* Otherwise, split it up. */
6864 if (offset)
6866 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6867 if (bit_offset.is_negative ())
6869 double_int mask
6870 = double_int::mask (BITS_PER_UNIT == 8
6871 ? 3 : exact_log2 (BITS_PER_UNIT));
6872 double_int tem = bit_offset.and_not (mask);
6873 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6874 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6875 bit_offset -= tem;
6876 tem = tem.arshift (BITS_PER_UNIT == 8
6877 ? 3 : exact_log2 (BITS_PER_UNIT),
6878 HOST_BITS_PER_DOUBLE_INT);
6879 offset = size_binop (PLUS_EXPR, offset,
6880 double_int_to_tree (sizetype, tem));
6883 *pbitpos = bit_offset.to_shwi ();
6884 *poffset = offset;
6887 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6888 if (mode == VOIDmode
6889 && blkmode_bitfield
6890 && (*pbitpos % BITS_PER_UNIT) == 0
6891 && (*pbitsize % BITS_PER_UNIT) == 0)
6892 *pmode = BLKmode;
6893 else
6894 *pmode = mode;
6896 return exp;
6899 /* Return a tree of sizetype representing the size, in bytes, of the element
6900 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6902 tree
6903 array_ref_element_size (tree exp)
6905 tree aligned_size = TREE_OPERAND (exp, 3);
6906 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6907 location_t loc = EXPR_LOCATION (exp);
6909 /* If a size was specified in the ARRAY_REF, it's the size measured
6910 in alignment units of the element type. So multiply by that value. */
6911 if (aligned_size)
6913 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6914 sizetype from another type of the same width and signedness. */
6915 if (TREE_TYPE (aligned_size) != sizetype)
6916 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6917 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6918 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6921 /* Otherwise, take the size from that of the element type. Substitute
6922 any PLACEHOLDER_EXPR that we have. */
6923 else
6924 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6927 /* Return a tree representing the lower bound of the array mentioned in
6928 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6930 tree
6931 array_ref_low_bound (tree exp)
6933 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6935 /* If a lower bound is specified in EXP, use it. */
6936 if (TREE_OPERAND (exp, 2))
6937 return TREE_OPERAND (exp, 2);
6939 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6940 substituting for a PLACEHOLDER_EXPR as needed. */
6941 if (domain_type && TYPE_MIN_VALUE (domain_type))
6942 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6944 /* Otherwise, return a zero of the appropriate type. */
6945 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6948 /* Returns true if REF is an array reference to an array at the end of
6949 a structure. If this is the case, the array may be allocated larger
6950 than its upper bound implies. */
6952 bool
6953 array_at_struct_end_p (tree ref)
6955 if (TREE_CODE (ref) != ARRAY_REF
6956 && TREE_CODE (ref) != ARRAY_RANGE_REF)
6957 return false;
6959 while (handled_component_p (ref))
6961 /* If the reference chain contains a component reference to a
6962 non-union type and there follows another field the reference
6963 is not at the end of a structure. */
6964 if (TREE_CODE (ref) == COMPONENT_REF
6965 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
6967 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
6968 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
6969 nextf = DECL_CHAIN (nextf);
6970 if (nextf)
6971 return false;
6974 ref = TREE_OPERAND (ref, 0);
6977 /* If the reference is based on a declared entity, the size of the array
6978 is constrained by its given domain. */
6979 if (DECL_P (ref))
6980 return false;
6982 return true;
6985 /* Return a tree representing the upper bound of the array mentioned in
6986 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6988 tree
6989 array_ref_up_bound (tree exp)
6991 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6993 /* If there is a domain type and it has an upper bound, use it, substituting
6994 for a PLACEHOLDER_EXPR as needed. */
6995 if (domain_type && TYPE_MAX_VALUE (domain_type))
6996 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6998 /* Otherwise fail. */
6999 return NULL_TREE;
7002 /* Return a tree representing the offset, in bytes, of the field referenced
7003 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7005 tree
7006 component_ref_field_offset (tree exp)
7008 tree aligned_offset = TREE_OPERAND (exp, 2);
7009 tree field = TREE_OPERAND (exp, 1);
7010 location_t loc = EXPR_LOCATION (exp);
7012 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7013 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7014 value. */
7015 if (aligned_offset)
7017 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7018 sizetype from another type of the same width and signedness. */
7019 if (TREE_TYPE (aligned_offset) != sizetype)
7020 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7021 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7022 size_int (DECL_OFFSET_ALIGN (field)
7023 / BITS_PER_UNIT));
7026 /* Otherwise, take the offset from that of the field. Substitute
7027 any PLACEHOLDER_EXPR that we have. */
7028 else
7029 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7032 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7034 static unsigned HOST_WIDE_INT
7035 target_align (const_tree target)
7037 /* We might have a chain of nested references with intermediate misaligning
7038 bitfields components, so need to recurse to find out. */
7040 unsigned HOST_WIDE_INT this_align, outer_align;
7042 switch (TREE_CODE (target))
7044 case BIT_FIELD_REF:
7045 return 1;
7047 case COMPONENT_REF:
7048 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7049 outer_align = target_align (TREE_OPERAND (target, 0));
7050 return MIN (this_align, outer_align);
7052 case ARRAY_REF:
7053 case ARRAY_RANGE_REF:
7054 this_align = TYPE_ALIGN (TREE_TYPE (target));
7055 outer_align = target_align (TREE_OPERAND (target, 0));
7056 return MIN (this_align, outer_align);
7058 CASE_CONVERT:
7059 case NON_LVALUE_EXPR:
7060 case VIEW_CONVERT_EXPR:
7061 this_align = TYPE_ALIGN (TREE_TYPE (target));
7062 outer_align = target_align (TREE_OPERAND (target, 0));
7063 return MAX (this_align, outer_align);
7065 default:
7066 return TYPE_ALIGN (TREE_TYPE (target));
7071 /* Given an rtx VALUE that may contain additions and multiplications, return
7072 an equivalent value that just refers to a register, memory, or constant.
7073 This is done by generating instructions to perform the arithmetic and
7074 returning a pseudo-register containing the value.
7076 The returned value may be a REG, SUBREG, MEM or constant. */
7079 force_operand (rtx value, rtx target)
7081 rtx op1, op2;
7082 /* Use subtarget as the target for operand 0 of a binary operation. */
7083 rtx subtarget = get_subtarget (target);
7084 enum rtx_code code = GET_CODE (value);
7086 /* Check for subreg applied to an expression produced by loop optimizer. */
7087 if (code == SUBREG
7088 && !REG_P (SUBREG_REG (value))
7089 && !MEM_P (SUBREG_REG (value)))
7091 value
7092 = simplify_gen_subreg (GET_MODE (value),
7093 force_reg (GET_MODE (SUBREG_REG (value)),
7094 force_operand (SUBREG_REG (value),
7095 NULL_RTX)),
7096 GET_MODE (SUBREG_REG (value)),
7097 SUBREG_BYTE (value));
7098 code = GET_CODE (value);
7101 /* Check for a PIC address load. */
7102 if ((code == PLUS || code == MINUS)
7103 && XEXP (value, 0) == pic_offset_table_rtx
7104 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7105 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7106 || GET_CODE (XEXP (value, 1)) == CONST))
7108 if (!subtarget)
7109 subtarget = gen_reg_rtx (GET_MODE (value));
7110 emit_move_insn (subtarget, value);
7111 return subtarget;
7114 if (ARITHMETIC_P (value))
7116 op2 = XEXP (value, 1);
7117 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7118 subtarget = 0;
7119 if (code == MINUS && CONST_INT_P (op2))
7121 code = PLUS;
7122 op2 = negate_rtx (GET_MODE (value), op2);
7125 /* Check for an addition with OP2 a constant integer and our first
7126 operand a PLUS of a virtual register and something else. In that
7127 case, we want to emit the sum of the virtual register and the
7128 constant first and then add the other value. This allows virtual
7129 register instantiation to simply modify the constant rather than
7130 creating another one around this addition. */
7131 if (code == PLUS && CONST_INT_P (op2)
7132 && GET_CODE (XEXP (value, 0)) == PLUS
7133 && REG_P (XEXP (XEXP (value, 0), 0))
7134 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7135 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7137 rtx temp = expand_simple_binop (GET_MODE (value), code,
7138 XEXP (XEXP (value, 0), 0), op2,
7139 subtarget, 0, OPTAB_LIB_WIDEN);
7140 return expand_simple_binop (GET_MODE (value), code, temp,
7141 force_operand (XEXP (XEXP (value,
7142 0), 1), 0),
7143 target, 0, OPTAB_LIB_WIDEN);
7146 op1 = force_operand (XEXP (value, 0), subtarget);
7147 op2 = force_operand (op2, NULL_RTX);
7148 switch (code)
7150 case MULT:
7151 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7152 case DIV:
7153 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7154 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7155 target, 1, OPTAB_LIB_WIDEN);
7156 else
7157 return expand_divmod (0,
7158 FLOAT_MODE_P (GET_MODE (value))
7159 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7160 GET_MODE (value), op1, op2, target, 0);
7161 case MOD:
7162 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7163 target, 0);
7164 case UDIV:
7165 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7166 target, 1);
7167 case UMOD:
7168 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7169 target, 1);
7170 case ASHIFTRT:
7171 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7172 target, 0, OPTAB_LIB_WIDEN);
7173 default:
7174 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7175 target, 1, OPTAB_LIB_WIDEN);
7178 if (UNARY_P (value))
7180 if (!target)
7181 target = gen_reg_rtx (GET_MODE (value));
7182 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7183 switch (code)
7185 case ZERO_EXTEND:
7186 case SIGN_EXTEND:
7187 case TRUNCATE:
7188 case FLOAT_EXTEND:
7189 case FLOAT_TRUNCATE:
7190 convert_move (target, op1, code == ZERO_EXTEND);
7191 return target;
7193 case FIX:
7194 case UNSIGNED_FIX:
7195 expand_fix (target, op1, code == UNSIGNED_FIX);
7196 return target;
7198 case FLOAT:
7199 case UNSIGNED_FLOAT:
7200 expand_float (target, op1, code == UNSIGNED_FLOAT);
7201 return target;
7203 default:
7204 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7208 #ifdef INSN_SCHEDULING
7209 /* On machines that have insn scheduling, we want all memory reference to be
7210 explicit, so we need to deal with such paradoxical SUBREGs. */
7211 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7212 value
7213 = simplify_gen_subreg (GET_MODE (value),
7214 force_reg (GET_MODE (SUBREG_REG (value)),
7215 force_operand (SUBREG_REG (value),
7216 NULL_RTX)),
7217 GET_MODE (SUBREG_REG (value)),
7218 SUBREG_BYTE (value));
7219 #endif
7221 return value;
7224 /* Subroutine of expand_expr: return nonzero iff there is no way that
7225 EXP can reference X, which is being modified. TOP_P is nonzero if this
7226 call is going to be used to determine whether we need a temporary
7227 for EXP, as opposed to a recursive call to this function.
7229 It is always safe for this routine to return zero since it merely
7230 searches for optimization opportunities. */
7233 safe_from_p (const_rtx x, tree exp, int top_p)
7235 rtx exp_rtl = 0;
7236 int i, nops;
7238 if (x == 0
7239 /* If EXP has varying size, we MUST use a target since we currently
7240 have no way of allocating temporaries of variable size
7241 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7242 So we assume here that something at a higher level has prevented a
7243 clash. This is somewhat bogus, but the best we can do. Only
7244 do this when X is BLKmode and when we are at the top level. */
7245 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7246 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7247 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7248 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7249 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7250 != INTEGER_CST)
7251 && GET_MODE (x) == BLKmode)
7252 /* If X is in the outgoing argument area, it is always safe. */
7253 || (MEM_P (x)
7254 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7255 || (GET_CODE (XEXP (x, 0)) == PLUS
7256 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7257 return 1;
7259 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7260 find the underlying pseudo. */
7261 if (GET_CODE (x) == SUBREG)
7263 x = SUBREG_REG (x);
7264 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7265 return 0;
7268 /* Now look at our tree code and possibly recurse. */
7269 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7271 case tcc_declaration:
7272 exp_rtl = DECL_RTL_IF_SET (exp);
7273 break;
7275 case tcc_constant:
7276 return 1;
7278 case tcc_exceptional:
7279 if (TREE_CODE (exp) == TREE_LIST)
7281 while (1)
7283 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7284 return 0;
7285 exp = TREE_CHAIN (exp);
7286 if (!exp)
7287 return 1;
7288 if (TREE_CODE (exp) != TREE_LIST)
7289 return safe_from_p (x, exp, 0);
7292 else if (TREE_CODE (exp) == CONSTRUCTOR)
7294 constructor_elt *ce;
7295 unsigned HOST_WIDE_INT idx;
7297 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7298 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7299 || !safe_from_p (x, ce->value, 0))
7300 return 0;
7301 return 1;
7303 else if (TREE_CODE (exp) == ERROR_MARK)
7304 return 1; /* An already-visited SAVE_EXPR? */
7305 else
7306 return 0;
7308 case tcc_statement:
7309 /* The only case we look at here is the DECL_INITIAL inside a
7310 DECL_EXPR. */
7311 return (TREE_CODE (exp) != DECL_EXPR
7312 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7313 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7314 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7316 case tcc_binary:
7317 case tcc_comparison:
7318 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7319 return 0;
7320 /* Fall through. */
7322 case tcc_unary:
7323 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7325 case tcc_expression:
7326 case tcc_reference:
7327 case tcc_vl_exp:
7328 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7329 the expression. If it is set, we conflict iff we are that rtx or
7330 both are in memory. Otherwise, we check all operands of the
7331 expression recursively. */
7333 switch (TREE_CODE (exp))
7335 case ADDR_EXPR:
7336 /* If the operand is static or we are static, we can't conflict.
7337 Likewise if we don't conflict with the operand at all. */
7338 if (staticp (TREE_OPERAND (exp, 0))
7339 || TREE_STATIC (exp)
7340 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7341 return 1;
7343 /* Otherwise, the only way this can conflict is if we are taking
7344 the address of a DECL a that address if part of X, which is
7345 very rare. */
7346 exp = TREE_OPERAND (exp, 0);
7347 if (DECL_P (exp))
7349 if (!DECL_RTL_SET_P (exp)
7350 || !MEM_P (DECL_RTL (exp)))
7351 return 0;
7352 else
7353 exp_rtl = XEXP (DECL_RTL (exp), 0);
7355 break;
7357 case MEM_REF:
7358 if (MEM_P (x)
7359 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7360 get_alias_set (exp)))
7361 return 0;
7362 break;
7364 case CALL_EXPR:
7365 /* Assume that the call will clobber all hard registers and
7366 all of memory. */
7367 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7368 || MEM_P (x))
7369 return 0;
7370 break;
7372 case WITH_CLEANUP_EXPR:
7373 case CLEANUP_POINT_EXPR:
7374 /* Lowered by gimplify.c. */
7375 gcc_unreachable ();
7377 case SAVE_EXPR:
7378 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7380 default:
7381 break;
7384 /* If we have an rtx, we do not need to scan our operands. */
7385 if (exp_rtl)
7386 break;
7388 nops = TREE_OPERAND_LENGTH (exp);
7389 for (i = 0; i < nops; i++)
7390 if (TREE_OPERAND (exp, i) != 0
7391 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7392 return 0;
7394 break;
7396 case tcc_type:
7397 /* Should never get a type here. */
7398 gcc_unreachable ();
7401 /* If we have an rtl, find any enclosed object. Then see if we conflict
7402 with it. */
7403 if (exp_rtl)
7405 if (GET_CODE (exp_rtl) == SUBREG)
7407 exp_rtl = SUBREG_REG (exp_rtl);
7408 if (REG_P (exp_rtl)
7409 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7410 return 0;
7413 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7414 are memory and they conflict. */
7415 return ! (rtx_equal_p (x, exp_rtl)
7416 || (MEM_P (x) && MEM_P (exp_rtl)
7417 && true_dependence (exp_rtl, VOIDmode, x)));
7420 /* If we reach here, it is safe. */
7421 return 1;
7425 /* Return the highest power of two that EXP is known to be a multiple of.
7426 This is used in updating alignment of MEMs in array references. */
7428 unsigned HOST_WIDE_INT
7429 highest_pow2_factor (const_tree exp)
7431 unsigned HOST_WIDE_INT ret;
7432 int trailing_zeros = tree_ctz (exp);
7433 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7434 return BIGGEST_ALIGNMENT;
7435 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7436 if (ret > BIGGEST_ALIGNMENT)
7437 return BIGGEST_ALIGNMENT;
7438 return ret;
7441 /* Similar, except that the alignment requirements of TARGET are
7442 taken into account. Assume it is at least as aligned as its
7443 type, unless it is a COMPONENT_REF in which case the layout of
7444 the structure gives the alignment. */
7446 static unsigned HOST_WIDE_INT
7447 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7449 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7450 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7452 return MAX (factor, talign);
7455 #ifdef HAVE_conditional_move
7456 /* Convert the tree comparison code TCODE to the rtl one where the
7457 signedness is UNSIGNEDP. */
7459 static enum rtx_code
7460 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7462 enum rtx_code code;
7463 switch (tcode)
7465 case EQ_EXPR:
7466 code = EQ;
7467 break;
7468 case NE_EXPR:
7469 code = NE;
7470 break;
7471 case LT_EXPR:
7472 code = unsignedp ? LTU : LT;
7473 break;
7474 case LE_EXPR:
7475 code = unsignedp ? LEU : LE;
7476 break;
7477 case GT_EXPR:
7478 code = unsignedp ? GTU : GT;
7479 break;
7480 case GE_EXPR:
7481 code = unsignedp ? GEU : GE;
7482 break;
7483 case UNORDERED_EXPR:
7484 code = UNORDERED;
7485 break;
7486 case ORDERED_EXPR:
7487 code = ORDERED;
7488 break;
7489 case UNLT_EXPR:
7490 code = UNLT;
7491 break;
7492 case UNLE_EXPR:
7493 code = UNLE;
7494 break;
7495 case UNGT_EXPR:
7496 code = UNGT;
7497 break;
7498 case UNGE_EXPR:
7499 code = UNGE;
7500 break;
7501 case UNEQ_EXPR:
7502 code = UNEQ;
7503 break;
7504 case LTGT_EXPR:
7505 code = LTGT;
7506 break;
7508 default:
7509 gcc_unreachable ();
7511 return code;
7513 #endif
7515 /* Subroutine of expand_expr. Expand the two operands of a binary
7516 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7517 The value may be stored in TARGET if TARGET is nonzero. The
7518 MODIFIER argument is as documented by expand_expr. */
7520 static void
7521 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7522 enum expand_modifier modifier)
7524 if (! safe_from_p (target, exp1, 1))
7525 target = 0;
7526 if (operand_equal_p (exp0, exp1, 0))
7528 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7529 *op1 = copy_rtx (*op0);
7531 else
7533 /* If we need to preserve evaluation order, copy exp0 into its own
7534 temporary variable so that it can't be clobbered by exp1. */
7535 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7536 exp0 = save_expr (exp0);
7537 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7538 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7543 /* Return a MEM that contains constant EXP. DEFER is as for
7544 output_constant_def and MODIFIER is as for expand_expr. */
7546 static rtx
7547 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7549 rtx mem;
7551 mem = output_constant_def (exp, defer);
7552 if (modifier != EXPAND_INITIALIZER)
7553 mem = use_anchored_address (mem);
7554 return mem;
7557 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7558 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7560 static rtx
7561 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7562 enum expand_modifier modifier, addr_space_t as)
7564 rtx result, subtarget;
7565 tree inner, offset;
7566 HOST_WIDE_INT bitsize, bitpos;
7567 int volatilep, unsignedp;
7568 enum machine_mode mode1;
7570 /* If we are taking the address of a constant and are at the top level,
7571 we have to use output_constant_def since we can't call force_const_mem
7572 at top level. */
7573 /* ??? This should be considered a front-end bug. We should not be
7574 generating ADDR_EXPR of something that isn't an LVALUE. The only
7575 exception here is STRING_CST. */
7576 if (CONSTANT_CLASS_P (exp))
7578 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7579 if (modifier < EXPAND_SUM)
7580 result = force_operand (result, target);
7581 return result;
7584 /* Everything must be something allowed by is_gimple_addressable. */
7585 switch (TREE_CODE (exp))
7587 case INDIRECT_REF:
7588 /* This case will happen via recursion for &a->b. */
7589 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7591 case MEM_REF:
7593 tree tem = TREE_OPERAND (exp, 0);
7594 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7595 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7596 return expand_expr (tem, target, tmode, modifier);
7599 case CONST_DECL:
7600 /* Expand the initializer like constants above. */
7601 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7602 0, modifier), 0);
7603 if (modifier < EXPAND_SUM)
7604 result = force_operand (result, target);
7605 return result;
7607 case REALPART_EXPR:
7608 /* The real part of the complex number is always first, therefore
7609 the address is the same as the address of the parent object. */
7610 offset = 0;
7611 bitpos = 0;
7612 inner = TREE_OPERAND (exp, 0);
7613 break;
7615 case IMAGPART_EXPR:
7616 /* The imaginary part of the complex number is always second.
7617 The expression is therefore always offset by the size of the
7618 scalar type. */
7619 offset = 0;
7620 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7621 inner = TREE_OPERAND (exp, 0);
7622 break;
7624 case COMPOUND_LITERAL_EXPR:
7625 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7626 rtl_for_decl_init is called on DECL_INITIAL with
7627 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7628 if (modifier == EXPAND_INITIALIZER
7629 && COMPOUND_LITERAL_EXPR_DECL (exp))
7630 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7631 target, tmode, modifier, as);
7632 /* FALLTHRU */
7633 default:
7634 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7635 expand_expr, as that can have various side effects; LABEL_DECLs for
7636 example, may not have their DECL_RTL set yet. Expand the rtl of
7637 CONSTRUCTORs too, which should yield a memory reference for the
7638 constructor's contents. Assume language specific tree nodes can
7639 be expanded in some interesting way. */
7640 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7641 if (DECL_P (exp)
7642 || TREE_CODE (exp) == CONSTRUCTOR
7643 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7645 result = expand_expr (exp, target, tmode,
7646 modifier == EXPAND_INITIALIZER
7647 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7649 /* If the DECL isn't in memory, then the DECL wasn't properly
7650 marked TREE_ADDRESSABLE, which will be either a front-end
7651 or a tree optimizer bug. */
7653 if (TREE_ADDRESSABLE (exp)
7654 && ! MEM_P (result)
7655 && ! targetm.calls.allocate_stack_slots_for_args ())
7657 error ("local frame unavailable (naked function?)");
7658 return result;
7660 else
7661 gcc_assert (MEM_P (result));
7662 result = XEXP (result, 0);
7664 /* ??? Is this needed anymore? */
7665 if (DECL_P (exp))
7666 TREE_USED (exp) = 1;
7668 if (modifier != EXPAND_INITIALIZER
7669 && modifier != EXPAND_CONST_ADDRESS
7670 && modifier != EXPAND_SUM)
7671 result = force_operand (result, target);
7672 return result;
7675 /* Pass FALSE as the last argument to get_inner_reference although
7676 we are expanding to RTL. The rationale is that we know how to
7677 handle "aligning nodes" here: we can just bypass them because
7678 they won't change the final object whose address will be returned
7679 (they actually exist only for that purpose). */
7680 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7681 &mode1, &unsignedp, &volatilep, false);
7682 break;
7685 /* We must have made progress. */
7686 gcc_assert (inner != exp);
7688 subtarget = offset || bitpos ? NULL_RTX : target;
7689 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7690 inner alignment, force the inner to be sufficiently aligned. */
7691 if (CONSTANT_CLASS_P (inner)
7692 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7694 inner = copy_node (inner);
7695 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7696 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7697 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7699 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7701 if (offset)
7703 rtx tmp;
7705 if (modifier != EXPAND_NORMAL)
7706 result = force_operand (result, NULL);
7707 tmp = expand_expr (offset, NULL_RTX, tmode,
7708 modifier == EXPAND_INITIALIZER
7709 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7711 result = convert_memory_address_addr_space (tmode, result, as);
7712 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7714 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7715 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7716 else
7718 subtarget = bitpos ? NULL_RTX : target;
7719 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7720 1, OPTAB_LIB_WIDEN);
7724 if (bitpos)
7726 /* Someone beforehand should have rejected taking the address
7727 of such an object. */
7728 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7730 result = convert_memory_address_addr_space (tmode, result, as);
7731 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7732 if (modifier < EXPAND_SUM)
7733 result = force_operand (result, target);
7736 return result;
7739 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7740 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7742 static rtx
7743 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7744 enum expand_modifier modifier)
7746 addr_space_t as = ADDR_SPACE_GENERIC;
7747 enum machine_mode address_mode = Pmode;
7748 enum machine_mode pointer_mode = ptr_mode;
7749 enum machine_mode rmode;
7750 rtx result;
7752 /* Target mode of VOIDmode says "whatever's natural". */
7753 if (tmode == VOIDmode)
7754 tmode = TYPE_MODE (TREE_TYPE (exp));
7756 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7758 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7759 address_mode = targetm.addr_space.address_mode (as);
7760 pointer_mode = targetm.addr_space.pointer_mode (as);
7763 /* We can get called with some Weird Things if the user does silliness
7764 like "(short) &a". In that case, convert_memory_address won't do
7765 the right thing, so ignore the given target mode. */
7766 if (tmode != address_mode && tmode != pointer_mode)
7767 tmode = address_mode;
7769 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7770 tmode, modifier, as);
7772 /* Despite expand_expr claims concerning ignoring TMODE when not
7773 strictly convenient, stuff breaks if we don't honor it. Note
7774 that combined with the above, we only do this for pointer modes. */
7775 rmode = GET_MODE (result);
7776 if (rmode == VOIDmode)
7777 rmode = tmode;
7778 if (rmode != tmode)
7779 result = convert_memory_address_addr_space (tmode, result, as);
7781 return result;
7784 /* Generate code for computing CONSTRUCTOR EXP.
7785 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7786 is TRUE, instead of creating a temporary variable in memory
7787 NULL is returned and the caller needs to handle it differently. */
7789 static rtx
7790 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7791 bool avoid_temp_mem)
7793 tree type = TREE_TYPE (exp);
7794 enum machine_mode mode = TYPE_MODE (type);
7796 /* Try to avoid creating a temporary at all. This is possible
7797 if all of the initializer is zero.
7798 FIXME: try to handle all [0..255] initializers we can handle
7799 with memset. */
7800 if (TREE_STATIC (exp)
7801 && !TREE_ADDRESSABLE (exp)
7802 && target != 0 && mode == BLKmode
7803 && all_zeros_p (exp))
7805 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7806 return target;
7809 /* All elts simple constants => refer to a constant in memory. But
7810 if this is a non-BLKmode mode, let it store a field at a time
7811 since that should make a CONST_INT or CONST_DOUBLE when we
7812 fold. Likewise, if we have a target we can use, it is best to
7813 store directly into the target unless the type is large enough
7814 that memcpy will be used. If we are making an initializer and
7815 all operands are constant, put it in memory as well.
7817 FIXME: Avoid trying to fill vector constructors piece-meal.
7818 Output them with output_constant_def below unless we're sure
7819 they're zeros. This should go away when vector initializers
7820 are treated like VECTOR_CST instead of arrays. */
7821 if ((TREE_STATIC (exp)
7822 && ((mode == BLKmode
7823 && ! (target != 0 && safe_from_p (target, exp, 1)))
7824 || TREE_ADDRESSABLE (exp)
7825 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7826 && (! MOVE_BY_PIECES_P
7827 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7828 TYPE_ALIGN (type)))
7829 && ! mostly_zeros_p (exp))))
7830 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7831 && TREE_CONSTANT (exp)))
7833 rtx constructor;
7835 if (avoid_temp_mem)
7836 return NULL_RTX;
7838 constructor = expand_expr_constant (exp, 1, modifier);
7840 if (modifier != EXPAND_CONST_ADDRESS
7841 && modifier != EXPAND_INITIALIZER
7842 && modifier != EXPAND_SUM)
7843 constructor = validize_mem (constructor);
7845 return constructor;
7848 /* Handle calls that pass values in multiple non-contiguous
7849 locations. The Irix 6 ABI has examples of this. */
7850 if (target == 0 || ! safe_from_p (target, exp, 1)
7851 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7853 if (avoid_temp_mem)
7854 return NULL_RTX;
7856 target
7857 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7858 | (TREE_READONLY (exp)
7859 * TYPE_QUAL_CONST))),
7860 TREE_ADDRESSABLE (exp), 1);
7863 store_constructor (exp, target, 0, int_expr_size (exp));
7864 return target;
7868 /* expand_expr: generate code for computing expression EXP.
7869 An rtx for the computed value is returned. The value is never null.
7870 In the case of a void EXP, const0_rtx is returned.
7872 The value may be stored in TARGET if TARGET is nonzero.
7873 TARGET is just a suggestion; callers must assume that
7874 the rtx returned may not be the same as TARGET.
7876 If TARGET is CONST0_RTX, it means that the value will be ignored.
7878 If TMODE is not VOIDmode, it suggests generating the
7879 result in mode TMODE. But this is done only when convenient.
7880 Otherwise, TMODE is ignored and the value generated in its natural mode.
7881 TMODE is just a suggestion; callers must assume that
7882 the rtx returned may not have mode TMODE.
7884 Note that TARGET may have neither TMODE nor MODE. In that case, it
7885 probably will not be used.
7887 If MODIFIER is EXPAND_SUM then when EXP is an addition
7888 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7889 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7890 products as above, or REG or MEM, or constant.
7891 Ordinarily in such cases we would output mul or add instructions
7892 and then return a pseudo reg containing the sum.
7894 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7895 it also marks a label as absolutely required (it can't be dead).
7896 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7897 This is used for outputting expressions used in initializers.
7899 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7900 with a constant address even if that address is not normally legitimate.
7901 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7903 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7904 a call parameter. Such targets require special care as we haven't yet
7905 marked TARGET so that it's safe from being trashed by libcalls. We
7906 don't want to use TARGET for anything but the final result;
7907 Intermediate values must go elsewhere. Additionally, calls to
7908 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7910 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7911 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7912 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7913 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7914 recursively.
7916 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7917 In this case, we don't adjust a returned MEM rtx that wouldn't be
7918 sufficiently aligned for its mode; instead, it's up to the caller
7919 to deal with it afterwards. This is used to make sure that unaligned
7920 base objects for which out-of-bounds accesses are supported, for
7921 example record types with trailing arrays, aren't realigned behind
7922 the back of the caller.
7923 The normal operating mode is to pass FALSE for this parameter. */
7926 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7927 enum expand_modifier modifier, rtx *alt_rtl,
7928 bool inner_reference_p)
7930 rtx ret;
7932 /* Handle ERROR_MARK before anybody tries to access its type. */
7933 if (TREE_CODE (exp) == ERROR_MARK
7934 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7936 ret = CONST0_RTX (tmode);
7937 return ret ? ret : const0_rtx;
7940 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
7941 inner_reference_p);
7942 return ret;
7945 /* Try to expand the conditional expression which is represented by
7946 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7947 return the rtl reg which repsents the result. Otherwise return
7948 NULL_RTL. */
7950 static rtx
7951 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7952 tree treeop1 ATTRIBUTE_UNUSED,
7953 tree treeop2 ATTRIBUTE_UNUSED)
7955 #ifdef HAVE_conditional_move
7956 rtx insn;
7957 rtx op00, op01, op1, op2;
7958 enum rtx_code comparison_code;
7959 enum machine_mode comparison_mode;
7960 gimple srcstmt;
7961 rtx temp;
7962 tree type = TREE_TYPE (treeop1);
7963 int unsignedp = TYPE_UNSIGNED (type);
7964 enum machine_mode mode = TYPE_MODE (type);
7965 enum machine_mode orig_mode = mode;
7967 /* If we cannot do a conditional move on the mode, try doing it
7968 with the promoted mode. */
7969 if (!can_conditionally_move_p (mode))
7971 mode = promote_mode (type, mode, &unsignedp);
7972 if (!can_conditionally_move_p (mode))
7973 return NULL_RTX;
7974 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
7976 else
7977 temp = assign_temp (type, 0, 1);
7979 start_sequence ();
7980 expand_operands (treeop1, treeop2,
7981 temp, &op1, &op2, EXPAND_NORMAL);
7983 if (TREE_CODE (treeop0) == SSA_NAME
7984 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7986 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7987 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7988 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7989 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
7990 comparison_mode = TYPE_MODE (type);
7991 unsignedp = TYPE_UNSIGNED (type);
7992 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7994 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
7996 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
7997 enum tree_code cmpcode = TREE_CODE (treeop0);
7998 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
7999 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8000 unsignedp = TYPE_UNSIGNED (type);
8001 comparison_mode = TYPE_MODE (type);
8002 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8004 else
8006 op00 = expand_normal (treeop0);
8007 op01 = const0_rtx;
8008 comparison_code = NE;
8009 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8012 if (GET_MODE (op1) != mode)
8013 op1 = gen_lowpart (mode, op1);
8015 if (GET_MODE (op2) != mode)
8016 op2 = gen_lowpart (mode, op2);
8018 /* Try to emit the conditional move. */
8019 insn = emit_conditional_move (temp, comparison_code,
8020 op00, op01, comparison_mode,
8021 op1, op2, mode,
8022 unsignedp);
8024 /* If we could do the conditional move, emit the sequence,
8025 and return. */
8026 if (insn)
8028 rtx seq = get_insns ();
8029 end_sequence ();
8030 emit_insn (seq);
8031 return convert_modes (orig_mode, mode, temp, 0);
8034 /* Otherwise discard the sequence and fall back to code with
8035 branches. */
8036 end_sequence ();
8037 #endif
8038 return NULL_RTX;
8042 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
8043 enum expand_modifier modifier)
8045 rtx op0, op1, op2, temp;
8046 tree type;
8047 int unsignedp;
8048 enum machine_mode mode;
8049 enum tree_code code = ops->code;
8050 optab this_optab;
8051 rtx subtarget, original_target;
8052 int ignore;
8053 bool reduce_bit_field;
8054 location_t loc = ops->location;
8055 tree treeop0, treeop1, treeop2;
8056 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8057 ? reduce_to_bit_field_precision ((expr), \
8058 target, \
8059 type) \
8060 : (expr))
8062 type = ops->type;
8063 mode = TYPE_MODE (type);
8064 unsignedp = TYPE_UNSIGNED (type);
8066 treeop0 = ops->op0;
8067 treeop1 = ops->op1;
8068 treeop2 = ops->op2;
8070 /* We should be called only on simple (binary or unary) expressions,
8071 exactly those that are valid in gimple expressions that aren't
8072 GIMPLE_SINGLE_RHS (or invalid). */
8073 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8074 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8075 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8077 ignore = (target == const0_rtx
8078 || ((CONVERT_EXPR_CODE_P (code)
8079 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8080 && TREE_CODE (type) == VOID_TYPE));
8082 /* We should be called only if we need the result. */
8083 gcc_assert (!ignore);
8085 /* An operation in what may be a bit-field type needs the
8086 result to be reduced to the precision of the bit-field type,
8087 which is narrower than that of the type's mode. */
8088 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8089 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8091 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8092 target = 0;
8094 /* Use subtarget as the target for operand 0 of a binary operation. */
8095 subtarget = get_subtarget (target);
8096 original_target = target;
8098 switch (code)
8100 case NON_LVALUE_EXPR:
8101 case PAREN_EXPR:
8102 CASE_CONVERT:
8103 if (treeop0 == error_mark_node)
8104 return const0_rtx;
8106 if (TREE_CODE (type) == UNION_TYPE)
8108 tree valtype = TREE_TYPE (treeop0);
8110 /* If both input and output are BLKmode, this conversion isn't doing
8111 anything except possibly changing memory attribute. */
8112 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8114 rtx result = expand_expr (treeop0, target, tmode,
8115 modifier);
8117 result = copy_rtx (result);
8118 set_mem_attributes (result, type, 0);
8119 return result;
8122 if (target == 0)
8124 if (TYPE_MODE (type) != BLKmode)
8125 target = gen_reg_rtx (TYPE_MODE (type));
8126 else
8127 target = assign_temp (type, 1, 1);
8130 if (MEM_P (target))
8131 /* Store data into beginning of memory target. */
8132 store_expr (treeop0,
8133 adjust_address (target, TYPE_MODE (valtype), 0),
8134 modifier == EXPAND_STACK_PARM,
8135 false);
8137 else
8139 gcc_assert (REG_P (target));
8141 /* Store this field into a union of the proper type. */
8142 store_field (target,
8143 MIN ((int_size_in_bytes (TREE_TYPE
8144 (treeop0))
8145 * BITS_PER_UNIT),
8146 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8147 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8150 /* Return the entire union. */
8151 return target;
8154 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8156 op0 = expand_expr (treeop0, target, VOIDmode,
8157 modifier);
8159 /* If the signedness of the conversion differs and OP0 is
8160 a promoted SUBREG, clear that indication since we now
8161 have to do the proper extension. */
8162 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8163 && GET_CODE (op0) == SUBREG)
8164 SUBREG_PROMOTED_VAR_P (op0) = 0;
8166 return REDUCE_BIT_FIELD (op0);
8169 op0 = expand_expr (treeop0, NULL_RTX, mode,
8170 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8171 if (GET_MODE (op0) == mode)
8174 /* If OP0 is a constant, just convert it into the proper mode. */
8175 else if (CONSTANT_P (op0))
8177 tree inner_type = TREE_TYPE (treeop0);
8178 enum machine_mode inner_mode = GET_MODE (op0);
8180 if (inner_mode == VOIDmode)
8181 inner_mode = TYPE_MODE (inner_type);
8183 if (modifier == EXPAND_INITIALIZER)
8184 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8185 subreg_lowpart_offset (mode,
8186 inner_mode));
8187 else
8188 op0= convert_modes (mode, inner_mode, op0,
8189 TYPE_UNSIGNED (inner_type));
8192 else if (modifier == EXPAND_INITIALIZER)
8193 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8195 else if (target == 0)
8196 op0 = convert_to_mode (mode, op0,
8197 TYPE_UNSIGNED (TREE_TYPE
8198 (treeop0)));
8199 else
8201 convert_move (target, op0,
8202 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8203 op0 = target;
8206 return REDUCE_BIT_FIELD (op0);
8208 case ADDR_SPACE_CONVERT_EXPR:
8210 tree treeop0_type = TREE_TYPE (treeop0);
8211 addr_space_t as_to;
8212 addr_space_t as_from;
8214 gcc_assert (POINTER_TYPE_P (type));
8215 gcc_assert (POINTER_TYPE_P (treeop0_type));
8217 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8218 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8220 /* Conversions between pointers to the same address space should
8221 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8222 gcc_assert (as_to != as_from);
8224 /* Ask target code to handle conversion between pointers
8225 to overlapping address spaces. */
8226 if (targetm.addr_space.subset_p (as_to, as_from)
8227 || targetm.addr_space.subset_p (as_from, as_to))
8229 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8230 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8231 gcc_assert (op0);
8232 return op0;
8235 /* For disjoint address spaces, converting anything but
8236 a null pointer invokes undefined behaviour. We simply
8237 always return a null pointer here. */
8238 return CONST0_RTX (mode);
8241 case POINTER_PLUS_EXPR:
8242 /* Even though the sizetype mode and the pointer's mode can be different
8243 expand is able to handle this correctly and get the correct result out
8244 of the PLUS_EXPR code. */
8245 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8246 if sizetype precision is smaller than pointer precision. */
8247 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8248 treeop1 = fold_convert_loc (loc, type,
8249 fold_convert_loc (loc, ssizetype,
8250 treeop1));
8251 /* If sizetype precision is larger than pointer precision, truncate the
8252 offset to have matching modes. */
8253 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8254 treeop1 = fold_convert_loc (loc, type, treeop1);
8256 case PLUS_EXPR:
8257 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8258 something else, make sure we add the register to the constant and
8259 then to the other thing. This case can occur during strength
8260 reduction and doing it this way will produce better code if the
8261 frame pointer or argument pointer is eliminated.
8263 fold-const.c will ensure that the constant is always in the inner
8264 PLUS_EXPR, so the only case we need to do anything about is if
8265 sp, ap, or fp is our second argument, in which case we must swap
8266 the innermost first argument and our second argument. */
8268 if (TREE_CODE (treeop0) == PLUS_EXPR
8269 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8270 && TREE_CODE (treeop1) == VAR_DECL
8271 && (DECL_RTL (treeop1) == frame_pointer_rtx
8272 || DECL_RTL (treeop1) == stack_pointer_rtx
8273 || DECL_RTL (treeop1) == arg_pointer_rtx))
8275 gcc_unreachable ();
8278 /* If the result is to be ptr_mode and we are adding an integer to
8279 something, we might be forming a constant. So try to use
8280 plus_constant. If it produces a sum and we can't accept it,
8281 use force_operand. This allows P = &ARR[const] to generate
8282 efficient code on machines where a SYMBOL_REF is not a valid
8283 address.
8285 If this is an EXPAND_SUM call, always return the sum. */
8286 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8287 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8289 if (modifier == EXPAND_STACK_PARM)
8290 target = 0;
8291 if (TREE_CODE (treeop0) == INTEGER_CST
8292 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8293 && TREE_CONSTANT (treeop1))
8295 rtx constant_part;
8297 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8298 EXPAND_SUM);
8299 /* Use immed_double_const to ensure that the constant is
8300 truncated according to the mode of OP1, then sign extended
8301 to a HOST_WIDE_INT. Using the constant directly can result
8302 in non-canonical RTL in a 64x32 cross compile. */
8303 constant_part
8304 = immed_double_const (TREE_INT_CST_LOW (treeop0),
8305 (HOST_WIDE_INT) 0,
8306 TYPE_MODE (TREE_TYPE (treeop1)));
8307 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8308 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8309 op1 = force_operand (op1, target);
8310 return REDUCE_BIT_FIELD (op1);
8313 else if (TREE_CODE (treeop1) == INTEGER_CST
8314 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8315 && TREE_CONSTANT (treeop0))
8317 rtx constant_part;
8319 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8320 (modifier == EXPAND_INITIALIZER
8321 ? EXPAND_INITIALIZER : EXPAND_SUM));
8322 if (! CONSTANT_P (op0))
8324 op1 = expand_expr (treeop1, NULL_RTX,
8325 VOIDmode, modifier);
8326 /* Return a PLUS if modifier says it's OK. */
8327 if (modifier == EXPAND_SUM
8328 || modifier == EXPAND_INITIALIZER)
8329 return simplify_gen_binary (PLUS, mode, op0, op1);
8330 goto binop2;
8332 /* Use immed_double_const to ensure that the constant is
8333 truncated according to the mode of OP1, then sign extended
8334 to a HOST_WIDE_INT. Using the constant directly can result
8335 in non-canonical RTL in a 64x32 cross compile. */
8336 constant_part
8337 = immed_double_const (TREE_INT_CST_LOW (treeop1),
8338 (HOST_WIDE_INT) 0,
8339 TYPE_MODE (TREE_TYPE (treeop0)));
8340 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8341 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8342 op0 = force_operand (op0, target);
8343 return REDUCE_BIT_FIELD (op0);
8347 /* Use TER to expand pointer addition of a negated value
8348 as pointer subtraction. */
8349 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8350 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8351 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8352 && TREE_CODE (treeop1) == SSA_NAME
8353 && TYPE_MODE (TREE_TYPE (treeop0))
8354 == TYPE_MODE (TREE_TYPE (treeop1)))
8356 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8357 if (def)
8359 treeop1 = gimple_assign_rhs1 (def);
8360 code = MINUS_EXPR;
8361 goto do_minus;
8365 /* No sense saving up arithmetic to be done
8366 if it's all in the wrong mode to form part of an address.
8367 And force_operand won't know whether to sign-extend or
8368 zero-extend. */
8369 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8370 || mode != ptr_mode)
8372 expand_operands (treeop0, treeop1,
8373 subtarget, &op0, &op1, EXPAND_NORMAL);
8374 if (op0 == const0_rtx)
8375 return op1;
8376 if (op1 == const0_rtx)
8377 return op0;
8378 goto binop2;
8381 expand_operands (treeop0, treeop1,
8382 subtarget, &op0, &op1, modifier);
8383 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8385 case MINUS_EXPR:
8386 do_minus:
8387 /* For initializers, we are allowed to return a MINUS of two
8388 symbolic constants. Here we handle all cases when both operands
8389 are constant. */
8390 /* Handle difference of two symbolic constants,
8391 for the sake of an initializer. */
8392 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8393 && really_constant_p (treeop0)
8394 && really_constant_p (treeop1))
8396 expand_operands (treeop0, treeop1,
8397 NULL_RTX, &op0, &op1, modifier);
8399 /* If the last operand is a CONST_INT, use plus_constant of
8400 the negated constant. Else make the MINUS. */
8401 if (CONST_INT_P (op1))
8402 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8403 -INTVAL (op1)));
8404 else
8405 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8408 /* No sense saving up arithmetic to be done
8409 if it's all in the wrong mode to form part of an address.
8410 And force_operand won't know whether to sign-extend or
8411 zero-extend. */
8412 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8413 || mode != ptr_mode)
8414 goto binop;
8416 expand_operands (treeop0, treeop1,
8417 subtarget, &op0, &op1, modifier);
8419 /* Convert A - const to A + (-const). */
8420 if (CONST_INT_P (op1))
8422 op1 = negate_rtx (mode, op1);
8423 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8426 goto binop2;
8428 case WIDEN_MULT_PLUS_EXPR:
8429 case WIDEN_MULT_MINUS_EXPR:
8430 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8431 op2 = expand_normal (treeop2);
8432 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8433 target, unsignedp);
8434 return target;
8436 case WIDEN_MULT_EXPR:
8437 /* If first operand is constant, swap them.
8438 Thus the following special case checks need only
8439 check the second operand. */
8440 if (TREE_CODE (treeop0) == INTEGER_CST)
8442 tree t1 = treeop0;
8443 treeop0 = treeop1;
8444 treeop1 = t1;
8447 /* First, check if we have a multiplication of one signed and one
8448 unsigned operand. */
8449 if (TREE_CODE (treeop1) != INTEGER_CST
8450 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8451 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8453 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8454 this_optab = usmul_widen_optab;
8455 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8456 != CODE_FOR_nothing)
8458 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8459 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8460 EXPAND_NORMAL);
8461 else
8462 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8463 EXPAND_NORMAL);
8464 /* op0 and op1 might still be constant, despite the above
8465 != INTEGER_CST check. Handle it. */
8466 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8468 op0 = convert_modes (innermode, mode, op0, true);
8469 op1 = convert_modes (innermode, mode, op1, false);
8470 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8471 target, unsignedp));
8473 goto binop3;
8476 /* Check for a multiplication with matching signedness. */
8477 else if ((TREE_CODE (treeop1) == INTEGER_CST
8478 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8479 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8480 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8482 tree op0type = TREE_TYPE (treeop0);
8483 enum machine_mode innermode = TYPE_MODE (op0type);
8484 bool zextend_p = TYPE_UNSIGNED (op0type);
8485 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8486 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8488 if (TREE_CODE (treeop0) != INTEGER_CST)
8490 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8491 != CODE_FOR_nothing)
8493 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8494 EXPAND_NORMAL);
8495 /* op0 and op1 might still be constant, despite the above
8496 != INTEGER_CST check. Handle it. */
8497 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8499 widen_mult_const:
8500 op0 = convert_modes (innermode, mode, op0, zextend_p);
8502 = convert_modes (innermode, mode, op1,
8503 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8504 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8505 target,
8506 unsignedp));
8508 temp = expand_widening_mult (mode, op0, op1, target,
8509 unsignedp, this_optab);
8510 return REDUCE_BIT_FIELD (temp);
8512 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8513 != CODE_FOR_nothing
8514 && innermode == word_mode)
8516 rtx htem, hipart;
8517 op0 = expand_normal (treeop0);
8518 if (TREE_CODE (treeop1) == INTEGER_CST)
8519 op1 = convert_modes (innermode, mode,
8520 expand_normal (treeop1),
8521 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8522 else
8523 op1 = expand_normal (treeop1);
8524 /* op0 and op1 might still be constant, despite the above
8525 != INTEGER_CST check. Handle it. */
8526 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8527 goto widen_mult_const;
8528 temp = expand_binop (mode, other_optab, op0, op1, target,
8529 unsignedp, OPTAB_LIB_WIDEN);
8530 hipart = gen_highpart (innermode, temp);
8531 htem = expand_mult_highpart_adjust (innermode, hipart,
8532 op0, op1, hipart,
8533 zextend_p);
8534 if (htem != hipart)
8535 emit_move_insn (hipart, htem);
8536 return REDUCE_BIT_FIELD (temp);
8540 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8541 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8542 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8543 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8545 case FMA_EXPR:
8547 optab opt = fma_optab;
8548 gimple def0, def2;
8550 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8551 call. */
8552 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8554 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8555 tree call_expr;
8557 gcc_assert (fn != NULL_TREE);
8558 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8559 return expand_builtin (call_expr, target, subtarget, mode, false);
8562 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8563 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8565 op0 = op2 = NULL;
8567 if (def0 && def2
8568 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8570 opt = fnms_optab;
8571 op0 = expand_normal (gimple_assign_rhs1 (def0));
8572 op2 = expand_normal (gimple_assign_rhs1 (def2));
8574 else if (def0
8575 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8577 opt = fnma_optab;
8578 op0 = expand_normal (gimple_assign_rhs1 (def0));
8580 else if (def2
8581 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8583 opt = fms_optab;
8584 op2 = expand_normal (gimple_assign_rhs1 (def2));
8587 if (op0 == NULL)
8588 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8589 if (op2 == NULL)
8590 op2 = expand_normal (treeop2);
8591 op1 = expand_normal (treeop1);
8593 return expand_ternary_op (TYPE_MODE (type), opt,
8594 op0, op1, op2, target, 0);
8597 case MULT_EXPR:
8598 /* If this is a fixed-point operation, then we cannot use the code
8599 below because "expand_mult" doesn't support sat/no-sat fixed-point
8600 multiplications. */
8601 if (ALL_FIXED_POINT_MODE_P (mode))
8602 goto binop;
8604 /* If first operand is constant, swap them.
8605 Thus the following special case checks need only
8606 check the second operand. */
8607 if (TREE_CODE (treeop0) == INTEGER_CST)
8609 tree t1 = treeop0;
8610 treeop0 = treeop1;
8611 treeop1 = t1;
8614 /* Attempt to return something suitable for generating an
8615 indexed address, for machines that support that. */
8617 if (modifier == EXPAND_SUM && mode == ptr_mode
8618 && tree_fits_shwi_p (treeop1))
8620 tree exp1 = treeop1;
8622 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8623 EXPAND_SUM);
8625 if (!REG_P (op0))
8626 op0 = force_operand (op0, NULL_RTX);
8627 if (!REG_P (op0))
8628 op0 = copy_to_mode_reg (mode, op0);
8630 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8631 gen_int_mode (tree_to_shwi (exp1),
8632 TYPE_MODE (TREE_TYPE (exp1)))));
8635 if (modifier == EXPAND_STACK_PARM)
8636 target = 0;
8638 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8639 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8641 case TRUNC_DIV_EXPR:
8642 case FLOOR_DIV_EXPR:
8643 case CEIL_DIV_EXPR:
8644 case ROUND_DIV_EXPR:
8645 case EXACT_DIV_EXPR:
8646 /* If this is a fixed-point operation, then we cannot use the code
8647 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8648 divisions. */
8649 if (ALL_FIXED_POINT_MODE_P (mode))
8650 goto binop;
8652 if (modifier == EXPAND_STACK_PARM)
8653 target = 0;
8654 /* Possible optimization: compute the dividend with EXPAND_SUM
8655 then if the divisor is constant can optimize the case
8656 where some terms of the dividend have coeffs divisible by it. */
8657 expand_operands (treeop0, treeop1,
8658 subtarget, &op0, &op1, EXPAND_NORMAL);
8659 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8661 case RDIV_EXPR:
8662 goto binop;
8664 case MULT_HIGHPART_EXPR:
8665 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8666 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8667 gcc_assert (temp);
8668 return temp;
8670 case TRUNC_MOD_EXPR:
8671 case FLOOR_MOD_EXPR:
8672 case CEIL_MOD_EXPR:
8673 case ROUND_MOD_EXPR:
8674 if (modifier == EXPAND_STACK_PARM)
8675 target = 0;
8676 expand_operands (treeop0, treeop1,
8677 subtarget, &op0, &op1, EXPAND_NORMAL);
8678 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8680 case FIXED_CONVERT_EXPR:
8681 op0 = expand_normal (treeop0);
8682 if (target == 0 || modifier == EXPAND_STACK_PARM)
8683 target = gen_reg_rtx (mode);
8685 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8686 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8687 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8688 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8689 else
8690 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8691 return target;
8693 case FIX_TRUNC_EXPR:
8694 op0 = expand_normal (treeop0);
8695 if (target == 0 || modifier == EXPAND_STACK_PARM)
8696 target = gen_reg_rtx (mode);
8697 expand_fix (target, op0, unsignedp);
8698 return target;
8700 case FLOAT_EXPR:
8701 op0 = expand_normal (treeop0);
8702 if (target == 0 || modifier == EXPAND_STACK_PARM)
8703 target = gen_reg_rtx (mode);
8704 /* expand_float can't figure out what to do if FROM has VOIDmode.
8705 So give it the correct mode. With -O, cse will optimize this. */
8706 if (GET_MODE (op0) == VOIDmode)
8707 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8708 op0);
8709 expand_float (target, op0,
8710 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8711 return target;
8713 case NEGATE_EXPR:
8714 op0 = expand_expr (treeop0, subtarget,
8715 VOIDmode, EXPAND_NORMAL);
8716 if (modifier == EXPAND_STACK_PARM)
8717 target = 0;
8718 temp = expand_unop (mode,
8719 optab_for_tree_code (NEGATE_EXPR, type,
8720 optab_default),
8721 op0, target, 0);
8722 gcc_assert (temp);
8723 return REDUCE_BIT_FIELD (temp);
8725 case ABS_EXPR:
8726 op0 = expand_expr (treeop0, subtarget,
8727 VOIDmode, EXPAND_NORMAL);
8728 if (modifier == EXPAND_STACK_PARM)
8729 target = 0;
8731 /* ABS_EXPR is not valid for complex arguments. */
8732 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8733 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8735 /* Unsigned abs is simply the operand. Testing here means we don't
8736 risk generating incorrect code below. */
8737 if (TYPE_UNSIGNED (type))
8738 return op0;
8740 return expand_abs (mode, op0, target, unsignedp,
8741 safe_from_p (target, treeop0, 1));
8743 case MAX_EXPR:
8744 case MIN_EXPR:
8745 target = original_target;
8746 if (target == 0
8747 || modifier == EXPAND_STACK_PARM
8748 || (MEM_P (target) && MEM_VOLATILE_P (target))
8749 || GET_MODE (target) != mode
8750 || (REG_P (target)
8751 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8752 target = gen_reg_rtx (mode);
8753 expand_operands (treeop0, treeop1,
8754 target, &op0, &op1, EXPAND_NORMAL);
8756 /* First try to do it with a special MIN or MAX instruction.
8757 If that does not win, use a conditional jump to select the proper
8758 value. */
8759 this_optab = optab_for_tree_code (code, type, optab_default);
8760 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8761 OPTAB_WIDEN);
8762 if (temp != 0)
8763 return temp;
8765 /* At this point, a MEM target is no longer useful; we will get better
8766 code without it. */
8768 if (! REG_P (target))
8769 target = gen_reg_rtx (mode);
8771 /* If op1 was placed in target, swap op0 and op1. */
8772 if (target != op0 && target == op1)
8774 temp = op0;
8775 op0 = op1;
8776 op1 = temp;
8779 /* We generate better code and avoid problems with op1 mentioning
8780 target by forcing op1 into a pseudo if it isn't a constant. */
8781 if (! CONSTANT_P (op1))
8782 op1 = force_reg (mode, op1);
8785 enum rtx_code comparison_code;
8786 rtx cmpop1 = op1;
8788 if (code == MAX_EXPR)
8789 comparison_code = unsignedp ? GEU : GE;
8790 else
8791 comparison_code = unsignedp ? LEU : LE;
8793 /* Canonicalize to comparisons against 0. */
8794 if (op1 == const1_rtx)
8796 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8797 or (a != 0 ? a : 1) for unsigned.
8798 For MIN we are safe converting (a <= 1 ? a : 1)
8799 into (a <= 0 ? a : 1) */
8800 cmpop1 = const0_rtx;
8801 if (code == MAX_EXPR)
8802 comparison_code = unsignedp ? NE : GT;
8804 if (op1 == constm1_rtx && !unsignedp)
8806 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8807 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8808 cmpop1 = const0_rtx;
8809 if (code == MIN_EXPR)
8810 comparison_code = LT;
8812 #ifdef HAVE_conditional_move
8813 /* Use a conditional move if possible. */
8814 if (can_conditionally_move_p (mode))
8816 rtx insn;
8818 start_sequence ();
8820 /* Try to emit the conditional move. */
8821 insn = emit_conditional_move (target, comparison_code,
8822 op0, cmpop1, mode,
8823 op0, op1, mode,
8824 unsignedp);
8826 /* If we could do the conditional move, emit the sequence,
8827 and return. */
8828 if (insn)
8830 rtx seq = get_insns ();
8831 end_sequence ();
8832 emit_insn (seq);
8833 return target;
8836 /* Otherwise discard the sequence and fall back to code with
8837 branches. */
8838 end_sequence ();
8840 #endif
8841 if (target != op0)
8842 emit_move_insn (target, op0);
8844 temp = gen_label_rtx ();
8845 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8846 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8847 -1);
8849 emit_move_insn (target, op1);
8850 emit_label (temp);
8851 return target;
8853 case BIT_NOT_EXPR:
8854 op0 = expand_expr (treeop0, subtarget,
8855 VOIDmode, EXPAND_NORMAL);
8856 if (modifier == EXPAND_STACK_PARM)
8857 target = 0;
8858 /* In case we have to reduce the result to bitfield precision
8859 for unsigned bitfield expand this as XOR with a proper constant
8860 instead. */
8861 if (reduce_bit_field && TYPE_UNSIGNED (type))
8862 temp = expand_binop (mode, xor_optab, op0,
8863 immed_double_int_const
8864 (double_int::mask (TYPE_PRECISION (type)), mode),
8865 target, 1, OPTAB_LIB_WIDEN);
8866 else
8867 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8868 gcc_assert (temp);
8869 return temp;
8871 /* ??? Can optimize bitwise operations with one arg constant.
8872 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8873 and (a bitwise1 b) bitwise2 b (etc)
8874 but that is probably not worth while. */
8876 case BIT_AND_EXPR:
8877 case BIT_IOR_EXPR:
8878 case BIT_XOR_EXPR:
8879 goto binop;
8881 case LROTATE_EXPR:
8882 case RROTATE_EXPR:
8883 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8884 || (GET_MODE_PRECISION (TYPE_MODE (type))
8885 == TYPE_PRECISION (type)));
8886 /* fall through */
8888 case LSHIFT_EXPR:
8889 case RSHIFT_EXPR:
8890 /* If this is a fixed-point operation, then we cannot use the code
8891 below because "expand_shift" doesn't support sat/no-sat fixed-point
8892 shifts. */
8893 if (ALL_FIXED_POINT_MODE_P (mode))
8894 goto binop;
8896 if (! safe_from_p (subtarget, treeop1, 1))
8897 subtarget = 0;
8898 if (modifier == EXPAND_STACK_PARM)
8899 target = 0;
8900 op0 = expand_expr (treeop0, subtarget,
8901 VOIDmode, EXPAND_NORMAL);
8902 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8903 unsignedp);
8904 if (code == LSHIFT_EXPR)
8905 temp = REDUCE_BIT_FIELD (temp);
8906 return temp;
8908 /* Could determine the answer when only additive constants differ. Also,
8909 the addition of one can be handled by changing the condition. */
8910 case LT_EXPR:
8911 case LE_EXPR:
8912 case GT_EXPR:
8913 case GE_EXPR:
8914 case EQ_EXPR:
8915 case NE_EXPR:
8916 case UNORDERED_EXPR:
8917 case ORDERED_EXPR:
8918 case UNLT_EXPR:
8919 case UNLE_EXPR:
8920 case UNGT_EXPR:
8921 case UNGE_EXPR:
8922 case UNEQ_EXPR:
8923 case LTGT_EXPR:
8924 temp = do_store_flag (ops,
8925 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8926 tmode != VOIDmode ? tmode : mode);
8927 if (temp)
8928 return temp;
8930 /* Use a compare and a jump for BLKmode comparisons, or for function
8931 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8933 if ((target == 0
8934 || modifier == EXPAND_STACK_PARM
8935 || ! safe_from_p (target, treeop0, 1)
8936 || ! safe_from_p (target, treeop1, 1)
8937 /* Make sure we don't have a hard reg (such as function's return
8938 value) live across basic blocks, if not optimizing. */
8939 || (!optimize && REG_P (target)
8940 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8941 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8943 emit_move_insn (target, const0_rtx);
8945 op1 = gen_label_rtx ();
8946 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8948 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8949 emit_move_insn (target, constm1_rtx);
8950 else
8951 emit_move_insn (target, const1_rtx);
8953 emit_label (op1);
8954 return target;
8956 case COMPLEX_EXPR:
8957 /* Get the rtx code of the operands. */
8958 op0 = expand_normal (treeop0);
8959 op1 = expand_normal (treeop1);
8961 if (!target)
8962 target = gen_reg_rtx (TYPE_MODE (type));
8963 else
8964 /* If target overlaps with op1, then either we need to force
8965 op1 into a pseudo (if target also overlaps with op0),
8966 or write the complex parts in reverse order. */
8967 switch (GET_CODE (target))
8969 case CONCAT:
8970 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
8972 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
8974 complex_expr_force_op1:
8975 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
8976 emit_move_insn (temp, op1);
8977 op1 = temp;
8978 break;
8980 complex_expr_swap_order:
8981 /* Move the imaginary (op1) and real (op0) parts to their
8982 location. */
8983 write_complex_part (target, op1, true);
8984 write_complex_part (target, op0, false);
8986 return target;
8988 break;
8989 case MEM:
8990 temp = adjust_address_nv (target,
8991 GET_MODE_INNER (GET_MODE (target)), 0);
8992 if (reg_overlap_mentioned_p (temp, op1))
8994 enum machine_mode imode = GET_MODE_INNER (GET_MODE (target));
8995 temp = adjust_address_nv (target, imode,
8996 GET_MODE_SIZE (imode));
8997 if (reg_overlap_mentioned_p (temp, op0))
8998 goto complex_expr_force_op1;
8999 goto complex_expr_swap_order;
9001 break;
9002 default:
9003 if (reg_overlap_mentioned_p (target, op1))
9005 if (reg_overlap_mentioned_p (target, op0))
9006 goto complex_expr_force_op1;
9007 goto complex_expr_swap_order;
9009 break;
9012 /* Move the real (op0) and imaginary (op1) parts to their location. */
9013 write_complex_part (target, op0, false);
9014 write_complex_part (target, op1, true);
9016 return target;
9018 case WIDEN_SUM_EXPR:
9020 tree oprnd0 = treeop0;
9021 tree oprnd1 = treeop1;
9023 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9024 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9025 target, unsignedp);
9026 return target;
9029 case REDUC_MAX_EXPR:
9030 case REDUC_MIN_EXPR:
9031 case REDUC_PLUS_EXPR:
9033 op0 = expand_normal (treeop0);
9034 this_optab = optab_for_tree_code (code, type, optab_default);
9035 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9036 gcc_assert (temp);
9037 return temp;
9040 case VEC_LSHIFT_EXPR:
9041 case VEC_RSHIFT_EXPR:
9043 target = expand_vec_shift_expr (ops, target);
9044 return target;
9047 case VEC_UNPACK_HI_EXPR:
9048 case VEC_UNPACK_LO_EXPR:
9050 op0 = expand_normal (treeop0);
9051 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9052 target, unsignedp);
9053 gcc_assert (temp);
9054 return temp;
9057 case VEC_UNPACK_FLOAT_HI_EXPR:
9058 case VEC_UNPACK_FLOAT_LO_EXPR:
9060 op0 = expand_normal (treeop0);
9061 /* The signedness is determined from input operand. */
9062 temp = expand_widen_pattern_expr
9063 (ops, op0, NULL_RTX, NULL_RTX,
9064 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9066 gcc_assert (temp);
9067 return temp;
9070 case VEC_WIDEN_MULT_HI_EXPR:
9071 case VEC_WIDEN_MULT_LO_EXPR:
9072 case VEC_WIDEN_MULT_EVEN_EXPR:
9073 case VEC_WIDEN_MULT_ODD_EXPR:
9074 case VEC_WIDEN_LSHIFT_HI_EXPR:
9075 case VEC_WIDEN_LSHIFT_LO_EXPR:
9076 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9077 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9078 target, unsignedp);
9079 gcc_assert (target);
9080 return target;
9082 case VEC_PACK_TRUNC_EXPR:
9083 case VEC_PACK_SAT_EXPR:
9084 case VEC_PACK_FIX_TRUNC_EXPR:
9085 mode = TYPE_MODE (TREE_TYPE (treeop0));
9086 goto binop;
9088 case VEC_PERM_EXPR:
9089 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9090 op2 = expand_normal (treeop2);
9092 /* Careful here: if the target doesn't support integral vector modes,
9093 a constant selection vector could wind up smooshed into a normal
9094 integral constant. */
9095 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9097 tree sel_type = TREE_TYPE (treeop2);
9098 enum machine_mode vmode
9099 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9100 TYPE_VECTOR_SUBPARTS (sel_type));
9101 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9102 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9103 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9105 else
9106 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9108 temp = expand_vec_perm (mode, op0, op1, op2, target);
9109 gcc_assert (temp);
9110 return temp;
9112 case DOT_PROD_EXPR:
9114 tree oprnd0 = treeop0;
9115 tree oprnd1 = treeop1;
9116 tree oprnd2 = treeop2;
9117 rtx op2;
9119 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9120 op2 = expand_normal (oprnd2);
9121 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9122 target, unsignedp);
9123 return target;
9126 case REALIGN_LOAD_EXPR:
9128 tree oprnd0 = treeop0;
9129 tree oprnd1 = treeop1;
9130 tree oprnd2 = treeop2;
9131 rtx op2;
9133 this_optab = optab_for_tree_code (code, type, optab_default);
9134 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9135 op2 = expand_normal (oprnd2);
9136 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9137 target, unsignedp);
9138 gcc_assert (temp);
9139 return temp;
9142 case COND_EXPR:
9143 /* A COND_EXPR with its type being VOID_TYPE represents a
9144 conditional jump and is handled in
9145 expand_gimple_cond_expr. */
9146 gcc_assert (!VOID_TYPE_P (type));
9148 /* Note that COND_EXPRs whose type is a structure or union
9149 are required to be constructed to contain assignments of
9150 a temporary variable, so that we can evaluate them here
9151 for side effect only. If type is void, we must do likewise. */
9153 gcc_assert (!TREE_ADDRESSABLE (type)
9154 && !ignore
9155 && TREE_TYPE (treeop1) != void_type_node
9156 && TREE_TYPE (treeop2) != void_type_node);
9158 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9159 if (temp)
9160 return temp;
9162 /* If we are not to produce a result, we have no target. Otherwise,
9163 if a target was specified use it; it will not be used as an
9164 intermediate target unless it is safe. If no target, use a
9165 temporary. */
9167 if (modifier != EXPAND_STACK_PARM
9168 && original_target
9169 && safe_from_p (original_target, treeop0, 1)
9170 && GET_MODE (original_target) == mode
9171 && !MEM_P (original_target))
9172 temp = original_target;
9173 else
9174 temp = assign_temp (type, 0, 1);
9176 do_pending_stack_adjust ();
9177 NO_DEFER_POP;
9178 op0 = gen_label_rtx ();
9179 op1 = gen_label_rtx ();
9180 jumpifnot (treeop0, op0, -1);
9181 store_expr (treeop1, temp,
9182 modifier == EXPAND_STACK_PARM,
9183 false);
9185 emit_jump_insn (gen_jump (op1));
9186 emit_barrier ();
9187 emit_label (op0);
9188 store_expr (treeop2, temp,
9189 modifier == EXPAND_STACK_PARM,
9190 false);
9192 emit_label (op1);
9193 OK_DEFER_POP;
9194 return temp;
9196 case VEC_COND_EXPR:
9197 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9198 return target;
9200 default:
9201 gcc_unreachable ();
9204 /* Here to do an ordinary binary operator. */
9205 binop:
9206 expand_operands (treeop0, treeop1,
9207 subtarget, &op0, &op1, EXPAND_NORMAL);
9208 binop2:
9209 this_optab = optab_for_tree_code (code, type, optab_default);
9210 binop3:
9211 if (modifier == EXPAND_STACK_PARM)
9212 target = 0;
9213 temp = expand_binop (mode, this_optab, op0, op1, target,
9214 unsignedp, OPTAB_LIB_WIDEN);
9215 gcc_assert (temp);
9216 /* Bitwise operations do not need bitfield reduction as we expect their
9217 operands being properly truncated. */
9218 if (code == BIT_XOR_EXPR
9219 || code == BIT_AND_EXPR
9220 || code == BIT_IOR_EXPR)
9221 return temp;
9222 return REDUCE_BIT_FIELD (temp);
9224 #undef REDUCE_BIT_FIELD
9227 /* Return TRUE if expression STMT is suitable for replacement.
9228 Never consider memory loads as replaceable, because those don't ever lead
9229 into constant expressions. */
9231 static bool
9232 stmt_is_replaceable_p (gimple stmt)
9234 if (ssa_is_replaceable_p (stmt))
9236 /* Don't move around loads. */
9237 if (!gimple_assign_single_p (stmt)
9238 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9239 return true;
9241 return false;
9245 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
9246 enum expand_modifier modifier, rtx *alt_rtl,
9247 bool inner_reference_p)
9249 rtx op0, op1, temp, decl_rtl;
9250 tree type;
9251 int unsignedp;
9252 enum machine_mode mode;
9253 enum tree_code code = TREE_CODE (exp);
9254 rtx subtarget, original_target;
9255 int ignore;
9256 tree context;
9257 bool reduce_bit_field;
9258 location_t loc = EXPR_LOCATION (exp);
9259 struct separate_ops ops;
9260 tree treeop0, treeop1, treeop2;
9261 tree ssa_name = NULL_TREE;
9262 gimple g;
9264 type = TREE_TYPE (exp);
9265 mode = TYPE_MODE (type);
9266 unsignedp = TYPE_UNSIGNED (type);
9268 treeop0 = treeop1 = treeop2 = NULL_TREE;
9269 if (!VL_EXP_CLASS_P (exp))
9270 switch (TREE_CODE_LENGTH (code))
9272 default:
9273 case 3: treeop2 = TREE_OPERAND (exp, 2);
9274 case 2: treeop1 = TREE_OPERAND (exp, 1);
9275 case 1: treeop0 = TREE_OPERAND (exp, 0);
9276 case 0: break;
9278 ops.code = code;
9279 ops.type = type;
9280 ops.op0 = treeop0;
9281 ops.op1 = treeop1;
9282 ops.op2 = treeop2;
9283 ops.location = loc;
9285 ignore = (target == const0_rtx
9286 || ((CONVERT_EXPR_CODE_P (code)
9287 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9288 && TREE_CODE (type) == VOID_TYPE));
9290 /* An operation in what may be a bit-field type needs the
9291 result to be reduced to the precision of the bit-field type,
9292 which is narrower than that of the type's mode. */
9293 reduce_bit_field = (!ignore
9294 && INTEGRAL_TYPE_P (type)
9295 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9297 /* If we are going to ignore this result, we need only do something
9298 if there is a side-effect somewhere in the expression. If there
9299 is, short-circuit the most common cases here. Note that we must
9300 not call expand_expr with anything but const0_rtx in case this
9301 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9303 if (ignore)
9305 if (! TREE_SIDE_EFFECTS (exp))
9306 return const0_rtx;
9308 /* Ensure we reference a volatile object even if value is ignored, but
9309 don't do this if all we are doing is taking its address. */
9310 if (TREE_THIS_VOLATILE (exp)
9311 && TREE_CODE (exp) != FUNCTION_DECL
9312 && mode != VOIDmode && mode != BLKmode
9313 && modifier != EXPAND_CONST_ADDRESS)
9315 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9316 if (MEM_P (temp))
9317 copy_to_reg (temp);
9318 return const0_rtx;
9321 if (TREE_CODE_CLASS (code) == tcc_unary
9322 || code == BIT_FIELD_REF
9323 || code == COMPONENT_REF
9324 || code == INDIRECT_REF)
9325 return expand_expr (treeop0, const0_rtx, VOIDmode,
9326 modifier);
9328 else if (TREE_CODE_CLASS (code) == tcc_binary
9329 || TREE_CODE_CLASS (code) == tcc_comparison
9330 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9332 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9333 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9334 return const0_rtx;
9337 target = 0;
9340 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9341 target = 0;
9343 /* Use subtarget as the target for operand 0 of a binary operation. */
9344 subtarget = get_subtarget (target);
9345 original_target = target;
9347 switch (code)
9349 case LABEL_DECL:
9351 tree function = decl_function_context (exp);
9353 temp = label_rtx (exp);
9354 temp = gen_rtx_LABEL_REF (Pmode, temp);
9356 if (function != current_function_decl
9357 && function != 0)
9358 LABEL_REF_NONLOCAL_P (temp) = 1;
9360 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9361 return temp;
9364 case SSA_NAME:
9365 /* ??? ivopts calls expander, without any preparation from
9366 out-of-ssa. So fake instructions as if this was an access to the
9367 base variable. This unnecessarily allocates a pseudo, see how we can
9368 reuse it, if partition base vars have it set already. */
9369 if (!currently_expanding_to_rtl)
9371 tree var = SSA_NAME_VAR (exp);
9372 if (var && DECL_RTL_SET_P (var))
9373 return DECL_RTL (var);
9374 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9375 LAST_VIRTUAL_REGISTER + 1);
9378 g = get_gimple_for_ssa_name (exp);
9379 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9380 if (g == NULL
9381 && modifier == EXPAND_INITIALIZER
9382 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9383 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9384 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9385 g = SSA_NAME_DEF_STMT (exp);
9386 if (g)
9388 rtx r;
9389 location_t saved_loc = curr_insn_location ();
9391 set_curr_insn_location (gimple_location (g));
9392 r = expand_expr_real (gimple_assign_rhs_to_tree (g), target,
9393 tmode, modifier, NULL, inner_reference_p);
9394 set_curr_insn_location (saved_loc);
9395 if (REG_P (r) && !REG_EXPR (r))
9396 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9397 return r;
9400 ssa_name = exp;
9401 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9402 exp = SSA_NAME_VAR (ssa_name);
9403 goto expand_decl_rtl;
9405 case PARM_DECL:
9406 case VAR_DECL:
9407 /* If a static var's type was incomplete when the decl was written,
9408 but the type is complete now, lay out the decl now. */
9409 if (DECL_SIZE (exp) == 0
9410 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9411 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9412 layout_decl (exp, 0);
9414 /* ... fall through ... */
9416 case FUNCTION_DECL:
9417 case RESULT_DECL:
9418 decl_rtl = DECL_RTL (exp);
9419 expand_decl_rtl:
9420 gcc_assert (decl_rtl);
9421 decl_rtl = copy_rtx (decl_rtl);
9422 /* Record writes to register variables. */
9423 if (modifier == EXPAND_WRITE
9424 && REG_P (decl_rtl)
9425 && HARD_REGISTER_P (decl_rtl))
9426 add_to_hard_reg_set (&crtl->asm_clobbers,
9427 GET_MODE (decl_rtl), REGNO (decl_rtl));
9429 /* Ensure variable marked as used even if it doesn't go through
9430 a parser. If it hasn't be used yet, write out an external
9431 definition. */
9432 TREE_USED (exp) = 1;
9434 /* Show we haven't gotten RTL for this yet. */
9435 temp = 0;
9437 /* Variables inherited from containing functions should have
9438 been lowered by this point. */
9439 context = decl_function_context (exp);
9440 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9441 || context == current_function_decl
9442 || TREE_STATIC (exp)
9443 || DECL_EXTERNAL (exp)
9444 /* ??? C++ creates functions that are not TREE_STATIC. */
9445 || TREE_CODE (exp) == FUNCTION_DECL);
9447 /* This is the case of an array whose size is to be determined
9448 from its initializer, while the initializer is still being parsed.
9449 ??? We aren't parsing while expanding anymore. */
9451 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9452 temp = validize_mem (decl_rtl);
9454 /* If DECL_RTL is memory, we are in the normal case and the
9455 address is not valid, get the address into a register. */
9457 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9459 if (alt_rtl)
9460 *alt_rtl = decl_rtl;
9461 decl_rtl = use_anchored_address (decl_rtl);
9462 if (modifier != EXPAND_CONST_ADDRESS
9463 && modifier != EXPAND_SUM
9464 && !memory_address_addr_space_p (DECL_MODE (exp),
9465 XEXP (decl_rtl, 0),
9466 MEM_ADDR_SPACE (decl_rtl)))
9467 temp = replace_equiv_address (decl_rtl,
9468 copy_rtx (XEXP (decl_rtl, 0)));
9471 /* If we got something, return it. But first, set the alignment
9472 if the address is a register. */
9473 if (temp != 0)
9475 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9476 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9478 return temp;
9481 /* If the mode of DECL_RTL does not match that of the decl,
9482 there are two cases: we are dealing with a BLKmode value
9483 that is returned in a register, or we are dealing with
9484 a promoted value. In the latter case, return a SUBREG
9485 of the wanted mode, but mark it so that we know that it
9486 was already extended. */
9487 if (REG_P (decl_rtl)
9488 && DECL_MODE (exp) != BLKmode
9489 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9491 enum machine_mode pmode;
9493 /* Get the signedness to be used for this variable. Ensure we get
9494 the same mode we got when the variable was declared. */
9495 if (code == SSA_NAME
9496 && (g = SSA_NAME_DEF_STMT (ssa_name))
9497 && gimple_code (g) == GIMPLE_CALL
9498 && !gimple_call_internal_p (g))
9499 pmode = promote_function_mode (type, mode, &unsignedp,
9500 gimple_call_fntype (g),
9502 else
9503 pmode = promote_decl_mode (exp, &unsignedp);
9504 gcc_assert (GET_MODE (decl_rtl) == pmode);
9506 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9507 SUBREG_PROMOTED_VAR_P (temp) = 1;
9508 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
9509 return temp;
9512 return decl_rtl;
9514 case INTEGER_CST:
9515 temp = immed_double_const (TREE_INT_CST_LOW (exp),
9516 TREE_INT_CST_HIGH (exp), mode);
9518 return temp;
9520 case VECTOR_CST:
9522 tree tmp = NULL_TREE;
9523 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9524 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9525 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9526 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9527 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9528 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9529 return const_vector_from_tree (exp);
9530 if (GET_MODE_CLASS (mode) == MODE_INT)
9532 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9533 if (type_for_mode)
9534 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9536 if (!tmp)
9538 vec<constructor_elt, va_gc> *v;
9539 unsigned i;
9540 vec_alloc (v, VECTOR_CST_NELTS (exp));
9541 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9542 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9543 tmp = build_constructor (type, v);
9545 return expand_expr (tmp, ignore ? const0_rtx : target,
9546 tmode, modifier);
9549 case CONST_DECL:
9550 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9552 case REAL_CST:
9553 /* If optimized, generate immediate CONST_DOUBLE
9554 which will be turned into memory by reload if necessary.
9556 We used to force a register so that loop.c could see it. But
9557 this does not allow gen_* patterns to perform optimizations with
9558 the constants. It also produces two insns in cases like "x = 1.0;".
9559 On most machines, floating-point constants are not permitted in
9560 many insns, so we'd end up copying it to a register in any case.
9562 Now, we do the copying in expand_binop, if appropriate. */
9563 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9564 TYPE_MODE (TREE_TYPE (exp)));
9566 case FIXED_CST:
9567 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9568 TYPE_MODE (TREE_TYPE (exp)));
9570 case COMPLEX_CST:
9571 /* Handle evaluating a complex constant in a CONCAT target. */
9572 if (original_target && GET_CODE (original_target) == CONCAT)
9574 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9575 rtx rtarg, itarg;
9577 rtarg = XEXP (original_target, 0);
9578 itarg = XEXP (original_target, 1);
9580 /* Move the real and imaginary parts separately. */
9581 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9582 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9584 if (op0 != rtarg)
9585 emit_move_insn (rtarg, op0);
9586 if (op1 != itarg)
9587 emit_move_insn (itarg, op1);
9589 return original_target;
9592 /* ... fall through ... */
9594 case STRING_CST:
9595 temp = expand_expr_constant (exp, 1, modifier);
9597 /* temp contains a constant address.
9598 On RISC machines where a constant address isn't valid,
9599 make some insns to get that address into a register. */
9600 if (modifier != EXPAND_CONST_ADDRESS
9601 && modifier != EXPAND_INITIALIZER
9602 && modifier != EXPAND_SUM
9603 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9604 MEM_ADDR_SPACE (temp)))
9605 return replace_equiv_address (temp,
9606 copy_rtx (XEXP (temp, 0)));
9607 return temp;
9609 case SAVE_EXPR:
9611 tree val = treeop0;
9612 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9613 inner_reference_p);
9615 if (!SAVE_EXPR_RESOLVED_P (exp))
9617 /* We can indeed still hit this case, typically via builtin
9618 expanders calling save_expr immediately before expanding
9619 something. Assume this means that we only have to deal
9620 with non-BLKmode values. */
9621 gcc_assert (GET_MODE (ret) != BLKmode);
9623 val = build_decl (curr_insn_location (),
9624 VAR_DECL, NULL, TREE_TYPE (exp));
9625 DECL_ARTIFICIAL (val) = 1;
9626 DECL_IGNORED_P (val) = 1;
9627 treeop0 = val;
9628 TREE_OPERAND (exp, 0) = treeop0;
9629 SAVE_EXPR_RESOLVED_P (exp) = 1;
9631 if (!CONSTANT_P (ret))
9632 ret = copy_to_reg (ret);
9633 SET_DECL_RTL (val, ret);
9636 return ret;
9640 case CONSTRUCTOR:
9641 /* If we don't need the result, just ensure we evaluate any
9642 subexpressions. */
9643 if (ignore)
9645 unsigned HOST_WIDE_INT idx;
9646 tree value;
9648 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9649 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9651 return const0_rtx;
9654 return expand_constructor (exp, target, modifier, false);
9656 case TARGET_MEM_REF:
9658 addr_space_t as
9659 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9660 enum insn_code icode;
9661 unsigned int align;
9663 op0 = addr_for_mem_ref (exp, as, true);
9664 op0 = memory_address_addr_space (mode, op0, as);
9665 temp = gen_rtx_MEM (mode, op0);
9666 set_mem_attributes (temp, exp, 0);
9667 set_mem_addr_space (temp, as);
9668 align = get_object_alignment (exp);
9669 if (modifier != EXPAND_WRITE
9670 && modifier != EXPAND_MEMORY
9671 && mode != BLKmode
9672 && align < GET_MODE_ALIGNMENT (mode)
9673 /* If the target does not have special handling for unaligned
9674 loads of mode then it can use regular moves for them. */
9675 && ((icode = optab_handler (movmisalign_optab, mode))
9676 != CODE_FOR_nothing))
9678 struct expand_operand ops[2];
9680 /* We've already validated the memory, and we're creating a
9681 new pseudo destination. The predicates really can't fail,
9682 nor can the generator. */
9683 create_output_operand (&ops[0], NULL_RTX, mode);
9684 create_fixed_operand (&ops[1], temp);
9685 expand_insn (icode, 2, ops);
9686 temp = ops[0].value;
9688 return temp;
9691 case MEM_REF:
9693 addr_space_t as
9694 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9695 enum machine_mode address_mode;
9696 tree base = TREE_OPERAND (exp, 0);
9697 gimple def_stmt;
9698 enum insn_code icode;
9699 unsigned align;
9700 /* Handle expansion of non-aliased memory with non-BLKmode. That
9701 might end up in a register. */
9702 if (mem_ref_refers_to_non_mem_p (exp))
9704 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9705 base = TREE_OPERAND (base, 0);
9706 if (offset == 0
9707 && tree_fits_uhwi_p (TYPE_SIZE (type))
9708 && (GET_MODE_BITSIZE (DECL_MODE (base))
9709 == tree_to_uhwi (TYPE_SIZE (type))))
9710 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9711 target, tmode, modifier);
9712 if (TYPE_MODE (type) == BLKmode)
9714 temp = assign_stack_temp (DECL_MODE (base),
9715 GET_MODE_SIZE (DECL_MODE (base)));
9716 store_expr (base, temp, 0, false);
9717 temp = adjust_address (temp, BLKmode, offset);
9718 set_mem_size (temp, int_size_in_bytes (type));
9719 return temp;
9721 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9722 bitsize_int (offset * BITS_PER_UNIT));
9723 return expand_expr (exp, target, tmode, modifier);
9725 address_mode = targetm.addr_space.address_mode (as);
9726 base = TREE_OPERAND (exp, 0);
9727 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9729 tree mask = gimple_assign_rhs2 (def_stmt);
9730 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9731 gimple_assign_rhs1 (def_stmt), mask);
9732 TREE_OPERAND (exp, 0) = base;
9734 align = get_object_alignment (exp);
9735 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9736 op0 = memory_address_addr_space (mode, op0, as);
9737 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9739 rtx off
9740 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9741 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9742 op0 = memory_address_addr_space (mode, op0, as);
9744 temp = gen_rtx_MEM (mode, op0);
9745 set_mem_attributes (temp, exp, 0);
9746 set_mem_addr_space (temp, as);
9747 if (TREE_THIS_VOLATILE (exp))
9748 MEM_VOLATILE_P (temp) = 1;
9749 if (modifier != EXPAND_WRITE
9750 && modifier != EXPAND_MEMORY
9751 && !inner_reference_p
9752 && mode != BLKmode
9753 && align < GET_MODE_ALIGNMENT (mode))
9755 if ((icode = optab_handler (movmisalign_optab, mode))
9756 != CODE_FOR_nothing)
9758 struct expand_operand ops[2];
9760 /* We've already validated the memory, and we're creating a
9761 new pseudo destination. The predicates really can't fail,
9762 nor can the generator. */
9763 create_output_operand (&ops[0], NULL_RTX, mode);
9764 create_fixed_operand (&ops[1], temp);
9765 expand_insn (icode, 2, ops);
9766 temp = ops[0].value;
9768 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9769 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9770 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9771 (modifier == EXPAND_STACK_PARM
9772 ? NULL_RTX : target),
9773 mode, mode);
9775 return temp;
9778 case ARRAY_REF:
9781 tree array = treeop0;
9782 tree index = treeop1;
9783 tree init;
9785 /* Fold an expression like: "foo"[2].
9786 This is not done in fold so it won't happen inside &.
9787 Don't fold if this is for wide characters since it's too
9788 difficult to do correctly and this is a very rare case. */
9790 if (modifier != EXPAND_CONST_ADDRESS
9791 && modifier != EXPAND_INITIALIZER
9792 && modifier != EXPAND_MEMORY)
9794 tree t = fold_read_from_constant_string (exp);
9796 if (t)
9797 return expand_expr (t, target, tmode, modifier);
9800 /* If this is a constant index into a constant array,
9801 just get the value from the array. Handle both the cases when
9802 we have an explicit constructor and when our operand is a variable
9803 that was declared const. */
9805 if (modifier != EXPAND_CONST_ADDRESS
9806 && modifier != EXPAND_INITIALIZER
9807 && modifier != EXPAND_MEMORY
9808 && TREE_CODE (array) == CONSTRUCTOR
9809 && ! TREE_SIDE_EFFECTS (array)
9810 && TREE_CODE (index) == INTEGER_CST)
9812 unsigned HOST_WIDE_INT ix;
9813 tree field, value;
9815 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9816 field, value)
9817 if (tree_int_cst_equal (field, index))
9819 if (!TREE_SIDE_EFFECTS (value))
9820 return expand_expr (fold (value), target, tmode, modifier);
9821 break;
9825 else if (optimize >= 1
9826 && modifier != EXPAND_CONST_ADDRESS
9827 && modifier != EXPAND_INITIALIZER
9828 && modifier != EXPAND_MEMORY
9829 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9830 && TREE_CODE (index) == INTEGER_CST
9831 && (TREE_CODE (array) == VAR_DECL
9832 || TREE_CODE (array) == CONST_DECL)
9833 && (init = ctor_for_folding (array)) != error_mark_node)
9835 if (init == NULL_TREE)
9837 tree value = build_zero_cst (type);
9838 if (TREE_CODE (value) == CONSTRUCTOR)
9840 /* If VALUE is a CONSTRUCTOR, this optimization is only
9841 useful if this doesn't store the CONSTRUCTOR into
9842 memory. If it does, it is more efficient to just
9843 load the data from the array directly. */
9844 rtx ret = expand_constructor (value, target,
9845 modifier, true);
9846 if (ret == NULL_RTX)
9847 value = NULL_TREE;
9850 if (value)
9851 return expand_expr (value, target, tmode, modifier);
9853 else if (TREE_CODE (init) == CONSTRUCTOR)
9855 unsigned HOST_WIDE_INT ix;
9856 tree field, value;
9858 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9859 field, value)
9860 if (tree_int_cst_equal (field, index))
9862 if (TREE_SIDE_EFFECTS (value))
9863 break;
9865 if (TREE_CODE (value) == CONSTRUCTOR)
9867 /* If VALUE is a CONSTRUCTOR, this
9868 optimization is only useful if
9869 this doesn't store the CONSTRUCTOR
9870 into memory. If it does, it is more
9871 efficient to just load the data from
9872 the array directly. */
9873 rtx ret = expand_constructor (value, target,
9874 modifier, true);
9875 if (ret == NULL_RTX)
9876 break;
9879 return
9880 expand_expr (fold (value), target, tmode, modifier);
9883 else if (TREE_CODE (init) == STRING_CST)
9885 tree low_bound = array_ref_low_bound (exp);
9886 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
9888 /* Optimize the special case of a zero lower bound.
9890 We convert the lower bound to sizetype to avoid problems
9891 with constant folding. E.g. suppose the lower bound is
9892 1 and its mode is QI. Without the conversion
9893 (ARRAY + (INDEX - (unsigned char)1))
9894 becomes
9895 (ARRAY + (-(unsigned char)1) + INDEX)
9896 which becomes
9897 (ARRAY + 255 + INDEX). Oops! */
9898 if (!integer_zerop (low_bound))
9899 index1 = size_diffop_loc (loc, index1,
9900 fold_convert_loc (loc, sizetype,
9901 low_bound));
9903 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
9905 tree type = TREE_TYPE (TREE_TYPE (init));
9906 enum machine_mode mode = TYPE_MODE (type);
9908 if (GET_MODE_CLASS (mode) == MODE_INT
9909 && GET_MODE_SIZE (mode) == 1)
9910 return gen_int_mode (TREE_STRING_POINTER (init)
9911 [TREE_INT_CST_LOW (index1)],
9912 mode);
9917 goto normal_inner_ref;
9919 case COMPONENT_REF:
9920 /* If the operand is a CONSTRUCTOR, we can just extract the
9921 appropriate field if it is present. */
9922 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9924 unsigned HOST_WIDE_INT idx;
9925 tree field, value;
9927 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9928 idx, field, value)
9929 if (field == treeop1
9930 /* We can normally use the value of the field in the
9931 CONSTRUCTOR. However, if this is a bitfield in
9932 an integral mode that we can fit in a HOST_WIDE_INT,
9933 we must mask only the number of bits in the bitfield,
9934 since this is done implicitly by the constructor. If
9935 the bitfield does not meet either of those conditions,
9936 we can't do this optimization. */
9937 && (! DECL_BIT_FIELD (field)
9938 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9939 && (GET_MODE_PRECISION (DECL_MODE (field))
9940 <= HOST_BITS_PER_WIDE_INT))))
9942 if (DECL_BIT_FIELD (field)
9943 && modifier == EXPAND_STACK_PARM)
9944 target = 0;
9945 op0 = expand_expr (value, target, tmode, modifier);
9946 if (DECL_BIT_FIELD (field))
9948 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9949 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9951 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9953 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
9954 imode);
9955 op0 = expand_and (imode, op0, op1, target);
9957 else
9959 int count = GET_MODE_PRECISION (imode) - bitsize;
9961 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9962 target, 0);
9963 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9964 target, 0);
9968 return op0;
9971 goto normal_inner_ref;
9973 case BIT_FIELD_REF:
9974 case ARRAY_RANGE_REF:
9975 normal_inner_ref:
9977 enum machine_mode mode1, mode2;
9978 HOST_WIDE_INT bitsize, bitpos;
9979 tree offset;
9980 int volatilep = 0, must_force_mem;
9981 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9982 &mode1, &unsignedp, &volatilep, true);
9983 rtx orig_op0, memloc;
9984 bool mem_attrs_from_type = false;
9986 /* If we got back the original object, something is wrong. Perhaps
9987 we are evaluating an expression too early. In any event, don't
9988 infinitely recurse. */
9989 gcc_assert (tem != exp);
9991 /* If TEM's type is a union of variable size, pass TARGET to the inner
9992 computation, since it will need a temporary and TARGET is known
9993 to have to do. This occurs in unchecked conversion in Ada. */
9994 orig_op0 = op0
9995 = expand_expr_real (tem,
9996 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9997 && COMPLETE_TYPE_P (TREE_TYPE (tem))
9998 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9999 != INTEGER_CST)
10000 && modifier != EXPAND_STACK_PARM
10001 ? target : NULL_RTX),
10002 VOIDmode,
10003 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10004 NULL, true);
10006 /* If the field has a mode, we want to access it in the
10007 field's mode, not the computed mode.
10008 If a MEM has VOIDmode (external with incomplete type),
10009 use BLKmode for it instead. */
10010 if (MEM_P (op0))
10012 if (mode1 != VOIDmode)
10013 op0 = adjust_address (op0, mode1, 0);
10014 else if (GET_MODE (op0) == VOIDmode)
10015 op0 = adjust_address (op0, BLKmode, 0);
10018 mode2
10019 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10021 /* If we have either an offset, a BLKmode result, or a reference
10022 outside the underlying object, we must force it to memory.
10023 Such a case can occur in Ada if we have unchecked conversion
10024 of an expression from a scalar type to an aggregate type or
10025 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10026 passed a partially uninitialized object or a view-conversion
10027 to a larger size. */
10028 must_force_mem = (offset
10029 || mode1 == BLKmode
10030 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10032 /* Handle CONCAT first. */
10033 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10035 if (bitpos == 0
10036 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10037 return op0;
10038 if (bitpos == 0
10039 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10040 && bitsize)
10042 op0 = XEXP (op0, 0);
10043 mode2 = GET_MODE (op0);
10045 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10046 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10047 && bitpos
10048 && bitsize)
10050 op0 = XEXP (op0, 1);
10051 bitpos = 0;
10052 mode2 = GET_MODE (op0);
10054 else
10055 /* Otherwise force into memory. */
10056 must_force_mem = 1;
10059 /* If this is a constant, put it in a register if it is a legitimate
10060 constant and we don't need a memory reference. */
10061 if (CONSTANT_P (op0)
10062 && mode2 != BLKmode
10063 && targetm.legitimate_constant_p (mode2, op0)
10064 && !must_force_mem)
10065 op0 = force_reg (mode2, op0);
10067 /* Otherwise, if this is a constant, try to force it to the constant
10068 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10069 is a legitimate constant. */
10070 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10071 op0 = validize_mem (memloc);
10073 /* Otherwise, if this is a constant or the object is not in memory
10074 and need be, put it there. */
10075 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10077 tree nt = build_qualified_type (TREE_TYPE (tem),
10078 (TYPE_QUALS (TREE_TYPE (tem))
10079 | TYPE_QUAL_CONST));
10080 memloc = assign_temp (nt, 1, 1);
10081 emit_move_insn (memloc, op0);
10082 op0 = memloc;
10083 mem_attrs_from_type = true;
10086 if (offset)
10088 enum machine_mode address_mode;
10089 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10090 EXPAND_SUM);
10092 gcc_assert (MEM_P (op0));
10094 address_mode = get_address_mode (op0);
10095 if (GET_MODE (offset_rtx) != address_mode)
10096 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10098 if (GET_MODE (op0) == BLKmode
10099 /* The check for a constant address in OP0 not having VOIDmode
10100 is probably no longer necessary. */
10101 && GET_MODE (XEXP (op0, 0)) != VOIDmode
10102 && bitsize != 0
10103 && (bitpos % bitsize) == 0
10104 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10105 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
10107 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10108 bitpos = 0;
10111 op0 = offset_address (op0, offset_rtx,
10112 highest_pow2_factor (offset));
10115 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10116 record its alignment as BIGGEST_ALIGNMENT. */
10117 if (MEM_P (op0) && bitpos == 0 && offset != 0
10118 && is_aligning_offset (offset, tem))
10119 set_mem_align (op0, BIGGEST_ALIGNMENT);
10121 /* Don't forget about volatility even if this is a bitfield. */
10122 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10124 if (op0 == orig_op0)
10125 op0 = copy_rtx (op0);
10127 MEM_VOLATILE_P (op0) = 1;
10130 /* In cases where an aligned union has an unaligned object
10131 as a field, we might be extracting a BLKmode value from
10132 an integer-mode (e.g., SImode) object. Handle this case
10133 by doing the extract into an object as wide as the field
10134 (which we know to be the width of a basic mode), then
10135 storing into memory, and changing the mode to BLKmode. */
10136 if (mode1 == VOIDmode
10137 || REG_P (op0) || GET_CODE (op0) == SUBREG
10138 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10139 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10140 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10141 && modifier != EXPAND_CONST_ADDRESS
10142 && modifier != EXPAND_INITIALIZER
10143 && modifier != EXPAND_MEMORY)
10144 /* If the bitfield is volatile and the bitsize
10145 is narrower than the access size of the bitfield,
10146 we need to extract bitfields from the access. */
10147 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10148 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10149 && mode1 != BLKmode
10150 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10151 /* If the field isn't aligned enough to fetch as a memref,
10152 fetch it as a bit field. */
10153 || (mode1 != BLKmode
10154 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10155 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10156 || (MEM_P (op0)
10157 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10158 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10159 && modifier != EXPAND_MEMORY
10160 && ((modifier == EXPAND_CONST_ADDRESS
10161 || modifier == EXPAND_INITIALIZER)
10162 ? STRICT_ALIGNMENT
10163 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10164 || (bitpos % BITS_PER_UNIT != 0)))
10165 /* If the type and the field are a constant size and the
10166 size of the type isn't the same size as the bitfield,
10167 we must use bitfield operations. */
10168 || (bitsize >= 0
10169 && TYPE_SIZE (TREE_TYPE (exp))
10170 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10171 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10172 bitsize)))
10174 enum machine_mode ext_mode = mode;
10176 if (ext_mode == BLKmode
10177 && ! (target != 0 && MEM_P (op0)
10178 && MEM_P (target)
10179 && bitpos % BITS_PER_UNIT == 0))
10180 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10182 if (ext_mode == BLKmode)
10184 if (target == 0)
10185 target = assign_temp (type, 1, 1);
10187 /* ??? Unlike the similar test a few lines below, this one is
10188 very likely obsolete. */
10189 if (bitsize == 0)
10190 return target;
10192 /* In this case, BITPOS must start at a byte boundary and
10193 TARGET, if specified, must be a MEM. */
10194 gcc_assert (MEM_P (op0)
10195 && (!target || MEM_P (target))
10196 && !(bitpos % BITS_PER_UNIT));
10198 emit_block_move (target,
10199 adjust_address (op0, VOIDmode,
10200 bitpos / BITS_PER_UNIT),
10201 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10202 / BITS_PER_UNIT),
10203 (modifier == EXPAND_STACK_PARM
10204 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10206 return target;
10209 /* If we have nothing to extract, the result will be 0 for targets
10210 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10211 return 0 for the sake of consistency, as reading a zero-sized
10212 bitfield is valid in Ada and the value is fully specified. */
10213 if (bitsize == 0)
10214 return const0_rtx;
10216 op0 = validize_mem (op0);
10218 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10219 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10221 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10222 (modifier == EXPAND_STACK_PARM
10223 ? NULL_RTX : target),
10224 ext_mode, ext_mode);
10226 /* If the result is a record type and BITSIZE is narrower than
10227 the mode of OP0, an integral mode, and this is a big endian
10228 machine, we must put the field into the high-order bits. */
10229 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10230 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10231 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10232 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10233 GET_MODE_BITSIZE (GET_MODE (op0))
10234 - bitsize, op0, 1);
10236 /* If the result type is BLKmode, store the data into a temporary
10237 of the appropriate type, but with the mode corresponding to the
10238 mode for the data we have (op0's mode). It's tempting to make
10239 this a constant type, since we know it's only being stored once,
10240 but that can cause problems if we are taking the address of this
10241 COMPONENT_REF because the MEM of any reference via that address
10242 will have flags corresponding to the type, which will not
10243 necessarily be constant. */
10244 if (mode == BLKmode)
10246 rtx new_rtx;
10248 new_rtx = assign_stack_temp_for_type (ext_mode,
10249 GET_MODE_BITSIZE (ext_mode),
10250 type);
10251 emit_move_insn (new_rtx, op0);
10252 op0 = copy_rtx (new_rtx);
10253 PUT_MODE (op0, BLKmode);
10256 return op0;
10259 /* If the result is BLKmode, use that to access the object
10260 now as well. */
10261 if (mode == BLKmode)
10262 mode1 = BLKmode;
10264 /* Get a reference to just this component. */
10265 if (modifier == EXPAND_CONST_ADDRESS
10266 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10267 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10268 else
10269 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10271 if (op0 == orig_op0)
10272 op0 = copy_rtx (op0);
10274 /* If op0 is a temporary because of forcing to memory, pass only the
10275 type to set_mem_attributes so that the original expression is never
10276 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10277 if (mem_attrs_from_type)
10278 set_mem_attributes (op0, type, 0);
10279 else
10280 set_mem_attributes (op0, exp, 0);
10282 if (REG_P (XEXP (op0, 0)))
10283 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10285 MEM_VOLATILE_P (op0) |= volatilep;
10286 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10287 || modifier == EXPAND_CONST_ADDRESS
10288 || modifier == EXPAND_INITIALIZER)
10289 return op0;
10291 if (target == 0)
10292 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10294 convert_move (target, op0, unsignedp);
10295 return target;
10298 case OBJ_TYPE_REF:
10299 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10301 case CALL_EXPR:
10302 /* All valid uses of __builtin_va_arg_pack () are removed during
10303 inlining. */
10304 if (CALL_EXPR_VA_ARG_PACK (exp))
10305 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10307 tree fndecl = get_callee_fndecl (exp), attr;
10309 if (fndecl
10310 && (attr = lookup_attribute ("error",
10311 DECL_ATTRIBUTES (fndecl))) != NULL)
10312 error ("%Kcall to %qs declared with attribute error: %s",
10313 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10314 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10315 if (fndecl
10316 && (attr = lookup_attribute ("warning",
10317 DECL_ATTRIBUTES (fndecl))) != NULL)
10318 warning_at (tree_nonartificial_location (exp),
10319 0, "%Kcall to %qs declared with attribute warning: %s",
10320 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10321 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10323 /* Check for a built-in function. */
10324 if (fndecl && DECL_BUILT_IN (fndecl))
10326 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10327 return expand_builtin (exp, target, subtarget, tmode, ignore);
10330 return expand_call (exp, target, ignore);
10332 case VIEW_CONVERT_EXPR:
10333 op0 = NULL_RTX;
10335 /* If we are converting to BLKmode, try to avoid an intermediate
10336 temporary by fetching an inner memory reference. */
10337 if (mode == BLKmode
10338 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10339 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10340 && handled_component_p (treeop0))
10342 enum machine_mode mode1;
10343 HOST_WIDE_INT bitsize, bitpos;
10344 tree offset;
10345 int unsignedp;
10346 int volatilep = 0;
10347 tree tem
10348 = get_inner_reference (treeop0, &bitsize, &bitpos,
10349 &offset, &mode1, &unsignedp, &volatilep,
10350 true);
10351 rtx orig_op0;
10353 /* ??? We should work harder and deal with non-zero offsets. */
10354 if (!offset
10355 && (bitpos % BITS_PER_UNIT) == 0
10356 && bitsize >= 0
10357 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10359 /* See the normal_inner_ref case for the rationale. */
10360 orig_op0
10361 = expand_expr_real (tem,
10362 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10363 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10364 != INTEGER_CST)
10365 && modifier != EXPAND_STACK_PARM
10366 ? target : NULL_RTX),
10367 VOIDmode,
10368 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10369 NULL, true);
10371 if (MEM_P (orig_op0))
10373 op0 = orig_op0;
10375 /* Get a reference to just this component. */
10376 if (modifier == EXPAND_CONST_ADDRESS
10377 || modifier == EXPAND_SUM
10378 || modifier == EXPAND_INITIALIZER)
10379 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10380 else
10381 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10383 if (op0 == orig_op0)
10384 op0 = copy_rtx (op0);
10386 set_mem_attributes (op0, treeop0, 0);
10387 if (REG_P (XEXP (op0, 0)))
10388 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10390 MEM_VOLATILE_P (op0) |= volatilep;
10395 if (!op0)
10396 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10397 NULL, inner_reference_p);
10399 /* If the input and output modes are both the same, we are done. */
10400 if (mode == GET_MODE (op0))
10402 /* If neither mode is BLKmode, and both modes are the same size
10403 then we can use gen_lowpart. */
10404 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10405 && (GET_MODE_PRECISION (mode)
10406 == GET_MODE_PRECISION (GET_MODE (op0)))
10407 && !COMPLEX_MODE_P (GET_MODE (op0)))
10409 if (GET_CODE (op0) == SUBREG)
10410 op0 = force_reg (GET_MODE (op0), op0);
10411 temp = gen_lowpart_common (mode, op0);
10412 if (temp)
10413 op0 = temp;
10414 else
10416 if (!REG_P (op0) && !MEM_P (op0))
10417 op0 = force_reg (GET_MODE (op0), op0);
10418 op0 = gen_lowpart (mode, op0);
10421 /* If both types are integral, convert from one mode to the other. */
10422 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10423 op0 = convert_modes (mode, GET_MODE (op0), op0,
10424 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10425 /* As a last resort, spill op0 to memory, and reload it in a
10426 different mode. */
10427 else if (!MEM_P (op0))
10429 /* If the operand is not a MEM, force it into memory. Since we
10430 are going to be changing the mode of the MEM, don't call
10431 force_const_mem for constants because we don't allow pool
10432 constants to change mode. */
10433 tree inner_type = TREE_TYPE (treeop0);
10435 gcc_assert (!TREE_ADDRESSABLE (exp));
10437 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10438 target
10439 = assign_stack_temp_for_type
10440 (TYPE_MODE (inner_type),
10441 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10443 emit_move_insn (target, op0);
10444 op0 = target;
10447 /* At this point, OP0 is in the correct mode. If the output type is
10448 such that the operand is known to be aligned, indicate that it is.
10449 Otherwise, we need only be concerned about alignment for non-BLKmode
10450 results. */
10451 if (MEM_P (op0))
10453 enum insn_code icode;
10455 if (TYPE_ALIGN_OK (type))
10457 /* ??? Copying the MEM without substantially changing it might
10458 run afoul of the code handling volatile memory references in
10459 store_expr, which assumes that TARGET is returned unmodified
10460 if it has been used. */
10461 op0 = copy_rtx (op0);
10462 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10464 else if (modifier != EXPAND_WRITE
10465 && modifier != EXPAND_MEMORY
10466 && !inner_reference_p
10467 && mode != BLKmode
10468 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10470 /* If the target does have special handling for unaligned
10471 loads of mode then use them. */
10472 if ((icode = optab_handler (movmisalign_optab, mode))
10473 != CODE_FOR_nothing)
10475 rtx reg, insn;
10477 op0 = adjust_address (op0, mode, 0);
10478 /* We've already validated the memory, and we're creating a
10479 new pseudo destination. The predicates really can't
10480 fail. */
10481 reg = gen_reg_rtx (mode);
10483 /* Nor can the insn generator. */
10484 insn = GEN_FCN (icode) (reg, op0);
10485 emit_insn (insn);
10486 return reg;
10488 else if (STRICT_ALIGNMENT)
10490 tree inner_type = TREE_TYPE (treeop0);
10491 HOST_WIDE_INT temp_size
10492 = MAX (int_size_in_bytes (inner_type),
10493 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10494 rtx new_rtx
10495 = assign_stack_temp_for_type (mode, temp_size, type);
10496 rtx new_with_op0_mode
10497 = adjust_address (new_rtx, GET_MODE (op0), 0);
10499 gcc_assert (!TREE_ADDRESSABLE (exp));
10501 if (GET_MODE (op0) == BLKmode)
10502 emit_block_move (new_with_op0_mode, op0,
10503 GEN_INT (GET_MODE_SIZE (mode)),
10504 (modifier == EXPAND_STACK_PARM
10505 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10506 else
10507 emit_move_insn (new_with_op0_mode, op0);
10509 op0 = new_rtx;
10513 op0 = adjust_address (op0, mode, 0);
10516 return op0;
10518 case MODIFY_EXPR:
10520 tree lhs = treeop0;
10521 tree rhs = treeop1;
10522 gcc_assert (ignore);
10524 /* Check for |= or &= of a bitfield of size one into another bitfield
10525 of size 1. In this case, (unless we need the result of the
10526 assignment) we can do this more efficiently with a
10527 test followed by an assignment, if necessary.
10529 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10530 things change so we do, this code should be enhanced to
10531 support it. */
10532 if (TREE_CODE (lhs) == COMPONENT_REF
10533 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10534 || TREE_CODE (rhs) == BIT_AND_EXPR)
10535 && TREE_OPERAND (rhs, 0) == lhs
10536 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10537 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10538 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10540 rtx label = gen_label_rtx ();
10541 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10542 do_jump (TREE_OPERAND (rhs, 1),
10543 value ? label : 0,
10544 value ? 0 : label, -1);
10545 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10546 false);
10547 do_pending_stack_adjust ();
10548 emit_label (label);
10549 return const0_rtx;
10552 expand_assignment (lhs, rhs, false);
10553 return const0_rtx;
10556 case ADDR_EXPR:
10557 return expand_expr_addr_expr (exp, target, tmode, modifier);
10559 case REALPART_EXPR:
10560 op0 = expand_normal (treeop0);
10561 return read_complex_part (op0, false);
10563 case IMAGPART_EXPR:
10564 op0 = expand_normal (treeop0);
10565 return read_complex_part (op0, true);
10567 case RETURN_EXPR:
10568 case LABEL_EXPR:
10569 case GOTO_EXPR:
10570 case SWITCH_EXPR:
10571 case ASM_EXPR:
10572 /* Expanded in cfgexpand.c. */
10573 gcc_unreachable ();
10575 case TRY_CATCH_EXPR:
10576 case CATCH_EXPR:
10577 case EH_FILTER_EXPR:
10578 case TRY_FINALLY_EXPR:
10579 /* Lowered by tree-eh.c. */
10580 gcc_unreachable ();
10582 case WITH_CLEANUP_EXPR:
10583 case CLEANUP_POINT_EXPR:
10584 case TARGET_EXPR:
10585 case CASE_LABEL_EXPR:
10586 case VA_ARG_EXPR:
10587 case BIND_EXPR:
10588 case INIT_EXPR:
10589 case CONJ_EXPR:
10590 case COMPOUND_EXPR:
10591 case PREINCREMENT_EXPR:
10592 case PREDECREMENT_EXPR:
10593 case POSTINCREMENT_EXPR:
10594 case POSTDECREMENT_EXPR:
10595 case LOOP_EXPR:
10596 case EXIT_EXPR:
10597 case COMPOUND_LITERAL_EXPR:
10598 /* Lowered by gimplify.c. */
10599 gcc_unreachable ();
10601 case FDESC_EXPR:
10602 /* Function descriptors are not valid except for as
10603 initialization constants, and should not be expanded. */
10604 gcc_unreachable ();
10606 case WITH_SIZE_EXPR:
10607 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10608 have pulled out the size to use in whatever context it needed. */
10609 return expand_expr_real (treeop0, original_target, tmode,
10610 modifier, alt_rtl, inner_reference_p);
10612 default:
10613 return expand_expr_real_2 (&ops, target, tmode, modifier);
10617 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10618 signedness of TYPE), possibly returning the result in TARGET. */
10619 static rtx
10620 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10622 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10623 if (target && GET_MODE (target) != GET_MODE (exp))
10624 target = 0;
10625 /* For constant values, reduce using build_int_cst_type. */
10626 if (CONST_INT_P (exp))
10628 HOST_WIDE_INT value = INTVAL (exp);
10629 tree t = build_int_cst_type (type, value);
10630 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10632 else if (TYPE_UNSIGNED (type))
10634 rtx mask = immed_double_int_const (double_int::mask (prec),
10635 GET_MODE (exp));
10636 return expand_and (GET_MODE (exp), exp, mask, target);
10638 else
10640 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10641 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10642 exp, count, target, 0);
10643 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10644 exp, count, target, 0);
10648 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10649 when applied to the address of EXP produces an address known to be
10650 aligned more than BIGGEST_ALIGNMENT. */
10652 static int
10653 is_aligning_offset (const_tree offset, const_tree exp)
10655 /* Strip off any conversions. */
10656 while (CONVERT_EXPR_P (offset))
10657 offset = TREE_OPERAND (offset, 0);
10659 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10660 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10661 if (TREE_CODE (offset) != BIT_AND_EXPR
10662 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10663 || compare_tree_int (TREE_OPERAND (offset, 1),
10664 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10665 || !exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10666 return 0;
10668 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10669 It must be NEGATE_EXPR. Then strip any more conversions. */
10670 offset = TREE_OPERAND (offset, 0);
10671 while (CONVERT_EXPR_P (offset))
10672 offset = TREE_OPERAND (offset, 0);
10674 if (TREE_CODE (offset) != NEGATE_EXPR)
10675 return 0;
10677 offset = TREE_OPERAND (offset, 0);
10678 while (CONVERT_EXPR_P (offset))
10679 offset = TREE_OPERAND (offset, 0);
10681 /* This must now be the address of EXP. */
10682 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10685 /* Return the tree node if an ARG corresponds to a string constant or zero
10686 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10687 in bytes within the string that ARG is accessing. The type of the
10688 offset will be `sizetype'. */
10690 tree
10691 string_constant (tree arg, tree *ptr_offset)
10693 tree array, offset, lower_bound;
10694 STRIP_NOPS (arg);
10696 if (TREE_CODE (arg) == ADDR_EXPR)
10698 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10700 *ptr_offset = size_zero_node;
10701 return TREE_OPERAND (arg, 0);
10703 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10705 array = TREE_OPERAND (arg, 0);
10706 offset = size_zero_node;
10708 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10710 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10711 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10712 if (TREE_CODE (array) != STRING_CST
10713 && TREE_CODE (array) != VAR_DECL)
10714 return 0;
10716 /* Check if the array has a nonzero lower bound. */
10717 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10718 if (!integer_zerop (lower_bound))
10720 /* If the offset and base aren't both constants, return 0. */
10721 if (TREE_CODE (lower_bound) != INTEGER_CST)
10722 return 0;
10723 if (TREE_CODE (offset) != INTEGER_CST)
10724 return 0;
10725 /* Adjust offset by the lower bound. */
10726 offset = size_diffop (fold_convert (sizetype, offset),
10727 fold_convert (sizetype, lower_bound));
10730 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10732 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10733 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10734 if (TREE_CODE (array) != ADDR_EXPR)
10735 return 0;
10736 array = TREE_OPERAND (array, 0);
10737 if (TREE_CODE (array) != STRING_CST
10738 && TREE_CODE (array) != VAR_DECL)
10739 return 0;
10741 else
10742 return 0;
10744 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10746 tree arg0 = TREE_OPERAND (arg, 0);
10747 tree arg1 = TREE_OPERAND (arg, 1);
10749 STRIP_NOPS (arg0);
10750 STRIP_NOPS (arg1);
10752 if (TREE_CODE (arg0) == ADDR_EXPR
10753 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10754 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10756 array = TREE_OPERAND (arg0, 0);
10757 offset = arg1;
10759 else if (TREE_CODE (arg1) == ADDR_EXPR
10760 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10761 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10763 array = TREE_OPERAND (arg1, 0);
10764 offset = arg0;
10766 else
10767 return 0;
10769 else
10770 return 0;
10772 if (TREE_CODE (array) == STRING_CST)
10774 *ptr_offset = fold_convert (sizetype, offset);
10775 return array;
10777 else if (TREE_CODE (array) == VAR_DECL
10778 || TREE_CODE (array) == CONST_DECL)
10780 int length;
10781 tree init = ctor_for_folding (array);
10783 /* Variables initialized to string literals can be handled too. */
10784 if (init == error_mark_node
10785 || !init
10786 || TREE_CODE (init) != STRING_CST)
10787 return 0;
10789 /* Avoid const char foo[4] = "abcde"; */
10790 if (DECL_SIZE_UNIT (array) == NULL_TREE
10791 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10792 || (length = TREE_STRING_LENGTH (init)) <= 0
10793 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10794 return 0;
10796 /* If variable is bigger than the string literal, OFFSET must be constant
10797 and inside of the bounds of the string literal. */
10798 offset = fold_convert (sizetype, offset);
10799 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10800 && (! tree_fits_uhwi_p (offset)
10801 || compare_tree_int (offset, length) >= 0))
10802 return 0;
10804 *ptr_offset = offset;
10805 return init;
10808 return 0;
10811 /* Generate code to calculate OPS, and exploded expression
10812 using a store-flag instruction and return an rtx for the result.
10813 OPS reflects a comparison.
10815 If TARGET is nonzero, store the result there if convenient.
10817 Return zero if there is no suitable set-flag instruction
10818 available on this machine.
10820 Once expand_expr has been called on the arguments of the comparison,
10821 we are committed to doing the store flag, since it is not safe to
10822 re-evaluate the expression. We emit the store-flag insn by calling
10823 emit_store_flag, but only expand the arguments if we have a reason
10824 to believe that emit_store_flag will be successful. If we think that
10825 it will, but it isn't, we have to simulate the store-flag with a
10826 set/jump/set sequence. */
10828 static rtx
10829 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10831 enum rtx_code code;
10832 tree arg0, arg1, type;
10833 tree tem;
10834 enum machine_mode operand_mode;
10835 int unsignedp;
10836 rtx op0, op1;
10837 rtx subtarget = target;
10838 location_t loc = ops->location;
10840 arg0 = ops->op0;
10841 arg1 = ops->op1;
10843 /* Don't crash if the comparison was erroneous. */
10844 if (arg0 == error_mark_node || arg1 == error_mark_node)
10845 return const0_rtx;
10847 type = TREE_TYPE (arg0);
10848 operand_mode = TYPE_MODE (type);
10849 unsignedp = TYPE_UNSIGNED (type);
10851 /* We won't bother with BLKmode store-flag operations because it would mean
10852 passing a lot of information to emit_store_flag. */
10853 if (operand_mode == BLKmode)
10854 return 0;
10856 /* We won't bother with store-flag operations involving function pointers
10857 when function pointers must be canonicalized before comparisons. */
10858 #ifdef HAVE_canonicalize_funcptr_for_compare
10859 if (HAVE_canonicalize_funcptr_for_compare
10860 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10861 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10862 == FUNCTION_TYPE))
10863 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10864 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10865 == FUNCTION_TYPE))))
10866 return 0;
10867 #endif
10869 STRIP_NOPS (arg0);
10870 STRIP_NOPS (arg1);
10872 /* For vector typed comparisons emit code to generate the desired
10873 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10874 expander for this. */
10875 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10877 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10878 tree if_true = constant_boolean_node (true, ops->type);
10879 tree if_false = constant_boolean_node (false, ops->type);
10880 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10883 /* Get the rtx comparison code to use. We know that EXP is a comparison
10884 operation of some type. Some comparisons against 1 and -1 can be
10885 converted to comparisons with zero. Do so here so that the tests
10886 below will be aware that we have a comparison with zero. These
10887 tests will not catch constants in the first operand, but constants
10888 are rarely passed as the first operand. */
10890 switch (ops->code)
10892 case EQ_EXPR:
10893 code = EQ;
10894 break;
10895 case NE_EXPR:
10896 code = NE;
10897 break;
10898 case LT_EXPR:
10899 if (integer_onep (arg1))
10900 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10901 else
10902 code = unsignedp ? LTU : LT;
10903 break;
10904 case LE_EXPR:
10905 if (! unsignedp && integer_all_onesp (arg1))
10906 arg1 = integer_zero_node, code = LT;
10907 else
10908 code = unsignedp ? LEU : LE;
10909 break;
10910 case GT_EXPR:
10911 if (! unsignedp && integer_all_onesp (arg1))
10912 arg1 = integer_zero_node, code = GE;
10913 else
10914 code = unsignedp ? GTU : GT;
10915 break;
10916 case GE_EXPR:
10917 if (integer_onep (arg1))
10918 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10919 else
10920 code = unsignedp ? GEU : GE;
10921 break;
10923 case UNORDERED_EXPR:
10924 code = UNORDERED;
10925 break;
10926 case ORDERED_EXPR:
10927 code = ORDERED;
10928 break;
10929 case UNLT_EXPR:
10930 code = UNLT;
10931 break;
10932 case UNLE_EXPR:
10933 code = UNLE;
10934 break;
10935 case UNGT_EXPR:
10936 code = UNGT;
10937 break;
10938 case UNGE_EXPR:
10939 code = UNGE;
10940 break;
10941 case UNEQ_EXPR:
10942 code = UNEQ;
10943 break;
10944 case LTGT_EXPR:
10945 code = LTGT;
10946 break;
10948 default:
10949 gcc_unreachable ();
10952 /* Put a constant second. */
10953 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10954 || TREE_CODE (arg0) == FIXED_CST)
10956 tem = arg0; arg0 = arg1; arg1 = tem;
10957 code = swap_condition (code);
10960 /* If this is an equality or inequality test of a single bit, we can
10961 do this by shifting the bit being tested to the low-order bit and
10962 masking the result with the constant 1. If the condition was EQ,
10963 we xor it with 1. This does not require an scc insn and is faster
10964 than an scc insn even if we have it.
10966 The code to make this transformation was moved into fold_single_bit_test,
10967 so we just call into the folder and expand its result. */
10969 if ((code == NE || code == EQ)
10970 && integer_zerop (arg1)
10971 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10973 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
10974 if (srcstmt
10975 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
10977 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
10978 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10979 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
10980 gimple_assign_rhs1 (srcstmt),
10981 gimple_assign_rhs2 (srcstmt));
10982 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
10983 if (temp)
10984 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
10988 if (! get_subtarget (target)
10989 || GET_MODE (subtarget) != operand_mode)
10990 subtarget = 0;
10992 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10994 if (target == 0)
10995 target = gen_reg_rtx (mode);
10997 /* Try a cstore if possible. */
10998 return emit_store_flag_force (target, code, op0, op1,
10999 operand_mode, unsignedp,
11000 (TYPE_PRECISION (ops->type) == 1
11001 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11005 /* Stubs in case we haven't got a casesi insn. */
11006 #ifndef HAVE_casesi
11007 # define HAVE_casesi 0
11008 # define gen_casesi(a, b, c, d, e) (0)
11009 # define CODE_FOR_casesi CODE_FOR_nothing
11010 #endif
11012 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11013 0 otherwise (i.e. if there is no casesi instruction).
11015 DEFAULT_PROBABILITY is the probability of jumping to the default
11016 label. */
11018 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11019 rtx table_label, rtx default_label, rtx fallback_label,
11020 int default_probability)
11022 struct expand_operand ops[5];
11023 enum machine_mode index_mode = SImode;
11024 rtx op1, op2, index;
11026 if (! HAVE_casesi)
11027 return 0;
11029 /* Convert the index to SImode. */
11030 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11032 enum machine_mode omode = TYPE_MODE (index_type);
11033 rtx rangertx = expand_normal (range);
11035 /* We must handle the endpoints in the original mode. */
11036 index_expr = build2 (MINUS_EXPR, index_type,
11037 index_expr, minval);
11038 minval = integer_zero_node;
11039 index = expand_normal (index_expr);
11040 if (default_label)
11041 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11042 omode, 1, default_label,
11043 default_probability);
11044 /* Now we can safely truncate. */
11045 index = convert_to_mode (index_mode, index, 0);
11047 else
11049 if (TYPE_MODE (index_type) != index_mode)
11051 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11052 index_expr = fold_convert (index_type, index_expr);
11055 index = expand_normal (index_expr);
11058 do_pending_stack_adjust ();
11060 op1 = expand_normal (minval);
11061 op2 = expand_normal (range);
11063 create_input_operand (&ops[0], index, index_mode);
11064 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11065 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11066 create_fixed_operand (&ops[3], table_label);
11067 create_fixed_operand (&ops[4], (default_label
11068 ? default_label
11069 : fallback_label));
11070 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11071 return 1;
11074 /* Attempt to generate a tablejump instruction; same concept. */
11075 #ifndef HAVE_tablejump
11076 #define HAVE_tablejump 0
11077 #define gen_tablejump(x, y) (0)
11078 #endif
11080 /* Subroutine of the next function.
11082 INDEX is the value being switched on, with the lowest value
11083 in the table already subtracted.
11084 MODE is its expected mode (needed if INDEX is constant).
11085 RANGE is the length of the jump table.
11086 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11088 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11089 index value is out of range.
11090 DEFAULT_PROBABILITY is the probability of jumping to
11091 the default label. */
11093 static void
11094 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
11095 rtx default_label, int default_probability)
11097 rtx temp, vector;
11099 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11100 cfun->cfg->max_jumptable_ents = INTVAL (range);
11102 /* Do an unsigned comparison (in the proper mode) between the index
11103 expression and the value which represents the length of the range.
11104 Since we just finished subtracting the lower bound of the range
11105 from the index expression, this comparison allows us to simultaneously
11106 check that the original index expression value is both greater than
11107 or equal to the minimum value of the range and less than or equal to
11108 the maximum value of the range. */
11110 if (default_label)
11111 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11112 default_label, default_probability);
11115 /* If index is in range, it must fit in Pmode.
11116 Convert to Pmode so we can index with it. */
11117 if (mode != Pmode)
11118 index = convert_to_mode (Pmode, index, 1);
11120 /* Don't let a MEM slip through, because then INDEX that comes
11121 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11122 and break_out_memory_refs will go to work on it and mess it up. */
11123 #ifdef PIC_CASE_VECTOR_ADDRESS
11124 if (flag_pic && !REG_P (index))
11125 index = copy_to_mode_reg (Pmode, index);
11126 #endif
11128 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11129 GET_MODE_SIZE, because this indicates how large insns are. The other
11130 uses should all be Pmode, because they are addresses. This code
11131 could fail if addresses and insns are not the same size. */
11132 index = gen_rtx_PLUS
11133 (Pmode,
11134 gen_rtx_MULT (Pmode, index,
11135 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE), Pmode)),
11136 gen_rtx_LABEL_REF (Pmode, table_label));
11137 #ifdef PIC_CASE_VECTOR_ADDRESS
11138 if (flag_pic)
11139 index = PIC_CASE_VECTOR_ADDRESS (index);
11140 else
11141 #endif
11142 index = memory_address (CASE_VECTOR_MODE, index);
11143 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11144 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11145 convert_move (temp, vector, 0);
11147 emit_jump_insn (gen_tablejump (temp, table_label));
11149 /* If we are generating PIC code or if the table is PC-relative, the
11150 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11151 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11152 emit_barrier ();
11156 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11157 rtx table_label, rtx default_label, int default_probability)
11159 rtx index;
11161 if (! HAVE_tablejump)
11162 return 0;
11164 index_expr = fold_build2 (MINUS_EXPR, index_type,
11165 fold_convert (index_type, index_expr),
11166 fold_convert (index_type, minval));
11167 index = expand_normal (index_expr);
11168 do_pending_stack_adjust ();
11170 do_tablejump (index, TYPE_MODE (index_type),
11171 convert_modes (TYPE_MODE (index_type),
11172 TYPE_MODE (TREE_TYPE (range)),
11173 expand_normal (range),
11174 TYPE_UNSIGNED (TREE_TYPE (range))),
11175 table_label, default_label, default_probability);
11176 return 1;
11179 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11180 static rtx
11181 const_vector_from_tree (tree exp)
11183 rtvec v;
11184 unsigned i;
11185 int units;
11186 tree elt;
11187 enum machine_mode inner, mode;
11189 mode = TYPE_MODE (TREE_TYPE (exp));
11191 if (initializer_zerop (exp))
11192 return CONST0_RTX (mode);
11194 units = GET_MODE_NUNITS (mode);
11195 inner = GET_MODE_INNER (mode);
11197 v = rtvec_alloc (units);
11199 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11201 elt = VECTOR_CST_ELT (exp, i);
11203 if (TREE_CODE (elt) == REAL_CST)
11204 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11205 inner);
11206 else if (TREE_CODE (elt) == FIXED_CST)
11207 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11208 inner);
11209 else
11210 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
11211 inner);
11214 return gen_rtx_CONST_VECTOR (mode, v);
11217 /* Build a decl for a personality function given a language prefix. */
11219 tree
11220 build_personality_function (const char *lang)
11222 const char *unwind_and_version;
11223 tree decl, type;
11224 char *name;
11226 switch (targetm_common.except_unwind_info (&global_options))
11228 case UI_NONE:
11229 return NULL;
11230 case UI_SJLJ:
11231 unwind_and_version = "_sj0";
11232 break;
11233 case UI_DWARF2:
11234 case UI_TARGET:
11235 unwind_and_version = "_v0";
11236 break;
11237 case UI_SEH:
11238 unwind_and_version = "_seh0";
11239 break;
11240 default:
11241 gcc_unreachable ();
11244 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11246 type = build_function_type_list (integer_type_node, integer_type_node,
11247 long_long_unsigned_type_node,
11248 ptr_type_node, ptr_type_node, NULL_TREE);
11249 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11250 get_identifier (name), type);
11251 DECL_ARTIFICIAL (decl) = 1;
11252 DECL_EXTERNAL (decl) = 1;
11253 TREE_PUBLIC (decl) = 1;
11255 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11256 are the flags assigned by targetm.encode_section_info. */
11257 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11259 return decl;
11262 /* Extracts the personality function of DECL and returns the corresponding
11263 libfunc. */
11266 get_personality_function (tree decl)
11268 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11269 enum eh_personality_kind pk;
11271 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11272 if (pk == eh_personality_none)
11273 return NULL;
11275 if (!personality
11276 && pk == eh_personality_any)
11277 personality = lang_hooks.eh_personality ();
11279 if (pk == eh_personality_lang)
11280 gcc_assert (personality != NULL_TREE);
11282 return XEXP (DECL_RTL (personality), 0);
11285 #include "gt-expr.h"