c++: top level bind when rewriting coroutines [PR106188]
[official-gcc.git] / gcc / tree-vectorizer.h
blob5e75ed1532b3143426faf41afde986bcb259e830
1 /* Vectorizer
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
25 typedef struct _slp_tree *slp_tree;
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
29 #include "target.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
34 /* Used for naming of new temporaries. */
35 enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
42 /* Defines type of operation. */
43 enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
49 /* Define type of available alignment support. */
50 enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
58 /* Define type of def-use cross-iteration cycle. */
59 enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_unknown_def_type
71 /* Define operation type of linear/non-linear induction variable. */
72 enum vect_induction_op_type {
73 vect_step_op_add = 0,
74 vect_step_op_neg,
75 vect_step_op_mul,
76 vect_step_op_shl,
77 vect_step_op_shr
80 /* Define type of reduction. */
81 enum vect_reduction_type {
82 TREE_CODE_REDUCTION,
83 COND_REDUCTION,
84 INTEGER_INDUC_COND_REDUCTION,
85 CONST_COND_REDUCTION,
87 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
88 to implement:
90 for (int i = 0; i < VF; ++i)
91 res = cond[i] ? val[i] : res; */
92 EXTRACT_LAST_REDUCTION,
94 /* Use a folding reduction within the loop to implement:
96 for (int i = 0; i < VF; ++i)
97 res = res OP val[i];
99 (with no reassocation). */
100 FOLD_LEFT_REDUCTION
103 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
104 || ((D) == vect_double_reduction_def) \
105 || ((D) == vect_nested_cycle))
107 /* Structure to encapsulate information about a group of like
108 instructions to be presented to the target cost model. */
109 struct stmt_info_for_cost {
110 int count;
111 enum vect_cost_for_stmt kind;
112 enum vect_cost_model_location where;
113 stmt_vec_info stmt_info;
114 slp_tree node;
115 tree vectype;
116 int misalign;
119 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
121 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
122 derived from that gives the maximum known alignment for that base. */
123 typedef hash_map<tree_operand_hash,
124 std::pair<stmt_vec_info, innermost_loop_behavior *> >
125 vec_base_alignments;
127 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
128 (i.e. OPS repeated to give at least START + LENGTH elements) */
129 struct vect_scalar_ops_slice
131 tree op (unsigned int i) const;
132 bool all_same_p () const;
134 vec<tree> *ops;
135 unsigned int start;
136 unsigned int length;
139 /* Return element I of the slice. */
140 inline tree
141 vect_scalar_ops_slice::op (unsigned int i) const
143 return (*ops)[(i + start) % ops->length ()];
146 /* Hash traits for vect_scalar_ops_slice. */
147 struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
149 typedef vect_scalar_ops_slice value_type;
150 typedef vect_scalar_ops_slice compare_type;
152 static const bool empty_zero_p = true;
154 static void mark_deleted (value_type &s) { s.length = ~0U; }
155 static void mark_empty (value_type &s) { s.length = 0; }
156 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
157 static bool is_empty (const value_type &s) { return s.length == 0; }
158 static hashval_t hash (const value_type &);
159 static bool equal (const value_type &, const compare_type &);
162 /************************************************************************
164 ************************************************************************/
165 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
166 typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
167 typedef vec<unsigned> load_permutation_t;
168 typedef auto_vec<unsigned, 16> auto_load_permutation_t;
170 /* A computation tree of an SLP instance. Each node corresponds to a group of
171 stmts to be packed in a SIMD stmt. */
172 struct _slp_tree {
173 _slp_tree ();
174 ~_slp_tree ();
176 /* Nodes that contain def-stmts of this node statements operands. */
177 vec<slp_tree> children;
179 /* A group of scalar stmts to be vectorized together. */
180 vec<stmt_vec_info> stmts;
181 /* A group of scalar operands to be vectorized together. */
182 vec<tree> ops;
183 /* The representative that should be used for analysis and
184 code generation. */
185 stmt_vec_info representative;
187 /* Load permutation relative to the stores, NULL if there is no
188 permutation. */
189 load_permutation_t load_permutation;
190 /* Lane permutation of the operands scalar lanes encoded as pairs
191 of { operand number, lane number }. The number of elements
192 denotes the number of output lanes. */
193 lane_permutation_t lane_permutation;
195 tree vectype;
196 /* Vectorized stmt/s. */
197 vec<gimple *> vec_stmts;
198 vec<tree> vec_defs;
199 /* Number of vector stmts that are created to replace the group of scalar
200 stmts. It is calculated during the transformation phase as the number of
201 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
202 divided by vector size. */
203 unsigned int vec_stmts_size;
205 /* Reference count in the SLP graph. */
206 unsigned int refcnt;
207 /* The maximum number of vector elements for the subtree rooted
208 at this node. */
209 poly_uint64 max_nunits;
210 /* The DEF type of this node. */
211 enum vect_def_type def_type;
212 /* The number of scalar lanes produced by this node. */
213 unsigned int lanes;
214 /* The operation of this node. */
215 enum tree_code code;
217 int vertex;
219 /* If not NULL this is a cached failed SLP discovery attempt with
220 the lanes that failed during SLP discovery as 'false'. This is
221 a copy of the matches array. */
222 bool *failed;
224 /* Allocate from slp_tree_pool. */
225 static void *operator new (size_t);
227 /* Return memory to slp_tree_pool. */
228 static void operator delete (void *, size_t);
230 /* Linked list of nodes to release when we free the slp_tree_pool. */
231 slp_tree next_node;
232 slp_tree prev_node;
235 /* The enum describes the type of operations that an SLP instance
236 can perform. */
238 enum slp_instance_kind {
239 slp_inst_kind_store,
240 slp_inst_kind_reduc_group,
241 slp_inst_kind_reduc_chain,
242 slp_inst_kind_bb_reduc,
243 slp_inst_kind_ctor
246 /* SLP instance is a sequence of stmts in a loop that can be packed into
247 SIMD stmts. */
248 typedef class _slp_instance {
249 public:
250 /* The root of SLP tree. */
251 slp_tree root;
253 /* For vector constructors, the constructor stmt that the SLP tree is built
254 from, NULL otherwise. */
255 vec<stmt_vec_info> root_stmts;
257 /* The unrolling factor required to vectorized this SLP instance. */
258 poly_uint64 unrolling_factor;
260 /* The group of nodes that contain loads of this SLP instance. */
261 vec<slp_tree> loads;
263 /* The SLP node containing the reduction PHIs. */
264 slp_tree reduc_phis;
266 /* Vector cost of this entry to the SLP graph. */
267 stmt_vector_for_cost cost_vec;
269 /* If this instance is the main entry of a subgraph the set of
270 entries into the same subgraph, including itself. */
271 vec<_slp_instance *> subgraph_entries;
273 /* The type of operation the SLP instance is performing. */
274 slp_instance_kind kind;
276 dump_user_location_t location () const;
277 } *slp_instance;
280 /* Access Functions. */
281 #define SLP_INSTANCE_TREE(S) (S)->root
282 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
283 #define SLP_INSTANCE_LOADS(S) (S)->loads
284 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
285 #define SLP_INSTANCE_KIND(S) (S)->kind
287 #define SLP_TREE_CHILDREN(S) (S)->children
288 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
289 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
290 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
291 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
292 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
293 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
294 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
295 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
296 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
297 #define SLP_TREE_VECTYPE(S) (S)->vectype
298 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
299 #define SLP_TREE_LANES(S) (S)->lanes
300 #define SLP_TREE_CODE(S) (S)->code
302 /* Key for map that records association between
303 scalar conditions and corresponding loop mask, and
304 is populated by vect_record_loop_mask. */
306 struct scalar_cond_masked_key
308 scalar_cond_masked_key (tree t, unsigned ncopies_)
309 : ncopies (ncopies_)
311 get_cond_ops_from_tree (t);
314 void get_cond_ops_from_tree (tree);
316 unsigned ncopies;
317 bool inverted_p;
318 tree_code code;
319 tree op0;
320 tree op1;
323 template<>
324 struct default_hash_traits<scalar_cond_masked_key>
326 typedef scalar_cond_masked_key compare_type;
327 typedef scalar_cond_masked_key value_type;
329 static inline hashval_t
330 hash (value_type v)
332 inchash::hash h;
333 h.add_int (v.code);
334 inchash::add_expr (v.op0, h, 0);
335 inchash::add_expr (v.op1, h, 0);
336 h.add_int (v.ncopies);
337 h.add_flag (v.inverted_p);
338 return h.end ();
341 static inline bool
342 equal (value_type existing, value_type candidate)
344 return (existing.ncopies == candidate.ncopies
345 && existing.code == candidate.code
346 && existing.inverted_p == candidate.inverted_p
347 && operand_equal_p (existing.op0, candidate.op0, 0)
348 && operand_equal_p (existing.op1, candidate.op1, 0));
351 static const bool empty_zero_p = true;
353 static inline void
354 mark_empty (value_type &v)
356 v.ncopies = 0;
357 v.inverted_p = false;
360 static inline bool
361 is_empty (value_type v)
363 return v.ncopies == 0;
366 static inline void mark_deleted (value_type &) {}
368 static inline bool is_deleted (const value_type &)
370 return false;
373 static inline void remove (value_type &) {}
376 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
378 /* Key and map that records association between vector conditions and
379 corresponding loop mask, and is populated by prepare_vec_mask. */
381 typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
382 typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
384 /* Describes two objects whose addresses must be unequal for the vectorized
385 loop to be valid. */
386 typedef std::pair<tree, tree> vec_object_pair;
388 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
389 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
390 class vec_lower_bound {
391 public:
392 vec_lower_bound () {}
393 vec_lower_bound (tree e, bool u, poly_uint64 m)
394 : expr (e), unsigned_p (u), min_value (m) {}
396 tree expr;
397 bool unsigned_p;
398 poly_uint64 min_value;
401 /* Vectorizer state shared between different analyses like vector sizes
402 of the same CFG region. */
403 class vec_info_shared {
404 public:
405 vec_info_shared();
406 ~vec_info_shared();
408 void save_datarefs();
409 void check_datarefs();
411 /* The number of scalar stmts. */
412 unsigned n_stmts;
414 /* All data references. Freed by free_data_refs, so not an auto_vec. */
415 vec<data_reference_p> datarefs;
416 vec<data_reference> datarefs_copy;
418 /* The loop nest in which the data dependences are computed. */
419 auto_vec<loop_p> loop_nest;
421 /* All data dependences. Freed by free_dependence_relations, so not
422 an auto_vec. */
423 vec<ddr_p> ddrs;
426 /* Vectorizer state common between loop and basic-block vectorization. */
427 class vec_info {
428 public:
429 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
430 enum vec_kind { bb, loop };
432 vec_info (vec_kind, vec_info_shared *);
433 ~vec_info ();
435 stmt_vec_info add_stmt (gimple *);
436 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
437 stmt_vec_info lookup_stmt (gimple *);
438 stmt_vec_info lookup_def (tree);
439 stmt_vec_info lookup_single_use (tree);
440 class dr_vec_info *lookup_dr (data_reference *);
441 void move_dr (stmt_vec_info, stmt_vec_info);
442 void remove_stmt (stmt_vec_info);
443 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
444 void insert_on_entry (stmt_vec_info, gimple *);
445 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
447 /* The type of vectorization. */
448 vec_kind kind;
450 /* Shared vectorizer state. */
451 vec_info_shared *shared;
453 /* The mapping of GIMPLE UID to stmt_vec_info. */
454 vec<stmt_vec_info> stmt_vec_infos;
455 /* Whether the above mapping is complete. */
456 bool stmt_vec_info_ro;
458 /* Whether we've done a transform we think OK to not update virtual
459 SSA form. */
460 bool any_known_not_updated_vssa;
462 /* The SLP graph. */
463 auto_vec<slp_instance> slp_instances;
465 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
466 known alignment for that base. */
467 vec_base_alignments base_alignments;
469 /* All interleaving chains of stores, represented by the first
470 stmt in the chain. */
471 auto_vec<stmt_vec_info> grouped_stores;
473 /* The set of vector modes used in the vectorized region. */
474 mode_set used_vector_modes;
476 /* The argument we should pass to related_vector_mode when looking up
477 the vector mode for a scalar mode, or VOIDmode if we haven't yet
478 made any decisions about which vector modes to use. */
479 machine_mode vector_mode;
481 private:
482 stmt_vec_info new_stmt_vec_info (gimple *stmt);
483 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
484 void free_stmt_vec_infos ();
485 void free_stmt_vec_info (stmt_vec_info);
488 class _loop_vec_info;
489 class _bb_vec_info;
491 template<>
492 template<>
493 inline bool
494 is_a_helper <_loop_vec_info *>::test (vec_info *i)
496 return i->kind == vec_info::loop;
499 template<>
500 template<>
501 inline bool
502 is_a_helper <_bb_vec_info *>::test (vec_info *i)
504 return i->kind == vec_info::bb;
507 /* In general, we can divide the vector statements in a vectorized loop
508 into related groups ("rgroups") and say that for each rgroup there is
509 some nS such that the rgroup operates on nS values from one scalar
510 iteration followed by nS values from the next. That is, if VF is the
511 vectorization factor of the loop, the rgroup operates on a sequence:
513 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
515 where (i,j) represents a scalar value with index j in a scalar
516 iteration with index i.
518 [ We use the term "rgroup" to emphasise that this grouping isn't
519 necessarily the same as the grouping of statements used elsewhere.
520 For example, if we implement a group of scalar loads using gather
521 loads, we'll use a separate gather load for each scalar load, and
522 thus each gather load will belong to its own rgroup. ]
524 In general this sequence will occupy nV vectors concatenated
525 together. If these vectors have nL lanes each, the total number
526 of scalar values N is given by:
528 N = nS * VF = nV * nL
530 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
531 are compile-time constants but VF and nL can be variable (if the target
532 supports variable-length vectors).
534 In classical vectorization, each iteration of the vector loop would
535 handle exactly VF iterations of the original scalar loop. However,
536 in vector loops that are able to operate on partial vectors, a
537 particular iteration of the vector loop might handle fewer than VF
538 iterations of the scalar loop. The vector lanes that correspond to
539 iterations of the scalar loop are said to be "active" and the other
540 lanes are said to be "inactive".
542 In such vector loops, many rgroups need to be controlled to ensure
543 that they have no effect for the inactive lanes. Conceptually, each
544 such rgroup needs a sequence of booleans in the same order as above,
545 but with each (i,j) replaced by a boolean that indicates whether
546 iteration i is active. This sequence occupies nV vector controls
547 that again have nL lanes each. Thus the control sequence as a whole
548 consists of VF independent booleans that are each repeated nS times.
550 Taking mask-based approach as a partially-populated vectors example.
551 We make the simplifying assumption that if a sequence of nV masks is
552 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
553 VIEW_CONVERTing it. This holds for all current targets that support
554 fully-masked loops. For example, suppose the scalar loop is:
556 float *f;
557 double *d;
558 for (int i = 0; i < n; ++i)
560 f[i * 2 + 0] += 1.0f;
561 f[i * 2 + 1] += 2.0f;
562 d[i] += 3.0;
565 and suppose that vectors have 256 bits. The vectorized f accesses
566 will belong to one rgroup and the vectorized d access to another:
568 f rgroup: nS = 2, nV = 1, nL = 8
569 d rgroup: nS = 1, nV = 1, nL = 4
570 VF = 4
572 [ In this simple example the rgroups do correspond to the normal
573 SLP grouping scheme. ]
575 If only the first three lanes are active, the masks we need are:
577 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
578 d rgroup: 1 | 1 | 1 | 0
580 Here we can use a mask calculated for f's rgroup for d's, but not
581 vice versa.
583 Thus for each value of nV, it is enough to provide nV masks, with the
584 mask being calculated based on the highest nL (or, equivalently, based
585 on the highest nS) required by any rgroup with that nV. We therefore
586 represent the entire collection of masks as a two-level table, with the
587 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
588 the second being indexed by the mask index 0 <= i < nV. */
590 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
591 according to the description above. */
592 struct rgroup_controls {
593 /* The largest nS for all rgroups that use these controls. */
594 unsigned int max_nscalars_per_iter;
596 /* For the largest nS recorded above, the loop controls divide each scalar
597 into FACTOR equal-sized pieces. This is useful if we need to split
598 element-based accesses into byte-based accesses. */
599 unsigned int factor;
601 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
602 For mask-based controls, it is the type of the masks in CONTROLS.
603 For length-based controls, it can be any vector type that has the
604 specified number of elements; the type of the elements doesn't matter. */
605 tree type;
607 /* A vector of nV controls, in iteration order. */
608 vec<tree> controls;
610 /* In case of len_load and len_store with a bias there is only one
611 rgroup. This holds the adjusted loop length for the this rgroup. */
612 tree bias_adjusted_ctrl;
615 typedef auto_vec<rgroup_controls> vec_loop_masks;
617 typedef auto_vec<rgroup_controls> vec_loop_lens;
619 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
621 /* Information about a reduction accumulator from the main loop that could
622 conceivably be reused as the input to a reduction in an epilogue loop. */
623 struct vect_reusable_accumulator {
624 /* The final value of the accumulator, which forms the input to the
625 reduction operation. */
626 tree reduc_input;
628 /* The stmt_vec_info that describes the reduction (i.e. the one for
629 which is_reduc_info is true). */
630 stmt_vec_info reduc_info;
633 /*-----------------------------------------------------------------*/
634 /* Info on vectorized loops. */
635 /*-----------------------------------------------------------------*/
636 typedef class _loop_vec_info : public vec_info {
637 public:
638 _loop_vec_info (class loop *, vec_info_shared *);
639 ~_loop_vec_info ();
641 /* The loop to which this info struct refers to. */
642 class loop *loop;
644 /* The loop basic blocks. */
645 basic_block *bbs;
647 /* Number of latch executions. */
648 tree num_itersm1;
649 /* Number of iterations. */
650 tree num_iters;
651 /* Number of iterations of the original loop. */
652 tree num_iters_unchanged;
653 /* Condition under which this loop is analyzed and versioned. */
654 tree num_iters_assumptions;
656 /* The cost of the vector code. */
657 class vector_costs *vector_costs;
659 /* The cost of the scalar code. */
660 class vector_costs *scalar_costs;
662 /* Threshold of number of iterations below which vectorization will not be
663 performed. It is calculated from MIN_PROFITABLE_ITERS and
664 param_min_vect_loop_bound. */
665 unsigned int th;
667 /* When applying loop versioning, the vector form should only be used
668 if the number of scalar iterations is >= this value, on top of all
669 the other requirements. Ignored when loop versioning is not being
670 used. */
671 poly_uint64 versioning_threshold;
673 /* Unrolling factor */
674 poly_uint64 vectorization_factor;
676 /* If this loop is an epilogue loop whose main loop can be skipped,
677 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
678 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
679 main loop and goes straight to this loop's preheader.
681 Both fields are null otherwise. */
682 edge main_loop_edge;
683 edge skip_main_loop_edge;
685 /* If this loop is an epilogue loop that might be skipped after executing
686 the main loop, this edge is the one that skips the epilogue. */
687 edge skip_this_loop_edge;
689 /* The vectorized form of a standard reduction replaces the original
690 scalar code's final result (a loop-closed SSA PHI) with the result
691 of a vector-to-scalar reduction operation. After vectorization,
692 this variable maps these vector-to-scalar results to information
693 about the reductions that generated them. */
694 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
696 /* The number of times that the target suggested we unroll the vector loop
697 in order to promote more ILP. This value will be used to re-analyze the
698 loop for vectorization and if successful the value will be folded into
699 vectorization_factor (and therefore exactly divides
700 vectorization_factor). */
701 unsigned int suggested_unroll_factor;
703 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
704 if there is no particular limit. */
705 unsigned HOST_WIDE_INT max_vectorization_factor;
707 /* The masks that a fully-masked loop should use to avoid operating
708 on inactive scalars. */
709 vec_loop_masks masks;
711 /* The lengths that a loop with length should use to avoid operating
712 on inactive scalars. */
713 vec_loop_lens lens;
715 /* Set of scalar conditions that have loop mask applied. */
716 scalar_cond_masked_set_type scalar_cond_masked_set;
718 /* Set of vector conditions that have loop mask applied. */
719 vec_cond_masked_set_type vec_cond_masked_set;
721 /* If we are using a loop mask to align memory addresses, this variable
722 contains the number of vector elements that we should skip in the
723 first iteration of the vector loop (i.e. the number of leading
724 elements that should be false in the first mask). */
725 tree mask_skip_niters;
727 /* The type that the loop control IV should be converted to before
728 testing which of the VF scalars are active and inactive.
729 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
730 tree rgroup_compare_type;
732 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
733 the loop should not be vectorized, if constant non-zero, simd_if_cond
734 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
735 should be versioned on that condition, using scalar loop if the condition
736 is false and vectorized loop otherwise. */
737 tree simd_if_cond;
739 /* The type that the vector loop control IV should have when
740 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
741 tree rgroup_iv_type;
743 /* Unknown DRs according to which loop was peeled. */
744 class dr_vec_info *unaligned_dr;
746 /* peeling_for_alignment indicates whether peeling for alignment will take
747 place, and what the peeling factor should be:
748 peeling_for_alignment = X means:
749 If X=0: Peeling for alignment will not be applied.
750 If X>0: Peel first X iterations.
751 If X=-1: Generate a runtime test to calculate the number of iterations
752 to be peeled, using the dataref recorded in the field
753 unaligned_dr. */
754 int peeling_for_alignment;
756 /* The mask used to check the alignment of pointers or arrays. */
757 int ptr_mask;
759 /* Data Dependence Relations defining address ranges that are candidates
760 for a run-time aliasing check. */
761 auto_vec<ddr_p> may_alias_ddrs;
763 /* Data Dependence Relations defining address ranges together with segment
764 lengths from which the run-time aliasing check is built. */
765 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
767 /* Check that the addresses of each pair of objects is unequal. */
768 auto_vec<vec_object_pair> check_unequal_addrs;
770 /* List of values that are required to be nonzero. This is used to check
771 whether things like "x[i * n] += 1;" are safe and eventually gets added
772 to the checks for lower bounds below. */
773 auto_vec<tree> check_nonzero;
775 /* List of values that need to be checked for a minimum value. */
776 auto_vec<vec_lower_bound> lower_bounds;
778 /* Statements in the loop that have data references that are candidates for a
779 runtime (loop versioning) misalignment check. */
780 auto_vec<stmt_vec_info> may_misalign_stmts;
782 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
783 auto_vec<stmt_vec_info> reductions;
785 /* All reduction chains in the loop, represented by the first
786 stmt in the chain. */
787 auto_vec<stmt_vec_info> reduction_chains;
789 /* Cost vector for a single scalar iteration. */
790 auto_vec<stmt_info_for_cost> scalar_cost_vec;
792 /* Map of IV base/step expressions to inserted name in the preheader. */
793 hash_map<tree_operand_hash, tree> *ivexpr_map;
795 /* Map of OpenMP "omp simd array" scan variables to corresponding
796 rhs of the store of the initializer. */
797 hash_map<tree, tree> *scan_map;
799 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
800 applied to the loop, i.e., no unrolling is needed, this is 1. */
801 poly_uint64 slp_unrolling_factor;
803 /* The factor used to over weight those statements in an inner loop
804 relative to the loop being vectorized. */
805 unsigned int inner_loop_cost_factor;
807 /* Is the loop vectorizable? */
808 bool vectorizable;
810 /* Records whether we still have the option of vectorizing this loop
811 using partially-populated vectors; in other words, whether it is
812 still possible for one iteration of the vector loop to handle
813 fewer than VF scalars. */
814 bool can_use_partial_vectors_p;
816 /* True if we've decided to use partially-populated vectors, so that
817 the vector loop can handle fewer than VF scalars. */
818 bool using_partial_vectors_p;
820 /* True if we've decided to use partially-populated vectors for the
821 epilogue of loop. */
822 bool epil_using_partial_vectors_p;
824 /* The bias for len_load and len_store. For now, only 0 and -1 are
825 supported. -1 must be used when a backend does not support
826 len_load/len_store with a length of zero. */
827 signed char partial_load_store_bias;
829 /* When we have grouped data accesses with gaps, we may introduce invalid
830 memory accesses. We peel the last iteration of the loop to prevent
831 this. */
832 bool peeling_for_gaps;
834 /* When the number of iterations is not a multiple of the vector size
835 we need to peel off iterations at the end to form an epilogue loop. */
836 bool peeling_for_niter;
838 /* True if there are no loop carried data dependencies in the loop.
839 If loop->safelen <= 1, then this is always true, either the loop
840 didn't have any loop carried data dependencies, or the loop is being
841 vectorized guarded with some runtime alias checks, or couldn't
842 be vectorized at all, but then this field shouldn't be used.
843 For loop->safelen >= 2, the user has asserted that there are no
844 backward dependencies, but there still could be loop carried forward
845 dependencies in such loops. This flag will be false if normal
846 vectorizer data dependency analysis would fail or require versioning
847 for alias, but because of loop->safelen >= 2 it has been vectorized
848 even without versioning for alias. E.g. in:
849 #pragma omp simd
850 for (int i = 0; i < m; i++)
851 a[i] = a[i + k] * c;
852 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
853 DTRT even for k > 0 && k < m, but without safelen we would not
854 vectorize this, so this field would be false. */
855 bool no_data_dependencies;
857 /* Mark loops having masked stores. */
858 bool has_mask_store;
860 /* Queued scaling factor for the scalar loop. */
861 profile_probability scalar_loop_scaling;
863 /* If if-conversion versioned this loop before conversion, this is the
864 loop version without if-conversion. */
865 class loop *scalar_loop;
867 /* For loops being epilogues of already vectorized loops
868 this points to the original vectorized loop. Otherwise NULL. */
869 _loop_vec_info *orig_loop_info;
871 /* Used to store loop_vec_infos of epilogues of this loop during
872 analysis. */
873 vec<_loop_vec_info *> epilogue_vinfos;
875 } *loop_vec_info;
877 /* Access Functions. */
878 #define LOOP_VINFO_LOOP(L) (L)->loop
879 #define LOOP_VINFO_BBS(L) (L)->bbs
880 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
881 #define LOOP_VINFO_NITERS(L) (L)->num_iters
882 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
883 prologue peeling retain total unchanged scalar loop iterations for
884 cost model. */
885 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
886 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
887 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
888 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
889 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
890 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
891 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
892 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
893 (L)->epil_using_partial_vectors_p
894 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
895 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
896 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
897 #define LOOP_VINFO_MASKS(L) (L)->masks
898 #define LOOP_VINFO_LENS(L) (L)->lens
899 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
900 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
901 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
902 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
903 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
904 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
905 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
906 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
907 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
908 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
909 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
910 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
911 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
912 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
913 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
914 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
915 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
916 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
917 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
918 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
919 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
920 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
921 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
922 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
923 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
924 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
925 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
926 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
927 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
928 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
929 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
930 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
932 #define LOOP_VINFO_FULLY_MASKED_P(L) \
933 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
934 && !LOOP_VINFO_MASKS (L).is_empty ())
936 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
937 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
938 && !LOOP_VINFO_LENS (L).is_empty ())
940 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
941 ((L)->may_misalign_stmts.length () > 0)
942 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
943 ((L)->comp_alias_ddrs.length () > 0 \
944 || (L)->check_unequal_addrs.length () > 0 \
945 || (L)->lower_bounds.length () > 0)
946 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
947 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
948 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
949 (LOOP_VINFO_SIMD_IF_COND (L))
950 #define LOOP_REQUIRES_VERSIONING(L) \
951 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
952 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
953 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
954 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
956 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
957 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
959 #define LOOP_VINFO_EPILOGUE_P(L) \
960 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
962 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
963 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
965 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
966 value signifies success, and a NULL value signifies failure, supporting
967 propagating an opt_problem * describing the failure back up the call
968 stack. */
969 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
971 static inline loop_vec_info
972 loop_vec_info_for_loop (class loop *loop)
974 return (loop_vec_info) loop->aux;
977 struct slp_root
979 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
980 vec<stmt_vec_info> roots_)
981 : kind(kind_), stmts(stmts_), roots(roots_) {}
982 slp_instance_kind kind;
983 vec<stmt_vec_info> stmts;
984 vec<stmt_vec_info> roots;
987 typedef class _bb_vec_info : public vec_info
989 public:
990 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
991 ~_bb_vec_info ();
993 /* The region we are operating on. bbs[0] is the entry, excluding
994 its PHI nodes. In the future we might want to track an explicit
995 entry edge to cover bbs[0] PHI nodes and have a region entry
996 insert location. */
997 vec<basic_block> bbs;
999 vec<slp_root> roots;
1000 } *bb_vec_info;
1002 #define BB_VINFO_BB(B) (B)->bb
1003 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1004 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1005 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1006 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
1008 /*-----------------------------------------------------------------*/
1009 /* Info on vectorized defs. */
1010 /*-----------------------------------------------------------------*/
1011 enum stmt_vec_info_type {
1012 undef_vec_info_type = 0,
1013 load_vec_info_type,
1014 store_vec_info_type,
1015 shift_vec_info_type,
1016 op_vec_info_type,
1017 call_vec_info_type,
1018 call_simd_clone_vec_info_type,
1019 assignment_vec_info_type,
1020 condition_vec_info_type,
1021 comparison_vec_info_type,
1022 reduc_vec_info_type,
1023 induc_vec_info_type,
1024 type_promotion_vec_info_type,
1025 type_demotion_vec_info_type,
1026 type_conversion_vec_info_type,
1027 cycle_phi_info_type,
1028 lc_phi_info_type,
1029 phi_info_type,
1030 loop_exit_ctrl_vec_info_type
1033 /* Indicates whether/how a variable is used in the scope of loop/basic
1034 block. */
1035 enum vect_relevant {
1036 vect_unused_in_scope = 0,
1038 /* The def is only used outside the loop. */
1039 vect_used_only_live,
1040 /* The def is in the inner loop, and the use is in the outer loop, and the
1041 use is a reduction stmt. */
1042 vect_used_in_outer_by_reduction,
1043 /* The def is in the inner loop, and the use is in the outer loop (and is
1044 not part of reduction). */
1045 vect_used_in_outer,
1047 /* defs that feed computations that end up (only) in a reduction. These
1048 defs may be used by non-reduction stmts, but eventually, any
1049 computations/values that are affected by these defs are used to compute
1050 a reduction (i.e. don't get stored to memory, for example). We use this
1051 to identify computations that we can change the order in which they are
1052 computed. */
1053 vect_used_by_reduction,
1055 vect_used_in_scope
1058 /* The type of vectorization that can be applied to the stmt: regular loop-based
1059 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1060 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1061 a part of SLP instance and also must be loop-based vectorized, since it has
1062 uses outside SLP sequences.
1064 In the loop context the meanings of pure and hybrid SLP are slightly
1065 different. By saying that pure SLP is applied to the loop, we mean that we
1066 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1067 vectorized without doing any conceptual unrolling, cause we don't pack
1068 together stmts from different iterations, only within a single iteration.
1069 Loop hybrid SLP means that we exploit both intra-iteration and
1070 inter-iteration parallelism (e.g., number of elements in the vector is 4
1071 and the slp-group-size is 2, in which case we don't have enough parallelism
1072 within an iteration, so we obtain the rest of the parallelism from subsequent
1073 iterations by unrolling the loop by 2). */
1074 enum slp_vect_type {
1075 loop_vect = 0,
1076 pure_slp,
1077 hybrid
1080 /* Says whether a statement is a load, a store of a vectorized statement
1081 result, or a store of an invariant value. */
1082 enum vec_load_store_type {
1083 VLS_LOAD,
1084 VLS_STORE,
1085 VLS_STORE_INVARIANT
1088 /* Describes how we're going to vectorize an individual load or store,
1089 or a group of loads or stores. */
1090 enum vect_memory_access_type {
1091 /* An access to an invariant address. This is used only for loads. */
1092 VMAT_INVARIANT,
1094 /* A simple contiguous access. */
1095 VMAT_CONTIGUOUS,
1097 /* A contiguous access that goes down in memory rather than up,
1098 with no additional permutation. This is used only for stores
1099 of invariants. */
1100 VMAT_CONTIGUOUS_DOWN,
1102 /* A simple contiguous access in which the elements need to be permuted
1103 after loading or before storing. Only used for loop vectorization;
1104 SLP uses separate permutes. */
1105 VMAT_CONTIGUOUS_PERMUTE,
1107 /* A simple contiguous access in which the elements need to be reversed
1108 after loading or before storing. */
1109 VMAT_CONTIGUOUS_REVERSE,
1111 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1112 VMAT_LOAD_STORE_LANES,
1114 /* An access in which each scalar element is loaded or stored
1115 individually. */
1116 VMAT_ELEMENTWISE,
1118 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1119 SLP accesses. Each unrolled iteration uses a contiguous load
1120 or store for the whole group, but the groups from separate iterations
1121 are combined in the same way as for VMAT_ELEMENTWISE. */
1122 VMAT_STRIDED_SLP,
1124 /* The access uses gather loads or scatter stores. */
1125 VMAT_GATHER_SCATTER
1128 class dr_vec_info {
1129 public:
1130 /* The data reference itself. */
1131 data_reference *dr;
1132 /* The statement that contains the data reference. */
1133 stmt_vec_info stmt;
1134 /* The analysis group this DR belongs to when doing BB vectorization.
1135 DRs of the same group belong to the same conditional execution context. */
1136 unsigned group;
1137 /* The misalignment in bytes of the reference, or -1 if not known. */
1138 int misalignment;
1139 /* The byte alignment that we'd ideally like the reference to have,
1140 and the value that misalignment is measured against. */
1141 poly_uint64 target_alignment;
1142 /* If true the alignment of base_decl needs to be increased. */
1143 bool base_misaligned;
1144 tree base_decl;
1146 /* Stores current vectorized loop's offset. To be added to the DR's
1147 offset to calculate current offset of data reference. */
1148 tree offset;
1151 typedef struct data_reference *dr_p;
1153 class _stmt_vec_info {
1154 public:
1156 enum stmt_vec_info_type type;
1158 /* Indicates whether this stmts is part of a computation whose result is
1159 used outside the loop. */
1160 bool live;
1162 /* Stmt is part of some pattern (computation idiom) */
1163 bool in_pattern_p;
1165 /* True if the statement was created during pattern recognition as
1166 part of the replacement for RELATED_STMT. This implies that the
1167 statement isn't part of any basic block, although for convenience
1168 its gimple_bb is the same as for RELATED_STMT. */
1169 bool pattern_stmt_p;
1171 /* Is this statement vectorizable or should it be skipped in (partial)
1172 vectorization. */
1173 bool vectorizable;
1175 /* The stmt to which this info struct refers to. */
1176 gimple *stmt;
1178 /* The vector type to be used for the LHS of this statement. */
1179 tree vectype;
1181 /* The vectorized stmts. */
1182 vec<gimple *> vec_stmts;
1184 /* The following is relevant only for stmts that contain a non-scalar
1185 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1186 at most one such data-ref. */
1188 dr_vec_info dr_aux;
1190 /* Information about the data-ref relative to this loop
1191 nest (the loop that is being considered for vectorization). */
1192 innermost_loop_behavior dr_wrt_vec_loop;
1194 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1195 this information is still available in vect_update_ivs_after_vectorizer
1196 where we may not be able to re-analyze the PHI nodes evolution as
1197 peeling for the prologue loop can make it unanalyzable. The evolution
1198 part is still correct after peeling, but the base may have changed from
1199 the version here. */
1200 tree loop_phi_evolution_base_unchanged;
1201 tree loop_phi_evolution_part;
1202 enum vect_induction_op_type loop_phi_evolution_type;
1204 /* Used for various bookkeeping purposes, generally holding a pointer to
1205 some other stmt S that is in some way "related" to this stmt.
1206 Current use of this field is:
1207 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1208 true): S is the "pattern stmt" that represents (and replaces) the
1209 sequence of stmts that constitutes the pattern. Similarly, the
1210 related_stmt of the "pattern stmt" points back to this stmt (which is
1211 the last stmt in the original sequence of stmts that constitutes the
1212 pattern). */
1213 stmt_vec_info related_stmt;
1215 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1216 The sequence is attached to the original statement rather than the
1217 pattern statement. */
1218 gimple_seq pattern_def_seq;
1220 /* Selected SIMD clone's function info. First vector element
1221 is SIMD clone's function decl, followed by a pair of trees (base + step)
1222 for linear arguments (pair of NULLs for other arguments). */
1223 vec<tree> simd_clone_info;
1225 /* Classify the def of this stmt. */
1226 enum vect_def_type def_type;
1228 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1229 enum slp_vect_type slp_type;
1231 /* Interleaving and reduction chains info. */
1232 /* First element in the group. */
1233 stmt_vec_info first_element;
1234 /* Pointer to the next element in the group. */
1235 stmt_vec_info next_element;
1236 /* The size of the group. */
1237 unsigned int size;
1238 /* For stores, number of stores from this group seen. We vectorize the last
1239 one. */
1240 unsigned int store_count;
1241 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1242 is 1. */
1243 unsigned int gap;
1245 /* The minimum negative dependence distance this stmt participates in
1246 or zero if none. */
1247 unsigned int min_neg_dist;
1249 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1250 of the loop induction variable and computation of array indexes. relevant
1251 indicates whether the stmt needs to be vectorized. */
1252 enum vect_relevant relevant;
1254 /* For loads if this is a gather, for stores if this is a scatter. */
1255 bool gather_scatter_p;
1257 /* True if this is an access with loop-invariant stride. */
1258 bool strided_p;
1260 /* For both loads and stores. */
1261 unsigned simd_lane_access_p : 3;
1263 /* Classifies how the load or store is going to be implemented
1264 for loop vectorization. */
1265 vect_memory_access_type memory_access_type;
1267 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1268 tree induc_cond_initial_val;
1270 /* If not NULL the value to be added to compute final reduction value. */
1271 tree reduc_epilogue_adjustment;
1273 /* On a reduction PHI the reduction type as detected by
1274 vect_is_simple_reduction and vectorizable_reduction. */
1275 enum vect_reduction_type reduc_type;
1277 /* The original reduction code, to be used in the epilogue. */
1278 code_helper reduc_code;
1279 /* An internal function we should use in the epilogue. */
1280 internal_fn reduc_fn;
1282 /* On a stmt participating in the reduction the index of the operand
1283 on the reduction SSA cycle. */
1284 int reduc_idx;
1286 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1287 On the def returned by vect_force_simple_reduction the
1288 corresponding PHI. */
1289 stmt_vec_info reduc_def;
1291 /* The vector input type relevant for reduction vectorization. */
1292 tree reduc_vectype_in;
1294 /* The vector type for performing the actual reduction. */
1295 tree reduc_vectype;
1297 /* If IS_REDUC_INFO is true and if the vector code is performing
1298 N scalar reductions in parallel, this variable gives the initial
1299 scalar values of those N reductions. */
1300 vec<tree> reduc_initial_values;
1302 /* If IS_REDUC_INFO is true and if the vector code is performing
1303 N scalar reductions in parallel, this variable gives the vectorized code's
1304 final (scalar) result for each of those N reductions. In other words,
1305 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1306 SSA PHI for reduction number I. */
1307 vec<tree> reduc_scalar_results;
1309 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1310 being performed by an epilogue loop and we have decided to reuse
1311 this accumulator from the main loop. */
1312 vect_reusable_accumulator *reused_accumulator;
1314 /* Whether we force a single cycle PHI during reduction vectorization. */
1315 bool force_single_cycle;
1317 /* Whether on this stmt reduction meta is recorded. */
1318 bool is_reduc_info;
1320 /* If nonzero, the lhs of the statement could be truncated to this
1321 many bits without affecting any users of the result. */
1322 unsigned int min_output_precision;
1324 /* If nonzero, all non-boolean input operands have the same precision,
1325 and they could each be truncated to this many bits without changing
1326 the result. */
1327 unsigned int min_input_precision;
1329 /* If OPERATION_BITS is nonzero, the statement could be performed on
1330 an integer with the sign and number of bits given by OPERATION_SIGN
1331 and OPERATION_BITS without changing the result. */
1332 unsigned int operation_precision;
1333 signop operation_sign;
1335 /* If the statement produces a boolean result, this value describes
1336 how we should choose the associated vector type. The possible
1337 values are:
1339 - an integer precision N if we should use the vector mask type
1340 associated with N-bit integers. This is only used if all relevant
1341 input booleans also want the vector mask type for N-bit integers,
1342 or if we can convert them into that form by pattern-matching.
1344 - ~0U if we considered choosing a vector mask type but decided
1345 to treat the boolean as a normal integer type instead.
1347 - 0 otherwise. This means either that the operation isn't one that
1348 could have a vector mask type (and so should have a normal vector
1349 type instead) or that we simply haven't made a choice either way. */
1350 unsigned int mask_precision;
1352 /* True if this is only suitable for SLP vectorization. */
1353 bool slp_vect_only_p;
1355 /* True if this is a pattern that can only be handled by SLP
1356 vectorization. */
1357 bool slp_vect_pattern_only_p;
1360 /* Information about a gather/scatter call. */
1361 struct gather_scatter_info {
1362 /* The internal function to use for the gather/scatter operation,
1363 or IFN_LAST if a built-in function should be used instead. */
1364 internal_fn ifn;
1366 /* The FUNCTION_DECL for the built-in gather/scatter function,
1367 or null if an internal function should be used instead. */
1368 tree decl;
1370 /* The loop-invariant base value. */
1371 tree base;
1373 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1374 tree offset;
1376 /* Each offset element should be multiplied by this amount before
1377 being added to the base. */
1378 int scale;
1380 /* The definition type for the vectorized offset. */
1381 enum vect_def_type offset_dt;
1383 /* The type of the vectorized offset. */
1384 tree offset_vectype;
1386 /* The type of the scalar elements after loading or before storing. */
1387 tree element_type;
1389 /* The type of the scalar elements being loaded or stored. */
1390 tree memory_type;
1393 /* Access Functions. */
1394 #define STMT_VINFO_TYPE(S) (S)->type
1395 #define STMT_VINFO_STMT(S) (S)->stmt
1396 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1397 #define STMT_VINFO_LIVE_P(S) (S)->live
1398 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1399 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1400 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1401 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1402 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1403 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1404 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1405 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1406 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1407 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1408 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1409 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1411 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1412 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1413 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1414 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1415 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1416 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1417 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1418 (S)->dr_wrt_vec_loop.base_misalignment
1419 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1420 (S)->dr_wrt_vec_loop.offset_alignment
1421 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1422 (S)->dr_wrt_vec_loop.step_alignment
1424 #define STMT_VINFO_DR_INFO(S) \
1425 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1427 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1428 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1429 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1430 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1431 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1432 #define STMT_VINFO_GROUPED_ACCESS(S) \
1433 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1434 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1435 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1436 #define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1437 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1438 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1439 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1440 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1441 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1442 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1443 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1444 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1445 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1447 #define DR_GROUP_FIRST_ELEMENT(S) \
1448 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1449 #define DR_GROUP_NEXT_ELEMENT(S) \
1450 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1451 #define DR_GROUP_SIZE(S) \
1452 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1453 #define DR_GROUP_STORE_COUNT(S) \
1454 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1455 #define DR_GROUP_GAP(S) \
1456 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1458 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1459 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1460 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1461 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1462 #define REDUC_GROUP_SIZE(S) \
1463 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1465 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1467 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1468 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1469 #define STMT_SLP_TYPE(S) (S)->slp_type
1471 /* Contains the scalar or vector costs for a vec_info. */
1472 class vector_costs
1474 public:
1475 vector_costs (vec_info *, bool);
1476 virtual ~vector_costs () {}
1478 /* Update the costs in response to adding COUNT copies of a statement.
1480 - WHERE specifies whether the cost occurs in the loop prologue,
1481 the loop body, or the loop epilogue.
1482 - KIND is the kind of statement, which is always meaningful.
1483 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1484 vectorized.
1485 - VECTYPE, if nonnull, is the vector type that the vectorized
1486 statement will operate on. Note that this should be used in
1487 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1488 is not correct for SLP.
1489 - for unaligned_load and unaligned_store statements, MISALIGN is
1490 the byte misalignment of the load or store relative to the target's
1491 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1492 if the misalignment is not known.
1494 Return the calculated cost as well as recording it. The return
1495 value is used for dumping purposes. */
1496 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1497 stmt_vec_info stmt_info,
1498 slp_tree node,
1499 tree vectype, int misalign,
1500 vect_cost_model_location where);
1502 /* Finish calculating the cost of the code. The results can be
1503 read back using the functions below.
1505 If the costs describe vector code, SCALAR_COSTS gives the costs
1506 of the corresponding scalar code, otherwise it is null. */
1507 virtual void finish_cost (const vector_costs *scalar_costs);
1509 /* The costs in THIS and OTHER both describe ways of vectorizing
1510 a main loop. Return true if the costs described by THIS are
1511 cheaper than the costs described by OTHER. Return false if any
1512 of the following are true:
1514 - THIS and OTHER are of equal cost
1515 - OTHER is better than THIS
1516 - we can't be sure about the relative costs of THIS and OTHER. */
1517 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1519 /* Likewise, but the costs in THIS and OTHER both describe ways of
1520 vectorizing an epilogue loop of MAIN_LOOP. */
1521 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1522 loop_vec_info main_loop) const;
1524 unsigned int prologue_cost () const;
1525 unsigned int body_cost () const;
1526 unsigned int epilogue_cost () const;
1527 unsigned int outside_cost () const;
1528 unsigned int total_cost () const;
1529 unsigned int suggested_unroll_factor () const;
1531 protected:
1532 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1533 unsigned int);
1534 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1535 unsigned int);
1536 int compare_inside_loop_cost (const vector_costs *) const;
1537 int compare_outside_loop_cost (const vector_costs *) const;
1539 /* The region of code that we're considering vectorizing. */
1540 vec_info *m_vinfo;
1542 /* True if we're costing the scalar code, false if we're costing
1543 the vector code. */
1544 bool m_costing_for_scalar;
1546 /* The costs of the three regions, indexed by vect_cost_model_location. */
1547 unsigned int m_costs[3];
1549 /* The suggested unrolling factor determined at finish_cost. */
1550 unsigned int m_suggested_unroll_factor;
1552 /* True if finish_cost has been called. */
1553 bool m_finished;
1556 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1557 are for scalar code, false if they are for vector code. */
1559 inline
1560 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1561 : m_vinfo (vinfo),
1562 m_costing_for_scalar (costing_for_scalar),
1563 m_costs (),
1564 m_suggested_unroll_factor(1),
1565 m_finished (false)
1569 /* Return the cost of the prologue code (in abstract units). */
1571 inline unsigned int
1572 vector_costs::prologue_cost () const
1574 gcc_checking_assert (m_finished);
1575 return m_costs[vect_prologue];
1578 /* Return the cost of the body code (in abstract units). */
1580 inline unsigned int
1581 vector_costs::body_cost () const
1583 gcc_checking_assert (m_finished);
1584 return m_costs[vect_body];
1587 /* Return the cost of the epilogue code (in abstract units). */
1589 inline unsigned int
1590 vector_costs::epilogue_cost () const
1592 gcc_checking_assert (m_finished);
1593 return m_costs[vect_epilogue];
1596 /* Return the cost of the prologue and epilogue code (in abstract units). */
1598 inline unsigned int
1599 vector_costs::outside_cost () const
1601 return prologue_cost () + epilogue_cost ();
1604 /* Return the cost of the prologue, body and epilogue code
1605 (in abstract units). */
1607 inline unsigned int
1608 vector_costs::total_cost () const
1610 return body_cost () + outside_cost ();
1613 /* Return the suggested unroll factor. */
1615 inline unsigned int
1616 vector_costs::suggested_unroll_factor () const
1618 gcc_checking_assert (m_finished);
1619 return m_suggested_unroll_factor;
1622 #define VECT_MAX_COST 1000
1624 /* The maximum number of intermediate steps required in multi-step type
1625 conversion. */
1626 #define MAX_INTERM_CVT_STEPS 3
1628 #define MAX_VECTORIZATION_FACTOR INT_MAX
1630 /* Nonzero if TYPE represents a (scalar) boolean type or type
1631 in the middle-end compatible with it (unsigned precision 1 integral
1632 types). Used to determine which types should be vectorized as
1633 VECTOR_BOOLEAN_TYPE_P. */
1635 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1636 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1637 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1638 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1639 && TYPE_PRECISION (TYPE) == 1 \
1640 && TYPE_UNSIGNED (TYPE)))
1642 static inline bool
1643 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1645 return (loop->inner
1646 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1649 /* PHI is either a scalar reduction phi or a scalar induction phi.
1650 Return the initial value of the variable on entry to the containing
1651 loop. */
1653 static inline tree
1654 vect_phi_initial_value (gphi *phi)
1656 basic_block bb = gimple_bb (phi);
1657 edge pe = loop_preheader_edge (bb->loop_father);
1658 gcc_assert (pe->dest == bb);
1659 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1662 /* Return true if STMT_INFO should produce a vector mask type rather than
1663 a normal nonmask type. */
1665 static inline bool
1666 vect_use_mask_type_p (stmt_vec_info stmt_info)
1668 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1671 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1672 pattern. */
1674 static inline bool
1675 is_pattern_stmt_p (stmt_vec_info stmt_info)
1677 return stmt_info->pattern_stmt_p;
1680 /* If STMT_INFO is a pattern statement, return the statement that it
1681 replaces, otherwise return STMT_INFO itself. */
1683 inline stmt_vec_info
1684 vect_orig_stmt (stmt_vec_info stmt_info)
1686 if (is_pattern_stmt_p (stmt_info))
1687 return STMT_VINFO_RELATED_STMT (stmt_info);
1688 return stmt_info;
1691 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1693 static inline stmt_vec_info
1694 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1696 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1697 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1698 return stmt1_info;
1699 else
1700 return stmt2_info;
1703 /* If STMT_INFO has been replaced by a pattern statement, return the
1704 replacement statement, otherwise return STMT_INFO itself. */
1706 inline stmt_vec_info
1707 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1709 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1710 return STMT_VINFO_RELATED_STMT (stmt_info);
1711 return stmt_info;
1714 /* Return true if BB is a loop header. */
1716 static inline bool
1717 is_loop_header_bb_p (basic_block bb)
1719 if (bb == (bb->loop_father)->header)
1720 return true;
1721 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1722 return false;
1725 /* Return pow2 (X). */
1727 static inline int
1728 vect_pow2 (int x)
1730 int i, res = 1;
1732 for (i = 0; i < x; i++)
1733 res *= 2;
1735 return res;
1738 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1740 static inline int
1741 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1742 tree vectype, int misalign)
1744 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1745 vectype, misalign);
1748 /* Get cost by calling cost target builtin. */
1750 static inline
1751 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1753 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1756 /* Alias targetm.vectorize.init_cost. */
1758 static inline vector_costs *
1759 init_cost (vec_info *vinfo, bool costing_for_scalar)
1761 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1764 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1765 stmt_vec_info, slp_tree, tree, int, unsigned,
1766 enum vect_cost_model_location);
1768 /* Alias targetm.vectorize.add_stmt_cost. */
1770 static inline unsigned
1771 add_stmt_cost (vector_costs *costs, int count,
1772 enum vect_cost_for_stmt kind,
1773 stmt_vec_info stmt_info, slp_tree node,
1774 tree vectype, int misalign,
1775 enum vect_cost_model_location where)
1777 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1778 misalign, where);
1779 if (dump_file && (dump_flags & TDF_DETAILS))
1780 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1781 cost, where);
1782 return cost;
1785 static inline unsigned
1786 add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1787 enum vect_cost_model_location where)
1789 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1790 || kind == scalar_stmt);
1791 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1794 /* Alias targetm.vectorize.add_stmt_cost. */
1796 static inline unsigned
1797 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1799 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1800 i->vectype, i->misalign, i->where);
1803 /* Alias targetm.vectorize.finish_cost. */
1805 static inline void
1806 finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1807 unsigned *prologue_cost, unsigned *body_cost,
1808 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1810 costs->finish_cost (scalar_costs);
1811 *prologue_cost = costs->prologue_cost ();
1812 *body_cost = costs->body_cost ();
1813 *epilogue_cost = costs->epilogue_cost ();
1814 if (suggested_unroll_factor)
1815 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1818 inline void
1819 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1821 stmt_info_for_cost *cost;
1822 unsigned i;
1823 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1824 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1825 cost->node, cost->vectype, cost->misalign, cost->where);
1828 /*-----------------------------------------------------------------*/
1829 /* Info on data references alignment. */
1830 /*-----------------------------------------------------------------*/
1831 #define DR_MISALIGNMENT_UNKNOWN (-1)
1832 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1834 inline void
1835 set_dr_misalignment (dr_vec_info *dr_info, int val)
1837 dr_info->misalignment = val;
1840 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1841 poly_int64 offset = 0);
1843 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1845 /* Only defined once DR_MISALIGNMENT is defined. */
1846 static inline const poly_uint64
1847 dr_target_alignment (dr_vec_info *dr_info)
1849 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1850 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1851 return dr_info->target_alignment;
1853 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1855 static inline void
1856 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1858 dr_info->target_alignment = val;
1860 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1862 /* Return true if data access DR_INFO is aligned to the targets
1863 preferred alignment for VECTYPE (which may be less than a full vector). */
1865 static inline bool
1866 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1868 return (dr_misalignment (dr_info, vectype) == 0);
1871 /* Return TRUE if the (mis-)alignment of the data access is known with
1872 respect to the targets preferred alignment for VECTYPE, and FALSE
1873 otherwise. */
1875 static inline bool
1876 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1878 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1881 /* Return the minimum alignment in bytes that the vectorized version
1882 of DR_INFO is guaranteed to have. */
1884 static inline unsigned int
1885 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1887 int misalignment = dr_misalignment (dr_info, vectype);
1888 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1889 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1890 else if (misalignment == 0)
1891 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1892 return misalignment & -misalignment;
1895 /* Return the behavior of DR_INFO with respect to the vectorization context
1896 (which for outer loop vectorization might not be the behavior recorded
1897 in DR_INFO itself). */
1899 static inline innermost_loop_behavior *
1900 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1902 stmt_vec_info stmt_info = dr_info->stmt;
1903 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1904 if (loop_vinfo == NULL
1905 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1906 return &DR_INNERMOST (dr_info->dr);
1907 else
1908 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1911 /* Return the offset calculated by adding the offset of this DR_INFO to the
1912 corresponding data_reference's offset. If CHECK_OUTER then use
1913 vect_dr_behavior to select the appropriate data_reference to use. */
1915 inline tree
1916 get_dr_vinfo_offset (vec_info *vinfo,
1917 dr_vec_info *dr_info, bool check_outer = false)
1919 innermost_loop_behavior *base;
1920 if (check_outer)
1921 base = vect_dr_behavior (vinfo, dr_info);
1922 else
1923 base = &dr_info->dr->innermost;
1925 tree offset = base->offset;
1927 if (!dr_info->offset)
1928 return offset;
1930 offset = fold_convert (sizetype, offset);
1931 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1932 dr_info->offset);
1936 /* Return the vect cost model for LOOP. */
1937 static inline enum vect_cost_model
1938 loop_cost_model (loop_p loop)
1940 if (loop != NULL
1941 && loop->force_vectorize
1942 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1943 return flag_simd_cost_model;
1944 return flag_vect_cost_model;
1947 /* Return true if the vect cost model is unlimited. */
1948 static inline bool
1949 unlimited_cost_model (loop_p loop)
1951 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1954 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1955 if the first iteration should use a partial mask in order to achieve
1956 alignment. */
1958 static inline bool
1959 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1961 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1962 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1965 /* Return the number of vectors of type VECTYPE that are needed to get
1966 NUNITS elements. NUNITS should be based on the vectorization factor,
1967 so it is always a known multiple of the number of elements in VECTYPE. */
1969 static inline unsigned int
1970 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1972 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1975 /* Return the number of copies needed for loop vectorization when
1976 a statement operates on vectors of type VECTYPE. This is the
1977 vectorization factor divided by the number of elements in
1978 VECTYPE and is always known at compile time. */
1980 static inline unsigned int
1981 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1983 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1986 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1987 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1989 static inline void
1990 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1992 /* All unit counts have the form vec_info::vector_size * X for some
1993 rational X, so two unit sizes must have a common multiple.
1994 Everything is a multiple of the initial value of 1. */
1995 *max_nunits = force_common_multiple (*max_nunits, nunits);
1998 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1999 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2000 if we haven't yet recorded any vector types. */
2002 static inline void
2003 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2005 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
2008 /* Return the vectorization factor that should be used for costing
2009 purposes while vectorizing the loop described by LOOP_VINFO.
2010 Pick a reasonable estimate if the vectorization factor isn't
2011 known at compile time. */
2013 static inline unsigned int
2014 vect_vf_for_cost (loop_vec_info loop_vinfo)
2016 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2019 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2020 Pick a reasonable estimate if the exact number isn't known at
2021 compile time. */
2023 static inline unsigned int
2024 vect_nunits_for_cost (tree vec_type)
2026 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2029 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2031 static inline unsigned HOST_WIDE_INT
2032 vect_max_vf (loop_vec_info loop_vinfo)
2034 unsigned HOST_WIDE_INT vf;
2035 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2036 return vf;
2037 return MAX_VECTORIZATION_FACTOR;
2040 /* Return the size of the value accessed by unvectorized data reference
2041 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2042 for the associated gimple statement, since that guarantees that DR_INFO
2043 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2044 here includes things like V1SI, which can be vectorized in the same way
2045 as a plain SI.) */
2047 inline unsigned int
2048 vect_get_scalar_dr_size (dr_vec_info *dr_info)
2050 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2053 /* Return true if LOOP_VINFO requires a runtime check for whether the
2054 vector loop is profitable. */
2056 inline bool
2057 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2059 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2060 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2061 && th >= vect_vf_for_cost (loop_vinfo));
2064 /* Source location + hotness information. */
2065 extern dump_user_location_t vect_location;
2067 /* A macro for calling:
2068 dump_begin_scope (MSG, vect_location);
2069 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2070 and then calling
2071 dump_end_scope ();
2072 once the object goes out of scope, thus capturing the nesting of
2073 the scopes.
2075 These scopes affect dump messages within them: dump messages at the
2076 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2077 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2079 #define DUMP_VECT_SCOPE(MSG) \
2080 AUTO_DUMP_SCOPE (MSG, vect_location)
2082 /* A sentinel class for ensuring that the "vect_location" global gets
2083 reset at the end of a scope.
2085 The "vect_location" global is used during dumping and contains a
2086 location_t, which could contain references to a tree block via the
2087 ad-hoc data. This data is used for tracking inlining information,
2088 but it's not a GC root; it's simply assumed that such locations never
2089 get accessed if the blocks are optimized away.
2091 Hence we need to ensure that such locations are purged at the end
2092 of any operations using them (e.g. via this class). */
2094 class auto_purge_vect_location
2096 public:
2097 ~auto_purge_vect_location ();
2100 /*-----------------------------------------------------------------*/
2101 /* Function prototypes. */
2102 /*-----------------------------------------------------------------*/
2104 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2105 in tree-vect-loop-manip.cc. */
2106 extern void vect_set_loop_condition (class loop *, loop_vec_info,
2107 tree, tree, tree, bool);
2108 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
2109 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
2110 class loop *, edge);
2111 class loop *vect_loop_versioning (loop_vec_info, gimple *);
2112 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2113 tree *, tree *, tree *, int, bool, bool,
2114 tree *);
2115 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2116 extern void vect_prepare_for_masked_peels (loop_vec_info);
2117 extern dump_user_location_t find_loop_location (class loop *);
2118 extern bool vect_can_advance_ivs_p (loop_vec_info);
2119 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2121 /* In tree-vect-stmts.cc. */
2122 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2123 poly_uint64 = 0);
2124 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2125 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2126 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2127 extern tree get_same_sized_vectype (tree, tree);
2128 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2129 extern bool vect_get_loop_mask_type (loop_vec_info);
2130 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2131 stmt_vec_info * = NULL, gimple ** = NULL);
2132 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2133 tree *, stmt_vec_info * = NULL,
2134 gimple ** = NULL);
2135 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2136 unsigned, tree *, slp_tree *,
2137 enum vect_def_type *,
2138 tree *, stmt_vec_info * = NULL);
2139 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2140 extern bool supportable_widening_operation (vec_info *,
2141 enum tree_code, stmt_vec_info,
2142 tree, tree, enum tree_code *,
2143 enum tree_code *, int *,
2144 vec<tree> *);
2145 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
2146 enum tree_code *, int *,
2147 vec<tree> *);
2149 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2150 enum vect_cost_for_stmt, stmt_vec_info,
2151 tree, int, enum vect_cost_model_location);
2152 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2153 enum vect_cost_for_stmt, slp_tree,
2154 tree, int, enum vect_cost_model_location);
2155 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2156 enum vect_cost_for_stmt,
2157 enum vect_cost_model_location);
2159 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2161 static inline unsigned
2162 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2163 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2164 int misalign, enum vect_cost_model_location where)
2166 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2167 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2170 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2171 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2172 gimple_stmt_iterator *);
2173 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2174 extern tree vect_get_store_rhs (stmt_vec_info);
2175 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2176 tree op, vec<tree> *, tree = NULL);
2177 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2178 tree, vec<tree> *,
2179 tree = NULL, vec<tree> * = NULL,
2180 tree = NULL, vec<tree> * = NULL,
2181 tree = NULL, vec<tree> * = NULL);
2182 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2183 tree, vec<tree> *, tree,
2184 tree = NULL, vec<tree> * = NULL, tree = NULL,
2185 tree = NULL, vec<tree> * = NULL, tree = NULL,
2186 tree = NULL, vec<tree> * = NULL, tree = NULL);
2187 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2188 gimple_stmt_iterator *);
2189 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2190 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2191 gimple_stmt_iterator *,
2192 slp_tree, slp_instance);
2193 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2194 extern bool vect_nop_conversion_p (stmt_vec_info);
2195 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2196 slp_tree,
2197 slp_instance, stmt_vector_for_cost *);
2198 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2199 dr_alignment_support, int, bool,
2200 unsigned int *, unsigned int *,
2201 stmt_vector_for_cost *,
2202 stmt_vector_for_cost *, bool);
2203 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2204 dr_alignment_support, int,
2205 unsigned int *, stmt_vector_for_cost *);
2206 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2207 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2208 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2209 extern void optimize_mask_stores (class loop*);
2210 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2211 const char * = nullptr);
2212 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2213 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2214 stmt_vec_info, tree *,
2215 tree *, unsigned int = 0);
2216 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2218 /* In tree-vect-data-refs.cc. */
2219 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2220 extern enum dr_alignment_support vect_supportable_dr_alignment
2221 (vec_info *, dr_vec_info *, tree, int);
2222 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2223 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2224 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2225 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2226 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2227 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2228 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2229 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2230 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2231 tree, int, internal_fn *, tree *);
2232 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2233 gather_scatter_info *);
2234 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2235 vec<data_reference_p> *,
2236 vec<int> *, int);
2237 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2238 extern void vect_record_base_alignments (vec_info *);
2239 extern tree vect_create_data_ref_ptr (vec_info *,
2240 stmt_vec_info, tree, class loop *, tree,
2241 tree *, gimple_stmt_iterator *,
2242 gimple **, bool,
2243 tree = NULL_TREE);
2244 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2245 stmt_vec_info, tree);
2246 extern void vect_copy_ref_info (tree, tree);
2247 extern tree vect_create_destination_var (tree, tree);
2248 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2249 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2250 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2251 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2252 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2253 unsigned int, stmt_vec_info,
2254 gimple_stmt_iterator *, vec<tree> *);
2255 extern tree vect_setup_realignment (vec_info *,
2256 stmt_vec_info, gimple_stmt_iterator *,
2257 tree *, enum dr_alignment_support, tree,
2258 class loop **);
2259 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2260 int, gimple_stmt_iterator *);
2261 extern void vect_record_grouped_load_vectors (vec_info *,
2262 stmt_vec_info, vec<tree>);
2263 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2264 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2265 const char * = NULL);
2266 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2267 stmt_vec_info, gimple_seq *,
2268 tree);
2270 /* In tree-vect-loop.cc. */
2271 extern tree neutral_op_for_reduction (tree, code_helper, tree);
2272 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2273 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2274 /* Used in tree-vect-loop-manip.cc */
2275 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2276 bool);
2277 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2278 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2279 enum tree_code);
2280 extern bool needs_fold_left_reduction_p (tree, code_helper);
2281 /* Drive for loop analysis stage. */
2282 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2283 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2284 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2285 tree *, bool);
2286 extern tree vect_halve_mask_nunits (tree, machine_mode);
2287 extern tree vect_double_mask_nunits (tree, machine_mode);
2288 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2289 unsigned int, tree, tree);
2290 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2291 unsigned int, tree, unsigned int);
2292 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2293 tree, unsigned int);
2294 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2295 unsigned int);
2296 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2297 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2298 extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2300 /* Drive for loop transformation stage. */
2301 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2302 struct vect_loop_form_info
2304 tree number_of_iterations;
2305 tree number_of_iterationsm1;
2306 tree assumptions;
2307 gcond *loop_cond;
2308 gcond *inner_loop_cond;
2310 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2311 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2312 const vect_loop_form_info *,
2313 loop_vec_info = nullptr);
2314 extern bool vectorizable_live_operation (vec_info *,
2315 stmt_vec_info, gimple_stmt_iterator *,
2316 slp_tree, slp_instance, int,
2317 bool, stmt_vector_for_cost *);
2318 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2319 slp_tree, slp_instance,
2320 stmt_vector_for_cost *);
2321 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2322 gimple **, slp_tree,
2323 stmt_vector_for_cost *);
2324 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2325 gimple_stmt_iterator *,
2326 gimple **, slp_tree);
2327 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2328 gimple **,
2329 slp_tree, slp_instance);
2330 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2331 gimple **, slp_tree);
2332 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2333 stmt_vector_for_cost *);
2334 extern bool vect_emulated_vector_p (tree);
2335 extern bool vect_can_vectorize_without_simd_p (tree_code);
2336 extern bool vect_can_vectorize_without_simd_p (code_helper);
2337 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2338 stmt_vector_for_cost *,
2339 stmt_vector_for_cost *,
2340 stmt_vector_for_cost *);
2341 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2343 /* Nonlinear induction. */
2344 extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2345 tree, enum vect_induction_op_type);
2347 /* In tree-vect-slp.cc. */
2348 extern void vect_slp_init (void);
2349 extern void vect_slp_fini (void);
2350 extern void vect_free_slp_instance (slp_instance);
2351 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2352 gimple_stmt_iterator *, poly_uint64,
2353 bool, unsigned *,
2354 unsigned * = nullptr, bool = false);
2355 extern bool vect_slp_analyze_operations (vec_info *);
2356 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2357 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2358 extern bool vect_make_slp_decision (loop_vec_info);
2359 extern void vect_detect_hybrid_slp (loop_vec_info);
2360 extern void vect_optimize_slp (vec_info *);
2361 extern void vect_gather_slp_loads (vec_info *);
2362 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2363 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2364 unsigned n = -1U);
2365 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2366 extern bool vect_slp_function (function *);
2367 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2368 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2369 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2370 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2371 unsigned int * = NULL,
2372 tree * = NULL, tree * = NULL);
2373 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2374 const vec<tree> &, unsigned int, vec<tree> &);
2375 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2376 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2377 extern void vect_free_slp_tree (slp_tree);
2378 extern bool compatible_calls_p (gcall *, gcall *);
2380 /* In tree-vect-patterns.cc. */
2381 extern void
2382 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2384 /* Pattern recognition functions.
2385 Additional pattern recognition functions can (and will) be added
2386 in the future. */
2387 void vect_pattern_recog (vec_info *);
2389 /* In tree-vectorizer.cc. */
2390 unsigned vectorize_loops (void);
2391 void vect_free_loop_info_assumptions (class loop *);
2392 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2393 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2395 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2397 /* Forward declaration of possible two operands operation that can be matched
2398 by the complex numbers pattern matchers. */
2399 enum _complex_operation : unsigned;
2401 /* All possible load permute values that could result from the partial data-flow
2402 analysis. */
2403 typedef enum _complex_perm_kinds {
2404 PERM_UNKNOWN,
2405 PERM_EVENODD,
2406 PERM_ODDEVEN,
2407 PERM_ODDODD,
2408 PERM_EVENEVEN,
2409 /* Can be combined with any other PERM values. */
2410 PERM_TOP
2411 } complex_perm_kinds_t;
2413 /* Cache from nodes to the load permutation they represent. */
2414 typedef hash_map <slp_tree, complex_perm_kinds_t>
2415 slp_tree_to_load_perm_map_t;
2417 /* Cache from nodes pair to being compatible or not. */
2418 typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2419 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2420 typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2423 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2424 from this type. */
2426 class vect_pattern
2428 protected:
2429 /* The number of arguments that the IFN requires. */
2430 unsigned m_num_args;
2432 /* The internal function that will be used when a pattern is created. */
2433 internal_fn m_ifn;
2435 /* The current node being inspected. */
2436 slp_tree *m_node;
2438 /* The list of operands to be the children for the node produced when the
2439 internal function is created. */
2440 vec<slp_tree> m_ops;
2442 /* Default constructor where NODE is the root of the tree to inspect. */
2443 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2445 this->m_ifn = ifn;
2446 this->m_node = node;
2447 this->m_ops.create (0);
2448 if (m_ops)
2449 this->m_ops.safe_splice (*m_ops);
2452 public:
2454 /* Create a new instance of the pattern matcher class of the given type. */
2455 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2456 slp_compat_nodes_map_t *, slp_tree *);
2458 /* Build the pattern from the data collected so far. */
2459 virtual void build (vec_info *) = 0;
2461 /* Default destructor. */
2462 virtual ~vect_pattern ()
2464 this->m_ops.release ();
2468 /* Function pointer to create a new pattern matcher from a generic type. */
2469 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2470 slp_compat_nodes_map_t *,
2471 slp_tree *);
2473 /* List of supported pattern matchers. */
2474 extern vect_pattern_decl_t slp_patterns[];
2476 /* Number of supported pattern matchers. */
2477 extern size_t num__slp_patterns;
2479 /* ----------------------------------------------------------------------
2480 Target support routines
2481 -----------------------------------------------------------------------
2482 The following routines are provided to simplify costing decisions in
2483 target code. Please add more as needed. */
2485 /* Return true if an operaton of kind KIND for STMT_INFO represents
2486 the extraction of an element from a vector in preparation for
2487 storing the element to memory. */
2488 inline bool
2489 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2491 return (kind == vec_to_scalar
2492 && STMT_VINFO_DATA_REF (stmt_info)
2493 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2496 /* Return true if STMT_INFO represents part of a reduction. */
2497 inline bool
2498 vect_is_reduction (stmt_vec_info stmt_info)
2500 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2503 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2504 of the reduction it describes, otherwise return -1. */
2505 inline int
2506 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2508 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2509 if (STMT_VINFO_REDUC_DEF (stmt_info))
2511 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2512 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2514 return -1;
2517 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2518 scalar type of the values being compared. Return null otherwise. */
2519 inline tree
2520 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2522 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2523 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2525 tree cond = gimple_assign_rhs1 (assign);
2526 if (COMPARISON_CLASS_P (cond))
2527 return TREE_TYPE (TREE_OPERAND (cond, 0));
2529 return NULL_TREE;
2532 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2533 scalar type of the values being compared. Return null otherwise. */
2534 inline tree
2535 vect_comparison_type (stmt_vec_info stmt_info)
2537 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2538 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2539 return TREE_TYPE (gimple_assign_rhs1 (assign));
2540 return vect_embedded_comparison_type (stmt_info);
2543 /* Return true if STMT_INFO extends the result of a load. */
2544 inline bool
2545 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2547 /* Although this is quite large for an inline function, this part
2548 at least should be inline. */
2549 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2550 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2551 return false;
2553 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2554 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2555 tree rhs_type = TREE_TYPE (rhs);
2556 if (!INTEGRAL_TYPE_P (lhs_type)
2557 || !INTEGRAL_TYPE_P (rhs_type)
2558 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2559 return false;
2561 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2562 return (def_stmt_info
2563 && STMT_VINFO_DATA_REF (def_stmt_info)
2564 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2567 /* Return true if STMT_INFO is an integer truncation. */
2568 inline bool
2569 vect_is_integer_truncation (stmt_vec_info stmt_info)
2571 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2572 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2573 return false;
2575 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2576 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2577 return (INTEGRAL_TYPE_P (lhs_type)
2578 && INTEGRAL_TYPE_P (rhs_type)
2579 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2582 #endif /* GCC_TREE_VECTORIZER_H */