1 /* GNU Objective C Runtime message lookup
2 Copyright (C) 1993, 1995, 1996, 1997, 1998,
3 2001, 2002, 2004, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Kresten Krab Thorup
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 3, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Uncommented the following line to enable debug logging. Use this
27 only while debugging the runtime. */
30 /* FIXME: This file has no business including tm.h. */
31 /* FIXME: This should be using libffi instead of __builtin_apply
34 #include "objc-private/common.h"
35 #include "objc-private/error.h"
37 #include "coretypes.h"
39 #include "objc/runtime.h"
40 #include "objc/message.h" /* For objc_msg_lookup(), objc_msg_lookup_super(). */
42 #include "objc-private/module-abi-8.h"
43 #include "objc-private/runtime.h"
44 #include "objc-private/hash.h"
45 #include "objc-private/sarray.h"
46 #include "objc-private/selector.h" /* For sel_is_mapped() */
47 #include "runtime-info.h"
48 #include <assert.h> /* For assert */
49 #include <string.h> /* For strlen */
51 /* This is how we hack STRUCT_VALUE to be 1 or 0. */
52 #define gen_rtx(args...) 1
53 #define gen_rtx_MEM(args...) 1
54 #define gen_rtx_REG(args...) 1
55 /* Already defined in gcc/coretypes.h. So prevent double definition warning. */
59 #if ! defined (STRUCT_VALUE) || STRUCT_VALUE == 0
60 #define INVISIBLE_STRUCT_RETURN 1
62 #define INVISIBLE_STRUCT_RETURN 0
65 /* The uninstalled dispatch table. If a class' dispatch table points
66 to __objc_uninstalled_dtable then that means it needs its dispatch
67 table to be installed. */
68 struct sarray
*__objc_uninstalled_dtable
= 0; /* !T:MUTEX */
70 /* Two hooks for method forwarding. If either is set, it is invoked to
71 * return a function that performs the real forwarding. If both are
72 * set, the result of __objc_msg_forward2 will be preferred over that
73 * of __objc_msg_forward. If both return NULL or are unset, the
74 * libgcc based functions (__builtin_apply and friends) are used. */
75 IMP (*__objc_msg_forward
) (SEL
) = NULL
;
76 IMP (*__objc_msg_forward2
) (id
, SEL
) = NULL
;
78 /* Send +initialize to class. */
79 static void __objc_send_initialize (Class
);
81 /* Forward declare some functions */
82 static void __objc_install_dtable_for_class (Class cls
);
83 static void __objc_prepare_dtable_for_class (Class cls
);
84 static void __objc_install_prepared_dtable_for_class (Class cls
);
86 static struct sarray
*__objc_prepared_dtable_for_class (Class cls
);
87 static IMP
__objc_get_prepared_imp (Class cls
,SEL sel
);
90 /* Various forwarding functions that are used based upon the
91 return type for the selector.
92 __objc_block_forward for structures.
93 __objc_double_forward for floats/doubles.
94 __objc_word_forward for pointers or types that fit in registers. */
95 static double __objc_double_forward (id
, SEL
, ...);
96 static id
__objc_word_forward (id
, SEL
, ...);
97 typedef struct { id many
[8]; } __big
;
98 #if INVISIBLE_STRUCT_RETURN
103 __objc_block_forward (id
, SEL
, ...);
104 static struct objc_method
* search_for_method_in_hierarchy (Class
class, SEL sel
);
105 struct objc_method
* search_for_method_in_list (struct objc_method_list
* list
, SEL op
);
106 id
nil_method (id
, SEL
);
108 /* Given a selector, return the proper forwarding implementation. */
111 __objc_get_forward_imp (id rcv
, SEL sel
)
113 /* If a custom forwarding hook was registered, try getting a
114 forwarding function from it. There are two forward routine hooks,
115 one that takes the receiver as an argument and one that does
117 if (__objc_msg_forward2
)
120 if ((result
= __objc_msg_forward2 (rcv
, sel
)) != NULL
)
123 if (__objc_msg_forward
)
126 if ((result
= __objc_msg_forward (sel
)) != NULL
)
130 /* In all other cases, use the default forwarding functions built
131 using __builtin_apply and friends. */
133 const char *t
= sel
->sel_types
;
135 if (t
&& (*t
== '[' || *t
== '(' || *t
== '{')
136 #ifdef OBJC_MAX_STRUCT_BY_VALUE
137 && objc_sizeof_type (t
) > OBJC_MAX_STRUCT_BY_VALUE
140 return (IMP
)__objc_block_forward
;
141 else if (t
&& (*t
== 'f' || *t
== 'd'))
142 return (IMP
)__objc_double_forward
;
144 return (IMP
)__objc_word_forward
;
148 /* Selectors for +resolveClassMethod: and +resolveInstanceMethod:.
149 These are set up at startup. */
150 static SEL selector_resolveClassMethod
= NULL
;
151 static SEL selector_resolveInstanceMethod
= NULL
;
153 /* Internal routines use to resolve a class method using
154 +resolveClassMethod:. 'class' is always a non-Nil class (*not* a
155 meta-class), and 'sel' is the selector that we are trying to
156 resolve. This must be called when class is not Nil, and the
157 dispatch table for class methods has already been installed.
159 This routine tries to call +resolveClassMethod: to give an
160 opportunity to resolve the method. If +resolveClassMethod: returns
161 YES, it tries looking up the method again, and if found, it returns
162 it. Else, it returns NULL. */
165 __objc_resolve_class_method (Class
class, SEL sel
)
167 /* We need to lookup +resolveClassMethod:. */
168 BOOL (*resolveMethodIMP
) (id
, SEL
, SEL
);
170 /* The dispatch table for class methods is already installed and we
171 don't want any forwarding to happen when looking up this method,
172 so we just look it up directly. Note that if 'sel' is precisely
173 +resolveClassMethod:, this would look it up yet again and find
174 nothing. That's no problem and there's no recursion. */
175 resolveMethodIMP
= (BOOL (*) (id
, SEL
, SEL
))sarray_get_safe
176 (class->class_pointer
->dtable
, (size_t) selector_resolveClassMethod
->sel_id
);
178 if (resolveMethodIMP
&& resolveMethodIMP ((id
)class, selector_resolveClassMethod
, sel
))
180 /* +resolveClassMethod: returned YES. Look the method up again.
181 We already know the dtable is installed. */
183 /* TODO: There is the case where +resolveClassMethod: is buggy
184 and returned YES without actually adding the method. We
185 could maybe print an error message. */
186 return sarray_get_safe (class->class_pointer
->dtable
, (size_t) sel
->sel_id
);
192 /* Internal routines use to resolve a instance method using
193 +resolveInstanceMethod:. 'class' is always a non-Nil class, and
194 'sel' is the selector that we are trying to resolve. This must be
195 called when class is not Nil, and the dispatch table for instance
196 methods has already been installed.
198 This routine tries to call +resolveInstanceMethod: to give an
199 opportunity to resolve the method. If +resolveInstanceMethod:
200 returns YES, it tries looking up the method again, and if found, it
201 returns it. Else, it returns NULL. */
204 __objc_resolve_instance_method (Class
class, SEL sel
)
206 /* We need to lookup +resolveInstanceMethod:. */
207 BOOL (*resolveMethodIMP
) (id
, SEL
, SEL
);
209 /* The dispatch table for class methods may not be already installed
210 so we have to install it if needed. */
211 resolveMethodIMP
= sarray_get_safe (class->class_pointer
->dtable
,
212 (size_t) selector_resolveInstanceMethod
->sel_id
);
213 if (resolveMethodIMP
== 0)
215 /* Try again after installing the dtable. */
216 if (class->class_pointer
->dtable
== __objc_uninstalled_dtable
)
218 objc_mutex_lock (__objc_runtime_mutex
);
219 if (class->class_pointer
->dtable
== __objc_uninstalled_dtable
)
220 __objc_install_dtable_for_class (class->class_pointer
);
221 objc_mutex_unlock (__objc_runtime_mutex
);
223 resolveMethodIMP
= sarray_get_safe (class->class_pointer
->dtable
,
224 (size_t) selector_resolveInstanceMethod
->sel_id
);
227 if (resolveMethodIMP
&& resolveMethodIMP ((id
)class, selector_resolveInstanceMethod
, sel
))
229 /* +resolveInstanceMethod: returned YES. Look the method up
230 again. We already know the dtable is installed. */
232 /* TODO: There is the case where +resolveInstanceMethod: is
233 buggy and returned YES without actually adding the method.
234 We could maybe print an error message. */
235 return sarray_get_safe (class->dtable
, (size_t) sel
->sel_id
);
241 /* Given a CLASS and selector, return the implementation corresponding
242 to the method of the selector.
244 If CLASS is a class, the instance method is returned.
245 If CLASS is a meta class, the class method is returned.
247 Since this requires the dispatch table to be installed, this function
248 will implicitly invoke +initialize for CLASS if it hasn't been
249 invoked yet. This also insures that +initialize has been invoked
250 when the returned implementation is called directly.
252 The forwarding hooks require the receiver as an argument (if they are to
253 perform dynamic lookup in proxy objects etc), so this function has a
254 receiver argument to be used with those hooks. */
257 get_implementation (id receiver
, Class
class, SEL sel
)
261 if (class->dtable
== __objc_uninstalled_dtable
)
263 /* The dispatch table needs to be installed. */
264 objc_mutex_lock (__objc_runtime_mutex
);
266 /* Double-checked locking pattern: Check
267 __objc_uninstalled_dtable again in case another thread
268 installed the dtable while we were waiting for the lock to be
270 if (class->dtable
== __objc_uninstalled_dtable
)
271 __objc_install_dtable_for_class (class);
273 /* If the dispatch table is not yet installed, we are still in
274 the process of executing +initialize. But the implementation
275 pointer should be available in the prepared ispatch table if
277 if (class->dtable
== __objc_uninstalled_dtable
)
279 assert (__objc_prepared_dtable_for_class (class) != 0);
280 res
= __objc_get_prepared_imp (class, sel
);
285 objc_mutex_unlock (__objc_runtime_mutex
);
286 /* Call ourselves with the installed dispatch table and get the
289 res
= get_implementation (receiver
, class, sel
);
293 /* The dispatch table has been installed. */
294 res
= sarray_get_safe (class->dtable
, (size_t) sel
->sel_id
);
297 /* The dispatch table has been installed, and the method is
298 not in the dispatch table. So the method just doesn't
299 exist for the class. */
301 /* Try going through the +resolveClassMethod: or
302 +resolveInstanceMethod: process. */
303 if (CLS_ISMETA (class))
305 /* We have the meta class, but we need to invoke the
306 +resolveClassMethod: method on the class. So, we
307 need to obtain the class from the meta class, which
308 we do using the fact that both the class and the
309 meta-class have the same name. */
310 Class realClass
= objc_lookUpClass (class->name
);
312 res
= __objc_resolve_class_method (realClass
, sel
);
315 res
= __objc_resolve_instance_method (class, sel
);
318 res
= __objc_get_forward_imp (receiver
, sel
);
326 get_imp (Class
class, SEL sel
)
328 /* In a vanilla implementation we would first check if the dispatch
329 table is installed. Here instead, to get more speed in the
330 standard case (that the dispatch table is installed) we first try
331 to get the imp using brute force. Only if that fails, we do what
332 we should have been doing from the very beginning, that is, check
333 if the dispatch table needs to be installed, install it if it's
334 not installed, and retrieve the imp from the table if it's
336 void *res
= sarray_get_safe (class->dtable
, (size_t) sel
->sel_id
);
339 res
= get_implementation(nil
, class, sel
);
344 /* The new name of get_imp(). */
346 class_getMethodImplementation (Class class_
, SEL selector
)
348 if (class_
== Nil
|| selector
== NULL
)
351 /* get_imp is inlined, so we're good. */
352 return get_imp (class_
, selector
);
355 /* Given a method, return its implementation. This has been replaced
356 by method_getImplementation() in the modern API. */
358 method_get_imp (struct objc_method
* method
)
360 return (method
!= (struct objc_method
*)0) ? method
->method_imp
: (IMP
)0;
363 /* Query if an object can respond to a selector, returns YES if the
364 object implements the selector otherwise NO. Does not check if the
365 method can be forwarded. Since this requires the dispatch table to
366 installed, this function will implicitly invoke +initialize for the
367 class of OBJECT if it hasn't been invoked yet. */
370 __objc_responds_to (id object
, SEL sel
)
373 struct sarray
*dtable
;
375 /* Install dispatch table if need be */
376 dtable
= object
->class_pointer
->dtable
;
377 if (dtable
== __objc_uninstalled_dtable
)
379 objc_mutex_lock (__objc_runtime_mutex
);
380 if (object
->class_pointer
->dtable
== __objc_uninstalled_dtable
)
381 __objc_install_dtable_for_class (object
->class_pointer
);
383 /* If the dispatch table is not yet installed, we are still in
384 the process of executing +initialize. Yet the dispatch table
385 should be available. */
386 if (object
->class_pointer
->dtable
== __objc_uninstalled_dtable
)
388 dtable
= __objc_prepared_dtable_for_class (object
->class_pointer
);
392 dtable
= object
->class_pointer
->dtable
;
394 objc_mutex_unlock (__objc_runtime_mutex
);
397 /* Get the method from the dispatch table. */
398 res
= sarray_get_safe (dtable
, (size_t) sel
->sel_id
);
399 return (res
!= 0) ? YES
: NO
;
403 class_respondsToSelector (Class class_
, SEL selector
)
405 struct sarray
*dtable
;
408 if (class_
== Nil
|| selector
== NULL
)
411 /* Install dispatch table if need be. */
412 dtable
= class_
->dtable
;
413 if (dtable
== __objc_uninstalled_dtable
)
415 objc_mutex_lock (__objc_runtime_mutex
);
416 if (class_
->dtable
== __objc_uninstalled_dtable
)
417 __objc_install_dtable_for_class (class_
);
419 /* If the dispatch table is not yet installed,
420 we are still in the process of executing +initialize.
421 Yet the dispatch table should be available. */
422 if (class_
->dtable
== __objc_uninstalled_dtable
)
424 dtable
= __objc_prepared_dtable_for_class (class_
);
428 dtable
= class_
->dtable
;
430 objc_mutex_unlock (__objc_runtime_mutex
);
433 /* Get the method from the dispatch table. */
434 res
= sarray_get_safe (dtable
, (size_t) selector
->sel_id
);
435 return (res
!= 0) ? YES
: NO
;
438 /* This is the lookup function. All entries in the table are either a
439 valid method *or* zero. If zero then either the dispatch table
440 needs to be installed or it doesn't exist and forwarding is
443 objc_msg_lookup (id receiver
, SEL op
)
448 /* First try a quick lookup assuming the dispatch table exists. */
449 result
= sarray_get_safe (receiver
->class_pointer
->dtable
,
453 /* Not found ... call get_implementation () to install the
454 dispatch table and call +initialize as required,
455 providing the method implementation or a forwarding
457 result
= get_implementation (receiver
, receiver
->class_pointer
, op
);
462 return (IMP
)nil_method
;
466 objc_msg_lookup_super (struct objc_super
*super
, SEL sel
)
469 return get_imp (super
->super_class
, sel
);
471 return (IMP
)nil_method
;
475 __objc_init_dispatch_tables ()
477 __objc_uninstalled_dtable
= sarray_new (200, 0);
479 /* TODO: It would be cool to register typed selectors here. */
480 selector_resolveClassMethod
= sel_registerName ("resolveClassMethod:");
481 selector_resolveInstanceMethod
= sel_registerName ("resolveInstanceMethod:");
485 /* Install dummy table for class which causes the first message to
486 that class (or instances hereof) to be initialized properly. */
488 __objc_install_premature_dtable (Class
class)
490 assert (__objc_uninstalled_dtable
);
491 class->dtable
= __objc_uninstalled_dtable
;
494 /* Send +initialize to class if not already done. */
496 __objc_send_initialize (Class
class)
498 /* This *must* be a class object. */
499 assert (CLS_ISCLASS (class));
500 assert (! CLS_ISMETA (class));
502 /* class_add_method_list/__objc_update_dispatch_table_for_class may
503 have reset the dispatch table. The canonical way to insure that
504 we send +initialize just once, is this flag. */
505 if (! CLS_ISINITIALIZED (class))
507 DEBUG_PRINTF ("+initialize: need to initialize class '%s'\n", class->name
);
508 CLS_SETINITIALIZED (class);
509 CLS_SETINITIALIZED (class->class_pointer
);
511 /* Create the garbage collector type memory description. */
512 __objc_generate_gc_type_description (class);
514 if (class->super_class
)
515 __objc_send_initialize (class->super_class
);
518 SEL op
= sel_registerName ("initialize");
519 struct objc_method
*method
= search_for_method_in_hierarchy (class->class_pointer
,
524 DEBUG_PRINTF (" begin of [%s +initialize]\n", class->name
);
525 (*method
->method_imp
) ((id
)class, op
);
526 DEBUG_PRINTF (" end of [%s +initialize]\n", class->name
);
531 DEBUG_PRINTF (" class '%s' has no +initialize method\n", class->name
);
538 /* Walk on the methods list of class and install the methods in the
539 reverse order of the lists. Since methods added by categories are
540 before the methods of class in the methods list, this allows
541 categories to substitute methods declared in class. However if
542 more than one category replaces the same method nothing is
543 guaranteed about what method will be used. Assumes that
544 __objc_runtime_mutex is locked down. */
546 __objc_install_methods_in_dtable (struct sarray
*dtable
, struct objc_method_list
* method_list
)
553 if (method_list
->method_next
)
554 __objc_install_methods_in_dtable (dtable
, method_list
->method_next
);
556 for (i
= 0; i
< method_list
->method_count
; i
++)
558 struct objc_method
* method
= &(method_list
->method_list
[i
]);
559 sarray_at_put_safe (dtable
,
560 (sidx
) method
->method_name
->sel_id
,
566 __objc_update_dispatch_table_for_class (Class
class)
571 DEBUG_PRINTF (" _objc_update_dtable_for_class (%s)\n", class->name
);
573 objc_mutex_lock (__objc_runtime_mutex
);
575 /* Not yet installed -- skip it unless in +initialize. */
576 if (class->dtable
== __objc_uninstalled_dtable
)
578 if (__objc_prepared_dtable_for_class (class))
580 /* There is a prepared table so we must be initialising this
581 class ... we must re-do the table preparation. */
582 __objc_prepare_dtable_for_class (class);
584 objc_mutex_unlock (__objc_runtime_mutex
);
589 __objc_install_premature_dtable (class); /* someone might require it... */
590 sarray_free (arr
); /* release memory */
592 /* Could have been lazy... */
593 __objc_install_dtable_for_class (class);
595 if (class->subclass_list
) /* Traverse subclasses. */
596 for (next
= class->subclass_list
; next
; next
= next
->sibling_class
)
597 __objc_update_dispatch_table_for_class (next
);
599 objc_mutex_unlock (__objc_runtime_mutex
);
602 /* This function adds a method list to a class. This function is
603 typically called by another function specific to the run-time. As
604 such this function does not worry about thread safe issues.
606 This one is only called for categories. Class objects have their
607 methods installed right away, and their selectors are made into
608 SEL's by the function __objc_register_selectors_from_class. */
610 class_add_method_list (Class
class, struct objc_method_list
* list
)
612 /* Passing of a linked list is not allowed. Do multiple calls. */
613 assert (! list
->method_next
);
615 __objc_register_selectors_from_list(list
);
617 /* Add the methods to the class's method list. */
618 list
->method_next
= class->methods
;
619 class->methods
= list
;
621 /* Update the dispatch table of class. */
622 __objc_update_dispatch_table_for_class (class);
626 class_getInstanceMethod (Class class_
, SEL selector
)
628 struct objc_method
*m
;
630 if (class_
== Nil
|| selector
== NULL
)
633 m
= search_for_method_in_hierarchy (class_
, selector
);
637 /* Try going through +resolveInstanceMethod:, and do the search
638 again if successful. */
639 if (__objc_resolve_instance_method (class_
, selector
))
640 return search_for_method_in_hierarchy (class_
, selector
);
646 class_getClassMethod (Class class_
, SEL selector
)
648 struct objc_method
*m
;
650 if (class_
== Nil
|| selector
== NULL
)
653 m
= search_for_method_in_hierarchy (class_
->class_pointer
,
658 /* Try going through +resolveClassMethod:, and do the search again
660 if (__objc_resolve_class_method (class_
, selector
))
661 return search_for_method_in_hierarchy (class_
->class_pointer
,
668 class_addMethod (Class class_
, SEL selector
, IMP implementation
,
669 const char *method_types
)
671 struct objc_method_list
*method_list
;
672 struct objc_method
*method
;
673 const char *method_name
;
675 if (class_
== Nil
|| selector
== NULL
|| implementation
== NULL
676 || method_types
== NULL
|| (strcmp (method_types
, "") == 0))
679 method_name
= sel_getName (selector
);
680 if (method_name
== NULL
)
683 /* If the method already exists in the class, return NO. It is fine
684 if the method already exists in the superclass; in that case, we
685 are overriding it. */
686 if (CLS_IS_IN_CONSTRUCTION (class_
))
688 /* The class only contains a list of methods; they have not been
689 registered yet, ie, the method_name of each of them is still
690 a string, not a selector. Iterate manually over them to
691 check if we have already added the method. */
692 struct objc_method_list
* method_list
= class_
->methods
;
697 /* Search the method list. */
698 for (i
= 0; i
< method_list
->method_count
; ++i
)
700 struct objc_method
* method
= &method_list
->method_list
[i
];
702 if (method
->method_name
703 && strcmp ((char *)method
->method_name
, method_name
) == 0)
707 /* The method wasn't found. Follow the link to the next list of
709 method_list
= method_list
->method_next
;
711 /* The method wasn't found. It's a new one. Go ahead and add
716 /* Do the standard lookup. This assumes the selectors are
718 if (search_for_method_in_list (class_
->methods
, selector
))
722 method_list
= (struct objc_method_list
*)objc_calloc (1, sizeof (struct objc_method_list
));
723 method_list
->method_count
= 1;
725 method
= &(method_list
->method_list
[0]);
726 method
->method_name
= objc_malloc (strlen (method_name
) + 1);
727 strcpy ((char *)method
->method_name
, method_name
);
729 method
->method_types
= objc_malloc (strlen (method_types
) + 1);
730 strcpy ((char *)method
->method_types
, method_types
);
732 method
->method_imp
= implementation
;
734 if (CLS_IS_IN_CONSTRUCTION (class_
))
736 /* We only need to add the method to the list. It will be
737 registered with the runtime when the class pair is registered
739 method_list
->method_next
= class_
->methods
;
740 class_
->methods
= method_list
;
744 /* Add the method to a live class. */
745 objc_mutex_lock (__objc_runtime_mutex
);
746 class_add_method_list (class_
, method_list
);
747 objc_mutex_unlock (__objc_runtime_mutex
);
754 class_replaceMethod (Class class_
, SEL selector
, IMP implementation
,
755 const char *method_types
)
757 struct objc_method
* method
;
759 if (class_
== Nil
|| selector
== NULL
|| implementation
== NULL
760 || method_types
== NULL
)
763 method
= search_for_method_in_hierarchy (class_
, selector
);
767 return method_setImplementation (method
, implementation
);
771 class_addMethod (class_
, selector
, implementation
, method_types
);
776 /* Search for a method starting from the current class up its
777 hierarchy. Return a pointer to the method's method structure if
778 found. NULL otherwise. */
779 static struct objc_method
*
780 search_for_method_in_hierarchy (Class cls
, SEL sel
)
782 struct objc_method
* method
= NULL
;
785 if (! sel_is_mapped (sel
))
788 /* Scan the method list of the class. If the method isn't found in
789 the list then step to its super class. */
790 for (class = cls
; ((! method
) && class); class = class->super_class
)
791 method
= search_for_method_in_list (class->methods
, sel
);
798 /* Given a linked list of method and a method's name. Search for the
799 named method's method structure. Return a pointer to the method's
800 method structure if found. NULL otherwise. */
802 search_for_method_in_list (struct objc_method_list
* list
, SEL op
)
804 struct objc_method_list
* method_list
= list
;
806 if (! sel_is_mapped (op
))
809 /* If not found then we'll search the list. */
814 /* Search the method list. */
815 for (i
= 0; i
< method_list
->method_count
; ++i
)
817 struct objc_method
* method
= &method_list
->method_list
[i
];
819 if (method
->method_name
)
820 if (method
->method_name
->sel_id
== op
->sel_id
)
824 /* The method wasn't found. Follow the link to the next list of
826 method_list
= method_list
->method_next
;
832 typedef void * retval_t
;
833 typedef void * arglist_t
;
835 static retval_t
__objc_forward (id object
, SEL sel
, arglist_t args
);
837 /* Forwarding pointers/integers through the normal registers. */
839 __objc_word_forward (id rcv
, SEL op
, ...)
843 args
= __builtin_apply_args ();
844 res
= __objc_forward (rcv
, op
, args
);
846 __builtin_return (res
);
851 /* Specific routine for forwarding floats/double because of
852 architectural differences on some processors. i386s for example
853 which uses a floating point stack versus general registers for
854 floating point numbers. This forward routine makes sure that GCC
855 restores the proper return values. */
857 __objc_double_forward (id rcv
, SEL op
, ...)
861 args
= __builtin_apply_args ();
862 res
= __objc_forward (rcv
, op
, args
);
863 __builtin_return (res
);
866 #if INVISIBLE_STRUCT_RETURN
871 __objc_block_forward (id rcv
, SEL op
, ...)
875 args
= __builtin_apply_args ();
876 res
= __objc_forward (rcv
, op
, args
);
878 __builtin_return (res
);
880 #if INVISIBLE_STRUCT_RETURN
881 return (__big
) {{0, 0, 0, 0, 0, 0, 0, 0}};
888 /* This function is called for methods which are not implemented,
889 unless a custom forwarding routine has been installed. Please note
890 that most serious users of libobjc (eg, GNUstep base) do install
891 their own forwarding routines, and hence this is never actually
892 used. But, if no custom forwarding routine is installed, this is
893 called when a selector is not recognized. */
895 __objc_forward (id object
, SEL sel
, arglist_t args
)
898 static SEL frwd_sel
= 0; /* !T:SAFE2 */
901 /* First try if the object understands forward::. */
903 frwd_sel
= sel_get_any_uid ("forward::");
905 if (__objc_responds_to (object
, frwd_sel
))
907 imp
= get_implementation (object
, object
->class_pointer
, frwd_sel
);
908 return (*imp
) (object
, frwd_sel
, sel
, args
);
911 /* If the object recognizes the doesNotRecognize: method then we're
913 err_sel
= sel_get_any_uid ("doesNotRecognize:");
914 if (__objc_responds_to (object
, err_sel
))
916 imp
= get_implementation (object
, object
->class_pointer
, err_sel
);
917 return (*imp
) (object
, err_sel
, sel
);
920 /* The object doesn't recognize the method. Check for responding to
921 error:. If it does then sent it. */
923 char msg
[256 + strlen ((const char *) sel_getName (sel
))
924 + strlen ((const char *) object
->class_pointer
->name
)];
926 sprintf (msg
, "(%s) %s does not recognize %s",
927 (CLS_ISMETA (object
->class_pointer
)
930 object
->class_pointer
->name
, sel_getName (sel
));
932 /* The object doesn't respond to doesNotRecognize:. Therefore, a
933 default action is taken. */
934 _objc_abort ("%s\n", msg
);
941 __objc_print_dtable_stats (void)
945 objc_mutex_lock (__objc_runtime_mutex
);
948 printf ("memory usage: (%s)\n", "2-level sparse arrays");
950 printf ("memory usage: (%s)\n", "3-level sparse arrays");
953 printf ("arrays: %d = %ld bytes\n", narrays
,
954 (long) ((size_t) narrays
* sizeof (struct sarray
)));
955 total
+= narrays
* sizeof (struct sarray
);
956 printf ("buckets: %d = %ld bytes\n", nbuckets
,
957 (long) ((size_t) nbuckets
* sizeof (struct sbucket
)));
958 total
+= nbuckets
* sizeof (struct sbucket
);
960 printf ("idxtables: %d = %ld bytes\n",
961 idxsize
, (long) ((size_t) idxsize
* sizeof (void *)));
962 total
+= idxsize
* sizeof (void *);
963 printf ("-----------------------------------\n");
964 printf ("total: %d bytes\n", total
);
965 printf ("===================================\n");
967 objc_mutex_unlock (__objc_runtime_mutex
);
970 static cache_ptr prepared_dtable_table
= 0;
972 /* This function is called by: objc_msg_lookup, get_imp and
973 __objc_responds_to (and the dispatch table installation functions
974 themselves) to install a dispatch table for a class.
976 If CLS is a class, it installs instance methods.
977 If CLS is a meta class, it installs class methods.
979 In either case +initialize is invoked for the corresponding class.
981 The implementation must insure that the dispatch table is not
982 installed until +initialize completes. Otherwise it opens a
983 potential race since the installation of the dispatch table is used
984 as gate in regular method dispatch and we need to guarantee that
985 +initialize is the first method invoked an that no other thread my
986 dispatch messages to the class before +initialize completes. */
988 __objc_install_dtable_for_class (Class cls
)
990 /* If the class has not yet had its class links resolved, we must
991 re-compute all class links. */
992 if (! CLS_ISRESOLV (cls
))
993 __objc_resolve_class_links ();
995 /* Make sure the super class has its dispatch table installed or is
996 at least preparing. We do not need to send initialize for the
997 super class since __objc_send_initialize will insure that. */
999 && cls
->super_class
->dtable
== __objc_uninstalled_dtable
1000 && !__objc_prepared_dtable_for_class (cls
->super_class
))
1002 __objc_install_dtable_for_class (cls
->super_class
);
1003 /* The superclass initialisation may have also initialised the
1004 current class, in which case there is no more to do. */
1005 if (cls
->dtable
!= __objc_uninstalled_dtable
)
1009 /* We have already been prepared but +initialize hasn't completed.
1010 The +initialize implementation is probably sending 'self'
1011 messages. We rely on _objc_get_prepared_imp to retrieve the
1012 implementation pointers. */
1013 if (__objc_prepared_dtable_for_class (cls
))
1016 /* We have this function cache the implementation pointers for
1017 _objc_get_prepared_imp but the dispatch table won't be initilized
1018 until __objc_send_initialize completes. */
1019 __objc_prepare_dtable_for_class (cls
);
1021 /* We may have already invoked +initialize but
1022 __objc_update_dispatch_table_for_class invoked by
1023 class_add_method_list may have reset dispatch table. */
1025 /* Call +initialize. If we are a real class, we are installing
1026 instance methods. If we are a meta class, we are installing
1027 class methods. The __objc_send_initialize itself will insure
1028 that the message is called only once per class. */
1029 if (CLS_ISCLASS (cls
))
1030 __objc_send_initialize (cls
);
1033 /* Retrieve the class from the meta class. */
1034 Class c
= objc_getClass (cls
->name
);
1035 assert (CLS_ISMETA (cls
));
1037 __objc_send_initialize (c
);
1040 /* We install the dispatch table correctly when +initialize completed. */
1041 __objc_install_prepared_dtable_for_class (cls
);
1044 /* Builds the dispatch table for the class CLS and stores it in a
1045 place where it can be retrieved by __objc_get_prepared_imp until
1046 __objc_install_prepared_dtable_for_class installs it into the
1047 class. The dispatch table should not be installed into the class
1048 until +initialize has completed. */
1050 __objc_prepare_dtable_for_class (Class cls
)
1052 struct sarray
*dtable
;
1053 struct sarray
*super_dtable
;
1055 /* This table could be initialized in init.c. We can not use the
1056 class name since the class maintains the instance methods and the
1057 meta class maintains the the class methods yet both share the
1058 same name. Classes should be unique in any program. */
1059 if (! prepared_dtable_table
)
1060 prepared_dtable_table
1061 = objc_hash_new (32,
1062 (hash_func_type
) objc_hash_ptr
,
1063 (compare_func_type
) objc_compare_ptrs
);
1065 /* If the class has not yet had its class links resolved, we must
1066 re-compute all class links. */
1067 if (! CLS_ISRESOLV (cls
))
1068 __objc_resolve_class_links ();
1071 assert (cls
->dtable
== __objc_uninstalled_dtable
);
1073 /* If there is already a prepared dtable for this class, we must
1074 replace it with a new version (since there must have been methods
1075 added to or otherwise modified in the class while executing
1076 +initialize, and the table needs to be recomputed. */
1077 dtable
= __objc_prepared_dtable_for_class (cls
);
1080 objc_hash_remove (prepared_dtable_table
, cls
);
1081 sarray_free (dtable
);
1084 /* Now prepare the dtable for population. */
1085 assert (cls
!= cls
->super_class
);
1086 if (cls
->super_class
)
1088 /* Inherit the method list from the super class. Yet the super
1089 class may still be initializing in the case when a class
1090 cluster sub class initializes its super classes. */
1091 if (cls
->super_class
->dtable
== __objc_uninstalled_dtable
)
1092 __objc_install_dtable_for_class (cls
->super_class
);
1094 super_dtable
= cls
->super_class
->dtable
;
1095 /* If the dispatch table is not yet installed, we are still in
1096 the process of executing +initialize. Yet the dispatch table
1097 should be available. */
1098 if (super_dtable
== __objc_uninstalled_dtable
)
1099 super_dtable
= __objc_prepared_dtable_for_class (cls
->super_class
);
1101 assert (super_dtable
);
1102 dtable
= sarray_lazy_copy (super_dtable
);
1105 dtable
= sarray_new (__objc_selector_max_index
, 0);
1107 __objc_install_methods_in_dtable (dtable
, cls
->methods
);
1109 objc_hash_add (&prepared_dtable_table
,
1114 /* This wrapper only exists to allow an easy replacement of the lookup
1115 implementation and it is expected that the compiler will optimize
1117 static struct sarray
*
1118 __objc_prepared_dtable_for_class (Class cls
)
1120 struct sarray
*dtable
= 0;
1122 if (prepared_dtable_table
)
1123 dtable
= objc_hash_value_for_key (prepared_dtable_table
, cls
);
1124 /* dtable my be nil, since we call this to check whether we are
1125 currently preparing before we start preparing. */
1129 /* Helper function for messages sent to CLS or implementation pointers
1130 retrieved from CLS during +initialize before the dtable is
1131 installed. When a class implicitly initializes another class which
1132 in turn implicitly invokes methods in this class, before the
1133 implementation of +initialize of CLS completes, this returns the
1134 expected implementation. Forwarding remains the responsibility of
1135 objc_msg_lookup. This function should only be called under the
1138 __objc_get_prepared_imp (Class cls
,SEL sel
)
1140 struct sarray
*dtable
;
1145 assert (cls
->dtable
== __objc_uninstalled_dtable
);
1146 dtable
= __objc_prepared_dtable_for_class (cls
);
1149 assert (dtable
!= __objc_uninstalled_dtable
);
1150 imp
= sarray_get_safe (dtable
, (size_t) sel
->sel_id
);
1152 /* imp may be Nil if the method does not exist and we may fallback
1153 to the forwarding implementation later. */
1157 /* When this function is called +initialize should be completed. So
1158 now we are safe to install the dispatch table for the class so that
1159 they become available for other threads that may be waiting in the
1162 __objc_install_prepared_dtable_for_class (Class cls
)
1165 assert (cls
->dtable
== __objc_uninstalled_dtable
);
1166 cls
->dtable
= __objc_prepared_dtable_for_class (cls
);
1168 assert (cls
->dtable
);
1169 assert (cls
->dtable
!= __objc_uninstalled_dtable
);
1170 objc_hash_remove (prepared_dtable_table
, cls
);