2 Copyright (C) 2005-2022 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "fold-const.h"
31 #include "gimple-iterator.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "tree-ssa-scopedtables.h"
35 #include "tree-ssa-threadedge.h"
36 #include "gimple-fold.h"
38 #include "alloc-pool.h"
39 #include "vr-values.h"
40 #include "gimple-range.h"
41 #include "gimple-range-path.h"
43 /* To avoid code explosion due to jump threading, we limit the
44 number of statements we are going to copy. This variable
45 holds the number of statements currently seen that we'll have
46 to copy as part of the jump threading process. */
47 static int stmt_count
;
49 /* Array to record value-handles per SSA_NAME. */
50 vec
<tree
> ssa_name_values
;
52 /* Set the value for the SSA name NAME to VALUE. */
55 set_ssa_name_value (tree name
, tree value
)
57 if (SSA_NAME_VERSION (name
) >= ssa_name_values
.length ())
58 ssa_name_values
.safe_grow_cleared (SSA_NAME_VERSION (name
) + 1, true);
59 if (value
&& TREE_OVERFLOW_P (value
))
60 value
= drop_tree_overflow (value
);
61 ssa_name_values
[SSA_NAME_VERSION (name
)] = value
;
64 jump_threader::jump_threader (jt_simplifier
*simplifier
, jt_state
*state
)
66 /* Initialize the per SSA_NAME value-handles array. */
67 gcc_assert (!ssa_name_values
.exists ());
68 ssa_name_values
.create (num_ssa_names
);
70 dummy_cond
= gimple_build_cond (NE_EXPR
, integer_zero_node
,
71 integer_zero_node
, NULL
, NULL
);
73 m_registry
= new fwd_jt_path_registry ();
74 m_simplifier
= simplifier
;
78 jump_threader::~jump_threader (void)
80 ssa_name_values
.release ();
81 ggc_free (dummy_cond
);
86 jump_threader::remove_jump_threads_including (edge_def
*e
)
88 m_registry
->remove_jump_threads_including (e
);
92 jump_threader::thread_through_all_blocks (bool may_peel_loop_headers
)
94 return m_registry
->thread_through_all_blocks (may_peel_loop_headers
);
98 has_phis_p (basic_block bb
)
100 return !gsi_end_p (gsi_start_phis (bb
));
103 /* Return TRUE for a block with PHIs but no statements. */
106 empty_block_with_phis_p (basic_block bb
)
108 return gsi_end_p (gsi_start_nondebug_bb (bb
)) && has_phis_p (bb
);
111 /* Return TRUE if we may be able to thread an incoming edge into
112 BB to an outgoing edge from BB. Return FALSE otherwise. */
115 potentially_threadable_block (basic_block bb
)
117 gimple_stmt_iterator gsi
;
119 /* Special case. We can get blocks that are forwarders, but are
120 not optimized away because they forward from outside a loop
121 to the loop header. We want to thread through them as we can
122 sometimes thread to the loop exit, which is obviously profitable.
123 The interesting case here is when the block has PHIs. */
124 if (empty_block_with_phis_p (bb
))
127 /* If BB has a single successor or a single predecessor, then
128 there is no threading opportunity. */
129 if (single_succ_p (bb
) || single_pred_p (bb
))
132 /* If BB does not end with a conditional, switch or computed goto,
133 then there is no threading opportunity. */
134 gsi
= gsi_last_bb (bb
);
137 || (gimple_code (gsi_stmt (gsi
)) != GIMPLE_COND
138 && gimple_code (gsi_stmt (gsi
)) != GIMPLE_GOTO
139 && gimple_code (gsi_stmt (gsi
)) != GIMPLE_SWITCH
))
145 /* Record temporary equivalences created by PHIs at the target of the
148 If a PHI which prevents threading is encountered, then return FALSE
149 indicating we should not thread this edge, else return TRUE. */
152 jump_threader::record_temporary_equivalences_from_phis (edge e
)
156 /* Each PHI creates a temporary equivalence, record them.
157 These are context sensitive equivalences and will be removed
159 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
161 gphi
*phi
= gsi
.phi ();
162 tree src
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
163 tree dst
= gimple_phi_result (phi
);
165 /* If the desired argument is not the same as this PHI's result
166 and it is set by a PHI in E->dest, then we cannot thread
169 && TREE_CODE (src
) == SSA_NAME
170 && gimple_code (SSA_NAME_DEF_STMT (src
)) == GIMPLE_PHI
171 && gimple_bb (SSA_NAME_DEF_STMT (src
)) == e
->dest
)
174 /* We consider any non-virtual PHI as a statement since it
175 count result in a constant assignment or copy operation. */
176 if (!virtual_operand_p (dst
))
179 m_state
->register_equiv (dst
, src
, /*update_range=*/true);
184 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
187 threadedge_valueize (tree t
)
189 if (TREE_CODE (t
) == SSA_NAME
)
191 tree tem
= SSA_NAME_VALUE (t
);
198 /* Try to simplify each statement in E->dest, ultimately leading to
199 a simplification of the COND_EXPR at the end of E->dest.
201 Record unwind information for temporary equivalences onto STACK.
203 Uses M_SIMPLIFIER to further simplify statements using pass specific
206 We might consider marking just those statements which ultimately
207 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
208 would be recovered by trying to simplify fewer statements.
210 If we are able to simplify a statement into the form
211 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
212 a context sensitive equivalence which may help us simplify
213 later statements in E->dest. */
216 jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e
)
219 gimple_stmt_iterator gsi
;
222 max_stmt_count
= param_max_jump_thread_duplication_stmts
;
224 /* Walk through each statement in the block recording equivalences
225 we discover. Note any equivalences we discover are context
226 sensitive (ie, are dependent on traversing E) and must be unwound
227 when we're finished processing E. */
228 for (gsi
= gsi_start_bb (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
230 stmt
= gsi_stmt (gsi
);
232 /* Ignore empty statements and labels. */
233 if (gimple_code (stmt
) == GIMPLE_NOP
234 || gimple_code (stmt
) == GIMPLE_LABEL
235 || is_gimple_debug (stmt
))
238 /* If the statement has volatile operands, then we assume we
239 cannot thread through this block. This is overly
240 conservative in some ways. */
241 if (gimple_code (stmt
) == GIMPLE_ASM
242 && gimple_asm_volatile_p (as_a
<gasm
*> (stmt
)))
245 /* If the statement is a unique builtin, we cannot thread
247 if (gimple_code (stmt
) == GIMPLE_CALL
248 && gimple_call_internal_p (stmt
)
249 && gimple_call_internal_unique_p (stmt
))
252 /* We cannot thread through __builtin_constant_p, because an
253 expression that is constant on two threading paths may become
254 non-constant (i.e.: phi) when they merge. */
255 if (gimple_call_builtin_p (stmt
, BUILT_IN_CONSTANT_P
))
258 /* If duplicating this block is going to cause too much code
259 expansion, then do not thread through this block. */
261 if (stmt_count
> max_stmt_count
)
263 /* If any of the stmts in the PATH's dests are going to be
264 killed due to threading, grow the max count
267 == param_max_jump_thread_duplication_stmts
)
269 max_stmt_count
+= estimate_threading_killed_stmts (e
->dest
);
271 fprintf (dump_file
, "threading bb %i up to %i stmts\n",
272 e
->dest
->index
, max_stmt_count
);
274 /* If we're still past the limit, we're done. */
275 if (stmt_count
> max_stmt_count
)
279 m_state
->record_ranges_from_stmt (stmt
, true);
281 /* If this is not a statement that sets an SSA_NAME to a new
282 value, then do not try to simplify this statement as it will
283 not simplify in any way that is helpful for jump threading. */
284 if ((gimple_code (stmt
) != GIMPLE_ASSIGN
285 || TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
286 && (gimple_code (stmt
) != GIMPLE_CALL
287 || gimple_call_lhs (stmt
) == NULL_TREE
288 || TREE_CODE (gimple_call_lhs (stmt
)) != SSA_NAME
))
291 /* The result of __builtin_object_size depends on all the arguments
292 of a phi node. Temporarily using only one edge produces invalid
301 r = PHI <&w[2].a[1](2), &a.a[6](3)>
302 __builtin_object_size (r, 0)
304 The result of __builtin_object_size is defined to be the maximum of
305 remaining bytes. If we use only one edge on the phi, the result will
306 change to be the remaining bytes for the corresponding phi argument.
308 Similarly for __builtin_constant_p:
311 __builtin_constant_p (r)
313 Both PHI arguments are constant, but x ? 1 : 2 is still not
316 if (is_gimple_call (stmt
))
318 tree fndecl
= gimple_call_fndecl (stmt
);
320 && fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
)
321 && (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_OBJECT_SIZE
322 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
))
326 m_state
->register_equivs_stmt (stmt
, e
->src
, m_simplifier
);
331 /* Simplify the control statement at the end of the block E->dest.
333 Use SIMPLIFY (a pointer to a callback function) to further simplify
334 a condition using pass specific information.
336 Return the simplified condition or NULL if simplification could
337 not be performed. When simplifying a GIMPLE_SWITCH, we may return
338 the CASE_LABEL_EXPR that will be taken. */
341 jump_threader::simplify_control_stmt_condition (edge e
, gimple
*stmt
)
343 tree cond
, cached_lhs
;
344 enum gimple_code code
= gimple_code (stmt
);
346 /* For comparisons, we have to update both operands, then try
347 to simplify the comparison. */
348 if (code
== GIMPLE_COND
)
351 enum tree_code cond_code
;
353 op0
= gimple_cond_lhs (stmt
);
354 op1
= gimple_cond_rhs (stmt
);
355 cond_code
= gimple_cond_code (stmt
);
357 /* Get the current value of both operands. */
358 if (TREE_CODE (op0
) == SSA_NAME
)
360 for (int i
= 0; i
< 2; i
++)
362 if (TREE_CODE (op0
) == SSA_NAME
363 && SSA_NAME_VALUE (op0
))
364 op0
= SSA_NAME_VALUE (op0
);
370 if (TREE_CODE (op1
) == SSA_NAME
)
372 for (int i
= 0; i
< 2; i
++)
374 if (TREE_CODE (op1
) == SSA_NAME
375 && SSA_NAME_VALUE (op1
))
376 op1
= SSA_NAME_VALUE (op1
);
382 const unsigned recursion_limit
= 4;
385 = simplify_control_stmt_condition_1 (e
, stmt
, op0
, cond_code
, op1
,
388 /* If we were testing an integer/pointer against a constant,
389 then we can trace the value of the SSA_NAME. If a value is
390 found, then the condition will collapse to a constant.
392 Return the SSA_NAME we want to trace back rather than the full
393 expression and give the threader a chance to find its value. */
394 if (cached_lhs
== NULL
)
396 /* Recover the original operands. They may have been simplified
397 using context sensitive equivalences. Those context sensitive
398 equivalences may not be valid on paths. */
399 tree op0
= gimple_cond_lhs (stmt
);
400 tree op1
= gimple_cond_rhs (stmt
);
402 if ((INTEGRAL_TYPE_P (TREE_TYPE (op0
))
403 || POINTER_TYPE_P (TREE_TYPE (op0
)))
404 && TREE_CODE (op0
) == SSA_NAME
405 && TREE_CODE (op1
) == INTEGER_CST
)
412 if (code
== GIMPLE_SWITCH
)
413 cond
= gimple_switch_index (as_a
<gswitch
*> (stmt
));
414 else if (code
== GIMPLE_GOTO
)
415 cond
= gimple_goto_dest (stmt
);
419 /* We can have conditionals which just test the state of a variable
420 rather than use a relational operator. These are simpler to handle. */
421 if (TREE_CODE (cond
) == SSA_NAME
)
423 tree original_lhs
= cond
;
426 /* Get the variable's current value from the equivalence chains.
428 It is possible to get loops in the SSA_NAME_VALUE chains
429 (consider threading the backedge of a loop where we have
430 a loop invariant SSA_NAME used in the condition). */
433 for (int i
= 0; i
< 2; i
++)
435 if (TREE_CODE (cached_lhs
) == SSA_NAME
436 && SSA_NAME_VALUE (cached_lhs
))
437 cached_lhs
= SSA_NAME_VALUE (cached_lhs
);
443 /* If we haven't simplified to an invariant yet, then use the
444 pass specific callback to try and simplify it further. */
445 if (cached_lhs
&& ! is_gimple_min_invariant (cached_lhs
))
447 if (code
== GIMPLE_SWITCH
)
449 /* Replace the index operand of the GIMPLE_SWITCH with any LHS
450 we found before handing off to VRP. If simplification is
451 possible, the simplified value will be a CASE_LABEL_EXPR of
452 the label that is proven to be taken. */
453 gswitch
*dummy_switch
= as_a
<gswitch
*> (gimple_copy (stmt
));
454 gimple_switch_set_index (dummy_switch
, cached_lhs
);
455 cached_lhs
= m_simplifier
->simplify (dummy_switch
, stmt
, e
->src
,
457 ggc_free (dummy_switch
);
460 cached_lhs
= m_simplifier
->simplify (stmt
, stmt
, e
->src
, m_state
);
463 /* We couldn't find an invariant. But, callers of this
464 function may be able to do something useful with the
465 unmodified destination. */
467 cached_lhs
= original_lhs
;
475 /* Recursive helper for simplify_control_stmt_condition. */
478 jump_threader::simplify_control_stmt_condition_1
482 enum tree_code cond_code
,
489 /* We may need to canonicalize the comparison. For
490 example, op0 might be a constant while op1 is an
491 SSA_NAME. Failure to canonicalize will cause us to
492 miss threading opportunities. */
493 if (tree_swap_operands_p (op0
, op1
))
495 cond_code
= swap_tree_comparison (cond_code
);
496 std::swap (op0
, op1
);
499 /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
500 recurse into the LHS to see if there is a dominating ASSERT_EXPR
501 of A or of B that makes this condition always true or always false
503 if ((cond_code
== EQ_EXPR
|| cond_code
== NE_EXPR
)
504 && TREE_CODE (op0
) == SSA_NAME
505 && integer_zerop (op1
))
507 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op0
);
508 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
510 else if (gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
511 || gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
)
513 enum tree_code rhs_code
= gimple_assign_rhs_code (def_stmt
);
514 const tree rhs1
= gimple_assign_rhs1 (def_stmt
);
515 const tree rhs2
= gimple_assign_rhs2 (def_stmt
);
519 = simplify_control_stmt_condition_1 (e
, def_stmt
,
522 if (res1
== NULL_TREE
)
524 else if (rhs_code
== BIT_AND_EXPR
&& integer_zerop (res1
))
526 /* If A == 0 then (A & B) != 0 is always false. */
527 if (cond_code
== NE_EXPR
)
528 return boolean_false_node
;
529 /* If A == 0 then (A & B) == 0 is always true. */
530 if (cond_code
== EQ_EXPR
)
531 return boolean_true_node
;
533 else if (rhs_code
== BIT_IOR_EXPR
&& integer_nonzerop (res1
))
535 /* If A != 0 then (A | B) != 0 is always true. */
536 if (cond_code
== NE_EXPR
)
537 return boolean_true_node
;
538 /* If A != 0 then (A | B) == 0 is always false. */
539 if (cond_code
== EQ_EXPR
)
540 return boolean_false_node
;
545 = simplify_control_stmt_condition_1 (e
, def_stmt
,
548 if (res2
== NULL_TREE
)
550 else if (rhs_code
== BIT_AND_EXPR
&& integer_zerop (res2
))
552 /* If B == 0 then (A & B) != 0 is always false. */
553 if (cond_code
== NE_EXPR
)
554 return boolean_false_node
;
555 /* If B == 0 then (A & B) == 0 is always true. */
556 if (cond_code
== EQ_EXPR
)
557 return boolean_true_node
;
559 else if (rhs_code
== BIT_IOR_EXPR
&& integer_nonzerop (res2
))
561 /* If B != 0 then (A | B) != 0 is always true. */
562 if (cond_code
== NE_EXPR
)
563 return boolean_true_node
;
564 /* If B != 0 then (A | B) == 0 is always false. */
565 if (cond_code
== EQ_EXPR
)
566 return boolean_false_node
;
569 if (res1
!= NULL_TREE
&& res2
!= NULL_TREE
)
571 if (rhs_code
== BIT_AND_EXPR
572 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
573 && integer_nonzerop (res1
)
574 && integer_nonzerop (res2
))
576 /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
577 if (cond_code
== NE_EXPR
)
578 return boolean_true_node
;
579 /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
580 if (cond_code
== EQ_EXPR
)
581 return boolean_false_node
;
584 if (rhs_code
== BIT_IOR_EXPR
585 && integer_zerop (res1
)
586 && integer_zerop (res2
))
588 /* If A == 0 and B == 0 then (A | B) != 0 is false. */
589 if (cond_code
== NE_EXPR
)
590 return boolean_false_node
;
591 /* If A == 0 and B == 0 then (A | B) == 0 is true. */
592 if (cond_code
== EQ_EXPR
)
593 return boolean_true_node
;
597 /* Handle (A CMP B) CMP 0. */
598 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
601 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
602 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
604 tree_code new_cond
= gimple_assign_rhs_code (def_stmt
);
605 if (cond_code
== EQ_EXPR
)
606 new_cond
= invert_tree_comparison (new_cond
, false);
609 = simplify_control_stmt_condition_1 (e
, def_stmt
,
610 rhs1
, new_cond
, rhs2
,
612 if (res
!= NULL_TREE
&& is_gimple_min_invariant (res
))
617 gimple_cond_set_code (dummy_cond
, cond_code
);
618 gimple_cond_set_lhs (dummy_cond
, op0
);
619 gimple_cond_set_rhs (dummy_cond
, op1
);
621 /* We absolutely do not care about any type conversions
622 we only care about a zero/nonzero value. */
623 fold_defer_overflow_warnings ();
625 tree res
= fold_binary (cond_code
, boolean_type_node
, op0
, op1
);
627 while (CONVERT_EXPR_P (res
))
628 res
= TREE_OPERAND (res
, 0);
630 fold_undefer_overflow_warnings ((res
&& is_gimple_min_invariant (res
)),
631 stmt
, WARN_STRICT_OVERFLOW_CONDITIONAL
);
633 /* If we have not simplified the condition down to an invariant,
634 then use the pass specific callback to simplify the condition. */
636 || !is_gimple_min_invariant (res
))
637 res
= m_simplifier
->simplify (dummy_cond
, stmt
, e
->src
, m_state
);
642 /* Copy debug stmts from DEST's chain of single predecessors up to
643 SRC, so that we don't lose the bindings as PHI nodes are introduced
644 when DEST gains new predecessors. */
646 propagate_threaded_block_debug_into (basic_block dest
, basic_block src
)
648 if (!MAY_HAVE_DEBUG_BIND_STMTS
)
651 if (!single_pred_p (dest
))
654 gcc_checking_assert (dest
!= src
);
656 gimple_stmt_iterator gsi
= gsi_after_labels (dest
);
658 const int alloc_count
= 16; // ?? Should this be a PARAM?
660 /* Estimate the number of debug vars overridden in the beginning of
661 DEST, to tell how many we're going to need to begin with. */
662 for (gimple_stmt_iterator si
= gsi
;
663 i
* 4 <= alloc_count
* 3 && !gsi_end_p (si
); gsi_next (&si
))
665 gimple
*stmt
= gsi_stmt (si
);
666 if (!is_gimple_debug (stmt
))
668 if (gimple_debug_nonbind_marker_p (stmt
))
673 auto_vec
<tree
, alloc_count
> fewvars
;
674 hash_set
<tree
> *vars
= NULL
;
676 /* If we're already starting with 3/4 of alloc_count, go for a
677 hash_set, otherwise start with an unordered stack-allocated
679 if (i
* 4 > alloc_count
* 3)
680 vars
= new hash_set
<tree
>;
682 /* Now go through the initial debug stmts in DEST again, this time
683 actually inserting in VARS or FEWVARS. Don't bother checking for
684 duplicates in FEWVARS. */
685 for (gimple_stmt_iterator si
= gsi
; !gsi_end_p (si
); gsi_next (&si
))
687 gimple
*stmt
= gsi_stmt (si
);
688 if (!is_gimple_debug (stmt
))
693 if (gimple_debug_bind_p (stmt
))
694 var
= gimple_debug_bind_get_var (stmt
);
695 else if (gimple_debug_source_bind_p (stmt
))
696 var
= gimple_debug_source_bind_get_var (stmt
);
697 else if (gimple_debug_nonbind_marker_p (stmt
))
705 fewvars
.quick_push (var
);
708 basic_block bb
= dest
;
712 bb
= single_pred (bb
);
713 for (gimple_stmt_iterator si
= gsi_last_bb (bb
);
714 !gsi_end_p (si
); gsi_prev (&si
))
716 gimple
*stmt
= gsi_stmt (si
);
717 if (!is_gimple_debug (stmt
))
722 if (gimple_debug_bind_p (stmt
))
723 var
= gimple_debug_bind_get_var (stmt
);
724 else if (gimple_debug_source_bind_p (stmt
))
725 var
= gimple_debug_source_bind_get_var (stmt
);
726 else if (gimple_debug_nonbind_marker_p (stmt
))
731 /* Discard debug bind overlaps. Unlike stmts from src,
732 copied into a new block that will precede BB, debug bind
733 stmts in bypassed BBs may actually be discarded if
734 they're overwritten by subsequent debug bind stmts. We
735 want to copy binds for all modified variables, so that we
736 retain a bind to the shared def if there is one, or to a
737 newly introduced PHI node if there is one. Our bind will
738 end up reset if the value is dead, but that implies the
739 variable couldn't have survived, so it's fine. We are
740 not actually running the code that performed the binds at
741 this point, we're just adding binds so that they survive
742 the new confluence, so markers should not be copied. */
743 if (vars
&& vars
->add (var
))
747 int i
= fewvars
.length ();
749 if (fewvars
[i
] == var
)
753 else if (fewvars
.length () < (unsigned) alloc_count
)
754 fewvars
.quick_push (var
);
757 vars
= new hash_set
<tree
>;
758 for (i
= 0; i
< alloc_count
; i
++)
759 vars
->add (fewvars
[i
]);
765 stmt
= gimple_copy (stmt
);
766 /* ??? Should we drop the location of the copy to denote
767 they're artificial bindings? */
768 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
771 while (bb
!= src
&& single_pred_p (bb
));
775 else if (fewvars
.exists ())
779 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
780 need not be duplicated as part of the CFG/SSA updating process).
782 If it is threadable, add it to PATH and VISITED and recurse, ultimately
783 returning TRUE from the toplevel call. Otherwise do nothing and
787 jump_threader::thread_around_empty_blocks (vec
<jump_thread_edge
*> *path
,
791 basic_block bb
= taken_edge
->dest
;
792 gimple_stmt_iterator gsi
;
796 /* The key property of these blocks is that they need not be duplicated
797 when threading. Thus they cannot have visible side effects such
802 /* Skip over DEBUG statements at the start of the block. */
803 gsi
= gsi_start_nondebug_bb (bb
);
805 /* If the block has no statements, but does have a single successor, then
806 it's just a forwarding block and we can thread through it trivially.
808 However, note that just threading through empty blocks with single
809 successors is not inherently profitable. For the jump thread to
810 be profitable, we must avoid a runtime conditional.
812 By taking the return value from the recursive call, we get the
813 desired effect of returning TRUE when we found a profitable jump
814 threading opportunity and FALSE otherwise.
816 This is particularly important when this routine is called after
817 processing a joiner block. Returning TRUE too aggressively in
818 that case results in pointless duplication of the joiner block. */
821 if (single_succ_p (bb
))
823 taken_edge
= single_succ_edge (bb
);
825 if ((taken_edge
->flags
& EDGE_DFS_BACK
) != 0)
828 if (!bitmap_bit_p (visited
, taken_edge
->dest
->index
))
830 m_registry
->push_edge (path
, taken_edge
, EDGE_NO_COPY_SRC_BLOCK
);
831 m_state
->append_path (taken_edge
->dest
);
832 bitmap_set_bit (visited
, taken_edge
->dest
->index
);
833 return thread_around_empty_blocks (path
, taken_edge
, visited
);
837 /* We have a block with no statements, but multiple successors? */
841 /* The only real statements this block can have are a control
842 flow altering statement. Anything else stops the thread. */
843 stmt
= gsi_stmt (gsi
);
844 if (gimple_code (stmt
) != GIMPLE_COND
845 && gimple_code (stmt
) != GIMPLE_GOTO
846 && gimple_code (stmt
) != GIMPLE_SWITCH
)
849 /* Extract and simplify the condition. */
850 cond
= simplify_control_stmt_condition (taken_edge
, stmt
);
852 /* If the condition can be statically computed and we have not already
853 visited the destination edge, then add the taken edge to our thread
855 if (cond
!= NULL_TREE
856 && (is_gimple_min_invariant (cond
)
857 || TREE_CODE (cond
) == CASE_LABEL_EXPR
))
859 if (TREE_CODE (cond
) == CASE_LABEL_EXPR
)
860 taken_edge
= find_edge (bb
, label_to_block (cfun
, CASE_LABEL (cond
)));
862 taken_edge
= find_taken_edge (bb
, cond
);
865 || (taken_edge
->flags
& EDGE_DFS_BACK
) != 0)
868 if (bitmap_bit_p (visited
, taken_edge
->dest
->index
))
870 bitmap_set_bit (visited
, taken_edge
->dest
->index
);
872 m_registry
->push_edge (path
, taken_edge
, EDGE_NO_COPY_SRC_BLOCK
);
873 m_state
->append_path (taken_edge
->dest
);
875 thread_around_empty_blocks (path
, taken_edge
, visited
);
882 /* We are exiting E->src, see if E->dest ends with a conditional
883 jump which has a known value when reached via E.
885 E->dest can have arbitrary side effects which, if threading is
886 successful, will be maintained.
888 Special care is necessary if E is a back edge in the CFG as we
889 may have already recorded equivalences for E->dest into our
890 various tables, including the result of the conditional at
891 the end of E->dest. Threading opportunities are severely
892 limited in that case to avoid short-circuiting the loop
895 Positive return value is success. Zero return value is failure, but
896 the block can still be duplicated as a joiner in a jump thread path,
897 negative indicates the block should not be duplicated and thus is not
898 suitable for a joiner in a jump threading path. */
901 jump_threader::thread_through_normal_block (vec
<jump_thread_edge
*> *path
,
902 edge e
, bitmap visited
)
904 m_state
->register_equivs_edge (e
);
906 /* PHIs create temporary equivalences.
907 Note that if we found a PHI that made the block non-threadable, then
908 we need to bubble that up to our caller in the same manner we do
909 when we prematurely stop processing statements below. */
910 if (!record_temporary_equivalences_from_phis (e
))
913 /* Now walk each statement recording any context sensitive
914 temporary equivalences we can detect. */
915 gimple
*stmt
= record_temporary_equivalences_from_stmts_at_dest (e
);
917 /* There's two reasons STMT might be null, and distinguishing
918 between them is important.
920 First the block may not have had any statements. For example, it
921 might have some PHIs and unconditionally transfer control elsewhere.
922 Such blocks are suitable for jump threading, particularly as a
925 The second reason would be if we did not process all the statements
926 in the block (because there were too many to make duplicating the
927 block profitable. If we did not look at all the statements, then
928 we may not have invalidated everything needing invalidation. Thus
929 we must signal to our caller that this block is not suitable for
930 use as a joiner in a threading path. */
933 /* First case. The statement simply doesn't have any instructions, but
935 if (empty_block_with_phis_p (e
->dest
))
942 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
944 if (gimple_code (stmt
) == GIMPLE_COND
945 || gimple_code (stmt
) == GIMPLE_GOTO
946 || gimple_code (stmt
) == GIMPLE_SWITCH
)
950 /* Extract and simplify the condition. */
951 cond
= simplify_control_stmt_condition (e
, stmt
);
956 if (is_gimple_min_invariant (cond
)
957 || TREE_CODE (cond
) == CASE_LABEL_EXPR
)
960 if (TREE_CODE (cond
) == CASE_LABEL_EXPR
)
961 taken_edge
= find_edge (e
->dest
,
962 label_to_block (cfun
, CASE_LABEL (cond
)));
964 taken_edge
= find_taken_edge (e
->dest
, cond
);
966 basic_block dest
= (taken_edge
? taken_edge
->dest
: NULL
);
968 /* DEST could be NULL for a computed jump to an absolute
972 || (taken_edge
->flags
& EDGE_DFS_BACK
) != 0
973 || bitmap_bit_p (visited
, dest
->index
))
976 /* Only push the EDGE_START_JUMP_THREAD marker if this is
977 first edge on the path. */
978 if (path
->length () == 0)
979 m_registry
->push_edge (path
, e
, EDGE_START_JUMP_THREAD
);
981 m_registry
->push_edge (path
, taken_edge
, EDGE_COPY_SRC_BLOCK
);
982 m_state
->append_path (taken_edge
->dest
);
984 /* See if we can thread through DEST as well, this helps capture
985 secondary effects of threading without having to re-run DOM or
988 We don't want to thread back to a block we have already
989 visited. This may be overly conservative. */
990 bitmap_set_bit (visited
, dest
->index
);
991 bitmap_set_bit (visited
, e
->dest
->index
);
992 thread_around_empty_blocks (path
, taken_edge
, visited
);
999 /* There are basic blocks look like:
1001 p0 = a CMP b ; or p0 = (INT) (a CMP b)
1009 # phi = PHI <p0 (P0), p1 (P1)>
1010 if (phi != 0) goto <Y>; else goto <Z>;
1012 Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
1013 And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
1015 Return true if E is (P0,X) or (P1,X) */
1018 edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e
)
1020 /* See if there is only one stmt which is gcond. */
1022 if (!(gs
= safe_dyn_cast
<gcond
*> (last_and_only_stmt (e
->dest
))))
1025 /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
1026 tree cond
= gimple_cond_lhs (gs
);
1027 enum tree_code code
= gimple_cond_code (gs
);
1028 tree rhs
= gimple_cond_rhs (gs
);
1029 if (TREE_CODE (cond
) != SSA_NAME
1030 || (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1031 || (!integer_onep (rhs
) && !integer_zerop (rhs
)))
1033 gphi
*phi
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (cond
));
1034 if (phi
== NULL
|| gimple_bb (phi
) != e
->dest
)
1037 /* Check if phi's incoming value is CMP. */
1039 tree value
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1040 if (TREE_CODE (value
) != SSA_NAME
1041 || !has_single_use (value
)
1042 || !(def
= dyn_cast
<gassign
*> (SSA_NAME_DEF_STMT (value
))))
1045 /* Or if it is (INT) (a CMP b). */
1046 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def
)))
1048 value
= gimple_assign_rhs1 (def
);
1049 if (TREE_CODE (value
) != SSA_NAME
1050 || !has_single_use (value
)
1051 || !(def
= dyn_cast
<gassign
*> (SSA_NAME_DEF_STMT (value
))))
1055 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) != tcc_comparison
)
1061 /* We are exiting E->src, see if E->dest ends with a conditional jump
1062 which has a known value when reached via E. If so, thread the
1066 jump_threader::thread_across_edge (edge e
)
1068 auto_bitmap visited
;
1074 vec
<jump_thread_edge
*> *path
= m_registry
->allocate_thread_path ();
1075 bitmap_set_bit (visited
, e
->src
->index
);
1076 bitmap_set_bit (visited
, e
->dest
->index
);
1079 if ((e
->flags
& EDGE_DFS_BACK
) == 0)
1080 threaded
= thread_through_normal_block (path
, e
, visited
);
1084 propagate_threaded_block_debug_into (path
->last ()->e
->dest
,
1086 m_registry
->register_jump_thread (path
);
1091 gcc_checking_assert (path
->length () == 0);
1096 /* The target block was deemed too big to duplicate. Just quit
1097 now rather than trying to use the block as a joiner in a jump
1100 This prevents unnecessary code growth, but more importantly if we
1101 do not look at all the statements in the block, then we may have
1102 missed some invalidations if we had traversed a backedge! */
1107 /* We were unable to determine what out edge from E->dest is taken. However,
1108 we might still be able to thread through successors of E->dest. This
1109 often occurs when E->dest is a joiner block which then fans back out
1110 based on redundant tests.
1112 If so, we'll copy E->dest and redirect the appropriate predecessor to
1113 the copy. Within the copy of E->dest, we'll thread one or more edges
1114 to points deeper in the CFG.
1116 This is a stopgap until we have a more structured approach to path
1123 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1124 we can safely redirect any of the edges. Just punt those cases. */
1125 FOR_EACH_EDGE (taken_edge
, ei
, e
->dest
->succs
)
1126 if (taken_edge
->flags
& EDGE_COMPLEX
)
1132 /* Look at each successor of E->dest to see if we can thread through it. */
1133 FOR_EACH_EDGE (taken_edge
, ei
, e
->dest
->succs
)
1135 if ((e
->flags
& EDGE_DFS_BACK
) != 0
1136 || (taken_edge
->flags
& EDGE_DFS_BACK
) != 0)
1139 m_state
->push (taken_edge
);
1141 /* Avoid threading to any block we have already visited. */
1142 bitmap_clear (visited
);
1143 bitmap_set_bit (visited
, e
->src
->index
);
1144 bitmap_set_bit (visited
, e
->dest
->index
);
1145 bitmap_set_bit (visited
, taken_edge
->dest
->index
);
1147 vec
<jump_thread_edge
*> *path
= m_registry
->allocate_thread_path ();
1148 m_registry
->push_edge (path
, e
, EDGE_START_JUMP_THREAD
);
1149 m_registry
->push_edge (path
, taken_edge
, EDGE_COPY_SRC_JOINER_BLOCK
);
1151 found
= thread_around_empty_blocks (path
, taken_edge
, visited
);
1154 found
= thread_through_normal_block (path
,
1155 path
->last ()->e
, visited
) > 0;
1157 /* If we were able to thread through a successor of E->dest, then
1158 record the jump threading opportunity. */
1160 || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e
))
1162 if (taken_edge
->dest
!= path
->last ()->e
->dest
)
1163 propagate_threaded_block_debug_into (path
->last ()->e
->dest
,
1165 m_registry
->register_jump_thread (path
);
1177 /* Return TRUE if BB has a single successor to a block with multiple
1178 incoming and outgoing edges. */
1181 single_succ_to_potentially_threadable_block (basic_block bb
)
1183 int flags
= (EDGE_IGNORE
| EDGE_COMPLEX
| EDGE_ABNORMAL
);
1184 return (single_succ_p (bb
)
1185 && (single_succ_edge (bb
)->flags
& flags
) == 0
1186 && potentially_threadable_block (single_succ (bb
)));
1189 /* Examine the outgoing edges from BB and conditionally
1190 try to thread them. */
1193 jump_threader::thread_outgoing_edges (basic_block bb
)
1195 int flags
= (EDGE_IGNORE
| EDGE_COMPLEX
| EDGE_ABNORMAL
);
1198 if (!flag_thread_jumps
)
1201 /* If we have an outgoing edge to a block with multiple incoming and
1202 outgoing edges, then we may be able to thread the edge, i.e., we
1203 may be able to statically determine which of the outgoing edges
1204 will be traversed when the incoming edge from BB is traversed. */
1205 if (single_succ_to_potentially_threadable_block (bb
))
1206 thread_across_edge (single_succ_edge (bb
));
1207 else if ((last
= last_stmt (bb
))
1208 && gimple_code (last
) == GIMPLE_COND
1209 && EDGE_COUNT (bb
->succs
) == 2
1210 && (EDGE_SUCC (bb
, 0)->flags
& flags
) == 0
1211 && (EDGE_SUCC (bb
, 1)->flags
& flags
) == 0)
1213 edge true_edge
, false_edge
;
1215 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1217 /* Only try to thread the edge if it reaches a target block with
1218 more than one predecessor and more than one successor. */
1219 if (potentially_threadable_block (true_edge
->dest
))
1220 thread_across_edge (true_edge
);
1222 /* Similarly for the ELSE arm. */
1223 if (potentially_threadable_block (false_edge
->dest
))
1224 thread_across_edge (false_edge
);
1228 // Marker to keep track of the start of the current path.
1229 const basic_block
jt_state::BB_MARKER
= (basic_block
) -1;
1231 // Record that E is being crossed.
1234 jt_state::push (edge e
)
1236 m_blocks
.safe_push (BB_MARKER
);
1237 if (m_blocks
.length () == 1)
1238 m_blocks
.safe_push (e
->src
);
1239 m_blocks
.safe_push (e
->dest
);
1242 // Pop to the last pushed state.
1247 if (!m_blocks
.is_empty ())
1249 while (m_blocks
.last () != BB_MARKER
)
1256 // Add BB to the list of blocks seen.
1259 jt_state::append_path (basic_block bb
)
1261 gcc_checking_assert (!m_blocks
.is_empty ());
1262 m_blocks
.safe_push (bb
);
1266 jt_state::dump (FILE *out
)
1268 if (!m_blocks
.is_empty ())
1270 auto_vec
<basic_block
> path
;
1272 dump_ranger (out
, path
);
1279 push_dump_file
save (stderr
, TDF_DETAILS
);
1283 // Convert the current path in jt_state into a path suitable for the
1284 // path solver. Return the resulting path in PATH.
1287 jt_state::get_path (vec
<basic_block
> &path
)
1291 for (int i
= (int) m_blocks
.length () - 1; i
>= 0; --i
)
1293 basic_block bb
= m_blocks
[i
];
1295 if (bb
!= BB_MARKER
)
1296 path
.safe_push (bb
);
1300 // Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE,
1301 // update the value range associated with DST.
1304 jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED
,
1305 tree src ATTRIBUTE_UNUSED
,
1306 bool update_range ATTRIBUTE_UNUSED
)
1310 // Record any ranges calculated in STMT. If TEMPORARY is TRUE, then
1311 // this is a temporary equivalence and should be recorded into the
1312 // unwind table, instead of the global table.
1315 jt_state::record_ranges_from_stmt (gimple
*,
1316 bool temporary ATTRIBUTE_UNUSED
)
1320 // Record any equivalences created by traversing E.
1323 jt_state::register_equivs_edge (edge
)
1328 jt_state::register_equivs_stmt (gimple
*stmt
, basic_block bb
,
1329 jt_simplifier
*simplifier
)
1331 /* At this point we have a statement which assigns an RHS to an
1332 SSA_VAR on the LHS. We want to try and simplify this statement
1333 to expose more context sensitive equivalences which in turn may
1334 allow us to simplify the condition at the end of the loop.
1336 Handle simple copy operations. */
1337 tree cached_lhs
= NULL
;
1338 if (gimple_assign_single_p (stmt
)
1339 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
1340 cached_lhs
= gimple_assign_rhs1 (stmt
);
1343 /* A statement that is not a trivial copy.
1344 Try to fold the new expression. Inserting the
1345 expression into the hash table is unlikely to help. */
1346 /* ??? The DOM callback below can be changed to setting
1347 the mprts_hook around the call to thread_across_edge,
1348 avoiding the use substitution. */
1349 cached_lhs
= gimple_fold_stmt_to_constant_1 (stmt
,
1350 threadedge_valueize
);
1351 if (NUM_SSA_OPERANDS (stmt
, SSA_OP_ALL_USES
) != 0
1353 || (TREE_CODE (cached_lhs
) != SSA_NAME
1354 && !is_gimple_min_invariant (cached_lhs
))))
1356 /* We're going to temporarily copy propagate the operands
1357 and see if that allows us to simplify this statement. */
1360 use_operand_p use_p
;
1361 unsigned int num
, i
= 0;
1363 num
= NUM_SSA_OPERANDS (stmt
, SSA_OP_ALL_USES
);
1364 copy
= XALLOCAVEC (tree
, num
);
1366 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
1368 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
1371 tree use
= USE_FROM_PTR (use_p
);
1374 if (TREE_CODE (use
) == SSA_NAME
)
1375 tmp
= SSA_NAME_VALUE (use
);
1377 SET_USE (use_p
, tmp
);
1380 /* Do not pass state to avoid calling the ranger with the
1381 temporarily altered IL. */
1382 cached_lhs
= simplifier
->simplify (stmt
, stmt
, bb
, /*state=*/NULL
);
1384 /* Restore the statement's original uses/defs. */
1386 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
1387 SET_USE (use_p
, copy
[i
++]);
1391 /* Record the context sensitive equivalence if we were able
1392 to simplify this statement. */
1394 && (TREE_CODE (cached_lhs
) == SSA_NAME
1395 || is_gimple_min_invariant (cached_lhs
)))
1396 register_equiv (gimple_get_lhs (stmt
), cached_lhs
,
1397 /*update_range=*/false);
1400 // Hybrid threader implementation.
1402 hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger
*r
,
1403 path_range_query
*q
)
1410 hybrid_jt_simplifier::simplify (gimple
*stmt
, gimple
*, basic_block
,
1413 auto_bitmap dependencies
;
1414 auto_vec
<basic_block
> path
;
1416 state
->get_path (path
);
1417 compute_exit_dependencies (dependencies
, path
, stmt
);
1418 m_query
->reset_path (path
, dependencies
);
1420 if (gimple_code (stmt
) == GIMPLE_COND
1421 || gimple_code (stmt
) == GIMPLE_ASSIGN
)
1423 Value_Range
r (gimple_range_type (stmt
));
1425 if (m_query
->range_of_stmt (r
, stmt
) && r
.singleton_p (&ret
))
1428 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1431 gswitch
*switch_stmt
= dyn_cast
<gswitch
*> (stmt
);
1432 tree index
= gimple_switch_index (switch_stmt
);
1433 if (m_query
->range_of_expr (r
, index
, stmt
))
1434 return find_case_label_range (switch_stmt
, &r
);
1439 // Calculate the set of exit dependencies for a path and statement to
1440 // be simplified. This is different than the
1441 // compute_exit_dependencies in the path solver because the forward
1442 // threader asks questions about statements not necessarily in the
1443 // path. Using the default compute_exit_dependencies in the path
1444 // solver gets noticeably less threads.
1447 hybrid_jt_simplifier::compute_exit_dependencies (bitmap dependencies
,
1448 const vec
<basic_block
> &path
,
1451 gori_compute
&gori
= m_ranger
->gori ();
1453 // Start with the imports to the final conditional.
1454 bitmap_copy (dependencies
, gori
.imports (path
[0]));
1456 // Add any other interesting operands we may have missed.
1457 if (gimple_bb (stmt
) != path
[0])
1459 for (unsigned i
= 0; i
< gimple_num_ops (stmt
); ++i
)
1461 tree op
= gimple_op (stmt
, i
);
1463 && TREE_CODE (op
) == SSA_NAME
1464 && Value_Range::supports_type_p (TREE_TYPE (op
)))
1465 bitmap_set_bit (dependencies
, SSA_NAME_VERSION (op
));