1 /* Post reload partially redundant load elimination
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
37 #include "basic-block.h"
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
79 /* Keep statistics of this pass. */
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
91 /* The table itself. */
92 static htab_t expr_table
;
94 /* Expression elements in the hash table. */
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
100 /* The same hash for this entry. */
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr
*avail_occr
;
107 static struct obstack expr_obstack
;
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
115 /* Next occurrence of this expression. */
117 /* The insn that computes the expression. */
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
123 static struct obstack occr_obstack
;
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
134 static struct obstack unoccr_obstack
;
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
145 static int *reg_avail_info
;
147 /* A list of insns that may modify memory within the current basic block. */
151 struct modifies_mem
*next
;
153 static struct modifies_mem
*modifies_mem_list
;
155 /* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159 static struct obstack modifies_mem_obstack
;
160 static struct modifies_mem
*modifies_mem_obstack_bottom
;
162 /* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165 static int *uid_cuid
;
166 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
169 /* Helpers for memory allocation/freeing. */
170 static void alloc_mem (void);
171 static void free_mem (void);
173 /* Support for hash table construction and transformations. */
174 static bool oprs_unchanged_p (rtx
, rtx
, bool);
175 static void record_last_reg_set_info (rtx
, int);
176 static void record_last_mem_set_info (rtx
);
177 static void record_last_set_info (rtx
, rtx
, void *);
178 static void record_opr_changes (rtx
);
180 static void find_mem_conflicts (rtx
, rtx
, void *);
181 static int load_killed_in_block_p (int, rtx
, bool);
182 static void reset_opr_set_tables (void);
184 /* Hash table support. */
185 static hashval_t
hash_expr (rtx
, int *);
186 static hashval_t
hash_expr_for_htab (const void *);
187 static int expr_equiv_p (const void *, const void *);
188 static void insert_expr_in_table (rtx
, rtx
);
189 static struct expr
*lookup_expr_in_table (rtx
);
190 static int dump_hash_table_entry (void **, void *);
191 static void dump_hash_table (FILE *);
193 /* Helpers for eliminate_partially_redundant_load. */
194 static bool reg_killed_on_edge (rtx
, edge
);
195 static bool reg_used_on_edge (rtx
, edge
);
197 static rtx
reg_set_between_after_reload_p (rtx
, rtx
, rtx
);
198 static rtx
reg_used_between_after_reload_p (rtx
, rtx
, rtx
);
199 static rtx
get_avail_load_store_reg (rtx
);
201 static bool bb_has_well_behaved_predecessors (basic_block
);
202 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
203 static void hash_scan_set (rtx
);
204 static void compute_hash_table (void);
206 /* The work horses of this pass. */
207 static void eliminate_partially_redundant_load (basic_block
,
210 static void eliminate_partially_redundant_loads (void);
213 /* Allocate memory for the CUID mapping array and register/memory
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid
= xcalloc (get_max_uid () + 1, sizeof (int));
227 FOR_BB_INSNS (bb
, insn
)
230 uid_cuid
[INSN_UID (insn
)] = i
++;
232 uid_cuid
[INSN_UID (insn
)] = i
;
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table
= htab_create (MAX (i
/ 4, 13),
240 hash_expr_for_htab
, expr_equiv_p
, NULL
);
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack
);
245 gcc_obstack_init (&occr_obstack
);
246 gcc_obstack_init (&unoccr_obstack
);
247 gcc_obstack_init (&modifies_mem_obstack
);
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom
=
256 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
257 sizeof (struct modifies_mem
));
260 /* Free memory allocated by alloc_mem. */
267 htab_delete (expr_table
);
269 obstack_free (&expr_obstack
, NULL
);
270 obstack_free (&occr_obstack
, NULL
);
271 obstack_free (&unoccr_obstack
, NULL
);
272 obstack_free (&modifies_mem_obstack
, NULL
);
274 free (reg_avail_info
);
278 /* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
284 hash_expr (rtx x
, int *do_not_record_p
)
286 *do_not_record_p
= 0;
287 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
288 NULL
, /*have_reg_qty=*/false);
291 /* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
296 hash_expr_for_htab (const void *expp
)
298 struct expr
*exp
= (struct expr
*) expp
;
302 /* Callbach for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
306 expr_equiv_p (const void *exp1p
, const void *exp2p
)
308 struct expr
*exp1
= (struct expr
*) exp1p
;
309 struct expr
*exp2
= (struct expr
*) exp2p
;
310 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
312 && exp1
->hash
!= exp2
->hash
)
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
323 insert_expr_in_table (rtx x
, rtx insn
)
327 struct expr
*cur_expr
, **slot
;
328 struct occr
*avail_occr
, *last_occr
= NULL
;
330 hash
= hash_expr (x
, &do_not_record_p
);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
344 sizeof (struct expr
));
346 cur_expr
->hash
= hash
;
347 cur_expr
->avail_occr
= NULL
;
349 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
353 /* The expression isn't found, so insert it. */
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack
, cur_expr
);
363 /* Search for another occurrence in the same basic block. */
364 avail_occr
= cur_expr
->avail_occr
;
365 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
367 /* If an occurrence isn't found, save a pointer to the end of
369 last_occr
= avail_occr
;
370 avail_occr
= avail_occr
->next
;
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
378 avail_occr
->insn
= insn
;
381 /* First occurrence of this expression in this basic block. */
382 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
383 sizeof (struct occr
));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr
->avail_occr
== NULL
)
387 cur_expr
->avail_occr
= avail_occr
;
389 last_occr
->next
= avail_occr
;
391 avail_occr
->insn
= insn
;
392 avail_occr
->next
= NULL
;
393 avail_occr
->deleted_p
= 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
402 lookup_expr_in_table (rtx pat
)
405 struct expr
**slot
, *tmp_expr
;
406 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
411 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
412 sizeof (struct expr
));
413 tmp_expr
->expr
= pat
;
414 tmp_expr
->hash
= hash
;
415 tmp_expr
->avail_occr
= NULL
;
417 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
419 obstack_free (&expr_obstack
, tmp_expr
);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
433 dump_hash_table_entry (void **slot
, void *filep
)
435 struct expr
*expr
= (struct expr
*) *slot
;
436 FILE *file
= (FILE *) filep
;
439 fprintf (file
, "expr: ");
440 print_rtl (file
, expr
->expr
);
441 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
442 fprintf (file
,"list of occurences:\n");
443 occr
= expr
->avail_occr
;
446 rtx insn
= occr
->insn
;
447 print_rtl_single (file
, insn
);
448 fprintf (file
, "\n");
451 fprintf (file
, "\n");
456 dump_hash_table (FILE *file
)
458 fprintf (file
, "\n\nexpression hash table\n");
459 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table
),
461 (long) htab_elements (expr_table
),
462 htab_collisions (expr_table
));
463 if (htab_elements (expr_table
) > 0)
465 fprintf (file
, "\n\ntable entries:\n");
466 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
468 fprintf (file
, "\n");
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
478 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
491 #ifdef ENABLE_CHECKING
492 /* We are called after register allocation. */
493 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
497 /* If the last CUID setting the insn is less than the CUID of
498 INSN, then reg X is not changed in or after INSN. */
499 return reg_avail_info
[REGNO (x
)] < INSN_CUID (insn
);
501 /* Reg X is not set before INSN in the current basic block if
502 we have not yet recorded the CUID of an insn that touches
504 return reg_avail_info
[REGNO (x
)] == 0;
507 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
510 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
538 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
542 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
545 else if (fmt
[i
] == 'E')
546 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
547 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
555 /* Used for communication between find_mem_conflicts and
556 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
557 conflict between two memory references.
558 This is a bit of a hack to work around the limitations of note_stores. */
559 static int mems_conflict_p
;
561 /* DEST is the output of an instruction. If it is a memory reference, and
562 possibly conflicts with the load found in DATA, then set mems_conflict_p
563 to a nonzero value. */
566 find_mem_conflicts (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
569 rtx mem_op
= (rtx
) data
;
571 while (GET_CODE (dest
) == SUBREG
572 || GET_CODE (dest
) == ZERO_EXTRACT
573 || GET_CODE (dest
) == SIGN_EXTRACT
574 || GET_CODE (dest
) == STRICT_LOW_PART
)
575 dest
= XEXP (dest
, 0);
577 /* If DEST is not a MEM, then it will not conflict with the load. Note
578 that function calls are assumed to clobber memory, but are handled
583 if (true_dependence (dest
, GET_MODE (dest
), mem_op
,
589 /* Return nonzero if the expression in X (a memory reference) is killed
590 in the current basic block before (if AFTER_INSN is false) or after
591 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
593 This function assumes that the modifies_mem table is flushed when
594 the hash table construction or redundancy elimination phases start
595 processing a new basic block. */
598 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
600 struct modifies_mem
*list_entry
= modifies_mem_list
;
604 rtx setter
= list_entry
->insn
;
606 /* Ignore entries in the list that do not apply. */
608 && INSN_CUID (setter
) < uid_limit
)
610 && INSN_CUID (setter
) > uid_limit
))
612 list_entry
= list_entry
->next
;
616 /* If SETTER is a call everything is clobbered. Note that calls
617 to pure functions are never put on the list, so we need not
622 /* SETTER must be an insn of some kind that sets memory. Call
623 note_stores to examine each hunk of memory that is modified.
624 It will set mems_conflict_p to nonzero if there may be a
625 conflict between X and SETTER. */
627 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
631 list_entry
= list_entry
->next
;
637 /* Record register first/last/block set information for REGNO in INSN. */
640 record_last_reg_set_info (rtx insn
, int regno
)
642 reg_avail_info
[regno
] = INSN_CUID (insn
);
646 /* Record memory modification information for INSN. We do not actually care
647 about the memory location(s) that are set, or even how they are set (consider
648 a CALL_INSN). We merely need to record which insns modify memory. */
651 record_last_mem_set_info (rtx insn
)
653 struct modifies_mem
*list_entry
;
655 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
656 sizeof (struct modifies_mem
));
657 list_entry
->insn
= insn
;
658 list_entry
->next
= modifies_mem_list
;
659 modifies_mem_list
= list_entry
;
662 /* Called from compute_hash_table via note_stores to handle one
663 SET or CLOBBER in an insn. DATA is really the instruction in which
664 the SET is taking place. */
667 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
669 rtx last_set_insn
= (rtx
) data
;
671 if (GET_CODE (dest
) == SUBREG
)
672 dest
= SUBREG_REG (dest
);
675 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
676 else if (MEM_P (dest
)
677 /* Ignore pushes, they clobber nothing. */
678 && ! push_operand (dest
, GET_MODE (dest
)))
679 record_last_mem_set_info (last_set_insn
);
683 /* Reset tables used to keep track of what's still available since the
684 start of the block. */
687 reset_opr_set_tables (void)
689 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
690 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
691 modifies_mem_list
= NULL
;
695 /* Record things set by INSN.
696 This data is used by oprs_unchanged_p. */
699 record_opr_changes (rtx insn
)
703 /* Find all stores and record them. */
704 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
706 /* Also record autoincremented REGs for this insn as changed. */
707 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
708 if (REG_NOTE_KIND (note
) == REG_INC
)
709 record_last_reg_set_info (insn
, REGNO (XEXP (note
, 0)));
711 /* Finally, if this is a call, record all call clobbers. */
715 bool clobbers_all
= false;
717 #ifdef NON_SAVING_SETJMP
718 if (NON_SAVING_SETJMP
719 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
723 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
725 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
726 record_last_reg_set_info (insn
, regno
);
728 if (! CONST_OR_PURE_CALL_P (insn
))
729 record_last_mem_set_info (insn
);
734 /* Scan the pattern of INSN and add an entry to the hash TABLE.
735 After reload we are interested in loads/stores only. */
738 hash_scan_set (rtx insn
)
740 rtx pat
= PATTERN (insn
);
741 rtx src
= SET_SRC (pat
);
742 rtx dest
= SET_DEST (pat
);
744 /* We are only interested in loads and stores. */
745 if (! MEM_P (src
) && ! MEM_P (dest
))
748 /* Don't mess with jumps and nops. */
749 if (JUMP_P (insn
) || set_noop_p (pat
))
752 #ifdef ENABLE_CHEKCING
753 /* We shouldn't have any EH_REGION notes post reload. */
754 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
760 if (/* Don't CSE something if we can't do a reg/reg copy. */
761 can_copy_p (GET_MODE (dest
))
762 /* Is SET_SRC something we want to gcse? */
763 && general_operand (src
, GET_MODE (src
))
764 /* An expression is not available if its operands are
765 subsequently modified, including this insn. */
766 && oprs_unchanged_p (src
, insn
, true))
768 insert_expr_in_table (src
, insn
);
771 else if (REG_P (src
))
773 /* Only record sets of pseudo-regs in the hash table. */
774 if (/* Don't CSE something if we can't do a reg/reg copy. */
775 can_copy_p (GET_MODE (src
))
776 /* Is SET_DEST something we want to gcse? */
777 && general_operand (dest
, GET_MODE (dest
))
778 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
779 /* Check if the memory expression is killed after insn. */
780 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
781 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
783 insert_expr_in_table (dest
, insn
);
789 /* Create hash table of memory expressions available at end of basic
790 blocks. Basically you should think of this hash table as the
791 representation of AVAIL_OUT. This is the set of expressions that
792 is generated in a basic block and not killed before the end of the
793 same basic block. Notice that this is really a local computation. */
796 compute_hash_table (void)
804 /* First pass over the instructions records information used to
805 determine when registers and memory are last set.
806 Since we compute a "local" AVAIL_OUT, reset the tables that
807 help us keep track of what has been modified since the start
809 reset_opr_set_tables ();
810 FOR_BB_INSNS (bb
, insn
)
813 record_opr_changes (insn
);
816 /* The next pass actually builds the hash table. */
817 FOR_BB_INSNS (bb
, insn
)
818 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
819 hash_scan_set (insn
);
824 /* Check if register REG is killed in any insn waiting to be inserted on
825 edge E. This function is required to check that our data flow analysis
826 is still valid prior to commit_edge_insertions. */
829 reg_killed_on_edge (rtx reg
, edge e
)
833 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
834 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
840 /* Similar to above - check if register REG is used in any insn waiting
841 to be inserted on edge E.
842 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
843 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
846 reg_used_on_edge (rtx reg
, edge e
)
850 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
851 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
858 /* Return the insn that sets register REG or clobbers it in between
859 FROM_INSN and TO_INSN (exclusive of those two).
860 Just like reg_set_between but for hard registers and not pseudos. */
863 reg_set_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
867 #ifdef ENABLE_CHECKING
868 /* We are called after register allocation. */
869 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
873 if (from_insn
== to_insn
)
876 for (insn
= NEXT_INSN (from_insn
);
878 insn
= NEXT_INSN (insn
))
881 if (set_of (reg
, insn
) != NULL_RTX
)
884 && call_used_regs
[REGNO (reg
)])
885 || find_reg_fusage (insn
, CLOBBER
, reg
))
888 if (FIND_REG_INC_NOTE (insn
, reg
))
895 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
896 (exclusive of those two). Similar to reg_used_between but for hard
897 registers and not pseudos. */
900 reg_used_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
904 #ifdef ENABLE_CHECKING
905 /* We are called after register allocation. */
906 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
910 if (from_insn
== to_insn
)
913 for (insn
= NEXT_INSN (from_insn
);
915 insn
= NEXT_INSN (insn
))
918 if (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
920 && call_used_regs
[REGNO (reg
)])
921 || find_reg_fusage (insn
, USE
, reg
)
922 || find_reg_fusage (insn
, CLOBBER
, reg
))
925 if (FIND_REG_INC_NOTE (insn
, reg
))
932 /* Return true if REG is used, set, or killed between the beginning of
933 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
936 reg_set_or_used_since_bb_start (rtx reg
, basic_block bb
, rtx up_to_insn
)
938 rtx insn
, start
= PREV_INSN (BB_HEAD (bb
));
940 if (reg_avail_info
[REGNO (reg
)] != 0)
943 insn
= reg_used_between_after_reload_p (reg
, start
, up_to_insn
);
945 insn
= reg_set_between_after_reload_p (reg
, start
, up_to_insn
);
948 reg_avail_info
[REGNO (reg
)] = INSN_CUID (insn
);
950 return insn
!= NULL_RTX
;
953 /* Return the loaded/stored register of a load/store instruction. */
956 get_avail_load_store_reg (rtx insn
)
958 if (REG_P (SET_DEST (PATTERN (insn
)))) /* A load. */
959 return SET_DEST(PATTERN(insn
));
960 if (REG_P (SET_SRC (PATTERN (insn
)))) /* A store. */
961 return SET_SRC (PATTERN (insn
));
965 /* Return nonzero if the predecessors of BB are "well behaved". */
968 bb_has_well_behaved_predecessors (basic_block bb
)
975 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
977 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
980 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
987 /* Search for the occurrences of expression in BB. */
990 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
992 for (; occr
!= NULL
; occr
= occr
->next
)
993 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
999 /* This handles the case where several stores feed a partially redundant
1000 load. It checks if the redundancy elimination is possible and if it's
1003 Redundancy elimination is possible if,
1004 1) None of the operands of an insn have been modified since the start
1005 of the current basic block.
1006 2) In any predecessor of the current basic block, the same expression
1009 See the function body for the heuristics that determine if eliminating
1010 a redundancy is also worth doing, assuming it is possible. */
1013 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
1017 rtx avail_insn
= NULL_RTX
;
1020 struct occr
*a_occr
;
1021 struct unoccr
*occr
, *avail_occrs
= NULL
;
1022 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
1024 gcov_type ok_count
= 0; /* Redundant load execution count. */
1025 gcov_type critical_count
= 0; /* Execution count of critical edges. */
1027 /* The execution count of the loads to be added to make the
1028 load fully redundant. */
1029 gcov_type not_ok_count
= 0;
1030 basic_block pred_bb
;
1032 pat
= PATTERN (insn
);
1033 dest
= SET_DEST (pat
);
1035 /* Check that the loaded register is not used, set, or killed from the
1036 beginning of the block. */
1037 if (reg_set_or_used_since_bb_start (dest
, bb
, insn
))
1040 /* Check potential for replacing load with copy for predecessors. */
1041 for (pred
= bb
->pred
; pred
; pred
= pred
->pred_next
)
1043 rtx next_pred_bb_end
;
1045 avail_insn
= NULL_RTX
;
1046 pred_bb
= pred
->src
;
1047 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
1048 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
1049 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1051 /* Check if the loaded register is not used. */
1052 avail_insn
= a_occr
->insn
;
1053 if (! (avail_reg
= get_avail_load_store_reg (avail_insn
)))
1055 /* Make sure we can generate a move from register avail_reg to
1057 extract_insn (gen_move_insn (copy_rtx (dest
),
1058 copy_rtx (avail_reg
)));
1059 if (! constrain_operands (1)
1060 || reg_killed_on_edge (avail_reg
, pred
)
1061 || reg_used_on_edge (dest
, pred
))
1066 if (! reg_set_between_after_reload_p (avail_reg
, avail_insn
,
1068 /* AVAIL_INSN remains non-null. */
1074 if (EDGE_CRITICAL_P (pred
))
1075 critical_count
+= pred
->count
;
1077 if (avail_insn
!= NULL_RTX
)
1080 ok_count
+= pred
->count
;
1081 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1082 sizeof (struct occr
));
1083 occr
->insn
= avail_insn
;
1085 occr
->next
= avail_occrs
;
1087 if (! rollback_unoccr
)
1088 rollback_unoccr
= occr
;
1092 not_ok_count
+= pred
->count
;
1093 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1094 sizeof (struct unoccr
));
1095 unoccr
->insn
= NULL_RTX
;
1096 unoccr
->pred
= pred
;
1097 unoccr
->next
= unavail_occrs
;
1098 unavail_occrs
= unoccr
;
1099 if (! rollback_unoccr
)
1100 rollback_unoccr
= unoccr
;
1104 if (/* No load can be replaced by copy. */
1106 /* Prevent exploding the code. */
1107 || (optimize_size
&& npred_ok
> 1))
1110 /* Check if it's worth applying the partial redundancy elimination. */
1111 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1113 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1116 /* Generate moves to the loaded register from where
1117 the memory is available. */
1118 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1120 avail_insn
= occr
->insn
;
1122 /* Set avail_reg to be the register having the value of the
1124 avail_reg
= get_avail_load_store_reg (avail_insn
);
1128 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1129 copy_rtx (avail_reg
)),
1131 stats
.moves_inserted
++;
1135 "generating move from %d to %d on edge from %d to %d\n",
1142 /* Regenerate loads where the memory is unavailable. */
1143 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1145 pred
= unoccr
->pred
;
1146 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1147 stats
.copies_inserted
++;
1152 "generating on edge from %d to %d a copy of load: ",
1155 print_rtl (dump_file
, PATTERN (insn
));
1156 fprintf (dump_file
, "\n");
1160 /* Delete the insn if it is not available in this block and mark it
1161 for deletion if it is available. If insn is available it may help
1162 discover additional redundancies, so mark it for later deletion. */
1163 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1164 a_occr
&& (a_occr
->insn
!= insn
);
1165 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
1170 a_occr
->deleted_p
= 1;
1173 if (rollback_unoccr
)
1174 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1177 /* Performing the redundancy elimination as described before. */
1180 eliminate_partially_redundant_loads (void)
1185 /* Note we start at block 1. */
1187 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1191 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1195 /* Don't try anything on basic blocks with strange predecessors. */
1196 if (! bb_has_well_behaved_predecessors (bb
))
1199 /* Do not try anything on cold basic blocks. */
1200 if (probably_cold_bb_p (bb
))
1203 /* Reset the table of things changed since the start of the current
1205 reset_opr_set_tables ();
1207 /* Look at all insns in the current basic block and see if there are
1208 any loads in it that we can record. */
1209 FOR_BB_INSNS (bb
, insn
)
1211 /* Is it a load - of the form (set (reg) (mem))? */
1212 if (NONJUMP_INSN_P (insn
)
1213 && GET_CODE (PATTERN (insn
)) == SET
1214 && REG_P (SET_DEST (PATTERN (insn
)))
1215 && MEM_P (SET_SRC (PATTERN (insn
))))
1217 rtx pat
= PATTERN (insn
);
1218 rtx src
= SET_SRC (pat
);
1221 if (!MEM_VOLATILE_P (src
)
1222 && GET_MODE (src
) != BLKmode
1223 && general_operand (src
, GET_MODE (src
))
1224 /* Are the operands unchanged since the start of the
1226 && oprs_unchanged_p (src
, insn
, false)
1227 && !(flag_non_call_exceptions
&& may_trap_p (src
))
1228 && !side_effects_p (src
)
1229 /* Is the expression recorded? */
1230 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1232 /* We now have a load (insn) and an available memory at
1233 its BB start (expr). Try to remove the loads if it is
1235 eliminate_partially_redundant_load (bb
, insn
, expr
);
1239 /* Keep track of everything modified by this insn, so that we
1240 know what has been modified since the start of the current
1243 record_opr_changes (insn
);
1247 commit_edge_insertions ();
1250 /* Go over the expression hash table and delete insns that were
1251 marked for later deletion. */
1253 /* This helper is called via htab_traverse. */
1255 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1257 struct expr
*expr
= (struct expr
*) *slot
;
1260 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1262 if (occr
->deleted_p
)
1264 delete_insn (occr
->insn
);
1265 stats
.insns_deleted
++;
1269 fprintf (dump_file
, "deleting insn:\n");
1270 print_rtl_single (dump_file
, occr
->insn
);
1271 fprintf (dump_file
, "\n");
1280 delete_redundant_insns (void)
1282 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1284 fprintf (dump_file
, "\n");
1287 /* Main entry point of the GCSE after reload - clean some redundant loads
1291 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1293 memset (&stats
, 0, sizeof (stats
));
1295 /* Allocate ememory for this pass.
1296 Also computes and initializes the insns' CUIDs. */
1299 /* We need alias analysis. */
1300 init_alias_analysis ();
1302 compute_hash_table ();
1305 dump_hash_table (dump_file
);
1307 if (htab_elements (expr_table
) > 0)
1309 eliminate_partially_redundant_loads ();
1310 delete_redundant_insns ();
1314 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1315 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1316 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1317 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1318 fprintf (dump_file
, "\n\n");
1322 /* We are finished with alias. */
1323 end_alias_analysis ();