1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
27 #include "coretypes.h"
34 #include "hard-reg-set.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
42 #include "insn-config.h"
50 /* This file contains three techniques for performing Dead Store
53 * The first technique performs dse locally on any base address. It
54 is based on the cselib which is a local value numbering technique.
55 This technique is local to a basic block but deals with a fairly
58 * The second technique performs dse globally but is restricted to
59 base addresses that are either constant or are relative to the
62 * The third technique, (which is only done after register allocation)
63 processes the spill spill slots. This differs from the second
64 technique because it takes advantage of the fact that spilling is
65 completely free from the effects of aliasing.
67 Logically, dse is a backwards dataflow problem. A store can be
68 deleted if it if cannot be reached in the backward direction by any
69 use of the value being stored. However, the local technique uses a
70 forwards scan of the basic block because cselib requires that the
71 block be processed in that order.
73 The pass is logically broken into 7 steps:
77 1) The local algorithm, as well as scanning the insns for the two
80 2) Analysis to see if the global algs are necessary. In the case
81 of stores base on a constant address, there must be at least two
82 stores to that address, to make it possible to delete some of the
83 stores. In the case of stores off of the frame or spill related
84 stores, only one store to an address is necessary because those
85 stores die at the end of the function.
87 3) Set up the global dataflow equations based on processing the
88 info parsed in the first step.
90 4) Solve the dataflow equations.
92 5) Delete the insns that the global analysis has indicated are
95 6) Delete insns that store the same value as preceeding store
96 where the earlier store couldn't be eliminated.
100 This step uses cselib and canon_rtx to build the largest expression
101 possible for each address. This pass is a forwards pass through
102 each basic block. From the point of view of the global technique,
103 the first pass could examine a block in either direction. The
104 forwards ordering is to accommodate cselib.
106 We a simplifying assumption: addresses fall into four broad
109 1) base has rtx_varies_p == false, offset is constant.
110 2) base has rtx_varies_p == false, offset variable.
111 3) base has rtx_varies_p == true, offset constant.
112 4) base has rtx_varies_p == true, offset variable.
114 The local passes are able to process all 4 kinds of addresses. The
115 global pass only handles (1).
117 The global problem is formulated as follows:
119 A store, S1, to address A, where A is not relative to the stack
120 frame, can be eliminated if all paths from S1 to the end of the
121 of the function contain another store to A before a read to A.
123 If the address A is relative to the stack frame, a store S2 to A
124 can be eliminated if there are no paths from S1 that reach the
125 end of the function that read A before another store to A. In
126 this case S2 can be deleted if there are paths to from S2 to the
127 end of the function that have no reads or writes to A. This
128 second case allows stores to the stack frame to be deleted that
129 would otherwise die when the function returns. This cannot be
130 done if stores_off_frame_dead_at_return is not true. See the doc
131 for that variable for when this variable is false.
133 The global problem is formulated as a backwards set union
134 dataflow problem where the stores are the gens and reads are the
135 kills. Set union problems are rare and require some special
136 handling given our representation of bitmaps. A straightforward
137 implementation of requires a lot of bitmaps filled with 1s.
138 These are expensive and cumbersome in our bitmap formulation so
139 care has been taken to avoid large vectors filled with 1s. See
140 the comments in bb_info and in the dataflow confluence functions
143 There are two places for further enhancements to this algorithm:
145 1) The original dse which was embedded in a pass called flow also
146 did local address forwarding. For example in
151 flow would replace the right hand side of the second insn with a
152 reference to r100. Most of the information is available to add this
153 to this pass. It has not done it because it is a lot of work in
154 the case that either r100 is assigned to between the first and
155 second insn and/or the second insn is a load of part of the value
156 stored by the first insn.
158 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
159 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
160 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
161 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
163 2) The cleaning up of spill code is quite profitable. It currently
164 depends on reading tea leaves and chicken entrails left by reload.
165 This pass depends on reload creating a singleton alias set for each
166 spill slot and telling the next dse pass which of these alias sets
167 are the singletons. Rather than analyze the addresses of the
168 spills, dse's spill processing just does analysis of the loads and
169 stores that use those alias sets. There are three cases where this
172 a) Reload sometimes creates the slot for one mode of access, and
173 then inserts loads and/or stores for a smaller mode. In this
174 case, the current code just punts on the slot. The proper thing
175 to do is to back out and use one bit vector position for each
176 byte of the entity associated with the slot. This depends on
177 KNOWING that reload always generates the accesses for each of the
178 bytes in some canonical (read that easy to understand several
179 passes after reload happens) way.
181 b) Reload sometimes decides that spill slot it allocated was not
182 large enough for the mode and goes back and allocates more slots
183 with the same mode and alias set. The backout in this case is a
184 little more graceful than (a). In this case the slot is unmarked
185 as being a spill slot and if final address comes out to be based
186 off the frame pointer, the global algorithm handles this slot.
188 c) For any pass that may prespill, there is currently no
189 mechanism to tell the dse pass that the slot being used has the
190 special properties that reload uses. It may be that all that is
191 required is to have those passes make the same calls that reload
192 does, assuming that the alias sets can be manipulated in the same
195 /* There are limits to the size of constant offsets we model for the
196 global problem. There are certainly test cases, that exceed this
197 limit, however, it is unlikely that there are important programs
198 that really have constant offsets this size. */
199 #define MAX_OFFSET (64 * 1024)
202 static bitmap scratch
= NULL
;
205 /* This structure holds information about a candidate store. */
209 /* False means this is a clobber. */
212 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
215 /* The id of the mem group of the base address. If rtx_varies_p is
216 true, this is -1. Otherwise, it is the index into the group
220 /* This is the cselib value. */
221 cselib_val
*cse_base
;
223 /* This canonized mem. */
226 /* Canonized MEM address for use by canon_true_dependence. */
229 /* If this is non-zero, it is the alias set of a spill location. */
230 alias_set_type alias_set
;
232 /* The offset of the first and byte before the last byte associated
233 with the operation. */
234 HOST_WIDE_INT begin
, end
;
238 /* A bitmask as wide as the number of bytes in the word that
239 contains a 1 if the byte may be needed. The store is unused if
240 all of the bits are 0. This is used if IS_LARGE is false. */
241 unsigned HOST_WIDE_INT small_bitmask
;
245 /* A bitmap with one bit per byte. Cleared bit means the position
246 is needed. Used if IS_LARGE is false. */
249 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
250 equal to END - BEGIN, the whole store is unused. */
255 /* The next store info for this insn. */
256 struct store_info
*next
;
258 /* The right hand side of the store. This is used if there is a
259 subsequent reload of the mems address somewhere later in the
263 /* If rhs is or holds a constant, this contains that constant,
267 /* Set if this store stores the same constant value as REDUNDANT_REASON
268 insn stored. These aren't eliminated early, because doing that
269 might prevent the earlier larger store to be eliminated. */
270 struct insn_info
*redundant_reason
;
273 /* Return a bitmask with the first N low bits set. */
275 static unsigned HOST_WIDE_INT
276 lowpart_bitmask (int n
)
278 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
279 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
282 typedef struct store_info
*store_info_t
;
283 static alloc_pool cse_store_info_pool
;
284 static alloc_pool rtx_store_info_pool
;
286 /* This structure holds information about a load. These are only
287 built for rtx bases. */
290 /* The id of the mem group of the base address. */
293 /* If this is non-zero, it is the alias set of a spill location. */
294 alias_set_type alias_set
;
296 /* The offset of the first and byte after the last byte associated
297 with the operation. If begin == end == 0, the read did not have
298 a constant offset. */
301 /* The mem being read. */
304 /* The next read_info for this insn. */
305 struct read_info
*next
;
307 typedef struct read_info
*read_info_t
;
308 static alloc_pool read_info_pool
;
311 /* One of these records is created for each insn. */
315 /* Set true if the insn contains a store but the insn itself cannot
316 be deleted. This is set if the insn is a parallel and there is
317 more than one non dead output or if the insn is in some way
321 /* This field is only used by the global algorithm. It is set true
322 if the insn contains any read of mem except for a (1). This is
323 also set if the insn is a call or has a clobber mem. If the insn
324 contains a wild read, the use_rec will be null. */
327 /* This field is only used for the processing of const functions.
328 These functions cannot read memory, but they can read the stack
329 because that is where they may get their parms. We need to be
330 this conservative because, like the store motion pass, we don't
331 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
332 Moreover, we need to distinguish two cases:
333 1. Before reload (register elimination), the stores related to
334 outgoing arguments are stack pointer based and thus deemed
335 of non-constant base in this pass. This requires special
336 handling but also means that the frame pointer based stores
337 need not be killed upon encountering a const function call.
338 2. After reload, the stores related to outgoing arguments can be
339 either stack pointer or hard frame pointer based. This means
340 that we have no other choice than also killing all the frame
341 pointer based stores upon encountering a const function call.
342 This field is set after reload for const function calls. Having
343 this set is less severe than a wild read, it just means that all
344 the frame related stores are killed rather than all the stores. */
347 /* This field is only used for the processing of const functions.
348 It is set if the insn may contain a stack pointer based store. */
349 bool stack_pointer_based
;
351 /* This is true if any of the sets within the store contains a
352 cselib base. Such stores can only be deleted by the local
354 bool contains_cselib_groups
;
359 /* The list of mem sets or mem clobbers that are contained in this
360 insn. If the insn is deletable, it contains only one mem set.
361 But it could also contain clobbers. Insns that contain more than
362 one mem set are not deletable, but each of those mems are here in
363 order to provide info to delete other insns. */
364 store_info_t store_rec
;
366 /* The linked list of mem uses in this insn. Only the reads from
367 rtx bases are listed here. The reads to cselib bases are
368 completely processed during the first scan and so are never
370 read_info_t read_rec
;
372 /* The prev insn in the basic block. */
373 struct insn_info
* prev_insn
;
375 /* The linked list of insns that are in consideration for removal in
376 the forwards pass thru the basic block. This pointer may be
377 trash as it is not cleared when a wild read occurs. The only
378 time it is guaranteed to be correct is when the traversal starts
379 at active_local_stores. */
380 struct insn_info
* next_local_store
;
383 typedef struct insn_info
*insn_info_t
;
384 static alloc_pool insn_info_pool
;
386 /* The linked list of stores that are under consideration in this
388 static insn_info_t active_local_stores
;
393 /* Pointer to the insn info for the last insn in the block. These
394 are linked so this is how all of the insns are reached. During
395 scanning this is the current insn being scanned. */
396 insn_info_t last_insn
;
398 /* The info for the global dataflow problem. */
401 /* This is set if the transfer function should and in the wild_read
402 bitmap before applying the kill and gen sets. That vector knocks
403 out most of the bits in the bitmap and thus speeds up the
405 bool apply_wild_read
;
407 /* The following 4 bitvectors hold information about which positions
408 of which stores are live or dead. They are indexed by
411 /* The set of store positions that exist in this block before a wild read. */
414 /* The set of load positions that exist in this block above the
415 same position of a store. */
418 /* The set of stores that reach the top of the block without being
421 Do not represent the in if it is all ones. Note that this is
422 what the bitvector should logically be initialized to for a set
423 intersection problem. However, like the kill set, this is too
424 expensive. So initially, the in set will only be created for the
425 exit block and any block that contains a wild read. */
428 /* The set of stores that reach the bottom of the block from it's
431 Do not represent the in if it is all ones. Note that this is
432 what the bitvector should logically be initialized to for a set
433 intersection problem. However, like the kill and in set, this is
434 too expensive. So what is done is that the confluence operator
435 just initializes the vector from one of the out sets of the
436 successors of the block. */
439 /* The following bitvector is indexed by the reg number. It
440 contains the set of regs that are live at the current instruction
441 being processed. While it contains info for all of the
442 registers, only the pseudos are actually examined. It is used to
443 assure that shift sequences that are inserted do not accidently
444 clobber live hard regs. */
448 typedef struct bb_info
*bb_info_t
;
449 static alloc_pool bb_info_pool
;
451 /* Table to hold all bb_infos. */
452 static bb_info_t
*bb_table
;
454 /* There is a group_info for each rtx base that is used to reference
455 memory. There are also not many of the rtx bases because they are
456 very limited in scope. */
460 /* The actual base of the address. */
463 /* The sequential id of the base. This allows us to have a
464 canonical ordering of these that is not based on addresses. */
467 /* True if there are any positions that are to be processed
469 bool process_globally
;
471 /* True if the base of this group is either the frame_pointer or
472 hard_frame_pointer. */
475 /* A mem wrapped around the base pointer for the group in order to
476 do read dependency. */
479 /* Canonized version of base_mem's address. */
482 /* These two sets of two bitmaps are used to keep track of how many
483 stores are actually referencing that position from this base. We
484 only do this for rtx bases as this will be used to assign
485 positions in the bitmaps for the global problem. Bit N is set in
486 store1 on the first store for offset N. Bit N is set in store2
487 for the second store to offset N. This is all we need since we
488 only care about offsets that have two or more stores for them.
490 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
491 for 0 and greater offsets.
493 There is one special case here, for stores into the stack frame,
494 we will or store1 into store2 before deciding which stores look
495 at globally. This is because stores to the stack frame that have
496 no other reads before the end of the function can also be
498 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
500 /* The positions in this bitmap have the same assignments as the in,
501 out, gen and kill bitmaps. This bitmap is all zeros except for
502 the positions that are occupied by stores for this group. */
505 /* The offset_map is used to map the offsets from this base into
506 positions in the global bitmaps. It is only created after all of
507 the all of stores have been scanned and we know which ones we
509 int *offset_map_n
, *offset_map_p
;
510 int offset_map_size_n
, offset_map_size_p
;
512 typedef struct group_info
*group_info_t
;
513 typedef const struct group_info
*const_group_info_t
;
514 static alloc_pool rtx_group_info_pool
;
516 /* Tables of group_info structures, hashed by base value. */
517 static htab_t rtx_group_table
;
519 /* Index into the rtx_group_vec. */
520 static int rtx_group_next_id
;
522 DEF_VEC_P(group_info_t
);
523 DEF_VEC_ALLOC_P(group_info_t
,heap
);
525 static VEC(group_info_t
,heap
) *rtx_group_vec
;
528 /* This structure holds the set of changes that are being deferred
529 when removing read operation. See replace_read. */
530 struct deferred_change
533 /* The mem that is being replaced. */
536 /* The reg it is being replaced with. */
539 struct deferred_change
*next
;
542 typedef struct deferred_change
*deferred_change_t
;
543 static alloc_pool deferred_change_pool
;
545 static deferred_change_t deferred_change_list
= NULL
;
547 /* This are used to hold the alias sets of spill variables. Since
548 these are never aliased and there may be a lot of them, it makes
549 sense to treat them specially. This bitvector is only allocated in
550 calls from dse_record_singleton_alias_set which currently is only
551 made during reload1. So when dse is called before reload this
552 mechanism does nothing. */
554 static bitmap clear_alias_sets
= NULL
;
556 /* The set of clear_alias_sets that have been disqualified because
557 there are loads or stores using a different mode than the alias set
558 was registered with. */
559 static bitmap disqualified_clear_alias_sets
= NULL
;
561 /* The group that holds all of the clear_alias_sets. */
562 static group_info_t clear_alias_group
;
564 /* The modes of the clear_alias_sets. */
565 static htab_t clear_alias_mode_table
;
567 /* Hash table element to look up the mode for an alias set. */
568 struct clear_alias_mode_holder
570 alias_set_type alias_set
;
571 enum machine_mode mode
;
574 static alloc_pool clear_alias_mode_pool
;
576 /* This is true except if cfun->stdarg -- i.e. we cannot do
577 this for vararg functions because they play games with the frame. */
578 static bool stores_off_frame_dead_at_return
;
580 /* Counter for stats. */
581 static int globally_deleted
;
582 static int locally_deleted
;
583 static int spill_deleted
;
585 static bitmap all_blocks
;
587 /* The number of bits used in the global bitmaps. */
588 static unsigned int current_position
;
591 static bool gate_dse (void);
592 static bool gate_dse1 (void);
593 static bool gate_dse2 (void);
596 /*----------------------------------------------------------------------------
600 ----------------------------------------------------------------------------*/
602 /* Hashtable callbacks for maintaining the "bases" field of
603 store_group_info, given that the addresses are function invariants. */
606 clear_alias_mode_eq (const void *p1
, const void *p2
)
608 const struct clear_alias_mode_holder
* h1
609 = (const struct clear_alias_mode_holder
*) p1
;
610 const struct clear_alias_mode_holder
* h2
611 = (const struct clear_alias_mode_holder
*) p2
;
612 return h1
->alias_set
== h2
->alias_set
;
617 clear_alias_mode_hash (const void *p
)
619 const struct clear_alias_mode_holder
*holder
620 = (const struct clear_alias_mode_holder
*) p
;
621 return holder
->alias_set
;
625 /* Find the entry associated with ALIAS_SET. */
627 static struct clear_alias_mode_holder
*
628 clear_alias_set_lookup (alias_set_type alias_set
)
630 struct clear_alias_mode_holder tmp_holder
;
633 tmp_holder
.alias_set
= alias_set
;
634 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, NO_INSERT
);
637 return (struct clear_alias_mode_holder
*) *slot
;
641 /* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
645 invariant_group_base_eq (const void *p1
, const void *p2
)
647 const_group_info_t gi1
= (const_group_info_t
) p1
;
648 const_group_info_t gi2
= (const_group_info_t
) p2
;
649 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
654 invariant_group_base_hash (const void *p
)
656 const_group_info_t gi
= (const_group_info_t
) p
;
658 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
662 /* Get the GROUP for BASE. Add a new group if it is not there. */
665 get_group_info (rtx base
)
667 struct group_info tmp_gi
;
673 /* Find the store_base_info structure for BASE, creating a new one
675 tmp_gi
.rtx_base
= base
;
676 slot
= htab_find_slot (rtx_group_table
, &tmp_gi
, INSERT
);
677 gi
= (group_info_t
) *slot
;
681 if (!clear_alias_group
)
683 clear_alias_group
= gi
=
684 (group_info_t
) pool_alloc (rtx_group_info_pool
);
685 memset (gi
, 0, sizeof (struct group_info
));
686 gi
->id
= rtx_group_next_id
++;
687 gi
->store1_n
= BITMAP_ALLOC (NULL
);
688 gi
->store1_p
= BITMAP_ALLOC (NULL
);
689 gi
->store2_n
= BITMAP_ALLOC (NULL
);
690 gi
->store2_p
= BITMAP_ALLOC (NULL
);
691 gi
->group_kill
= BITMAP_ALLOC (NULL
);
692 gi
->process_globally
= false;
693 gi
->offset_map_size_n
= 0;
694 gi
->offset_map_size_p
= 0;
695 gi
->offset_map_n
= NULL
;
696 gi
->offset_map_p
= NULL
;
697 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
699 return clear_alias_group
;
704 *slot
= gi
= (group_info_t
) pool_alloc (rtx_group_info_pool
);
706 gi
->id
= rtx_group_next_id
++;
707 gi
->base_mem
= gen_rtx_MEM (QImode
, base
);
708 gi
->canon_base_addr
= canon_rtx (base
);
709 gi
->store1_n
= BITMAP_ALLOC (NULL
);
710 gi
->store1_p
= BITMAP_ALLOC (NULL
);
711 gi
->store2_n
= BITMAP_ALLOC (NULL
);
712 gi
->store2_p
= BITMAP_ALLOC (NULL
);
713 gi
->group_kill
= BITMAP_ALLOC (NULL
);
714 gi
->process_globally
= false;
716 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
717 gi
->offset_map_size_n
= 0;
718 gi
->offset_map_size_p
= 0;
719 gi
->offset_map_n
= NULL
;
720 gi
->offset_map_p
= NULL
;
721 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
728 /* Initialization of data structures. */
734 globally_deleted
= 0;
737 scratch
= BITMAP_ALLOC (NULL
);
740 = create_alloc_pool ("rtx_store_info_pool",
741 sizeof (struct store_info
), 100);
743 = create_alloc_pool ("read_info_pool",
744 sizeof (struct read_info
), 100);
746 = create_alloc_pool ("insn_info_pool",
747 sizeof (struct insn_info
), 100);
749 = create_alloc_pool ("bb_info_pool",
750 sizeof (struct bb_info
), 100);
752 = create_alloc_pool ("rtx_group_info_pool",
753 sizeof (struct group_info
), 100);
755 = create_alloc_pool ("deferred_change_pool",
756 sizeof (struct deferred_change
), 10);
758 rtx_group_table
= htab_create (11, invariant_group_base_hash
,
759 invariant_group_base_eq
, NULL
);
761 bb_table
= XCNEWVEC (bb_info_t
, last_basic_block
);
762 rtx_group_next_id
= 0;
764 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
766 init_alias_analysis ();
768 if (clear_alias_sets
)
769 clear_alias_group
= get_group_info (NULL
);
771 clear_alias_group
= NULL
;
776 /*----------------------------------------------------------------------------
779 Scan all of the insns. Any random ordering of the blocks is fine.
780 Each block is scanned in forward order to accommodate cselib which
781 is used to remove stores with non-constant bases.
782 ----------------------------------------------------------------------------*/
784 /* Delete all of the store_info recs from INSN_INFO. */
787 free_store_info (insn_info_t insn_info
)
789 store_info_t store_info
= insn_info
->store_rec
;
792 store_info_t next
= store_info
->next
;
793 if (store_info
->is_large
)
794 BITMAP_FREE (store_info
->positions_needed
.large
.bmap
);
795 if (store_info
->cse_base
)
796 pool_free (cse_store_info_pool
, store_info
);
798 pool_free (rtx_store_info_pool
, store_info
);
802 insn_info
->cannot_delete
= true;
803 insn_info
->contains_cselib_groups
= false;
804 insn_info
->store_rec
= NULL
;
814 /* Add an insn to do the add inside a x if it is a
815 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
816 the size of the mode of the MEM that this is inside of. */
819 replace_inc_dec (rtx
*r
, void *d
)
822 struct insn_size
*data
= (struct insn_size
*)d
;
823 switch (GET_CODE (x
))
828 rtx r1
= XEXP (x
, 0);
829 rtx c
= gen_int_mode (data
->size
, GET_MODE (r1
));
830 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
831 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
839 rtx r1
= XEXP (x
, 0);
840 rtx c
= gen_int_mode (-data
->size
, GET_MODE (r1
));
841 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
842 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
850 /* We can reuse the add because we are about to delete the
851 insn that contained it. */
852 rtx add
= XEXP (x
, 0);
853 rtx r1
= XEXP (add
, 0);
854 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
, add
), data
->insn
);
864 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
865 and generate an add to replace that. */
868 replace_inc_dec_mem (rtx
*r
, void *d
)
871 if (x
!= NULL_RTX
&& MEM_P (x
))
873 struct insn_size data
;
875 data
.size
= GET_MODE_SIZE (GET_MODE (x
));
878 for_each_rtx (&XEXP (x
, 0), replace_inc_dec
, &data
);
885 /* Before we delete INSN, make sure that the auto inc/dec, if it is
886 there, is split into a separate insn. */
889 check_for_inc_dec (rtx insn
)
891 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
893 for_each_rtx (&insn
, replace_inc_dec_mem
, insn
);
897 /* Delete the insn and free all of the fields inside INSN_INFO. */
900 delete_dead_store_insn (insn_info_t insn_info
)
902 read_info_t read_info
;
907 check_for_inc_dec (insn_info
->insn
);
910 fprintf (dump_file
, "Locally deleting insn %d ",
911 INSN_UID (insn_info
->insn
));
912 if (insn_info
->store_rec
->alias_set
)
913 fprintf (dump_file
, "alias set %d\n",
914 (int) insn_info
->store_rec
->alias_set
);
916 fprintf (dump_file
, "\n");
919 free_store_info (insn_info
);
920 read_info
= insn_info
->read_rec
;
924 read_info_t next
= read_info
->next
;
925 pool_free (read_info_pool
, read_info
);
928 insn_info
->read_rec
= NULL
;
930 delete_insn (insn_info
->insn
);
932 insn_info
->insn
= NULL
;
934 insn_info
->wild_read
= false;
938 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
942 set_usage_bits (group_info_t group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
)
946 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
947 for (i
=offset
; i
<offset
+width
; i
++)
954 store1
= group
->store1_n
;
955 store2
= group
->store2_n
;
960 store1
= group
->store1_p
;
961 store2
= group
->store2_p
;
965 if (bitmap_bit_p (store1
, ai
))
966 bitmap_set_bit (store2
, ai
);
969 bitmap_set_bit (store1
, ai
);
972 if (group
->offset_map_size_n
< ai
)
973 group
->offset_map_size_n
= ai
;
977 if (group
->offset_map_size_p
< ai
)
978 group
->offset_map_size_p
= ai
;
985 /* Set the BB_INFO so that the last insn is marked as a wild read. */
988 add_wild_read (bb_info_t bb_info
)
990 insn_info_t insn_info
= bb_info
->last_insn
;
991 read_info_t
*ptr
= &insn_info
->read_rec
;
995 read_info_t next
= (*ptr
)->next
;
996 if ((*ptr
)->alias_set
== 0)
998 pool_free (read_info_pool
, *ptr
);
1002 ptr
= &(*ptr
)->next
;
1004 insn_info
->wild_read
= true;
1005 active_local_stores
= NULL
;
1009 /* Return true if X is a constant or one of the registers that behave
1010 as a constant over the life of a function. This is equivalent to
1011 !rtx_varies_p for memory addresses. */
1014 const_or_frame_p (rtx x
)
1016 switch (GET_CODE (x
))
1019 return MEM_READONLY_P (x
);
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1034 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1037 || x
== pic_offset_table_rtx
)
1046 /* Take all reasonable action to put the address of MEM into the form
1047 that we can do analysis on.
1049 The gold standard is to get the address into the form: address +
1050 OFFSET where address is something that rtx_varies_p considers a
1051 constant. When we can get the address in this form, we can do
1052 global analysis on it. Note that for constant bases, address is
1053 not actually returned, only the group_id. The address can be
1056 If that fails, we try cselib to get a value we can at least use
1057 locally. If that fails we return false.
1059 The GROUP_ID is set to -1 for cselib bases and the index of the
1060 group for non_varying bases.
1062 FOR_READ is true if this is a mem read and false if not. */
1065 canon_address (rtx mem
,
1066 alias_set_type
*alias_set_out
,
1068 HOST_WIDE_INT
*offset
,
1071 enum machine_mode address_mode
1072 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
1073 rtx mem_address
= XEXP (mem
, 0);
1074 rtx expanded_address
, address
;
1077 /* Make sure that cselib is has initialized all of the operands of
1078 the address before asking it to do the subst. */
1080 if (clear_alias_sets
)
1082 /* If this is a spill, do not do any further processing. */
1083 alias_set_type alias_set
= MEM_ALIAS_SET (mem
);
1085 fprintf (dump_file
, "found alias set %d\n", (int) alias_set
);
1086 if (bitmap_bit_p (clear_alias_sets
, alias_set
))
1088 struct clear_alias_mode_holder
*entry
1089 = clear_alias_set_lookup (alias_set
);
1091 /* If the modes do not match, we cannot process this set. */
1092 if (entry
->mode
!= GET_MODE (mem
))
1096 "disqualifying alias set %d, (%s) != (%s)\n",
1097 (int) alias_set
, GET_MODE_NAME (entry
->mode
),
1098 GET_MODE_NAME (GET_MODE (mem
)));
1100 bitmap_set_bit (disqualified_clear_alias_sets
, alias_set
);
1104 *alias_set_out
= alias_set
;
1105 *group_id
= clear_alias_group
->id
;
1112 cselib_lookup (mem_address
, address_mode
, 1);
1116 fprintf (dump_file
, " mem: ");
1117 print_inline_rtx (dump_file
, mem_address
, 0);
1118 fprintf (dump_file
, "\n");
1121 /* First see if just canon_rtx (mem_address) is const or frame,
1122 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1124 for (expanded
= 0; expanded
< 2; expanded
++)
1128 /* Use cselib to replace all of the reg references with the full
1129 expression. This will take care of the case where we have
1131 r_x = base + offset;
1136 val = *(base + offset); */
1138 expanded_address
= cselib_expand_value_rtx (mem_address
,
1141 /* If this fails, just go with the address from first
1143 if (!expanded_address
)
1147 expanded_address
= mem_address
;
1149 /* Split the address into canonical BASE + OFFSET terms. */
1150 address
= canon_rtx (expanded_address
);
1158 fprintf (dump_file
, "\n after cselib_expand address: ");
1159 print_inline_rtx (dump_file
, expanded_address
, 0);
1160 fprintf (dump_file
, "\n");
1163 fprintf (dump_file
, "\n after canon_rtx address: ");
1164 print_inline_rtx (dump_file
, address
, 0);
1165 fprintf (dump_file
, "\n");
1168 if (GET_CODE (address
) == CONST
)
1169 address
= XEXP (address
, 0);
1171 if (GET_CODE (address
) == PLUS
1172 && CONST_INT_P (XEXP (address
, 1)))
1174 *offset
= INTVAL (XEXP (address
, 1));
1175 address
= XEXP (address
, 0);
1178 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1179 && const_or_frame_p (address
))
1181 group_info_t group
= get_group_info (address
);
1184 fprintf (dump_file
, " gid=%d offset=%d \n",
1185 group
->id
, (int)*offset
);
1187 *group_id
= group
->id
;
1192 *base
= cselib_lookup (address
, address_mode
, true);
1198 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1202 fprintf (dump_file
, " varying cselib base=%d offset = %d\n",
1203 (*base
)->value
, (int)*offset
);
1208 /* Clear the rhs field from the active_local_stores array. */
1211 clear_rhs_from_active_local_stores (void)
1213 insn_info_t ptr
= active_local_stores
;
1217 store_info_t store_info
= ptr
->store_rec
;
1218 /* Skip the clobbers. */
1219 while (!store_info
->is_set
)
1220 store_info
= store_info
->next
;
1222 store_info
->rhs
= NULL
;
1223 store_info
->const_rhs
= NULL
;
1225 ptr
= ptr
->next_local_store
;
1230 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1233 set_position_unneeded (store_info_t s_info
, int pos
)
1235 if (__builtin_expect (s_info
->is_large
, false))
1237 if (!bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, pos
))
1239 s_info
->positions_needed
.large
.count
++;
1240 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1244 s_info
->positions_needed
.small_bitmask
1245 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1248 /* Mark the whole store S_INFO as unneeded. */
1251 set_all_positions_unneeded (store_info_t s_info
)
1253 if (__builtin_expect (s_info
->is_large
, false))
1255 int pos
, end
= s_info
->end
- s_info
->begin
;
1256 for (pos
= 0; pos
< end
; pos
++)
1257 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1258 s_info
->positions_needed
.large
.count
= end
;
1261 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1264 /* Return TRUE if any bytes from S_INFO store are needed. */
1267 any_positions_needed_p (store_info_t s_info
)
1269 if (__builtin_expect (s_info
->is_large
, false))
1270 return (s_info
->positions_needed
.large
.count
1271 < s_info
->end
- s_info
->begin
);
1273 return (s_info
->positions_needed
.small_bitmask
1274 != (unsigned HOST_WIDE_INT
) 0);
1277 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1278 store are needed. */
1281 all_positions_needed_p (store_info_t s_info
, int start
, int width
)
1283 if (__builtin_expect (s_info
->is_large
, false))
1285 int end
= start
+ width
;
1287 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1293 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1294 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1299 static rtx
get_stored_val (store_info_t
, enum machine_mode
, HOST_WIDE_INT
,
1300 HOST_WIDE_INT
, basic_block
, bool);
1303 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1304 there is a candidate store, after adding it to the appropriate
1305 local store group if so. */
1308 record_store (rtx body
, bb_info_t bb_info
)
1310 rtx mem
, rhs
, const_rhs
, mem_addr
;
1311 HOST_WIDE_INT offset
= 0;
1312 HOST_WIDE_INT width
= 0;
1313 alias_set_type spill_alias_set
;
1314 insn_info_t insn_info
= bb_info
->last_insn
;
1315 store_info_t store_info
= NULL
;
1317 cselib_val
*base
= NULL
;
1318 insn_info_t ptr
, last
, redundant_reason
;
1319 bool store_is_unused
;
1321 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1324 mem
= SET_DEST (body
);
1326 /* If this is not used, then this cannot be used to keep the insn
1327 from being deleted. On the other hand, it does provide something
1328 that can be used to prove that another store is dead. */
1330 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1332 /* Check whether that value is a suitable memory location. */
1335 /* If the set or clobber is unused, then it does not effect our
1336 ability to get rid of the entire insn. */
1337 if (!store_is_unused
)
1338 insn_info
->cannot_delete
= true;
1342 /* At this point we know mem is a mem. */
1343 if (GET_MODE (mem
) == BLKmode
)
1345 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1348 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1349 add_wild_read (bb_info
);
1350 insn_info
->cannot_delete
= true;
1353 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1354 as memset (addr, 0, 36); */
1355 else if (!MEM_SIZE (mem
)
1356 || !CONST_INT_P (MEM_SIZE (mem
))
1357 || GET_CODE (body
) != SET
1358 || INTVAL (MEM_SIZE (mem
)) <= 0
1359 || INTVAL (MEM_SIZE (mem
)) > MAX_OFFSET
1360 || !CONST_INT_P (SET_SRC (body
)))
1362 if (!store_is_unused
)
1364 /* If the set or clobber is unused, then it does not effect our
1365 ability to get rid of the entire insn. */
1366 insn_info
->cannot_delete
= true;
1367 clear_rhs_from_active_local_stores ();
1373 /* We can still process a volatile mem, we just cannot delete it. */
1374 if (MEM_VOLATILE_P (mem
))
1375 insn_info
->cannot_delete
= true;
1377 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
1379 clear_rhs_from_active_local_stores ();
1383 if (GET_MODE (mem
) == BLKmode
)
1384 width
= INTVAL (MEM_SIZE (mem
));
1387 width
= GET_MODE_SIZE (GET_MODE (mem
));
1388 gcc_assert ((unsigned) width
<= HOST_BITS_PER_WIDE_INT
);
1391 if (spill_alias_set
)
1393 bitmap store1
= clear_alias_group
->store1_p
;
1394 bitmap store2
= clear_alias_group
->store2_p
;
1396 gcc_assert (GET_MODE (mem
) != BLKmode
);
1398 if (bitmap_bit_p (store1
, spill_alias_set
))
1399 bitmap_set_bit (store2
, spill_alias_set
);
1401 bitmap_set_bit (store1
, spill_alias_set
);
1403 if (clear_alias_group
->offset_map_size_p
< spill_alias_set
)
1404 clear_alias_group
->offset_map_size_p
= spill_alias_set
;
1406 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1409 fprintf (dump_file
, " processing spill store %d(%s)\n",
1410 (int) spill_alias_set
, GET_MODE_NAME (GET_MODE (mem
)));
1412 else if (group_id
>= 0)
1414 /* In the restrictive case where the base is a constant or the
1415 frame pointer we can do global analysis. */
1418 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1420 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1421 set_usage_bits (group
, offset
, width
);
1424 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1425 group_id
, (int)offset
, (int)(offset
+width
));
1429 rtx base_term
= find_base_term (XEXP (mem
, 0));
1431 || (GET_CODE (base_term
) == ADDRESS
1432 && GET_MODE (base_term
) == Pmode
1433 && XEXP (base_term
, 0) == stack_pointer_rtx
))
1434 insn_info
->stack_pointer_based
= true;
1435 insn_info
->contains_cselib_groups
= true;
1437 store_info
= (store_info_t
) pool_alloc (cse_store_info_pool
);
1441 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1442 (int)offset
, (int)(offset
+width
));
1445 const_rhs
= rhs
= NULL_RTX
;
1446 if (GET_CODE (body
) == SET
1447 /* No place to keep the value after ra. */
1448 && !reload_completed
1449 && (REG_P (SET_SRC (body
))
1450 || GET_CODE (SET_SRC (body
)) == SUBREG
1451 || CONSTANT_P (SET_SRC (body
)))
1452 && !MEM_VOLATILE_P (mem
)
1453 /* Sometimes the store and reload is used for truncation and
1455 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1457 rhs
= SET_SRC (body
);
1458 if (CONSTANT_P (rhs
))
1460 else if (body
== PATTERN (insn_info
->insn
))
1462 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1463 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1464 const_rhs
= XEXP (tem
, 0);
1466 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1468 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1470 if (tem
&& CONSTANT_P (tem
))
1475 /* Check to see if this stores causes some other stores to be
1477 ptr
= active_local_stores
;
1479 redundant_reason
= NULL
;
1480 mem
= canon_rtx (mem
);
1481 /* For alias_set != 0 canon_true_dependence should be never called. */
1482 if (spill_alias_set
)
1483 mem_addr
= NULL_RTX
;
1487 mem_addr
= base
->val_rtx
;
1491 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1492 mem_addr
= group
->canon_base_addr
;
1495 mem_addr
= plus_constant (mem_addr
, offset
);
1500 insn_info_t next
= ptr
->next_local_store
;
1501 store_info_t s_info
= ptr
->store_rec
;
1504 /* Skip the clobbers. We delete the active insn if this insn
1505 shadows the set. To have been put on the active list, it
1506 has exactly on set. */
1507 while (!s_info
->is_set
)
1508 s_info
= s_info
->next
;
1510 if (s_info
->alias_set
!= spill_alias_set
)
1512 else if (s_info
->alias_set
)
1514 struct clear_alias_mode_holder
*entry
1515 = clear_alias_set_lookup (s_info
->alias_set
);
1516 /* Generally, spills cannot be processed if and of the
1517 references to the slot have a different mode. But if
1518 we are in the same block and mode is exactly the same
1519 between this store and one before in the same block,
1520 we can still delete it. */
1521 if ((GET_MODE (mem
) == GET_MODE (s_info
->mem
))
1522 && (GET_MODE (mem
) == entry
->mode
))
1525 set_all_positions_unneeded (s_info
);
1528 fprintf (dump_file
, " trying spill store in insn=%d alias_set=%d\n",
1529 INSN_UID (ptr
->insn
), (int) s_info
->alias_set
);
1531 else if ((s_info
->group_id
== group_id
)
1532 && (s_info
->cse_base
== base
))
1536 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1537 INSN_UID (ptr
->insn
), s_info
->group_id
,
1538 (int)s_info
->begin
, (int)s_info
->end
);
1540 /* Even if PTR won't be eliminated as unneeded, if both
1541 PTR and this insn store the same constant value, we might
1542 eliminate this insn instead. */
1543 if (s_info
->const_rhs
1545 && offset
>= s_info
->begin
1546 && offset
+ width
<= s_info
->end
1547 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1550 if (GET_MODE (mem
) == BLKmode
)
1552 if (GET_MODE (s_info
->mem
) == BLKmode
1553 && s_info
->const_rhs
== const_rhs
)
1554 redundant_reason
= ptr
;
1556 else if (s_info
->const_rhs
== const0_rtx
1557 && const_rhs
== const0_rtx
)
1558 redundant_reason
= ptr
;
1563 val
= get_stored_val (s_info
, GET_MODE (mem
),
1564 offset
, offset
+ width
,
1565 BLOCK_FOR_INSN (insn_info
->insn
),
1567 if (get_insns () != NULL
)
1570 if (val
&& rtx_equal_p (val
, const_rhs
))
1571 redundant_reason
= ptr
;
1575 for (i
= MAX (offset
, s_info
->begin
);
1576 i
< offset
+ width
&& i
< s_info
->end
;
1578 set_position_unneeded (s_info
, i
- s_info
->begin
);
1580 else if (s_info
->rhs
)
1581 /* Need to see if it is possible for this store to overwrite
1582 the value of store_info. If it is, set the rhs to NULL to
1583 keep it from being used to remove a load. */
1585 if (canon_true_dependence (s_info
->mem
,
1586 GET_MODE (s_info
->mem
),
1588 mem
, mem_addr
, rtx_varies_p
))
1591 s_info
->const_rhs
= NULL
;
1595 /* An insn can be deleted if every position of every one of
1596 its s_infos is zero. */
1597 if (any_positions_needed_p (s_info
)
1598 || ptr
->cannot_delete
)
1603 insn_info_t insn_to_delete
= ptr
;
1606 last
->next_local_store
= ptr
->next_local_store
;
1608 active_local_stores
= ptr
->next_local_store
;
1610 delete_dead_store_insn (insn_to_delete
);
1618 /* Finish filling in the store_info. */
1619 store_info
->next
= insn_info
->store_rec
;
1620 insn_info
->store_rec
= store_info
;
1621 store_info
->mem
= mem
;
1622 store_info
->alias_set
= spill_alias_set
;
1623 store_info
->mem_addr
= mem_addr
;
1624 store_info
->cse_base
= base
;
1625 if (width
> HOST_BITS_PER_WIDE_INT
)
1627 store_info
->is_large
= true;
1628 store_info
->positions_needed
.large
.count
= 0;
1629 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (NULL
);
1633 store_info
->is_large
= false;
1634 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1636 store_info
->group_id
= group_id
;
1637 store_info
->begin
= offset
;
1638 store_info
->end
= offset
+ width
;
1639 store_info
->is_set
= GET_CODE (body
) == SET
;
1640 store_info
->rhs
= rhs
;
1641 store_info
->const_rhs
= const_rhs
;
1642 store_info
->redundant_reason
= redundant_reason
;
1644 /* If this is a clobber, we return 0. We will only be able to
1645 delete this insn if there is only one store USED store, but we
1646 can use the clobber to delete other stores earlier. */
1647 return store_info
->is_set
? 1 : 0;
1652 dump_insn_info (const char * start
, insn_info_t insn_info
)
1654 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1655 INSN_UID (insn_info
->insn
),
1656 insn_info
->store_rec
? "has store" : "naked");
1660 /* If the modes are different and the value's source and target do not
1661 line up, we need to extract the value from lower part of the rhs of
1662 the store, shift it, and then put it into a form that can be shoved
1663 into the read_insn. This function generates a right SHIFT of a
1664 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1665 shift sequence is returned or NULL if we failed to find a
1669 find_shift_sequence (int access_size
,
1670 store_info_t store_info
,
1671 enum machine_mode read_mode
,
1672 int shift
, bool speed
, bool require_cst
)
1674 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1675 enum machine_mode new_mode
;
1676 rtx read_reg
= NULL
;
1678 /* Some machines like the x86 have shift insns for each size of
1679 operand. Other machines like the ppc or the ia-64 may only have
1680 shift insns that shift values within 32 or 64 bit registers.
1681 This loop tries to find the smallest shift insn that will right
1682 justify the value we want to read but is available in one insn on
1685 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1687 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1688 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1690 rtx target
, new_reg
, shift_seq
, insn
, new_lhs
;
1693 /* If a constant was stored into memory, try to simplify it here,
1694 otherwise the cost of the shift might preclude this optimization
1695 e.g. at -Os, even when no actual shift will be needed. */
1696 if (store_info
->const_rhs
)
1698 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1699 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1701 if (ret
&& CONSTANT_P (ret
))
1703 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1704 ret
, GEN_INT (shift
));
1705 if (ret
&& CONSTANT_P (ret
))
1707 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1708 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1709 if (ret
&& CONSTANT_P (ret
)
1710 && rtx_cost (ret
, SET
, speed
) <= COSTS_N_INSNS (1))
1719 /* Try a wider mode if truncating the store mode to NEW_MODE
1720 requires a real instruction. */
1721 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1722 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode
),
1723 GET_MODE_BITSIZE (store_mode
)))
1726 /* Also try a wider mode if the necessary punning is either not
1727 desirable or not possible. */
1728 if (!CONSTANT_P (store_info
->rhs
)
1729 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1732 new_reg
= gen_reg_rtx (new_mode
);
1736 /* In theory we could also check for an ashr. Ian Taylor knows
1737 of one dsp where the cost of these two was not the same. But
1738 this really is a rare case anyway. */
1739 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1740 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1742 shift_seq
= get_insns ();
1745 if (target
!= new_reg
|| shift_seq
== NULL
)
1749 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1751 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1753 /* The computation up to here is essentially independent
1754 of the arguments and could be precomputed. It may
1755 not be worth doing so. We could precompute if
1756 worthwhile or at least cache the results. The result
1757 technically depends on both SHIFT and ACCESS_SIZE,
1758 but in practice the answer will depend only on ACCESS_SIZE. */
1760 if (cost
> COSTS_N_INSNS (1))
1763 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1764 copy_rtx (store_info
->rhs
));
1765 if (new_lhs
== NULL_RTX
)
1768 /* We found an acceptable shift. Generate a move to
1769 take the value from the store and put it into the
1770 shift pseudo, then shift it, then generate another
1771 move to put in into the target of the read. */
1772 emit_move_insn (new_reg
, new_lhs
);
1773 emit_insn (shift_seq
);
1774 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1782 /* Call back for note_stores to find the hard regs set or clobbered by
1783 insn. Data is a bitmap of the hardregs set so far. */
1786 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1788 bitmap regs_set
= (bitmap
) data
;
1791 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1793 int regno
= REGNO (x
);
1794 int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1796 bitmap_set_bit (regs_set
, regno
+ n
);
1800 /* Helper function for replace_read and record_store.
1801 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1802 to one before READ_END bytes read in READ_MODE. Return NULL
1803 if not successful. If REQUIRE_CST is true, return always constant. */
1806 get_stored_val (store_info_t store_info
, enum machine_mode read_mode
,
1807 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1808 basic_block bb
, bool require_cst
)
1810 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1812 int access_size
; /* In bytes. */
1815 /* To get here the read is within the boundaries of the write so
1816 shift will never be negative. Start out with the shift being in
1818 if (store_mode
== BLKmode
)
1820 else if (BYTES_BIG_ENDIAN
)
1821 shift
= store_info
->end
- read_end
;
1823 shift
= read_begin
- store_info
->begin
;
1825 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1827 /* From now on it is bits. */
1828 shift
*= BITS_PER_UNIT
;
1831 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1832 optimize_bb_for_speed_p (bb
),
1834 else if (store_mode
== BLKmode
)
1836 /* The store is a memset (addr, const_val, const_size). */
1837 gcc_assert (CONST_INT_P (store_info
->rhs
));
1838 store_mode
= int_mode_for_mode (read_mode
);
1839 if (store_mode
== BLKmode
)
1840 read_reg
= NULL_RTX
;
1841 else if (store_info
->rhs
== const0_rtx
)
1842 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1843 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1844 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1845 read_reg
= NULL_RTX
;
1848 unsigned HOST_WIDE_INT c
1849 = INTVAL (store_info
->rhs
)
1850 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1851 int shift
= BITS_PER_UNIT
;
1852 while (shift
< HOST_BITS_PER_WIDE_INT
)
1857 read_reg
= GEN_INT (trunc_int_for_mode (c
, store_mode
));
1858 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1861 else if (store_info
->const_rhs
1863 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1864 read_reg
= extract_low_bits (read_mode
, store_mode
,
1865 copy_rtx (store_info
->const_rhs
));
1867 read_reg
= extract_low_bits (read_mode
, store_mode
,
1868 copy_rtx (store_info
->rhs
));
1869 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1870 read_reg
= NULL_RTX
;
1874 /* Take a sequence of:
1897 Depending on the alignment and the mode of the store and
1901 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1902 and READ_INSN are for the read. Return true if the replacement
1906 replace_read (store_info_t store_info
, insn_info_t store_insn
,
1907 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1910 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1911 enum machine_mode read_mode
= GET_MODE (read_info
->mem
);
1912 rtx insns
, this_insn
, read_reg
;
1918 /* Create a sequence of instructions to set up the read register.
1919 This sequence goes immediately before the store and its result
1920 is read by the load.
1922 We need to keep this in perspective. We are replacing a read
1923 with a sequence of insns, but the read will almost certainly be
1924 in cache, so it is not going to be an expensive one. Thus, we
1925 are not willing to do a multi insn shift or worse a subroutine
1926 call to get rid of the read. */
1928 fprintf (dump_file
, "trying to replace %smode load in insn %d"
1929 " from %smode store in insn %d\n",
1930 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
1931 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
1933 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
1934 read_reg
= get_stored_val (store_info
,
1935 read_mode
, read_info
->begin
, read_info
->end
,
1937 if (read_reg
== NULL_RTX
)
1941 fprintf (dump_file
, " -- could not extract bits of stored value\n");
1944 /* Force the value into a new register so that it won't be clobbered
1945 between the store and the load. */
1946 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
1947 insns
= get_insns ();
1950 if (insns
!= NULL_RTX
)
1952 /* Now we have to scan the set of new instructions to see if the
1953 sequence contains and sets of hardregs that happened to be
1954 live at this point. For instance, this can happen if one of
1955 the insns sets the CC and the CC happened to be live at that
1956 point. This does occasionally happen, see PR 37922. */
1957 bitmap regs_set
= BITMAP_ALLOC (NULL
);
1959 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
1960 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
1962 bitmap_and_into (regs_set
, regs_live
);
1963 if (!bitmap_empty_p (regs_set
))
1968 "abandoning replacement because sequence clobbers live hardregs:");
1969 df_print_regset (dump_file
, regs_set
);
1972 BITMAP_FREE (regs_set
);
1975 BITMAP_FREE (regs_set
);
1978 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
1980 deferred_change_t deferred_change
=
1981 (deferred_change_t
) pool_alloc (deferred_change_pool
);
1983 /* Insert this right before the store insn where it will be safe
1984 from later insns that might change it before the read. */
1985 emit_insn_before (insns
, store_insn
->insn
);
1987 /* And now for the kludge part: cselib croaks if you just
1988 return at this point. There are two reasons for this:
1990 1) Cselib has an idea of how many pseudos there are and
1991 that does not include the new ones we just added.
1993 2) Cselib does not know about the move insn we added
1994 above the store_info, and there is no way to tell it
1995 about it, because it has "moved on".
1997 Problem (1) is fixable with a certain amount of engineering.
1998 Problem (2) is requires starting the bb from scratch. This
2001 So we are just going to have to lie. The move/extraction
2002 insns are not really an issue, cselib did not see them. But
2003 the use of the new pseudo read_insn is a real problem because
2004 cselib has not scanned this insn. The way that we solve this
2005 problem is that we are just going to put the mem back for now
2006 and when we are finished with the block, we undo this. We
2007 keep a table of mems to get rid of. At the end of the basic
2008 block we can put them back. */
2010 *loc
= read_info
->mem
;
2011 deferred_change
->next
= deferred_change_list
;
2012 deferred_change_list
= deferred_change
;
2013 deferred_change
->loc
= loc
;
2014 deferred_change
->reg
= read_reg
;
2016 /* Get rid of the read_info, from the point of view of the
2017 rest of dse, play like this read never happened. */
2018 read_insn
->read_rec
= read_info
->next
;
2019 pool_free (read_info_pool
, read_info
);
2022 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2023 print_simple_rtl (dump_file
, read_reg
);
2024 fprintf (dump_file
, "\n");
2032 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2033 print_simple_rtl (dump_file
, read_reg
);
2034 fprintf (dump_file
, " led to an invalid instruction\n");
2040 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2041 if LOC is a mem and if it is look at the address and kill any
2042 appropriate stores that may be active. */
2045 check_mem_read_rtx (rtx
*loc
, void *data
)
2047 rtx mem
= *loc
, mem_addr
;
2049 insn_info_t insn_info
;
2050 HOST_WIDE_INT offset
= 0;
2051 HOST_WIDE_INT width
= 0;
2052 alias_set_type spill_alias_set
= 0;
2053 cselib_val
*base
= NULL
;
2055 read_info_t read_info
;
2057 if (!mem
|| !MEM_P (mem
))
2060 bb_info
= (bb_info_t
) data
;
2061 insn_info
= bb_info
->last_insn
;
2063 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2064 || (MEM_VOLATILE_P (mem
)))
2067 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2068 add_wild_read (bb_info
);
2069 insn_info
->cannot_delete
= true;
2073 /* If it is reading readonly mem, then there can be no conflict with
2075 if (MEM_READONLY_P (mem
))
2078 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
2081 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2082 add_wild_read (bb_info
);
2086 if (GET_MODE (mem
) == BLKmode
)
2089 width
= GET_MODE_SIZE (GET_MODE (mem
));
2091 read_info
= (read_info_t
) pool_alloc (read_info_pool
);
2092 read_info
->group_id
= group_id
;
2093 read_info
->mem
= mem
;
2094 read_info
->alias_set
= spill_alias_set
;
2095 read_info
->begin
= offset
;
2096 read_info
->end
= offset
+ width
;
2097 read_info
->next
= insn_info
->read_rec
;
2098 insn_info
->read_rec
= read_info
;
2099 /* For alias_set != 0 canon_true_dependence should be never called. */
2100 if (spill_alias_set
)
2101 mem_addr
= NULL_RTX
;
2105 mem_addr
= base
->val_rtx
;
2109 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
2110 mem_addr
= group
->canon_base_addr
;
2113 mem_addr
= plus_constant (mem_addr
, offset
);
2116 /* We ignore the clobbers in store_info. The is mildly aggressive,
2117 but there really should not be a clobber followed by a read. */
2119 if (spill_alias_set
)
2121 insn_info_t i_ptr
= active_local_stores
;
2122 insn_info_t last
= NULL
;
2125 fprintf (dump_file
, " processing spill load %d\n",
2126 (int) spill_alias_set
);
2130 store_info_t store_info
= i_ptr
->store_rec
;
2132 /* Skip the clobbers. */
2133 while (!store_info
->is_set
)
2134 store_info
= store_info
->next
;
2136 if (store_info
->alias_set
== spill_alias_set
)
2139 dump_insn_info ("removing from active", i_ptr
);
2142 last
->next_local_store
= i_ptr
->next_local_store
;
2144 active_local_stores
= i_ptr
->next_local_store
;
2148 i_ptr
= i_ptr
->next_local_store
;
2151 else if (group_id
>= 0)
2153 /* This is the restricted case where the base is a constant or
2154 the frame pointer and offset is a constant. */
2155 insn_info_t i_ptr
= active_local_stores
;
2156 insn_info_t last
= NULL
;
2161 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2164 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2165 group_id
, (int)offset
, (int)(offset
+width
));
2170 bool remove
= false;
2171 store_info_t store_info
= i_ptr
->store_rec
;
2173 /* Skip the clobbers. */
2174 while (!store_info
->is_set
)
2175 store_info
= store_info
->next
;
2177 /* There are three cases here. */
2178 if (store_info
->group_id
< 0)
2179 /* We have a cselib store followed by a read from a
2182 = canon_true_dependence (store_info
->mem
,
2183 GET_MODE (store_info
->mem
),
2184 store_info
->mem_addr
,
2185 mem
, mem_addr
, rtx_varies_p
);
2187 else if (group_id
== store_info
->group_id
)
2189 /* This is a block mode load. We may get lucky and
2190 canon_true_dependence may save the day. */
2193 = canon_true_dependence (store_info
->mem
,
2194 GET_MODE (store_info
->mem
),
2195 store_info
->mem_addr
,
2196 mem
, mem_addr
, rtx_varies_p
);
2198 /* If this read is just reading back something that we just
2199 stored, rewrite the read. */
2203 && offset
>= store_info
->begin
2204 && offset
+ width
<= store_info
->end
2205 && all_positions_needed_p (store_info
,
2206 offset
- store_info
->begin
,
2208 && replace_read (store_info
, i_ptr
, read_info
,
2209 insn_info
, loc
, bb_info
->regs_live
))
2212 /* The bases are the same, just see if the offsets
2214 if ((offset
< store_info
->end
)
2215 && (offset
+ width
> store_info
->begin
))
2221 The else case that is missing here is that the
2222 bases are constant but different. There is nothing
2223 to do here because there is no overlap. */
2228 dump_insn_info ("removing from active", i_ptr
);
2231 last
->next_local_store
= i_ptr
->next_local_store
;
2233 active_local_stores
= i_ptr
->next_local_store
;
2237 i_ptr
= i_ptr
->next_local_store
;
2242 insn_info_t i_ptr
= active_local_stores
;
2243 insn_info_t last
= NULL
;
2246 fprintf (dump_file
, " processing cselib load mem:");
2247 print_inline_rtx (dump_file
, mem
, 0);
2248 fprintf (dump_file
, "\n");
2253 bool remove
= false;
2254 store_info_t store_info
= i_ptr
->store_rec
;
2257 fprintf (dump_file
, " processing cselib load against insn %d\n",
2258 INSN_UID (i_ptr
->insn
));
2260 /* Skip the clobbers. */
2261 while (!store_info
->is_set
)
2262 store_info
= store_info
->next
;
2264 /* If this read is just reading back something that we just
2265 stored, rewrite the read. */
2267 && store_info
->group_id
== -1
2268 && store_info
->cse_base
== base
2270 && offset
>= store_info
->begin
2271 && offset
+ width
<= store_info
->end
2272 && all_positions_needed_p (store_info
,
2273 offset
- store_info
->begin
, width
)
2274 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2275 bb_info
->regs_live
))
2278 if (!store_info
->alias_set
)
2279 remove
= canon_true_dependence (store_info
->mem
,
2280 GET_MODE (store_info
->mem
),
2281 store_info
->mem_addr
,
2282 mem
, mem_addr
, rtx_varies_p
);
2287 dump_insn_info ("removing from active", i_ptr
);
2290 last
->next_local_store
= i_ptr
->next_local_store
;
2292 active_local_stores
= i_ptr
->next_local_store
;
2296 i_ptr
= i_ptr
->next_local_store
;
2302 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2303 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2304 true for any part of *LOC. */
2307 check_mem_read_use (rtx
*loc
, void *data
)
2309 for_each_rtx (loc
, check_mem_read_rtx
, data
);
2313 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2314 So far it only handles arguments passed in registers. */
2317 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2319 CUMULATIVE_ARGS args_so_far
;
2323 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2325 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2327 arg
!= void_list_node
&& idx
< nargs
;
2328 arg
= TREE_CHAIN (arg
), idx
++)
2330 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2331 rtx reg
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1), link
, tmp
;
2332 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2333 || GET_MODE_CLASS (mode
) != MODE_INT
)
2336 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2338 link
= XEXP (link
, 1))
2339 if (GET_CODE (XEXP (link
, 0)) == USE
)
2341 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2342 if (REG_P (args
[idx
])
2343 && REGNO (args
[idx
]) == REGNO (reg
)
2344 && (GET_MODE (args
[idx
]) == mode
2345 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2346 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2348 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2349 > GET_MODE_SIZE (mode
)))))
2355 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2356 if (GET_MODE (args
[idx
]) != mode
)
2358 if (!tmp
|| !CONST_INT_P (tmp
))
2360 tmp
= GEN_INT (trunc_int_for_mode (INTVAL (tmp
), mode
));
2365 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
2367 if (arg
!= void_list_node
|| idx
!= nargs
)
2373 /* Apply record_store to all candidate stores in INSN. Mark INSN
2374 if some part of it is not a candidate store and assigns to a
2375 non-register target. */
2378 scan_insn (bb_info_t bb_info
, rtx insn
)
2381 insn_info_t insn_info
= (insn_info_t
) pool_alloc (insn_info_pool
);
2383 memset (insn_info
, 0, sizeof (struct insn_info
));
2386 fprintf (dump_file
, "\n**scanning insn=%d\n",
2389 insn_info
->prev_insn
= bb_info
->last_insn
;
2390 insn_info
->insn
= insn
;
2391 bb_info
->last_insn
= insn_info
;
2393 if (DEBUG_INSN_P (insn
))
2395 insn_info
->cannot_delete
= true;
2399 /* Cselib clears the table for this case, so we have to essentially
2401 if (NONJUMP_INSN_P (insn
)
2402 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
2403 && MEM_VOLATILE_P (PATTERN (insn
)))
2405 add_wild_read (bb_info
);
2406 insn_info
->cannot_delete
= true;
2410 /* Look at all of the uses in the insn. */
2411 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2416 tree memset_call
= NULL_TREE
;
2418 insn_info
->cannot_delete
= true;
2420 /* Const functions cannot do anything bad i.e. read memory,
2421 however, they can read their parameters which may have
2422 been pushed onto the stack.
2423 memset and bzero don't read memory either. */
2424 const_call
= RTL_CONST_CALL_P (insn
);
2427 rtx call
= PATTERN (insn
);
2428 if (GET_CODE (call
) == PARALLEL
)
2429 call
= XVECEXP (call
, 0, 0);
2430 if (GET_CODE (call
) == SET
)
2431 call
= SET_SRC (call
);
2432 if (GET_CODE (call
) == CALL
2433 && MEM_P (XEXP (call
, 0))
2434 && GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2436 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2437 if (SYMBOL_REF_DECL (symbol
)
2438 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2440 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2442 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2443 == BUILT_IN_MEMSET
))
2444 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2445 memset_call
= SYMBOL_REF_DECL (symbol
);
2449 if (const_call
|| memset_call
)
2451 insn_info_t i_ptr
= active_local_stores
;
2452 insn_info_t last
= NULL
;
2455 fprintf (dump_file
, "%s call %d\n",
2456 const_call
? "const" : "memset", INSN_UID (insn
));
2458 /* See the head comment of the frame_read field. */
2459 if (reload_completed
)
2460 insn_info
->frame_read
= true;
2462 /* Loop over the active stores and remove those which are
2463 killed by the const function call. */
2466 bool remove_store
= false;
2468 /* The stack pointer based stores are always killed. */
2469 if (i_ptr
->stack_pointer_based
)
2470 remove_store
= true;
2472 /* If the frame is read, the frame related stores are killed. */
2473 else if (insn_info
->frame_read
)
2475 store_info_t store_info
= i_ptr
->store_rec
;
2477 /* Skip the clobbers. */
2478 while (!store_info
->is_set
)
2479 store_info
= store_info
->next
;
2481 if (store_info
->group_id
>= 0
2482 && VEC_index (group_info_t
, rtx_group_vec
,
2483 store_info
->group_id
)->frame_related
)
2484 remove_store
= true;
2490 dump_insn_info ("removing from active", i_ptr
);
2493 last
->next_local_store
= i_ptr
->next_local_store
;
2495 active_local_stores
= i_ptr
->next_local_store
;
2500 i_ptr
= i_ptr
->next_local_store
;
2506 if (get_call_args (insn
, memset_call
, args
, 3)
2507 && CONST_INT_P (args
[1])
2508 && CONST_INT_P (args
[2])
2509 && INTVAL (args
[2]) > 0)
2511 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2512 set_mem_size (mem
, args
[2]);
2513 body
= gen_rtx_SET (VOIDmode
, mem
, args
[1]);
2514 mems_found
+= record_store (body
, bb_info
);
2516 fprintf (dump_file
, "handling memset as BLKmode store\n");
2517 if (mems_found
== 1)
2519 insn_info
->next_local_store
= active_local_stores
;
2520 active_local_stores
= insn_info
;
2527 /* Every other call, including pure functions, may read memory. */
2528 add_wild_read (bb_info
);
2533 /* Assuming that there are sets in these insns, we cannot delete
2535 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2536 || volatile_refs_p (PATTERN (insn
))
2537 || insn_could_throw_p (insn
)
2538 || (RTX_FRAME_RELATED_P (insn
))
2539 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2540 insn_info
->cannot_delete
= true;
2542 body
= PATTERN (insn
);
2543 if (GET_CODE (body
) == PARALLEL
)
2546 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2547 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2550 mems_found
+= record_store (body
, bb_info
);
2553 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2554 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2556 /* If we found some sets of mems, add it into the active_local_stores so
2557 that it can be locally deleted if found dead or used for
2558 replace_read and redundant constant store elimination. Otherwise mark
2559 it as cannot delete. This simplifies the processing later. */
2560 if (mems_found
== 1)
2562 insn_info
->next_local_store
= active_local_stores
;
2563 active_local_stores
= insn_info
;
2566 insn_info
->cannot_delete
= true;
2570 /* Remove BASE from the set of active_local_stores. This is a
2571 callback from cselib that is used to get rid of the stores in
2572 active_local_stores. */
2575 remove_useless_values (cselib_val
*base
)
2577 insn_info_t insn_info
= active_local_stores
;
2578 insn_info_t last
= NULL
;
2582 store_info_t store_info
= insn_info
->store_rec
;
2585 /* If ANY of the store_infos match the cselib group that is
2586 being deleted, then the insn can not be deleted. */
2589 if ((store_info
->group_id
== -1)
2590 && (store_info
->cse_base
== base
))
2595 store_info
= store_info
->next
;
2601 last
->next_local_store
= insn_info
->next_local_store
;
2603 active_local_stores
= insn_info
->next_local_store
;
2604 free_store_info (insn_info
);
2609 insn_info
= insn_info
->next_local_store
;
2614 /* Do all of step 1. */
2620 bitmap regs_live
= BITMAP_ALLOC (NULL
);
2622 cselib_init (false);
2623 all_blocks
= BITMAP_ALLOC (NULL
);
2624 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2625 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2630 bb_info_t bb_info
= (bb_info_t
) pool_alloc (bb_info_pool
);
2632 memset (bb_info
, 0, sizeof (struct bb_info
));
2633 bitmap_set_bit (all_blocks
, bb
->index
);
2634 bb_info
->regs_live
= regs_live
;
2636 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2637 df_simulate_initialize_forwards (bb
, regs_live
);
2639 bb_table
[bb
->index
] = bb_info
;
2640 cselib_discard_hook
= remove_useless_values
;
2642 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2647 = create_alloc_pool ("cse_store_info_pool",
2648 sizeof (struct store_info
), 100);
2649 active_local_stores
= NULL
;
2650 cselib_clear_table ();
2652 /* Scan the insns. */
2653 FOR_BB_INSNS (bb
, insn
)
2656 scan_insn (bb_info
, insn
);
2657 cselib_process_insn (insn
);
2659 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2662 /* This is something of a hack, because the global algorithm
2663 is supposed to take care of the case where stores go dead
2664 at the end of the function. However, the global
2665 algorithm must take a more conservative view of block
2666 mode reads than the local alg does. So to get the case
2667 where you have a store to the frame followed by a non
2668 overlapping block more read, we look at the active local
2669 stores at the end of the function and delete all of the
2670 frame and spill based ones. */
2671 if (stores_off_frame_dead_at_return
2672 && (EDGE_COUNT (bb
->succs
) == 0
2673 || (single_succ_p (bb
)
2674 && single_succ (bb
) == EXIT_BLOCK_PTR
2675 && ! crtl
->calls_eh_return
)))
2677 insn_info_t i_ptr
= active_local_stores
;
2680 store_info_t store_info
= i_ptr
->store_rec
;
2682 /* Skip the clobbers. */
2683 while (!store_info
->is_set
)
2684 store_info
= store_info
->next
;
2685 if (store_info
->alias_set
&& !i_ptr
->cannot_delete
)
2686 delete_dead_store_insn (i_ptr
);
2688 if (store_info
->group_id
>= 0)
2691 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
2692 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2693 delete_dead_store_insn (i_ptr
);
2696 i_ptr
= i_ptr
->next_local_store
;
2700 /* Get rid of the loads that were discovered in
2701 replace_read. Cselib is finished with this block. */
2702 while (deferred_change_list
)
2704 deferred_change_t next
= deferred_change_list
->next
;
2706 /* There is no reason to validate this change. That was
2708 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2709 pool_free (deferred_change_pool
, deferred_change_list
);
2710 deferred_change_list
= next
;
2713 /* Get rid of all of the cselib based store_infos in this
2714 block and mark the containing insns as not being
2716 ptr
= bb_info
->last_insn
;
2719 if (ptr
->contains_cselib_groups
)
2721 store_info_t s_info
= ptr
->store_rec
;
2722 while (s_info
&& !s_info
->is_set
)
2723 s_info
= s_info
->next
;
2725 && s_info
->redundant_reason
2726 && s_info
->redundant_reason
->insn
2727 && !ptr
->cannot_delete
)
2730 fprintf (dump_file
, "Locally deleting insn %d "
2731 "because insn %d stores the "
2732 "same value and couldn't be "
2734 INSN_UID (ptr
->insn
),
2735 INSN_UID (s_info
->redundant_reason
->insn
));
2736 delete_dead_store_insn (ptr
);
2739 s_info
->redundant_reason
= NULL
;
2740 free_store_info (ptr
);
2744 store_info_t s_info
;
2746 /* Free at least positions_needed bitmaps. */
2747 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2748 if (s_info
->is_large
)
2750 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2751 s_info
->is_large
= false;
2754 ptr
= ptr
->prev_insn
;
2757 free_alloc_pool (cse_store_info_pool
);
2759 bb_info
->regs_live
= NULL
;
2762 BITMAP_FREE (regs_live
);
2764 htab_empty (rtx_group_table
);
2768 /*----------------------------------------------------------------------------
2771 Assign each byte position in the stores that we are going to
2772 analyze globally to a position in the bitmaps. Returns true if
2773 there are any bit positions assigned.
2774 ----------------------------------------------------------------------------*/
2777 dse_step2_init (void)
2782 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2784 /* For all non stack related bases, we only consider a store to
2785 be deletable if there are two or more stores for that
2786 position. This is because it takes one store to make the
2787 other store redundant. However, for the stores that are
2788 stack related, we consider them if there is only one store
2789 for the position. We do this because the stack related
2790 stores can be deleted if their is no read between them and
2791 the end of the function.
2793 To make this work in the current framework, we take the stack
2794 related bases add all of the bits from store1 into store2.
2795 This has the effect of making the eligible even if there is
2798 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2800 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2801 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2803 fprintf (dump_file
, "group %d is frame related ", i
);
2806 group
->offset_map_size_n
++;
2807 group
->offset_map_n
= XNEWVEC (int, group
->offset_map_size_n
);
2808 group
->offset_map_size_p
++;
2809 group
->offset_map_p
= XNEWVEC (int, group
->offset_map_size_p
);
2810 group
->process_globally
= false;
2813 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2814 (int)bitmap_count_bits (group
->store2_n
),
2815 (int)bitmap_count_bits (group
->store2_p
));
2816 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2817 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2823 /* Init the offset tables for the normal case. */
2826 dse_step2_nospill (void)
2830 /* Position 0 is unused because 0 is used in the maps to mean
2832 current_position
= 1;
2834 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2839 if (group
== clear_alias_group
)
2842 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2843 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2844 bitmap_clear (group
->group_kill
);
2846 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2848 bitmap_set_bit (group
->group_kill
, current_position
);
2849 group
->offset_map_n
[j
] = current_position
++;
2850 group
->process_globally
= true;
2852 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2854 bitmap_set_bit (group
->group_kill
, current_position
);
2855 group
->offset_map_p
[j
] = current_position
++;
2856 group
->process_globally
= true;
2859 return current_position
!= 1;
2863 /* Init the offset tables for the spill case. */
2866 dse_step2_spill (void)
2869 group_info_t group
= clear_alias_group
;
2872 /* Position 0 is unused because 0 is used in the maps to mean
2874 current_position
= 1;
2878 bitmap_print (dump_file
, clear_alias_sets
,
2879 "clear alias sets ", "\n");
2880 bitmap_print (dump_file
, disqualified_clear_alias_sets
,
2881 "disqualified clear alias sets ", "\n");
2884 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2885 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2886 bitmap_clear (group
->group_kill
);
2888 /* Remove the disqualified positions from the store2_p set. */
2889 bitmap_and_compl_into (group
->store2_p
, disqualified_clear_alias_sets
);
2891 /* We do not need to process the store2_n set because
2892 alias_sets are always positive. */
2893 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2895 bitmap_set_bit (group
->group_kill
, current_position
);
2896 group
->offset_map_p
[j
] = current_position
++;
2897 group
->process_globally
= true;
2900 return current_position
!= 1;
2905 /*----------------------------------------------------------------------------
2908 Build the bit vectors for the transfer functions.
2909 ----------------------------------------------------------------------------*/
2912 /* Note that this is NOT a general purpose function. Any mem that has
2913 an alias set registered here expected to be COMPLETELY unaliased:
2914 i.e it's addresses are not and need not be examined.
2916 It is known that all references to this address will have this
2917 alias set and there are NO other references to this address in the
2920 Currently the only place that is known to be clean enough to use
2921 this interface is the code that assigns the spill locations.
2923 All of the mems that have alias_sets registered are subjected to a
2924 very powerful form of dse where function calls, volatile reads and
2925 writes, and reads from random location are not taken into account.
2927 It is also assumed that these locations go dead when the function
2928 returns. This assumption could be relaxed if there were found to
2929 be places that this assumption was not correct.
2931 The MODE is passed in and saved. The mode of each load or store to
2932 a mem with ALIAS_SET is checked against MEM. If the size of that
2933 load or store is different from MODE, processing is halted on this
2934 alias set. For the vast majority of aliases sets, all of the loads
2935 and stores will use the same mode. But vectors are treated
2936 differently: the alias set is established for the entire vector,
2937 but reload will insert loads and stores for individual elements and
2938 we do not necessarily have the information to track those separate
2939 elements. So when we see a mode mismatch, we just bail. */
2943 dse_record_singleton_alias_set (alias_set_type alias_set
,
2944 enum machine_mode mode
)
2946 struct clear_alias_mode_holder tmp_holder
;
2947 struct clear_alias_mode_holder
*entry
;
2950 /* If we are not going to run dse, we need to return now or there
2951 will be problems with allocating the bitmaps. */
2952 if ((!gate_dse()) || !alias_set
)
2955 if (!clear_alias_sets
)
2957 clear_alias_sets
= BITMAP_ALLOC (NULL
);
2958 disqualified_clear_alias_sets
= BITMAP_ALLOC (NULL
);
2959 clear_alias_mode_table
= htab_create (11, clear_alias_mode_hash
,
2960 clear_alias_mode_eq
, NULL
);
2961 clear_alias_mode_pool
= create_alloc_pool ("clear_alias_mode_pool",
2962 sizeof (struct clear_alias_mode_holder
), 100);
2965 bitmap_set_bit (clear_alias_sets
, alias_set
);
2967 tmp_holder
.alias_set
= alias_set
;
2969 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, INSERT
);
2970 gcc_assert (*slot
== NULL
);
2973 (struct clear_alias_mode_holder
*) pool_alloc (clear_alias_mode_pool
);
2974 entry
->alias_set
= alias_set
;
2979 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2982 dse_invalidate_singleton_alias_set (alias_set_type alias_set
)
2984 if ((!gate_dse()) || !alias_set
)
2987 bitmap_clear_bit (clear_alias_sets
, alias_set
);
2991 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2995 get_bitmap_index (group_info_t group_info
, HOST_WIDE_INT offset
)
2999 HOST_WIDE_INT offset_p
= -offset
;
3000 if (offset_p
>= group_info
->offset_map_size_n
)
3002 return group_info
->offset_map_n
[offset_p
];
3006 if (offset
>= group_info
->offset_map_size_p
)
3008 return group_info
->offset_map_p
[offset
];
3013 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3017 scan_stores_nospill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3022 group_info_t group_info
3023 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3024 if (group_info
->process_globally
)
3025 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3027 int index
= get_bitmap_index (group_info
, i
);
3030 bitmap_set_bit (gen
, index
);
3032 bitmap_clear_bit (kill
, index
);
3035 store_info
= store_info
->next
;
3040 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3044 scan_stores_spill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3048 if (store_info
->alias_set
)
3050 int index
= get_bitmap_index (clear_alias_group
,
3051 store_info
->alias_set
);
3054 bitmap_set_bit (gen
, index
);
3056 bitmap_clear_bit (kill
, index
);
3059 store_info
= store_info
->next
;
3064 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3068 scan_reads_nospill (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3070 read_info_t read_info
= insn_info
->read_rec
;
3074 /* If this insn reads the frame, kill all the frame related stores. */
3075 if (insn_info
->frame_read
)
3077 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3078 if (group
->process_globally
&& group
->frame_related
)
3081 bitmap_ior_into (kill
, group
->group_kill
);
3082 bitmap_and_compl_into (gen
, group
->group_kill
);
3088 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3090 if (group
->process_globally
)
3092 if (i
== read_info
->group_id
)
3094 if (read_info
->begin
> read_info
->end
)
3096 /* Begin > end for block mode reads. */
3098 bitmap_ior_into (kill
, group
->group_kill
);
3099 bitmap_and_compl_into (gen
, group
->group_kill
);
3103 /* The groups are the same, just process the
3106 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
3108 int index
= get_bitmap_index (group
, j
);
3112 bitmap_set_bit (kill
, index
);
3113 bitmap_clear_bit (gen
, index
);
3120 /* The groups are different, if the alias sets
3121 conflict, clear the entire group. We only need
3122 to apply this test if the read_info is a cselib
3123 read. Anything with a constant base cannot alias
3124 something else with a different constant
3126 if ((read_info
->group_id
< 0)
3127 && canon_true_dependence (group
->base_mem
,
3129 group
->canon_base_addr
,
3130 read_info
->mem
, NULL_RTX
,
3134 bitmap_ior_into (kill
, group
->group_kill
);
3135 bitmap_and_compl_into (gen
, group
->group_kill
);
3141 read_info
= read_info
->next
;
3145 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3149 scan_reads_spill (read_info_t read_info
, bitmap gen
, bitmap kill
)
3153 if (read_info
->alias_set
)
3155 int index
= get_bitmap_index (clear_alias_group
,
3156 read_info
->alias_set
);
3160 bitmap_set_bit (kill
, index
);
3161 bitmap_clear_bit (gen
, index
);
3165 read_info
= read_info
->next
;
3170 /* Return the insn in BB_INFO before the first wild read or if there
3171 are no wild reads in the block, return the last insn. */
3174 find_insn_before_first_wild_read (bb_info_t bb_info
)
3176 insn_info_t insn_info
= bb_info
->last_insn
;
3177 insn_info_t last_wild_read
= NULL
;
3181 if (insn_info
->wild_read
)
3183 last_wild_read
= insn_info
->prev_insn
;
3184 /* Block starts with wild read. */
3185 if (!last_wild_read
)
3189 insn_info
= insn_info
->prev_insn
;
3193 return last_wild_read
;
3195 return bb_info
->last_insn
;
3199 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3200 the block in order to build the gen and kill sets for the block.
3201 We start at ptr which may be the last insn in the block or may be
3202 the first insn with a wild read. In the latter case we are able to
3203 skip the rest of the block because it just does not matter:
3204 anything that happens is hidden by the wild read. */
3207 dse_step3_scan (bool for_spills
, basic_block bb
)
3209 bb_info_t bb_info
= bb_table
[bb
->index
];
3210 insn_info_t insn_info
;
3213 /* There are no wild reads in the spill case. */
3214 insn_info
= bb_info
->last_insn
;
3216 insn_info
= find_insn_before_first_wild_read (bb_info
);
3218 /* In the spill case or in the no_spill case if there is no wild
3219 read in the block, we will need a kill set. */
3220 if (insn_info
== bb_info
->last_insn
)
3223 bitmap_clear (bb_info
->kill
);
3225 bb_info
->kill
= BITMAP_ALLOC (NULL
);
3229 BITMAP_FREE (bb_info
->kill
);
3233 /* There may have been code deleted by the dce pass run before
3235 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3237 /* Process the read(s) last. */
3240 scan_stores_spill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3241 scan_reads_spill (insn_info
->read_rec
, bb_info
->gen
, bb_info
->kill
);
3245 scan_stores_nospill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3246 scan_reads_nospill (insn_info
, bb_info
->gen
, bb_info
->kill
);
3250 insn_info
= insn_info
->prev_insn
;
3255 /* Set the gen set of the exit block, and also any block with no
3256 successors that does not have a wild read. */
3259 dse_step3_exit_block_scan (bb_info_t bb_info
)
3261 /* The gen set is all 0's for the exit block except for the
3262 frame_pointer_group. */
3264 if (stores_off_frame_dead_at_return
)
3269 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3271 if (group
->process_globally
&& group
->frame_related
)
3272 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3278 /* Find all of the blocks that are not backwards reachable from the
3279 exit block or any block with no successors (BB). These are the
3280 infinite loops or infinite self loops. These blocks will still
3281 have their bits set in UNREACHABLE_BLOCKS. */
3284 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3289 if (TEST_BIT (unreachable_blocks
, bb
->index
))
3291 RESET_BIT (unreachable_blocks
, bb
->index
);
3292 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3294 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3299 /* Build the transfer functions for the function. */
3302 dse_step3 (bool for_spills
)
3305 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block
);
3306 sbitmap_iterator sbi
;
3307 bitmap all_ones
= NULL
;
3310 sbitmap_ones (unreachable_blocks
);
3314 bb_info_t bb_info
= bb_table
[bb
->index
];
3316 bitmap_clear (bb_info
->gen
);
3318 bb_info
->gen
= BITMAP_ALLOC (NULL
);
3320 if (bb
->index
== ENTRY_BLOCK
)
3322 else if (bb
->index
== EXIT_BLOCK
)
3323 dse_step3_exit_block_scan (bb_info
);
3325 dse_step3_scan (for_spills
, bb
);
3326 if (EDGE_COUNT (bb
->succs
) == 0)
3327 mark_reachable_blocks (unreachable_blocks
, bb
);
3329 /* If this is the second time dataflow is run, delete the old
3332 BITMAP_FREE (bb_info
->in
);
3334 BITMAP_FREE (bb_info
->out
);
3337 /* For any block in an infinite loop, we must initialize the out set
3338 to all ones. This could be expensive, but almost never occurs in
3339 practice. However, it is common in regression tests. */
3340 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks
, 0, i
, sbi
)
3342 if (bitmap_bit_p (all_blocks
, i
))
3344 bb_info_t bb_info
= bb_table
[i
];
3350 all_ones
= BITMAP_ALLOC (NULL
);
3351 for (j
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, j
, group
); j
++)
3352 bitmap_ior_into (all_ones
, group
->group_kill
);
3356 bb_info
->out
= BITMAP_ALLOC (NULL
);
3357 bitmap_copy (bb_info
->out
, all_ones
);
3363 BITMAP_FREE (all_ones
);
3364 sbitmap_free (unreachable_blocks
);
3369 /*----------------------------------------------------------------------------
3372 Solve the bitvector equations.
3373 ----------------------------------------------------------------------------*/
3376 /* Confluence function for blocks with no successors. Create an out
3377 set from the gen set of the exit block. This block logically has
3378 the exit block as a successor. */
3383 dse_confluence_0 (basic_block bb
)
3385 bb_info_t bb_info
= bb_table
[bb
->index
];
3387 if (bb
->index
== EXIT_BLOCK
)
3392 bb_info
->out
= BITMAP_ALLOC (NULL
);
3393 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3397 /* Propagate the information from the in set of the dest of E to the
3398 out set of the src of E. If the various in or out sets are not
3399 there, that means they are all ones. */
3402 dse_confluence_n (edge e
)
3404 bb_info_t src_info
= bb_table
[e
->src
->index
];
3405 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3410 bitmap_and_into (src_info
->out
, dest_info
->in
);
3413 src_info
->out
= BITMAP_ALLOC (NULL
);
3414 bitmap_copy (src_info
->out
, dest_info
->in
);
3420 /* Propagate the info from the out to the in set of BB_INDEX's basic
3421 block. There are three cases:
3423 1) The block has no kill set. In this case the kill set is all
3424 ones. It does not matter what the out set of the block is, none of
3425 the info can reach the top. The only thing that reaches the top is
3426 the gen set and we just copy the set.
3428 2) There is a kill set but no out set and bb has successors. In
3429 this case we just return. Eventually an out set will be created and
3430 it is better to wait than to create a set of ones.
3432 3) There is both a kill and out set. We apply the obvious transfer
3437 dse_transfer_function (int bb_index
)
3439 bb_info_t bb_info
= bb_table
[bb_index
];
3447 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3448 bb_info
->out
, bb_info
->kill
);
3451 bb_info
->in
= BITMAP_ALLOC (NULL
);
3452 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3453 bb_info
->out
, bb_info
->kill
);
3463 /* Case 1 above. If there is already an in set, nothing
3469 bb_info
->in
= BITMAP_ALLOC (NULL
);
3470 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3476 /* Solve the dataflow equations. */
3481 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3482 dse_confluence_n
, dse_transfer_function
,
3483 all_blocks
, df_get_postorder (DF_BACKWARD
),
3484 df_get_n_blocks (DF_BACKWARD
));
3489 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3492 bb_info_t bb_info
= bb_table
[bb
->index
];
3494 df_print_bb_index (bb
, dump_file
);
3496 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3498 fprintf (dump_file
, " in: *MISSING*\n");
3500 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3502 fprintf (dump_file
, " gen: *MISSING*\n");
3504 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3506 fprintf (dump_file
, " kill: *MISSING*\n");
3508 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3510 fprintf (dump_file
, " out: *MISSING*\n\n");
3517 /*----------------------------------------------------------------------------
3520 Delete the stores that can only be deleted using the global information.
3521 ----------------------------------------------------------------------------*/
3525 dse_step5_nospill (void)
3530 bb_info_t bb_info
= bb_table
[bb
->index
];
3531 insn_info_t insn_info
= bb_info
->last_insn
;
3532 bitmap v
= bb_info
->out
;
3536 bool deleted
= false;
3537 if (dump_file
&& insn_info
->insn
)
3539 fprintf (dump_file
, "starting to process insn %d\n",
3540 INSN_UID (insn_info
->insn
));
3541 bitmap_print (dump_file
, v
, " v: ", "\n");
3544 /* There may have been code deleted by the dce pass run before
3547 && INSN_P (insn_info
->insn
)
3548 && (!insn_info
->cannot_delete
)
3549 && (!bitmap_empty_p (v
)))
3551 store_info_t store_info
= insn_info
->store_rec
;
3553 /* Try to delete the current insn. */
3556 /* Skip the clobbers. */
3557 while (!store_info
->is_set
)
3558 store_info
= store_info
->next
;
3560 if (store_info
->alias_set
)
3565 group_info_t group_info
3566 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3568 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3570 int index
= get_bitmap_index (group_info
, i
);
3573 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3574 if (index
== 0 || !bitmap_bit_p (v
, index
))
3577 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3587 check_for_inc_dec (insn_info
->insn
);
3588 delete_insn (insn_info
->insn
);
3589 insn_info
->insn
= NULL
;
3594 /* We do want to process the local info if the insn was
3595 deleted. For instance, if the insn did a wild read, we
3596 no longer need to trash the info. */
3598 && INSN_P (insn_info
->insn
)
3601 scan_stores_nospill (insn_info
->store_rec
, v
, NULL
);
3602 if (insn_info
->wild_read
)
3605 fprintf (dump_file
, "wild read\n");
3608 else if (insn_info
->read_rec
)
3611 fprintf (dump_file
, "regular read\n");
3612 scan_reads_nospill (insn_info
, v
, NULL
);
3616 insn_info
= insn_info
->prev_insn
;
3623 dse_step5_spill (void)
3628 bb_info_t bb_info
= bb_table
[bb
->index
];
3629 insn_info_t insn_info
= bb_info
->last_insn
;
3630 bitmap v
= bb_info
->out
;
3634 bool deleted
= false;
3635 /* There may have been code deleted by the dce pass run before
3638 && INSN_P (insn_info
->insn
)
3639 && (!insn_info
->cannot_delete
)
3640 && (!bitmap_empty_p (v
)))
3642 /* Try to delete the current insn. */
3643 store_info_t store_info
= insn_info
->store_rec
;
3648 if (store_info
->alias_set
)
3650 int index
= get_bitmap_index (clear_alias_group
,
3651 store_info
->alias_set
);
3652 if (index
== 0 || !bitmap_bit_p (v
, index
))
3660 store_info
= store_info
->next
;
3662 if (deleted
&& dbg_cnt (dse
))
3665 fprintf (dump_file
, "Spill deleting insn %d\n",
3666 INSN_UID (insn_info
->insn
));
3667 check_for_inc_dec (insn_info
->insn
);
3668 delete_insn (insn_info
->insn
);
3670 insn_info
->insn
= NULL
;
3675 && INSN_P (insn_info
->insn
)
3678 scan_stores_spill (insn_info
->store_rec
, v
, NULL
);
3679 scan_reads_spill (insn_info
->read_rec
, v
, NULL
);
3682 insn_info
= insn_info
->prev_insn
;
3689 /*----------------------------------------------------------------------------
3692 Delete stores made redundant by earlier stores (which store the same
3693 value) that couldn't be eliminated.
3694 ----------------------------------------------------------------------------*/
3703 bb_info_t bb_info
= bb_table
[bb
->index
];
3704 insn_info_t insn_info
= bb_info
->last_insn
;
3708 /* There may have been code deleted by the dce pass run before
3711 && INSN_P (insn_info
->insn
)
3712 && !insn_info
->cannot_delete
)
3714 store_info_t s_info
= insn_info
->store_rec
;
3716 while (s_info
&& !s_info
->is_set
)
3717 s_info
= s_info
->next
;
3719 && s_info
->redundant_reason
3720 && s_info
->redundant_reason
->insn
3721 && INSN_P (s_info
->redundant_reason
->insn
))
3723 rtx rinsn
= s_info
->redundant_reason
->insn
;
3725 fprintf (dump_file
, "Locally deleting insn %d "
3726 "because insn %d stores the "
3727 "same value and couldn't be "
3729 INSN_UID (insn_info
->insn
),
3731 delete_dead_store_insn (insn_info
);
3734 insn_info
= insn_info
->prev_insn
;
3739 /*----------------------------------------------------------------------------
3742 Destroy everything left standing.
3743 ----------------------------------------------------------------------------*/
3746 dse_step7 (bool global_done
)
3752 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3754 free (group
->offset_map_n
);
3755 free (group
->offset_map_p
);
3756 BITMAP_FREE (group
->store1_n
);
3757 BITMAP_FREE (group
->store1_p
);
3758 BITMAP_FREE (group
->store2_n
);
3759 BITMAP_FREE (group
->store2_p
);
3760 BITMAP_FREE (group
->group_kill
);
3766 bb_info_t bb_info
= bb_table
[bb
->index
];
3767 BITMAP_FREE (bb_info
->gen
);
3769 BITMAP_FREE (bb_info
->kill
);
3771 BITMAP_FREE (bb_info
->in
);
3773 BITMAP_FREE (bb_info
->out
);
3776 if (clear_alias_sets
)
3778 BITMAP_FREE (clear_alias_sets
);
3779 BITMAP_FREE (disqualified_clear_alias_sets
);
3780 free_alloc_pool (clear_alias_mode_pool
);
3781 htab_delete (clear_alias_mode_table
);
3784 end_alias_analysis ();
3786 htab_delete (rtx_group_table
);
3787 VEC_free (group_info_t
, heap
, rtx_group_vec
);
3788 BITMAP_FREE (all_blocks
);
3789 BITMAP_FREE (scratch
);
3791 free_alloc_pool (rtx_store_info_pool
);
3792 free_alloc_pool (read_info_pool
);
3793 free_alloc_pool (insn_info_pool
);
3794 free_alloc_pool (bb_info_pool
);
3795 free_alloc_pool (rtx_group_info_pool
);
3796 free_alloc_pool (deferred_change_pool
);
3800 /* -------------------------------------------------------------------------
3802 ------------------------------------------------------------------------- */
3804 /* Callback for running pass_rtl_dse. */
3807 rest_of_handle_dse (void)
3809 bool did_global
= false;
3811 df_set_flags (DF_DEFER_INSN_RESCAN
);
3813 /* Need the notes since we must track live hardregs in the forwards
3815 df_note_add_problem ();
3821 if (dse_step2_nospill ())
3823 df_set_flags (DF_LR_RUN_DCE
);
3827 fprintf (dump_file
, "doing global processing\n");
3830 dse_step5_nospill ();
3833 /* For the instance of dse that runs after reload, we make a special
3834 pass to process the spills. These are special in that they are
3835 totally transparent, i.e, there is no aliasing issues that need
3836 to be considered. This means that the wild reads that kill
3837 everything else do not apply here. */
3838 if (clear_alias_sets
&& dse_step2_spill ())
3842 df_set_flags (DF_LR_RUN_DCE
);
3847 fprintf (dump_file
, "doing global spill processing\n");
3854 dse_step7 (did_global
);
3857 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3858 locally_deleted
, globally_deleted
, spill_deleted
);
3865 return gate_dse1 () || gate_dse2 ();
3871 return optimize
> 0 && flag_dse
3878 return optimize
> 0 && flag_dse
3882 struct rtl_opt_pass pass_rtl_dse1
=
3887 gate_dse1
, /* gate */
3888 rest_of_handle_dse
, /* execute */
3891 0, /* static_pass_number */
3892 TV_DSE1
, /* tv_id */
3893 0, /* properties_required */
3894 0, /* properties_provided */
3895 0, /* properties_destroyed */
3896 0, /* todo_flags_start */
3898 TODO_df_finish
| TODO_verify_rtl_sharing
|
3899 TODO_ggc_collect
/* todo_flags_finish */
3903 struct rtl_opt_pass pass_rtl_dse2
=
3908 gate_dse2
, /* gate */
3909 rest_of_handle_dse
, /* execute */
3912 0, /* static_pass_number */
3913 TV_DSE2
, /* tv_id */
3914 0, /* properties_required */
3915 0, /* properties_provided */
3916 0, /* properties_destroyed */
3917 0, /* todo_flags_start */
3919 TODO_df_finish
| TODO_verify_rtl_sharing
|
3920 TODO_ggc_collect
/* todo_flags_finish */