Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / gcc / testsuite / ada / acats / tests / cxg / cxg2009.a
blob0b11ca53887ef6e9a332a0f42217c5397349d390
1 -- CXG2009.A
2 --
3 -- Grant of Unlimited Rights
4 --
5 -- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6 -- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7 -- unlimited rights in the software and documentation contained herein.
8 -- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
9 -- this public release, the Government intends to confer upon all
10 -- recipients unlimited rights equal to those held by the Government.
11 -- These rights include rights to use, duplicate, release or disclose the
12 -- released technical data and computer software in whole or in part, in
13 -- any manner and for any purpose whatsoever, and to have or permit others
14 -- to do so.
16 -- DISCLAIMER
18 -- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19 -- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20 -- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21 -- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22 -- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23 -- PARTICULAR PURPOSE OF SAID MATERIAL.
24 --*
26 -- OBJECTIVE:
27 -- Check that the real sqrt and complex modulus functions
28 -- return results that are within the allowed
29 -- error bound.
31 -- TEST DESCRIPTION:
32 -- This test checks the accuracy of the sqrt and modulus functions
33 -- by computing the norm of various vectors where the result
34 -- is known in advance.
35 -- This test uses real and complex math together as would an
36 -- actual application. Considerable use of generics is also
37 -- employed.
39 -- SPECIAL REQUIREMENTS
40 -- The Strict Mode for the numerical accuracy must be
41 -- selected. The method by which this mode is selected
42 -- is implementation dependent.
44 -- APPLICABILITY CRITERIA:
45 -- This test applies only to implementations supporting the
46 -- Numerics Annex.
47 -- This test only applies to the Strict Mode for numerical
48 -- accuracy.
51 -- CHANGE HISTORY:
52 -- 26 FEB 96 SAIC Initial release for 2.1
53 -- 22 AUG 96 SAIC Revised Check procedure
55 --!
57 ------------------------------------------------------------------------------
59 with System;
60 with Report;
61 with Ada.Numerics.Generic_Complex_Types;
62 with Ada.Numerics.Generic_Elementary_Functions;
63 procedure CXG2009 is
64 Verbose : constant Boolean := False;
66 --=====================================================================
68 generic
69 type Real is digits <>;
70 package Generic_Real_Norm_Check is
71 procedure Do_Test;
72 end Generic_Real_Norm_Check;
74 -----------------------------------------------------------------------
76 package body Generic_Real_Norm_Check is
77 type Vector is array (Integer range <>) of Real;
79 package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
80 function Sqrt (X : Real) return Real renames GEF.Sqrt;
82 function One_Norm (V : Vector) return Real is
83 -- sum of absolute values of the elements of the vector
84 Result : Real := 0.0;
85 begin
86 for I in V'Range loop
87 Result := Result + abs V(I);
88 end loop;
89 return Result;
90 end One_Norm;
92 function Inf_Norm (V : Vector) return Real is
93 -- greatest absolute vector element
94 Result : Real := 0.0;
95 begin
96 for I in V'Range loop
97 if abs V(I) > Result then
98 Result := abs V(I);
99 end if;
100 end loop;
101 return Result;
102 end Inf_Norm;
104 function Two_Norm (V : Vector) return Real is
105 -- if greatest absolute vector element is 0 then return 0
106 -- else return greatest * sqrt (sum((element / greatest) ** 2)))
107 -- where greatest is Inf_Norm of the vector
108 Inf_N : Real;
109 Sum_Squares : Real;
110 Term : Real;
111 begin
112 Inf_N := Inf_Norm (V);
113 if Inf_N = 0.0 then
114 return 0.0;
115 end if;
116 Sum_Squares := 0.0;
117 for I in V'Range loop
118 Term := V (I) / Inf_N;
119 Sum_Squares := Sum_Squares + Term * Term;
120 end loop;
121 return Inf_N * Sqrt (Sum_Squares);
122 end Two_Norm;
125 procedure Check (Actual, Expected : Real;
126 Test_Name : String;
127 MRE : Real;
128 Vector_Length : Integer) is
129 Rel_Error : Real;
130 Abs_Error : Real;
131 Max_Error : Real;
132 begin
133 -- In the case where the expected result is very small or 0
134 -- we compute the maximum error as a multiple of Model_Epsilon instead
135 -- of Model_Epsilon and Expected.
136 Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
137 Abs_Error := MRE * Real'Model_Epsilon;
138 if Rel_Error > Abs_Error then
139 Max_Error := Rel_Error;
140 else
141 Max_Error := Abs_Error;
142 end if;
144 if abs (Actual - Expected) > Max_Error then
145 Report.Failed (Test_Name &
146 " VectLength:" &
147 Integer'Image (Vector_Length) &
148 " actual: " & Real'Image (Actual) &
149 " expected: " & Real'Image (Expected) &
150 " difference: " &
151 Real'Image (Actual - Expected) &
152 " mre:" & Real'Image (Max_Error) );
153 elsif Verbose then
154 Report.Comment (Test_Name & " vector length" &
155 Integer'Image (Vector_Length));
156 end if;
157 end Check;
160 procedure Do_Test is
161 begin
162 for Vector_Length in 1 .. 10 loop
163 declare
164 V : Vector (1..Vector_Length) := (1..Vector_Length => 0.0);
165 V1 : Vector (1..Vector_Length) := (1..Vector_Length => 1.0);
166 begin
167 Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
168 Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
170 for J in 1..Vector_Length loop
171 V := (1..Vector_Length => 0.0);
172 V (J) := 1.0;
173 Check (One_Norm (V), 1.0, "one_norm (010)",
174 0.0, Vector_Length);
175 Check (Inf_Norm (V), 1.0, "inf_norm (010)",
176 0.0, Vector_Length);
177 Check (Two_Norm (V), 1.0, "two_norm (010)",
178 0.0, Vector_Length);
179 end loop;
181 Check (One_Norm (V1), Real (Vector_Length), "one_norm (1)",
182 0.0, Vector_Length);
183 Check (Inf_Norm (V1), 1.0, "inf_norm (1)",
184 0.0, Vector_Length);
186 -- error in computing Two_Norm and expected result
187 -- are as follows (ME is Model_Epsilon * Expected_Value):
188 -- 2ME from expected Sqrt
189 -- 2ME from Sqrt in Two_Norm times the error in the
190 -- vector calculation.
191 -- The vector calculation contains the following error
192 -- based upon the length N of the vector:
193 -- N*1ME from squaring terms in Two_Norm
194 -- N*1ME from the division of each term in Two_Norm
195 -- (N-1)*1ME from the sum of the terms
196 -- This gives (2 + 2 * (N + N + (N-1)) ) * ME
197 -- which simplifies to (2 + 2N + 2N + 2N - 2) * ME
198 -- or 6*N*ME
199 Check (Two_Norm (V1), Sqrt (Real(Vector_Length)),
200 "two_norm (1)",
201 (Real (6 * Vector_Length)),
202 Vector_Length);
203 exception
204 when others => Report.Failed ("exception for vector length" &
205 Integer'Image (Vector_Length) );
206 end;
207 end loop;
208 end Do_Test;
209 end Generic_Real_Norm_Check;
211 --=====================================================================
213 generic
214 type Real is digits <>;
215 package Generic_Complex_Norm_Check is
216 procedure Do_Test;
217 end Generic_Complex_Norm_Check;
219 -----------------------------------------------------------------------
221 package body Generic_Complex_Norm_Check is
222 package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
223 use Complex_Types;
224 type Vector is array (Integer range <>) of Complex;
226 package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
227 function Sqrt (X : Real) return Real renames GEF.Sqrt;
229 function One_Norm (V : Vector) return Real is
230 Result : Real := 0.0;
231 begin
232 for I in V'Range loop
233 Result := Result + abs V(I);
234 end loop;
235 return Result;
236 end One_Norm;
238 function Inf_Norm (V : Vector) return Real is
239 Result : Real := 0.0;
240 begin
241 for I in V'Range loop
242 if abs V(I) > Result then
243 Result := abs V(I);
244 end if;
245 end loop;
246 return Result;
247 end Inf_Norm;
249 function Two_Norm (V : Vector) return Real is
250 Inf_N : Real;
251 Sum_Squares : Real;
252 Term : Real;
253 begin
254 Inf_N := Inf_Norm (V);
255 if Inf_N = 0.0 then
256 return 0.0;
257 end if;
258 Sum_Squares := 0.0;
259 for I in V'Range loop
260 Term := abs (V (I) / Inf_N );
261 Sum_Squares := Sum_Squares + Term * Term;
262 end loop;
263 return Inf_N * Sqrt (Sum_Squares);
264 end Two_Norm;
267 procedure Check (Actual, Expected : Real;
268 Test_Name : String;
269 MRE : Real;
270 Vector_Length : Integer) is
271 Rel_Error : Real;
272 Abs_Error : Real;
273 Max_Error : Real;
274 begin
275 -- In the case where the expected result is very small or 0
276 -- we compute the maximum error as a multiple of Model_Epsilon instead
277 -- of Model_Epsilon and Expected.
278 Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
279 Abs_Error := MRE * Real'Model_Epsilon;
280 if Rel_Error > Abs_Error then
281 Max_Error := Rel_Error;
282 else
283 Max_Error := Abs_Error;
284 end if;
286 if abs (Actual - Expected) > Max_Error then
287 Report.Failed (Test_Name &
288 " VectLength:" &
289 Integer'Image (Vector_Length) &
290 " actual: " & Real'Image (Actual) &
291 " expected: " & Real'Image (Expected) &
292 " difference: " &
293 Real'Image (Actual - Expected) &
294 " mre:" & Real'Image (Max_Error) );
295 elsif Verbose then
296 Report.Comment (Test_Name & " vector length" &
297 Integer'Image (Vector_Length));
298 end if;
299 end Check;
302 procedure Do_Test is
303 begin
304 for Vector_Length in 1 .. 10 loop
305 declare
306 V : Vector (1..Vector_Length) :=
307 (1..Vector_Length => (0.0, 0.0));
308 X, Y : Vector (1..Vector_Length);
309 begin
310 Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
311 Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
313 for J in 1..Vector_Length loop
314 X := (1..Vector_Length => (0.0, 0.0) );
315 Y := X; -- X and Y are now both zeroed
316 X (J).Re := 1.0;
317 Y (J).Im := 1.0;
318 Check (One_Norm (X), 1.0, "one_norm (0x0)",
319 0.0, Vector_Length);
320 Check (Inf_Norm (X), 1.0, "inf_norm (0x0)",
321 0.0, Vector_Length);
322 Check (Two_Norm (X), 1.0, "two_norm (0x0)",
323 0.0, Vector_Length);
324 Check (One_Norm (Y), 1.0, "one_norm (0y0)",
325 0.0, Vector_Length);
326 Check (Inf_Norm (Y), 1.0, "inf_norm (0y0)",
327 0.0, Vector_Length);
328 Check (Two_Norm (Y), 1.0, "two_norm (0y0)",
329 0.0, Vector_Length);
330 end loop;
332 V := (1..Vector_Length => (3.0, 4.0));
334 -- error in One_Norm is 3*N*ME for abs computation +
335 -- (N-1)*ME for the additions
336 -- which gives (4N-1) * ME
337 Check (One_Norm (V), 5.0 * Real (Vector_Length),
338 "one_norm ((3,4))",
339 Real (4*Vector_Length - 1),
340 Vector_Length);
342 -- error in Inf_Norm is from abs of single element (3ME)
343 Check (Inf_Norm (V), 5.0,
344 "inf_norm ((3,4))",
345 3.0,
346 Vector_Length);
348 -- error in following comes from:
349 -- 2ME in sqrt of expected result
350 -- 3ME in Inf_Norm calculation
351 -- 2ME in sqrt of vector calculation
352 -- vector calculation has following error
353 -- 3N*ME for abs
354 -- N*ME for squaring
355 -- N*ME for division
356 -- (N-1)ME for sum
357 -- this results in [2 + 3 + 2(6N-1) ] * ME
358 -- or (12N + 3)ME
359 Check (Two_Norm (V), 5.0 * Sqrt (Real(Vector_Length)),
360 "two_norm ((3,4))",
361 (12.0 * Real (Vector_Length) + 3.0),
362 Vector_Length);
363 exception
364 when others => Report.Failed ("exception for complex " &
365 "vector length" &
366 Integer'Image (Vector_Length) );
367 end;
368 end loop;
369 end Do_Test;
370 end Generic_Complex_Norm_Check;
372 --=====================================================================
374 generic
375 type Real is digits <>;
376 package Generic_Norm_Check is
377 procedure Do_Test;
378 end Generic_Norm_Check;
380 -----------------------------------------------------------------------
382 package body Generic_Norm_Check is
383 package RNC is new Generic_Real_Norm_Check (Real);
384 package CNC is new Generic_Complex_Norm_Check (Real);
385 procedure Do_Test is
386 begin
387 RNC.Do_Test;
388 CNC.Do_Test;
389 end Do_Test;
390 end Generic_Norm_Check;
392 --=====================================================================
394 package Float_Check is new Generic_Norm_Check (Float);
396 type A_Long_Float is digits System.Max_Digits;
397 package A_Long_Float_Check is new Generic_Norm_Check (A_Long_Float);
399 -----------------------------------------------------------------------
401 begin
402 Report.Test ("CXG2009",
403 "Check the accuracy of the real sqrt and complex " &
404 " modulus functions");
406 if Verbose then
407 Report.Comment ("checking Standard.Float");
408 end if;
410 Float_Check.Do_Test;
412 if Verbose then
413 Report.Comment ("checking a digits" &
414 Integer'Image (System.Max_Digits) &
415 " floating point type");
416 end if;
418 A_Long_Float_Check.Do_Test;
420 Report.Result;
421 end CXG2009;