c++: top level bind when rewriting coroutines [PR106188]
[official-gcc.git] / gcc / function.cc
blob5498a712c4a1ed4c213d7a7c4506e1f25556623a
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 unsigned int
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return 0;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1360 return 0;
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1405 #ifndef STACK_DYNAMIC_OFFSET
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1437 rtx new_rtx;
1438 poly_int64 offset;
1440 if (x == virtual_incoming_args_rtx)
1442 if (stack_realign_drap)
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1472 else
1473 return NULL_RTX;
1475 *poffset = offset;
1476 return new_rtx;
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1507 iter.skip_subrtxes ();
1508 break;
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1527 default:
1528 break;
1532 return changed;
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1567 start_sequence ();
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1594 start_sequence ();
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1624 offset += delta;
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1658 else
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1671 case MEM:
1673 rtx addr = XEXP (x, 0);
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1699 break;
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1709 start_sequence ();
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1724 break;
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1746 default:
1747 continue;
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1755 start_sequence ();
1756 if (REG_P (x))
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1773 if (any_change)
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1786 if (!check_asm_operands (PATTERN (insn)))
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1803 else
1804 delete_insn (insn);
1807 else
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1817 void
1818 instantiate_decl_rtl (rtx x)
1820 rtx addr;
1822 if (x == 0)
1823 return;
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1842 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1843 return;
1845 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1848 /* Helper for instantiate_decls called via walk_tree: Process all decls
1849 in the given DECL_VALUE_EXPR. */
1851 static tree
1852 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1854 tree t = *tp;
1855 if (! EXPR_P (t))
1857 *walk_subtrees = 0;
1858 if (DECL_P (t))
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1863 && DECL_INCOMING_RTL (t))
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1865 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1866 && DECL_HAS_VALUE_EXPR_P (t))
1868 tree v = DECL_VALUE_EXPR (t);
1869 walk_tree (&v, instantiate_expr, NULL, NULL);
1873 return NULL;
1876 /* Subroutine of instantiate_decls: Process all decls in the given
1877 BLOCK node and all its subblocks. */
1879 static void
1880 instantiate_decls_1 (tree let)
1882 tree t;
1884 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1886 if (DECL_RTL_SET_P (t))
1887 instantiate_decl_rtl (DECL_RTL (t));
1888 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1890 tree v = DECL_VALUE_EXPR (t);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1895 /* Process all subblocks. */
1896 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1897 instantiate_decls_1 (t);
1900 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1901 all virtual registers in their DECL_RTL's. */
1903 static void
1904 instantiate_decls (tree fndecl)
1906 tree decl;
1907 unsigned ix;
1909 /* Process all parameters of the function. */
1910 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1912 instantiate_decl_rtl (DECL_RTL (decl));
1913 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1914 if (DECL_HAS_VALUE_EXPR_P (decl))
1916 tree v = DECL_VALUE_EXPR (decl);
1917 walk_tree (&v, instantiate_expr, NULL, NULL);
1921 if ((decl = DECL_RESULT (fndecl))
1922 && TREE_CODE (decl) == RESULT_DECL)
1924 if (DECL_RTL_SET_P (decl))
1925 instantiate_decl_rtl (DECL_RTL (decl));
1926 if (DECL_HAS_VALUE_EXPR_P (decl))
1928 tree v = DECL_VALUE_EXPR (decl);
1929 walk_tree (&v, instantiate_expr, NULL, NULL);
1933 /* Process the saved static chain if it exists. */
1934 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1935 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1938 /* Now process all variables defined in the function or its subblocks. */
1939 if (DECL_INITIAL (fndecl))
1940 instantiate_decls_1 (DECL_INITIAL (fndecl));
1942 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1943 if (DECL_RTL_SET_P (decl))
1944 instantiate_decl_rtl (DECL_RTL (decl));
1945 vec_free (cfun->local_decls);
1948 /* Pass through the INSNS of function FNDECL and convert virtual register
1949 references to hard register references. */
1951 static unsigned int
1952 instantiate_virtual_regs (void)
1954 rtx_insn *insn;
1956 /* Compute the offsets to use for this function. */
1957 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1958 var_offset = targetm.starting_frame_offset ();
1959 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1960 out_arg_offset = STACK_POINTER_OFFSET;
1961 #ifdef FRAME_POINTER_CFA_OFFSET
1962 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1963 #else
1964 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1965 #endif
1967 /* Initialize recognition, indicating that volatile is OK. */
1968 init_recog ();
1970 /* Scan through all the insns, instantiating every virtual register still
1971 present. */
1972 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1973 if (INSN_P (insn))
1975 /* These patterns in the instruction stream can never be recognized.
1976 Fortunately, they shouldn't contain virtual registers either. */
1977 if (GET_CODE (PATTERN (insn)) == USE
1978 || GET_CODE (PATTERN (insn)) == CLOBBER
1979 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1980 || DEBUG_MARKER_INSN_P (insn))
1981 continue;
1982 else if (DEBUG_BIND_INSN_P (insn))
1983 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1984 else
1985 instantiate_virtual_regs_in_insn (insn);
1987 if (insn->deleted ())
1988 continue;
1990 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1992 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1993 if (CALL_P (insn))
1994 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1997 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1998 instantiate_decls (current_function_decl);
2000 targetm.instantiate_decls ();
2002 /* Indicate that, from now on, assign_stack_local should use
2003 frame_pointer_rtx. */
2004 virtuals_instantiated = 1;
2006 return 0;
2009 namespace {
2011 const pass_data pass_data_instantiate_virtual_regs =
2013 RTL_PASS, /* type */
2014 "vregs", /* name */
2015 OPTGROUP_NONE, /* optinfo_flags */
2016 TV_NONE, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 0, /* todo_flags_finish */
2024 class pass_instantiate_virtual_regs : public rtl_opt_pass
2026 public:
2027 pass_instantiate_virtual_regs (gcc::context *ctxt)
2028 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2031 /* opt_pass methods: */
2032 unsigned int execute (function *) final override
2034 return instantiate_virtual_regs ();
2037 }; // class pass_instantiate_virtual_regs
2039 } // anon namespace
2041 rtl_opt_pass *
2042 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2044 return new pass_instantiate_virtual_regs (ctxt);
2048 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2049 This means a type for which function calls must pass an address to the
2050 function or get an address back from the function.
2051 EXP may be a type node or an expression (whose type is tested). */
2054 aggregate_value_p (const_tree exp, const_tree fntype)
2056 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2057 int i, regno, nregs;
2058 rtx reg;
2060 if (fntype)
2061 switch (TREE_CODE (fntype))
2063 case CALL_EXPR:
2065 tree fndecl = get_callee_fndecl (fntype);
2066 if (fndecl)
2067 fntype = TREE_TYPE (fndecl);
2068 else if (CALL_EXPR_FN (fntype))
2069 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2070 else
2071 /* For internal functions, assume nothing needs to be
2072 returned in memory. */
2073 return 0;
2075 break;
2076 case FUNCTION_DECL:
2077 fntype = TREE_TYPE (fntype);
2078 break;
2079 case FUNCTION_TYPE:
2080 case METHOD_TYPE:
2081 break;
2082 case IDENTIFIER_NODE:
2083 fntype = NULL_TREE;
2084 break;
2085 default:
2086 /* We don't expect other tree types here. */
2087 gcc_unreachable ();
2090 if (VOID_TYPE_P (type))
2091 return 0;
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2096 return aggregate_value_p (first_field (type), fntype);
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2101 && DECL_BY_REFERENCE (exp))
2102 return 1;
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype && TREE_ADDRESSABLE (fntype))
2106 return 1;
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type))
2111 return 1;
2113 if (TYPE_EMPTY_P (type))
2114 return 0;
2116 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2117 return 1;
2119 if (targetm.calls.return_in_memory (type, fntype))
2120 return 1;
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg = hard_function_value (type, 0, fntype, 0);
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2127 it is OK. */
2128 if (!REG_P (reg))
2129 return 0;
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi &abi = (fntype
2136 ? fntype_abi (fntype)
2137 : default_function_abi);
2138 regno = REGNO (reg);
2139 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2140 for (i = 0; i < nregs; i++)
2141 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2142 return 1;
2144 return 0;
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2150 bool
2151 use_register_for_decl (const_tree decl)
2153 if (TREE_CODE (decl) == SSA_NAME)
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl))
2171 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2172 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2174 decl = SSA_NAME_VAR (decl);
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl))
2179 return false;
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl))
2183 return false;
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl) == RESULT_DECL)
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl, current_function_decl))
2194 return true;
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun->returns_pcc_struct
2199 || (targetm.calls.struct_value_rtx
2200 (TREE_TYPE (current_function_decl), 1)))
2201 return DECL_BY_REFERENCE (decl);
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl))
2210 return false;
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2216 to test. */
2217 if (!targetm.calls.allocate_stack_slots_for_args ())
2218 return true;
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2220 if (optimize)
2221 return true;
2222 if (cfun->tail_call_marked)
2223 return true;
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2225 return false;
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl) == BLKmode)
2230 return false;
2232 /* If -ffloat-store specified, don't put explicit float variables
2233 into registers. */
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2237 return false;
2239 if (!targetm.calls.allocate_stack_slots_for_args ())
2240 return true;
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl))
2245 return true;
2247 if (optimize)
2248 return true;
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2253 return true;
2255 if (!DECL_REGISTER (decl))
2256 return false;
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2260 the debugger. */
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2262 return false;
2264 return true;
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2271 struct assign_parm_data_all
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v;
2276 cumulative_args_t args_so_far;
2277 struct args_size stack_args_size;
2278 tree function_result_decl;
2279 tree orig_fnargs;
2280 rtx_insn *first_conversion_insn;
2281 rtx_insn *last_conversion_insn;
2282 HOST_WIDE_INT pretend_args_size;
2283 HOST_WIDE_INT extra_pretend_bytes;
2284 int reg_parm_stack_space;
2287 struct assign_parm_data_one
2289 tree nominal_type;
2290 function_arg_info arg;
2291 rtx entry_parm;
2292 rtx stack_parm;
2293 machine_mode nominal_mode;
2294 machine_mode passed_mode;
2295 struct locate_and_pad_arg_data locate;
2296 int partial;
2299 /* A subroutine of assign_parms. Initialize ALL. */
2301 static void
2302 assign_parms_initialize_all (struct assign_parm_data_all *all)
2304 tree fntype ATTRIBUTE_UNUSED;
2306 memset (all, 0, sizeof (*all));
2308 fntype = TREE_TYPE (current_function_decl);
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2312 #else
2313 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2314 current_function_decl, -1);
2315 #endif
2316 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2321 #endif
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2328 static void
2329 split_complex_args (vec<tree> *args)
2331 unsigned i;
2332 tree p;
2334 FOR_EACH_VEC_ELT (*args, i, p)
2336 tree type = TREE_TYPE (p);
2337 if (TREE_CODE (type) == COMPLEX_TYPE
2338 && targetm.calls.split_complex_arg (type))
2340 tree decl;
2341 tree subtype = TREE_TYPE (type);
2342 bool addressable = TREE_ADDRESSABLE (p);
2344 /* Rewrite the PARM_DECL's type with its component. */
2345 p = copy_node (p);
2346 TREE_TYPE (p) = subtype;
2347 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2348 SET_DECL_MODE (p, VOIDmode);
2349 DECL_SIZE (p) = NULL;
2350 DECL_SIZE_UNIT (p) = NULL;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p) = addressable;
2356 DECL_IGNORED_P (p) = addressable;
2357 TREE_ADDRESSABLE (p) = 0;
2358 layout_decl (p, 0);
2359 (*args)[i] = p;
2361 /* Build a second synthetic decl. */
2362 decl = build_decl (EXPR_LOCATION (p),
2363 PARM_DECL, NULL_TREE, subtype);
2364 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2365 DECL_ARTIFICIAL (decl) = addressable;
2366 DECL_IGNORED_P (decl) = addressable;
2367 layout_decl (decl, 0);
2368 args->safe_insert (++i, decl);
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2377 static vec<tree>
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2380 tree fndecl = current_function_decl;
2381 tree fntype = TREE_TYPE (fndecl);
2382 vec<tree> fnargs = vNULL;
2383 tree arg;
2385 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2386 fnargs.safe_push (arg);
2388 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2392 && ! cfun->returns_pcc_struct
2393 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2395 tree type = build_pointer_type (TREE_TYPE (fntype));
2396 tree decl;
2398 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2399 PARM_DECL, get_identifier (".result_ptr"), type);
2400 DECL_ARG_TYPE (decl) = type;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2408 DECL_CHAIN (decl) = all->orig_fnargs;
2409 all->orig_fnargs = decl;
2410 fnargs.safe_insert (0, decl);
2412 all->function_result_decl = decl;
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm.calls.split_complex_arg)
2417 split_complex_args (&fnargs);
2419 return fnargs;
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2426 static void
2427 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2428 struct assign_parm_data_one *data)
2430 int unsignedp;
2432 #ifndef BROKEN_VALUE_INITIALIZATION
2433 *data = assign_parm_data_one ();
2434 #else
2435 /* Old versions of GCC used to miscompile the above by only initializing
2436 the members with explicit constructors and copying garbage
2437 to the other members. */
2438 assign_parm_data_one zero_data = {};
2439 *data = zero_data;
2440 #endif
2442 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2443 if (!cfun->stdarg)
2444 data->arg.named = 1; /* No variadic parms. */
2445 else if (DECL_CHAIN (parm))
2446 data->arg.named = 1; /* Not the last non-variadic parm. */
2447 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2448 data->arg.named = 1; /* Only variadic ones are unnamed. */
2449 else
2450 data->arg.named = 0; /* Treat as variadic. */
2452 data->nominal_type = TREE_TYPE (parm);
2453 data->arg.type = DECL_ARG_TYPE (parm);
2455 /* Look out for errors propagating this far. Also, if the parameter's
2456 type is void then its value doesn't matter. */
2457 if (TREE_TYPE (parm) == error_mark_node
2458 /* This can happen after weird syntax errors
2459 or if an enum type is defined among the parms. */
2460 || TREE_CODE (parm) != PARM_DECL
2461 || data->arg.type == NULL
2462 || VOID_TYPE_P (data->nominal_type))
2464 data->nominal_type = data->arg.type = void_type_node;
2465 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2466 return;
2469 /* Find mode of arg as it is passed, and mode of arg as it should be
2470 during execution of this function. */
2471 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2472 data->nominal_mode = TYPE_MODE (data->nominal_type);
2474 /* If the parm is to be passed as a transparent union or record, use the
2475 type of the first field for the tests below. We have already verified
2476 that the modes are the same. */
2477 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2478 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2479 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2481 /* See if this arg was passed by invisible reference. */
2482 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2484 data->nominal_type = data->arg.type;
2485 data->passed_mode = data->nominal_mode = data->arg.mode;
2488 /* Find mode as it is passed by the ABI. */
2489 unsignedp = TYPE_UNSIGNED (data->arg.type);
2490 data->arg.mode
2491 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2492 TREE_TYPE (current_function_decl), 0);
2495 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2497 static void
2498 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data, bool no_rtl)
2501 int varargs_pretend_bytes = 0;
2503 function_arg_info last_named_arg = data->arg;
2504 last_named_arg.named = true;
2505 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2506 &varargs_pretend_bytes, no_rtl);
2508 /* If the back-end has requested extra stack space, record how much is
2509 needed. Do not change pretend_args_size otherwise since it may be
2510 nonzero from an earlier partial argument. */
2511 if (varargs_pretend_bytes > 0)
2512 all->pretend_args_size = varargs_pretend_bytes;
2515 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2516 the incoming location of the current parameter. */
2518 static void
2519 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2522 HOST_WIDE_INT pretend_bytes = 0;
2523 rtx entry_parm;
2524 bool in_regs;
2526 if (data->arg.mode == VOIDmode)
2528 data->entry_parm = data->stack_parm = const0_rtx;
2529 return;
2532 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2533 data->arg.type);
2535 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2536 data->arg);
2537 if (entry_parm == 0)
2538 data->arg.mode = data->passed_mode;
2540 /* Determine parm's home in the stack, in case it arrives in the stack
2541 or we should pretend it did. Compute the stack position and rtx where
2542 the argument arrives and its size.
2544 There is one complexity here: If this was a parameter that would
2545 have been passed in registers, but wasn't only because it is
2546 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2547 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2548 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2549 as it was the previous time. */
2550 in_regs = (entry_parm != 0);
2551 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2552 in_regs = true;
2553 #endif
2554 if (!in_regs && !data->arg.named)
2556 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2558 rtx tem;
2559 function_arg_info named_arg = data->arg;
2560 named_arg.named = true;
2561 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2562 named_arg);
2563 in_regs = tem != NULL;
2567 /* If this parameter was passed both in registers and in the stack, use
2568 the copy on the stack. */
2569 if (targetm.calls.must_pass_in_stack (data->arg))
2570 entry_parm = 0;
2572 if (entry_parm)
2574 int partial;
2576 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2577 data->partial = partial;
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial != 0 && all->reg_parm_stack_space == 0)
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2602 pretend_bytes = partial;
2603 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all->extra_pretend_bytes = all->pretend_args_size;
2611 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2612 all->reg_parm_stack_space,
2613 entry_parm ? data->partial : 0, current_function_decl,
2614 &all->stack_args_size, &data->locate);
2616 /* Update parm_stack_boundary if this parameter is passed in the
2617 stack. */
2618 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2619 crtl->parm_stack_boundary = data->locate.boundary;
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2623 data->locate.slot_offset.constant += pretend_bytes;
2624 data->locate.offset.constant += pretend_bytes;
2626 data->entry_parm = entry_parm;
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2632 static bool
2633 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2634 struct assign_parm_data_one *data)
2636 /* Trivially true if we've no incoming register. */
2637 if (data->entry_parm == NULL)
2639 /* Also true if we're partially in registers and partially not,
2640 since we've arranged to drop the entire argument on the stack. */
2641 else if (data->partial != 0)
2643 /* Also true if the target says that it's passed in both registers
2644 and on the stack. */
2645 else if (GET_CODE (data->entry_parm) == PARALLEL
2646 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2648 /* Also true if the target says that there's stack allocated for
2649 all register parameters. */
2650 else if (all->reg_parm_stack_space > 0)
2652 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2653 else
2654 return false;
2656 all->stack_args_size.constant += data->locate.size.constant;
2657 if (data->locate.size.var)
2658 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2660 return true;
2663 /* A subroutine of assign_parms. Given that this parameter is allocated
2664 stack space by the ABI, find it. */
2666 static void
2667 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2669 rtx offset_rtx, stack_parm;
2670 unsigned int align, boundary;
2672 /* If we're passing this arg using a reg, make its stack home the
2673 aligned stack slot. */
2674 if (data->entry_parm)
2675 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2676 else
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2679 stack_parm = crtl->args.internal_arg_pointer;
2680 if (offset_rtx != const0_rtx)
2681 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2682 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2684 if (!data->arg.pass_by_reference)
2686 set_mem_attributes (stack_parm, parm, 1);
2687 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2688 while promoted mode's size is needed. */
2689 if (data->arg.mode != BLKmode
2690 && data->arg.mode != DECL_MODE (parm))
2692 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2693 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2695 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2696 data->arg.mode);
2697 if (maybe_ne (offset, 0))
2698 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2703 boundary = data->locate.boundary;
2704 align = BITS_PER_UNIT;
2706 /* If we're padding upward, we know that the alignment of the slot
2707 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2708 intentionally forcing upward padding. Otherwise we have to come
2709 up with a guess at the alignment based on OFFSET_RTX. */
2710 poly_int64 offset;
2711 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2712 align = boundary;
2713 else if (data->locate.where_pad == PAD_UPWARD)
2715 align = boundary;
2716 /* If the argument offset is actually more aligned than the nominal
2717 stack slot boundary, take advantage of that excess alignment.
2718 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2719 if (poly_int_rtx_p (offset_rtx, &offset)
2720 && known_eq (STACK_POINTER_OFFSET, 0))
2722 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2723 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2724 offset_align = STACK_BOUNDARY;
2725 align = MAX (align, offset_align);
2728 else if (poly_int_rtx_p (offset_rtx, &offset))
2730 align = least_bit_hwi (boundary);
2731 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2732 if (offset_align != 0)
2733 align = MIN (align, offset_align);
2735 set_mem_align (stack_parm, align);
2737 if (data->entry_parm)
2738 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2740 data->stack_parm = stack_parm;
2743 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2744 always valid and contiguous. */
2746 static void
2747 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2749 rtx entry_parm = data->entry_parm;
2750 rtx stack_parm = data->stack_parm;
2752 /* If this parm was passed part in regs and part in memory, pretend it
2753 arrived entirely in memory by pushing the register-part onto the stack.
2754 In the special case of a DImode or DFmode that is split, we could put
2755 it together in a pseudoreg directly, but for now that's not worth
2756 bothering with. */
2757 if (data->partial != 0)
2759 /* Handle calls that pass values in multiple non-contiguous
2760 locations. The Irix 6 ABI has examples of this. */
2761 if (GET_CODE (entry_parm) == PARALLEL)
2762 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2763 data->arg.type, int_size_in_bytes (data->arg.type));
2764 else
2766 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2767 move_block_from_reg (REGNO (entry_parm),
2768 validize_mem (copy_rtx (stack_parm)),
2769 data->partial / UNITS_PER_WORD);
2772 entry_parm = stack_parm;
2775 /* If we didn't decide this parm came in a register, by default it came
2776 on the stack. */
2777 else if (entry_parm == NULL)
2778 entry_parm = stack_parm;
2780 /* When an argument is passed in multiple locations, we can't make use
2781 of this information, but we can save some copying if the whole argument
2782 is passed in a single register. */
2783 else if (GET_CODE (entry_parm) == PARALLEL
2784 && data->nominal_mode != BLKmode
2785 && data->passed_mode != BLKmode)
2787 size_t i, len = XVECLEN (entry_parm, 0);
2789 for (i = 0; i < len; i++)
2790 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2791 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2792 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2793 == data->passed_mode)
2794 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2796 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2797 break;
2801 data->entry_parm = entry_parm;
2804 /* A subroutine of assign_parms. Reconstitute any values which were
2805 passed in multiple registers and would fit in a single register. */
2807 static void
2808 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2810 rtx entry_parm = data->entry_parm;
2812 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2813 This can be done with register operations rather than on the
2814 stack, even if we will store the reconstituted parameter on the
2815 stack later. */
2816 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2818 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2819 emit_group_store (parmreg, entry_parm, data->arg.type,
2820 GET_MODE_SIZE (GET_MODE (entry_parm)));
2821 entry_parm = parmreg;
2824 data->entry_parm = entry_parm;
2827 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2828 always valid and properly aligned. */
2830 static void
2831 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2833 rtx stack_parm = data->stack_parm;
2835 /* If we can't trust the parm stack slot to be aligned enough for its
2836 ultimate type, don't use that slot after entry. We'll make another
2837 stack slot, if we need one. */
2838 if (stack_parm
2839 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2840 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2841 != CODE_FOR_nothing)
2842 || targetm.slow_unaligned_access (data->nominal_mode,
2843 MEM_ALIGN (stack_parm))))
2844 || (data->nominal_type
2845 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2846 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2847 stack_parm = NULL;
2849 /* If parm was passed in memory, and we need to convert it on entry,
2850 don't store it back in that same slot. */
2851 else if (data->entry_parm == stack_parm
2852 && data->nominal_mode != BLKmode
2853 && data->nominal_mode != data->passed_mode)
2854 stack_parm = NULL;
2856 /* If stack protection is in effect for this function, don't leave any
2857 pointers in their passed stack slots. */
2858 else if (crtl->stack_protect_guard
2859 && (flag_stack_protect == SPCT_FLAG_ALL
2860 || data->arg.pass_by_reference
2861 || POINTER_TYPE_P (data->nominal_type)))
2862 stack_parm = NULL;
2864 data->stack_parm = stack_parm;
2867 /* A subroutine of assign_parms. Return true if the current parameter
2868 should be stored as a BLKmode in the current frame. */
2870 static bool
2871 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2873 if (data->nominal_mode == BLKmode)
2874 return true;
2875 if (GET_MODE (data->entry_parm) == BLKmode)
2876 return true;
2878 #ifdef BLOCK_REG_PADDING
2879 /* Only assign_parm_setup_block knows how to deal with register arguments
2880 that are padded at the least significant end. */
2881 if (REG_P (data->entry_parm)
2882 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2883 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2884 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2885 return true;
2886 #endif
2888 return false;
2891 /* A subroutine of assign_parms. Arrange for the parameter to be
2892 present and valid in DATA->STACK_RTL. */
2894 static void
2895 assign_parm_setup_block (struct assign_parm_data_all *all,
2896 tree parm, struct assign_parm_data_one *data)
2898 rtx entry_parm = data->entry_parm;
2899 rtx stack_parm = data->stack_parm;
2900 rtx target_reg = NULL_RTX;
2901 bool in_conversion_seq = false;
2902 HOST_WIDE_INT size;
2903 HOST_WIDE_INT size_stored;
2905 if (GET_CODE (entry_parm) == PARALLEL)
2906 entry_parm = emit_group_move_into_temps (entry_parm);
2908 /* If we want the parameter in a pseudo, don't use a stack slot. */
2909 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2911 tree def = ssa_default_def (cfun, parm);
2912 gcc_assert (def);
2913 machine_mode mode = promote_ssa_mode (def, NULL);
2914 rtx reg = gen_reg_rtx (mode);
2915 if (GET_CODE (reg) != CONCAT)
2916 stack_parm = reg;
2917 else
2919 target_reg = reg;
2920 /* Avoid allocating a stack slot, if there isn't one
2921 preallocated by the ABI. It might seem like we should
2922 always prefer a pseudo, but converting between
2923 floating-point and integer modes goes through the stack
2924 on various machines, so it's better to use the reserved
2925 stack slot than to risk wasting it and allocating more
2926 for the conversion. */
2927 if (stack_parm == NULL_RTX)
2929 int save = generating_concat_p;
2930 generating_concat_p = 0;
2931 stack_parm = gen_reg_rtx (mode);
2932 generating_concat_p = save;
2935 data->stack_parm = NULL;
2938 size = int_size_in_bytes (data->arg.type);
2939 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2940 if (stack_parm == 0)
2942 HOST_WIDE_INT parm_align
2943 = (STRICT_ALIGNMENT
2944 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2946 SET_DECL_ALIGN (parm, parm_align);
2947 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2949 rtx allocsize = gen_int_mode (size_stored, Pmode);
2950 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2951 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2952 MAX_SUPPORTED_STACK_ALIGNMENT);
2953 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2954 DECL_ALIGN (parm));
2955 mark_reg_pointer (addr, DECL_ALIGN (parm));
2956 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2957 MEM_NOTRAP_P (stack_parm) = 1;
2959 else
2960 stack_parm = assign_stack_local (BLKmode, size_stored,
2961 DECL_ALIGN (parm));
2962 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2963 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2964 set_mem_attributes (stack_parm, parm, 1);
2967 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2968 calls that pass values in multiple non-contiguous locations. */
2969 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2971 rtx mem;
2973 /* Note that we will be storing an integral number of words.
2974 So we have to be careful to ensure that we allocate an
2975 integral number of words. We do this above when we call
2976 assign_stack_local if space was not allocated in the argument
2977 list. If it was, this will not work if PARM_BOUNDARY is not
2978 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2979 if it becomes a problem. Exception is when BLKmode arrives
2980 with arguments not conforming to word_mode. */
2982 if (data->stack_parm == 0)
2984 else if (GET_CODE (entry_parm) == PARALLEL)
2986 else
2987 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2989 mem = validize_mem (copy_rtx (stack_parm));
2991 /* Handle values in multiple non-contiguous locations. */
2992 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2993 emit_group_store (mem, entry_parm, data->arg.type, size);
2994 else if (GET_CODE (entry_parm) == PARALLEL)
2996 push_to_sequence2 (all->first_conversion_insn,
2997 all->last_conversion_insn);
2998 emit_group_store (mem, entry_parm, data->arg.type, size);
2999 all->first_conversion_insn = get_insns ();
3000 all->last_conversion_insn = get_last_insn ();
3001 end_sequence ();
3002 in_conversion_seq = true;
3005 else if (size == 0)
3008 /* If SIZE is that of a mode no bigger than a word, just use
3009 that mode's store operation. */
3010 else if (size <= UNITS_PER_WORD)
3012 unsigned int bits = size * BITS_PER_UNIT;
3013 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3015 if (mode != BLKmode
3016 #ifdef BLOCK_REG_PADDING
3017 && (size == UNITS_PER_WORD
3018 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3019 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3020 #endif
3023 rtx reg;
3025 /* We are really truncating a word_mode value containing
3026 SIZE bytes into a value of mode MODE. If such an
3027 operation requires no actual instructions, we can refer
3028 to the value directly in mode MODE, otherwise we must
3029 start with the register in word_mode and explicitly
3030 convert it. */
3031 if (mode == word_mode
3032 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3033 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3034 else
3036 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3037 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3040 /* We use adjust_address to get a new MEM with the mode
3041 changed. adjust_address is better than change_address
3042 for this purpose because adjust_address does not lose
3043 the MEM_EXPR associated with the MEM.
3045 If the MEM_EXPR is lost, then optimizations like DSE
3046 assume the MEM escapes and thus is not subject to DSE. */
3047 emit_move_insn (adjust_address (mem, mode, 0), reg);
3050 #ifdef BLOCK_REG_PADDING
3051 /* Storing the register in memory as a full word, as
3052 move_block_from_reg below would do, and then using the
3053 MEM in a smaller mode, has the effect of shifting right
3054 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3055 shifting must be explicit. */
3056 else if (!MEM_P (mem))
3058 rtx x;
3060 /* If the assert below fails, we should have taken the
3061 mode != BLKmode path above, unless we have downward
3062 padding of smaller-than-word arguments on a machine
3063 with little-endian bytes, which would likely require
3064 additional changes to work correctly. */
3065 gcc_checking_assert (BYTES_BIG_ENDIAN
3066 && (BLOCK_REG_PADDING (mode,
3067 data->arg.type, 1)
3068 == PAD_UPWARD));
3070 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3072 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3073 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3074 NULL_RTX, 1);
3075 x = force_reg (word_mode, x);
3076 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3078 emit_move_insn (mem, x);
3080 #endif
3082 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3083 machine must be aligned to the left before storing
3084 to memory. Note that the previous test doesn't
3085 handle all cases (e.g. SIZE == 3). */
3086 else if (size != UNITS_PER_WORD
3087 #ifdef BLOCK_REG_PADDING
3088 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3089 == PAD_DOWNWARD)
3090 #else
3091 && BYTES_BIG_ENDIAN
3092 #endif
3095 rtx tem, x;
3096 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3097 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3099 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3100 tem = change_address (mem, word_mode, 0);
3101 emit_move_insn (tem, x);
3103 else
3104 move_block_from_reg (REGNO (entry_parm), mem,
3105 size_stored / UNITS_PER_WORD);
3107 else if (!MEM_P (mem))
3109 gcc_checking_assert (size > UNITS_PER_WORD);
3110 #ifdef BLOCK_REG_PADDING
3111 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3112 data->arg.type, 0)
3113 == PAD_UPWARD);
3114 #endif
3115 emit_move_insn (mem, entry_parm);
3117 else
3118 move_block_from_reg (REGNO (entry_parm), mem,
3119 size_stored / UNITS_PER_WORD);
3121 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3123 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3124 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3125 BLOCK_OP_NORMAL);
3126 all->first_conversion_insn = get_insns ();
3127 all->last_conversion_insn = get_last_insn ();
3128 end_sequence ();
3129 in_conversion_seq = true;
3132 if (target_reg)
3134 if (!in_conversion_seq)
3135 emit_move_insn (target_reg, stack_parm);
3136 else
3138 push_to_sequence2 (all->first_conversion_insn,
3139 all->last_conversion_insn);
3140 emit_move_insn (target_reg, stack_parm);
3141 all->first_conversion_insn = get_insns ();
3142 all->last_conversion_insn = get_last_insn ();
3143 end_sequence ();
3145 stack_parm = target_reg;
3148 data->stack_parm = stack_parm;
3149 set_parm_rtl (parm, stack_parm);
3152 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3153 parameter. Get it there. Perform all ABI specified conversions. */
3155 static void
3156 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3157 struct assign_parm_data_one *data)
3159 rtx parmreg, validated_mem;
3160 rtx equiv_stack_parm;
3161 machine_mode promoted_nominal_mode;
3162 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3163 bool did_conversion = false;
3164 bool need_conversion, moved;
3165 enum insn_code icode;
3166 rtx rtl;
3168 /* Store the parm in a pseudoregister during the function, but we may
3169 need to do it in a wider mode. Using 2 here makes the result
3170 consistent with promote_decl_mode and thus expand_expr_real_1. */
3171 promoted_nominal_mode
3172 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3173 TREE_TYPE (current_function_decl), 2);
3175 parmreg = gen_reg_rtx (promoted_nominal_mode);
3176 if (!DECL_ARTIFICIAL (parm))
3177 mark_user_reg (parmreg);
3179 /* If this was an item that we received a pointer to,
3180 set rtl appropriately. */
3181 if (data->arg.pass_by_reference)
3183 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3184 set_mem_attributes (rtl, parm, 1);
3186 else
3187 rtl = parmreg;
3189 assign_parm_remove_parallels (data);
3191 /* Copy the value into the register, thus bridging between
3192 assign_parm_find_data_types and expand_expr_real_1. */
3194 equiv_stack_parm = data->stack_parm;
3195 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3197 need_conversion = (data->nominal_mode != data->passed_mode
3198 || promoted_nominal_mode != data->arg.mode);
3199 moved = false;
3201 if (need_conversion
3202 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3203 && data->nominal_mode == data->passed_mode
3204 && data->nominal_mode == GET_MODE (data->entry_parm))
3206 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3207 mode, by the caller. We now have to convert it to
3208 NOMINAL_MODE, if different. However, PARMREG may be in
3209 a different mode than NOMINAL_MODE if it is being stored
3210 promoted.
3212 If ENTRY_PARM is a hard register, it might be in a register
3213 not valid for operating in its mode (e.g., an odd-numbered
3214 register for a DFmode). In that case, moves are the only
3215 thing valid, so we can't do a convert from there. This
3216 occurs when the calling sequence allow such misaligned
3217 usages.
3219 In addition, the conversion may involve a call, which could
3220 clobber parameters which haven't been copied to pseudo
3221 registers yet.
3223 First, we try to emit an insn which performs the necessary
3224 conversion. We verify that this insn does not clobber any
3225 hard registers. */
3227 rtx op0, op1;
3229 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3230 unsignedp);
3232 op0 = parmreg;
3233 op1 = validated_mem;
3234 if (icode != CODE_FOR_nothing
3235 && insn_operand_matches (icode, 0, op0)
3236 && insn_operand_matches (icode, 1, op1))
3238 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3239 rtx_insn *insn, *insns;
3240 rtx t = op1;
3241 HARD_REG_SET hardregs;
3243 start_sequence ();
3244 /* If op1 is a hard register that is likely spilled, first
3245 force it into a pseudo, otherwise combiner might extend
3246 its lifetime too much. */
3247 if (GET_CODE (t) == SUBREG)
3248 t = SUBREG_REG (t);
3249 if (REG_P (t)
3250 && HARD_REGISTER_P (t)
3251 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3252 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3254 t = gen_reg_rtx (GET_MODE (op1));
3255 emit_move_insn (t, op1);
3257 else
3258 t = op1;
3259 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3260 data->passed_mode, unsignedp);
3261 emit_insn (pat);
3262 insns = get_insns ();
3264 moved = true;
3265 CLEAR_HARD_REG_SET (hardregs);
3266 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3268 if (INSN_P (insn))
3269 note_stores (insn, record_hard_reg_sets, &hardregs);
3270 if (!hard_reg_set_empty_p (hardregs))
3271 moved = false;
3274 end_sequence ();
3276 if (moved)
3278 emit_insn (insns);
3279 if (equiv_stack_parm != NULL_RTX)
3280 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3281 equiv_stack_parm);
3286 if (moved)
3287 /* Nothing to do. */
3289 else if (need_conversion)
3291 /* We did not have an insn to convert directly, or the sequence
3292 generated appeared unsafe. We must first copy the parm to a
3293 pseudo reg, and save the conversion until after all
3294 parameters have been moved. */
3296 int save_tree_used;
3297 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3299 emit_move_insn (tempreg, validated_mem);
3301 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3302 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3304 if (partial_subreg_p (tempreg)
3305 && GET_MODE (tempreg) == data->nominal_mode
3306 && REG_P (SUBREG_REG (tempreg))
3307 && data->nominal_mode == data->passed_mode
3308 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3310 /* The argument is already sign/zero extended, so note it
3311 into the subreg. */
3312 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3313 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3316 /* TREE_USED gets set erroneously during expand_assignment. */
3317 save_tree_used = TREE_USED (parm);
3318 SET_DECL_RTL (parm, rtl);
3319 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3320 SET_DECL_RTL (parm, NULL_RTX);
3321 TREE_USED (parm) = save_tree_used;
3322 all->first_conversion_insn = get_insns ();
3323 all->last_conversion_insn = get_last_insn ();
3324 end_sequence ();
3326 did_conversion = true;
3328 else if (MEM_P (data->entry_parm)
3329 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3330 > MEM_ALIGN (data->entry_parm)
3331 && (((icode = optab_handler (movmisalign_optab,
3332 promoted_nominal_mode))
3333 != CODE_FOR_nothing)
3334 || targetm.slow_unaligned_access (promoted_nominal_mode,
3335 MEM_ALIGN (data->entry_parm))))
3337 if (icode != CODE_FOR_nothing)
3338 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3339 else
3340 rtl = parmreg = extract_bit_field (validated_mem,
3341 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3342 unsignedp, parmreg,
3343 promoted_nominal_mode, VOIDmode, false, NULL);
3345 else
3346 emit_move_insn (parmreg, validated_mem);
3348 /* If we were passed a pointer but the actual value can live in a register,
3349 retrieve it and use it directly. Note that we cannot use nominal_mode,
3350 because it will have been set to Pmode above, we must use the actual mode
3351 of the parameter instead. */
3352 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3354 /* Use a stack slot for debugging purposes if possible. */
3355 if (use_register_for_decl (parm))
3357 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3358 mark_user_reg (parmreg);
3360 else
3362 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3363 TYPE_MODE (TREE_TYPE (parm)),
3364 TYPE_ALIGN (TREE_TYPE (parm)));
3365 parmreg
3366 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3367 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3368 align);
3369 set_mem_attributes (parmreg, parm, 1);
3372 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3373 the debug info in case it is not legitimate. */
3374 if (GET_MODE (parmreg) != GET_MODE (rtl))
3376 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3377 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3379 push_to_sequence2 (all->first_conversion_insn,
3380 all->last_conversion_insn);
3381 emit_move_insn (tempreg, rtl);
3382 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3383 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3384 tempreg);
3385 all->first_conversion_insn = get_insns ();
3386 all->last_conversion_insn = get_last_insn ();
3387 end_sequence ();
3389 did_conversion = true;
3391 else
3392 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3394 rtl = parmreg;
3396 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3397 now the parm. */
3398 data->stack_parm = NULL;
3401 set_parm_rtl (parm, rtl);
3403 /* Mark the register as eliminable if we did no conversion and it was
3404 copied from memory at a fixed offset, and the arg pointer was not
3405 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3406 offset formed an invalid address, such memory-equivalences as we
3407 make here would screw up life analysis for it. */
3408 if (data->nominal_mode == data->passed_mode
3409 && !did_conversion
3410 && data->stack_parm != 0
3411 && MEM_P (data->stack_parm)
3412 && data->locate.offset.var == 0
3413 && reg_mentioned_p (virtual_incoming_args_rtx,
3414 XEXP (data->stack_parm, 0)))
3416 rtx_insn *linsn = get_last_insn ();
3417 rtx_insn *sinsn;
3418 rtx set;
3420 /* Mark complex types separately. */
3421 if (GET_CODE (parmreg) == CONCAT)
3423 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3424 int regnor = REGNO (XEXP (parmreg, 0));
3425 int regnoi = REGNO (XEXP (parmreg, 1));
3426 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3427 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3428 GET_MODE_SIZE (submode));
3430 /* Scan backwards for the set of the real and
3431 imaginary parts. */
3432 for (sinsn = linsn; sinsn != 0;
3433 sinsn = prev_nonnote_insn (sinsn))
3435 set = single_set (sinsn);
3436 if (set == 0)
3437 continue;
3439 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3440 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3441 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3445 else
3446 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3449 /* For pointer data type, suggest pointer register. */
3450 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3451 mark_reg_pointer (parmreg,
3452 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3455 /* A subroutine of assign_parms. Allocate stack space to hold the current
3456 parameter. Get it there. Perform all ABI specified conversions. */
3458 static void
3459 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3460 struct assign_parm_data_one *data)
3462 /* Value must be stored in the stack slot STACK_PARM during function
3463 execution. */
3464 bool to_conversion = false;
3466 assign_parm_remove_parallels (data);
3468 if (data->arg.mode != data->nominal_mode)
3470 /* Conversion is required. */
3471 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3473 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3475 /* Some ABIs require scalar floating point modes to be passed
3476 in a wider scalar integer mode. We need to explicitly
3477 truncate to an integer mode of the correct precision before
3478 using a SUBREG to reinterpret as a floating point value. */
3479 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3480 && SCALAR_INT_MODE_P (data->arg.mode)
3481 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3482 GET_MODE_SIZE (data->arg.mode)))
3483 tempreg = convert_wider_int_to_float (data->nominal_mode,
3484 data->arg.mode, tempreg);
3486 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3487 to_conversion = true;
3489 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3490 TYPE_UNSIGNED (TREE_TYPE (parm)));
3492 if (data->stack_parm)
3494 poly_int64 offset
3495 = subreg_lowpart_offset (data->nominal_mode,
3496 GET_MODE (data->stack_parm));
3497 /* ??? This may need a big-endian conversion on sparc64. */
3498 data->stack_parm
3499 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3500 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3501 set_mem_offset (data->stack_parm,
3502 MEM_OFFSET (data->stack_parm) + offset);
3506 if (data->entry_parm != data->stack_parm)
3508 rtx src, dest;
3510 if (data->stack_parm == 0)
3512 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3513 GET_MODE (data->entry_parm),
3514 TYPE_ALIGN (data->arg.type));
3515 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3516 && ((optab_handler (movmisalign_optab,
3517 GET_MODE (data->entry_parm))
3518 != CODE_FOR_nothing)
3519 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3520 align)))
3521 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3522 data->stack_parm
3523 = assign_stack_local (GET_MODE (data->entry_parm),
3524 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3525 align);
3526 align = MEM_ALIGN (data->stack_parm);
3527 set_mem_attributes (data->stack_parm, parm, 1);
3528 set_mem_align (data->stack_parm, align);
3531 dest = validize_mem (copy_rtx (data->stack_parm));
3532 src = validize_mem (copy_rtx (data->entry_parm));
3534 if (TYPE_EMPTY_P (data->arg.type))
3535 /* Empty types don't really need to be copied. */;
3536 else if (MEM_P (src))
3538 /* Use a block move to handle potentially misaligned entry_parm. */
3539 if (!to_conversion)
3540 push_to_sequence2 (all->first_conversion_insn,
3541 all->last_conversion_insn);
3542 to_conversion = true;
3544 emit_block_move (dest, src,
3545 GEN_INT (int_size_in_bytes (data->arg.type)),
3546 BLOCK_OP_NORMAL);
3548 else
3550 if (!REG_P (src))
3551 src = force_reg (GET_MODE (src), src);
3552 emit_move_insn (dest, src);
3556 if (to_conversion)
3558 all->first_conversion_insn = get_insns ();
3559 all->last_conversion_insn = get_last_insn ();
3560 end_sequence ();
3563 set_parm_rtl (parm, data->stack_parm);
3566 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3567 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3569 static void
3570 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3571 vec<tree> fnargs)
3573 tree parm;
3574 tree orig_fnargs = all->orig_fnargs;
3575 unsigned i = 0;
3577 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3579 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3580 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3582 rtx tmp, real, imag;
3583 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3585 real = DECL_RTL (fnargs[i]);
3586 imag = DECL_RTL (fnargs[i + 1]);
3587 if (inner != GET_MODE (real))
3589 real = gen_lowpart_SUBREG (inner, real);
3590 imag = gen_lowpart_SUBREG (inner, imag);
3593 if (TREE_ADDRESSABLE (parm))
3595 rtx rmem, imem;
3596 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3597 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3598 DECL_MODE (parm),
3599 TYPE_ALIGN (TREE_TYPE (parm)));
3601 /* split_complex_arg put the real and imag parts in
3602 pseudos. Move them to memory. */
3603 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3604 set_mem_attributes (tmp, parm, 1);
3605 rmem = adjust_address_nv (tmp, inner, 0);
3606 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3607 push_to_sequence2 (all->first_conversion_insn,
3608 all->last_conversion_insn);
3609 emit_move_insn (rmem, real);
3610 emit_move_insn (imem, imag);
3611 all->first_conversion_insn = get_insns ();
3612 all->last_conversion_insn = get_last_insn ();
3613 end_sequence ();
3615 else
3616 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3617 set_parm_rtl (parm, tmp);
3619 real = DECL_INCOMING_RTL (fnargs[i]);
3620 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3621 if (inner != GET_MODE (real))
3623 real = gen_lowpart_SUBREG (inner, real);
3624 imag = gen_lowpart_SUBREG (inner, imag);
3626 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3627 set_decl_incoming_rtl (parm, tmp, false);
3628 i++;
3633 /* Assign RTL expressions to the function's parameters. This may involve
3634 copying them into registers and using those registers as the DECL_RTL. */
3636 static void
3637 assign_parms (tree fndecl)
3639 struct assign_parm_data_all all;
3640 tree parm;
3641 vec<tree> fnargs;
3642 unsigned i;
3644 crtl->args.internal_arg_pointer
3645 = targetm.calls.internal_arg_pointer ();
3647 assign_parms_initialize_all (&all);
3648 fnargs = assign_parms_augmented_arg_list (&all);
3650 FOR_EACH_VEC_ELT (fnargs, i, parm)
3652 struct assign_parm_data_one data;
3654 /* Extract the type of PARM; adjust it according to ABI. */
3655 assign_parm_find_data_types (&all, parm, &data);
3657 /* Early out for errors and void parameters. */
3658 if (data.passed_mode == VOIDmode)
3660 SET_DECL_RTL (parm, const0_rtx);
3661 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3662 continue;
3665 /* Estimate stack alignment from parameter alignment. */
3666 if (SUPPORTS_STACK_ALIGNMENT)
3668 unsigned int align
3669 = targetm.calls.function_arg_boundary (data.arg.mode,
3670 data.arg.type);
3671 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3672 if (TYPE_ALIGN (data.nominal_type) > align)
3673 align = MINIMUM_ALIGNMENT (data.nominal_type,
3674 TYPE_MODE (data.nominal_type),
3675 TYPE_ALIGN (data.nominal_type));
3676 if (crtl->stack_alignment_estimated < align)
3678 gcc_assert (!crtl->stack_realign_processed);
3679 crtl->stack_alignment_estimated = align;
3683 /* Find out where the parameter arrives in this function. */
3684 assign_parm_find_entry_rtl (&all, &data);
3686 /* Find out where stack space for this parameter might be. */
3687 if (assign_parm_is_stack_parm (&all, &data))
3689 assign_parm_find_stack_rtl (parm, &data);
3690 assign_parm_adjust_entry_rtl (&data);
3691 /* For arguments that occupy no space in the parameter
3692 passing area, have non-zero size and have address taken,
3693 force creation of a stack slot so that they have distinct
3694 address from other parameters. */
3695 if (TYPE_EMPTY_P (data.arg.type)
3696 && TREE_ADDRESSABLE (parm)
3697 && data.entry_parm == data.stack_parm
3698 && MEM_P (data.entry_parm)
3699 && int_size_in_bytes (data.arg.type))
3700 data.stack_parm = NULL_RTX;
3702 /* Record permanently how this parm was passed. */
3703 if (data.arg.pass_by_reference)
3705 rtx incoming_rtl
3706 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3707 data.entry_parm);
3708 set_decl_incoming_rtl (parm, incoming_rtl, true);
3710 else
3711 set_decl_incoming_rtl (parm, data.entry_parm, false);
3713 assign_parm_adjust_stack_rtl (&data);
3715 if (assign_parm_setup_block_p (&data))
3716 assign_parm_setup_block (&all, parm, &data);
3717 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3718 assign_parm_setup_reg (&all, parm, &data);
3719 else
3720 assign_parm_setup_stack (&all, parm, &data);
3722 if (cfun->stdarg && !DECL_CHAIN (parm))
3723 assign_parms_setup_varargs (&all, &data, false);
3725 /* Update info on where next arg arrives in registers. */
3726 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3729 if (targetm.calls.split_complex_arg)
3730 assign_parms_unsplit_complex (&all, fnargs);
3732 fnargs.release ();
3734 /* Output all parameter conversion instructions (possibly including calls)
3735 now that all parameters have been copied out of hard registers. */
3736 emit_insn (all.first_conversion_insn);
3738 /* Estimate reload stack alignment from scalar return mode. */
3739 if (SUPPORTS_STACK_ALIGNMENT)
3741 if (DECL_RESULT (fndecl))
3743 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3744 machine_mode mode = TYPE_MODE (type);
3746 if (mode != BLKmode
3747 && mode != VOIDmode
3748 && !AGGREGATE_TYPE_P (type))
3750 unsigned int align = GET_MODE_ALIGNMENT (mode);
3751 if (crtl->stack_alignment_estimated < align)
3753 gcc_assert (!crtl->stack_realign_processed);
3754 crtl->stack_alignment_estimated = align;
3760 /* If we are receiving a struct value address as the first argument, set up
3761 the RTL for the function result. As this might require code to convert
3762 the transmitted address to Pmode, we do this here to ensure that possible
3763 preliminary conversions of the address have been emitted already. */
3764 if (all.function_result_decl)
3766 tree result = DECL_RESULT (current_function_decl);
3767 rtx addr = DECL_RTL (all.function_result_decl);
3768 rtx x;
3770 if (DECL_BY_REFERENCE (result))
3772 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3773 x = addr;
3775 else
3777 SET_DECL_VALUE_EXPR (result,
3778 build1 (INDIRECT_REF, TREE_TYPE (result),
3779 all.function_result_decl));
3780 addr = convert_memory_address (Pmode, addr);
3781 x = gen_rtx_MEM (DECL_MODE (result), addr);
3782 set_mem_attributes (x, result, 1);
3785 DECL_HAS_VALUE_EXPR_P (result) = 1;
3787 set_parm_rtl (result, x);
3790 /* We have aligned all the args, so add space for the pretend args. */
3791 crtl->args.pretend_args_size = all.pretend_args_size;
3792 all.stack_args_size.constant += all.extra_pretend_bytes;
3793 crtl->args.size = all.stack_args_size.constant;
3795 /* Adjust function incoming argument size for alignment and
3796 minimum length. */
3798 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3799 crtl->args.size = aligned_upper_bound (crtl->args.size,
3800 PARM_BOUNDARY / BITS_PER_UNIT);
3802 if (ARGS_GROW_DOWNWARD)
3804 crtl->args.arg_offset_rtx
3805 = (all.stack_args_size.var == 0
3806 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3807 : expand_expr (size_diffop (all.stack_args_size.var,
3808 size_int (-all.stack_args_size.constant)),
3809 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3811 else
3812 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3814 /* See how many bytes, if any, of its args a function should try to pop
3815 on return. */
3817 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3818 TREE_TYPE (fndecl),
3819 crtl->args.size);
3821 /* For stdarg.h function, save info about
3822 regs and stack space used by the named args. */
3824 crtl->args.info = all.args_so_far_v;
3826 /* Set the rtx used for the function return value. Put this in its
3827 own variable so any optimizers that need this information don't have
3828 to include tree.h. Do this here so it gets done when an inlined
3829 function gets output. */
3831 crtl->return_rtx
3832 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3833 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3835 /* If scalar return value was computed in a pseudo-reg, or was a named
3836 return value that got dumped to the stack, copy that to the hard
3837 return register. */
3838 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3840 tree decl_result = DECL_RESULT (fndecl);
3841 rtx decl_rtl = DECL_RTL (decl_result);
3843 if (REG_P (decl_rtl)
3844 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3845 : DECL_REGISTER (decl_result))
3847 rtx real_decl_rtl;
3849 /* Unless the psABI says not to. */
3850 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3851 real_decl_rtl = NULL_RTX;
3852 else
3854 real_decl_rtl
3855 = targetm.calls.function_value (TREE_TYPE (decl_result),
3856 fndecl, true);
3857 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3859 /* The delay slot scheduler assumes that crtl->return_rtx
3860 holds the hard register containing the return value, not a
3861 temporary pseudo. */
3862 crtl->return_rtx = real_decl_rtl;
3867 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3868 For all seen types, gimplify their sizes. */
3870 static tree
3871 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3873 tree t = *tp;
3875 *walk_subtrees = 0;
3876 if (TYPE_P (t))
3878 if (POINTER_TYPE_P (t))
3879 *walk_subtrees = 1;
3880 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3881 && !TYPE_SIZES_GIMPLIFIED (t))
3883 gimplify_type_sizes (t, (gimple_seq *) data);
3884 *walk_subtrees = 1;
3888 return NULL;
3891 /* Gimplify the parameter list for current_function_decl. This involves
3892 evaluating SAVE_EXPRs of variable sized parameters and generating code
3893 to implement callee-copies reference parameters. Returns a sequence of
3894 statements to add to the beginning of the function. */
3896 gimple_seq
3897 gimplify_parameters (gimple_seq *cleanup)
3899 struct assign_parm_data_all all;
3900 tree parm;
3901 gimple_seq stmts = NULL;
3902 vec<tree> fnargs;
3903 unsigned i;
3905 assign_parms_initialize_all (&all);
3906 fnargs = assign_parms_augmented_arg_list (&all);
3908 FOR_EACH_VEC_ELT (fnargs, i, parm)
3910 struct assign_parm_data_one data;
3912 /* Extract the type of PARM; adjust it according to ABI. */
3913 assign_parm_find_data_types (&all, parm, &data);
3915 /* Early out for errors and void parameters. */
3916 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3917 continue;
3919 /* Update info on where next arg arrives in registers. */
3920 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3922 /* ??? Once upon a time variable_size stuffed parameter list
3923 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3924 turned out to be less than manageable in the gimple world.
3925 Now we have to hunt them down ourselves. */
3926 walk_tree_without_duplicates (&data.arg.type,
3927 gimplify_parm_type, &stmts);
3929 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3931 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3932 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3935 if (data.arg.pass_by_reference)
3937 tree type = TREE_TYPE (data.arg.type);
3938 function_arg_info orig_arg (type, data.arg.named);
3939 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3941 tree local, t;
3943 /* For constant-sized objects, this is trivial; for
3944 variable-sized objects, we have to play games. */
3945 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3946 && !(flag_stack_check == GENERIC_STACK_CHECK
3947 && compare_tree_int (DECL_SIZE_UNIT (parm),
3948 STACK_CHECK_MAX_VAR_SIZE) > 0))
3950 local = create_tmp_var (type, get_name (parm));
3951 DECL_IGNORED_P (local) = 0;
3952 /* If PARM was addressable, move that flag over
3953 to the local copy, as its address will be taken,
3954 not the PARMs. Keep the parms address taken
3955 as we'll query that flag during gimplification. */
3956 if (TREE_ADDRESSABLE (parm))
3957 TREE_ADDRESSABLE (local) = 1;
3958 if (DECL_NOT_GIMPLE_REG_P (parm))
3959 DECL_NOT_GIMPLE_REG_P (local) = 1;
3961 if (!is_gimple_reg (local)
3962 && flag_stack_reuse != SR_NONE)
3964 tree clobber = build_clobber (type);
3965 gimple *clobber_stmt;
3966 clobber_stmt = gimple_build_assign (local, clobber);
3967 gimple_seq_add_stmt (cleanup, clobber_stmt);
3970 else
3972 tree ptr_type, addr;
3974 ptr_type = build_pointer_type (type);
3975 addr = create_tmp_reg (ptr_type, get_name (parm));
3976 DECL_IGNORED_P (addr) = 0;
3977 local = build_fold_indirect_ref (addr);
3979 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3980 DECL_ALIGN (parm),
3981 max_int_size_in_bytes (type));
3982 /* The call has been built for a variable-sized object. */
3983 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3984 t = fold_convert (ptr_type, t);
3985 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3986 gimplify_and_add (t, &stmts);
3989 gimplify_assign (local, parm, &stmts);
3991 SET_DECL_VALUE_EXPR (parm, local);
3992 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3997 fnargs.release ();
3999 return stmts;
4002 /* Compute the size and offset from the start of the stacked arguments for a
4003 parm passed in mode PASSED_MODE and with type TYPE.
4005 INITIAL_OFFSET_PTR points to the current offset into the stacked
4006 arguments.
4008 The starting offset and size for this parm are returned in
4009 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4010 nonzero, the offset is that of stack slot, which is returned in
4011 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4012 padding required from the initial offset ptr to the stack slot.
4014 IN_REGS is nonzero if the argument will be passed in registers. It will
4015 never be set if REG_PARM_STACK_SPACE is not defined.
4017 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4018 for arguments which are passed in registers.
4020 FNDECL is the function in which the argument was defined.
4022 There are two types of rounding that are done. The first, controlled by
4023 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4024 argument list to be aligned to the specific boundary (in bits). This
4025 rounding affects the initial and starting offsets, but not the argument
4026 size.
4028 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4029 optionally rounds the size of the parm to PARM_BOUNDARY. The
4030 initial offset is not affected by this rounding, while the size always
4031 is and the starting offset may be. */
4033 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4034 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4035 callers pass in the total size of args so far as
4036 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4038 void
4039 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4040 int reg_parm_stack_space, int partial,
4041 tree fndecl ATTRIBUTE_UNUSED,
4042 struct args_size *initial_offset_ptr,
4043 struct locate_and_pad_arg_data *locate)
4045 tree sizetree;
4046 pad_direction where_pad;
4047 unsigned int boundary, round_boundary;
4048 int part_size_in_regs;
4050 /* If we have found a stack parm before we reach the end of the
4051 area reserved for registers, skip that area. */
4052 if (! in_regs)
4054 if (reg_parm_stack_space > 0)
4056 if (initial_offset_ptr->var
4057 || !ordered_p (initial_offset_ptr->constant,
4058 reg_parm_stack_space))
4060 initial_offset_ptr->var
4061 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4062 ssize_int (reg_parm_stack_space));
4063 initial_offset_ptr->constant = 0;
4065 else
4066 initial_offset_ptr->constant
4067 = ordered_max (initial_offset_ptr->constant,
4068 reg_parm_stack_space);
4072 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4074 sizetree = (type
4075 ? arg_size_in_bytes (type)
4076 : size_int (GET_MODE_SIZE (passed_mode)));
4077 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4078 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4079 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4080 type);
4081 locate->where_pad = where_pad;
4083 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4084 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4085 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4087 locate->boundary = boundary;
4089 if (SUPPORTS_STACK_ALIGNMENT)
4091 /* stack_alignment_estimated can't change after stack has been
4092 realigned. */
4093 if (crtl->stack_alignment_estimated < boundary)
4095 if (!crtl->stack_realign_processed)
4096 crtl->stack_alignment_estimated = boundary;
4097 else
4099 /* If stack is realigned and stack alignment value
4100 hasn't been finalized, it is OK not to increase
4101 stack_alignment_estimated. The bigger alignment
4102 requirement is recorded in stack_alignment_needed
4103 below. */
4104 gcc_assert (!crtl->stack_realign_finalized
4105 && crtl->stack_realign_needed);
4110 if (ARGS_GROW_DOWNWARD)
4112 locate->slot_offset.constant = -initial_offset_ptr->constant;
4113 if (initial_offset_ptr->var)
4114 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4115 initial_offset_ptr->var);
4118 tree s2 = sizetree;
4119 if (where_pad != PAD_NONE
4120 && (!tree_fits_uhwi_p (sizetree)
4121 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4122 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4123 SUB_PARM_SIZE (locate->slot_offset, s2);
4126 locate->slot_offset.constant += part_size_in_regs;
4128 if (!in_regs || reg_parm_stack_space > 0)
4129 pad_to_arg_alignment (&locate->slot_offset, boundary,
4130 &locate->alignment_pad);
4132 locate->size.constant = (-initial_offset_ptr->constant
4133 - locate->slot_offset.constant);
4134 if (initial_offset_ptr->var)
4135 locate->size.var = size_binop (MINUS_EXPR,
4136 size_binop (MINUS_EXPR,
4137 ssize_int (0),
4138 initial_offset_ptr->var),
4139 locate->slot_offset.var);
4141 /* Pad_below needs the pre-rounded size to know how much to pad
4142 below. */
4143 locate->offset = locate->slot_offset;
4144 if (where_pad == PAD_DOWNWARD)
4145 pad_below (&locate->offset, passed_mode, sizetree);
4148 else
4150 if (!in_regs || reg_parm_stack_space > 0)
4151 pad_to_arg_alignment (initial_offset_ptr, boundary,
4152 &locate->alignment_pad);
4153 locate->slot_offset = *initial_offset_ptr;
4155 #ifdef PUSH_ROUNDING
4156 if (passed_mode != BLKmode)
4157 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4158 #endif
4160 /* Pad_below needs the pre-rounded size to know how much to pad below
4161 so this must be done before rounding up. */
4162 locate->offset = locate->slot_offset;
4163 if (where_pad == PAD_DOWNWARD)
4164 pad_below (&locate->offset, passed_mode, sizetree);
4166 if (where_pad != PAD_NONE
4167 && (!tree_fits_uhwi_p (sizetree)
4168 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4169 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4171 ADD_PARM_SIZE (locate->size, sizetree);
4173 locate->size.constant -= part_size_in_regs;
4176 locate->offset.constant
4177 += targetm.calls.function_arg_offset (passed_mode, type);
4180 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4181 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4183 static void
4184 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4185 struct args_size *alignment_pad)
4187 tree save_var = NULL_TREE;
4188 poly_int64 save_constant = 0;
4189 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4190 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4192 #ifdef SPARC_STACK_BOUNDARY_HACK
4193 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4194 the real alignment of %sp. However, when it does this, the
4195 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4196 if (SPARC_STACK_BOUNDARY_HACK)
4197 sp_offset = 0;
4198 #endif
4200 if (boundary > PARM_BOUNDARY)
4202 save_var = offset_ptr->var;
4203 save_constant = offset_ptr->constant;
4206 alignment_pad->var = NULL_TREE;
4207 alignment_pad->constant = 0;
4209 if (boundary > BITS_PER_UNIT)
4211 int misalign;
4212 if (offset_ptr->var
4213 || !known_misalignment (offset_ptr->constant + sp_offset,
4214 boundary_in_bytes, &misalign))
4216 tree sp_offset_tree = ssize_int (sp_offset);
4217 tree offset = size_binop (PLUS_EXPR,
4218 ARGS_SIZE_TREE (*offset_ptr),
4219 sp_offset_tree);
4220 tree rounded;
4221 if (ARGS_GROW_DOWNWARD)
4222 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4223 else
4224 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4226 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4227 /* ARGS_SIZE_TREE includes constant term. */
4228 offset_ptr->constant = 0;
4229 if (boundary > PARM_BOUNDARY)
4230 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4231 save_var);
4233 else
4235 if (ARGS_GROW_DOWNWARD)
4236 offset_ptr->constant -= misalign;
4237 else
4238 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4240 if (boundary > PARM_BOUNDARY)
4241 alignment_pad->constant = offset_ptr->constant - save_constant;
4246 static void
4247 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4249 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4250 int misalign;
4251 if (passed_mode != BLKmode
4252 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4253 offset_ptr->constant += -misalign & (align - 1);
4254 else
4256 if (TREE_CODE (sizetree) != INTEGER_CST
4257 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4259 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4260 tree s2 = round_up (sizetree, align);
4261 /* Add it in. */
4262 ADD_PARM_SIZE (*offset_ptr, s2);
4263 SUB_PARM_SIZE (*offset_ptr, sizetree);
4269 /* True if register REGNO was alive at a place where `setjmp' was
4270 called and was set more than once or is an argument. Such regs may
4271 be clobbered by `longjmp'. */
4273 static bool
4274 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4276 /* There appear to be cases where some local vars never reach the
4277 backend but have bogus regnos. */
4278 if (regno >= max_reg_num ())
4279 return false;
4281 return ((REG_N_SETS (regno) > 1
4282 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4283 regno))
4284 && REGNO_REG_SET_P (setjmp_crosses, regno));
4287 /* Walk the tree of blocks describing the binding levels within a
4288 function and warn about variables the might be killed by setjmp or
4289 vfork. This is done after calling flow_analysis before register
4290 allocation since that will clobber the pseudo-regs to hard
4291 regs. */
4293 static void
4294 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4296 tree decl, sub;
4298 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4300 if (VAR_P (decl)
4301 && DECL_RTL_SET_P (decl)
4302 && REG_P (DECL_RTL (decl))
4303 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4304 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4305 " %<longjmp%> or %<vfork%>", decl);
4308 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4309 setjmp_vars_warning (setjmp_crosses, sub);
4312 /* Do the appropriate part of setjmp_vars_warning
4313 but for arguments instead of local variables. */
4315 static void
4316 setjmp_args_warning (bitmap setjmp_crosses)
4318 tree decl;
4319 for (decl = DECL_ARGUMENTS (current_function_decl);
4320 decl; decl = DECL_CHAIN (decl))
4321 if (DECL_RTL (decl) != 0
4322 && REG_P (DECL_RTL (decl))
4323 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4324 warning (OPT_Wclobbered,
4325 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4326 decl);
4329 /* Generate warning messages for variables live across setjmp. */
4331 void
4332 generate_setjmp_warnings (void)
4334 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4336 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4337 || bitmap_empty_p (setjmp_crosses))
4338 return;
4340 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4341 setjmp_args_warning (setjmp_crosses);
4345 /* Reverse the order of elements in the fragment chain T of blocks,
4346 and return the new head of the chain (old last element).
4347 In addition to that clear BLOCK_SAME_RANGE flags when needed
4348 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4349 its super fragment origin. */
4351 static tree
4352 block_fragments_nreverse (tree t)
4354 tree prev = 0, block, next, prev_super = 0;
4355 tree super = BLOCK_SUPERCONTEXT (t);
4356 if (BLOCK_FRAGMENT_ORIGIN (super))
4357 super = BLOCK_FRAGMENT_ORIGIN (super);
4358 for (block = t; block; block = next)
4360 next = BLOCK_FRAGMENT_CHAIN (block);
4361 BLOCK_FRAGMENT_CHAIN (block) = prev;
4362 if ((prev && !BLOCK_SAME_RANGE (prev))
4363 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4364 != prev_super))
4365 BLOCK_SAME_RANGE (block) = 0;
4366 prev_super = BLOCK_SUPERCONTEXT (block);
4367 BLOCK_SUPERCONTEXT (block) = super;
4368 prev = block;
4370 t = BLOCK_FRAGMENT_ORIGIN (t);
4371 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4372 != prev_super)
4373 BLOCK_SAME_RANGE (t) = 0;
4374 BLOCK_SUPERCONTEXT (t) = super;
4375 return prev;
4378 /* Reverse the order of elements in the chain T of blocks,
4379 and return the new head of the chain (old last element).
4380 Also do the same on subblocks and reverse the order of elements
4381 in BLOCK_FRAGMENT_CHAIN as well. */
4383 static tree
4384 blocks_nreverse_all (tree t)
4386 tree prev = 0, block, next;
4387 for (block = t; block; block = next)
4389 next = BLOCK_CHAIN (block);
4390 BLOCK_CHAIN (block) = prev;
4391 if (BLOCK_FRAGMENT_CHAIN (block)
4392 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4394 BLOCK_FRAGMENT_CHAIN (block)
4395 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4396 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4397 BLOCK_SAME_RANGE (block) = 0;
4399 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4400 prev = block;
4402 return prev;
4406 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4407 and create duplicate blocks. */
4408 /* ??? Need an option to either create block fragments or to create
4409 abstract origin duplicates of a source block. It really depends
4410 on what optimization has been performed. */
4412 void
4413 reorder_blocks (void)
4415 tree block = DECL_INITIAL (current_function_decl);
4417 if (block == NULL_TREE)
4418 return;
4420 auto_vec<tree, 10> block_stack;
4422 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4423 clear_block_marks (block);
4425 /* Prune the old trees away, so that they don't get in the way. */
4426 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4427 BLOCK_CHAIN (block) = NULL_TREE;
4429 /* Recreate the block tree from the note nesting. */
4430 reorder_blocks_1 (get_insns (), block, &block_stack);
4431 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4434 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4436 void
4437 clear_block_marks (tree block)
4439 while (block)
4441 TREE_ASM_WRITTEN (block) = 0;
4442 clear_block_marks (BLOCK_SUBBLOCKS (block));
4443 block = BLOCK_CHAIN (block);
4447 static void
4448 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4449 vec<tree> *p_block_stack)
4451 rtx_insn *insn;
4452 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4454 for (insn = insns; insn; insn = NEXT_INSN (insn))
4456 if (NOTE_P (insn))
4458 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4460 tree block = NOTE_BLOCK (insn);
4461 tree origin;
4463 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4464 origin = block;
4466 if (prev_end)
4467 BLOCK_SAME_RANGE (prev_end) = 0;
4468 prev_end = NULL_TREE;
4470 /* If we have seen this block before, that means it now
4471 spans multiple address regions. Create a new fragment. */
4472 if (TREE_ASM_WRITTEN (block))
4474 tree new_block = copy_node (block);
4476 BLOCK_SAME_RANGE (new_block) = 0;
4477 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4478 BLOCK_FRAGMENT_CHAIN (new_block)
4479 = BLOCK_FRAGMENT_CHAIN (origin);
4480 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4482 NOTE_BLOCK (insn) = new_block;
4483 block = new_block;
4486 if (prev_beg == current_block && prev_beg)
4487 BLOCK_SAME_RANGE (block) = 1;
4489 prev_beg = origin;
4491 BLOCK_SUBBLOCKS (block) = 0;
4492 TREE_ASM_WRITTEN (block) = 1;
4493 /* When there's only one block for the entire function,
4494 current_block == block and we mustn't do this, it
4495 will cause infinite recursion. */
4496 if (block != current_block)
4498 tree super;
4499 if (block != origin)
4500 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4501 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4502 (origin))
4503 == current_block);
4504 if (p_block_stack->is_empty ())
4505 super = current_block;
4506 else
4508 super = p_block_stack->last ();
4509 gcc_assert (super == current_block
4510 || BLOCK_FRAGMENT_ORIGIN (super)
4511 == current_block);
4513 BLOCK_SUPERCONTEXT (block) = super;
4514 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4515 BLOCK_SUBBLOCKS (current_block) = block;
4516 current_block = origin;
4518 p_block_stack->safe_push (block);
4520 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4522 NOTE_BLOCK (insn) = p_block_stack->pop ();
4523 current_block = BLOCK_SUPERCONTEXT (current_block);
4524 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4525 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4526 prev_beg = NULL_TREE;
4527 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4528 ? NOTE_BLOCK (insn) : NULL_TREE;
4531 else
4533 prev_beg = NULL_TREE;
4534 if (prev_end)
4535 BLOCK_SAME_RANGE (prev_end) = 0;
4536 prev_end = NULL_TREE;
4541 /* Reverse the order of elements in the chain T of blocks,
4542 and return the new head of the chain (old last element). */
4544 tree
4545 blocks_nreverse (tree t)
4547 tree prev = 0, block, next;
4548 for (block = t; block; block = next)
4550 next = BLOCK_CHAIN (block);
4551 BLOCK_CHAIN (block) = prev;
4552 prev = block;
4554 return prev;
4557 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4558 by modifying the last node in chain 1 to point to chain 2. */
4560 tree
4561 block_chainon (tree op1, tree op2)
4563 tree t1;
4565 if (!op1)
4566 return op2;
4567 if (!op2)
4568 return op1;
4570 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4571 continue;
4572 BLOCK_CHAIN (t1) = op2;
4574 #ifdef ENABLE_TREE_CHECKING
4576 tree t2;
4577 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4578 gcc_assert (t2 != t1);
4580 #endif
4582 return op1;
4585 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4586 non-NULL, list them all into VECTOR, in a depth-first preorder
4587 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4588 blocks. */
4590 static int
4591 all_blocks (tree block, tree *vector)
4593 int n_blocks = 0;
4595 while (block)
4597 TREE_ASM_WRITTEN (block) = 0;
4599 /* Record this block. */
4600 if (vector)
4601 vector[n_blocks] = block;
4603 ++n_blocks;
4605 /* Record the subblocks, and their subblocks... */
4606 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4607 vector ? vector + n_blocks : 0);
4608 block = BLOCK_CHAIN (block);
4611 return n_blocks;
4614 /* Return a vector containing all the blocks rooted at BLOCK. The
4615 number of elements in the vector is stored in N_BLOCKS_P. The
4616 vector is dynamically allocated; it is the caller's responsibility
4617 to call `free' on the pointer returned. */
4619 static tree *
4620 get_block_vector (tree block, int *n_blocks_p)
4622 tree *block_vector;
4624 *n_blocks_p = all_blocks (block, NULL);
4625 block_vector = XNEWVEC (tree, *n_blocks_p);
4626 all_blocks (block, block_vector);
4628 return block_vector;
4631 static GTY(()) int next_block_index = 2;
4633 /* Set BLOCK_NUMBER for all the blocks in FN. */
4635 void
4636 number_blocks (tree fn)
4638 int i;
4639 int n_blocks;
4640 tree *block_vector;
4642 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4644 /* The top-level BLOCK isn't numbered at all. */
4645 for (i = 1; i < n_blocks; ++i)
4646 /* We number the blocks from two. */
4647 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4649 free (block_vector);
4651 return;
4654 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4656 DEBUG_FUNCTION tree
4657 debug_find_var_in_block_tree (tree var, tree block)
4659 tree t;
4661 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4662 if (t == var)
4663 return block;
4665 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4667 tree ret = debug_find_var_in_block_tree (var, t);
4668 if (ret)
4669 return ret;
4672 return NULL_TREE;
4675 /* Keep track of whether we're in a dummy function context. If we are,
4676 we don't want to invoke the set_current_function hook, because we'll
4677 get into trouble if the hook calls target_reinit () recursively or
4678 when the initial initialization is not yet complete. */
4680 static bool in_dummy_function;
4682 /* Invoke the target hook when setting cfun. Update the optimization options
4683 if the function uses different options than the default. */
4685 static void
4686 invoke_set_current_function_hook (tree fndecl)
4688 if (!in_dummy_function)
4690 tree opts = ((fndecl)
4691 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4692 : optimization_default_node);
4694 if (!opts)
4695 opts = optimization_default_node;
4697 /* Change optimization options if needed. */
4698 if (optimization_current_node != opts)
4700 optimization_current_node = opts;
4701 cl_optimization_restore (&global_options, &global_options_set,
4702 TREE_OPTIMIZATION (opts));
4705 targetm.set_current_function (fndecl);
4706 this_fn_optabs = this_target_optabs;
4708 /* Initialize global alignment variables after op. */
4709 parse_alignment_opts ();
4711 if (opts != optimization_default_node)
4713 init_tree_optimization_optabs (opts);
4714 if (TREE_OPTIMIZATION_OPTABS (opts))
4715 this_fn_optabs = (struct target_optabs *)
4716 TREE_OPTIMIZATION_OPTABS (opts);
4721 /* cfun should never be set directly; use this function. */
4723 void
4724 set_cfun (struct function *new_cfun, bool force)
4726 if (cfun != new_cfun || force)
4728 cfun = new_cfun;
4729 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4730 redirect_edge_var_map_empty ();
4734 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4736 static vec<function *> cfun_stack;
4738 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4739 current_function_decl accordingly. */
4741 void
4742 push_cfun (struct function *new_cfun)
4744 gcc_assert ((!cfun && !current_function_decl)
4745 || (cfun && current_function_decl == cfun->decl));
4746 cfun_stack.safe_push (cfun);
4747 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4748 set_cfun (new_cfun);
4751 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4753 void
4754 pop_cfun (void)
4756 struct function *new_cfun = cfun_stack.pop ();
4757 /* When in_dummy_function, we do have a cfun but current_function_decl is
4758 NULL. We also allow pushing NULL cfun and subsequently changing
4759 current_function_decl to something else and have both restored by
4760 pop_cfun. */
4761 gcc_checking_assert (in_dummy_function
4762 || !cfun
4763 || current_function_decl == cfun->decl);
4764 set_cfun (new_cfun);
4765 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4768 /* Return value of funcdef and increase it. */
4770 get_next_funcdef_no (void)
4772 return funcdef_no++;
4775 /* Return value of funcdef. */
4777 get_last_funcdef_no (void)
4779 return funcdef_no;
4782 /* Allocate and initialize the stack usage info data structure for the
4783 current function. */
4784 static void
4785 allocate_stack_usage_info (void)
4787 gcc_assert (!cfun->su);
4788 cfun->su = ggc_cleared_alloc<stack_usage> ();
4789 cfun->su->static_stack_size = -1;
4792 /* Allocate a function structure for FNDECL and set its contents
4793 to the defaults. Set cfun to the newly-allocated object.
4794 Some of the helper functions invoked during initialization assume
4795 that cfun has already been set. Therefore, assign the new object
4796 directly into cfun and invoke the back end hook explicitly at the
4797 very end, rather than initializing a temporary and calling set_cfun
4798 on it.
4800 ABSTRACT_P is true if this is a function that will never be seen by
4801 the middle-end. Such functions are front-end concepts (like C++
4802 function templates) that do not correspond directly to functions
4803 placed in object files. */
4805 void
4806 allocate_struct_function (tree fndecl, bool abstract_p)
4808 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4810 cfun = ggc_cleared_alloc<function> ();
4812 init_eh_for_function ();
4814 if (init_machine_status)
4815 cfun->machine = (*init_machine_status) ();
4817 #ifdef OVERRIDE_ABI_FORMAT
4818 OVERRIDE_ABI_FORMAT (fndecl);
4819 #endif
4821 if (fndecl != NULL_TREE)
4823 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4824 cfun->decl = fndecl;
4825 current_function_funcdef_no = get_next_funcdef_no ();
4828 invoke_set_current_function_hook (fndecl);
4830 if (fndecl != NULL_TREE)
4832 tree result = DECL_RESULT (fndecl);
4834 if (!abstract_p)
4836 /* Now that we have activated any function-specific attributes
4837 that might affect layout, particularly vector modes, relayout
4838 each of the parameters and the result. */
4839 relayout_decl (result);
4840 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4841 parm = DECL_CHAIN (parm))
4842 relayout_decl (parm);
4844 /* Similarly relayout the function decl. */
4845 targetm.target_option.relayout_function (fndecl);
4848 if (!abstract_p && aggregate_value_p (result, fndecl))
4850 #ifdef PCC_STATIC_STRUCT_RETURN
4851 cfun->returns_pcc_struct = 1;
4852 #endif
4853 cfun->returns_struct = 1;
4856 cfun->stdarg = stdarg_p (fntype);
4858 /* Assume all registers in stdarg functions need to be saved. */
4859 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4860 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4862 /* ??? This could be set on a per-function basis by the front-end
4863 but is this worth the hassle? */
4864 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4865 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4867 if (!profile_flag && !flag_instrument_function_entry_exit)
4868 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4870 if (flag_callgraph_info)
4871 allocate_stack_usage_info ();
4874 /* Don't enable begin stmt markers if var-tracking at assignments is
4875 disabled. The markers make little sense without the variable
4876 binding annotations among them. */
4877 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4878 && MAY_HAVE_DEBUG_MARKER_STMTS;
4881 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4882 instead of just setting it. */
4884 void
4885 push_struct_function (tree fndecl)
4887 /* When in_dummy_function we might be in the middle of a pop_cfun and
4888 current_function_decl and cfun may not match. */
4889 gcc_assert (in_dummy_function
4890 || (!cfun && !current_function_decl)
4891 || (cfun && current_function_decl == cfun->decl));
4892 cfun_stack.safe_push (cfun);
4893 current_function_decl = fndecl;
4894 allocate_struct_function (fndecl, false);
4897 /* Reset crtl and other non-struct-function variables to defaults as
4898 appropriate for emitting rtl at the start of a function. */
4900 static void
4901 prepare_function_start (void)
4903 gcc_assert (!get_last_insn ());
4905 if (in_dummy_function)
4906 crtl->abi = &default_function_abi;
4907 else
4908 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4910 init_temp_slots ();
4911 init_emit ();
4912 init_varasm_status ();
4913 init_expr ();
4914 default_rtl_profile ();
4916 if (flag_stack_usage_info && !flag_callgraph_info)
4917 allocate_stack_usage_info ();
4919 cse_not_expected = ! optimize;
4921 /* Caller save not needed yet. */
4922 caller_save_needed = 0;
4924 /* We haven't done register allocation yet. */
4925 reg_renumber = 0;
4927 /* Indicate that we have not instantiated virtual registers yet. */
4928 virtuals_instantiated = 0;
4930 /* Indicate that we want CONCATs now. */
4931 generating_concat_p = 1;
4933 /* Indicate we have no need of a frame pointer yet. */
4934 frame_pointer_needed = 0;
4937 void
4938 push_dummy_function (bool with_decl)
4940 tree fn_decl, fn_type, fn_result_decl;
4942 gcc_assert (!in_dummy_function);
4943 in_dummy_function = true;
4945 if (with_decl)
4947 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4948 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4949 fn_type);
4950 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4951 NULL_TREE, void_type_node);
4952 DECL_RESULT (fn_decl) = fn_result_decl;
4953 DECL_ARTIFICIAL (fn_decl) = 1;
4954 tree fn_name = get_identifier (" ");
4955 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4957 else
4958 fn_decl = NULL_TREE;
4960 push_struct_function (fn_decl);
4963 /* Initialize the rtl expansion mechanism so that we can do simple things
4964 like generate sequences. This is used to provide a context during global
4965 initialization of some passes. You must call expand_dummy_function_end
4966 to exit this context. */
4968 void
4969 init_dummy_function_start (void)
4971 push_dummy_function (false);
4972 prepare_function_start ();
4975 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4976 and initialize static variables for generating RTL for the statements
4977 of the function. */
4979 void
4980 init_function_start (tree subr)
4982 /* Initialize backend, if needed. */
4983 initialize_rtl ();
4985 prepare_function_start ();
4986 decide_function_section (subr);
4988 /* Warn if this value is an aggregate type,
4989 regardless of which calling convention we are using for it. */
4990 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4991 warning (OPT_Waggregate_return, "function returns an aggregate");
4994 /* Expand code to verify the stack_protect_guard. This is invoked at
4995 the end of a function to be protected. */
4997 void
4998 stack_protect_epilogue (void)
5000 tree guard_decl = crtl->stack_protect_guard_decl;
5001 rtx_code_label *label = gen_label_rtx ();
5002 rtx x, y;
5003 rtx_insn *seq = NULL;
5005 x = expand_normal (crtl->stack_protect_guard);
5007 if (targetm.have_stack_protect_combined_test () && guard_decl)
5009 gcc_assert (DECL_P (guard_decl));
5010 y = DECL_RTL (guard_decl);
5011 /* Allow the target to compute address of Y and compare it with X without
5012 leaking Y into a register. This combined address + compare pattern
5013 allows the target to prevent spilling of any intermediate results by
5014 splitting it after register allocator. */
5015 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5017 else
5019 if (guard_decl)
5020 y = expand_normal (guard_decl);
5021 else
5022 y = const0_rtx;
5024 /* Allow the target to compare Y with X without leaking either into
5025 a register. */
5026 if (targetm.have_stack_protect_test ())
5027 seq = targetm.gen_stack_protect_test (x, y, label);
5030 if (seq)
5031 emit_insn (seq);
5032 else
5033 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5035 /* The noreturn predictor has been moved to the tree level. The rtl-level
5036 predictors estimate this branch about 20%, which isn't enough to get
5037 things moved out of line. Since this is the only extant case of adding
5038 a noreturn function at the rtl level, it doesn't seem worth doing ought
5039 except adding the prediction by hand. */
5040 rtx_insn *tmp = get_last_insn ();
5041 if (JUMP_P (tmp))
5042 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5044 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5045 free_temp_slots ();
5046 emit_label (label);
5049 /* Start the RTL for a new function, and set variables used for
5050 emitting RTL.
5051 SUBR is the FUNCTION_DECL node.
5052 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5053 the function's parameters, which must be run at any return statement. */
5055 void
5056 expand_function_start (tree subr)
5058 /* Make sure volatile mem refs aren't considered
5059 valid operands of arithmetic insns. */
5060 init_recog_no_volatile ();
5062 crtl->profile
5063 = (profile_flag
5064 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5066 crtl->limit_stack
5067 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5069 /* Make the label for return statements to jump to. Do not special
5070 case machines with special return instructions -- they will be
5071 handled later during jump, ifcvt, or epilogue creation. */
5072 return_label = gen_label_rtx ();
5074 /* Initialize rtx used to return the value. */
5075 /* Do this before assign_parms so that we copy the struct value address
5076 before any library calls that assign parms might generate. */
5078 /* Decide whether to return the value in memory or in a register. */
5079 tree res = DECL_RESULT (subr);
5080 if (aggregate_value_p (res, subr))
5082 /* Returning something that won't go in a register. */
5083 rtx value_address = 0;
5085 #ifdef PCC_STATIC_STRUCT_RETURN
5086 if (cfun->returns_pcc_struct)
5088 int size = int_size_in_bytes (TREE_TYPE (res));
5089 value_address = assemble_static_space (size);
5091 else
5092 #endif
5094 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5095 /* Expect to be passed the address of a place to store the value.
5096 If it is passed as an argument, assign_parms will take care of
5097 it. */
5098 if (sv)
5100 value_address = gen_reg_rtx (Pmode);
5101 emit_move_insn (value_address, sv);
5104 if (value_address)
5106 rtx x = value_address;
5107 if (!DECL_BY_REFERENCE (res))
5109 x = gen_rtx_MEM (DECL_MODE (res), x);
5110 set_mem_attributes (x, res, 1);
5112 set_parm_rtl (res, x);
5115 else if (DECL_MODE (res) == VOIDmode)
5116 /* If return mode is void, this decl rtl should not be used. */
5117 set_parm_rtl (res, NULL_RTX);
5118 else
5120 /* Compute the return values into a pseudo reg, which we will copy
5121 into the true return register after the cleanups are done. */
5122 tree return_type = TREE_TYPE (res);
5124 /* If we may coalesce this result, make sure it has the expected mode
5125 in case it was promoted. But we need not bother about BLKmode. */
5126 machine_mode promoted_mode
5127 = flag_tree_coalesce_vars && is_gimple_reg (res)
5128 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5129 : BLKmode;
5131 if (promoted_mode != BLKmode)
5132 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5133 else if (TYPE_MODE (return_type) != BLKmode
5134 && targetm.calls.return_in_msb (return_type))
5135 /* expand_function_end will insert the appropriate padding in
5136 this case. Use the return value's natural (unpadded) mode
5137 within the function proper. */
5138 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5139 else
5141 /* In order to figure out what mode to use for the pseudo, we
5142 figure out what the mode of the eventual return register will
5143 actually be, and use that. */
5144 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5146 /* Structures that are returned in registers are not
5147 aggregate_value_p, so we may see a PARALLEL or a REG. */
5148 if (REG_P (hard_reg))
5149 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5150 else
5152 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5153 set_parm_rtl (res, gen_group_rtx (hard_reg));
5157 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5158 result to the real return register(s). */
5159 DECL_REGISTER (res) = 1;
5162 /* Initialize rtx for parameters and local variables.
5163 In some cases this requires emitting insns. */
5164 assign_parms (subr);
5166 /* If function gets a static chain arg, store it. */
5167 if (cfun->static_chain_decl)
5169 tree parm = cfun->static_chain_decl;
5170 rtx local, chain;
5171 rtx_insn *insn;
5172 int unsignedp;
5174 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5175 chain = targetm.calls.static_chain (current_function_decl, true);
5177 set_decl_incoming_rtl (parm, chain, false);
5178 set_parm_rtl (parm, local);
5179 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5181 if (GET_MODE (local) != GET_MODE (chain))
5183 convert_move (local, chain, unsignedp);
5184 insn = get_last_insn ();
5186 else
5187 insn = emit_move_insn (local, chain);
5189 /* Mark the register as eliminable, similar to parameters. */
5190 if (MEM_P (chain)
5191 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5192 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5194 /* If we aren't optimizing, save the static chain onto the stack. */
5195 if (!optimize)
5197 tree saved_static_chain_decl
5198 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5199 DECL_NAME (parm), TREE_TYPE (parm));
5200 rtx saved_static_chain_rtx
5201 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5202 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5203 emit_move_insn (saved_static_chain_rtx, chain);
5204 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5205 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5209 /* The following was moved from init_function_start.
5210 The move was supposed to make sdb output more accurate. */
5211 /* Indicate the beginning of the function body,
5212 as opposed to parm setup. */
5213 emit_note (NOTE_INSN_FUNCTION_BEG);
5215 gcc_assert (NOTE_P (get_last_insn ()));
5217 parm_birth_insn = get_last_insn ();
5219 /* If the function receives a non-local goto, then store the
5220 bits we need to restore the frame pointer. */
5221 if (cfun->nonlocal_goto_save_area)
5223 tree t_save;
5224 rtx r_save;
5226 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5227 gcc_assert (DECL_RTL_SET_P (var));
5229 t_save = build4 (ARRAY_REF,
5230 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5231 cfun->nonlocal_goto_save_area,
5232 integer_zero_node, NULL_TREE, NULL_TREE);
5233 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5234 gcc_assert (GET_MODE (r_save) == Pmode);
5236 emit_move_insn (r_save, hard_frame_pointer_rtx);
5237 update_nonlocal_goto_save_area ();
5240 if (crtl->profile)
5242 #ifdef PROFILE_HOOK
5243 PROFILE_HOOK (current_function_funcdef_no);
5244 #endif
5247 /* If we are doing generic stack checking, the probe should go here. */
5248 if (flag_stack_check == GENERIC_STACK_CHECK)
5249 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5252 void
5253 pop_dummy_function (void)
5255 pop_cfun ();
5256 in_dummy_function = false;
5259 /* Undo the effects of init_dummy_function_start. */
5260 void
5261 expand_dummy_function_end (void)
5263 gcc_assert (in_dummy_function);
5265 /* End any sequences that failed to be closed due to syntax errors. */
5266 while (in_sequence_p ())
5267 end_sequence ();
5269 /* Outside function body, can't compute type's actual size
5270 until next function's body starts. */
5272 free_after_parsing (cfun);
5273 free_after_compilation (cfun);
5274 pop_dummy_function ();
5277 /* Helper for diddle_return_value. */
5279 void
5280 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5282 if (! outgoing)
5283 return;
5285 if (REG_P (outgoing))
5286 (*doit) (outgoing, arg);
5287 else if (GET_CODE (outgoing) == PARALLEL)
5289 int i;
5291 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5293 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5295 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5296 (*doit) (x, arg);
5301 /* Call DOIT for each hard register used as a return value from
5302 the current function. */
5304 void
5305 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5307 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5310 static void
5311 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5313 emit_clobber (reg);
5316 void
5317 clobber_return_register (void)
5319 diddle_return_value (do_clobber_return_reg, NULL);
5321 /* In case we do use pseudo to return value, clobber it too. */
5322 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5324 tree decl_result = DECL_RESULT (current_function_decl);
5325 rtx decl_rtl = DECL_RTL (decl_result);
5326 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5328 do_clobber_return_reg (decl_rtl, NULL);
5333 static void
5334 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5336 emit_use (reg);
5339 static void
5340 use_return_register (void)
5342 diddle_return_value (do_use_return_reg, NULL);
5345 /* Generate RTL for the end of the current function. */
5347 void
5348 expand_function_end (void)
5350 /* If arg_pointer_save_area was referenced only from a nested
5351 function, we will not have initialized it yet. Do that now. */
5352 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5353 get_arg_pointer_save_area ();
5355 /* If we are doing generic stack checking and this function makes calls,
5356 do a stack probe at the start of the function to ensure we have enough
5357 space for another stack frame. */
5358 if (flag_stack_check == GENERIC_STACK_CHECK)
5360 rtx_insn *insn, *seq;
5362 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5363 if (CALL_P (insn))
5365 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5366 start_sequence ();
5367 if (STACK_CHECK_MOVING_SP)
5368 anti_adjust_stack_and_probe (max_frame_size, true);
5369 else
5370 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5371 seq = get_insns ();
5372 end_sequence ();
5373 set_insn_locations (seq, prologue_location);
5374 emit_insn_before (seq, stack_check_probe_note);
5375 break;
5379 /* End any sequences that failed to be closed due to syntax errors. */
5380 while (in_sequence_p ())
5381 end_sequence ();
5383 clear_pending_stack_adjust ();
5384 do_pending_stack_adjust ();
5386 /* Output a linenumber for the end of the function.
5387 SDB depended on this. */
5388 set_curr_insn_location (input_location);
5390 /* Before the return label (if any), clobber the return
5391 registers so that they are not propagated live to the rest of
5392 the function. This can only happen with functions that drop
5393 through; if there had been a return statement, there would
5394 have either been a return rtx, or a jump to the return label.
5396 We delay actual code generation after the current_function_value_rtx
5397 is computed. */
5398 rtx_insn *clobber_after = get_last_insn ();
5400 /* Output the label for the actual return from the function. */
5401 emit_label (return_label);
5403 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5405 /* Let except.cc know where it should emit the call to unregister
5406 the function context for sjlj exceptions. */
5407 if (flag_exceptions)
5408 sjlj_emit_function_exit_after (get_last_insn ());
5411 /* If this is an implementation of throw, do what's necessary to
5412 communicate between __builtin_eh_return and the epilogue. */
5413 expand_eh_return ();
5415 /* If stack protection is enabled for this function, check the guard. */
5416 if (crtl->stack_protect_guard
5417 && targetm.stack_protect_runtime_enabled_p ()
5418 && naked_return_label == NULL_RTX)
5419 stack_protect_epilogue ();
5421 /* If scalar return value was computed in a pseudo-reg, or was a named
5422 return value that got dumped to the stack, copy that to the hard
5423 return register. */
5424 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5426 tree decl_result = DECL_RESULT (current_function_decl);
5427 rtx decl_rtl = DECL_RTL (decl_result);
5429 if ((REG_P (decl_rtl)
5430 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5431 : DECL_REGISTER (decl_result))
5432 /* Unless the psABI says not to. */
5433 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5435 rtx real_decl_rtl = crtl->return_rtx;
5436 complex_mode cmode;
5438 /* This should be set in assign_parms. */
5439 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5441 /* If this is a BLKmode structure being returned in registers,
5442 then use the mode computed in expand_return. Note that if
5443 decl_rtl is memory, then its mode may have been changed,
5444 but that crtl->return_rtx has not. */
5445 if (GET_MODE (real_decl_rtl) == BLKmode)
5446 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5448 /* If a non-BLKmode return value should be padded at the least
5449 significant end of the register, shift it left by the appropriate
5450 amount. BLKmode results are handled using the group load/store
5451 machinery. */
5452 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5453 && REG_P (real_decl_rtl)
5454 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5456 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5457 REGNO (real_decl_rtl)),
5458 decl_rtl);
5459 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5461 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5463 /* If expand_function_start has created a PARALLEL for decl_rtl,
5464 move the result to the real return registers. Otherwise, do
5465 a group load from decl_rtl for a named return. */
5466 if (GET_CODE (decl_rtl) == PARALLEL)
5467 emit_group_move (real_decl_rtl, decl_rtl);
5468 else
5469 emit_group_load (real_decl_rtl, decl_rtl,
5470 TREE_TYPE (decl_result),
5471 int_size_in_bytes (TREE_TYPE (decl_result)));
5473 /* In the case of complex integer modes smaller than a word, we'll
5474 need to generate some non-trivial bitfield insertions. Do that
5475 on a pseudo and not the hard register. */
5476 else if (GET_CODE (decl_rtl) == CONCAT
5477 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5478 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5480 int old_generating_concat_p;
5481 rtx tmp;
5483 old_generating_concat_p = generating_concat_p;
5484 generating_concat_p = 0;
5485 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5486 generating_concat_p = old_generating_concat_p;
5488 emit_move_insn (tmp, decl_rtl);
5489 emit_move_insn (real_decl_rtl, tmp);
5491 /* If a named return value dumped decl_return to memory, then
5492 we may need to re-do the PROMOTE_MODE signed/unsigned
5493 extension. */
5494 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5496 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5497 promote_function_mode (TREE_TYPE (decl_result),
5498 GET_MODE (decl_rtl), &unsignedp,
5499 TREE_TYPE (current_function_decl), 1);
5501 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5503 else
5504 emit_move_insn (real_decl_rtl, decl_rtl);
5508 /* If returning a structure, arrange to return the address of the value
5509 in a place where debuggers expect to find it.
5511 If returning a structure PCC style,
5512 the caller also depends on this value.
5513 And cfun->returns_pcc_struct is not necessarily set. */
5514 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5515 && !targetm.calls.omit_struct_return_reg)
5517 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5518 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5519 rtx outgoing;
5521 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5522 type = TREE_TYPE (type);
5523 else
5524 value_address = XEXP (value_address, 0);
5526 outgoing = targetm.calls.function_value (build_pointer_type (type),
5527 current_function_decl, true);
5529 /* Mark this as a function return value so integrate will delete the
5530 assignment and USE below when inlining this function. */
5531 REG_FUNCTION_VALUE_P (outgoing) = 1;
5533 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5534 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5535 value_address = convert_memory_address (mode, value_address);
5537 emit_move_insn (outgoing, value_address);
5539 /* Show return register used to hold result (in this case the address
5540 of the result. */
5541 crtl->return_rtx = outgoing;
5544 /* Emit the actual code to clobber return register. Don't emit
5545 it if clobber_after is a barrier, then the previous basic block
5546 certainly doesn't fall thru into the exit block. */
5547 if (!BARRIER_P (clobber_after))
5549 start_sequence ();
5550 clobber_return_register ();
5551 rtx_insn *seq = get_insns ();
5552 end_sequence ();
5554 emit_insn_after (seq, clobber_after);
5557 /* Output the label for the naked return from the function. */
5558 if (naked_return_label)
5559 emit_label (naked_return_label);
5561 /* @@@ This is a kludge. We want to ensure that instructions that
5562 may trap are not moved into the epilogue by scheduling, because
5563 we don't always emit unwind information for the epilogue. */
5564 if (cfun->can_throw_non_call_exceptions
5565 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5566 emit_insn (gen_blockage ());
5568 /* If stack protection is enabled for this function, check the guard. */
5569 if (crtl->stack_protect_guard
5570 && targetm.stack_protect_runtime_enabled_p ()
5571 && naked_return_label)
5572 stack_protect_epilogue ();
5574 /* If we had calls to alloca, and this machine needs
5575 an accurate stack pointer to exit the function,
5576 insert some code to save and restore the stack pointer. */
5577 if (! EXIT_IGNORE_STACK
5578 && cfun->calls_alloca)
5580 rtx tem = 0;
5582 start_sequence ();
5583 emit_stack_save (SAVE_FUNCTION, &tem);
5584 rtx_insn *seq = get_insns ();
5585 end_sequence ();
5586 emit_insn_before (seq, parm_birth_insn);
5588 emit_stack_restore (SAVE_FUNCTION, tem);
5591 /* ??? This should no longer be necessary since stupid is no longer with
5592 us, but there are some parts of the compiler (eg reload_combine, and
5593 sh mach_dep_reorg) that still try and compute their own lifetime info
5594 instead of using the general framework. */
5595 use_return_register ();
5599 get_arg_pointer_save_area (void)
5601 rtx ret = arg_pointer_save_area;
5603 if (! ret)
5605 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5606 arg_pointer_save_area = ret;
5609 if (! crtl->arg_pointer_save_area_init)
5611 /* Save the arg pointer at the beginning of the function. The
5612 generated stack slot may not be a valid memory address, so we
5613 have to check it and fix it if necessary. */
5614 start_sequence ();
5615 emit_move_insn (validize_mem (copy_rtx (ret)),
5616 crtl->args.internal_arg_pointer);
5617 rtx_insn *seq = get_insns ();
5618 end_sequence ();
5620 push_topmost_sequence ();
5621 emit_insn_after (seq, entry_of_function ());
5622 pop_topmost_sequence ();
5624 crtl->arg_pointer_save_area_init = true;
5627 return ret;
5631 /* If debugging dumps are requested, dump information about how the
5632 target handled -fstack-check=clash for the prologue.
5634 PROBES describes what if any probes were emitted.
5636 RESIDUALS indicates if the prologue had any residual allocation
5637 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5639 void
5640 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5642 if (!dump_file)
5643 return;
5645 switch (probes)
5647 case NO_PROBE_NO_FRAME:
5648 fprintf (dump_file,
5649 "Stack clash no probe no stack adjustment in prologue.\n");
5650 break;
5651 case NO_PROBE_SMALL_FRAME:
5652 fprintf (dump_file,
5653 "Stack clash no probe small stack adjustment in prologue.\n");
5654 break;
5655 case PROBE_INLINE:
5656 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5657 break;
5658 case PROBE_LOOP:
5659 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5660 break;
5663 if (residuals)
5664 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5665 else
5666 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5668 if (frame_pointer_needed)
5669 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5670 else
5671 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5673 if (TREE_THIS_VOLATILE (cfun->decl))
5674 fprintf (dump_file,
5675 "Stack clash noreturn prologue, assuming no implicit"
5676 " probes in caller.\n");
5677 else
5678 fprintf (dump_file,
5679 "Stack clash not noreturn prologue.\n");
5682 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5683 for the first time. */
5685 static void
5686 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5688 rtx_insn *tmp;
5689 hash_table<insn_cache_hasher> *hash = *hashp;
5691 if (hash == NULL)
5692 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5694 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5696 rtx *slot = hash->find_slot (tmp, INSERT);
5697 gcc_assert (*slot == NULL);
5698 *slot = tmp;
5702 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5703 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5704 insn, then record COPY as well. */
5706 void
5707 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5709 hash_table<insn_cache_hasher> *hash;
5710 rtx *slot;
5712 hash = epilogue_insn_hash;
5713 if (!hash || !hash->find (insn))
5715 hash = prologue_insn_hash;
5716 if (!hash || !hash->find (insn))
5717 return;
5720 slot = hash->find_slot (copy, INSERT);
5721 gcc_assert (*slot == NULL);
5722 *slot = copy;
5725 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5726 we can be running after reorg, SEQUENCE rtl is possible. */
5728 static bool
5729 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5731 if (hash == NULL)
5732 return false;
5734 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5736 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5737 int i;
5738 for (i = seq->len () - 1; i >= 0; i--)
5739 if (hash->find (seq->element (i)))
5740 return true;
5741 return false;
5744 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5748 prologue_contains (const rtx_insn *insn)
5750 return contains (insn, prologue_insn_hash);
5754 epilogue_contains (const rtx_insn *insn)
5756 return contains (insn, epilogue_insn_hash);
5760 prologue_epilogue_contains (const rtx_insn *insn)
5762 if (contains (insn, prologue_insn_hash))
5763 return 1;
5764 if (contains (insn, epilogue_insn_hash))
5765 return 1;
5766 return 0;
5769 void
5770 record_prologue_seq (rtx_insn *seq)
5772 record_insns (seq, NULL, &prologue_insn_hash);
5775 void
5776 record_epilogue_seq (rtx_insn *seq)
5778 record_insns (seq, NULL, &epilogue_insn_hash);
5781 /* Set JUMP_LABEL for a return insn. */
5783 void
5784 set_return_jump_label (rtx_insn *returnjump)
5786 rtx pat = PATTERN (returnjump);
5787 if (GET_CODE (pat) == PARALLEL)
5788 pat = XVECEXP (pat, 0, 0);
5789 if (ANY_RETURN_P (pat))
5790 JUMP_LABEL (returnjump) = pat;
5791 else
5792 JUMP_LABEL (returnjump) = ret_rtx;
5795 /* Return a sequence to be used as the split prologue for the current
5796 function, or NULL. */
5798 static rtx_insn *
5799 make_split_prologue_seq (void)
5801 if (!flag_split_stack
5802 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5803 return NULL;
5805 start_sequence ();
5806 emit_insn (targetm.gen_split_stack_prologue ());
5807 rtx_insn *seq = get_insns ();
5808 end_sequence ();
5810 record_insns (seq, NULL, &prologue_insn_hash);
5811 set_insn_locations (seq, prologue_location);
5813 return seq;
5816 /* Return a sequence to be used as the prologue for the current function,
5817 or NULL. */
5819 static rtx_insn *
5820 make_prologue_seq (void)
5822 if (!targetm.have_prologue ())
5823 return NULL;
5825 start_sequence ();
5826 rtx_insn *seq = targetm.gen_prologue ();
5827 emit_insn (seq);
5829 /* Insert an explicit USE for the frame pointer
5830 if the profiling is on and the frame pointer is required. */
5831 if (crtl->profile && frame_pointer_needed)
5832 emit_use (hard_frame_pointer_rtx);
5834 /* Retain a map of the prologue insns. */
5835 record_insns (seq, NULL, &prologue_insn_hash);
5836 emit_note (NOTE_INSN_PROLOGUE_END);
5838 /* Ensure that instructions are not moved into the prologue when
5839 profiling is on. The call to the profiling routine can be
5840 emitted within the live range of a call-clobbered register. */
5841 if (!targetm.profile_before_prologue () && crtl->profile)
5842 emit_insn (gen_blockage ());
5844 seq = get_insns ();
5845 end_sequence ();
5846 set_insn_locations (seq, prologue_location);
5848 return seq;
5851 /* Emit a sequence of insns to zero the call-used registers before RET
5852 according to ZERO_REGS_TYPE. */
5854 static void
5855 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5857 bool only_gpr = true;
5858 bool only_used = true;
5859 bool only_arg = true;
5861 /* No need to zero call-used-regs in main (). */
5862 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5863 return;
5865 /* No need to zero call-used-regs if __builtin_eh_return is called
5866 since it isn't a normal function return. */
5867 if (crtl->calls_eh_return)
5868 return;
5870 /* If only_gpr is true, only zero call-used registers that are
5871 general-purpose registers; if only_used is true, only zero
5872 call-used registers that are used in the current function;
5873 if only_arg is true, only zero call-used registers that pass
5874 parameters defined by the flatform's calling conversion. */
5876 using namespace zero_regs_flags;
5878 only_gpr = zero_regs_type & ONLY_GPR;
5879 only_used = zero_regs_type & ONLY_USED;
5880 only_arg = zero_regs_type & ONLY_ARG;
5882 /* For each of the hard registers, we should zero it if:
5883 1. it is a call-used register;
5884 and 2. it is not a fixed register;
5885 and 3. it is not live at the return of the routine;
5886 and 4. it is general registor if only_gpr is true;
5887 and 5. it is used in the routine if only_used is true;
5888 and 6. it is a register that passes parameter if only_arg is true. */
5890 /* First, prepare the data flow information. */
5891 basic_block bb = BLOCK_FOR_INSN (ret);
5892 auto_bitmap live_out;
5893 bitmap_copy (live_out, df_get_live_out (bb));
5894 df_simulate_initialize_backwards (bb, live_out);
5895 df_simulate_one_insn_backwards (bb, ret, live_out);
5897 HARD_REG_SET selected_hardregs;
5898 HARD_REG_SET all_call_used_regs;
5899 CLEAR_HARD_REG_SET (selected_hardregs);
5900 CLEAR_HARD_REG_SET (all_call_used_regs);
5901 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5903 if (!crtl->abi->clobbers_full_reg_p (regno))
5904 continue;
5905 if (fixed_regs[regno])
5906 continue;
5907 if (REGNO_REG_SET_P (live_out, regno))
5908 continue;
5909 #ifdef LEAF_REG_REMAP
5910 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5911 continue;
5912 #endif
5913 /* This is a call used register that is dead at return. */
5914 SET_HARD_REG_BIT (all_call_used_regs, regno);
5916 if (only_gpr
5917 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5918 continue;
5919 if (only_used && !df_regs_ever_live_p (regno))
5920 continue;
5921 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5922 continue;
5924 /* Now this is a register that we might want to zero. */
5925 SET_HARD_REG_BIT (selected_hardregs, regno);
5928 if (hard_reg_set_empty_p (selected_hardregs))
5929 return;
5931 /* Now that we have a hard register set that needs to be zeroed, pass it to
5932 target to generate zeroing sequence. */
5933 HARD_REG_SET zeroed_hardregs;
5934 start_sequence ();
5935 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5937 /* For most targets, the returned set of registers is a subset of
5938 selected_hardregs, however, for some of the targets (for example MIPS),
5939 clearing some registers that are in selected_hardregs requires clearing
5940 other call used registers that are not in the selected_hardregs, under
5941 such situation, the returned set of registers must be a subset of
5942 all call used registers. */
5943 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5945 rtx_insn *seq = get_insns ();
5946 end_sequence ();
5947 if (seq)
5949 /* Emit the memory blockage and register clobber asm volatile before
5950 the whole sequence. */
5951 start_sequence ();
5952 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5953 rtx_insn *seq_barrier = get_insns ();
5954 end_sequence ();
5956 emit_insn_before (seq_barrier, ret);
5957 emit_insn_before (seq, ret);
5959 /* Update the data flow information. */
5960 crtl->must_be_zero_on_return |= zeroed_hardregs;
5961 df_update_exit_block_uses ();
5966 /* Return a sequence to be used as the epilogue for the current function,
5967 or NULL. */
5969 static rtx_insn *
5970 make_epilogue_seq (void)
5972 if (!targetm.have_epilogue ())
5973 return NULL;
5975 start_sequence ();
5976 emit_note (NOTE_INSN_EPILOGUE_BEG);
5977 rtx_insn *seq = targetm.gen_epilogue ();
5978 if (seq)
5979 emit_jump_insn (seq);
5981 /* Retain a map of the epilogue insns. */
5982 record_insns (seq, NULL, &epilogue_insn_hash);
5983 set_insn_locations (seq, epilogue_location);
5985 seq = get_insns ();
5986 rtx_insn *returnjump = get_last_insn ();
5987 end_sequence ();
5989 if (JUMP_P (returnjump))
5990 set_return_jump_label (returnjump);
5992 return seq;
5996 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5997 this into place with notes indicating where the prologue ends and where
5998 the epilogue begins. Update the basic block information when possible.
6000 Notes on epilogue placement:
6001 There are several kinds of edges to the exit block:
6002 * a single fallthru edge from LAST_BB
6003 * possibly, edges from blocks containing sibcalls
6004 * possibly, fake edges from infinite loops
6006 The epilogue is always emitted on the fallthru edge from the last basic
6007 block in the function, LAST_BB, into the exit block.
6009 If LAST_BB is empty except for a label, it is the target of every
6010 other basic block in the function that ends in a return. If a
6011 target has a return or simple_return pattern (possibly with
6012 conditional variants), these basic blocks can be changed so that a
6013 return insn is emitted into them, and their target is adjusted to
6014 the real exit block.
6016 Notes on shrink wrapping: We implement a fairly conservative
6017 version of shrink-wrapping rather than the textbook one. We only
6018 generate a single prologue and a single epilogue. This is
6019 sufficient to catch a number of interesting cases involving early
6020 exits.
6022 First, we identify the blocks that require the prologue to occur before
6023 them. These are the ones that modify a call-saved register, or reference
6024 any of the stack or frame pointer registers. To simplify things, we then
6025 mark everything reachable from these blocks as also requiring a prologue.
6026 This takes care of loops automatically, and avoids the need to examine
6027 whether MEMs reference the frame, since it is sufficient to check for
6028 occurrences of the stack or frame pointer.
6030 We then compute the set of blocks for which the need for a prologue
6031 is anticipatable (borrowing terminology from the shrink-wrapping
6032 description in Muchnick's book). These are the blocks which either
6033 require a prologue themselves, or those that have only successors
6034 where the prologue is anticipatable. The prologue needs to be
6035 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6036 is not. For the moment, we ensure that only one such edge exists.
6038 The epilogue is placed as described above, but we make a
6039 distinction between inserting return and simple_return patterns
6040 when modifying other blocks that end in a return. Blocks that end
6041 in a sibcall omit the sibcall_epilogue if the block is not in
6042 ANTIC. */
6044 void
6045 thread_prologue_and_epilogue_insns (void)
6047 df_analyze ();
6049 /* Can't deal with multiple successors of the entry block at the
6050 moment. Function should always have at least one entry
6051 point. */
6052 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6054 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6055 edge orig_entry_edge = entry_edge;
6057 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6058 rtx_insn *prologue_seq = make_prologue_seq ();
6059 rtx_insn *epilogue_seq = make_epilogue_seq ();
6061 /* Try to perform a kind of shrink-wrapping, making sure the
6062 prologue/epilogue is emitted only around those parts of the
6063 function that require it. */
6064 try_shrink_wrapping (&entry_edge, prologue_seq);
6066 /* If the target can handle splitting the prologue/epilogue into separate
6067 components, try to shrink-wrap these components separately. */
6068 try_shrink_wrapping_separate (entry_edge->dest);
6070 /* If that did anything for any component we now need the generate the
6071 "main" prologue again. Because some targets require some of these
6072 to be called in a specific order (i386 requires the split prologue
6073 to be first, for example), we create all three sequences again here.
6074 If this does not work for some target, that target should not enable
6075 separate shrink-wrapping. */
6076 if (crtl->shrink_wrapped_separate)
6078 split_prologue_seq = make_split_prologue_seq ();
6079 prologue_seq = make_prologue_seq ();
6080 epilogue_seq = make_epilogue_seq ();
6083 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6085 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6086 this marker for the splits of EH_RETURN patterns, and nothing else
6087 uses the flag in the meantime. */
6088 epilogue_completed = 1;
6090 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6091 some targets, these get split to a special version of the epilogue
6092 code. In order to be able to properly annotate these with unwind
6093 info, try to split them now. If we get a valid split, drop an
6094 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6095 edge e;
6096 edge_iterator ei;
6097 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6099 rtx_insn *prev, *last, *trial;
6101 if (e->flags & EDGE_FALLTHRU)
6102 continue;
6103 last = BB_END (e->src);
6104 if (!eh_returnjump_p (last))
6105 continue;
6107 prev = PREV_INSN (last);
6108 trial = try_split (PATTERN (last), last, 1);
6109 if (trial == last)
6110 continue;
6112 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6113 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6116 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6118 if (exit_fallthru_edge)
6120 if (epilogue_seq)
6122 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6123 commit_edge_insertions ();
6125 /* The epilogue insns we inserted may cause the exit edge to no longer
6126 be fallthru. */
6127 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6129 if (((e->flags & EDGE_FALLTHRU) != 0)
6130 && returnjump_p (BB_END (e->src)))
6131 e->flags &= ~EDGE_FALLTHRU;
6134 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6136 /* We have a fall-through edge to the exit block, the source is not
6137 at the end of the function, and there will be an assembler epilogue
6138 at the end of the function.
6139 We can't use force_nonfallthru here, because that would try to
6140 use return. Inserting a jump 'by hand' is extremely messy, so
6141 we take advantage of cfg_layout_finalize using
6142 fixup_fallthru_exit_predecessor. */
6143 cfg_layout_initialize (0);
6144 basic_block cur_bb;
6145 FOR_EACH_BB_FN (cur_bb, cfun)
6146 if (cur_bb->index >= NUM_FIXED_BLOCKS
6147 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6148 cur_bb->aux = cur_bb->next_bb;
6149 cfg_layout_finalize ();
6153 /* Insert the prologue. */
6155 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6157 if (split_prologue_seq || prologue_seq)
6159 rtx_insn *split_prologue_insn = split_prologue_seq;
6160 if (split_prologue_seq)
6162 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6163 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6164 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6167 rtx_insn *prologue_insn = prologue_seq;
6168 if (prologue_seq)
6170 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6171 prologue_insn = NEXT_INSN (prologue_insn);
6172 insert_insn_on_edge (prologue_seq, entry_edge);
6175 commit_edge_insertions ();
6177 /* Look for basic blocks within the prologue insns. */
6178 if (split_prologue_insn
6179 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6180 split_prologue_insn = NULL;
6181 if (prologue_insn
6182 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6183 prologue_insn = NULL;
6184 if (split_prologue_insn || prologue_insn)
6186 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6187 bitmap_clear (blocks);
6188 if (split_prologue_insn)
6189 bitmap_set_bit (blocks,
6190 BLOCK_FOR_INSN (split_prologue_insn)->index);
6191 if (prologue_insn)
6192 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6193 find_many_sub_basic_blocks (blocks);
6197 default_rtl_profile ();
6199 /* Emit sibling epilogues before any sibling call sites. */
6200 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6201 (e = ei_safe_edge (ei));
6202 ei_next (&ei))
6204 /* Skip those already handled, the ones that run without prologue. */
6205 if (e->flags & EDGE_IGNORE)
6207 e->flags &= ~EDGE_IGNORE;
6208 continue;
6211 rtx_insn *insn = BB_END (e->src);
6213 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6214 continue;
6216 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6218 start_sequence ();
6219 emit_note (NOTE_INSN_EPILOGUE_BEG);
6220 emit_insn (ep_seq);
6221 rtx_insn *seq = get_insns ();
6222 end_sequence ();
6224 /* Retain a map of the epilogue insns. Used in life analysis to
6225 avoid getting rid of sibcall epilogue insns. Do this before we
6226 actually emit the sequence. */
6227 record_insns (seq, NULL, &epilogue_insn_hash);
6228 set_insn_locations (seq, epilogue_location);
6230 emit_insn_before (seq, insn);
6234 if (epilogue_seq)
6236 rtx_insn *insn, *next;
6238 /* Similarly, move any line notes that appear after the epilogue.
6239 There is no need, however, to be quite so anal about the existence
6240 of such a note. Also possibly move
6241 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6242 info generation. */
6243 for (insn = epilogue_seq; insn; insn = next)
6245 next = NEXT_INSN (insn);
6246 if (NOTE_P (insn)
6247 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6248 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6252 /* Threading the prologue and epilogue changes the artificial refs
6253 in the entry and exit blocks. */
6254 epilogue_completed = 1;
6255 df_update_entry_exit_and_calls ();
6258 /* Reposition the prologue-end and epilogue-begin notes after
6259 instruction scheduling. */
6261 void
6262 reposition_prologue_and_epilogue_notes (void)
6264 if (!targetm.have_prologue ()
6265 && !targetm.have_epilogue ()
6266 && !targetm.have_sibcall_epilogue ())
6267 return;
6269 /* Since the hash table is created on demand, the fact that it is
6270 non-null is a signal that it is non-empty. */
6271 if (prologue_insn_hash != NULL)
6273 size_t len = prologue_insn_hash->elements ();
6274 rtx_insn *insn, *last = NULL, *note = NULL;
6276 /* Scan from the beginning until we reach the last prologue insn. */
6277 /* ??? While we do have the CFG intact, there are two problems:
6278 (1) The prologue can contain loops (typically probing the stack),
6279 which means that the end of the prologue isn't in the first bb.
6280 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6281 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6283 if (NOTE_P (insn))
6285 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6286 note = insn;
6288 else if (contains (insn, prologue_insn_hash))
6290 last = insn;
6291 if (--len == 0)
6292 break;
6296 if (last)
6298 if (note == NULL)
6300 /* Scan forward looking for the PROLOGUE_END note. It should
6301 be right at the beginning of the block, possibly with other
6302 insn notes that got moved there. */
6303 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6305 if (NOTE_P (note)
6306 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6307 break;
6311 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6312 if (LABEL_P (last))
6313 last = NEXT_INSN (last);
6314 reorder_insns (note, note, last);
6318 if (epilogue_insn_hash != NULL)
6320 edge_iterator ei;
6321 edge e;
6323 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6325 rtx_insn *insn, *first = NULL, *note = NULL;
6326 basic_block bb = e->src;
6328 /* Scan from the beginning until we reach the first epilogue insn. */
6329 FOR_BB_INSNS (bb, insn)
6331 if (NOTE_P (insn))
6333 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6335 note = insn;
6336 if (first != NULL)
6337 break;
6340 else if (first == NULL && contains (insn, epilogue_insn_hash))
6342 first = insn;
6343 if (note != NULL)
6344 break;
6348 if (note)
6350 /* If the function has a single basic block, and no real
6351 epilogue insns (e.g. sibcall with no cleanup), the
6352 epilogue note can get scheduled before the prologue
6353 note. If we have frame related prologue insns, having
6354 them scanned during the epilogue will result in a crash.
6355 In this case re-order the epilogue note to just before
6356 the last insn in the block. */
6357 if (first == NULL)
6358 first = BB_END (bb);
6360 if (PREV_INSN (first) != note)
6361 reorder_insns (note, note, PREV_INSN (first));
6367 /* Returns the name of function declared by FNDECL. */
6368 const char *
6369 fndecl_name (tree fndecl)
6371 if (fndecl == NULL)
6372 return "(nofn)";
6373 return lang_hooks.decl_printable_name (fndecl, 1);
6376 /* Returns the name of function FN. */
6377 const char *
6378 function_name (struct function *fn)
6380 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6381 return fndecl_name (fndecl);
6384 /* Returns the name of the current function. */
6385 const char *
6386 current_function_name (void)
6388 return function_name (cfun);
6392 static unsigned int
6393 rest_of_handle_check_leaf_regs (void)
6395 #ifdef LEAF_REGISTERS
6396 crtl->uses_only_leaf_regs
6397 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6398 #endif
6399 return 0;
6402 /* Insert a TYPE into the used types hash table of CFUN. */
6404 static void
6405 used_types_insert_helper (tree type, struct function *func)
6407 if (type != NULL && func != NULL)
6409 if (func->used_types_hash == NULL)
6410 func->used_types_hash = hash_set<tree>::create_ggc (37);
6412 func->used_types_hash->add (type);
6416 /* Given a type, insert it into the used hash table in cfun. */
6417 void
6418 used_types_insert (tree t)
6420 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6421 if (TYPE_NAME (t))
6422 break;
6423 else
6424 t = TREE_TYPE (t);
6425 if (TREE_CODE (t) == ERROR_MARK)
6426 return;
6427 if (TYPE_NAME (t) == NULL_TREE
6428 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6429 t = TYPE_MAIN_VARIANT (t);
6430 if (debug_info_level > DINFO_LEVEL_NONE)
6432 if (cfun)
6433 used_types_insert_helper (t, cfun);
6434 else
6436 /* So this might be a type referenced by a global variable.
6437 Record that type so that we can later decide to emit its
6438 debug information. */
6439 vec_safe_push (types_used_by_cur_var_decl, t);
6444 /* Helper to Hash a struct types_used_by_vars_entry. */
6446 static hashval_t
6447 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6449 gcc_assert (entry && entry->var_decl && entry->type);
6451 return iterative_hash_object (entry->type,
6452 iterative_hash_object (entry->var_decl, 0));
6455 /* Hash function of the types_used_by_vars_entry hash table. */
6457 hashval_t
6458 used_type_hasher::hash (types_used_by_vars_entry *entry)
6460 return hash_types_used_by_vars_entry (entry);
6463 /*Equality function of the types_used_by_vars_entry hash table. */
6465 bool
6466 used_type_hasher::equal (types_used_by_vars_entry *e1,
6467 types_used_by_vars_entry *e2)
6469 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6472 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6474 void
6475 types_used_by_var_decl_insert (tree type, tree var_decl)
6477 if (type != NULL && var_decl != NULL)
6479 types_used_by_vars_entry **slot;
6480 struct types_used_by_vars_entry e;
6481 e.var_decl = var_decl;
6482 e.type = type;
6483 if (types_used_by_vars_hash == NULL)
6484 types_used_by_vars_hash
6485 = hash_table<used_type_hasher>::create_ggc (37);
6487 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6488 if (*slot == NULL)
6490 struct types_used_by_vars_entry *entry;
6491 entry = ggc_alloc<types_used_by_vars_entry> ();
6492 entry->type = type;
6493 entry->var_decl = var_decl;
6494 *slot = entry;
6499 namespace {
6501 const pass_data pass_data_leaf_regs =
6503 RTL_PASS, /* type */
6504 "*leaf_regs", /* name */
6505 OPTGROUP_NONE, /* optinfo_flags */
6506 TV_NONE, /* tv_id */
6507 0, /* properties_required */
6508 0, /* properties_provided */
6509 0, /* properties_destroyed */
6510 0, /* todo_flags_start */
6511 0, /* todo_flags_finish */
6514 class pass_leaf_regs : public rtl_opt_pass
6516 public:
6517 pass_leaf_regs (gcc::context *ctxt)
6518 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6521 /* opt_pass methods: */
6522 unsigned int execute (function *) final override
6524 return rest_of_handle_check_leaf_regs ();
6527 }; // class pass_leaf_regs
6529 } // anon namespace
6531 rtl_opt_pass *
6532 make_pass_leaf_regs (gcc::context *ctxt)
6534 return new pass_leaf_regs (ctxt);
6537 static unsigned int
6538 rest_of_handle_thread_prologue_and_epilogue (void)
6540 /* prepare_shrink_wrap is sensitive to the block structure of the control
6541 flow graph, so clean it up first. */
6542 if (optimize)
6543 cleanup_cfg (0);
6545 /* On some machines, the prologue and epilogue code, or parts thereof,
6546 can be represented as RTL. Doing so lets us schedule insns between
6547 it and the rest of the code and also allows delayed branch
6548 scheduling to operate in the epilogue. */
6549 thread_prologue_and_epilogue_insns ();
6551 /* Some non-cold blocks may now be only reachable from cold blocks.
6552 Fix that up. */
6553 fixup_partitions ();
6555 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6556 see PR57320. */
6557 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6559 /* The stack usage info is finalized during prologue expansion. */
6560 if (flag_stack_usage_info || flag_callgraph_info)
6561 output_stack_usage ();
6563 return 0;
6566 /* Record a final call to CALLEE at LOCATION. */
6568 void
6569 record_final_call (tree callee, location_t location)
6571 struct callinfo_callee datum = { location, callee };
6572 vec_safe_push (cfun->su->callees, datum);
6575 /* Record a dynamic allocation made for DECL_OR_EXP. */
6577 void
6578 record_dynamic_alloc (tree decl_or_exp)
6580 struct callinfo_dalloc datum;
6582 if (DECL_P (decl_or_exp))
6584 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6585 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6586 const char *dot = strrchr (name, '.');
6587 if (dot)
6588 name = dot + 1;
6589 datum.name = ggc_strdup (name);
6591 else
6593 datum.location = EXPR_LOCATION (decl_or_exp);
6594 datum.name = NULL;
6597 vec_safe_push (cfun->su->dallocs, datum);
6600 namespace {
6602 const pass_data pass_data_thread_prologue_and_epilogue =
6604 RTL_PASS, /* type */
6605 "pro_and_epilogue", /* name */
6606 OPTGROUP_NONE, /* optinfo_flags */
6607 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6608 0, /* properties_required */
6609 0, /* properties_provided */
6610 0, /* properties_destroyed */
6611 0, /* todo_flags_start */
6612 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6615 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6617 public:
6618 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6619 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6622 /* opt_pass methods: */
6623 unsigned int execute (function *) final override
6625 return rest_of_handle_thread_prologue_and_epilogue ();
6628 }; // class pass_thread_prologue_and_epilogue
6630 } // anon namespace
6632 rtl_opt_pass *
6633 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6635 return new pass_thread_prologue_and_epilogue (ctxt);
6638 namespace {
6640 const pass_data pass_data_zero_call_used_regs =
6642 RTL_PASS, /* type */
6643 "zero_call_used_regs", /* name */
6644 OPTGROUP_NONE, /* optinfo_flags */
6645 TV_NONE, /* tv_id */
6646 0, /* properties_required */
6647 0, /* properties_provided */
6648 0, /* properties_destroyed */
6649 0, /* todo_flags_start */
6650 0, /* todo_flags_finish */
6653 class pass_zero_call_used_regs: public rtl_opt_pass
6655 public:
6656 pass_zero_call_used_regs (gcc::context *ctxt)
6657 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6660 /* opt_pass methods: */
6661 unsigned int execute (function *) final override;
6663 }; // class pass_zero_call_used_regs
6665 unsigned int
6666 pass_zero_call_used_regs::execute (function *fun)
6668 using namespace zero_regs_flags;
6669 unsigned int zero_regs_type = UNSET;
6671 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6672 DECL_ATTRIBUTES (fun->decl));
6674 /* Get the type of zero_call_used_regs from function attribute.
6675 We have filtered out invalid attribute values already at this point. */
6676 if (attr_zero_regs)
6678 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6679 is the attribute argument's value. */
6680 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6681 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6682 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6683 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6685 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6686 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6687 zero_call_used_regs_opts[i].name) == 0)
6689 zero_regs_type = zero_call_used_regs_opts[i].flag;
6690 break;
6694 if (!zero_regs_type)
6695 zero_regs_type = flag_zero_call_used_regs;
6697 /* No need to zero call-used-regs when no user request is present. */
6698 if (!(zero_regs_type & ENABLED))
6699 return 0;
6701 edge_iterator ei;
6702 edge e;
6704 /* This pass needs data flow information. */
6705 df_analyze ();
6707 /* Iterate over the function's return instructions and insert any
6708 register zeroing required by the -fzero-call-used-regs command-line
6709 option or the "zero_call_used_regs" function attribute. */
6710 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6712 rtx_insn *insn = BB_END (e->src);
6713 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6714 gen_call_used_regs_seq (insn, zero_regs_type);
6717 return 0;
6720 } // anon namespace
6722 rtl_opt_pass *
6723 make_pass_zero_call_used_regs (gcc::context *ctxt)
6725 return new pass_zero_call_used_regs (ctxt);
6728 /* If CONSTRAINT is a matching constraint, then return its number.
6729 Otherwise, return -1. */
6731 static int
6732 matching_constraint_num (const char *constraint)
6734 if (*constraint == '%')
6735 constraint++;
6737 if (IN_RANGE (*constraint, '0', '9'))
6738 return strtoul (constraint, NULL, 10);
6740 return -1;
6743 /* This mini-pass fixes fall-out from SSA in asm statements that have
6744 in-out constraints. Say you start with
6746 orig = inout;
6747 asm ("": "+mr" (inout));
6748 use (orig);
6750 which is transformed very early to use explicit output and match operands:
6752 orig = inout;
6753 asm ("": "=mr" (inout) : "0" (inout));
6754 use (orig);
6756 Or, after SSA and copyprop,
6758 asm ("": "=mr" (inout_2) : "0" (inout_1));
6759 use (inout_1);
6761 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6762 they represent two separate values, so they will get different pseudo
6763 registers during expansion. Then, since the two operands need to match
6764 per the constraints, but use different pseudo registers, reload can
6765 only register a reload for these operands. But reloads can only be
6766 satisfied by hardregs, not by memory, so we need a register for this
6767 reload, just because we are presented with non-matching operands.
6768 So, even though we allow memory for this operand, no memory can be
6769 used for it, just because the two operands don't match. This can
6770 cause reload failures on register-starved targets.
6772 So it's a symptom of reload not being able to use memory for reloads
6773 or, alternatively it's also a symptom of both operands not coming into
6774 reload as matching (in which case the pseudo could go to memory just
6775 fine, as the alternative allows it, and no reload would be necessary).
6776 We fix the latter problem here, by transforming
6778 asm ("": "=mr" (inout_2) : "0" (inout_1));
6780 back to
6782 inout_2 = inout_1;
6783 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6785 static void
6786 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6788 int i;
6789 bool changed = false;
6790 rtx op = SET_SRC (p_sets[0]);
6791 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6792 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6793 bool *output_matched = XALLOCAVEC (bool, noutputs);
6795 memset (output_matched, 0, noutputs * sizeof (bool));
6796 for (i = 0; i < ninputs; i++)
6798 rtx input, output;
6799 rtx_insn *insns;
6800 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6801 int match, j;
6803 match = matching_constraint_num (constraint);
6804 if (match < 0)
6805 continue;
6807 gcc_assert (match < noutputs);
6808 output = SET_DEST (p_sets[match]);
6809 input = RTVEC_ELT (inputs, i);
6810 /* Only do the transformation for pseudos. */
6811 if (! REG_P (output)
6812 || rtx_equal_p (output, input)
6813 || !(REG_P (input) || SUBREG_P (input)
6814 || MEM_P (input) || CONSTANT_P (input))
6815 || !general_operand (input, GET_MODE (output)))
6816 continue;
6818 /* We can't do anything if the output is also used as input,
6819 as we're going to overwrite it. */
6820 for (j = 0; j < ninputs; j++)
6821 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6822 break;
6823 if (j != ninputs)
6824 continue;
6826 /* Avoid changing the same input several times. For
6827 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6828 only change it once (to out1), rather than changing it
6829 first to out1 and afterwards to out2. */
6830 if (i > 0)
6832 for (j = 0; j < noutputs; j++)
6833 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6834 break;
6835 if (j != noutputs)
6836 continue;
6838 output_matched[match] = true;
6840 start_sequence ();
6841 emit_move_insn (output, copy_rtx (input));
6842 insns = get_insns ();
6843 end_sequence ();
6844 emit_insn_before (insns, insn);
6846 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6847 bool early_clobber_p = strchr (constraint, '&') != NULL;
6849 /* Now replace all mentions of the input with output. We can't
6850 just replace the occurrence in inputs[i], as the register might
6851 also be used in some other input (or even in an address of an
6852 output), which would mean possibly increasing the number of
6853 inputs by one (namely 'output' in addition), which might pose
6854 a too complicated problem for reload to solve. E.g. this situation:
6856 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6858 Here 'input' is used in two occurrences as input (once for the
6859 input operand, once for the address in the second output operand).
6860 If we would replace only the occurrence of the input operand (to
6861 make the matching) we would be left with this:
6863 output = input
6864 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6866 Now we suddenly have two different input values (containing the same
6867 value, but different pseudos) where we formerly had only one.
6868 With more complicated asms this might lead to reload failures
6869 which wouldn't have happen without this pass. So, iterate over
6870 all operands and replace all occurrences of the register used.
6872 However, if one or more of the 'input' uses have a non-matching
6873 constraint and the matched output operand is an early clobber
6874 operand, then do not replace the input operand, since by definition
6875 it conflicts with the output operand and cannot share the same
6876 register. See PR89313 for details. */
6878 for (j = 0; j < noutputs; j++)
6879 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6880 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6881 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6882 input, output);
6883 for (j = 0; j < ninputs; j++)
6884 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6886 if (!early_clobber_p
6887 || match == matching_constraint_num
6888 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6889 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6890 input, output);
6893 changed = true;
6896 if (changed)
6897 df_insn_rescan (insn);
6900 /* Add the decl D to the local_decls list of FUN. */
6902 void
6903 add_local_decl (struct function *fun, tree d)
6905 gcc_assert (VAR_P (d));
6906 vec_safe_push (fun->local_decls, d);
6909 namespace {
6911 const pass_data pass_data_match_asm_constraints =
6913 RTL_PASS, /* type */
6914 "asmcons", /* name */
6915 OPTGROUP_NONE, /* optinfo_flags */
6916 TV_NONE, /* tv_id */
6917 0, /* properties_required */
6918 0, /* properties_provided */
6919 0, /* properties_destroyed */
6920 0, /* todo_flags_start */
6921 0, /* todo_flags_finish */
6924 class pass_match_asm_constraints : public rtl_opt_pass
6926 public:
6927 pass_match_asm_constraints (gcc::context *ctxt)
6928 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6931 /* opt_pass methods: */
6932 unsigned int execute (function *) final override;
6934 }; // class pass_match_asm_constraints
6936 unsigned
6937 pass_match_asm_constraints::execute (function *fun)
6939 basic_block bb;
6940 rtx_insn *insn;
6941 rtx pat, *p_sets;
6942 int noutputs;
6944 if (!crtl->has_asm_statement)
6945 return 0;
6947 df_set_flags (DF_DEFER_INSN_RESCAN);
6948 FOR_EACH_BB_FN (bb, fun)
6950 FOR_BB_INSNS (bb, insn)
6952 if (!INSN_P (insn))
6953 continue;
6955 pat = PATTERN (insn);
6956 if (GET_CODE (pat) == PARALLEL)
6957 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6958 else if (GET_CODE (pat) == SET)
6959 p_sets = &PATTERN (insn), noutputs = 1;
6960 else
6961 continue;
6963 if (GET_CODE (*p_sets) == SET
6964 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6965 match_asm_constraints_1 (insn, p_sets, noutputs);
6969 return TODO_df_finish;
6972 } // anon namespace
6974 rtl_opt_pass *
6975 make_pass_match_asm_constraints (gcc::context *ctxt)
6977 return new pass_match_asm_constraints (ctxt);
6981 #include "gt-function.h"