* mips.md: Define conditional move patterns for floating point
[official-gcc.git] / gcc / dwarfout.c
blob90c15024217f1152560c65bbff61f805742e6f03
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 95-98, 1999 Free Software Foundation, Inc.
3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
24 #ifdef DWARF_DEBUGGING_INFO
25 #include "system.h"
26 #include "dwarf.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "defaults.h"
35 #include "dwarfout.h"
36 #include "toplev.h"
38 #if defined(DWARF_TIMESTAMPS)
39 #if !defined(POSIX)
40 extern time_t time PROTO ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
41 #endif /* !defined(POSIX) */
42 #endif /* defined(DWARF_TIMESTAMPS) */
44 /* We cannot use <assert.h> in GCC source, since that would include
45 GCC's assert.h, which may not be compatible with the host compiler. */
46 #undef assert
47 #ifdef NDEBUG
48 # define assert(e)
49 #else
50 # define assert(e) do { if (! (e)) abort (); } while (0)
51 #endif
53 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
54 regarding the GNU implementation of Dwarf. */
56 /* NOTE: In the comments in this file, many references are made to
57 so called "Debugging Information Entries". For the sake of brevity,
58 this term is abbreviated to `DIE' throughout the remainder of this
59 file. */
61 /* Note that the implementation of C++ support herein is (as yet) unfinished.
62 If you want to try to complete it, more power to you. */
64 /* How to start an assembler comment. */
65 #ifndef ASM_COMMENT_START
66 #define ASM_COMMENT_START ";#"
67 #endif
69 /* How to print out a register name. */
70 #ifndef PRINT_REG
71 #define PRINT_REG(RTX, CODE, FILE) \
72 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
73 #endif
75 /* Define a macro which returns non-zero for any tagged type which is
76 used (directly or indirectly) in the specification of either some
77 function's return type or some formal parameter of some function.
78 We use this macro when we are operating in "terse" mode to help us
79 know what tagged types have to be represented in Dwarf (even in
80 terse mode) and which ones don't.
82 A flag bit with this meaning really should be a part of the normal
83 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
84 for these nodes. For now, we have to just fake it. It it safe for
85 us to simply return zero for all complete tagged types (which will
86 get forced out anyway if they were used in the specification of some
87 formal or return type) and non-zero for all incomplete tagged types.
90 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
92 /* Define a macro which returns non-zero for a TYPE_DECL which was
93 implicitly generated for a tagged type.
95 Note that unlike the gcc front end (which generates a NULL named
96 TYPE_DECL node for each complete tagged type, each array type, and
97 each function type node created) the g++ front end generates a
98 _named_ TYPE_DECL node for each tagged type node created.
99 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
100 generate a DW_TAG_typedef DIE for them. */
101 #define TYPE_DECL_IS_STUB(decl) \
102 (DECL_NAME (decl) == NULL \
103 || (DECL_ARTIFICIAL (decl) \
104 && is_tagged_type (TREE_TYPE (decl)) \
105 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
107 extern int flag_traditional;
108 extern char *version_string;
110 /* Maximum size (in bytes) of an artificially generated label. */
112 #define MAX_ARTIFICIAL_LABEL_BYTES 30
114 /* Make sure we know the sizes of the various types dwarf can describe.
115 These are only defaults. If the sizes are different for your target,
116 you should override these values by defining the appropriate symbols
117 in your tm.h file. */
119 #ifndef CHAR_TYPE_SIZE
120 #define CHAR_TYPE_SIZE BITS_PER_UNIT
121 #endif
123 #ifndef SHORT_TYPE_SIZE
124 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
125 #endif
127 #ifndef INT_TYPE_SIZE
128 #define INT_TYPE_SIZE BITS_PER_WORD
129 #endif
131 #ifndef LONG_TYPE_SIZE
132 #define LONG_TYPE_SIZE BITS_PER_WORD
133 #endif
135 #ifndef LONG_LONG_TYPE_SIZE
136 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
137 #endif
139 #ifndef WCHAR_TYPE_SIZE
140 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
141 #endif
143 #ifndef WCHAR_UNSIGNED
144 #define WCHAR_UNSIGNED 0
145 #endif
147 #ifndef FLOAT_TYPE_SIZE
148 #define FLOAT_TYPE_SIZE BITS_PER_WORD
149 #endif
151 #ifndef DOUBLE_TYPE_SIZE
152 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
153 #endif
155 #ifndef LONG_DOUBLE_TYPE_SIZE
156 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
157 #endif
159 /* Structure to keep track of source filenames. */
161 struct filename_entry {
162 unsigned number;
163 char * name;
166 typedef struct filename_entry filename_entry;
168 /* Pointer to an array of elements, each one having the structure above. */
170 static filename_entry *filename_table;
172 /* Total number of entries in the table (i.e. array) pointed to by
173 `filename_table'. This is the *total* and includes both used and
174 unused slots. */
176 static unsigned ft_entries_allocated;
178 /* Number of entries in the filename_table which are actually in use. */
180 static unsigned ft_entries;
182 /* Size (in elements) of increments by which we may expand the filename
183 table. Actually, a single hunk of space of this size should be enough
184 for most typical programs. */
186 #define FT_ENTRIES_INCREMENT 64
188 /* Local pointer to the name of the main input file. Initialized in
189 dwarfout_init. */
191 static char *primary_filename;
193 /* Pointer to the most recent filename for which we produced some line info. */
195 static char *last_filename;
197 /* For Dwarf output, we must assign lexical-blocks id numbers
198 in the order in which their beginnings are encountered.
199 We output Dwarf debugging info that refers to the beginnings
200 and ends of the ranges of code for each lexical block with
201 assembler labels ..Bn and ..Bn.e, where n is the block number.
202 The labels themselves are generated in final.c, which assigns
203 numbers to the blocks in the same way. */
205 static unsigned next_block_number = 2;
207 /* Counter to generate unique names for DIEs. */
209 static unsigned next_unused_dienum = 1;
211 /* Number of the DIE which is currently being generated. */
213 static unsigned current_dienum;
215 /* Number to use for the special "pubname" label on the next DIE which
216 represents a function or data object defined in this compilation
217 unit which has "extern" linkage. */
219 static int next_pubname_number = 0;
221 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
223 /* Pointer to a dynamically allocated list of pre-reserved and still
224 pending sibling DIE numbers. Note that this list will grow as needed. */
226 static unsigned *pending_sibling_stack;
228 /* Counter to keep track of the number of pre-reserved and still pending
229 sibling DIE numbers. */
231 static unsigned pending_siblings;
233 /* The currently allocated size of the above list (expressed in number of
234 list elements). */
236 static unsigned pending_siblings_allocated;
238 /* Size (in elements) of increments by which we may expand the pending
239 sibling stack. Actually, a single hunk of space of this size should
240 be enough for most typical programs. */
242 #define PENDING_SIBLINGS_INCREMENT 64
244 /* Non-zero if we are performing our file-scope finalization pass and if
245 we should force out Dwarf descriptions of any and all file-scope
246 tagged types which are still incomplete types. */
248 static int finalizing = 0;
250 /* A pointer to the base of a list of pending types which we haven't
251 generated DIEs for yet, but which we will have to come back to
252 later on. */
254 static tree *pending_types_list;
256 /* Number of elements currently allocated for the pending_types_list. */
258 static unsigned pending_types_allocated;
260 /* Number of elements of pending_types_list currently in use. */
262 static unsigned pending_types;
264 /* Size (in elements) of increments by which we may expand the pending
265 types list. Actually, a single hunk of space of this size should
266 be enough for most typical programs. */
268 #define PENDING_TYPES_INCREMENT 64
270 /* A pointer to the base of a list of incomplete types which might be
271 completed at some later time. */
273 static tree *incomplete_types_list;
275 /* Number of elements currently allocated for the incomplete_types_list. */
276 static unsigned incomplete_types_allocated;
278 /* Number of elements of incomplete_types_list currently in use. */
279 static unsigned incomplete_types;
281 /* Size (in elements) of increments by which we may expand the incomplete
282 types list. Actually, a single hunk of space of this size should
283 be enough for most typical programs. */
284 #define INCOMPLETE_TYPES_INCREMENT 64
286 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
287 This is used in a hack to help us get the DIEs describing types of
288 formal parameters to come *after* all of the DIEs describing the formal
289 parameters themselves. That's necessary in order to be compatible
290 with what the brain-damaged svr4 SDB debugger requires. */
292 static tree fake_containing_scope;
294 /* The number of the current function definition that we are generating
295 debugging information for. These numbers range from 1 up to the maximum
296 number of function definitions contained within the current compilation
297 unit. These numbers are used to create unique labels for various things
298 contained within various function definitions. */
300 static unsigned current_funcdef_number = 1;
302 /* A pointer to the ..._DECL node which we have most recently been working
303 on. We keep this around just in case something about it looks screwy
304 and we want to tell the user what the source coordinates for the actual
305 declaration are. */
307 static tree dwarf_last_decl;
309 /* A flag indicating that we are emitting the member declarations of a
310 class, so member functions and variables should not be entirely emitted.
311 This is a kludge to avoid passing a second argument to output_*_die. */
313 static int in_class;
315 /* Forward declarations for functions defined in this file. */
317 static char *dwarf_tag_name PROTO((unsigned));
318 static char *dwarf_attr_name PROTO((unsigned));
319 static char *dwarf_stack_op_name PROTO((unsigned));
320 static char *dwarf_typemod_name PROTO((unsigned));
321 static char *dwarf_fmt_byte_name PROTO((unsigned));
322 static char *dwarf_fund_type_name PROTO((unsigned));
323 static tree decl_ultimate_origin PROTO((tree));
324 static tree block_ultimate_origin PROTO((tree));
325 static tree decl_class_context PROTO((tree));
326 #if 0
327 static void output_unsigned_leb128 PROTO((unsigned long));
328 static void output_signed_leb128 PROTO((long));
329 #endif
330 static inline int is_body_block PROTO((tree));
331 static int fundamental_type_code PROTO((tree));
332 static tree root_type_1 PROTO((tree, int));
333 static tree root_type PROTO((tree));
334 static void write_modifier_bytes_1 PROTO((tree, int, int, int));
335 static void write_modifier_bytes PROTO((tree, int, int));
336 static inline int type_is_fundamental PROTO((tree));
337 static void equate_decl_number_to_die_number PROTO((tree));
338 static inline void equate_type_number_to_die_number PROTO((tree));
339 static void output_reg_number PROTO((rtx));
340 static void output_mem_loc_descriptor PROTO((rtx));
341 static void output_loc_descriptor PROTO((rtx));
342 static void output_bound_representation PROTO((tree, unsigned, int));
343 static void output_enumeral_list PROTO((tree));
344 static inline unsigned ceiling PROTO((unsigned, unsigned));
345 static inline tree field_type PROTO((tree));
346 static inline unsigned simple_type_align_in_bits PROTO((tree));
347 static inline unsigned simple_type_size_in_bits PROTO((tree));
348 static unsigned field_byte_offset PROTO((tree));
349 static inline void sibling_attribute PROTO((void));
350 static void location_attribute PROTO((rtx));
351 static void data_member_location_attribute PROTO((tree));
352 static void const_value_attribute PROTO((rtx));
353 static void location_or_const_value_attribute PROTO((tree));
354 static inline void name_attribute PROTO((char *));
355 static inline void fund_type_attribute PROTO((unsigned));
356 static void mod_fund_type_attribute PROTO((tree, int, int));
357 static inline void user_def_type_attribute PROTO((tree));
358 static void mod_u_d_type_attribute PROTO((tree, int, int));
359 #ifdef USE_ORDERING_ATTRIBUTE
360 static inline void ordering_attribute PROTO((unsigned));
361 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
362 static void subscript_data_attribute PROTO((tree));
363 static void byte_size_attribute PROTO((tree));
364 static inline void bit_offset_attribute PROTO((tree));
365 static inline void bit_size_attribute PROTO((tree));
366 static inline void element_list_attribute PROTO((tree));
367 static inline void stmt_list_attribute PROTO((char *));
368 static inline void low_pc_attribute PROTO((char *));
369 static inline void high_pc_attribute PROTO((char *));
370 static inline void body_begin_attribute PROTO((char *));
371 static inline void body_end_attribute PROTO((char *));
372 static inline void language_attribute PROTO((unsigned));
373 static inline void member_attribute PROTO((tree));
374 #if 0
375 static inline void string_length_attribute PROTO((tree));
376 #endif
377 static inline void comp_dir_attribute PROTO((char *));
378 static inline void sf_names_attribute PROTO((char *));
379 static inline void src_info_attribute PROTO((char *));
380 static inline void mac_info_attribute PROTO((char *));
381 static inline void prototyped_attribute PROTO((tree));
382 static inline void producer_attribute PROTO((char *));
383 static inline void inline_attribute PROTO((tree));
384 static inline void containing_type_attribute PROTO((tree));
385 static inline void abstract_origin_attribute PROTO((tree));
386 #ifdef DWARF_DECL_COORDINATES
387 static inline void src_coords_attribute PROTO((unsigned, unsigned));
388 #endif /* defined(DWARF_DECL_COORDINATES) */
389 static inline void pure_or_virtual_attribute PROTO((tree));
390 static void name_and_src_coords_attributes PROTO((tree));
391 static void type_attribute PROTO((tree, int, int));
392 static char *type_tag PROTO((tree));
393 static inline void dienum_push PROTO((void));
394 static inline void dienum_pop PROTO((void));
395 static inline tree member_declared_type PROTO((tree));
396 static char *function_start_label PROTO((tree));
397 static void output_array_type_die PROTO((void *));
398 static void output_set_type_die PROTO((void *));
399 #if 0
400 static void output_entry_point_die PROTO((void *));
401 #endif
402 static void output_inlined_enumeration_type_die PROTO((void *));
403 static void output_inlined_structure_type_die PROTO((void *));
404 static void output_inlined_union_type_die PROTO((void *));
405 static void output_enumeration_type_die PROTO((void *));
406 static void output_formal_parameter_die PROTO((void *));
407 static void output_global_subroutine_die PROTO((void *));
408 static void output_global_variable_die PROTO((void *));
409 static void output_label_die PROTO((void *));
410 static void output_lexical_block_die PROTO((void *));
411 static void output_inlined_subroutine_die PROTO((void *));
412 static void output_local_variable_die PROTO((void *));
413 static void output_member_die PROTO((void *));
414 #if 0
415 static void output_pointer_type_die PROTO((void *));
416 static void output_reference_type_die PROTO((void *));
417 #endif
418 static void output_ptr_to_mbr_type_die PROTO((void *));
419 static void output_compile_unit_die PROTO((void *));
420 static void output_string_type_die PROTO((void *));
421 static void output_inheritance_die PROTO((void *));
422 static void output_structure_type_die PROTO((void *));
423 static void output_local_subroutine_die PROTO((void *));
424 static void output_subroutine_type_die PROTO((void *));
425 static void output_typedef_die PROTO((void *));
426 static void output_union_type_die PROTO((void *));
427 static void output_unspecified_parameters_die PROTO((void *));
428 static void output_padded_null_die PROTO((void *));
429 static void output_die PROTO((void (*) PROTO((void *)), void *));
430 static void end_sibling_chain PROTO((void));
431 static void output_formal_types PROTO((tree));
432 static void pend_type PROTO((tree));
433 static int type_ok_for_scope PROTO((tree, tree));
434 static void output_pending_types_for_scope PROTO((tree));
435 static void output_type PROTO((tree, tree));
436 static void output_tagged_type_instantiation PROTO((tree));
437 static void output_block PROTO((tree, int));
438 static void output_decls_for_scope PROTO((tree, int));
439 static void output_decl PROTO((tree, tree));
440 static void shuffle_filename_entry PROTO((filename_entry *));
441 static void generate_new_sfname_entry PROTO((void));
442 static unsigned lookup_filename PROTO((char *));
443 static void generate_srcinfo_entry PROTO((unsigned, unsigned));
444 static void generate_macinfo_entry PROTO((char *, char *));
445 static int is_pseudo_reg PROTO((rtx));
446 static tree type_main_variant PROTO((tree));
447 static int is_tagged_type PROTO((tree));
448 static int is_redundant_typedef PROTO((tree));
450 /* Definitions of defaults for assembler-dependent names of various
451 pseudo-ops and section names.
453 Theses may be overridden in your tm.h file (if necessary) for your
454 particular assembler. The default values provided here correspond to
455 what is expected by "standard" AT&T System V.4 assemblers. */
457 #ifndef FILE_ASM_OP
458 #define FILE_ASM_OP ".file"
459 #endif
460 #ifndef VERSION_ASM_OP
461 #define VERSION_ASM_OP ".version"
462 #endif
463 #ifndef UNALIGNED_SHORT_ASM_OP
464 #define UNALIGNED_SHORT_ASM_OP ".2byte"
465 #endif
466 #ifndef UNALIGNED_INT_ASM_OP
467 #define UNALIGNED_INT_ASM_OP ".4byte"
468 #endif
469 #ifndef ASM_BYTE_OP
470 #define ASM_BYTE_OP ".byte"
471 #endif
472 #ifndef SET_ASM_OP
473 #define SET_ASM_OP ".set"
474 #endif
476 /* Pseudo-ops for pushing the current section onto the section stack (and
477 simultaneously changing to a new section) and for poping back to the
478 section we were in immediately before this one. Note that most svr4
479 assemblers only maintain a one level stack... you can push all the
480 sections you want, but you can only pop out one level. (The sparc
481 svr4 assembler is an exception to this general rule.) That's
482 OK because we only use at most one level of the section stack herein. */
484 #ifndef PUSHSECTION_ASM_OP
485 #define PUSHSECTION_ASM_OP ".section"
486 #endif
487 #ifndef POPSECTION_ASM_OP
488 #define POPSECTION_ASM_OP ".previous"
489 #endif
491 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
492 to print the PUSHSECTION_ASM_OP and the section name. The default here
493 works for almost all svr4 assemblers, except for the sparc, where the
494 section name must be enclosed in double quotes. (See sparcv4.h.) */
496 #ifndef PUSHSECTION_FORMAT
497 #define PUSHSECTION_FORMAT "\t%s\t%s\n"
498 #endif
500 #ifndef DEBUG_SECTION
501 #define DEBUG_SECTION ".debug"
502 #endif
503 #ifndef LINE_SECTION
504 #define LINE_SECTION ".line"
505 #endif
506 #ifndef SFNAMES_SECTION
507 #define SFNAMES_SECTION ".debug_sfnames"
508 #endif
509 #ifndef SRCINFO_SECTION
510 #define SRCINFO_SECTION ".debug_srcinfo"
511 #endif
512 #ifndef MACINFO_SECTION
513 #define MACINFO_SECTION ".debug_macinfo"
514 #endif
515 #ifndef PUBNAMES_SECTION
516 #define PUBNAMES_SECTION ".debug_pubnames"
517 #endif
518 #ifndef ARANGES_SECTION
519 #define ARANGES_SECTION ".debug_aranges"
520 #endif
521 #ifndef TEXT_SECTION
522 #define TEXT_SECTION ".text"
523 #endif
524 #ifndef DATA_SECTION
525 #define DATA_SECTION ".data"
526 #endif
527 #ifndef DATA1_SECTION
528 #define DATA1_SECTION ".data1"
529 #endif
530 #ifndef RODATA_SECTION
531 #define RODATA_SECTION ".rodata"
532 #endif
533 #ifndef RODATA1_SECTION
534 #define RODATA1_SECTION ".rodata1"
535 #endif
536 #ifndef BSS_SECTION
537 #define BSS_SECTION ".bss"
538 #endif
540 /* Definitions of defaults for formats and names of various special
541 (artificial) labels which may be generated within this file (when
542 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
544 If necessary, these may be overridden from within your tm.h file,
545 but typically, you should never need to override these.
547 These labels have been hacked (temporarily) so that they all begin with
548 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
549 stock m88k/svr4 assembler, both of which need to see .L at the start of
550 a label in order to prevent that label from going into the linker symbol
551 table). When I get time, I'll have to fix this the right way so that we
552 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
553 but that will require a rather massive set of changes. For the moment,
554 the following definitions out to produce the right results for all svr4
555 and svr3 assemblers. -- rfg
558 #ifndef TEXT_BEGIN_LABEL
559 #define TEXT_BEGIN_LABEL "*.L_text_b"
560 #endif
561 #ifndef TEXT_END_LABEL
562 #define TEXT_END_LABEL "*.L_text_e"
563 #endif
565 #ifndef DATA_BEGIN_LABEL
566 #define DATA_BEGIN_LABEL "*.L_data_b"
567 #endif
568 #ifndef DATA_END_LABEL
569 #define DATA_END_LABEL "*.L_data_e"
570 #endif
572 #ifndef DATA1_BEGIN_LABEL
573 #define DATA1_BEGIN_LABEL "*.L_data1_b"
574 #endif
575 #ifndef DATA1_END_LABEL
576 #define DATA1_END_LABEL "*.L_data1_e"
577 #endif
579 #ifndef RODATA_BEGIN_LABEL
580 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
581 #endif
582 #ifndef RODATA_END_LABEL
583 #define RODATA_END_LABEL "*.L_rodata_e"
584 #endif
586 #ifndef RODATA1_BEGIN_LABEL
587 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
588 #endif
589 #ifndef RODATA1_END_LABEL
590 #define RODATA1_END_LABEL "*.L_rodata1_e"
591 #endif
593 #ifndef BSS_BEGIN_LABEL
594 #define BSS_BEGIN_LABEL "*.L_bss_b"
595 #endif
596 #ifndef BSS_END_LABEL
597 #define BSS_END_LABEL "*.L_bss_e"
598 #endif
600 #ifndef LINE_BEGIN_LABEL
601 #define LINE_BEGIN_LABEL "*.L_line_b"
602 #endif
603 #ifndef LINE_LAST_ENTRY_LABEL
604 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
605 #endif
606 #ifndef LINE_END_LABEL
607 #define LINE_END_LABEL "*.L_line_e"
608 #endif
610 #ifndef DEBUG_BEGIN_LABEL
611 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
612 #endif
613 #ifndef SFNAMES_BEGIN_LABEL
614 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
615 #endif
616 #ifndef SRCINFO_BEGIN_LABEL
617 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
618 #endif
619 #ifndef MACINFO_BEGIN_LABEL
620 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
621 #endif
623 #ifndef DIE_BEGIN_LABEL_FMT
624 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
625 #endif
626 #ifndef DIE_END_LABEL_FMT
627 #define DIE_END_LABEL_FMT "*.L_D%u_e"
628 #endif
629 #ifndef PUB_DIE_LABEL_FMT
630 #define PUB_DIE_LABEL_FMT "*.L_P%u"
631 #endif
632 #ifndef INSN_LABEL_FMT
633 #define INSN_LABEL_FMT "*.L_I%u_%u"
634 #endif
635 #ifndef BLOCK_BEGIN_LABEL_FMT
636 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
637 #endif
638 #ifndef BLOCK_END_LABEL_FMT
639 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
640 #endif
641 #ifndef SS_BEGIN_LABEL_FMT
642 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
643 #endif
644 #ifndef SS_END_LABEL_FMT
645 #define SS_END_LABEL_FMT "*.L_s%u_e"
646 #endif
647 #ifndef EE_BEGIN_LABEL_FMT
648 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
649 #endif
650 #ifndef EE_END_LABEL_FMT
651 #define EE_END_LABEL_FMT "*.L_e%u_e"
652 #endif
653 #ifndef MT_BEGIN_LABEL_FMT
654 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
655 #endif
656 #ifndef MT_END_LABEL_FMT
657 #define MT_END_LABEL_FMT "*.L_t%u_e"
658 #endif
659 #ifndef LOC_BEGIN_LABEL_FMT
660 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
661 #endif
662 #ifndef LOC_END_LABEL_FMT
663 #define LOC_END_LABEL_FMT "*.L_l%u_e"
664 #endif
665 #ifndef BOUND_BEGIN_LABEL_FMT
666 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
667 #endif
668 #ifndef BOUND_END_LABEL_FMT
669 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
670 #endif
671 #ifndef DERIV_BEGIN_LABEL_FMT
672 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
673 #endif
674 #ifndef DERIV_END_LABEL_FMT
675 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
676 #endif
677 #ifndef SL_BEGIN_LABEL_FMT
678 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
679 #endif
680 #ifndef SL_END_LABEL_FMT
681 #define SL_END_LABEL_FMT "*.L_sl%u_e"
682 #endif
683 #ifndef BODY_BEGIN_LABEL_FMT
684 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
685 #endif
686 #ifndef BODY_END_LABEL_FMT
687 #define BODY_END_LABEL_FMT "*.L_b%u_e"
688 #endif
689 #ifndef FUNC_END_LABEL_FMT
690 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
691 #endif
692 #ifndef TYPE_NAME_FMT
693 #define TYPE_NAME_FMT "*.L_T%u"
694 #endif
695 #ifndef DECL_NAME_FMT
696 #define DECL_NAME_FMT "*.L_E%u"
697 #endif
698 #ifndef LINE_CODE_LABEL_FMT
699 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
700 #endif
701 #ifndef SFNAMES_ENTRY_LABEL_FMT
702 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
703 #endif
704 #ifndef LINE_ENTRY_LABEL_FMT
705 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
706 #endif
708 /* Definitions of defaults for various types of primitive assembly language
709 output operations.
711 If necessary, these may be overridden from within your tm.h file,
712 but typically, you shouldn't need to override these. */
714 #ifndef ASM_OUTPUT_PUSH_SECTION
715 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
716 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
717 #endif
719 #ifndef ASM_OUTPUT_POP_SECTION
720 #define ASM_OUTPUT_POP_SECTION(FILE) \
721 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
722 #endif
724 #ifndef ASM_OUTPUT_DWARF_DELTA2
725 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
726 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
727 assemble_name (FILE, LABEL1); \
728 fprintf (FILE, "-"); \
729 assemble_name (FILE, LABEL2); \
730 fprintf (FILE, "\n"); \
731 } while (0)
732 #endif
734 #ifndef ASM_OUTPUT_DWARF_DELTA4
735 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
736 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
737 assemble_name (FILE, LABEL1); \
738 fprintf (FILE, "-"); \
739 assemble_name (FILE, LABEL2); \
740 fprintf (FILE, "\n"); \
741 } while (0)
742 #endif
744 #ifndef ASM_OUTPUT_DWARF_TAG
745 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
746 do { \
747 fprintf ((FILE), "\t%s\t0x%x", \
748 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
749 if (flag_debug_asm) \
750 fprintf ((FILE), "\t%s %s", \
751 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
752 fputc ('\n', (FILE)); \
753 } while (0)
754 #endif
756 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
757 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
758 do { \
759 fprintf ((FILE), "\t%s\t0x%x", \
760 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
761 if (flag_debug_asm) \
762 fprintf ((FILE), "\t%s %s", \
763 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
764 fputc ('\n', (FILE)); \
765 } while (0)
766 #endif
768 #ifndef ASM_OUTPUT_DWARF_STACK_OP
769 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
770 do { \
771 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
772 if (flag_debug_asm) \
773 fprintf ((FILE), "\t%s %s", \
774 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
775 fputc ('\n', (FILE)); \
776 } while (0)
777 #endif
779 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
780 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
781 do { \
782 fprintf ((FILE), "\t%s\t0x%x", \
783 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
784 if (flag_debug_asm) \
785 fprintf ((FILE), "\t%s %s", \
786 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
787 fputc ('\n', (FILE)); \
788 } while (0)
789 #endif
791 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
792 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
793 do { \
794 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
795 if (flag_debug_asm) \
796 fprintf ((FILE), "\t%s %s", \
797 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
798 fputc ('\n', (FILE)); \
799 } while (0)
800 #endif
802 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
803 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
804 do { \
805 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
806 if (flag_debug_asm) \
807 fprintf ((FILE), "\t%s %s", \
808 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
809 fputc ('\n', (FILE)); \
810 } while (0)
811 #endif
813 #ifndef ASM_OUTPUT_DWARF_ADDR
814 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
815 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
816 assemble_name (FILE, LABEL); \
817 fprintf (FILE, "\n"); \
818 } while (0)
819 #endif
821 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
822 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
823 do { \
824 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
825 output_addr_const ((FILE), (RTX)); \
826 fputc ('\n', (FILE)); \
827 } while (0)
828 #endif
830 #ifndef ASM_OUTPUT_DWARF_REF
831 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
832 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
833 assemble_name (FILE, LABEL); \
834 fprintf (FILE, "\n"); \
835 } while (0)
836 #endif
838 #ifndef ASM_OUTPUT_DWARF_DATA1
839 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
840 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
841 #endif
843 #ifndef ASM_OUTPUT_DWARF_DATA2
844 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
845 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
846 #endif
848 #ifndef ASM_OUTPUT_DWARF_DATA4
849 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
850 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
851 #endif
853 #ifndef ASM_OUTPUT_DWARF_DATA8
854 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
855 do { \
856 if (WORDS_BIG_ENDIAN) \
858 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
859 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
861 else \
863 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
864 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
866 } while (0)
867 #endif
869 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
870 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
871 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
872 defined, we call it, then issue the line feed. If not, we supply a
873 default defintion of calling ASM_OUTPUT_ASCII */
875 #ifndef ASM_OUTPUT_DWARF_STRING
876 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
877 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
878 #else
879 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
880 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
881 #endif
884 /************************ general utility functions **************************/
886 inline static int
887 is_pseudo_reg (rtl)
888 register rtx rtl;
890 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
891 || ((GET_CODE (rtl) == SUBREG)
892 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
895 inline static tree
896 type_main_variant (type)
897 register tree type;
899 type = TYPE_MAIN_VARIANT (type);
901 /* There really should be only one main variant among any group of variants
902 of a given type (and all of the MAIN_VARIANT values for all members of
903 the group should point to that one type) but sometimes the C front-end
904 messes this up for array types, so we work around that bug here. */
906 if (TREE_CODE (type) == ARRAY_TYPE)
908 while (type != TYPE_MAIN_VARIANT (type))
909 type = TYPE_MAIN_VARIANT (type);
912 return type;
915 /* Return non-zero if the given type node represents a tagged type. */
917 inline static int
918 is_tagged_type (type)
919 register tree type;
921 register enum tree_code code = TREE_CODE (type);
923 return (code == RECORD_TYPE || code == UNION_TYPE
924 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
927 static char *
928 dwarf_tag_name (tag)
929 register unsigned tag;
931 switch (tag)
933 case TAG_padding: return "TAG_padding";
934 case TAG_array_type: return "TAG_array_type";
935 case TAG_class_type: return "TAG_class_type";
936 case TAG_entry_point: return "TAG_entry_point";
937 case TAG_enumeration_type: return "TAG_enumeration_type";
938 case TAG_formal_parameter: return "TAG_formal_parameter";
939 case TAG_global_subroutine: return "TAG_global_subroutine";
940 case TAG_global_variable: return "TAG_global_variable";
941 case TAG_label: return "TAG_label";
942 case TAG_lexical_block: return "TAG_lexical_block";
943 case TAG_local_variable: return "TAG_local_variable";
944 case TAG_member: return "TAG_member";
945 case TAG_pointer_type: return "TAG_pointer_type";
946 case TAG_reference_type: return "TAG_reference_type";
947 case TAG_compile_unit: return "TAG_compile_unit";
948 case TAG_string_type: return "TAG_string_type";
949 case TAG_structure_type: return "TAG_structure_type";
950 case TAG_subroutine: return "TAG_subroutine";
951 case TAG_subroutine_type: return "TAG_subroutine_type";
952 case TAG_typedef: return "TAG_typedef";
953 case TAG_union_type: return "TAG_union_type";
954 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
955 case TAG_variant: return "TAG_variant";
956 case TAG_common_block: return "TAG_common_block";
957 case TAG_common_inclusion: return "TAG_common_inclusion";
958 case TAG_inheritance: return "TAG_inheritance";
959 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
960 case TAG_module: return "TAG_module";
961 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
962 case TAG_set_type: return "TAG_set_type";
963 case TAG_subrange_type: return "TAG_subrange_type";
964 case TAG_with_stmt: return "TAG_with_stmt";
966 /* GNU extensions. */
968 case TAG_format_label: return "TAG_format_label";
969 case TAG_namelist: return "TAG_namelist";
970 case TAG_function_template: return "TAG_function_template";
971 case TAG_class_template: return "TAG_class_template";
973 default: return "TAG_<unknown>";
977 static char *
978 dwarf_attr_name (attr)
979 register unsigned attr;
981 switch (attr)
983 case AT_sibling: return "AT_sibling";
984 case AT_location: return "AT_location";
985 case AT_name: return "AT_name";
986 case AT_fund_type: return "AT_fund_type";
987 case AT_mod_fund_type: return "AT_mod_fund_type";
988 case AT_user_def_type: return "AT_user_def_type";
989 case AT_mod_u_d_type: return "AT_mod_u_d_type";
990 case AT_ordering: return "AT_ordering";
991 case AT_subscr_data: return "AT_subscr_data";
992 case AT_byte_size: return "AT_byte_size";
993 case AT_bit_offset: return "AT_bit_offset";
994 case AT_bit_size: return "AT_bit_size";
995 case AT_element_list: return "AT_element_list";
996 case AT_stmt_list: return "AT_stmt_list";
997 case AT_low_pc: return "AT_low_pc";
998 case AT_high_pc: return "AT_high_pc";
999 case AT_language: return "AT_language";
1000 case AT_member: return "AT_member";
1001 case AT_discr: return "AT_discr";
1002 case AT_discr_value: return "AT_discr_value";
1003 case AT_string_length: return "AT_string_length";
1004 case AT_common_reference: return "AT_common_reference";
1005 case AT_comp_dir: return "AT_comp_dir";
1006 case AT_const_value_string: return "AT_const_value_string";
1007 case AT_const_value_data2: return "AT_const_value_data2";
1008 case AT_const_value_data4: return "AT_const_value_data4";
1009 case AT_const_value_data8: return "AT_const_value_data8";
1010 case AT_const_value_block2: return "AT_const_value_block2";
1011 case AT_const_value_block4: return "AT_const_value_block4";
1012 case AT_containing_type: return "AT_containing_type";
1013 case AT_default_value_addr: return "AT_default_value_addr";
1014 case AT_default_value_data2: return "AT_default_value_data2";
1015 case AT_default_value_data4: return "AT_default_value_data4";
1016 case AT_default_value_data8: return "AT_default_value_data8";
1017 case AT_default_value_string: return "AT_default_value_string";
1018 case AT_friends: return "AT_friends";
1019 case AT_inline: return "AT_inline";
1020 case AT_is_optional: return "AT_is_optional";
1021 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1022 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1023 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1024 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1025 case AT_private: return "AT_private";
1026 case AT_producer: return "AT_producer";
1027 case AT_program: return "AT_program";
1028 case AT_protected: return "AT_protected";
1029 case AT_prototyped: return "AT_prototyped";
1030 case AT_public: return "AT_public";
1031 case AT_pure_virtual: return "AT_pure_virtual";
1032 case AT_return_addr: return "AT_return_addr";
1033 case AT_abstract_origin: return "AT_abstract_origin";
1034 case AT_start_scope: return "AT_start_scope";
1035 case AT_stride_size: return "AT_stride_size";
1036 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1037 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1038 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1039 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1040 case AT_virtual: return "AT_virtual";
1042 /* GNU extensions */
1044 case AT_sf_names: return "AT_sf_names";
1045 case AT_src_info: return "AT_src_info";
1046 case AT_mac_info: return "AT_mac_info";
1047 case AT_src_coords: return "AT_src_coords";
1048 case AT_body_begin: return "AT_body_begin";
1049 case AT_body_end: return "AT_body_end";
1051 default: return "AT_<unknown>";
1055 static char *
1056 dwarf_stack_op_name (op)
1057 register unsigned op;
1059 switch (op)
1061 case OP_REG: return "OP_REG";
1062 case OP_BASEREG: return "OP_BASEREG";
1063 case OP_ADDR: return "OP_ADDR";
1064 case OP_CONST: return "OP_CONST";
1065 case OP_DEREF2: return "OP_DEREF2";
1066 case OP_DEREF4: return "OP_DEREF4";
1067 case OP_ADD: return "OP_ADD";
1068 default: return "OP_<unknown>";
1072 static char *
1073 dwarf_typemod_name (mod)
1074 register unsigned mod;
1076 switch (mod)
1078 case MOD_pointer_to: return "MOD_pointer_to";
1079 case MOD_reference_to: return "MOD_reference_to";
1080 case MOD_const: return "MOD_const";
1081 case MOD_volatile: return "MOD_volatile";
1082 default: return "MOD_<unknown>";
1086 static char *
1087 dwarf_fmt_byte_name (fmt)
1088 register unsigned fmt;
1090 switch (fmt)
1092 case FMT_FT_C_C: return "FMT_FT_C_C";
1093 case FMT_FT_C_X: return "FMT_FT_C_X";
1094 case FMT_FT_X_C: return "FMT_FT_X_C";
1095 case FMT_FT_X_X: return "FMT_FT_X_X";
1096 case FMT_UT_C_C: return "FMT_UT_C_C";
1097 case FMT_UT_C_X: return "FMT_UT_C_X";
1098 case FMT_UT_X_C: return "FMT_UT_X_C";
1099 case FMT_UT_X_X: return "FMT_UT_X_X";
1100 case FMT_ET: return "FMT_ET";
1101 default: return "FMT_<unknown>";
1105 static char *
1106 dwarf_fund_type_name (ft)
1107 register unsigned ft;
1109 switch (ft)
1111 case FT_char: return "FT_char";
1112 case FT_signed_char: return "FT_signed_char";
1113 case FT_unsigned_char: return "FT_unsigned_char";
1114 case FT_short: return "FT_short";
1115 case FT_signed_short: return "FT_signed_short";
1116 case FT_unsigned_short: return "FT_unsigned_short";
1117 case FT_integer: return "FT_integer";
1118 case FT_signed_integer: return "FT_signed_integer";
1119 case FT_unsigned_integer: return "FT_unsigned_integer";
1120 case FT_long: return "FT_long";
1121 case FT_signed_long: return "FT_signed_long";
1122 case FT_unsigned_long: return "FT_unsigned_long";
1123 case FT_pointer: return "FT_pointer";
1124 case FT_float: return "FT_float";
1125 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1126 case FT_ext_prec_float: return "FT_ext_prec_float";
1127 case FT_complex: return "FT_complex";
1128 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1129 case FT_void: return "FT_void";
1130 case FT_boolean: return "FT_boolean";
1131 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1132 case FT_label: return "FT_label";
1134 /* GNU extensions. */
1136 case FT_long_long: return "FT_long_long";
1137 case FT_signed_long_long: return "FT_signed_long_long";
1138 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1140 case FT_int8: return "FT_int8";
1141 case FT_signed_int8: return "FT_signed_int8";
1142 case FT_unsigned_int8: return "FT_unsigned_int8";
1143 case FT_int16: return "FT_int16";
1144 case FT_signed_int16: return "FT_signed_int16";
1145 case FT_unsigned_int16: return "FT_unsigned_int16";
1146 case FT_int32: return "FT_int32";
1147 case FT_signed_int32: return "FT_signed_int32";
1148 case FT_unsigned_int32: return "FT_unsigned_int32";
1149 case FT_int64: return "FT_int64";
1150 case FT_signed_int64: return "FT_signed_int64";
1151 case FT_unsigned_int64: return "FT_unsigned_int64";
1153 case FT_real32: return "FT_real32";
1154 case FT_real64: return "FT_real64";
1155 case FT_real96: return "FT_real96";
1156 case FT_real128: return "FT_real128";
1158 default: return "FT_<unknown>";
1162 /* Determine the "ultimate origin" of a decl. The decl may be an
1163 inlined instance of an inlined instance of a decl which is local
1164 to an inline function, so we have to trace all of the way back
1165 through the origin chain to find out what sort of node actually
1166 served as the original seed for the given block. */
1168 static tree
1169 decl_ultimate_origin (decl)
1170 register tree decl;
1172 #ifdef ENABLE_CHECKING
1173 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1174 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1175 most distant ancestor, this should never happen. */
1176 abort ();
1177 #endif
1179 return DECL_ABSTRACT_ORIGIN (decl);
1182 /* Determine the "ultimate origin" of a block. The block may be an
1183 inlined instance of an inlined instance of a block which is local
1184 to an inline function, so we have to trace all of the way back
1185 through the origin chain to find out what sort of node actually
1186 served as the original seed for the given block. */
1188 static tree
1189 block_ultimate_origin (block)
1190 register tree block;
1192 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1194 if (immediate_origin == NULL)
1195 return NULL;
1196 else
1198 register tree ret_val;
1199 register tree lookahead = immediate_origin;
1203 ret_val = lookahead;
1204 lookahead = (TREE_CODE (ret_val) == BLOCK)
1205 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1206 : NULL;
1208 while (lookahead != NULL && lookahead != ret_val);
1209 return ret_val;
1213 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1214 of a virtual function may refer to a base class, so we check the 'this'
1215 parameter. */
1217 static tree
1218 decl_class_context (decl)
1219 tree decl;
1221 tree context = NULL_TREE;
1222 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1223 context = DECL_CONTEXT (decl);
1224 else
1225 context = TYPE_MAIN_VARIANT
1226 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1228 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1229 context = NULL_TREE;
1231 return context;
1234 #if 0
1235 static void
1236 output_unsigned_leb128 (value)
1237 register unsigned long value;
1239 register unsigned long orig_value = value;
1243 register unsigned byte = (value & 0x7f);
1245 value >>= 7;
1246 if (value != 0) /* more bytes to follow */
1247 byte |= 0x80;
1248 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1249 if (flag_debug_asm && value == 0)
1250 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
1251 ASM_COMMENT_START, orig_value);
1252 fputc ('\n', asm_out_file);
1254 while (value != 0);
1257 static void
1258 output_signed_leb128 (value)
1259 register long value;
1261 register long orig_value = value;
1262 register int negative = (value < 0);
1263 register int more;
1267 register unsigned byte = (value & 0x7f);
1269 value >>= 7;
1270 if (negative)
1271 value |= 0xfe000000; /* manually sign extend */
1272 if (((value == 0) && ((byte & 0x40) == 0))
1273 || ((value == -1) && ((byte & 0x40) == 1)))
1274 more = 0;
1275 else
1277 byte |= 0x80;
1278 more = 1;
1280 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1281 if (flag_debug_asm && more == 0)
1282 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
1283 ASM_COMMENT_START, orig_value);
1284 fputc ('\n', asm_out_file);
1286 while (more);
1288 #endif
1290 /**************** utility functions for attribute functions ******************/
1292 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1293 node in question represents the outermost pair of curly braces (i.e.
1294 the "body block") of a function or method.
1296 For any BLOCK node representing a "body block" of a function or method,
1297 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1298 which represents the outermost (function) scope for the function or
1299 method (i.e. the one which includes the formal parameters). The
1300 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1301 FUNCTION_DECL node.
1304 static inline int
1305 is_body_block (stmt)
1306 register tree stmt;
1308 if (TREE_CODE (stmt) == BLOCK)
1310 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1312 if (TREE_CODE (parent) == BLOCK)
1314 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1316 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1317 return 1;
1320 return 0;
1323 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1324 type code for the given type.
1326 This routine must only be called for GCC type nodes that correspond to
1327 Dwarf fundamental types.
1329 The current Dwarf draft specification calls for Dwarf fundamental types
1330 to accurately reflect the fact that a given type was either a "plain"
1331 integral type or an explicitly "signed" integral type. Unfortunately,
1332 we can't always do this, because GCC may already have thrown away the
1333 information about the precise way in which the type was originally
1334 specified, as in:
1336 typedef signed int my_type;
1338 struct s { my_type f; };
1340 Since we may be stuck here without enought information to do exactly
1341 what is called for in the Dwarf draft specification, we do the best
1342 that we can under the circumstances and always use the "plain" integral
1343 fundamental type codes for int, short, and long types. That's probably
1344 good enough. The additional accuracy called for in the current DWARF
1345 draft specification is probably never even useful in practice. */
1347 static int
1348 fundamental_type_code (type)
1349 register tree type;
1351 if (TREE_CODE (type) == ERROR_MARK)
1352 return 0;
1354 switch (TREE_CODE (type))
1356 case ERROR_MARK:
1357 return FT_void;
1359 case VOID_TYPE:
1360 return FT_void;
1362 case INTEGER_TYPE:
1363 /* Carefully distinguish all the standard types of C,
1364 without messing up if the language is not C.
1365 Note that we check only for the names that contain spaces;
1366 other names might occur by coincidence in other languages. */
1367 if (TYPE_NAME (type) != 0
1368 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1369 && DECL_NAME (TYPE_NAME (type)) != 0
1370 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1372 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1374 if (!strcmp (name, "unsigned char"))
1375 return FT_unsigned_char;
1376 if (!strcmp (name, "signed char"))
1377 return FT_signed_char;
1378 if (!strcmp (name, "unsigned int"))
1379 return FT_unsigned_integer;
1380 if (!strcmp (name, "short int"))
1381 return FT_short;
1382 if (!strcmp (name, "short unsigned int"))
1383 return FT_unsigned_short;
1384 if (!strcmp (name, "long int"))
1385 return FT_long;
1386 if (!strcmp (name, "long unsigned int"))
1387 return FT_unsigned_long;
1388 if (!strcmp (name, "long long int"))
1389 return FT_long_long; /* Not grok'ed by svr4 SDB */
1390 if (!strcmp (name, "long long unsigned int"))
1391 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1394 /* Most integer types will be sorted out above, however, for the
1395 sake of special `array index' integer types, the following code
1396 is also provided. */
1398 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1399 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1401 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1402 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1404 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1405 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1407 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1408 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1410 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1411 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1413 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1414 if (TYPE_PRECISION (type) == 1)
1415 return FT_boolean;
1417 abort ();
1419 case REAL_TYPE:
1420 /* Carefully distinguish all the standard types of C,
1421 without messing up if the language is not C. */
1422 if (TYPE_NAME (type) != 0
1423 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1424 && DECL_NAME (TYPE_NAME (type)) != 0
1425 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1427 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1429 /* Note that here we can run afowl of a serious bug in "classic"
1430 svr4 SDB debuggers. They don't seem to understand the
1431 FT_ext_prec_float type (even though they should). */
1433 if (!strcmp (name, "long double"))
1434 return FT_ext_prec_float;
1437 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1439 /* On the SH, when compiling with -m3e or -m4-single-only, both
1440 float and double are 32 bits. But since the debugger doesn't
1441 know about the subtarget, it always thinks double is 64 bits.
1442 So we have to tell the debugger that the type is float to
1443 make the output of the 'print' command etc. readable. */
1444 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1445 return FT_float;
1446 return FT_dbl_prec_float;
1448 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1449 return FT_float;
1451 /* Note that here we can run afowl of a serious bug in "classic"
1452 svr4 SDB debuggers. They don't seem to understand the
1453 FT_ext_prec_float type (even though they should). */
1455 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1456 return FT_ext_prec_float;
1457 abort ();
1459 case COMPLEX_TYPE:
1460 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1462 case CHAR_TYPE:
1463 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1465 case BOOLEAN_TYPE:
1466 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1468 default:
1469 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1471 return 0;
1474 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1475 the Dwarf "root" type for the given input type. The Dwarf "root" type
1476 of a given type is generally the same as the given type, except that if
1477 the given type is a pointer or reference type, then the root type of
1478 the given type is the root type of the "basis" type for the pointer or
1479 reference type. (This definition of the "root" type is recursive.)
1480 Also, the root type of a `const' qualified type or a `volatile'
1481 qualified type is the root type of the given type without the
1482 qualifiers. */
1484 static tree
1485 root_type_1 (type, count)
1486 register tree type;
1487 register int count;
1489 /* Give up after searching 1000 levels, in case this is a recursive
1490 pointer type. Such types are possible in Ada, but it is not possible
1491 to represent them in DWARF1 debug info. */
1492 if (count > 1000)
1493 return error_mark_node;
1495 switch (TREE_CODE (type))
1497 case ERROR_MARK:
1498 return error_mark_node;
1500 case POINTER_TYPE:
1501 case REFERENCE_TYPE:
1502 return root_type_1 (TREE_TYPE (type), count+1);
1504 default:
1505 return type;
1509 static tree
1510 root_type (type)
1511 register tree type;
1513 type = root_type_1 (type, 0);
1514 if (type != error_mark_node)
1515 type = type_main_variant (type);
1516 return type;
1519 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1520 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1522 static void
1523 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1524 register tree type;
1525 register int decl_const;
1526 register int decl_volatile;
1527 register int count;
1529 if (TREE_CODE (type) == ERROR_MARK)
1530 return;
1532 /* Give up after searching 1000 levels, in case this is a recursive
1533 pointer type. Such types are possible in Ada, but it is not possible
1534 to represent them in DWARF1 debug info. */
1535 if (count > 1000)
1536 return;
1538 if (TYPE_READONLY (type) || decl_const)
1539 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1540 if (TYPE_VOLATILE (type) || decl_volatile)
1541 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1542 switch (TREE_CODE (type))
1544 case POINTER_TYPE:
1545 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1546 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1547 return;
1549 case REFERENCE_TYPE:
1550 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1551 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1552 return;
1554 case ERROR_MARK:
1555 default:
1556 return;
1560 static void
1561 write_modifier_bytes (type, decl_const, decl_volatile)
1562 register tree type;
1563 register int decl_const;
1564 register int decl_volatile;
1566 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1569 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1570 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1572 static inline int
1573 type_is_fundamental (type)
1574 register tree type;
1576 switch (TREE_CODE (type))
1578 case ERROR_MARK:
1579 case VOID_TYPE:
1580 case INTEGER_TYPE:
1581 case REAL_TYPE:
1582 case COMPLEX_TYPE:
1583 case BOOLEAN_TYPE:
1584 case CHAR_TYPE:
1585 return 1;
1587 case SET_TYPE:
1588 case ARRAY_TYPE:
1589 case RECORD_TYPE:
1590 case UNION_TYPE:
1591 case QUAL_UNION_TYPE:
1592 case ENUMERAL_TYPE:
1593 case FUNCTION_TYPE:
1594 case METHOD_TYPE:
1595 case POINTER_TYPE:
1596 case REFERENCE_TYPE:
1597 case FILE_TYPE:
1598 case OFFSET_TYPE:
1599 case LANG_TYPE:
1600 return 0;
1602 default:
1603 abort ();
1605 return 0;
1608 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1609 equate directive which will associate a symbolic name with the current DIE.
1611 The name used is an artificial label generated from the DECL_UID number
1612 associated with the given decl node. The name it gets equated to is the
1613 symbolic label that we (previously) output at the start of the DIE that
1614 we are currently generating.
1616 Calling this function while generating some "decl related" form of DIE
1617 makes it possible to later refer to the DIE which represents the given
1618 decl simply by re-generating the symbolic name from the ..._DECL node's
1619 UID number. */
1621 static void
1622 equate_decl_number_to_die_number (decl)
1623 register tree decl;
1625 /* In the case where we are generating a DIE for some ..._DECL node
1626 which represents either some inline function declaration or some
1627 entity declared within an inline function declaration/definition,
1628 setup a symbolic name for the current DIE so that we have a name
1629 for this DIE that we can easily refer to later on within
1630 AT_abstract_origin attributes. */
1632 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1633 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1635 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1636 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1637 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1640 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1641 equate directive which will associate a symbolic name with the current DIE.
1643 The name used is an artificial label generated from the TYPE_UID number
1644 associated with the given type node. The name it gets equated to is the
1645 symbolic label that we (previously) output at the start of the DIE that
1646 we are currently generating.
1648 Calling this function while generating some "type related" form of DIE
1649 makes it easy to later refer to the DIE which represents the given type
1650 simply by re-generating the alternative name from the ..._TYPE node's
1651 UID number. */
1653 static inline void
1654 equate_type_number_to_die_number (type)
1655 register tree type;
1657 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1658 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1660 /* We are generating a DIE to represent the main variant of this type
1661 (i.e the type without any const or volatile qualifiers) so in order
1662 to get the equate to come out right, we need to get the main variant
1663 itself here. */
1665 type = type_main_variant (type);
1667 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1668 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1669 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1672 static void
1673 output_reg_number (rtl)
1674 register rtx rtl;
1676 register unsigned regno = REGNO (rtl);
1678 if (regno >= FIRST_PSEUDO_REGISTER)
1680 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1681 regno);
1682 regno = 0;
1684 fprintf (asm_out_file, "\t%s\t0x%x",
1685 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1686 if (flag_debug_asm)
1688 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1689 PRINT_REG (rtl, 0, asm_out_file);
1691 fputc ('\n', asm_out_file);
1694 /* The following routine is a nice and simple transducer. It converts the
1695 RTL for a variable or parameter (resident in memory) into an equivalent
1696 Dwarf representation of a mechanism for getting the address of that same
1697 variable onto the top of a hypothetical "address evaluation" stack.
1699 When creating memory location descriptors, we are effectively trans-
1700 forming the RTL for a memory-resident object into its Dwarf postfix
1701 expression equivalent. This routine just recursively descends an
1702 RTL tree, turning it into Dwarf postfix code as it goes. */
1704 static void
1705 output_mem_loc_descriptor (rtl)
1706 register rtx rtl;
1708 /* Note that for a dynamically sized array, the location we will
1709 generate a description of here will be the lowest numbered location
1710 which is actually within the array. That's *not* necessarily the
1711 same as the zeroth element of the array. */
1713 switch (GET_CODE (rtl))
1715 case SUBREG:
1717 /* The case of a subreg may arise when we have a local (register)
1718 variable or a formal (register) parameter which doesn't quite
1719 fill up an entire register. For now, just assume that it is
1720 legitimate to make the Dwarf info refer to the whole register
1721 which contains the given subreg. */
1723 rtl = XEXP (rtl, 0);
1724 /* Drop thru. */
1726 case REG:
1728 /* Whenever a register number forms a part of the description of
1729 the method for calculating the (dynamic) address of a memory
1730 resident object, DWARF rules require the register number to
1731 be referred to as a "base register". This distinction is not
1732 based in any way upon what category of register the hardware
1733 believes the given register belongs to. This is strictly
1734 DWARF terminology we're dealing with here.
1736 Note that in cases where the location of a memory-resident data
1737 object could be expressed as:
1739 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1741 the actual DWARF location descriptor that we generate may just
1742 be OP_BASEREG (basereg). This may look deceptively like the
1743 object in question was allocated to a register (rather than
1744 in memory) so DWARF consumers need to be aware of the subtle
1745 distinction between OP_REG and OP_BASEREG. */
1747 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1748 output_reg_number (rtl);
1749 break;
1751 case MEM:
1752 output_mem_loc_descriptor (XEXP (rtl, 0));
1753 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1754 break;
1756 case CONST:
1757 case SYMBOL_REF:
1758 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1759 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1760 break;
1762 case PLUS:
1763 output_mem_loc_descriptor (XEXP (rtl, 0));
1764 output_mem_loc_descriptor (XEXP (rtl, 1));
1765 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1766 break;
1768 case CONST_INT:
1769 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1770 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1771 break;
1773 case MULT:
1774 /* If a pseudo-reg is optimized away, it is possible for it to
1775 be replaced with a MEM containing a multiply. Use a GNU extension
1776 to describe it. */
1777 output_mem_loc_descriptor (XEXP (rtl, 0));
1778 output_mem_loc_descriptor (XEXP (rtl, 1));
1779 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1780 break;
1782 default:
1783 abort ();
1787 /* Output a proper Dwarf location descriptor for a variable or parameter
1788 which is either allocated in a register or in a memory location. For
1789 a register, we just generate an OP_REG and the register number. For a
1790 memory location we provide a Dwarf postfix expression describing how to
1791 generate the (dynamic) address of the object onto the address stack. */
1793 static void
1794 output_loc_descriptor (rtl)
1795 register rtx rtl;
1797 switch (GET_CODE (rtl))
1799 case SUBREG:
1801 /* The case of a subreg may arise when we have a local (register)
1802 variable or a formal (register) parameter which doesn't quite
1803 fill up an entire register. For now, just assume that it is
1804 legitimate to make the Dwarf info refer to the whole register
1805 which contains the given subreg. */
1807 rtl = XEXP (rtl, 0);
1808 /* Drop thru. */
1810 case REG:
1811 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1812 output_reg_number (rtl);
1813 break;
1815 case MEM:
1816 output_mem_loc_descriptor (XEXP (rtl, 0));
1817 break;
1819 default:
1820 abort (); /* Should never happen */
1824 /* Given a tree node describing an array bound (either lower or upper)
1825 output a representation for that bound. */
1827 static void
1828 output_bound_representation (bound, dim_num, u_or_l)
1829 register tree bound;
1830 register unsigned dim_num; /* For multi-dimensional arrays. */
1831 register char u_or_l; /* Designates upper or lower bound. */
1833 switch (TREE_CODE (bound))
1836 case ERROR_MARK:
1837 return;
1839 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1841 case INTEGER_CST:
1842 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1843 (unsigned) TREE_INT_CST_LOW (bound));
1844 break;
1846 default:
1848 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1849 SAVE_EXPR nodes, in which case we can do something, or as
1850 an expression, which we cannot represent. */
1852 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1853 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1855 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1856 current_dienum, dim_num, u_or_l);
1858 sprintf (end_label, BOUND_END_LABEL_FMT,
1859 current_dienum, dim_num, u_or_l);
1861 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1862 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1864 /* If optimization is turned on, the SAVE_EXPRs that describe
1865 how to access the upper bound values are essentially bogus.
1866 They only describe (at best) how to get at these values at
1867 the points in the generated code right after they have just
1868 been computed. Worse yet, in the typical case, the upper
1869 bound values will not even *be* computed in the optimized
1870 code, so these SAVE_EXPRs are entirely bogus.
1872 In order to compensate for this fact, we check here to see
1873 if optimization is enabled, and if so, we effectively create
1874 an empty location description for the (unknown and unknowable)
1875 upper bound.
1877 This should not cause too much trouble for existing (stupid?)
1878 debuggers because they have to deal with empty upper bounds
1879 location descriptions anyway in order to be able to deal with
1880 incomplete array types.
1882 Of course an intelligent debugger (GDB?) should be able to
1883 comprehend that a missing upper bound specification in a
1884 array type used for a storage class `auto' local array variable
1885 indicates that the upper bound is both unknown (at compile-
1886 time) and unknowable (at run-time) due to optimization. */
1888 if (! optimize)
1890 while (TREE_CODE (bound) == NOP_EXPR
1891 || TREE_CODE (bound) == CONVERT_EXPR)
1892 bound = TREE_OPERAND (bound, 0);
1894 if (TREE_CODE (bound) == SAVE_EXPR)
1895 output_loc_descriptor
1896 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1899 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1901 break;
1906 /* Recursive function to output a sequence of value/name pairs for
1907 enumeration constants in reversed order. This is called from
1908 enumeration_type_die. */
1910 static void
1911 output_enumeral_list (link)
1912 register tree link;
1914 if (link)
1916 output_enumeral_list (TREE_CHAIN (link));
1917 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1918 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1919 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
1920 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1924 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1925 which is not less than the value itself. */
1927 static inline unsigned
1928 ceiling (value, boundary)
1929 register unsigned value;
1930 register unsigned boundary;
1932 return (((value + boundary - 1) / boundary) * boundary);
1935 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1936 pointer to the declared type for the relevant field variable, or return
1937 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1939 static inline tree
1940 field_type (decl)
1941 register tree decl;
1943 register tree type;
1945 if (TREE_CODE (decl) == ERROR_MARK)
1946 return integer_type_node;
1948 type = DECL_BIT_FIELD_TYPE (decl);
1949 if (type == NULL)
1950 type = TREE_TYPE (decl);
1951 return type;
1954 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1955 node, return the alignment in bits for the type, or else return
1956 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1958 static inline unsigned
1959 simple_type_align_in_bits (type)
1960 register tree type;
1962 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1965 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1966 node, return the size in bits for the type if it is a constant, or
1967 else return the alignment for the type if the type's size is not
1968 constant, or else return BITS_PER_WORD if the type actually turns out
1969 to be an ERROR_MARK node. */
1971 static inline unsigned
1972 simple_type_size_in_bits (type)
1973 register tree type;
1975 if (TREE_CODE (type) == ERROR_MARK)
1976 return BITS_PER_WORD;
1977 else
1979 register tree type_size_tree = TYPE_SIZE (type);
1981 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1982 return TYPE_ALIGN (type);
1984 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1988 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1989 return the byte offset of the lowest addressed byte of the "containing
1990 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1991 mine what that offset is, either because the argument turns out to be a
1992 pointer to an ERROR_MARK node, or because the offset is actually variable.
1993 (We can't handle the latter case just yet.) */
1995 static unsigned
1996 field_byte_offset (decl)
1997 register tree decl;
1999 register unsigned type_align_in_bytes;
2000 register unsigned type_align_in_bits;
2001 register unsigned type_size_in_bits;
2002 register unsigned object_offset_in_align_units;
2003 register unsigned object_offset_in_bits;
2004 register unsigned object_offset_in_bytes;
2005 register tree type;
2006 register tree bitpos_tree;
2007 register tree field_size_tree;
2008 register unsigned bitpos_int;
2009 register unsigned deepest_bitpos;
2010 register unsigned field_size_in_bits;
2012 if (TREE_CODE (decl) == ERROR_MARK)
2013 return 0;
2015 if (TREE_CODE (decl) != FIELD_DECL)
2016 abort ();
2018 type = field_type (decl);
2020 bitpos_tree = DECL_FIELD_BITPOS (decl);
2021 field_size_tree = DECL_SIZE (decl);
2023 /* We cannot yet cope with fields whose positions or sizes are variable,
2024 so for now, when we see such things, we simply return 0. Someday,
2025 we may be able to handle such cases, but it will be damn difficult. */
2027 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2028 return 0;
2029 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2031 if (TREE_CODE (field_size_tree) != INTEGER_CST)
2032 return 0;
2033 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2035 type_size_in_bits = simple_type_size_in_bits (type);
2037 type_align_in_bits = simple_type_align_in_bits (type);
2038 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2040 /* Note that the GCC front-end doesn't make any attempt to keep track
2041 of the starting bit offset (relative to the start of the containing
2042 structure type) of the hypothetical "containing object" for a bit-
2043 field. Thus, when computing the byte offset value for the start of
2044 the "containing object" of a bit-field, we must deduce this infor-
2045 mation on our own.
2047 This can be rather tricky to do in some cases. For example, handling
2048 the following structure type definition when compiling for an i386/i486
2049 target (which only aligns long long's to 32-bit boundaries) can be very
2050 tricky:
2052 struct S {
2053 int field1;
2054 long long field2:31;
2057 Fortunately, there is a simple rule-of-thumb which can be used in such
2058 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2059 the structure shown above. It decides to do this based upon one simple
2060 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2061 taining object" for each bit-field at the first (i.e. lowest addressed)
2062 legitimate alignment boundary (based upon the required minimum alignment
2063 for the declared type of the field) which it can possibly use, subject
2064 to the condition that there is still enough available space remaining
2065 in the containing object (when allocated at the selected point) to
2066 fully accommodate all of the bits of the bit-field itself.
2068 This simple rule makes it obvious why GCC allocates 8 bytes for each
2069 object of the structure type shown above. When looking for a place to
2070 allocate the "containing object" for `field2', the compiler simply tries
2071 to allocate a 64-bit "containing object" at each successive 32-bit
2072 boundary (starting at zero) until it finds a place to allocate that 64-
2073 bit field such that at least 31 contiguous (and previously unallocated)
2074 bits remain within that selected 64 bit field. (As it turns out, for
2075 the example above, the compiler finds that it is OK to allocate the
2076 "containing object" 64-bit field at bit-offset zero within the
2077 structure type.)
2079 Here we attempt to work backwards from the limited set of facts we're
2080 given, and we try to deduce from those facts, where GCC must have
2081 believed that the containing object started (within the structure type).
2083 The value we deduce is then used (by the callers of this routine) to
2084 generate AT_location and AT_bit_offset attributes for fields (both
2085 bit-fields and, in the case of AT_location, regular fields as well).
2088 /* Figure out the bit-distance from the start of the structure to the
2089 "deepest" bit of the bit-field. */
2090 deepest_bitpos = bitpos_int + field_size_in_bits;
2092 /* This is the tricky part. Use some fancy footwork to deduce where the
2093 lowest addressed bit of the containing object must be. */
2094 object_offset_in_bits
2095 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2097 /* Compute the offset of the containing object in "alignment units". */
2098 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2100 /* Compute the offset of the containing object in bytes. */
2101 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2103 /* The above code assumes that the field does not cross an alignment
2104 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2105 or if the structure is packed. If this happens, then we get an object
2106 which starts after the bitfield, which means that the bit offset is
2107 negative. Gdb fails when given negative bit offsets. We avoid this
2108 by recomputing using the first bit of the bitfield. This will give
2109 us an object which does not completely contain the bitfield, but it
2110 will be aligned, and it will contain the first bit of the bitfield.
2112 However, only do this for a BYTES_BIG_ENDIAN target. For a
2113 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2114 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2115 then we end up computing the object byte offset for the wrong word of the
2116 desired bitfield, which in turn causes the field offset to be negative
2117 in bit_offset_attribute. */
2118 if (BYTES_BIG_ENDIAN
2119 && object_offset_in_bits > bitpos_int)
2121 deepest_bitpos = bitpos_int + 1;
2122 object_offset_in_bits
2123 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2124 object_offset_in_align_units = (object_offset_in_bits
2125 / type_align_in_bits);
2126 object_offset_in_bytes = (object_offset_in_align_units
2127 * type_align_in_bytes);
2130 return object_offset_in_bytes;
2133 /****************************** attributes *********************************/
2135 /* The following routines are responsible for writing out the various types
2136 of Dwarf attributes (and any following data bytes associated with them).
2137 These routines are listed in order based on the numerical codes of their
2138 associated attributes. */
2140 /* Generate an AT_sibling attribute. */
2142 static inline void
2143 sibling_attribute ()
2145 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2147 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2148 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2149 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2152 /* Output the form of location attributes suitable for whole variables and
2153 whole parameters. Note that the location attributes for struct fields
2154 are generated by the routine `data_member_location_attribute' below. */
2156 static void
2157 location_attribute (rtl)
2158 register rtx rtl;
2160 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2161 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2163 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2164 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2165 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2166 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2167 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2169 /* Handle a special case. If we are about to output a location descriptor
2170 for a variable or parameter which has been optimized out of existence,
2171 don't do that. Instead we output a zero-length location descriptor
2172 value as part of the location attribute.
2174 A variable which has been optimized out of existence will have a
2175 DECL_RTL value which denotes a pseudo-reg.
2177 Currently, in some rare cases, variables can have DECL_RTL values
2178 which look like (MEM (REG pseudo-reg#)). These cases are due to
2179 bugs elsewhere in the compiler. We treat such cases
2180 as if the variable(s) in question had been optimized out of existence.
2182 Note that in all cases where we wish to express the fact that a
2183 variable has been optimized out of existence, we do not simply
2184 suppress the generation of the entire location attribute because
2185 the absence of a location attribute in certain kinds of DIEs is
2186 used to indicate something else entirely... i.e. that the DIE
2187 represents an object declaration, but not a definition. So saith
2188 the PLSIG.
2191 if (! is_pseudo_reg (rtl)
2192 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2193 output_loc_descriptor (rtl);
2195 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2198 /* Output the specialized form of location attribute used for data members
2199 of struct and union types.
2201 In the special case of a FIELD_DECL node which represents a bit-field,
2202 the "offset" part of this special location descriptor must indicate the
2203 distance in bytes from the lowest-addressed byte of the containing
2204 struct or union type to the lowest-addressed byte of the "containing
2205 object" for the bit-field. (See the `field_byte_offset' function above.)
2207 For any given bit-field, the "containing object" is a hypothetical
2208 object (of some integral or enum type) within which the given bit-field
2209 lives. The type of this hypothetical "containing object" is always the
2210 same as the declared type of the individual bit-field itself (for GCC
2211 anyway... the DWARF spec doesn't actually mandate this).
2213 Note that it is the size (in bytes) of the hypothetical "containing
2214 object" which will be given in the AT_byte_size attribute for this
2215 bit-field. (See the `byte_size_attribute' function below.) It is
2216 also used when calculating the value of the AT_bit_offset attribute.
2217 (See the `bit_offset_attribute' function below.) */
2219 static void
2220 data_member_location_attribute (t)
2221 register tree t;
2223 register unsigned object_offset_in_bytes;
2224 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2225 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2227 if (TREE_CODE (t) == TREE_VEC)
2228 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2229 else
2230 object_offset_in_bytes = field_byte_offset (t);
2232 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2233 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2234 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2235 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2236 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2237 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2238 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2239 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2240 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2243 /* Output an AT_const_value attribute for a variable or a parameter which
2244 does not have a "location" either in memory or in a register. These
2245 things can arise in GNU C when a constant is passed as an actual
2246 parameter to an inlined function. They can also arise in C++ where
2247 declared constants do not necessarily get memory "homes". */
2249 static void
2250 const_value_attribute (rtl)
2251 register rtx rtl;
2253 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2254 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2256 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2257 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2258 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2259 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2260 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2262 switch (GET_CODE (rtl))
2264 case CONST_INT:
2265 /* Note that a CONST_INT rtx could represent either an integer or
2266 a floating-point constant. A CONST_INT is used whenever the
2267 constant will fit into a single word. In all such cases, the
2268 original mode of the constant value is wiped out, and the
2269 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2270 precise mode information for these constants, we always just
2271 output them using 4 bytes. */
2273 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2274 break;
2276 case CONST_DOUBLE:
2277 /* Note that a CONST_DOUBLE rtx could represent either an integer
2278 or a floating-point constant. A CONST_DOUBLE is used whenever
2279 the constant requires more than one word in order to be adequately
2280 represented. In all such cases, the original mode of the constant
2281 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2282 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2284 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2285 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2286 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2287 break;
2289 case CONST_STRING:
2290 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2291 break;
2293 case SYMBOL_REF:
2294 case LABEL_REF:
2295 case CONST:
2296 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2297 break;
2299 case PLUS:
2300 /* In cases where an inlined instance of an inline function is passed
2301 the address of an `auto' variable (which is local to the caller)
2302 we can get a situation where the DECL_RTL of the artificial
2303 local variable (for the inlining) which acts as a stand-in for
2304 the corresponding formal parameter (of the inline function)
2305 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2306 This is not exactly a compile-time constant expression, but it
2307 isn't the address of the (artificial) local variable either.
2308 Rather, it represents the *value* which the artificial local
2309 variable always has during its lifetime. We currently have no
2310 way to represent such quasi-constant values in Dwarf, so for now
2311 we just punt and generate an AT_const_value attribute with form
2312 FORM_BLOCK4 and a length of zero. */
2313 break;
2315 default:
2316 abort (); /* No other kinds of rtx should be possible here. */
2319 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2322 /* Generate *either* an AT_location attribute or else an AT_const_value
2323 data attribute for a variable or a parameter. We generate the
2324 AT_const_value attribute only in those cases where the given
2325 variable or parameter does not have a true "location" either in
2326 memory or in a register. This can happen (for example) when a
2327 constant is passed as an actual argument in a call to an inline
2328 function. (It's possible that these things can crop up in other
2329 ways also.) Note that one type of constant value which can be
2330 passed into an inlined function is a constant pointer. This can
2331 happen for example if an actual argument in an inlined function
2332 call evaluates to a compile-time constant address. */
2334 static void
2335 location_or_const_value_attribute (decl)
2336 register tree decl;
2338 register rtx rtl;
2340 if (TREE_CODE (decl) == ERROR_MARK)
2341 return;
2343 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2345 /* Should never happen. */
2346 abort ();
2347 return;
2350 /* Here we have to decide where we are going to say the parameter "lives"
2351 (as far as the debugger is concerned). We only have a couple of choices.
2352 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2353 normally indicates where the parameter lives during most of the activa-
2354 tion of the function. If optimization is enabled however, this could
2355 be either NULL or else a pseudo-reg. Both of those cases indicate that
2356 the parameter doesn't really live anywhere (as far as the code generation
2357 parts of GCC are concerned) during most of the function's activation.
2358 That will happen (for example) if the parameter is never referenced
2359 within the function.
2361 We could just generate a location descriptor here for all non-NULL
2362 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2363 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2364 cases where DECL_RTL is NULL or is a pseudo-reg.
2366 Note however that we can only get away with using DECL_INCOMING_RTL as
2367 a backup substitute for DECL_RTL in certain limited cases. In cases
2368 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2369 we can be sure that the parameter was passed using the same type as it
2370 is declared to have within the function, and that its DECL_INCOMING_RTL
2371 points us to a place where a value of that type is passed. In cases
2372 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2373 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2374 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2375 points us to a value of some type which is *different* from the type
2376 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2377 to generate a location attribute in such cases, the debugger would
2378 end up (for example) trying to fetch a `float' from a place which
2379 actually contains the first part of a `double'. That would lead to
2380 really incorrect and confusing output at debug-time, and we don't
2381 want that now do we?
2383 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2384 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2385 couple of cute exceptions however. On little-endian machines we can
2386 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2387 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2388 an integral type which is smaller than TREE_TYPE(decl). These cases
2389 arise when (on a little-endian machine) a non-prototyped function has
2390 a parameter declared to be of type `short' or `char'. In such cases,
2391 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2392 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2393 passed `int' value. If the debugger then uses that address to fetch a
2394 `short' or a `char' (on a little-endian machine) the result will be the
2395 correct data, so we allow for such exceptional cases below.
2397 Note that our goal here is to describe the place where the given formal
2398 parameter lives during most of the function's activation (i.e. between
2399 the end of the prologue and the start of the epilogue). We'll do that
2400 as best as we can. Note however that if the given formal parameter is
2401 modified sometime during the execution of the function, then a stack
2402 backtrace (at debug-time) will show the function as having been called
2403 with the *new* value rather than the value which was originally passed
2404 in. This happens rarely enough that it is not a major problem, but it
2405 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2406 may generate two additional attributes for any given TAG_formal_parameter
2407 DIE which will describe the "passed type" and the "passed location" for
2408 the given formal parameter in addition to the attributes we now generate
2409 to indicate the "declared type" and the "active location" for each
2410 parameter. This additional set of attributes could be used by debuggers
2411 for stack backtraces.
2413 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2414 can be NULL also. This happens (for example) for inlined-instances of
2415 inline function formal parameters which are never referenced. This really
2416 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2417 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2418 these values for inlined instances of inline function parameters, so
2419 when we see such cases, we are just out-of-luck for the time
2420 being (until integrate.c gets fixed).
2423 /* Use DECL_RTL as the "location" unless we find something better. */
2424 rtl = DECL_RTL (decl);
2426 if (TREE_CODE (decl) == PARM_DECL)
2427 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2429 /* This decl represents a formal parameter which was optimized out. */
2430 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2431 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2433 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2434 *all* cases where (rtl == NULL_RTX) just below. */
2436 if (declared_type == passed_type)
2437 rtl = DECL_INCOMING_RTL (decl);
2438 else if (! BYTES_BIG_ENDIAN)
2439 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2440 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2441 rtl = DECL_INCOMING_RTL (decl);
2444 if (rtl == NULL_RTX)
2445 return;
2447 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2448 #ifdef LEAF_REG_REMAP
2449 if (current_function_uses_only_leaf_regs)
2450 leaf_renumber_regs_insn (rtl);
2451 #endif
2453 switch (GET_CODE (rtl))
2455 case ADDRESSOF:
2456 /* The address of a variable that was optimized away; don't emit
2457 anything. */
2458 break;
2460 case CONST_INT:
2461 case CONST_DOUBLE:
2462 case CONST_STRING:
2463 case SYMBOL_REF:
2464 case LABEL_REF:
2465 case CONST:
2466 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2467 const_value_attribute (rtl);
2468 break;
2470 case MEM:
2471 case REG:
2472 case SUBREG:
2473 location_attribute (rtl);
2474 break;
2476 case CONCAT:
2477 /* ??? CONCAT is used for complex variables, which may have the real
2478 part stored in one place and the imag part stored somewhere else.
2479 DWARF1 has no way to describe a variable that lives in two different
2480 places, so we just describe where the first part lives, and hope that
2481 the second part is stored after it. */
2482 location_attribute (XEXP (rtl, 0));
2483 break;
2485 default:
2486 abort (); /* Should never happen. */
2490 /* Generate an AT_name attribute given some string value to be included as
2491 the value of the attribute. */
2493 static inline void
2494 name_attribute (name_string)
2495 register char *name_string;
2497 if (name_string && *name_string)
2499 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2500 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2504 static inline void
2505 fund_type_attribute (ft_code)
2506 register unsigned ft_code;
2508 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2509 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2512 static void
2513 mod_fund_type_attribute (type, decl_const, decl_volatile)
2514 register tree type;
2515 register int decl_const;
2516 register int decl_volatile;
2518 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2519 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2521 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2522 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2523 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2524 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2525 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2526 write_modifier_bytes (type, decl_const, decl_volatile);
2527 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2528 fundamental_type_code (root_type (type)));
2529 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2532 static inline void
2533 user_def_type_attribute (type)
2534 register tree type;
2536 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2538 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2539 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2540 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2543 static void
2544 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2545 register tree type;
2546 register int decl_const;
2547 register int decl_volatile;
2549 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2550 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2551 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2553 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2554 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2555 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2556 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2557 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2558 write_modifier_bytes (type, decl_const, decl_volatile);
2559 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2560 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2561 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2564 #ifdef USE_ORDERING_ATTRIBUTE
2565 static inline void
2566 ordering_attribute (ordering)
2567 register unsigned ordering;
2569 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2570 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2572 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2574 /* Note that the block of subscript information for an array type also
2575 includes information about the element type of type given array type. */
2577 static void
2578 subscript_data_attribute (type)
2579 register tree type;
2581 register unsigned dimension_number;
2582 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2583 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2585 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2586 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2587 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2588 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2589 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2591 /* The GNU compilers represent multidimensional array types as sequences
2592 of one dimensional array types whose element types are themselves array
2593 types. Here we squish that down, so that each multidimensional array
2594 type gets only one array_type DIE in the Dwarf debugging info. The
2595 draft Dwarf specification say that we are allowed to do this kind
2596 of compression in C (because there is no difference between an
2597 array or arrays and a multidimensional array in C) but for other
2598 source languages (e.g. Ada) we probably shouldn't do this. */
2600 for (dimension_number = 0;
2601 TREE_CODE (type) == ARRAY_TYPE;
2602 type = TREE_TYPE (type), dimension_number++)
2604 register tree domain = TYPE_DOMAIN (type);
2606 /* Arrays come in three flavors. Unspecified bounds, fixed
2607 bounds, and (in GNU C only) variable bounds. Handle all
2608 three forms here. */
2610 if (domain)
2612 /* We have an array type with specified bounds. */
2614 register tree lower = TYPE_MIN_VALUE (domain);
2615 register tree upper = TYPE_MAX_VALUE (domain);
2617 /* Handle only fundamental types as index types for now. */
2619 if (! type_is_fundamental (domain))
2620 abort ();
2622 /* Output the representation format byte for this dimension. */
2624 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2625 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2626 (upper && TREE_CODE (upper) == INTEGER_CST)));
2628 /* Output the index type for this dimension. */
2630 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2631 fundamental_type_code (domain));
2633 /* Output the representation for the lower bound. */
2635 output_bound_representation (lower, dimension_number, 'l');
2637 /* Output the representation for the upper bound. */
2639 output_bound_representation (upper, dimension_number, 'u');
2641 else
2643 /* We have an array type with an unspecified length. For C and
2644 C++ we can assume that this really means that (a) the index
2645 type is an integral type, and (b) the lower bound is zero.
2646 Note that Dwarf defines the representation of an unspecified
2647 (upper) bound as being a zero-length location description. */
2649 /* Output the array-bounds format byte. */
2651 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2653 /* Output the (assumed) index type. */
2655 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2657 /* Output the (assumed) lower bound (constant) value. */
2659 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2661 /* Output the (empty) location description for the upper bound. */
2663 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2667 /* Output the prefix byte that says that the element type is coming up. */
2669 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2671 /* Output a representation of the type of the elements of this array type. */
2673 type_attribute (type, 0, 0);
2675 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2678 static void
2679 byte_size_attribute (tree_node)
2680 register tree tree_node;
2682 register unsigned size;
2684 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2685 switch (TREE_CODE (tree_node))
2687 case ERROR_MARK:
2688 size = 0;
2689 break;
2691 case ENUMERAL_TYPE:
2692 case RECORD_TYPE:
2693 case UNION_TYPE:
2694 case QUAL_UNION_TYPE:
2695 case ARRAY_TYPE:
2696 size = int_size_in_bytes (tree_node);
2697 break;
2699 case FIELD_DECL:
2700 /* For a data member of a struct or union, the AT_byte_size is
2701 generally given as the number of bytes normally allocated for
2702 an object of the *declared* type of the member itself. This
2703 is true even for bit-fields. */
2704 size = simple_type_size_in_bits (field_type (tree_node))
2705 / BITS_PER_UNIT;
2706 break;
2708 default:
2709 abort ();
2712 /* Note that `size' might be -1 when we get to this point. If it
2713 is, that indicates that the byte size of the entity in question
2714 is variable. We have no good way of expressing this fact in Dwarf
2715 at the present time, so just let the -1 pass on through. */
2717 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2720 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2721 which specifies the distance in bits from the highest order bit of the
2722 "containing object" for the bit-field to the highest order bit of the
2723 bit-field itself.
2725 For any given bit-field, the "containing object" is a hypothetical
2726 object (of some integral or enum type) within which the given bit-field
2727 lives. The type of this hypothetical "containing object" is always the
2728 same as the declared type of the individual bit-field itself.
2730 The determination of the exact location of the "containing object" for
2731 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2732 function (above).
2734 Note that it is the size (in bytes) of the hypothetical "containing
2735 object" which will be given in the AT_byte_size attribute for this
2736 bit-field. (See `byte_size_attribute' above.) */
2738 static inline void
2739 bit_offset_attribute (decl)
2740 register tree decl;
2742 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2743 register tree type = DECL_BIT_FIELD_TYPE (decl);
2744 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2745 register unsigned bitpos_int;
2746 register unsigned highest_order_object_bit_offset;
2747 register unsigned highest_order_field_bit_offset;
2748 register unsigned bit_offset;
2750 /* Must be a bit field. */
2751 if (!type
2752 || TREE_CODE (decl) != FIELD_DECL)
2753 abort ();
2755 /* We can't yet handle bit-fields whose offsets are variable, so if we
2756 encounter such things, just return without generating any attribute
2757 whatsoever. */
2759 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2760 return;
2761 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2763 /* Note that the bit offset is always the distance (in bits) from the
2764 highest-order bit of the "containing object" to the highest-order
2765 bit of the bit-field itself. Since the "high-order end" of any
2766 object or field is different on big-endian and little-endian machines,
2767 the computation below must take account of these differences. */
2769 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2770 highest_order_field_bit_offset = bitpos_int;
2772 if (! BYTES_BIG_ENDIAN)
2774 highest_order_field_bit_offset
2775 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2777 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2780 bit_offset =
2781 (! BYTES_BIG_ENDIAN
2782 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2783 : highest_order_field_bit_offset - highest_order_object_bit_offset);
2785 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2786 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2789 /* For a FIELD_DECL node which represents a bit field, output an attribute
2790 which specifies the length in bits of the given field. */
2792 static inline void
2793 bit_size_attribute (decl)
2794 register tree decl;
2796 /* Must be a field and a bit field. */
2797 if (TREE_CODE (decl) != FIELD_DECL
2798 || ! DECL_BIT_FIELD_TYPE (decl))
2799 abort ();
2801 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2802 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2803 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2806 /* The following routine outputs the `element_list' attribute for enumeration
2807 type DIEs. The element_lits attribute includes the names and values of
2808 all of the enumeration constants associated with the given enumeration
2809 type. */
2811 static inline void
2812 element_list_attribute (element)
2813 register tree element;
2815 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2816 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2818 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2819 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2820 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2821 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2822 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2824 /* Here we output a list of value/name pairs for each enumeration constant
2825 defined for this enumeration type (as required), but we do it in REVERSE
2826 order. The order is the one required by the draft #5 Dwarf specification
2827 published by the UI/PLSIG. */
2829 output_enumeral_list (element); /* Recursively output the whole list. */
2831 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2834 /* Generate an AT_stmt_list attribute. These are normally present only in
2835 DIEs with a TAG_compile_unit tag. */
2837 static inline void
2838 stmt_list_attribute (label)
2839 register char *label;
2841 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2842 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2843 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2846 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2847 for a subroutine DIE. */
2849 static inline void
2850 low_pc_attribute (asm_low_label)
2851 register char *asm_low_label;
2853 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2854 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2857 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2858 subroutine DIE. */
2860 static inline void
2861 high_pc_attribute (asm_high_label)
2862 register char *asm_high_label;
2864 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2865 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2868 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2870 static inline void
2871 body_begin_attribute (asm_begin_label)
2872 register char *asm_begin_label;
2874 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2875 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2878 /* Generate an AT_body_end attribute for a subroutine DIE. */
2880 static inline void
2881 body_end_attribute (asm_end_label)
2882 register char *asm_end_label;
2884 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2885 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2888 /* Generate an AT_language attribute given a LANG value. These attributes
2889 are used only within TAG_compile_unit DIEs. */
2891 static inline void
2892 language_attribute (language_code)
2893 register unsigned language_code;
2895 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2896 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2899 static inline void
2900 member_attribute (context)
2901 register tree context;
2903 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2905 /* Generate this attribute only for members in C++. */
2907 if (context != NULL && is_tagged_type (context))
2909 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2910 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2911 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2915 #if 0
2916 static inline void
2917 string_length_attribute (upper_bound)
2918 register tree upper_bound;
2920 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2921 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2923 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2924 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2925 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2926 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2927 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2928 output_bound_representation (upper_bound, 0, 'u');
2929 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2931 #endif
2933 static inline void
2934 comp_dir_attribute (dirname)
2935 register char *dirname;
2937 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2938 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
2941 static inline void
2942 sf_names_attribute (sf_names_start_label)
2943 register char *sf_names_start_label;
2945 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2946 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2947 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2950 static inline void
2951 src_info_attribute (src_info_start_label)
2952 register char *src_info_start_label;
2954 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2955 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2956 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2959 static inline void
2960 mac_info_attribute (mac_info_start_label)
2961 register char *mac_info_start_label;
2963 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2964 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2965 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2968 static inline void
2969 prototyped_attribute (func_type)
2970 register tree func_type;
2972 if ((strcmp (language_string, "GNU C") == 0)
2973 && (TYPE_ARG_TYPES (func_type) != NULL))
2975 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2976 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
2980 static inline void
2981 producer_attribute (producer)
2982 register char *producer;
2984 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2985 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
2988 static inline void
2989 inline_attribute (decl)
2990 register tree decl;
2992 if (DECL_INLINE (decl))
2994 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2995 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
2999 static inline void
3000 containing_type_attribute (containing_type)
3001 register tree containing_type;
3003 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3005 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3006 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3007 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3010 static inline void
3011 abstract_origin_attribute (origin)
3012 register tree origin;
3014 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3016 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3017 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3019 case 'd':
3020 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3021 break;
3023 case 't':
3024 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3025 break;
3027 default:
3028 abort (); /* Should never happen. */
3031 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3034 #ifdef DWARF_DECL_COORDINATES
3035 static inline void
3036 src_coords_attribute (src_fileno, src_lineno)
3037 register unsigned src_fileno;
3038 register unsigned src_lineno;
3040 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3041 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3042 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3044 #endif /* defined(DWARF_DECL_COORDINATES) */
3046 static inline void
3047 pure_or_virtual_attribute (func_decl)
3048 register tree func_decl;
3050 if (DECL_VIRTUAL_P (func_decl))
3052 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3053 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3054 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3055 else
3056 #endif
3057 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3058 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3062 /************************* end of attributes *****************************/
3064 /********************* utility routines for DIEs *************************/
3066 /* Output an AT_name attribute and an AT_src_coords attribute for the
3067 given decl, but only if it actually has a name. */
3069 static void
3070 name_and_src_coords_attributes (decl)
3071 register tree decl;
3073 register tree decl_name = DECL_NAME (decl);
3075 if (decl_name && IDENTIFIER_POINTER (decl_name))
3077 name_attribute (IDENTIFIER_POINTER (decl_name));
3078 #ifdef DWARF_DECL_COORDINATES
3080 register unsigned file_index;
3082 /* This is annoying, but we have to pop out of the .debug section
3083 for a moment while we call `lookup_filename' because calling it
3084 may cause a temporary switch into the .debug_sfnames section and
3085 most svr4 assemblers are not smart enough to be able to nest
3086 section switches to any depth greater than one. Note that we
3087 also can't skirt this issue by delaying all output to the
3088 .debug_sfnames section unit the end of compilation because that
3089 would cause us to have inter-section forward references and
3090 Fred Fish sez that m68k/svr4 assemblers botch those. */
3092 ASM_OUTPUT_POP_SECTION (asm_out_file);
3093 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3094 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3096 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3098 #endif /* defined(DWARF_DECL_COORDINATES) */
3102 /* Many forms of DIEs contain a "type description" part. The following
3103 routine writes out these "type descriptor" parts. */
3105 static void
3106 type_attribute (type, decl_const, decl_volatile)
3107 register tree type;
3108 register int decl_const;
3109 register int decl_volatile;
3111 register enum tree_code code = TREE_CODE (type);
3112 register int root_type_modified;
3114 if (code == ERROR_MARK)
3115 return;
3117 /* Handle a special case. For functions whose return type is void,
3118 we generate *no* type attribute. (Note that no object may have
3119 type `void', so this only applies to function return types. */
3121 if (code == VOID_TYPE)
3122 return;
3124 /* If this is a subtype, find the underlying type. Eventually,
3125 this should write out the appropriate subtype info. */
3126 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3127 && TREE_TYPE (type) != 0)
3128 type = TREE_TYPE (type), code = TREE_CODE (type);
3130 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3131 || decl_const || decl_volatile
3132 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3134 if (type_is_fundamental (root_type (type)))
3136 if (root_type_modified)
3137 mod_fund_type_attribute (type, decl_const, decl_volatile);
3138 else
3139 fund_type_attribute (fundamental_type_code (type));
3141 else
3143 if (root_type_modified)
3144 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3145 else
3146 /* We have to get the type_main_variant here (and pass that to the
3147 `user_def_type_attribute' routine) because the ..._TYPE node we
3148 have might simply be a *copy* of some original type node (where
3149 the copy was created to help us keep track of typedef names)
3150 and that copy might have a different TYPE_UID from the original
3151 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3152 is labeling a given type DIE for future reference, it always and
3153 only creates labels for DIEs representing *main variants*, and it
3154 never even knows about non-main-variants.) */
3155 user_def_type_attribute (type_main_variant (type));
3159 /* Given a tree pointer to a struct, class, union, or enum type node, return
3160 a pointer to the (string) tag name for the given type, or zero if the
3161 type was declared without a tag. */
3163 static char *
3164 type_tag (type)
3165 register tree type;
3167 register char *name = 0;
3169 if (TYPE_NAME (type) != 0)
3171 register tree t = 0;
3173 /* Find the IDENTIFIER_NODE for the type name. */
3174 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3175 t = TYPE_NAME (type);
3177 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3178 a TYPE_DECL node, regardless of whether or not a `typedef' was
3179 involved. */
3180 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3181 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3182 t = DECL_NAME (TYPE_NAME (type));
3184 /* Now get the name as a string, or invent one. */
3185 if (t != 0)
3186 name = IDENTIFIER_POINTER (t);
3189 return (name == 0 || *name == '\0') ? 0 : name;
3192 static inline void
3193 dienum_push ()
3195 /* Start by checking if the pending_sibling_stack needs to be expanded.
3196 If necessary, expand it. */
3198 if (pending_siblings == pending_siblings_allocated)
3200 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3201 pending_sibling_stack
3202 = (unsigned *) xrealloc (pending_sibling_stack,
3203 pending_siblings_allocated * sizeof(unsigned));
3206 pending_siblings++;
3207 NEXT_DIE_NUM = next_unused_dienum++;
3210 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3211 NEXT_DIE_NUM. */
3213 static inline void
3214 dienum_pop ()
3216 pending_siblings--;
3219 static inline tree
3220 member_declared_type (member)
3221 register tree member;
3223 return (DECL_BIT_FIELD_TYPE (member))
3224 ? DECL_BIT_FIELD_TYPE (member)
3225 : TREE_TYPE (member);
3228 /* Get the function's label, as described by its RTL.
3229 This may be different from the DECL_NAME name used
3230 in the source file. */
3232 static char *
3233 function_start_label (decl)
3234 register tree decl;
3236 rtx x;
3237 char *fnname;
3239 x = DECL_RTL (decl);
3240 if (GET_CODE (x) != MEM)
3241 abort ();
3242 x = XEXP (x, 0);
3243 if (GET_CODE (x) != SYMBOL_REF)
3244 abort ();
3245 fnname = XSTR (x, 0);
3246 return fnname;
3250 /******************************* DIEs ************************************/
3252 /* Output routines for individual types of DIEs. */
3254 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3256 static void
3257 output_array_type_die (arg)
3258 register void *arg;
3260 register tree type = arg;
3262 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3263 sibling_attribute ();
3264 equate_type_number_to_die_number (type);
3265 member_attribute (TYPE_CONTEXT (type));
3267 /* I believe that we can default the array ordering. SDB will probably
3268 do the right things even if AT_ordering is not present. It's not
3269 even an issue until we start to get into multidimensional arrays
3270 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3271 dimensional arrays, then we'll have to put the AT_ordering attribute
3272 back in. (But if and when we find out that we need to put these in,
3273 we will only do so for multidimensional arrays. After all, we don't
3274 want to waste space in the .debug section now do we?) */
3276 #ifdef USE_ORDERING_ATTRIBUTE
3277 ordering_attribute (ORD_row_major);
3278 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3280 subscript_data_attribute (type);
3283 static void
3284 output_set_type_die (arg)
3285 register void *arg;
3287 register tree type = arg;
3289 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3290 sibling_attribute ();
3291 equate_type_number_to_die_number (type);
3292 member_attribute (TYPE_CONTEXT (type));
3293 type_attribute (TREE_TYPE (type), 0, 0);
3296 #if 0
3297 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3299 static void
3300 output_entry_point_die (arg)
3301 register void *arg;
3303 register tree decl = arg;
3304 register tree origin = decl_ultimate_origin (decl);
3306 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3307 sibling_attribute ();
3308 dienum_push ();
3309 if (origin != NULL)
3310 abstract_origin_attribute (origin);
3311 else
3313 name_and_src_coords_attributes (decl);
3314 member_attribute (DECL_CONTEXT (decl));
3315 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3317 if (DECL_ABSTRACT (decl))
3318 equate_decl_number_to_die_number (decl);
3319 else
3320 low_pc_attribute (function_start_label (decl));
3322 #endif
3324 /* Output a DIE to represent an inlined instance of an enumeration type. */
3326 static void
3327 output_inlined_enumeration_type_die (arg)
3328 register void *arg;
3330 register tree type = arg;
3332 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3333 sibling_attribute ();
3334 if (!TREE_ASM_WRITTEN (type))
3335 abort ();
3336 abstract_origin_attribute (type);
3339 /* Output a DIE to represent an inlined instance of a structure type. */
3341 static void
3342 output_inlined_structure_type_die (arg)
3343 register void *arg;
3345 register tree type = arg;
3347 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3348 sibling_attribute ();
3349 if (!TREE_ASM_WRITTEN (type))
3350 abort ();
3351 abstract_origin_attribute (type);
3354 /* Output a DIE to represent an inlined instance of a union type. */
3356 static void
3357 output_inlined_union_type_die (arg)
3358 register void *arg;
3360 register tree type = arg;
3362 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3363 sibling_attribute ();
3364 if (!TREE_ASM_WRITTEN (type))
3365 abort ();
3366 abstract_origin_attribute (type);
3369 /* Output a DIE to represent an enumeration type. Note that these DIEs
3370 include all of the information about the enumeration values also.
3371 This information is encoded into the element_list attribute. */
3373 static void
3374 output_enumeration_type_die (arg)
3375 register void *arg;
3377 register tree type = arg;
3379 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3380 sibling_attribute ();
3381 equate_type_number_to_die_number (type);
3382 name_attribute (type_tag (type));
3383 member_attribute (TYPE_CONTEXT (type));
3385 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3386 given enum type is incomplete, do not generate the AT_byte_size
3387 attribute or the AT_element_list attribute. */
3389 if (TYPE_SIZE (type))
3391 byte_size_attribute (type);
3392 element_list_attribute (TYPE_FIELDS (type));
3396 /* Output a DIE to represent either a real live formal parameter decl or
3397 to represent just the type of some formal parameter position in some
3398 function type.
3400 Note that this routine is a bit unusual because its argument may be
3401 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3402 represents an inlining of some PARM_DECL) or else some sort of a
3403 ..._TYPE node. If it's the former then this function is being called
3404 to output a DIE to represent a formal parameter object (or some inlining
3405 thereof). If it's the latter, then this function is only being called
3406 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3407 formal argument type of some subprogram type. */
3409 static void
3410 output_formal_parameter_die (arg)
3411 register void *arg;
3413 register tree node = arg;
3415 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3416 sibling_attribute ();
3418 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3420 case 'd': /* We were called with some kind of a ..._DECL node. */
3422 register tree origin = decl_ultimate_origin (node);
3424 if (origin != NULL)
3425 abstract_origin_attribute (origin);
3426 else
3428 name_and_src_coords_attributes (node);
3429 type_attribute (TREE_TYPE (node),
3430 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3432 if (DECL_ABSTRACT (node))
3433 equate_decl_number_to_die_number (node);
3434 else
3435 location_or_const_value_attribute (node);
3437 break;
3439 case 't': /* We were called with some kind of a ..._TYPE node. */
3440 type_attribute (node, 0, 0);
3441 break;
3443 default:
3444 abort (); /* Should never happen. */
3448 /* Output a DIE to represent a declared function (either file-scope
3449 or block-local) which has "external linkage" (according to ANSI-C). */
3451 static void
3452 output_global_subroutine_die (arg)
3453 register void *arg;
3455 register tree decl = arg;
3456 register tree origin = decl_ultimate_origin (decl);
3458 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3459 sibling_attribute ();
3460 dienum_push ();
3461 if (origin != NULL)
3462 abstract_origin_attribute (origin);
3463 else
3465 register tree type = TREE_TYPE (decl);
3467 name_and_src_coords_attributes (decl);
3468 inline_attribute (decl);
3469 prototyped_attribute (type);
3470 member_attribute (DECL_CONTEXT (decl));
3471 type_attribute (TREE_TYPE (type), 0, 0);
3472 pure_or_virtual_attribute (decl);
3474 if (DECL_ABSTRACT (decl))
3475 equate_decl_number_to_die_number (decl);
3476 else
3478 if (! DECL_EXTERNAL (decl) && ! in_class
3479 && decl == current_function_decl)
3481 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3483 low_pc_attribute (function_start_label (decl));
3484 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3485 high_pc_attribute (label);
3486 if (use_gnu_debug_info_extensions)
3488 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3489 body_begin_attribute (label);
3490 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3491 body_end_attribute (label);
3497 /* Output a DIE to represent a declared data object (either file-scope
3498 or block-local) which has "external linkage" (according to ANSI-C). */
3500 static void
3501 output_global_variable_die (arg)
3502 register void *arg;
3504 register tree decl = arg;
3505 register tree origin = decl_ultimate_origin (decl);
3507 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3508 sibling_attribute ();
3509 if (origin != NULL)
3510 abstract_origin_attribute (origin);
3511 else
3513 name_and_src_coords_attributes (decl);
3514 member_attribute (DECL_CONTEXT (decl));
3515 type_attribute (TREE_TYPE (decl),
3516 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3518 if (DECL_ABSTRACT (decl))
3519 equate_decl_number_to_die_number (decl);
3520 else
3522 if (! DECL_EXTERNAL (decl) && ! in_class
3523 && current_function_decl == decl_function_context (decl))
3524 location_or_const_value_attribute (decl);
3528 static void
3529 output_label_die (arg)
3530 register void *arg;
3532 register tree decl = arg;
3533 register tree origin = decl_ultimate_origin (decl);
3535 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3536 sibling_attribute ();
3537 if (origin != NULL)
3538 abstract_origin_attribute (origin);
3539 else
3540 name_and_src_coords_attributes (decl);
3541 if (DECL_ABSTRACT (decl))
3542 equate_decl_number_to_die_number (decl);
3543 else
3545 register rtx insn = DECL_RTL (decl);
3547 /* Deleted labels are programmer specified labels which have been
3548 eliminated because of various optimisations. We still emit them
3549 here so that it is possible to put breakpoints on them. */
3550 if (GET_CODE (insn) == CODE_LABEL
3551 || ((GET_CODE (insn) == NOTE
3552 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3554 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3556 /* When optimization is enabled (via -O) some parts of the compiler
3557 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3558 represent source-level labels which were explicitly declared by
3559 the user. This really shouldn't be happening though, so catch
3560 it if it ever does happen. */
3562 if (INSN_DELETED_P (insn))
3563 abort (); /* Should never happen. */
3565 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3566 (unsigned) INSN_UID (insn));
3567 low_pc_attribute (label);
3572 static void
3573 output_lexical_block_die (arg)
3574 register void *arg;
3576 register tree stmt = arg;
3578 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3579 sibling_attribute ();
3580 dienum_push ();
3581 if (! BLOCK_ABSTRACT (stmt))
3583 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3584 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3586 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3587 low_pc_attribute (begin_label);
3588 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3589 high_pc_attribute (end_label);
3593 static void
3594 output_inlined_subroutine_die (arg)
3595 register void *arg;
3597 register tree stmt = arg;
3599 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3600 sibling_attribute ();
3601 dienum_push ();
3602 abstract_origin_attribute (block_ultimate_origin (stmt));
3603 if (! BLOCK_ABSTRACT (stmt))
3605 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3606 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3608 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3609 low_pc_attribute (begin_label);
3610 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3611 high_pc_attribute (end_label);
3615 /* Output a DIE to represent a declared data object (either file-scope
3616 or block-local) which has "internal linkage" (according to ANSI-C). */
3618 static void
3619 output_local_variable_die (arg)
3620 register void *arg;
3622 register tree decl = arg;
3623 register tree origin = decl_ultimate_origin (decl);
3625 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3626 sibling_attribute ();
3627 if (origin != NULL)
3628 abstract_origin_attribute (origin);
3629 else
3631 name_and_src_coords_attributes (decl);
3632 member_attribute (DECL_CONTEXT (decl));
3633 type_attribute (TREE_TYPE (decl),
3634 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3636 if (DECL_ABSTRACT (decl))
3637 equate_decl_number_to_die_number (decl);
3638 else
3639 location_or_const_value_attribute (decl);
3642 static void
3643 output_member_die (arg)
3644 register void *arg;
3646 register tree decl = arg;
3648 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3649 sibling_attribute ();
3650 name_and_src_coords_attributes (decl);
3651 member_attribute (DECL_CONTEXT (decl));
3652 type_attribute (member_declared_type (decl),
3653 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3654 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3656 byte_size_attribute (decl);
3657 bit_size_attribute (decl);
3658 bit_offset_attribute (decl);
3660 data_member_location_attribute (decl);
3663 #if 0
3664 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3665 modified types instead.
3667 We keep this code here just in case these types of DIEs may be
3668 needed to represent certain things in other languages (e.g. Pascal)
3669 someday. */
3671 static void
3672 output_pointer_type_die (arg)
3673 register void *arg;
3675 register tree type = arg;
3677 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3678 sibling_attribute ();
3679 equate_type_number_to_die_number (type);
3680 member_attribute (TYPE_CONTEXT (type));
3681 type_attribute (TREE_TYPE (type), 0, 0);
3684 static void
3685 output_reference_type_die (arg)
3686 register void *arg;
3688 register tree type = arg;
3690 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3691 sibling_attribute ();
3692 equate_type_number_to_die_number (type);
3693 member_attribute (TYPE_CONTEXT (type));
3694 type_attribute (TREE_TYPE (type), 0, 0);
3696 #endif
3698 static void
3699 output_ptr_to_mbr_type_die (arg)
3700 register void *arg;
3702 register tree type = arg;
3704 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3705 sibling_attribute ();
3706 equate_type_number_to_die_number (type);
3707 member_attribute (TYPE_CONTEXT (type));
3708 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3709 type_attribute (TREE_TYPE (type), 0, 0);
3712 static void
3713 output_compile_unit_die (arg)
3714 register void *arg;
3716 register char *main_input_filename = arg;
3718 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3719 sibling_attribute ();
3720 dienum_push ();
3721 name_attribute (main_input_filename);
3724 char producer[250];
3726 sprintf (producer, "%s %s", language_string, version_string);
3727 producer_attribute (producer);
3730 if (strcmp (language_string, "GNU C++") == 0)
3731 language_attribute (LANG_C_PLUS_PLUS);
3732 else if (strcmp (language_string, "GNU Ada") == 0)
3733 language_attribute (LANG_ADA83);
3734 else if (strcmp (language_string, "GNU F77") == 0)
3735 language_attribute (LANG_FORTRAN77);
3736 else if (strcmp (language_string, "GNU Pascal") == 0)
3737 language_attribute (LANG_PASCAL83);
3738 else if (flag_traditional)
3739 language_attribute (LANG_C);
3740 else
3741 language_attribute (LANG_C89);
3742 low_pc_attribute (TEXT_BEGIN_LABEL);
3743 high_pc_attribute (TEXT_END_LABEL);
3744 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3745 stmt_list_attribute (LINE_BEGIN_LABEL);
3746 last_filename = xstrdup (main_input_filename);
3749 char *wd = getpwd ();
3750 if (wd)
3751 comp_dir_attribute (wd);
3754 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3756 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3757 src_info_attribute (SRCINFO_BEGIN_LABEL);
3758 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3759 mac_info_attribute (MACINFO_BEGIN_LABEL);
3763 static void
3764 output_string_type_die (arg)
3765 register void *arg;
3767 register tree type = arg;
3769 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3770 sibling_attribute ();
3771 equate_type_number_to_die_number (type);
3772 member_attribute (TYPE_CONTEXT (type));
3773 /* this is a fixed length string */
3774 byte_size_attribute (type);
3777 static void
3778 output_inheritance_die (arg)
3779 register void *arg;
3781 register tree binfo = arg;
3783 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3784 sibling_attribute ();
3785 type_attribute (BINFO_TYPE (binfo), 0, 0);
3786 data_member_location_attribute (binfo);
3787 if (TREE_VIA_VIRTUAL (binfo))
3789 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3790 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3792 if (TREE_VIA_PUBLIC (binfo))
3794 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3795 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3797 else if (TREE_VIA_PROTECTED (binfo))
3799 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3800 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3804 static void
3805 output_structure_type_die (arg)
3806 register void *arg;
3808 register tree type = arg;
3810 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3811 sibling_attribute ();
3812 equate_type_number_to_die_number (type);
3813 name_attribute (type_tag (type));
3814 member_attribute (TYPE_CONTEXT (type));
3816 /* If this type has been completed, then give it a byte_size attribute
3817 and prepare to give a list of members. Otherwise, don't do either of
3818 these things. In the latter case, we will not be generating a list
3819 of members (since we don't have any idea what they might be for an
3820 incomplete type). */
3822 if (TYPE_SIZE (type))
3824 dienum_push ();
3825 byte_size_attribute (type);
3829 /* Output a DIE to represent a declared function (either file-scope
3830 or block-local) which has "internal linkage" (according to ANSI-C). */
3832 static void
3833 output_local_subroutine_die (arg)
3834 register void *arg;
3836 register tree decl = arg;
3837 register tree origin = decl_ultimate_origin (decl);
3839 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3840 sibling_attribute ();
3841 dienum_push ();
3842 if (origin != NULL)
3843 abstract_origin_attribute (origin);
3844 else
3846 register tree type = TREE_TYPE (decl);
3848 name_and_src_coords_attributes (decl);
3849 inline_attribute (decl);
3850 prototyped_attribute (type);
3851 member_attribute (DECL_CONTEXT (decl));
3852 type_attribute (TREE_TYPE (type), 0, 0);
3853 pure_or_virtual_attribute (decl);
3855 if (DECL_ABSTRACT (decl))
3856 equate_decl_number_to_die_number (decl);
3857 else
3859 /* Avoid getting screwed up in cases where a function was declared
3860 static but where no definition was ever given for it. */
3862 if (TREE_ASM_WRITTEN (decl))
3864 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3865 low_pc_attribute (function_start_label (decl));
3866 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3867 high_pc_attribute (label);
3868 if (use_gnu_debug_info_extensions)
3870 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3871 body_begin_attribute (label);
3872 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3873 body_end_attribute (label);
3879 static void
3880 output_subroutine_type_die (arg)
3881 register void *arg;
3883 register tree type = arg;
3884 register tree return_type = TREE_TYPE (type);
3886 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3887 sibling_attribute ();
3888 dienum_push ();
3889 equate_type_number_to_die_number (type);
3890 prototyped_attribute (type);
3891 member_attribute (TYPE_CONTEXT (type));
3892 type_attribute (return_type, 0, 0);
3895 static void
3896 output_typedef_die (arg)
3897 register void *arg;
3899 register tree decl = arg;
3900 register tree origin = decl_ultimate_origin (decl);
3902 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3903 sibling_attribute ();
3904 if (origin != NULL)
3905 abstract_origin_attribute (origin);
3906 else
3908 name_and_src_coords_attributes (decl);
3909 member_attribute (DECL_CONTEXT (decl));
3910 type_attribute (TREE_TYPE (decl),
3911 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3913 if (DECL_ABSTRACT (decl))
3914 equate_decl_number_to_die_number (decl);
3917 static void
3918 output_union_type_die (arg)
3919 register void *arg;
3921 register tree type = arg;
3923 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3924 sibling_attribute ();
3925 equate_type_number_to_die_number (type);
3926 name_attribute (type_tag (type));
3927 member_attribute (TYPE_CONTEXT (type));
3929 /* If this type has been completed, then give it a byte_size attribute
3930 and prepare to give a list of members. Otherwise, don't do either of
3931 these things. In the latter case, we will not be generating a list
3932 of members (since we don't have any idea what they might be for an
3933 incomplete type). */
3935 if (TYPE_SIZE (type))
3937 dienum_push ();
3938 byte_size_attribute (type);
3942 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3943 at the end of an (ANSI prototyped) formal parameters list. */
3945 static void
3946 output_unspecified_parameters_die (arg)
3947 register void *arg;
3949 register tree decl_or_type = arg;
3951 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3952 sibling_attribute ();
3954 /* This kludge is here only for the sake of being compatible with what
3955 the USL CI5 C compiler does. The specification of Dwarf Version 1
3956 doesn't say that TAG_unspecified_parameters DIEs should contain any
3957 attributes other than the AT_sibling attribute, but they are certainly
3958 allowed to contain additional attributes, and the CI5 compiler
3959 generates AT_name, AT_fund_type, and AT_location attributes within
3960 TAG_unspecified_parameters DIEs which appear in the child lists for
3961 DIEs representing function definitions, so we do likewise here. */
3963 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3965 name_attribute ("...");
3966 fund_type_attribute (FT_pointer);
3967 /* location_attribute (?); */
3971 static void
3972 output_padded_null_die (arg)
3973 register void *arg ATTRIBUTE_UNUSED;
3975 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3978 /*************************** end of DIEs *********************************/
3980 /* Generate some type of DIE. This routine generates the generic outer
3981 wrapper stuff which goes around all types of DIE's (regardless of their
3982 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3983 DIE-length word, followed by the guts of the DIE itself. After the guts
3984 of the DIE, there must always be a terminator label for the DIE. */
3986 static void
3987 output_die (die_specific_output_function, param)
3988 register void (*die_specific_output_function) PROTO ((void *));
3989 register void *param;
3991 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3992 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3994 current_dienum = NEXT_DIE_NUM;
3995 NEXT_DIE_NUM = next_unused_dienum;
3997 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3998 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4000 /* Write a label which will act as the name for the start of this DIE. */
4002 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4004 /* Write the DIE-length word. */
4006 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4008 /* Fill in the guts of the DIE. */
4010 next_unused_dienum++;
4011 die_specific_output_function (param);
4013 /* Write a label which will act as the name for the end of this DIE. */
4015 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4018 static void
4019 end_sibling_chain ()
4021 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4023 current_dienum = NEXT_DIE_NUM;
4024 NEXT_DIE_NUM = next_unused_dienum;
4026 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4028 /* Write a label which will act as the name for the start of this DIE. */
4030 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4032 /* Write the DIE-length word. */
4034 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4036 dienum_pop ();
4039 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4040 TAG_unspecified_parameters DIE) to represent the types of the formal
4041 parameters as specified in some function type specification (except
4042 for those which appear as part of a function *definition*).
4044 Note that we must be careful here to output all of the parameter
4045 DIEs *before* we output any DIEs needed to represent the types of
4046 the formal parameters. This keeps svr4 SDB happy because it
4047 (incorrectly) thinks that the first non-parameter DIE it sees ends
4048 the formal parameter list. */
4050 static void
4051 output_formal_types (function_or_method_type)
4052 register tree function_or_method_type;
4054 register tree link;
4055 register tree formal_type = NULL;
4056 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4058 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4059 get bogus recursion when outputting tagged types local to a
4060 function declaration. */
4061 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4062 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4064 /* In the case where we are generating a formal types list for a C++
4065 non-static member function type, skip over the first thing on the
4066 TYPE_ARG_TYPES list because it only represents the type of the
4067 hidden `this pointer'. The debugger should be able to figure
4068 out (without being explicitly told) that this non-static member
4069 function type takes a `this pointer' and should be able to figure
4070 what the type of that hidden parameter is from the AT_member
4071 attribute of the parent TAG_subroutine_type DIE. */
4073 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4074 first_parm_type = TREE_CHAIN (first_parm_type);
4076 /* Make our first pass over the list of formal parameter types and output
4077 a TAG_formal_parameter DIE for each one. */
4079 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4081 formal_type = TREE_VALUE (link);
4082 if (formal_type == void_type_node)
4083 break;
4085 /* Output a (nameless) DIE to represent the formal parameter itself. */
4087 output_die (output_formal_parameter_die, formal_type);
4090 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4091 DIE to the end of the parameter list. */
4093 if (formal_type != void_type_node)
4094 output_die (output_unspecified_parameters_die, function_or_method_type);
4096 /* Make our second (and final) pass over the list of formal parameter types
4097 and output DIEs to represent those types (as necessary). */
4099 for (link = TYPE_ARG_TYPES (function_or_method_type);
4100 link;
4101 link = TREE_CHAIN (link))
4103 formal_type = TREE_VALUE (link);
4104 if (formal_type == void_type_node)
4105 break;
4107 output_type (formal_type, function_or_method_type);
4110 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4113 /* Remember a type in the pending_types_list. */
4115 static void
4116 pend_type (type)
4117 register tree type;
4119 if (pending_types == pending_types_allocated)
4121 pending_types_allocated += PENDING_TYPES_INCREMENT;
4122 pending_types_list
4123 = (tree *) xrealloc (pending_types_list,
4124 sizeof (tree) * pending_types_allocated);
4126 pending_types_list[pending_types++] = type;
4128 /* Mark the pending type as having been output already (even though
4129 it hasn't been). This prevents the type from being added to the
4130 pending_types_list more than once. */
4132 TREE_ASM_WRITTEN (type) = 1;
4135 /* Return non-zero if it is legitimate to output DIEs to represent a
4136 given type while we are generating the list of child DIEs for some
4137 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4139 See the comments within the function for a description of when it is
4140 considered legitimate to output DIEs for various kinds of types.
4142 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4143 or it may point to a BLOCK node (for types local to a block), or to a
4144 FUNCTION_DECL node (for types local to the heading of some function
4145 definition), or to a FUNCTION_TYPE node (for types local to the
4146 prototyped parameter list of a function type specification), or to a
4147 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4148 (in the case of C++ nested types).
4150 The `scope' parameter should likewise be NULL or should point to a
4151 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4152 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4154 This function is used only for deciding when to "pend" and when to
4155 "un-pend" types to/from the pending_types_list.
4157 Note that we sometimes make use of this "type pending" feature in a
4158 rather twisted way to temporarily delay the production of DIEs for the
4159 types of formal parameters. (We do this just to make svr4 SDB happy.)
4160 It order to delay the production of DIEs representing types of formal
4161 parameters, callers of this function supply `fake_containing_scope' as
4162 the `scope' parameter to this function. Given that fake_containing_scope
4163 is a tagged type which is *not* the containing scope for *any* other type,
4164 the desired effect is achieved, i.e. output of DIEs representing types
4165 is temporarily suspended, and any type DIEs which would have otherwise
4166 been output are instead placed onto the pending_types_list. Later on,
4167 we force these (temporarily pended) types to be output simply by calling
4168 `output_pending_types_for_scope' with an actual argument equal to the
4169 true scope of the types we temporarily pended. */
4171 static inline int
4172 type_ok_for_scope (type, scope)
4173 register tree type;
4174 register tree scope;
4176 /* Tagged types (i.e. struct, union, and enum types) must always be
4177 output only in the scopes where they actually belong (or else the
4178 scoping of their own tag names and the scoping of their member
4179 names will be incorrect). Non-tagged-types on the other hand can
4180 generally be output anywhere, except that svr4 SDB really doesn't
4181 want to see them nested within struct or union types, so here we
4182 say it is always OK to immediately output any such a (non-tagged)
4183 type, so long as we are not within such a context. Note that the
4184 only kinds of non-tagged types which we will be dealing with here
4185 (for C and C++ anyway) will be array types and function types. */
4187 return is_tagged_type (type)
4188 ? (TYPE_CONTEXT (type) == scope
4189 /* Ignore namespaces for the moment. */
4190 || (scope == NULL_TREE
4191 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4192 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4193 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4194 : (scope == NULL_TREE || ! is_tagged_type (scope));
4197 /* Output any pending types (from the pending_types list) which we can output
4198 now (taking into account the scope that we are working on now).
4200 For each type output, remove the given type from the pending_types_list
4201 *before* we try to output it.
4203 Note that we have to process the list in beginning-to-end order,
4204 because the call made here to output_type may cause yet more types
4205 to be added to the end of the list, and we may have to output some
4206 of them too. */
4208 static void
4209 output_pending_types_for_scope (containing_scope)
4210 register tree containing_scope;
4212 register unsigned i;
4214 for (i = 0; i < pending_types; )
4216 register tree type = pending_types_list[i];
4218 if (type_ok_for_scope (type, containing_scope))
4220 register tree *mover;
4221 register tree *limit;
4223 pending_types--;
4224 limit = &pending_types_list[pending_types];
4225 for (mover = &pending_types_list[i]; mover < limit; mover++)
4226 *mover = *(mover+1);
4228 /* Un-mark the type as having been output already (because it
4229 hasn't been, really). Then call output_type to generate a
4230 Dwarf representation of it. */
4232 TREE_ASM_WRITTEN (type) = 0;
4233 output_type (type, containing_scope);
4235 /* Don't increment the loop counter in this case because we
4236 have shifted all of the subsequent pending types down one
4237 element in the pending_types_list array. */
4239 else
4240 i++;
4244 /* Remember a type in the incomplete_types_list. */
4246 static void
4247 add_incomplete_type (type)
4248 tree type;
4250 if (incomplete_types == incomplete_types_allocated)
4252 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4253 incomplete_types_list
4254 = (tree *) xrealloc (incomplete_types_list,
4255 sizeof (tree) * incomplete_types_allocated);
4258 incomplete_types_list[incomplete_types++] = type;
4261 /* Walk through the list of incomplete types again, trying once more to
4262 emit full debugging info for them. */
4264 static void
4265 retry_incomplete_types ()
4267 register tree type;
4269 finalizing = 1;
4270 while (incomplete_types)
4272 --incomplete_types;
4273 type = incomplete_types_list[incomplete_types];
4274 output_type (type, NULL_TREE);
4278 static void
4279 output_type (type, containing_scope)
4280 register tree type;
4281 register tree containing_scope;
4283 if (type == 0 || type == error_mark_node)
4284 return;
4286 /* We are going to output a DIE to represent the unqualified version of
4287 this type (i.e. without any const or volatile qualifiers) so get
4288 the main variant (i.e. the unqualified version) of this type now. */
4290 type = type_main_variant (type);
4292 if (TREE_ASM_WRITTEN (type))
4294 if (finalizing && AGGREGATE_TYPE_P (type))
4296 register tree member;
4298 /* Some of our nested types might not have been defined when we
4299 were written out before; force them out now. */
4301 for (member = TYPE_FIELDS (type); member;
4302 member = TREE_CHAIN (member))
4303 if (TREE_CODE (member) == TYPE_DECL
4304 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4305 output_type (TREE_TYPE (member), containing_scope);
4307 return;
4310 /* If this is a nested type whose containing class hasn't been
4311 written out yet, writing it out will cover this one, too. */
4313 if (TYPE_CONTEXT (type)
4314 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4315 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4317 output_type (TYPE_CONTEXT (type), containing_scope);
4318 return;
4321 /* Don't generate any DIEs for this type now unless it is OK to do so
4322 (based upon what `type_ok_for_scope' tells us). */
4324 if (! type_ok_for_scope (type, containing_scope))
4326 pend_type (type);
4327 return;
4330 switch (TREE_CODE (type))
4332 case ERROR_MARK:
4333 break;
4335 case POINTER_TYPE:
4336 case REFERENCE_TYPE:
4337 /* Prevent infinite recursion in cases where this is a recursive
4338 type. Recursive types are possible in Ada. */
4339 TREE_ASM_WRITTEN (type) = 1;
4340 /* For these types, all that is required is that we output a DIE
4341 (or a set of DIEs) to represent the "basis" type. */
4342 output_type (TREE_TYPE (type), containing_scope);
4343 break;
4345 case OFFSET_TYPE:
4346 /* This code is used for C++ pointer-to-data-member types. */
4347 /* Output a description of the relevant class type. */
4348 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4349 /* Output a description of the type of the object pointed to. */
4350 output_type (TREE_TYPE (type), containing_scope);
4351 /* Now output a DIE to represent this pointer-to-data-member type
4352 itself. */
4353 output_die (output_ptr_to_mbr_type_die, type);
4354 break;
4356 case SET_TYPE:
4357 output_type (TYPE_DOMAIN (type), containing_scope);
4358 output_die (output_set_type_die, type);
4359 break;
4361 case FILE_TYPE:
4362 output_type (TREE_TYPE (type), containing_scope);
4363 abort (); /* No way to represent these in Dwarf yet! */
4364 break;
4366 case FUNCTION_TYPE:
4367 /* Force out return type (in case it wasn't forced out already). */
4368 output_type (TREE_TYPE (type), containing_scope);
4369 output_die (output_subroutine_type_die, type);
4370 output_formal_types (type);
4371 end_sibling_chain ();
4372 break;
4374 case METHOD_TYPE:
4375 /* Force out return type (in case it wasn't forced out already). */
4376 output_type (TREE_TYPE (type), containing_scope);
4377 output_die (output_subroutine_type_die, type);
4378 output_formal_types (type);
4379 end_sibling_chain ();
4380 break;
4382 case ARRAY_TYPE:
4383 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4385 output_type (TREE_TYPE (type), containing_scope);
4386 output_die (output_string_type_die, type);
4388 else
4390 register tree element_type;
4392 element_type = TREE_TYPE (type);
4393 while (TREE_CODE (element_type) == ARRAY_TYPE)
4394 element_type = TREE_TYPE (element_type);
4396 output_type (element_type, containing_scope);
4397 output_die (output_array_type_die, type);
4399 break;
4401 case ENUMERAL_TYPE:
4402 case RECORD_TYPE:
4403 case UNION_TYPE:
4404 case QUAL_UNION_TYPE:
4406 /* For a non-file-scope tagged type, we can always go ahead and
4407 output a Dwarf description of this type right now, even if
4408 the type in question is still incomplete, because if this
4409 local type *was* ever completed anywhere within its scope,
4410 that complete definition would already have been attached to
4411 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4412 node by the time we reach this point. That's true because of the
4413 way the front-end does its processing of file-scope declarations (of
4414 functions and class types) within which other types might be
4415 nested. The C and C++ front-ends always gobble up such "local
4416 scope" things en-mass before they try to output *any* debugging
4417 information for any of the stuff contained inside them and thus,
4418 we get the benefit here of what is (in effect) a pre-resolution
4419 of forward references to tagged types in local scopes.
4421 Note however that for file-scope tagged types we cannot assume
4422 that such pre-resolution of forward references has taken place.
4423 A given file-scope tagged type may appear to be incomplete when
4424 we reach this point, but it may yet be given a full definition
4425 (at file-scope) later on during compilation. In order to avoid
4426 generating a premature (and possibly incorrect) set of Dwarf
4427 DIEs for such (as yet incomplete) file-scope tagged types, we
4428 generate nothing at all for as-yet incomplete file-scope tagged
4429 types here unless we are making our special "finalization" pass
4430 for file-scope things at the very end of compilation. At that
4431 time, we will certainly know as much about each file-scope tagged
4432 type as we are ever going to know, so at that point in time, we
4433 can safely generate correct Dwarf descriptions for these file-
4434 scope tagged types. */
4436 if (TYPE_SIZE (type) == 0
4437 && (TYPE_CONTEXT (type) == NULL
4438 || (TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4439 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_TYPE
4440 && TREE_CODE (TYPE_CONTEXT (type)) != METHOD_TYPE))
4441 && !finalizing)
4443 /* We can't do this for function-local types, and we don't need
4444 to. */
4445 if (TREE_PERMANENT (type))
4446 add_incomplete_type (type);
4447 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4450 /* Prevent infinite recursion in cases where the type of some
4451 member of this type is expressed in terms of this type itself. */
4453 TREE_ASM_WRITTEN (type) = 1;
4455 /* Output a DIE to represent the tagged type itself. */
4457 switch (TREE_CODE (type))
4459 case ENUMERAL_TYPE:
4460 output_die (output_enumeration_type_die, type);
4461 return; /* a special case -- nothing left to do so just return */
4463 case RECORD_TYPE:
4464 output_die (output_structure_type_die, type);
4465 break;
4467 case UNION_TYPE:
4468 case QUAL_UNION_TYPE:
4469 output_die (output_union_type_die, type);
4470 break;
4472 default:
4473 abort (); /* Should never happen. */
4476 /* If this is not an incomplete type, output descriptions of
4477 each of its members.
4479 Note that as we output the DIEs necessary to represent the
4480 members of this record or union type, we will also be trying
4481 to output DIEs to represent the *types* of those members.
4482 However the `output_type' function (above) will specifically
4483 avoid generating type DIEs for member types *within* the list
4484 of member DIEs for this (containing) type execpt for those
4485 types (of members) which are explicitly marked as also being
4486 members of this (containing) type themselves. The g++ front-
4487 end can force any given type to be treated as a member of some
4488 other (containing) type by setting the TYPE_CONTEXT of the
4489 given (member) type to point to the TREE node representing the
4490 appropriate (containing) type.
4493 if (TYPE_SIZE (type))
4495 /* First output info about the base classes. */
4496 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4498 register tree bases = TYPE_BINFO_BASETYPES (type);
4499 register int n_bases = TREE_VEC_LENGTH (bases);
4500 register int i;
4502 for (i = 0; i < n_bases; i++)
4504 tree binfo = TREE_VEC_ELT (bases, i);
4505 output_type (BINFO_TYPE (binfo), containing_scope);
4506 output_die (output_inheritance_die, binfo);
4510 ++in_class;
4513 register tree normal_member;
4515 /* Now output info about the data members and type members. */
4517 for (normal_member = TYPE_FIELDS (type);
4518 normal_member;
4519 normal_member = TREE_CHAIN (normal_member))
4520 output_decl (normal_member, type);
4524 register tree func_member;
4526 /* Now output info about the function members (if any). */
4528 for (func_member = TYPE_METHODS (type);
4529 func_member;
4530 func_member = TREE_CHAIN (func_member))
4531 output_decl (func_member, type);
4534 --in_class;
4536 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4537 scopes (at least in C++) so we must now output any nested
4538 pending types which are local just to this type. */
4540 output_pending_types_for_scope (type);
4542 end_sibling_chain (); /* Terminate member chain. */
4545 break;
4547 case VOID_TYPE:
4548 case INTEGER_TYPE:
4549 case REAL_TYPE:
4550 case COMPLEX_TYPE:
4551 case BOOLEAN_TYPE:
4552 case CHAR_TYPE:
4553 break; /* No DIEs needed for fundamental types. */
4555 case LANG_TYPE: /* No Dwarf representation currently defined. */
4556 break;
4558 default:
4559 abort ();
4562 TREE_ASM_WRITTEN (type) = 1;
4565 static void
4566 output_tagged_type_instantiation (type)
4567 register tree type;
4569 if (type == 0 || type == error_mark_node)
4570 return;
4572 /* We are going to output a DIE to represent the unqualified version of
4573 this type (i.e. without any const or volatile qualifiers) so make
4574 sure that we have the main variant (i.e. the unqualified version) of
4575 this type now. */
4577 if (type != type_main_variant (type))
4578 abort ();
4580 if (!TREE_ASM_WRITTEN (type))
4581 abort ();
4583 switch (TREE_CODE (type))
4585 case ERROR_MARK:
4586 break;
4588 case ENUMERAL_TYPE:
4589 output_die (output_inlined_enumeration_type_die, type);
4590 break;
4592 case RECORD_TYPE:
4593 output_die (output_inlined_structure_type_die, type);
4594 break;
4596 case UNION_TYPE:
4597 case QUAL_UNION_TYPE:
4598 output_die (output_inlined_union_type_die, type);
4599 break;
4601 default:
4602 abort (); /* Should never happen. */
4606 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4607 the things which are local to the given block. */
4609 static void
4610 output_block (stmt, depth)
4611 register tree stmt;
4612 int depth;
4614 register int must_output_die = 0;
4615 register tree origin;
4616 register enum tree_code origin_code;
4618 /* Ignore blocks never really used to make RTL. */
4620 if (! stmt || ! TREE_USED (stmt))
4621 return;
4623 /* Determine the "ultimate origin" of this block. This block may be an
4624 inlined instance of an inlined instance of inline function, so we
4625 have to trace all of the way back through the origin chain to find
4626 out what sort of node actually served as the original seed for the
4627 creation of the current block. */
4629 origin = block_ultimate_origin (stmt);
4630 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4632 /* Determine if we need to output any Dwarf DIEs at all to represent this
4633 block. */
4635 if (origin_code == FUNCTION_DECL)
4636 /* The outer scopes for inlinings *must* always be represented. We
4637 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4638 must_output_die = 1;
4639 else
4641 /* In the case where the current block represents an inlining of the
4642 "body block" of an inline function, we must *NOT* output any DIE
4643 for this block because we have already output a DIE to represent
4644 the whole inlined function scope and the "body block" of any
4645 function doesn't really represent a different scope according to
4646 ANSI C rules. So we check here to make sure that this block does
4647 not represent a "body block inlining" before trying to set the
4648 `must_output_die' flag. */
4650 if (! is_body_block (origin ? origin : stmt))
4652 /* Determine if this block directly contains any "significant"
4653 local declarations which we will need to output DIEs for. */
4655 if (debug_info_level > DINFO_LEVEL_TERSE)
4656 /* We are not in terse mode so *any* local declaration counts
4657 as being a "significant" one. */
4658 must_output_die = (BLOCK_VARS (stmt) != NULL);
4659 else
4661 register tree decl;
4663 /* We are in terse mode, so only local (nested) function
4664 definitions count as "significant" local declarations. */
4666 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4667 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4669 must_output_die = 1;
4670 break;
4676 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4677 DIE for any block which contains no significant local declarations
4678 at all. Rather, in such cases we just call `output_decls_for_scope'
4679 so that any needed Dwarf info for any sub-blocks will get properly
4680 generated. Note that in terse mode, our definition of what constitutes
4681 a "significant" local declaration gets restricted to include only
4682 inlined function instances and local (nested) function definitions. */
4684 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4685 /* We don't care about an abstract inlined subroutine. */;
4686 else if (must_output_die)
4688 output_die ((origin_code == FUNCTION_DECL)
4689 ? output_inlined_subroutine_die
4690 : output_lexical_block_die,
4691 stmt);
4692 output_decls_for_scope (stmt, depth);
4693 end_sibling_chain ();
4695 else
4696 output_decls_for_scope (stmt, depth);
4699 /* Output all of the decls declared within a given scope (also called
4700 a `binding contour') and (recursively) all of it's sub-blocks. */
4702 static void
4703 output_decls_for_scope (stmt, depth)
4704 register tree stmt;
4705 int depth;
4707 /* Ignore blocks never really used to make RTL. */
4709 if (! stmt || ! TREE_USED (stmt))
4710 return;
4712 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4713 next_block_number++;
4715 /* Output the DIEs to represent all of the data objects, functions,
4716 typedefs, and tagged types declared directly within this block
4717 but not within any nested sub-blocks. */
4720 register tree decl;
4722 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4723 output_decl (decl, stmt);
4726 output_pending_types_for_scope (stmt);
4728 /* Output the DIEs to represent all sub-blocks (and the items declared
4729 therein) of this block. */
4732 register tree subblocks;
4734 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4735 subblocks;
4736 subblocks = BLOCK_CHAIN (subblocks))
4737 output_block (subblocks, depth + 1);
4741 /* Is this a typedef we can avoid emitting? */
4743 inline static int
4744 is_redundant_typedef (decl)
4745 register tree decl;
4747 if (TYPE_DECL_IS_STUB (decl))
4748 return 1;
4749 if (DECL_ARTIFICIAL (decl)
4750 && DECL_CONTEXT (decl)
4751 && is_tagged_type (DECL_CONTEXT (decl))
4752 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4753 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4754 /* Also ignore the artificial member typedef for the class name. */
4755 return 1;
4756 return 0;
4759 /* Output Dwarf .debug information for a decl described by DECL. */
4761 static void
4762 output_decl (decl, containing_scope)
4763 register tree decl;
4764 register tree containing_scope;
4766 /* Make a note of the decl node we are going to be working on. We may
4767 need to give the user the source coordinates of where it appeared in
4768 case we notice (later on) that something about it looks screwy. */
4770 dwarf_last_decl = decl;
4772 if (TREE_CODE (decl) == ERROR_MARK)
4773 return;
4775 /* If a structure is declared within an initialization, e.g. as the
4776 operand of a sizeof, then it will not have a name. We don't want
4777 to output a DIE for it, as the tree nodes are in the temporary obstack */
4779 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4780 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4781 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4782 || (TYPE_FIELDS (TREE_TYPE (decl))
4783 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4784 return;
4786 /* If this ..._DECL node is marked to be ignored, then ignore it.
4787 But don't ignore a function definition, since that would screw
4788 up our count of blocks, and that it turn will completely screw up the
4789 labels we will reference in subsequent AT_low_pc and AT_high_pc
4790 attributes (for subsequent blocks). */
4792 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4793 return;
4795 switch (TREE_CODE (decl))
4797 case CONST_DECL:
4798 /* The individual enumerators of an enum type get output when we
4799 output the Dwarf representation of the relevant enum type itself. */
4800 break;
4802 case FUNCTION_DECL:
4803 /* If we are in terse mode, don't output any DIEs to represent
4804 mere function declarations. Also, if we are conforming
4805 to the DWARF version 1 specification, don't output DIEs for
4806 mere function declarations. */
4808 if (DECL_INITIAL (decl) == NULL_TREE)
4809 #if (DWARF_VERSION > 1)
4810 if (debug_info_level <= DINFO_LEVEL_TERSE)
4811 #endif
4812 break;
4814 /* Before we describe the FUNCTION_DECL itself, make sure that we
4815 have described its return type. */
4817 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4820 /* And its containing type. */
4821 register tree origin = decl_class_context (decl);
4822 if (origin)
4823 output_type (origin, containing_scope);
4826 /* If the following DIE will represent a function definition for a
4827 function with "extern" linkage, output a special "pubnames" DIE
4828 label just ahead of the actual DIE. A reference to this label
4829 was already generated in the .debug_pubnames section sub-entry
4830 for this function definition. */
4832 if (TREE_PUBLIC (decl))
4834 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4836 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4837 ASM_OUTPUT_LABEL (asm_out_file, label);
4840 /* Now output a DIE to represent the function itself. */
4842 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4843 ? output_global_subroutine_die
4844 : output_local_subroutine_die,
4845 decl);
4847 /* Now output descriptions of the arguments for this function.
4848 This gets (unnecessarily?) complex because of the fact that
4849 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4850 cases where there was a trailing `...' at the end of the formal
4851 parameter list. In order to find out if there was a trailing
4852 ellipsis or not, we must instead look at the type associated
4853 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4854 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4855 ends with a void_type_node then there should *not* be an ellipsis
4856 at the end. */
4858 /* In the case where we are describing a mere function declaration, all
4859 we need to do here (and all we *can* do here) is to describe
4860 the *types* of its formal parameters. */
4862 if (decl != current_function_decl || in_class)
4863 output_formal_types (TREE_TYPE (decl));
4864 else
4866 /* Generate DIEs to represent all known formal parameters */
4868 register tree arg_decls = DECL_ARGUMENTS (decl);
4869 register tree parm;
4871 /* WARNING! Kludge zone ahead! Here we have a special
4872 hack for svr4 SDB compatibility. Instead of passing the
4873 current FUNCTION_DECL node as the second parameter (i.e.
4874 the `containing_scope' parameter) to `output_decl' (as
4875 we ought to) we instead pass a pointer to our own private
4876 fake_containing_scope node. That node is a RECORD_TYPE
4877 node which NO OTHER TYPE may ever actually be a member of.
4879 This pointer will ultimately get passed into `output_type'
4880 as its `containing_scope' parameter. `Output_type' will
4881 then perform its part in the hack... i.e. it will pend
4882 the type of the formal parameter onto the pending_types
4883 list. Later on, when we are done generating the whole
4884 sequence of formal parameter DIEs for this function
4885 definition, we will un-pend all previously pended types
4886 of formal parameters for this function definition.
4888 This whole kludge prevents any type DIEs from being
4889 mixed in with the formal parameter DIEs. That's good
4890 because svr4 SDB believes that the list of formal
4891 parameter DIEs for a function ends wherever the first
4892 non-formal-parameter DIE appears. Thus, we have to
4893 keep the formal parameter DIEs segregated. They must
4894 all appear (consecutively) at the start of the list of
4895 children for the DIE representing the function definition.
4896 Then (and only then) may we output any additional DIEs
4897 needed to represent the types of these formal parameters.
4901 When generating DIEs, generate the unspecified_parameters
4902 DIE instead if we come across the arg "__builtin_va_alist"
4905 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4906 if (TREE_CODE (parm) == PARM_DECL)
4908 if (DECL_NAME(parm) &&
4909 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4910 "__builtin_va_alist") )
4911 output_die (output_unspecified_parameters_die, decl);
4912 else
4913 output_decl (parm, fake_containing_scope);
4917 Now that we have finished generating all of the DIEs to
4918 represent the formal parameters themselves, force out
4919 any DIEs needed to represent their types. We do this
4920 simply by un-pending all previously pended types which
4921 can legitimately go into the chain of children DIEs for
4922 the current FUNCTION_DECL.
4925 output_pending_types_for_scope (decl);
4928 Decide whether we need a unspecified_parameters DIE at the end.
4929 There are 2 more cases to do this for:
4930 1) the ansi ... declaration - this is detectable when the end
4931 of the arg list is not a void_type_node
4932 2) an unprototyped function declaration (not a definition). This
4933 just means that we have no info about the parameters at all.
4937 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4939 if (fn_arg_types)
4941 /* this is the prototyped case, check for ... */
4942 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4943 output_die (output_unspecified_parameters_die, decl);
4945 else
4947 /* this is unprototyped, check for undefined (just declaration) */
4948 if (!DECL_INITIAL (decl))
4949 output_die (output_unspecified_parameters_die, decl);
4953 /* Output Dwarf info for all of the stuff within the body of the
4954 function (if it has one - it may be just a declaration). */
4957 register tree outer_scope = DECL_INITIAL (decl);
4959 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4961 /* Note that here, `outer_scope' is a pointer to the outermost
4962 BLOCK node created to represent a function.
4963 This outermost BLOCK actually represents the outermost
4964 binding contour for the function, i.e. the contour in which
4965 the function's formal parameters and labels get declared.
4967 Curiously, it appears that the front end doesn't actually
4968 put the PARM_DECL nodes for the current function onto the
4969 BLOCK_VARS list for this outer scope. (They are strung
4970 off of the DECL_ARGUMENTS list for the function instead.)
4971 The BLOCK_VARS list for the `outer_scope' does provide us
4972 with a list of the LABEL_DECL nodes for the function however,
4973 and we output DWARF info for those here.
4975 Just within the `outer_scope' there will be a BLOCK node
4976 representing the function's outermost pair of curly braces,
4977 and any blocks used for the base and member initializers of
4978 a C++ constructor function. */
4980 output_decls_for_scope (outer_scope, 0);
4982 /* Finally, force out any pending types which are local to the
4983 outermost block of this function definition. These will
4984 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4985 node itself. */
4987 output_pending_types_for_scope (decl);
4992 /* Generate a terminator for the list of stuff `owned' by this
4993 function. */
4995 end_sibling_chain ();
4997 break;
4999 case TYPE_DECL:
5000 /* If we are in terse mode, don't generate any DIEs to represent
5001 any actual typedefs. Note that even when we are in terse mode,
5002 we must still output DIEs to represent those tagged types which
5003 are used (directly or indirectly) in the specification of either
5004 a return type or a formal parameter type of some function. */
5006 if (debug_info_level <= DINFO_LEVEL_TERSE)
5007 if (! TYPE_DECL_IS_STUB (decl)
5008 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5009 return;
5011 /* In the special case of a TYPE_DECL node representing
5012 the declaration of some type tag, if the given TYPE_DECL is
5013 marked as having been instantiated from some other (original)
5014 TYPE_DECL node (e.g. one which was generated within the original
5015 definition of an inline function) we have to generate a special
5016 (abbreviated) TAG_structure_type, TAG_union_type, or
5017 TAG_enumeration-type DIE here. */
5019 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5021 output_tagged_type_instantiation (TREE_TYPE (decl));
5022 return;
5025 output_type (TREE_TYPE (decl), containing_scope);
5027 if (! is_redundant_typedef (decl))
5028 /* Output a DIE to represent the typedef itself. */
5029 output_die (output_typedef_die, decl);
5030 break;
5032 case LABEL_DECL:
5033 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5034 output_die (output_label_die, decl);
5035 break;
5037 case VAR_DECL:
5038 /* If we are conforming to the DWARF version 1 specification, don't
5039 generated any DIEs to represent mere external object declarations. */
5041 #if (DWARF_VERSION <= 1)
5042 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5043 break;
5044 #endif
5046 /* If we are in terse mode, don't generate any DIEs to represent
5047 any variable declarations or definitions. */
5049 if (debug_info_level <= DINFO_LEVEL_TERSE)
5050 break;
5052 /* Output any DIEs that are needed to specify the type of this data
5053 object. */
5055 output_type (TREE_TYPE (decl), containing_scope);
5058 /* And its containing type. */
5059 register tree origin = decl_class_context (decl);
5060 if (origin)
5061 output_type (origin, containing_scope);
5064 /* If the following DIE will represent a data object definition for a
5065 data object with "extern" linkage, output a special "pubnames" DIE
5066 label just ahead of the actual DIE. A reference to this label
5067 was already generated in the .debug_pubnames section sub-entry
5068 for this data object definition. */
5070 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5072 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5074 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5075 ASM_OUTPUT_LABEL (asm_out_file, label);
5078 /* Now output the DIE to represent the data object itself. This gets
5079 complicated because of the possibility that the VAR_DECL really
5080 represents an inlined instance of a formal parameter for an inline
5081 function. */
5084 register void (*func) PROTO((void *));
5085 register tree origin = decl_ultimate_origin (decl);
5087 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5088 func = output_formal_parameter_die;
5089 else
5091 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5092 func = output_global_variable_die;
5093 else
5094 func = output_local_variable_die;
5096 output_die (func, decl);
5098 break;
5100 case FIELD_DECL:
5101 /* Ignore the nameless fields that are used to skip bits. */
5102 if (DECL_NAME (decl) != 0)
5104 output_type (member_declared_type (decl), containing_scope);
5105 output_die (output_member_die, decl);
5107 break;
5109 case PARM_DECL:
5110 /* Force out the type of this formal, if it was not forced out yet.
5111 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5112 It should be able to grok the presence of type DIEs within a list
5113 of TAG_formal_parameter DIEs, but it doesn't. */
5115 output_type (TREE_TYPE (decl), containing_scope);
5116 output_die (output_formal_parameter_die, decl);
5117 break;
5119 default:
5120 abort ();
5124 void
5125 dwarfout_file_scope_decl (decl, set_finalizing)
5126 register tree decl;
5127 register int set_finalizing;
5129 if (TREE_CODE (decl) == ERROR_MARK)
5130 return;
5132 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5133 gotta hope that the node in question doesn't represent a function
5134 definition. If it does, then totally ignoring it is bound to screw
5135 up our count of blocks, and that it turn will completely screw up the
5136 labels we will reference in subsequent AT_low_pc and AT_high_pc
5137 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5138 don't carry their own sequence numbers with them!) */
5140 if (DECL_IGNORED_P (decl))
5142 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5143 abort ();
5144 return;
5147 switch (TREE_CODE (decl))
5149 case FUNCTION_DECL:
5151 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5152 a builtin function. Explicit programmer-supplied declarations of
5153 these same functions should NOT be ignored however. */
5155 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5156 return;
5158 /* What we would really like to do here is to filter out all mere
5159 file-scope declarations of file-scope functions which are never
5160 referenced later within this translation unit (and keep all of
5161 ones that *are* referenced later on) but we aren't clairvoyant,
5162 so we have no idea which functions will be referenced in the
5163 future (i.e. later on within the current translation unit).
5164 So here we just ignore all file-scope function declarations
5165 which are not also definitions. If and when the debugger needs
5166 to know something about these functions, it wil have to hunt
5167 around and find the DWARF information associated with the
5168 *definition* of the function.
5170 Note that we can't just check `DECL_EXTERNAL' to find out which
5171 FUNCTION_DECL nodes represent definitions and which ones represent
5172 mere declarations. We have to check `DECL_INITIAL' instead. That's
5173 because the C front-end supports some weird semantics for "extern
5174 inline" function definitions. These can get inlined within the
5175 current translation unit (an thus, we need to generate DWARF info
5176 for their abstract instances so that the DWARF info for the
5177 concrete inlined instances can have something to refer to) but
5178 the compiler never generates any out-of-lines instances of such
5179 things (despite the fact that they *are* definitions). The
5180 important point is that the C front-end marks these "extern inline"
5181 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5182 anyway.
5184 Note that the C++ front-end also plays some similar games for inline
5185 function definitions appearing within include files which also
5186 contain `#pragma interface' pragmas. */
5188 if (DECL_INITIAL (decl) == NULL_TREE)
5189 return;
5191 if (TREE_PUBLIC (decl)
5192 && ! DECL_EXTERNAL (decl)
5193 && ! DECL_ABSTRACT (decl))
5195 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5197 /* Output a .debug_pubnames entry for a public function
5198 defined in this compilation unit. */
5200 fputc ('\n', asm_out_file);
5201 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5202 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5203 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5204 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5205 IDENTIFIER_POINTER (DECL_NAME (decl)));
5206 ASM_OUTPUT_POP_SECTION (asm_out_file);
5209 break;
5211 case VAR_DECL:
5213 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5214 object declaration and if the declaration was never even
5215 referenced from within this entire compilation unit. We
5216 suppress these DIEs in order to save space in the .debug section
5217 (by eliminating entries which are probably useless). Note that
5218 we must not suppress block-local extern declarations (whether
5219 used or not) because that would screw-up the debugger's name
5220 lookup mechanism and cause it to miss things which really ought
5221 to be in scope at a given point. */
5223 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5224 return;
5226 if (TREE_PUBLIC (decl)
5227 && ! DECL_EXTERNAL (decl)
5228 && GET_CODE (DECL_RTL (decl)) == MEM
5229 && ! DECL_ABSTRACT (decl))
5231 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5233 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5235 /* Output a .debug_pubnames entry for a public variable
5236 defined in this compilation unit. */
5238 fputc ('\n', asm_out_file);
5239 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5240 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5241 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5242 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5243 IDENTIFIER_POINTER (DECL_NAME (decl)));
5244 ASM_OUTPUT_POP_SECTION (asm_out_file);
5247 if (DECL_INITIAL (decl) == NULL)
5249 /* Output a .debug_aranges entry for a public variable
5250 which is tentatively defined in this compilation unit. */
5252 fputc ('\n', asm_out_file);
5253 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5254 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5255 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5256 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5257 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5258 ASM_OUTPUT_POP_SECTION (asm_out_file);
5262 /* If we are in terse mode, don't generate any DIEs to represent
5263 any variable declarations or definitions. */
5265 if (debug_info_level <= DINFO_LEVEL_TERSE)
5266 return;
5268 break;
5270 case TYPE_DECL:
5271 /* Don't bother trying to generate any DIEs to represent any of the
5272 normal built-in types for the language we are compiling, except
5273 in cases where the types in question are *not* DWARF fundamental
5274 types. We make an exception in the case of non-fundamental types
5275 for the sake of objective C (and perhaps C++) because the GNU
5276 front-ends for these languages may in fact create certain "built-in"
5277 types which are (for example) RECORD_TYPEs. In such cases, we
5278 really need to output these (non-fundamental) types because other
5279 DIEs may contain references to them. */
5281 /* Also ignore language dependent types here, because they are probably
5282 also built-in types. If we didn't ignore them, then we would get
5283 references to undefined labels because output_type doesn't support
5284 them. So, for now, we need to ignore them to avoid assembler
5285 errors. */
5287 /* ??? This code is different than the equivalent code in dwarf2out.c.
5288 The dwarf2out.c code is probably more correct. */
5290 if (DECL_SOURCE_LINE (decl) == 0
5291 && (type_is_fundamental (TREE_TYPE (decl))
5292 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5293 return;
5295 /* If we are in terse mode, don't generate any DIEs to represent
5296 any actual typedefs. Note that even when we are in terse mode,
5297 we must still output DIEs to represent those tagged types which
5298 are used (directly or indirectly) in the specification of either
5299 a return type or a formal parameter type of some function. */
5301 if (debug_info_level <= DINFO_LEVEL_TERSE)
5302 if (! TYPE_DECL_IS_STUB (decl)
5303 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5304 return;
5306 break;
5308 default:
5309 return;
5312 fputc ('\n', asm_out_file);
5313 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5314 finalizing = set_finalizing;
5315 output_decl (decl, NULL_TREE);
5317 /* NOTE: The call above to `output_decl' may have caused one or more
5318 file-scope named types (i.e. tagged types) to be placed onto the
5319 pending_types_list. We have to get those types off of that list
5320 at some point, and this is the perfect time to do it. If we didn't
5321 take them off now, they might still be on the list when cc1 finally
5322 exits. That might be OK if it weren't for the fact that when we put
5323 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5324 for these types, and that causes them never to be output unless
5325 `output_pending_types_for_scope' takes them off of the list and un-sets
5326 their TREE_ASM_WRITTEN flags. */
5328 output_pending_types_for_scope (NULL_TREE);
5330 /* The above call should have totally emptied the pending_types_list
5331 if this is not a nested function or class. If this is a nested type,
5332 then the remaining pending_types will be emitted when the containing type
5333 is handled. */
5335 if (! DECL_CONTEXT (decl))
5337 if (pending_types != 0)
5338 abort ();
5341 ASM_OUTPUT_POP_SECTION (asm_out_file);
5343 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5344 current_funcdef_number++;
5347 /* Output a marker (i.e. a label) for the beginning of the generated code
5348 for a lexical block. */
5350 void
5351 dwarfout_begin_block (blocknum)
5352 register unsigned blocknum;
5354 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5356 function_section (current_function_decl);
5357 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5358 ASM_OUTPUT_LABEL (asm_out_file, label);
5361 /* Output a marker (i.e. a label) for the end of the generated code
5362 for a lexical block. */
5364 void
5365 dwarfout_end_block (blocknum)
5366 register unsigned blocknum;
5368 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5370 function_section (current_function_decl);
5371 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5372 ASM_OUTPUT_LABEL (asm_out_file, label);
5375 /* Output a marker (i.e. a label) at a point in the assembly code which
5376 corresponds to a given source level label. */
5378 void
5379 dwarfout_label (insn)
5380 register rtx insn;
5382 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5384 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5386 function_section (current_function_decl);
5387 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5388 (unsigned) INSN_UID (insn));
5389 ASM_OUTPUT_LABEL (asm_out_file, label);
5393 /* Output a marker (i.e. a label) for the point in the generated code where
5394 the real body of the function begins (after parameters have been moved
5395 to their home locations). */
5397 void
5398 dwarfout_begin_function ()
5400 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5402 if (! use_gnu_debug_info_extensions)
5403 return;
5404 function_section (current_function_decl);
5405 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5406 ASM_OUTPUT_LABEL (asm_out_file, label);
5409 /* Output a marker (i.e. a label) for the point in the generated code where
5410 the real body of the function ends (just before the epilogue code). */
5412 void
5413 dwarfout_end_function ()
5415 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5417 if (! use_gnu_debug_info_extensions)
5418 return;
5419 function_section (current_function_decl);
5420 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5421 ASM_OUTPUT_LABEL (asm_out_file, label);
5424 /* Output a marker (i.e. a label) for the absolute end of the generated code
5425 for a function definition. This gets called *after* the epilogue code
5426 has been generated. */
5428 void
5429 dwarfout_end_epilogue ()
5431 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5433 /* Output a label to mark the endpoint of the code generated for this
5434 function. */
5436 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5437 ASM_OUTPUT_LABEL (asm_out_file, label);
5440 static void
5441 shuffle_filename_entry (new_zeroth)
5442 register filename_entry *new_zeroth;
5444 filename_entry temp_entry;
5445 register filename_entry *limit_p;
5446 register filename_entry *move_p;
5448 if (new_zeroth == &filename_table[0])
5449 return;
5451 temp_entry = *new_zeroth;
5453 /* Shift entries up in the table to make room at [0]. */
5455 limit_p = &filename_table[0];
5456 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5457 *move_p = *(move_p-1);
5459 /* Install the found entry at [0]. */
5461 filename_table[0] = temp_entry;
5464 /* Create a new (string) entry for the .debug_sfnames section. */
5466 static void
5467 generate_new_sfname_entry ()
5469 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5471 fputc ('\n', asm_out_file);
5472 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5473 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5474 ASM_OUTPUT_LABEL (asm_out_file, label);
5475 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5476 filename_table[0].name
5477 ? filename_table[0].name
5478 : "");
5479 ASM_OUTPUT_POP_SECTION (asm_out_file);
5482 /* Lookup a filename (in the list of filenames that we know about here in
5483 dwarfout.c) and return its "index". The index of each (known) filename
5484 is just a unique number which is associated with only that one filename.
5485 We need such numbers for the sake of generating labels (in the
5486 .debug_sfnames section) and references to those unique labels (in the
5487 .debug_srcinfo and .debug_macinfo sections).
5489 If the filename given as an argument is not found in our current list,
5490 add it to the list and assign it the next available unique index number.
5492 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5493 one), we shuffle the filename found (or added) up to the zeroth entry of
5494 our list of filenames (which is always searched linearly). We do this so
5495 as to optimize the most common case for these filename lookups within
5496 dwarfout.c. The most common case by far is the case where we call
5497 lookup_filename to lookup the very same filename that we did a lookup
5498 on the last time we called lookup_filename. We make sure that this
5499 common case is fast because such cases will constitute 99.9% of the
5500 lookups we ever do (in practice).
5502 If we add a new filename entry to our table, we go ahead and generate
5503 the corresponding entry in the .debug_sfnames section right away.
5504 Doing so allows us to avoid tickling an assembler bug (present in some
5505 m68k assemblers) which yields assembly-time errors in cases where the
5506 difference of two label addresses is taken and where the two labels
5507 are in a section *other* than the one where the difference is being
5508 calculated, and where at least one of the two symbol references is a
5509 forward reference. (This bug could be tickled by our .debug_srcinfo
5510 entries if we don't output their corresponding .debug_sfnames entries
5511 before them.) */
5513 static unsigned
5514 lookup_filename (file_name)
5515 char *file_name;
5517 register filename_entry *search_p;
5518 register filename_entry *limit_p = &filename_table[ft_entries];
5520 for (search_p = filename_table; search_p < limit_p; search_p++)
5521 if (!strcmp (file_name, search_p->name))
5523 /* When we get here, we have found the filename that we were
5524 looking for in the filename_table. Now we want to make sure
5525 that it gets moved to the zero'th entry in the table (if it
5526 is not already there) so that subsequent attempts to find the
5527 same filename will find it as quickly as possible. */
5529 shuffle_filename_entry (search_p);
5530 return filename_table[0].number;
5533 /* We come here whenever we have a new filename which is not registered
5534 in the current table. Here we add it to the table. */
5536 /* Prepare to add a new table entry by making sure there is enough space
5537 in the table to do so. If not, expand the current table. */
5539 if (ft_entries == ft_entries_allocated)
5541 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5542 filename_table
5543 = (filename_entry *)
5544 xrealloc (filename_table,
5545 ft_entries_allocated * sizeof (filename_entry));
5548 /* Initially, add the new entry at the end of the filename table. */
5550 filename_table[ft_entries].number = ft_entries;
5551 filename_table[ft_entries].name = xstrdup (file_name);
5553 /* Shuffle the new entry into filename_table[0]. */
5555 shuffle_filename_entry (&filename_table[ft_entries]);
5557 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5558 generate_new_sfname_entry ();
5560 ft_entries++;
5561 return filename_table[0].number;
5564 static void
5565 generate_srcinfo_entry (line_entry_num, files_entry_num)
5566 unsigned line_entry_num;
5567 unsigned files_entry_num;
5569 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5571 fputc ('\n', asm_out_file);
5572 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5573 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5574 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5575 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5576 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5577 ASM_OUTPUT_POP_SECTION (asm_out_file);
5580 void
5581 dwarfout_line (filename, line)
5582 register char *filename;
5583 register unsigned line;
5585 if (debug_info_level >= DINFO_LEVEL_NORMAL
5586 /* We can't emit line number info for functions in separate sections,
5587 because the assembler can't subtract labels in different sections. */
5588 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5590 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5591 static unsigned last_line_entry_num = 0;
5592 static unsigned prev_file_entry_num = (unsigned) -1;
5593 register unsigned this_file_entry_num;
5595 function_section (current_function_decl);
5596 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5597 ASM_OUTPUT_LABEL (asm_out_file, label);
5599 fputc ('\n', asm_out_file);
5601 if (use_gnu_debug_info_extensions)
5602 this_file_entry_num = lookup_filename (filename);
5603 else
5604 this_file_entry_num = (unsigned) -1;
5606 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5607 if (this_file_entry_num != prev_file_entry_num)
5609 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5611 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5612 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5616 register char *tail = rindex (filename, '/');
5618 if (tail != NULL)
5619 filename = tail;
5622 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5623 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5624 filename, line);
5625 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5626 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5627 ASM_OUTPUT_POP_SECTION (asm_out_file);
5629 if (this_file_entry_num != prev_file_entry_num)
5630 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5631 prev_file_entry_num = this_file_entry_num;
5635 /* Generate an entry in the .debug_macinfo section. */
5637 static void
5638 generate_macinfo_entry (type_and_offset, string)
5639 register char *type_and_offset;
5640 register char *string;
5642 if (! use_gnu_debug_info_extensions)
5643 return;
5645 fputc ('\n', asm_out_file);
5646 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5647 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5648 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
5649 ASM_OUTPUT_POP_SECTION (asm_out_file);
5652 void
5653 dwarfout_start_new_source_file (filename)
5654 register char *filename;
5656 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5657 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5659 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5660 sprintf (type_and_offset, "0x%08x+%s-%s",
5661 ((unsigned) MACINFO_start << 24),
5662 /* Hack: skip leading '*' . */
5663 (*label == '*') + label,
5664 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5665 generate_macinfo_entry (type_and_offset, "");
5668 void
5669 dwarfout_resume_previous_source_file (lineno)
5670 register unsigned lineno;
5672 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5674 sprintf (type_and_offset, "0x%08x+%u",
5675 ((unsigned) MACINFO_resume << 24), lineno);
5676 generate_macinfo_entry (type_and_offset, "");
5679 /* Called from check_newline in c-parse.y. The `buffer' parameter
5680 contains the tail part of the directive line, i.e. the part which
5681 is past the initial whitespace, #, whitespace, directive-name,
5682 whitespace part. */
5684 void
5685 dwarfout_define (lineno, buffer)
5686 register unsigned lineno;
5687 register char *buffer;
5689 static int initialized = 0;
5690 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5692 if (!initialized)
5694 dwarfout_start_new_source_file (primary_filename);
5695 initialized = 1;
5697 sprintf (type_and_offset, "0x%08x+%u",
5698 ((unsigned) MACINFO_define << 24), lineno);
5699 generate_macinfo_entry (type_and_offset, buffer);
5702 /* Called from check_newline in c-parse.y. The `buffer' parameter
5703 contains the tail part of the directive line, i.e. the part which
5704 is past the initial whitespace, #, whitespace, directive-name,
5705 whitespace part. */
5707 void
5708 dwarfout_undef (lineno, buffer)
5709 register unsigned lineno;
5710 register char *buffer;
5712 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5714 sprintf (type_and_offset, "0x%08x+%u",
5715 ((unsigned) MACINFO_undef << 24), lineno);
5716 generate_macinfo_entry (type_and_offset, buffer);
5719 /* Set up for Dwarf output at the start of compilation. */
5721 void
5722 dwarfout_init (asm_out_file, main_input_filename)
5723 register FILE *asm_out_file;
5724 register char *main_input_filename;
5726 /* Remember the name of the primary input file. */
5728 primary_filename = main_input_filename;
5730 /* Allocate the initial hunk of the pending_sibling_stack. */
5732 pending_sibling_stack
5733 = (unsigned *)
5734 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5735 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5736 pending_siblings = 1;
5738 /* Allocate the initial hunk of the filename_table. */
5740 filename_table
5741 = (filename_entry *)
5742 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5743 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5744 ft_entries = 0;
5746 /* Allocate the initial hunk of the pending_types_list. */
5748 pending_types_list
5749 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5750 pending_types_allocated = PENDING_TYPES_INCREMENT;
5751 pending_types = 0;
5753 /* Create an artificial RECORD_TYPE node which we can use in our hack
5754 to get the DIEs representing types of formal parameters to come out
5755 only *after* the DIEs for the formal parameters themselves. */
5757 fake_containing_scope = make_node (RECORD_TYPE);
5759 /* Output a starting label for the .text section. */
5761 fputc ('\n', asm_out_file);
5762 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5763 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5764 ASM_OUTPUT_POP_SECTION (asm_out_file);
5766 /* Output a starting label for the .data section. */
5768 fputc ('\n', asm_out_file);
5769 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5770 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5771 ASM_OUTPUT_POP_SECTION (asm_out_file);
5773 #if 0 /* GNU C doesn't currently use .data1. */
5774 /* Output a starting label for the .data1 section. */
5776 fputc ('\n', asm_out_file);
5777 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5778 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5779 ASM_OUTPUT_POP_SECTION (asm_out_file);
5780 #endif
5782 /* Output a starting label for the .rodata section. */
5784 fputc ('\n', asm_out_file);
5785 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5786 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5787 ASM_OUTPUT_POP_SECTION (asm_out_file);
5789 #if 0 /* GNU C doesn't currently use .rodata1. */
5790 /* Output a starting label for the .rodata1 section. */
5792 fputc ('\n', asm_out_file);
5793 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5794 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5795 ASM_OUTPUT_POP_SECTION (asm_out_file);
5796 #endif
5798 /* Output a starting label for the .bss section. */
5800 fputc ('\n', asm_out_file);
5801 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5802 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5803 ASM_OUTPUT_POP_SECTION (asm_out_file);
5805 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5807 if (use_gnu_debug_info_extensions)
5809 /* Output a starting label and an initial (compilation directory)
5810 entry for the .debug_sfnames section. The starting label will be
5811 referenced by the initial entry in the .debug_srcinfo section. */
5813 fputc ('\n', asm_out_file);
5814 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5815 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5817 register char *pwd = getpwd ();
5818 register char *dirname;
5820 if (!pwd)
5821 pfatal_with_name ("getpwd");
5822 dirname = concat (pwd, "/", NULL);
5823 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
5824 free (dirname);
5826 ASM_OUTPUT_POP_SECTION (asm_out_file);
5829 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5830 && use_gnu_debug_info_extensions)
5832 /* Output a starting label for the .debug_macinfo section. This
5833 label will be referenced by the AT_mac_info attribute in the
5834 TAG_compile_unit DIE. */
5836 fputc ('\n', asm_out_file);
5837 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5838 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5839 ASM_OUTPUT_POP_SECTION (asm_out_file);
5842 /* Generate the initial entry for the .line section. */
5844 fputc ('\n', asm_out_file);
5845 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5846 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5847 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5848 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5849 ASM_OUTPUT_POP_SECTION (asm_out_file);
5851 if (use_gnu_debug_info_extensions)
5853 /* Generate the initial entry for the .debug_srcinfo section. */
5855 fputc ('\n', asm_out_file);
5856 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5857 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5858 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5859 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5860 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5861 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5862 #ifdef DWARF_TIMESTAMPS
5863 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5864 #else
5865 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5866 #endif
5867 ASM_OUTPUT_POP_SECTION (asm_out_file);
5870 /* Generate the initial entry for the .debug_pubnames section. */
5872 fputc ('\n', asm_out_file);
5873 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5874 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5875 ASM_OUTPUT_POP_SECTION (asm_out_file);
5877 /* Generate the initial entry for the .debug_aranges section. */
5879 fputc ('\n', asm_out_file);
5880 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5881 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5882 ASM_OUTPUT_POP_SECTION (asm_out_file);
5885 /* Setup first DIE number == 1. */
5886 NEXT_DIE_NUM = next_unused_dienum++;
5888 /* Generate the initial DIE for the .debug section. Note that the
5889 (string) value given in the AT_name attribute of the TAG_compile_unit
5890 DIE will (typically) be a relative pathname and that this pathname
5891 should be taken as being relative to the directory from which the
5892 compiler was invoked when the given (base) source file was compiled. */
5894 fputc ('\n', asm_out_file);
5895 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5896 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5897 output_die (output_compile_unit_die, main_input_filename);
5898 ASM_OUTPUT_POP_SECTION (asm_out_file);
5900 fputc ('\n', asm_out_file);
5903 /* Output stuff that dwarf requires at the end of every file. */
5905 void
5906 dwarfout_finish ()
5908 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5910 retry_incomplete_types ();
5912 fputc ('\n', asm_out_file);
5913 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5915 /* Mark the end of the chain of siblings which represent all file-scope
5916 declarations in this compilation unit. */
5918 /* The (null) DIE which represents the terminator for the (sibling linked)
5919 list of file-scope items is *special*. Normally, we would just call
5920 end_sibling_chain at this point in order to output a word with the
5921 value `4' and that word would act as the terminator for the list of
5922 DIEs describing file-scope items. Unfortunately, if we were to simply
5923 do that, the label that would follow this DIE in the .debug section
5924 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5925 machines) to a 4 byte boundary.
5927 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5928 the trick used is to insert extra (otherwise useless) padding bytes
5929 into the (null) DIE that we know must precede the ..D2 label in the
5930 .debug section. The amount of padding required can be anywhere between
5931 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5932 with the padding) would normally contain the value 4, but now it will
5933 also have to include the padding bytes, so it will instead have some
5934 value in the range 4..7.
5936 Fortunately, the rules of Dwarf say that any DIE whose length word
5937 contains *any* value less than 8 should be treated as a null DIE, so
5938 this trick works out nicely. Clever, eh? Don't give me any credit
5939 (or blame). I didn't think of this scheme. I just conformed to it.
5942 output_die (output_padded_null_die, (void *) 0);
5943 dienum_pop ();
5945 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5946 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5947 ASM_OUTPUT_POP_SECTION (asm_out_file);
5949 /* Output a terminator label for the .text section. */
5951 fputc ('\n', asm_out_file);
5952 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5953 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5954 ASM_OUTPUT_POP_SECTION (asm_out_file);
5956 /* Output a terminator label for the .data section. */
5958 fputc ('\n', asm_out_file);
5959 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5960 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5961 ASM_OUTPUT_POP_SECTION (asm_out_file);
5963 #if 0 /* GNU C doesn't currently use .data1. */
5964 /* Output a terminator label for the .data1 section. */
5966 fputc ('\n', asm_out_file);
5967 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5968 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5969 ASM_OUTPUT_POP_SECTION (asm_out_file);
5970 #endif
5972 /* Output a terminator label for the .rodata section. */
5974 fputc ('\n', asm_out_file);
5975 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5976 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5977 ASM_OUTPUT_POP_SECTION (asm_out_file);
5979 #if 0 /* GNU C doesn't currently use .rodata1. */
5980 /* Output a terminator label for the .rodata1 section. */
5982 fputc ('\n', asm_out_file);
5983 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5984 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5985 ASM_OUTPUT_POP_SECTION (asm_out_file);
5986 #endif
5988 /* Output a terminator label for the .bss section. */
5990 fputc ('\n', asm_out_file);
5991 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5992 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5993 ASM_OUTPUT_POP_SECTION (asm_out_file);
5995 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5997 /* Output a terminating entry for the .line section. */
5999 fputc ('\n', asm_out_file);
6000 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6001 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6002 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6003 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6004 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6005 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6006 ASM_OUTPUT_POP_SECTION (asm_out_file);
6008 if (use_gnu_debug_info_extensions)
6010 /* Output a terminating entry for the .debug_srcinfo section. */
6012 fputc ('\n', asm_out_file);
6013 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
6014 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6015 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6016 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6017 ASM_OUTPUT_POP_SECTION (asm_out_file);
6020 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6022 /* Output terminating entries for the .debug_macinfo section. */
6024 dwarfout_resume_previous_source_file (0);
6026 fputc ('\n', asm_out_file);
6027 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
6028 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6029 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6030 ASM_OUTPUT_POP_SECTION (asm_out_file);
6033 /* Generate the terminating entry for the .debug_pubnames section. */
6035 fputc ('\n', asm_out_file);
6036 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
6037 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6038 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6039 ASM_OUTPUT_POP_SECTION (asm_out_file);
6041 /* Generate the terminating entries for the .debug_aranges section.
6043 Note that we want to do this only *after* we have output the end
6044 labels (for the various program sections) which we are going to
6045 refer to here. This allows us to work around a bug in the m68k
6046 svr4 assembler. That assembler gives bogus assembly-time errors
6047 if (within any given section) you try to take the difference of
6048 two relocatable symbols, both of which are located within some
6049 other section, and if one (or both?) of the symbols involved is
6050 being forward-referenced. By generating the .debug_aranges
6051 entries at this late point in the assembly output, we skirt the
6052 issue simply by avoiding forward-references.
6055 fputc ('\n', asm_out_file);
6056 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
6058 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6059 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6061 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6062 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6064 #if 0 /* GNU C doesn't currently use .data1. */
6065 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6066 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6067 DATA1_BEGIN_LABEL);
6068 #endif
6070 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6071 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6072 RODATA_BEGIN_LABEL);
6074 #if 0 /* GNU C doesn't currently use .rodata1. */
6075 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6076 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6077 RODATA1_BEGIN_LABEL);
6078 #endif
6080 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6081 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6083 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6084 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6086 ASM_OUTPUT_POP_SECTION (asm_out_file);
6089 /* There should not be any pending types left at the end. We need
6090 this now because it may not have been checked on the last call to
6091 dwarfout_file_scope_decl. */
6092 if (pending_types != 0)
6093 abort ();
6096 #endif /* DWARF_DEBUGGING_INFO */