* config/stormy16/stormy16.c (xstormy16_asm_output_aligned_common):
[official-gcc.git] / gcc / convert.c
blob005d3e2089b2c2c50e481025a1791678070919e2
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
46 expr = build_int_cst (type, 0);
47 return expr;
50 switch (TREE_CODE (TREE_TYPE (expr)))
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
78 tree sub, expt, subt;
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
115 return strip_float_extensions (sub);
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
124 tree
125 convert_to_real (tree type, tree expr)
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
137 switch (fcode)
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
194 if (fn)
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
203 default:
204 break;
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
224 tree fn = mathfn_built_in (type, fcode);
226 if (fn)
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
233 return build_function_call_expr (fn, arglist);
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
278 break;
279 default:
280 break;
283 switch (TREE_CODE (TREE_TYPE (expr)))
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
311 /* Convert EXPR to some integer (or enum) type TYPE.
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
319 tree
320 convert_to_integer (tree type, tree expr)
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
331 error ("conversion to incomplete type");
332 return error_mark_node;
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
350 switch (fcode)
352 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
353 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
354 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
355 else
356 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
357 break;
359 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
360 /* Only convert rint* if we can ignore math exceptions. */
361 if (flag_trapping_math)
362 break;
363 /* ... Fall through ... */
364 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
365 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
366 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
367 else
368 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
369 break;
370 default:
371 break;
374 if (fn)
376 tree arglist = TREE_OPERAND (s_expr, 1);
377 tree newexpr = build_function_call_expr (fn, arglist);
378 return convert_to_integer (type, newexpr);
382 switch (TREE_CODE (intype))
384 case POINTER_TYPE:
385 case REFERENCE_TYPE:
386 if (integer_zerop (expr))
387 expr = integer_zero_node;
388 else
389 expr = fold (build1 (CONVERT_EXPR,
390 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
391 expr));
393 return convert_to_integer (type, expr);
395 case INTEGER_TYPE:
396 case ENUMERAL_TYPE:
397 case BOOLEAN_TYPE:
398 case CHAR_TYPE:
399 /* If this is a logical operation, which just returns 0 or 1, we can
400 change the type of the expression. */
402 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
404 expr = copy_node (expr);
405 TREE_TYPE (expr) = type;
406 return expr;
409 /* If we are widening the type, put in an explicit conversion.
410 Similarly if we are not changing the width. After this, we know
411 we are truncating EXPR. */
413 else if (outprec >= inprec)
415 enum tree_code code;
417 /* If the precision of the EXPR's type is K bits and the
418 destination mode has more bits, and the sign is changing,
419 it is not safe to use a NOP_EXPR. For example, suppose
420 that EXPR's type is a 3-bit unsigned integer type, the
421 TYPE is a 3-bit signed integer type, and the machine mode
422 for the types is 8-bit QImode. In that case, the
423 conversion necessitates an explicit sign-extension. In
424 the signed-to-unsigned case the high-order bits have to
425 be cleared. */
426 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
427 && (TYPE_PRECISION (TREE_TYPE (expr))
428 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
429 code = CONVERT_EXPR;
430 else
431 code = NOP_EXPR;
433 return build1 (code, type, expr);
436 /* If TYPE is an enumeral type or a type with a precision less
437 than the number of bits in its mode, do the conversion to the
438 type corresponding to its mode, then do a nop conversion
439 to TYPE. */
440 else if (TREE_CODE (type) == ENUMERAL_TYPE
441 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
442 return build1 (NOP_EXPR, type,
443 convert (lang_hooks.types.type_for_mode
444 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
445 expr));
447 /* Here detect when we can distribute the truncation down past some
448 arithmetic. For example, if adding two longs and converting to an
449 int, we can equally well convert both to ints and then add.
450 For the operations handled here, such truncation distribution
451 is always safe.
452 It is desirable in these cases:
453 1) when truncating down to full-word from a larger size
454 2) when truncating takes no work.
455 3) when at least one operand of the arithmetic has been extended
456 (as by C's default conversions). In this case we need two conversions
457 if we do the arithmetic as already requested, so we might as well
458 truncate both and then combine. Perhaps that way we need only one.
460 Note that in general we cannot do the arithmetic in a type
461 shorter than the desired result of conversion, even if the operands
462 are both extended from a shorter type, because they might overflow
463 if combined in that type. The exceptions to this--the times when
464 two narrow values can be combined in their narrow type even to
465 make a wider result--are handled by "shorten" in build_binary_op. */
467 switch (ex_form)
469 case RSHIFT_EXPR:
470 /* We can pass truncation down through right shifting
471 when the shift count is a nonpositive constant. */
472 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
473 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
474 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
475 integer_one_node)))
476 goto trunc1;
477 break;
479 case LSHIFT_EXPR:
480 /* We can pass truncation down through left shifting
481 when the shift count is a nonnegative constant and
482 the target type is unsigned. */
483 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
484 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
485 && TYPE_UNSIGNED (type)
486 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
488 /* If shift count is less than the width of the truncated type,
489 really shift. */
490 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
491 /* In this case, shifting is like multiplication. */
492 goto trunc1;
493 else
495 /* If it is >= that width, result is zero.
496 Handling this with trunc1 would give the wrong result:
497 (int) ((long long) a << 32) is well defined (as 0)
498 but (int) a << 32 is undefined and would get a
499 warning. */
501 tree t = convert_to_integer (type, integer_zero_node);
503 /* If the original expression had side-effects, we must
504 preserve it. */
505 if (TREE_SIDE_EFFECTS (expr))
506 return build2 (COMPOUND_EXPR, type, expr, t);
507 else
508 return t;
511 break;
513 case MAX_EXPR:
514 case MIN_EXPR:
515 case MULT_EXPR:
517 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
518 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
520 /* Don't distribute unless the output precision is at least as big
521 as the actual inputs. Otherwise, the comparison of the
522 truncated values will be wrong. */
523 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
524 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
525 /* If signedness of arg0 and arg1 don't match,
526 we can't necessarily find a type to compare them in. */
527 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
528 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
529 goto trunc1;
530 break;
533 case PLUS_EXPR:
534 case MINUS_EXPR:
535 case BIT_AND_EXPR:
536 case BIT_IOR_EXPR:
537 case BIT_XOR_EXPR:
538 trunc1:
540 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
541 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
543 if (outprec >= BITS_PER_WORD
544 || TRULY_NOOP_TRUNCATION (outprec, inprec)
545 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
546 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
548 /* Do the arithmetic in type TYPEX,
549 then convert result to TYPE. */
550 tree typex = type;
552 /* Can't do arithmetic in enumeral types
553 so use an integer type that will hold the values. */
554 if (TREE_CODE (typex) == ENUMERAL_TYPE)
555 typex = lang_hooks.types.type_for_size
556 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
558 /* But now perhaps TYPEX is as wide as INPREC.
559 In that case, do nothing special here.
560 (Otherwise would recurse infinitely in convert. */
561 if (TYPE_PRECISION (typex) != inprec)
563 /* Don't do unsigned arithmetic where signed was wanted,
564 or vice versa.
565 Exception: if both of the original operands were
566 unsigned then we can safely do the work as unsigned.
567 Exception: shift operations take their type solely
568 from the first argument.
569 Exception: the LSHIFT_EXPR case above requires that
570 we perform this operation unsigned lest we produce
571 signed-overflow undefinedness.
572 And we may need to do it as unsigned
573 if we truncate to the original size. */
574 if (TYPE_UNSIGNED (TREE_TYPE (expr))
575 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
576 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
577 || ex_form == LSHIFT_EXPR
578 || ex_form == RSHIFT_EXPR
579 || ex_form == LROTATE_EXPR
580 || ex_form == RROTATE_EXPR))
581 || ex_form == LSHIFT_EXPR)
582 typex = lang_hooks.types.unsigned_type (typex);
583 else
584 typex = lang_hooks.types.signed_type (typex);
585 return convert (type,
586 fold (build2 (ex_form, typex,
587 convert (typex, arg0),
588 convert (typex, arg1))));
592 break;
594 case NEGATE_EXPR:
595 case BIT_NOT_EXPR:
596 /* This is not correct for ABS_EXPR,
597 since we must test the sign before truncation. */
599 tree typex = type;
601 /* Can't do arithmetic in enumeral types
602 so use an integer type that will hold the values. */
603 if (TREE_CODE (typex) == ENUMERAL_TYPE)
604 typex = lang_hooks.types.type_for_size
605 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
607 /* But now perhaps TYPEX is as wide as INPREC.
608 In that case, do nothing special here.
609 (Otherwise would recurse infinitely in convert. */
610 if (TYPE_PRECISION (typex) != inprec)
612 /* Don't do unsigned arithmetic where signed was wanted,
613 or vice versa. */
614 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
615 typex = lang_hooks.types.unsigned_type (typex);
616 else
617 typex = lang_hooks.types.signed_type (typex);
618 return convert (type,
619 fold (build1 (ex_form, typex,
620 convert (typex,
621 TREE_OPERAND (expr, 0)))));
625 case NOP_EXPR:
626 /* Don't introduce a
627 "can't convert between vector values of different size" error. */
628 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
629 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
630 != GET_MODE_SIZE (TYPE_MODE (type))))
631 break;
632 /* If truncating after truncating, might as well do all at once.
633 If truncating after extending, we may get rid of wasted work. */
634 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
636 case COND_EXPR:
637 /* It is sometimes worthwhile to push the narrowing down through
638 the conditional and never loses. */
639 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
640 convert (type, TREE_OPERAND (expr, 1)),
641 convert (type, TREE_OPERAND (expr, 2))));
643 default:
644 break;
647 return build1 (CONVERT_EXPR, type, expr);
649 case REAL_TYPE:
650 return build1 (FIX_TRUNC_EXPR, type, expr);
652 case COMPLEX_TYPE:
653 return convert (type,
654 fold (build1 (REALPART_EXPR,
655 TREE_TYPE (TREE_TYPE (expr)), expr)));
657 case VECTOR_TYPE:
658 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
660 error ("can't convert between vector values of different size");
661 return error_mark_node;
663 return build1 (NOP_EXPR, type, expr);
665 default:
666 error ("aggregate value used where an integer was expected");
667 return convert (type, integer_zero_node);
671 /* Convert EXPR to the complex type TYPE in the usual ways. */
673 tree
674 convert_to_complex (tree type, tree expr)
676 tree subtype = TREE_TYPE (type);
678 switch (TREE_CODE (TREE_TYPE (expr)))
680 case REAL_TYPE:
681 case INTEGER_TYPE:
682 case ENUMERAL_TYPE:
683 case BOOLEAN_TYPE:
684 case CHAR_TYPE:
685 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
686 convert (subtype, integer_zero_node));
688 case COMPLEX_TYPE:
690 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
692 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
693 return expr;
694 else if (TREE_CODE (expr) == COMPLEX_EXPR)
695 return fold (build2 (COMPLEX_EXPR, type,
696 convert (subtype, TREE_OPERAND (expr, 0)),
697 convert (subtype, TREE_OPERAND (expr, 1))));
698 else
700 expr = save_expr (expr);
701 return
702 fold (build2 (COMPLEX_EXPR, type,
703 convert (subtype,
704 fold (build1 (REALPART_EXPR,
705 TREE_TYPE (TREE_TYPE (expr)),
706 expr))),
707 convert (subtype,
708 fold (build1 (IMAGPART_EXPR,
709 TREE_TYPE (TREE_TYPE (expr)),
710 expr)))));
714 case POINTER_TYPE:
715 case REFERENCE_TYPE:
716 error ("pointer value used where a complex was expected");
717 return convert_to_complex (type, integer_zero_node);
719 default:
720 error ("aggregate value used where a complex was expected");
721 return convert_to_complex (type, integer_zero_node);
725 /* Convert EXPR to the vector type TYPE in the usual ways. */
727 tree
728 convert_to_vector (tree type, tree expr)
730 switch (TREE_CODE (TREE_TYPE (expr)))
732 case INTEGER_TYPE:
733 case VECTOR_TYPE:
734 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
736 error ("can't convert between vector values of different size");
737 return error_mark_node;
739 return build1 (NOP_EXPR, type, expr);
741 default:
742 error ("can't convert value to a vector");
743 return error_mark_node;