1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Dbug
; use Exp_Dbug
;
31 with Exp_Util
; use Exp_Util
;
32 with Layout
; use Layout
;
33 with Namet
; use Namet
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Rtsfind
; use Rtsfind
;
39 with Sem_Aux
; use Sem_Aux
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Ch13
; use Sem_Ch13
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Util
; use Sem_Util
;
46 with Sinfo
; use Sinfo
;
47 with Snames
; use Snames
;
48 with Stand
; use Stand
;
49 with Targparm
; use Targparm
;
50 with Tbuild
; use Tbuild
;
51 with Ttypes
; use Ttypes
;
52 with Uintp
; use Uintp
;
54 package body Exp_Pakd
is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 ----------------------------------------------
81 -- Entity Tables for Packed Access Routines --
82 ----------------------------------------------
84 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
85 -- routines. This table provides the entity for the proper routine.
87 type E_Array
is array (Int
range 01 .. 63) of RE_Id
;
89 -- Array of Bits_nn entities. Note that we do not use library routines
90 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
91 -- entries from System.Unsigned, because we also use this table for
92 -- certain special unchecked conversions in the big-endian case.
94 Bits_Id
: constant E_Array
:=
110 16 => RE_Unsigned_16
,
126 32 => RE_Unsigned_32
,
159 -- Array of Get routine entities. These are used to obtain an element from
160 -- a packed array. The N'th entry is used to obtain elements from a packed
161 -- array whose component size is N. RE_Null is used as a null entry, for
162 -- the cases where a library routine is not used.
164 Get_Id
: constant E_Array
:=
229 -- Array of Get routine entities to be used in the case where the packed
230 -- array is itself a component of a packed structure, and therefore may not
231 -- be fully aligned. This only affects the even sizes, since for the odd
232 -- sizes, we do not get any fixed alignment in any case.
234 GetU_Id
: constant E_Array
:=
299 -- Array of Set routine entities. These are used to assign an element of a
300 -- packed array. The N'th entry is used to assign elements for a packed
301 -- array whose component size is N. RE_Null is used as a null entry, for
302 -- the cases where a library routine is not used.
304 Set_Id
: constant E_Array
:=
369 -- Array of Set routine entities to be used in the case where the packed
370 -- array is itself a component of a packed structure, and therefore may not
371 -- be fully aligned. This only affects the even sizes, since for the odd
372 -- sizes, we do not get any fixed alignment in any case.
374 SetU_Id
: constant E_Array
:=
439 -----------------------
440 -- Local Subprograms --
441 -----------------------
443 procedure Compute_Linear_Subscript
446 Subscr
: out Node_Id
);
447 -- Given a constrained array type Atyp, and an indexed component node N
448 -- referencing an array object of this type, build an expression of type
449 -- Standard.Integer representing the zero-based linear subscript value.
450 -- This expression includes any required range checks.
452 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
);
453 -- Given an expression of a packed array type, builds a corresponding
454 -- expression whose type is the implementation type used to represent
455 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
457 procedure Get_Base_And_Bit_Offset
460 Offset
: out Node_Id
);
461 -- Given a node N for a name which involves a packed array reference,
462 -- return the base object of the reference and build an expression of
463 -- type Standard.Integer representing the zero-based offset in bits
464 -- from Base'Address to the first bit of the reference.
466 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean;
467 -- There are two versions of the Set routines, the ones used when the
468 -- object is known to be sufficiently well aligned given the number of
469 -- bits, and the ones used when the object is not known to be aligned.
470 -- This routine is used to determine which set to use. Obj is a reference
471 -- to the object, and Csiz is the component size of the packed array.
472 -- True is returned if the alignment of object is known to be sufficient,
473 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
476 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
477 -- Build a left shift node, checking for the case of a shift count of zero
479 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
480 -- Build a right shift node, checking for the case of a shift count of zero
482 function RJ_Unchecked_Convert_To
484 Expr
: Node_Id
) return Node_Id
;
485 -- The packed array code does unchecked conversions which in some cases
486 -- may involve non-discrete types with differing sizes. The semantics of
487 -- such conversions is potentially endian dependent, and the effect we
488 -- want here for such a conversion is to do the conversion in size as
489 -- though numeric items are involved, and we extend or truncate on the
490 -- left side. This happens naturally in the little-endian case, but in
491 -- the big endian case we can get left justification, when what we want
492 -- is right justification. This routine does the unchecked conversion in
493 -- a stepwise manner to ensure that it gives the expected result. Hence
494 -- the name (RJ = Right justified). The parameters Typ and Expr are as
495 -- for the case of a normal Unchecked_Convert_To call.
497 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
);
498 -- This routine is called in the Get and Set case for arrays that are
499 -- packed but not bit-packed, meaning that they have at least one
500 -- subscript that is of an enumeration type with a non-standard
501 -- representation. This routine modifies the given node to properly
502 -- reference the corresponding packed array type.
504 procedure Setup_Inline_Packed_Array_Reference
507 Obj
: in out Node_Id
;
509 Shift
: out Node_Id
);
510 -- This procedure performs common processing on the N_Indexed_Component
511 -- parameter given as N, whose prefix is a reference to a packed array.
512 -- This is used for the get and set when the component size is 1, 2, 4,
513 -- or for other component sizes when the packed array type is a modular
514 -- type (i.e. the cases that are handled with inline code).
518 -- N is the N_Indexed_Component node for the packed array reference
520 -- Atyp is the constrained array type (the actual subtype has been
521 -- computed if necessary to obtain the constraints, but this is still
522 -- the original array type, not the Packed_Array_Type value).
524 -- Obj is the object which is to be indexed. It is always of type Atyp.
528 -- Obj is the object containing the desired bit field. It is of type
529 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
530 -- entire value, for the small static case, or the proper selected byte
531 -- from the array in the large or dynamic case. This node is analyzed
532 -- and resolved on return.
534 -- Shift is a node representing the shift count to be used in the
535 -- rotate right instruction that positions the field for access.
536 -- This node is analyzed and resolved on return.
538 -- Cmask is a mask corresponding to the width of the component field.
539 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
541 -- Note: in some cases the call to this routine may generate actions
542 -- (for handling multi-use references and the generation of the packed
543 -- array type on the fly). Such actions are inserted into the tree
544 -- directly using Insert_Action.
546 function Byte_Swap
(N
: Node_Id
) return Node_Id
;
547 -- Wrap N in a call to a byte swapping function, with appropriate type
554 function Byte_Swap
(N
: Node_Id
) return Node_Id
is
555 Loc
: constant Source_Ptr
:= Sloc
(N
);
556 T
: constant Entity_Id
:= Etype
(N
);
561 pragma Assert
(Esize
(T
) > 8);
563 if Esize
(T
) <= 16 then
564 Swap_RE
:= RE_Bswap_16
;
565 elsif Esize
(T
) <= 32 then
566 Swap_RE
:= RE_Bswap_32
;
567 else pragma Assert
(Esize
(T
) <= 64);
568 Swap_RE
:= RE_Bswap_64
;
571 Swap_F
:= RTE
(Swap_RE
);
574 Unchecked_Convert_To
(T
,
575 Make_Function_Call
(Loc
,
576 Name
=> New_Occurrence_Of
(Swap_F
, Loc
),
577 Parameter_Associations
=>
578 New_List
(Unchecked_Convert_To
(Etype
(Swap_F
), N
))));
581 ------------------------------
582 -- Compute_Linear_Subscript --
583 ------------------------------
585 procedure Compute_Linear_Subscript
588 Subscr
: out Node_Id
)
590 Loc
: constant Source_Ptr
:= Sloc
(N
);
599 -- Loop through dimensions
601 Indx
:= First_Index
(Atyp
);
602 Oldsub
:= First
(Expressions
(N
));
604 while Present
(Indx
) loop
605 Styp
:= Etype
(Indx
);
606 Newsub
:= Relocate_Node
(Oldsub
);
608 -- Get expression for the subscript value. First, if Do_Range_Check
609 -- is set on a subscript, then we must do a range check against the
610 -- original bounds (not the bounds of the packed array type). We do
611 -- this by introducing a subtype conversion.
613 if Do_Range_Check
(Newsub
)
614 and then Etype
(Newsub
) /= Styp
616 Newsub
:= Convert_To
(Styp
, Newsub
);
619 -- Now evolve the expression for the subscript. First convert
620 -- the subscript to be zero based and of an integer type.
622 -- Case of integer type, where we just subtract to get lower bound
624 if Is_Integer_Type
(Styp
) then
626 -- If length of integer type is smaller than standard integer,
627 -- then we convert to integer first, then do the subtract
629 -- Integer (subscript) - Integer (Styp'First)
631 if Esize
(Styp
) < Esize
(Standard_Integer
) then
633 Make_Op_Subtract
(Loc
,
634 Left_Opnd
=> Convert_To
(Standard_Integer
, Newsub
),
636 Convert_To
(Standard_Integer
,
637 Make_Attribute_Reference
(Loc
,
638 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
639 Attribute_Name
=> Name_First
)));
641 -- For larger integer types, subtract first, then convert to
642 -- integer, this deals with strange long long integer bounds.
644 -- Integer (subscript - Styp'First)
648 Convert_To
(Standard_Integer
,
649 Make_Op_Subtract
(Loc
,
652 Make_Attribute_Reference
(Loc
,
653 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
654 Attribute_Name
=> Name_First
)));
657 -- For the enumeration case, we have to use 'Pos to get the value
658 -- to work with before subtracting the lower bound.
660 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
662 -- This is not quite right for bizarre cases where the size of the
663 -- enumeration type is > Integer'Size bits due to rep clause ???
666 pragma Assert
(Is_Enumeration_Type
(Styp
));
669 Make_Op_Subtract
(Loc
,
670 Left_Opnd
=> Convert_To
(Standard_Integer
,
671 Make_Attribute_Reference
(Loc
,
672 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
673 Attribute_Name
=> Name_Pos
,
674 Expressions
=> New_List
(Newsub
))),
677 Convert_To
(Standard_Integer
,
678 Make_Attribute_Reference
(Loc
,
679 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
680 Attribute_Name
=> Name_Pos
,
681 Expressions
=> New_List
(
682 Make_Attribute_Reference
(Loc
,
683 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
684 Attribute_Name
=> Name_First
)))));
687 Set_Paren_Count
(Newsub
, 1);
689 -- For the first subscript, we just copy that subscript value
694 -- Otherwise, we must multiply what we already have by the current
695 -- stride and then add in the new value to the evolving subscript.
701 Make_Op_Multiply
(Loc
,
704 Make_Attribute_Reference
(Loc
,
705 Attribute_Name
=> Name_Range_Length
,
706 Prefix
=> New_Occurrence_Of
(Styp
, Loc
))),
707 Right_Opnd
=> Newsub
);
710 -- Move to next subscript
715 end Compute_Linear_Subscript
;
717 -------------------------
718 -- Convert_To_PAT_Type --
719 -------------------------
721 -- The PAT is always obtained from the actual subtype
723 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
) is
727 Convert_To_Actual_Subtype
(Aexp
);
728 Act_ST
:= Underlying_Type
(Etype
(Aexp
));
729 Create_Packed_Array_Type
(Act_ST
);
731 -- Just replace the etype with the packed array type. This works because
732 -- the expression will not be further analyzed, and Gigi considers the
733 -- two types equivalent in any case.
735 -- This is not strictly the case ??? If the reference is an actual in
736 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
737 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
738 -- array reference, reanalysis can produce spurious type errors when the
739 -- PAT type is replaced again with the original type of the array. Same
740 -- for the case of a dereference. Ditto for function calls: expansion
741 -- may introduce additional actuals which will trigger errors if call is
742 -- reanalyzed. The following is correct and minimal, but the handling of
743 -- more complex packed expressions in actuals is confused. Probably the
744 -- problem only remains for actuals in calls.
746 Set_Etype
(Aexp
, Packed_Array_Type
(Act_ST
));
748 if Is_Entity_Name
(Aexp
)
750 (Nkind
(Aexp
) = N_Indexed_Component
751 and then Is_Entity_Name
(Prefix
(Aexp
)))
752 or else Nkind_In
(Aexp
, N_Explicit_Dereference
, N_Function_Call
)
756 end Convert_To_PAT_Type
;
758 ------------------------------
759 -- Create_Packed_Array_Type --
760 ------------------------------
762 procedure Create_Packed_Array_Type
(Typ
: Entity_Id
) is
763 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
764 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
765 Csize
: constant Uint
:= Component_Size
(Typ
);
780 procedure Install_PAT
;
781 -- This procedure is called with Decl set to the declaration for the
782 -- packed array type. It creates the type and installs it as required.
784 procedure Set_PB_Type
;
785 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
786 -- requirements (see documentation in the spec of this package).
792 procedure Install_PAT
is
793 Pushed_Scope
: Boolean := False;
796 -- We do not want to put the declaration we have created in the tree
797 -- since it is often hard, and sometimes impossible to find a proper
798 -- place for it (the impossible case arises for a packed array type
799 -- with bounds depending on the discriminant, a declaration cannot
800 -- be put inside the record, and the reference to the discriminant
801 -- cannot be outside the record).
803 -- The solution is to analyze the declaration while temporarily
804 -- attached to the tree at an appropriate point, and then we install
805 -- the resulting type as an Itype in the packed array type field of
806 -- the original type, so that no explicit declaration is required.
808 -- Note: the packed type is created in the scope of its parent
809 -- type. There are at least some cases where the current scope
810 -- is deeper, and so when this is the case, we temporarily reset
811 -- the scope for the definition. This is clearly safe, since the
812 -- first use of the packed array type will be the implicit
813 -- reference from the corresponding unpacked type when it is
816 if Is_Itype
(Typ
) then
817 Set_Parent
(Decl
, Associated_Node_For_Itype
(Typ
));
819 Set_Parent
(Decl
, Declaration_Node
(Typ
));
822 if Scope
(Typ
) /= Current_Scope
then
823 Push_Scope
(Scope
(Typ
));
824 Pushed_Scope
:= True;
827 Set_Is_Itype
(PAT
, True);
828 Set_Packed_Array_Type
(Typ
, PAT
);
829 Analyze
(Decl
, Suppress
=> All_Checks
);
835 -- Set Esize and RM_Size to the actual size of the packed object
836 -- Do not reset RM_Size if already set, as happens in the case of
839 if Unknown_Esize
(PAT
) then
840 Set_Esize
(PAT
, PASize
);
843 if Unknown_RM_Size
(PAT
) then
844 Set_RM_Size
(PAT
, PASize
);
847 Adjust_Esize_Alignment
(PAT
);
849 -- Set remaining fields of packed array type
851 Init_Alignment
(PAT
);
852 Set_Parent
(PAT
, Empty
);
853 Set_Associated_Node_For_Itype
(PAT
, Typ
);
854 Set_Is_Packed_Array_Type
(PAT
, True);
855 Set_Original_Array_Type
(PAT
, Typ
);
857 -- We definitely do not want to delay freezing for packed array
858 -- types. This is of particular importance for the itypes that
859 -- are generated for record components depending on discriminants
860 -- where there is no place to put the freeze node.
862 Set_Has_Delayed_Freeze
(PAT
, False);
863 Set_Has_Delayed_Freeze
(Etype
(PAT
), False);
865 -- If we did allocate a freeze node, then clear out the reference
866 -- since it is obsolete (should we delete the freeze node???)
868 Set_Freeze_Node
(PAT
, Empty
);
869 Set_Freeze_Node
(Etype
(PAT
), Empty
);
876 procedure Set_PB_Type
is
878 -- If the user has specified an explicit alignment for the
879 -- type or component, take it into account.
881 if Csize
<= 2 or else Csize
= 4 or else Csize
mod 2 /= 0
882 or else Alignment
(Typ
) = 1
883 or else Component_Alignment
(Typ
) = Calign_Storage_Unit
885 PB_Type
:= RTE
(RE_Packed_Bytes1
);
887 elsif Csize
mod 4 /= 0
888 or else Alignment
(Typ
) = 2
890 PB_Type
:= RTE
(RE_Packed_Bytes2
);
893 PB_Type
:= RTE
(RE_Packed_Bytes4
);
897 -- Start of processing for Create_Packed_Array_Type
900 -- If we already have a packed array type, nothing to do
902 if Present
(Packed_Array_Type
(Typ
)) then
906 -- If our immediate ancestor subtype is constrained, and it already
907 -- has a packed array type, then just share the same type, since the
908 -- bounds must be the same. If the ancestor is not an array type but
909 -- a private type, as can happen with multiple instantiations, create
910 -- a new packed type, to avoid privacy issues.
912 if Ekind
(Typ
) = E_Array_Subtype
then
913 Ancest
:= Ancestor_Subtype
(Typ
);
916 and then Is_Array_Type
(Ancest
)
917 and then Is_Constrained
(Ancest
)
918 and then Present
(Packed_Array_Type
(Ancest
))
920 Set_Packed_Array_Type
(Typ
, Packed_Array_Type
(Ancest
));
925 -- We preset the result type size from the size of the original array
926 -- type, since this size clearly belongs to the packed array type. The
927 -- size of the conceptual unpacked type is always set to unknown.
929 PASize
:= RM_Size
(Typ
);
931 -- Case of an array where at least one index is of an enumeration
932 -- type with a non-standard representation, but the component size
933 -- is not appropriate for bit packing. This is the case where we
934 -- have Is_Packed set (we would never be in this unit otherwise),
935 -- but Is_Bit_Packed_Array is false.
937 -- Note that if the component size is appropriate for bit packing,
938 -- then the circuit for the computation of the subscript properly
939 -- deals with the non-standard enumeration type case by taking the
942 if not Is_Bit_Packed_Array
(Typ
) then
944 -- Here we build a declaration:
946 -- type tttP is array (index1, index2, ...) of component_type
948 -- where index1, index2, are the index types. These are the same
949 -- as the index types of the original array, except for the non-
950 -- standard representation enumeration type case, where we have
953 -- For the unconstrained array case, we use
957 -- For the constrained case, we use
959 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
960 -- Enum_Type'Pos (Enum_Type'Last);
963 Make_Defining_Identifier
(Loc
,
964 Chars
=> New_External_Name
(Chars
(Typ
), 'P'));
966 Set_Packed_Array_Type
(Typ
, PAT
);
969 Indexes
: constant List_Id
:= New_List
;
971 Indx_Typ
: Entity_Id
;
976 Indx
:= First_Index
(Typ
);
978 while Present
(Indx
) loop
979 Indx_Typ
:= Etype
(Indx
);
981 Enum_Case
:= Is_Enumeration_Type
(Indx_Typ
)
982 and then Has_Non_Standard_Rep
(Indx_Typ
);
984 -- Unconstrained case
986 if not Is_Constrained
(Typ
) then
988 Indx_Typ
:= Standard_Natural
;
991 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
996 if not Enum_Case
then
997 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
1001 Make_Subtype_Indication
(Loc
,
1003 New_Occurrence_Of
(Standard_Natural
, Loc
),
1005 Make_Range_Constraint
(Loc
,
1009 Make_Attribute_Reference
(Loc
,
1011 New_Occurrence_Of
(Indx_Typ
, Loc
),
1012 Attribute_Name
=> Name_Pos
,
1013 Expressions
=> New_List
(
1014 Make_Attribute_Reference
(Loc
,
1016 New_Occurrence_Of
(Indx_Typ
, Loc
),
1017 Attribute_Name
=> Name_First
))),
1020 Make_Attribute_Reference
(Loc
,
1022 New_Occurrence_Of
(Indx_Typ
, Loc
),
1023 Attribute_Name
=> Name_Pos
,
1024 Expressions
=> New_List
(
1025 Make_Attribute_Reference
(Loc
,
1027 New_Occurrence_Of
(Indx_Typ
, Loc
),
1028 Attribute_Name
=> Name_Last
)))))));
1036 if not Is_Constrained
(Typ
) then
1038 Make_Unconstrained_Array_Definition
(Loc
,
1039 Subtype_Marks
=> Indexes
,
1040 Component_Definition
=>
1041 Make_Component_Definition
(Loc
,
1042 Aliased_Present
=> False,
1043 Subtype_Indication
=>
1044 New_Occurrence_Of
(Ctyp
, Loc
)));
1048 Make_Constrained_Array_Definition
(Loc
,
1049 Discrete_Subtype_Definitions
=> Indexes
,
1050 Component_Definition
=>
1051 Make_Component_Definition
(Loc
,
1052 Aliased_Present
=> False,
1053 Subtype_Indication
=>
1054 New_Occurrence_Of
(Ctyp
, Loc
)));
1058 Make_Full_Type_Declaration
(Loc
,
1059 Defining_Identifier
=> PAT
,
1060 Type_Definition
=> Typedef
);
1063 -- Set type as packed array type and install it
1065 Set_Is_Packed_Array_Type
(PAT
);
1069 -- Case of bit-packing required for unconstrained array. We create
1070 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1072 elsif not Is_Constrained
(Typ
) then
1074 Make_Defining_Identifier
(Loc
,
1075 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1077 Set_Packed_Array_Type
(Typ
, PAT
);
1081 Make_Subtype_Declaration
(Loc
,
1082 Defining_Identifier
=> PAT
,
1083 Subtype_Indication
=> New_Occurrence_Of
(PB_Type
, Loc
));
1087 -- Remaining code is for the case of bit-packing for constrained array
1089 -- The name of the packed array subtype is
1093 -- where sss is the component size in bits and ttt is the name of
1094 -- the parent packed type.
1098 Make_Defining_Identifier
(Loc
,
1099 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1101 Set_Packed_Array_Type
(Typ
, PAT
);
1103 -- Build an expression for the length of the array in bits.
1104 -- This is the product of the length of each of the dimensions
1110 Len_Expr
:= Empty
; -- suppress junk warning
1114 Make_Attribute_Reference
(Loc
,
1115 Attribute_Name
=> Name_Length
,
1116 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
1117 Expressions
=> New_List
(
1118 Make_Integer_Literal
(Loc
, J
)));
1121 Len_Expr
:= Len_Dim
;
1125 Make_Op_Multiply
(Loc
,
1126 Left_Opnd
=> Len_Expr
,
1127 Right_Opnd
=> Len_Dim
);
1131 exit when J
> Number_Dimensions
(Typ
);
1135 -- Temporarily attach the length expression to the tree and analyze
1136 -- and resolve it, so that we can test its value. We assume that the
1137 -- total length fits in type Integer. This expression may involve
1138 -- discriminants, so we treat it as a default/per-object expression.
1140 Set_Parent
(Len_Expr
, Typ
);
1141 Preanalyze_Spec_Expression
(Len_Expr
, Standard_Long_Long_Integer
);
1143 -- Use a modular type if possible. We can do this if we have
1144 -- static bounds, and the length is small enough, and the length
1145 -- is not zero. We exclude the zero length case because the size
1146 -- of things is always at least one, and the zero length object
1147 -- would have an anomalous size.
1149 if Compile_Time_Known_Value
(Len_Expr
) then
1150 Len_Bits
:= Expr_Value
(Len_Expr
) * Csize
;
1152 -- Check for size known to be too large
1155 Uint_2
** (Standard_Integer_Size
- 1) * System_Storage_Unit
1157 if System_Storage_Unit
= 8 then
1159 ("packed array size cannot exceed " &
1160 "Integer''Last bytes", Typ
);
1163 ("packed array size cannot exceed " &
1164 "Integer''Last storage units", Typ
);
1167 -- Reset length to arbitrary not too high value to continue
1169 Len_Expr
:= Make_Integer_Literal
(Loc
, 65535);
1170 Analyze_And_Resolve
(Len_Expr
, Standard_Long_Long_Integer
);
1173 -- We normally consider small enough to mean no larger than the
1174 -- value of System_Max_Binary_Modulus_Power, checking that in the
1175 -- case of values longer than word size, we have long shifts.
1179 (Len_Bits
<= System_Word_Size
1180 or else (Len_Bits
<= System_Max_Binary_Modulus_Power
1181 and then Support_Long_Shifts_On_Target
))
1183 -- We can use the modular type, it has the form:
1185 -- subtype tttPn is btyp
1186 -- range 0 .. 2 ** ((Typ'Length (1)
1187 -- * ... * Typ'Length (n)) * Csize) - 1;
1189 -- The bounds are statically known, and btyp is one of the
1190 -- unsigned types, depending on the length.
1192 if Len_Bits
<= Standard_Short_Short_Integer_Size
then
1193 Btyp
:= RTE
(RE_Short_Short_Unsigned
);
1195 elsif Len_Bits
<= Standard_Short_Integer_Size
then
1196 Btyp
:= RTE
(RE_Short_Unsigned
);
1198 elsif Len_Bits
<= Standard_Integer_Size
then
1199 Btyp
:= RTE
(RE_Unsigned
);
1201 elsif Len_Bits
<= Standard_Long_Integer_Size
then
1202 Btyp
:= RTE
(RE_Long_Unsigned
);
1205 Btyp
:= RTE
(RE_Long_Long_Unsigned
);
1208 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Len_Bits
- 1);
1209 Set_Print_In_Hex
(Lit
);
1212 Make_Subtype_Declaration
(Loc
,
1213 Defining_Identifier
=> PAT
,
1214 Subtype_Indication
=>
1215 Make_Subtype_Indication
(Loc
,
1216 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
1219 Make_Range_Constraint
(Loc
,
1223 Make_Integer_Literal
(Loc
, 0),
1224 High_Bound
=> Lit
))));
1226 if PASize
= Uint_0
then
1232 -- Propagate a given alignment to the modular type. This can
1233 -- cause it to be under-aligned, but that's OK.
1235 if Present
(Alignment_Clause
(Typ
)) then
1236 Set_Alignment
(PAT
, Alignment
(Typ
));
1243 -- Could not use a modular type, for all other cases, we build
1244 -- a packed array subtype:
1247 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1249 -- Bits is the length of the array in bits
1256 Make_Op_Multiply
(Loc
,
1258 Make_Integer_Literal
(Loc
, Csize
),
1259 Right_Opnd
=> Len_Expr
),
1262 Make_Integer_Literal
(Loc
, 7));
1264 Set_Paren_Count
(Bits_U1
, 1);
1267 Make_Op_Subtract
(Loc
,
1269 Make_Op_Divide
(Loc
,
1270 Left_Opnd
=> Bits_U1
,
1271 Right_Opnd
=> Make_Integer_Literal
(Loc
, 8)),
1272 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
1275 Make_Subtype_Declaration
(Loc
,
1276 Defining_Identifier
=> PAT
,
1277 Subtype_Indication
=>
1278 Make_Subtype_Indication
(Loc
,
1279 Subtype_Mark
=> New_Occurrence_Of
(PB_Type
, Loc
),
1281 Make_Index_Or_Discriminant_Constraint
(Loc
,
1282 Constraints
=> New_List
(
1285 Make_Integer_Literal
(Loc
, 0),
1287 Convert_To
(Standard_Integer
, PAT_High
))))));
1291 -- Currently the code in this unit requires that packed arrays
1292 -- represented by non-modular arrays of bytes be on a byte
1293 -- boundary for bit sizes handled by System.Pack_nn units.
1294 -- That's because these units assume the array being accessed
1295 -- starts on a byte boundary.
1297 if Get_Id
(UI_To_Int
(Csize
)) /= RE_Null
then
1298 Set_Must_Be_On_Byte_Boundary
(Typ
);
1301 end Create_Packed_Array_Type
;
1303 -----------------------------------
1304 -- Expand_Bit_Packed_Element_Set --
1305 -----------------------------------
1307 procedure Expand_Bit_Packed_Element_Set
(N
: Node_Id
) is
1308 Loc
: constant Source_Ptr
:= Sloc
(N
);
1309 Lhs
: constant Node_Id
:= Name
(N
);
1311 Ass_OK
: constant Boolean := Assignment_OK
(Lhs
);
1312 -- Used to preserve assignment OK status when assignment is rewritten
1314 Rhs
: Node_Id
:= Expression
(N
);
1315 -- Initially Rhs is the right hand side value, it will be replaced
1316 -- later by an appropriate unchecked conversion for the assignment.
1326 -- The expression for the shift value that is required
1328 Shift_Used
: Boolean := False;
1329 -- Set True if Shift has been used in the generated code at least
1330 -- once, so that it must be duplicated if used again
1335 Rhs_Val_Known
: Boolean;
1337 -- If the value of the right hand side as an integer constant is
1338 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1339 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1340 -- the Rhs_Val is undefined.
1342 Require_Byte_Swapping
: Boolean := False;
1343 -- True if byte swapping required, for the Reverse_Storage_Order case
1344 -- when the packed array is a free-standing object. (If it is part
1345 -- of a composite type, and therefore potentially not aligned on a byte
1346 -- boundary, the swapping is done by the back-end).
1348 function Get_Shift
return Node_Id
;
1349 -- Function used to get the value of Shift, making sure that it
1350 -- gets duplicated if the function is called more than once.
1356 function Get_Shift
return Node_Id
is
1358 -- If we used the shift value already, then duplicate it. We
1359 -- set a temporary parent in case actions have to be inserted.
1362 Set_Parent
(Shift
, N
);
1363 return Duplicate_Subexpr_No_Checks
(Shift
);
1365 -- If first time, use Shift unchanged, and set flag for first use
1373 -- Start of processing for Expand_Bit_Packed_Element_Set
1376 pragma Assert
(Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
))));
1378 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1379 Convert_To_Actual_Subtype
(Obj
);
1380 Atyp
:= Etype
(Obj
);
1381 PAT
:= Packed_Array_Type
(Atyp
);
1382 Ctyp
:= Component_Type
(Atyp
);
1383 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1385 -- We remove side effects, in case the rhs modifies the lhs, because we
1386 -- are about to transform the rhs into an expression that first READS
1387 -- the lhs, so we can do the necessary shifting and masking. Example:
1388 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1391 Remove_Side_Effects
(Rhs
);
1393 -- We convert the right hand side to the proper subtype to ensure
1394 -- that an appropriate range check is made (since the normal range
1395 -- check from assignment will be lost in the transformations). This
1396 -- conversion is analyzed immediately so that subsequent processing
1397 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1399 -- If the right-hand side is a string literal, create a temporary for
1400 -- it, constant-folding is not ready to wrap the bit representation
1401 -- of a string literal.
1403 if Nkind
(Rhs
) = N_String_Literal
then
1408 Make_Object_Declaration
(Loc
,
1409 Defining_Identifier
=> Make_Temporary
(Loc
, 'T', Rhs
),
1410 Object_Definition
=> New_Occurrence_Of
(Ctyp
, Loc
),
1411 Expression
=> New_Copy_Tree
(Rhs
));
1413 Insert_Actions
(N
, New_List
(Decl
));
1414 Rhs
:= New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
);
1418 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1419 Set_Parent
(Rhs
, N
);
1421 -- If we are building the initialization procedure for a packed array,
1422 -- and Initialize_Scalars is enabled, each component assignment is an
1423 -- out-of-range value by design. Compile this value without checks,
1424 -- because a call to the array init_proc must not raise an exception.
1427 and then Initialize_Scalars
1429 Analyze_And_Resolve
(Rhs
, Ctyp
, Suppress
=> All_Checks
);
1431 Analyze_And_Resolve
(Rhs
, Ctyp
);
1434 -- For the AAMP target, indexing of certain packed array is passed
1435 -- through to the back end without expansion, because the expansion
1436 -- results in very inefficient code on that target. This allows the
1437 -- GNAAMP back end to generate specialized macros that support more
1438 -- efficient indexing of packed arrays with components having sizes
1439 -- that are small powers of two.
1442 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
1447 -- Case of component size 1,2,4 or any component size for the modular
1448 -- case. These are the cases for which we can inline the code.
1450 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1451 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1453 Setup_Inline_Packed_Array_Reference
(Lhs
, Atyp
, Obj
, Cmask
, Shift
);
1455 -- The statement to be generated is:
1457 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1459 -- or in the case of a freestanding Reverse_Storage_Order object,
1461 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1462 -- or (shift_left (rhs, Shift))))
1464 -- where Mask1 is obtained by shifting Cmask left Shift bits
1465 -- and then complementing the result.
1467 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1469 -- the "or ..." is omitted if rhs is constant and all 0 bits
1471 -- rhs is converted to the appropriate type
1473 -- The result is converted back to the array type, since
1474 -- otherwise we lose knowledge of the packed nature.
1476 -- Determine if right side is all 0 bits or all 1 bits
1478 if Compile_Time_Known_Value
(Rhs
) then
1479 Rhs_Val
:= Expr_Rep_Value
(Rhs
);
1480 Rhs_Val_Known
:= True;
1482 -- The following test catches the case of an unchecked conversion of
1483 -- an integer literal. This results from optimizing aggregates of
1486 elsif Nkind
(Rhs
) = N_Unchecked_Type_Conversion
1487 and then Compile_Time_Known_Value
(Expression
(Rhs
))
1489 Rhs_Val
:= Expr_Rep_Value
(Expression
(Rhs
));
1490 Rhs_Val_Known
:= True;
1494 Rhs_Val_Known
:= False;
1497 -- Some special checks for the case where the right hand value is
1498 -- known at compile time. Basically we have to take care of the
1499 -- implicit conversion to the subtype of the component object.
1501 if Rhs_Val_Known
then
1503 -- If we have a biased component type then we must manually do the
1504 -- biasing, since we are taking responsibility in this case for
1505 -- constructing the exact bit pattern to be used.
1507 if Has_Biased_Representation
(Ctyp
) then
1508 Rhs_Val
:= Rhs_Val
- Expr_Rep_Value
(Type_Low_Bound
(Ctyp
));
1511 -- For a negative value, we manually convert the two's complement
1512 -- value to a corresponding unsigned value, so that the proper
1513 -- field width is maintained. If we did not do this, we would
1514 -- get too many leading sign bits later on.
1517 Rhs_Val
:= 2 ** UI_From_Int
(Csiz
) + Rhs_Val
;
1521 -- Now create copies removing side effects. Note that in some complex
1522 -- cases, this may cause the fact that we have already set a packed
1523 -- array type on Obj to get lost. So we save the type of Obj, and
1524 -- make sure it is reset properly.
1527 T
: constant Entity_Id
:= Etype
(Obj
);
1529 New_Lhs
:= Duplicate_Subexpr
(Obj
, True);
1530 New_Rhs
:= Duplicate_Subexpr_No_Checks
(Obj
);
1532 Set_Etype
(New_Lhs
, T
);
1533 Set_Etype
(New_Rhs
, T
);
1535 if Reverse_Storage_Order
(Base_Type
(Atyp
))
1536 and then Esize
(T
) > 8
1537 and then not In_Reverse_Storage_Order_Object
(Obj
)
1539 Require_Byte_Swapping
:= True;
1540 New_Rhs
:= Byte_Swap
(New_Rhs
);
1544 -- First we deal with the "and"
1546 if not Rhs_Val_Known
or else Rhs_Val
/= Cmask
then
1552 if Compile_Time_Known_Value
(Shift
) then
1554 Make_Integer_Literal
(Loc
,
1555 Modulus
(Etype
(Obj
)) - 1 -
1556 (Cmask
* (2 ** Expr_Value
(Get_Shift
))));
1557 Set_Print_In_Hex
(Mask1
);
1560 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1561 Set_Print_In_Hex
(Lit
);
1564 Right_Opnd
=> Make_Shift_Left
(Lit
, Get_Shift
));
1569 Left_Opnd
=> New_Rhs
,
1570 Right_Opnd
=> Mask1
);
1574 -- Then deal with the "or"
1576 if not Rhs_Val_Known
or else Rhs_Val
/= 0 then
1580 procedure Fixup_Rhs
;
1581 -- Adjust Rhs by bias if biased representation for components
1582 -- or remove extraneous high order sign bits if signed.
1584 procedure Fixup_Rhs
is
1585 Etyp
: constant Entity_Id
:= Etype
(Rhs
);
1588 -- For biased case, do the required biasing by simply
1589 -- converting to the biased subtype (the conversion
1590 -- will generate the required bias).
1592 if Has_Biased_Representation
(Ctyp
) then
1593 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1595 -- For a signed integer type that is not biased, generate
1596 -- a conversion to unsigned to strip high order sign bits.
1598 elsif Is_Signed_Integer_Type
(Ctyp
) then
1599 Rhs
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Csiz
)), Rhs
);
1602 -- Set Etype, since it can be referenced before the node is
1603 -- completely analyzed.
1605 Set_Etype
(Rhs
, Etyp
);
1607 -- We now need to do an unchecked conversion of the
1608 -- result to the target type, but it is important that
1609 -- this conversion be a right justified conversion and
1610 -- not a left justified conversion.
1612 Rhs
:= RJ_Unchecked_Convert_To
(Etype
(Obj
), Rhs
);
1618 and then Compile_Time_Known_Value
(Get_Shift
)
1621 Make_Integer_Literal
(Loc
,
1622 Rhs_Val
* (2 ** Expr_Value
(Get_Shift
)));
1623 Set_Print_In_Hex
(Or_Rhs
);
1626 -- We have to convert the right hand side to Etype (Obj).
1627 -- A special case arises if what we have now is a Val
1628 -- attribute reference whose expression type is Etype (Obj).
1629 -- This happens for assignments of fields from the same
1630 -- array. In this case we get the required right hand side
1631 -- by simply removing the inner attribute reference.
1633 if Nkind
(Rhs
) = N_Attribute_Reference
1634 and then Attribute_Name
(Rhs
) = Name_Val
1635 and then Etype
(First
(Expressions
(Rhs
))) = Etype
(Obj
)
1637 Rhs
:= Relocate_Node
(First
(Expressions
(Rhs
)));
1640 -- If the value of the right hand side is a known integer
1641 -- value, then just replace it by an untyped constant,
1642 -- which will be properly retyped when we analyze and
1643 -- resolve the expression.
1645 elsif Rhs_Val_Known
then
1647 -- Note that Rhs_Val has already been normalized to
1648 -- be an unsigned value with the proper number of bits.
1650 Rhs
:= Make_Integer_Literal
(Loc
, Rhs_Val
);
1652 -- Otherwise we need an unchecked conversion
1658 Or_Rhs
:= Make_Shift_Left
(Rhs
, Get_Shift
);
1661 if Nkind
(New_Rhs
) = N_Op_And
then
1662 Set_Paren_Count
(New_Rhs
, 1);
1667 Left_Opnd
=> New_Rhs
,
1668 Right_Opnd
=> Or_Rhs
);
1672 if Require_Byte_Swapping
then
1673 Set_Etype
(New_Rhs
, Etype
(Obj
));
1674 New_Rhs
:= Byte_Swap
(New_Rhs
);
1677 -- Now do the rewrite
1680 Make_Assignment_Statement
(Loc
,
1683 Unchecked_Convert_To
(Etype
(New_Lhs
), New_Rhs
)));
1684 Set_Assignment_OK
(Name
(N
), Ass_OK
);
1686 -- All other component sizes for non-modular case
1691 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1693 -- where Subscr is the computed linear subscript
1696 Bits_nn
: constant Entity_Id
:= RTE
(Bits_Id
(Csiz
));
1702 if No
(Bits_nn
) then
1704 -- Error, most likely High_Integrity_Mode restriction
1709 -- Acquire proper Set entity. We use the aligned or unaligned
1710 -- case as appropriate.
1712 if Known_Aligned_Enough
(Obj
, Csiz
) then
1713 Set_nn
:= RTE
(Set_Id
(Csiz
));
1715 Set_nn
:= RTE
(SetU_Id
(Csiz
));
1718 -- Now generate the set reference
1720 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1721 Convert_To_Actual_Subtype
(Obj
);
1722 Atyp
:= Etype
(Obj
);
1723 Compute_Linear_Subscript
(Atyp
, Lhs
, Subscr
);
1725 -- Below we must make the assumption that Obj is
1726 -- at least byte aligned, since otherwise its address
1727 -- cannot be taken. The assumption holds since the
1728 -- only arrays that can be misaligned are small packed
1729 -- arrays which are implemented as a modular type, and
1730 -- that is not the case here.
1733 Make_Procedure_Call_Statement
(Loc
,
1734 Name
=> New_Occurrence_Of
(Set_nn
, Loc
),
1735 Parameter_Associations
=> New_List
(
1736 Make_Attribute_Reference
(Loc
,
1738 Attribute_Name
=> Name_Address
),
1740 Unchecked_Convert_To
(Bits_nn
,
1741 Convert_To
(Ctyp
, Rhs
)))));
1746 Analyze
(N
, Suppress
=> All_Checks
);
1747 end Expand_Bit_Packed_Element_Set
;
1749 -------------------------------------
1750 -- Expand_Packed_Address_Reference --
1751 -------------------------------------
1753 procedure Expand_Packed_Address_Reference
(N
: Node_Id
) is
1754 Loc
: constant Source_Ptr
:= Sloc
(N
);
1759 -- We build an expression that has the form
1761 -- outer_object'Address
1762 -- + (linear-subscript * component_size for each array reference
1763 -- + field'Bit_Position for each record field
1765 -- + ...) / Storage_Unit;
1767 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1770 Unchecked_Convert_To
(RTE
(RE_Address
),
1773 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1774 Make_Attribute_Reference
(Loc
,
1776 Attribute_Name
=> Name_Address
)),
1779 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1780 Make_Op_Divide
(Loc
,
1781 Left_Opnd
=> Offset
,
1783 Make_Integer_Literal
(Loc
, System_Storage_Unit
))))));
1785 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
1786 end Expand_Packed_Address_Reference
;
1788 ---------------------------------
1789 -- Expand_Packed_Bit_Reference --
1790 ---------------------------------
1792 procedure Expand_Packed_Bit_Reference
(N
: Node_Id
) is
1793 Loc
: constant Source_Ptr
:= Sloc
(N
);
1798 -- We build an expression that has the form
1800 -- (linear-subscript * component_size for each array reference
1801 -- + field'Bit_Position for each record field
1803 -- + ...) mod Storage_Unit;
1805 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1808 Unchecked_Convert_To
(Universal_Integer
,
1810 Left_Opnd
=> Offset
,
1811 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
1813 Analyze_And_Resolve
(N
, Universal_Integer
);
1814 end Expand_Packed_Bit_Reference
;
1816 ------------------------------------
1817 -- Expand_Packed_Boolean_Operator --
1818 ------------------------------------
1820 -- This routine expands "a op b" for the packed cases
1822 procedure Expand_Packed_Boolean_Operator
(N
: Node_Id
) is
1823 Loc
: constant Source_Ptr
:= Sloc
(N
);
1824 Typ
: constant Entity_Id
:= Etype
(N
);
1825 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1826 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1833 Convert_To_Actual_Subtype
(L
);
1834 Convert_To_Actual_Subtype
(R
);
1836 Ensure_Defined
(Etype
(L
), N
);
1837 Ensure_Defined
(Etype
(R
), N
);
1839 Apply_Length_Check
(R
, Etype
(L
));
1844 -- Deal with silly case of XOR where the subcomponent has a range
1845 -- True .. True where an exception must be raised.
1847 if Nkind
(N
) = N_Op_Xor
then
1848 Silly_Boolean_Array_Xor_Test
(N
, Rtyp
);
1851 -- Now that that silliness is taken care of, get packed array type
1853 Convert_To_PAT_Type
(L
);
1854 Convert_To_PAT_Type
(R
);
1858 -- For the modular case, we expand a op b into
1860 -- rtyp!(pat!(a) op pat!(b))
1862 -- where rtyp is the Etype of the left operand. Note that we do not
1863 -- convert to the base type, since this would be unconstrained, and
1864 -- hence not have a corresponding packed array type set.
1866 -- Note that both operands must be modular for this code to be used
1868 if Is_Modular_Integer_Type
(PAT
)
1870 Is_Modular_Integer_Type
(Etype
(R
))
1876 if Nkind
(N
) = N_Op_And
then
1877 P
:= Make_Op_And
(Loc
, L
, R
);
1879 elsif Nkind
(N
) = N_Op_Or
then
1880 P
:= Make_Op_Or
(Loc
, L
, R
);
1882 else -- Nkind (N) = N_Op_Xor
1883 P
:= Make_Op_Xor
(Loc
, L
, R
);
1886 Rewrite
(N
, Unchecked_Convert_To
(Ltyp
, P
));
1889 -- For the array case, we insert the actions
1893 -- System.Bit_Ops.Bit_And/Or/Xor
1895 -- Ltype'Length * Ltype'Component_Size;
1897 -- Rtype'Length * Rtype'Component_Size
1900 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1901 -- the second argument and fourth arguments are the lengths of the
1902 -- operands in bits. Then we replace the expression by a reference
1905 -- Note that if we are mixing a modular and array operand, everything
1906 -- works fine, since we ensure that the modular representation has the
1907 -- same physical layout as the array representation (that's what the
1908 -- left justified modular stuff in the big-endian case is about).
1912 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1916 if Nkind
(N
) = N_Op_And
then
1919 elsif Nkind
(N
) = N_Op_Or
then
1922 else -- Nkind (N) = N_Op_Xor
1926 Insert_Actions
(N
, New_List
(
1928 Make_Object_Declaration
(Loc
,
1929 Defining_Identifier
=> Result_Ent
,
1930 Object_Definition
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1932 Make_Procedure_Call_Statement
(Loc
,
1933 Name
=> New_Occurrence_Of
(RTE
(E_Id
), Loc
),
1934 Parameter_Associations
=> New_List
(
1936 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1938 Attribute_Name
=> Name_Address
),
1940 Make_Op_Multiply
(Loc
,
1942 Make_Attribute_Reference
(Loc
,
1945 (Etype
(First_Index
(Ltyp
)), Loc
),
1946 Attribute_Name
=> Name_Range_Length
),
1949 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
))),
1951 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1953 Attribute_Name
=> Name_Address
),
1955 Make_Op_Multiply
(Loc
,
1957 Make_Attribute_Reference
(Loc
,
1960 (Etype
(First_Index
(Rtyp
)), Loc
),
1961 Attribute_Name
=> Name_Range_Length
),
1964 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
1966 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1967 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
1968 Attribute_Name
=> Name_Address
)))));
1971 New_Occurrence_Of
(Result_Ent
, Loc
));
1975 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
1976 end Expand_Packed_Boolean_Operator
;
1978 -------------------------------------
1979 -- Expand_Packed_Element_Reference --
1980 -------------------------------------
1982 procedure Expand_Packed_Element_Reference
(N
: Node_Id
) is
1983 Loc
: constant Source_Ptr
:= Sloc
(N
);
1995 -- If not bit packed, we have the enumeration case, which is easily
1996 -- dealt with (just adjust the subscripts of the indexed component)
1998 -- Note: this leaves the result as an indexed component, which is
1999 -- still a variable, so can be used in the assignment case, as is
2000 -- required in the enumeration case.
2002 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
2003 Setup_Enumeration_Packed_Array_Reference
(N
);
2007 -- Remaining processing is for the bit-packed case
2009 Obj
:= Relocate_Node
(Prefix
(N
));
2010 Convert_To_Actual_Subtype
(Obj
);
2011 Atyp
:= Etype
(Obj
);
2012 PAT
:= Packed_Array_Type
(Atyp
);
2013 Ctyp
:= Component_Type
(Atyp
);
2014 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
2016 -- For the AAMP target, indexing of certain packed array is passed
2017 -- through to the back end without expansion, because the expansion
2018 -- results in very inefficient code on that target. This allows the
2019 -- GNAAMP back end to generate specialized macros that support more
2020 -- efficient indexing of packed arrays with components having sizes
2021 -- that are small powers of two.
2024 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
2029 -- Case of component size 1,2,4 or any component size for the modular
2030 -- case. These are the cases for which we can inline the code.
2032 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
2033 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
2035 Setup_Inline_Packed_Array_Reference
(N
, Atyp
, Obj
, Cmask
, Shift
);
2036 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
2037 Set_Print_In_Hex
(Lit
);
2039 -- Byte swapping required for the Reverse_Storage_Order case, but
2040 -- only for a free-standing object (see note on Require_Byte_Swapping
2041 -- in Expand_Bit_Packed_Element_Set).
2043 if Reverse_Storage_Order
(Atyp
)
2044 and then Esize
(Atyp
) > 8
2045 and then not In_Reverse_Storage_Order_Object
(Obj
)
2047 Obj
:= Byte_Swap
(Obj
);
2050 -- We generate a shift right to position the field, followed by a
2051 -- masking operation to extract the bit field, and we finally do an
2052 -- unchecked conversion to convert the result to the required target.
2054 -- Note that the unchecked conversion automatically deals with the
2055 -- bias if we are dealing with a biased representation. What will
2056 -- happen is that we temporarily generate the biased representation,
2057 -- but almost immediately that will be converted to the original
2058 -- unbiased component type, and the bias will disappear.
2062 Left_Opnd
=> Make_Shift_Right
(Obj
, Shift
),
2065 -- We needed to analyze this before we do the unchecked convert
2066 -- below, but we need it temporarily attached to the tree for
2067 -- this analysis (hence the temporary Set_Parent call).
2069 Set_Parent
(Arg
, Parent
(N
));
2070 Analyze_And_Resolve
(Arg
);
2072 Rewrite
(N
, RJ_Unchecked_Convert_To
(Ctyp
, Arg
));
2074 -- All other component sizes for non-modular case
2079 -- Component_Type!(Get_nn (Arr'address, Subscr))
2081 -- where Subscr is the computed linear subscript
2088 -- Acquire proper Get entity. We use the aligned or unaligned
2089 -- case as appropriate.
2091 if Known_Aligned_Enough
(Obj
, Csiz
) then
2092 Get_nn
:= RTE
(Get_Id
(Csiz
));
2094 Get_nn
:= RTE
(GetU_Id
(Csiz
));
2097 -- Now generate the get reference
2099 Compute_Linear_Subscript
(Atyp
, N
, Subscr
);
2101 -- Below we make the assumption that Obj is at least byte
2102 -- aligned, since otherwise its address cannot be taken.
2103 -- The assumption holds since the only arrays that can be
2104 -- misaligned are small packed arrays which are implemented
2105 -- as a modular type, and that is not the case here.
2108 Unchecked_Convert_To
(Ctyp
,
2109 Make_Function_Call
(Loc
,
2110 Name
=> New_Occurrence_Of
(Get_nn
, Loc
),
2111 Parameter_Associations
=> New_List
(
2112 Make_Attribute_Reference
(Loc
,
2114 Attribute_Name
=> Name_Address
),
2119 Analyze_And_Resolve
(N
, Ctyp
, Suppress
=> All_Checks
);
2121 end Expand_Packed_Element_Reference
;
2123 ----------------------
2124 -- Expand_Packed_Eq --
2125 ----------------------
2127 -- Handles expansion of "=" on packed array types
2129 procedure Expand_Packed_Eq
(N
: Node_Id
) is
2130 Loc
: constant Source_Ptr
:= Sloc
(N
);
2131 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2132 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2142 Convert_To_Actual_Subtype
(L
);
2143 Convert_To_Actual_Subtype
(R
);
2144 Ltyp
:= Underlying_Type
(Etype
(L
));
2145 Rtyp
:= Underlying_Type
(Etype
(R
));
2147 Convert_To_PAT_Type
(L
);
2148 Convert_To_PAT_Type
(R
);
2152 Make_Op_Multiply
(Loc
,
2154 Make_Attribute_Reference
(Loc
,
2155 Prefix
=> New_Occurrence_Of
(Ltyp
, Loc
),
2156 Attribute_Name
=> Name_Length
),
2158 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
)));
2161 Make_Op_Multiply
(Loc
,
2163 Make_Attribute_Reference
(Loc
,
2164 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
),
2165 Attribute_Name
=> Name_Length
),
2167 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
)));
2169 -- For the modular case, we transform the comparison to:
2171 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2173 -- where PAT is the packed array type. This works fine, since in the
2174 -- modular case we guarantee that the unused bits are always zeroes.
2175 -- We do have to compare the lengths because we could be comparing
2176 -- two different subtypes of the same base type.
2178 if Is_Modular_Integer_Type
(PAT
) then
2183 Left_Opnd
=> LLexpr
,
2184 Right_Opnd
=> RLexpr
),
2191 -- For the non-modular case, we call a runtime routine
2193 -- System.Bit_Ops.Bit_Eq
2194 -- (L'Address, L_Length, R'Address, R_Length)
2196 -- where PAT is the packed array type, and the lengths are the lengths
2197 -- in bits of the original packed arrays. This routine takes care of
2198 -- not comparing the unused bits in the last byte.
2202 Make_Function_Call
(Loc
,
2203 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Eq
), Loc
),
2204 Parameter_Associations
=> New_List
(
2205 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2207 Attribute_Name
=> Name_Address
),
2211 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2213 Attribute_Name
=> Name_Address
),
2218 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
2219 end Expand_Packed_Eq
;
2221 -----------------------
2222 -- Expand_Packed_Not --
2223 -----------------------
2225 -- Handles expansion of "not" on packed array types
2227 procedure Expand_Packed_Not
(N
: Node_Id
) is
2228 Loc
: constant Source_Ptr
:= Sloc
(N
);
2229 Typ
: constant Entity_Id
:= Etype
(N
);
2230 Opnd
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2237 Convert_To_Actual_Subtype
(Opnd
);
2238 Rtyp
:= Etype
(Opnd
);
2240 -- Deal with silly False..False and True..True subtype case
2242 Silly_Boolean_Array_Not_Test
(N
, Rtyp
);
2244 -- Now that the silliness is taken care of, get packed array type
2246 Convert_To_PAT_Type
(Opnd
);
2247 PAT
:= Etype
(Opnd
);
2249 -- For the case where the packed array type is a modular type, "not A"
2250 -- expands simply into:
2252 -- Rtyp!(PAT!(A) xor Mask)
2254 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
2255 -- length equal to the size of this packed type, and Rtyp is the actual
2256 -- actual subtype of the operand.
2258 Lit
:= Make_Integer_Literal
(Loc
, 2 ** RM_Size
(PAT
) - 1);
2259 Set_Print_In_Hex
(Lit
);
2261 if not Is_Array_Type
(PAT
) then
2263 Unchecked_Convert_To
(Rtyp
,
2266 Right_Opnd
=> Lit
)));
2268 -- For the array case, we insert the actions
2272 -- System.Bit_Ops.Bit_Not
2274 -- Typ'Length * Typ'Component_Size,
2277 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2278 -- is the length of the operand in bits. We then replace the expression
2279 -- with a reference to Result.
2283 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2286 Insert_Actions
(N
, New_List
(
2287 Make_Object_Declaration
(Loc
,
2288 Defining_Identifier
=> Result_Ent
,
2289 Object_Definition
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2291 Make_Procedure_Call_Statement
(Loc
,
2292 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Not
), Loc
),
2293 Parameter_Associations
=> New_List
(
2294 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2296 Attribute_Name
=> Name_Address
),
2298 Make_Op_Multiply
(Loc
,
2300 Make_Attribute_Reference
(Loc
,
2303 (Etype
(First_Index
(Rtyp
)), Loc
),
2304 Attribute_Name
=> Name_Range_Length
),
2307 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2309 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2310 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
2311 Attribute_Name
=> Name_Address
)))));
2313 Rewrite
(N
, New_Occurrence_Of
(Result_Ent
, Loc
));
2317 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2318 end Expand_Packed_Not
;
2320 -----------------------------
2321 -- Get_Base_And_Bit_Offset --
2322 -----------------------------
2324 procedure Get_Base_And_Bit_Offset
2327 Offset
: out Node_Id
)
2338 -- We build up an expression serially that has the form
2340 -- linear-subscript * component_size for each array reference
2341 -- + field'Bit_Position for each record field
2347 if Nkind
(Base
) = N_Indexed_Component
then
2348 Convert_To_Actual_Subtype
(Prefix
(Base
));
2349 Atyp
:= Etype
(Prefix
(Base
));
2350 Compute_Linear_Subscript
(Atyp
, Base
, Subscr
);
2353 Make_Op_Multiply
(Loc
,
2354 Left_Opnd
=> Subscr
,
2356 Make_Attribute_Reference
(Loc
,
2357 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2358 Attribute_Name
=> Name_Component_Size
));
2360 elsif Nkind
(Base
) = N_Selected_Component
then
2362 Make_Attribute_Reference
(Loc
,
2363 Prefix
=> Selector_Name
(Base
),
2364 Attribute_Name
=> Name_Bit_Position
);
2376 Left_Opnd
=> Offset
,
2377 Right_Opnd
=> Term
);
2380 Base
:= Prefix
(Base
);
2382 end Get_Base_And_Bit_Offset
;
2384 -------------------------------------
2385 -- Involves_Packed_Array_Reference --
2386 -------------------------------------
2388 function Involves_Packed_Array_Reference
(N
: Node_Id
) return Boolean is
2390 if Nkind
(N
) = N_Indexed_Component
2391 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
2395 elsif Nkind
(N
) = N_Selected_Component
then
2396 return Involves_Packed_Array_Reference
(Prefix
(N
));
2401 end Involves_Packed_Array_Reference
;
2403 --------------------------
2404 -- Known_Aligned_Enough --
2405 --------------------------
2407 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean is
2408 Typ
: constant Entity_Id
:= Etype
(Obj
);
2410 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean;
2411 -- If the component is in a record that contains previous packed
2412 -- components, consider it unaligned because the back-end might
2413 -- choose to pack the rest of the record. Lead to less efficient code,
2414 -- but safer vis-a-vis of back-end choices.
2416 --------------------------------
2417 -- In_Partially_Packed_Record --
2418 --------------------------------
2420 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean is
2421 Rec_Type
: constant Entity_Id
:= Scope
(Comp
);
2422 Prev_Comp
: Entity_Id
;
2425 Prev_Comp
:= First_Entity
(Rec_Type
);
2426 while Present
(Prev_Comp
) loop
2427 if Is_Packed
(Etype
(Prev_Comp
)) then
2430 elsif Prev_Comp
= Comp
then
2434 Next_Entity
(Prev_Comp
);
2438 end In_Partially_Packed_Record
;
2440 -- Start of processing for Known_Aligned_Enough
2443 -- Odd bit sizes don't need alignment anyway
2445 if Csiz
mod 2 = 1 then
2448 -- If we have a specified alignment, see if it is sufficient, if not
2449 -- then we can't possibly be aligned enough in any case.
2451 elsif Known_Alignment
(Etype
(Obj
)) then
2452 -- Alignment required is 4 if size is a multiple of 4, and
2453 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2455 if Alignment
(Etype
(Obj
)) < 4 - (Csiz
mod 4) then
2460 -- OK, alignment should be sufficient, if object is aligned
2462 -- If object is strictly aligned, then it is definitely aligned
2464 if Strict_Alignment
(Typ
) then
2467 -- Case of subscripted array reference
2469 elsif Nkind
(Obj
) = N_Indexed_Component
then
2471 -- If we have a pointer to an array, then this is definitely
2472 -- aligned, because pointers always point to aligned versions.
2474 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
2477 -- Otherwise, go look at the prefix
2480 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2483 -- Case of record field
2485 elsif Nkind
(Obj
) = N_Selected_Component
then
2487 -- What is significant here is whether the record type is packed
2489 if Is_Record_Type
(Etype
(Prefix
(Obj
)))
2490 and then Is_Packed
(Etype
(Prefix
(Obj
)))
2494 -- Or the component has a component clause which might cause
2495 -- the component to become unaligned (we can't tell if the
2496 -- backend is doing alignment computations).
2498 elsif Present
(Component_Clause
(Entity
(Selector_Name
(Obj
)))) then
2501 elsif In_Partially_Packed_Record
(Entity
(Selector_Name
(Obj
))) then
2504 -- In all other cases, go look at prefix
2507 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2510 elsif Nkind
(Obj
) = N_Type_Conversion
then
2511 return Known_Aligned_Enough
(Expression
(Obj
), Csiz
);
2513 -- For a formal parameter, it is safer to assume that it is not
2514 -- aligned, because the formal may be unconstrained while the actual
2515 -- is constrained. In this situation, a small constrained packed
2516 -- array, represented in modular form, may be unaligned.
2518 elsif Is_Entity_Name
(Obj
) then
2519 return not Is_Formal
(Entity
(Obj
));
2522 -- If none of the above, must be aligned
2525 end Known_Aligned_Enough
;
2527 ---------------------
2528 -- Make_Shift_Left --
2529 ---------------------
2531 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2535 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2539 Make_Op_Shift_Left
(Sloc
(N
),
2542 Set_Shift_Count_OK
(Nod
, True);
2545 end Make_Shift_Left
;
2547 ----------------------
2548 -- Make_Shift_Right --
2549 ----------------------
2551 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2555 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2559 Make_Op_Shift_Right
(Sloc
(N
),
2562 Set_Shift_Count_OK
(Nod
, True);
2565 end Make_Shift_Right
;
2567 -----------------------------
2568 -- RJ_Unchecked_Convert_To --
2569 -----------------------------
2571 function RJ_Unchecked_Convert_To
2573 Expr
: Node_Id
) return Node_Id
2575 Source_Typ
: constant Entity_Id
:= Etype
(Expr
);
2576 Target_Typ
: constant Entity_Id
:= Typ
;
2578 Src
: Node_Id
:= Expr
;
2584 Source_Siz
:= UI_To_Int
(RM_Size
(Source_Typ
));
2585 Target_Siz
:= UI_To_Int
(RM_Size
(Target_Typ
));
2587 -- First step, if the source type is not a discrete type, then we first
2588 -- convert to a modular type of the source length, since otherwise, on
2589 -- a big-endian machine, we get left-justification. We do it for little-
2590 -- endian machines as well, because there might be junk bits that are
2591 -- not cleared if the type is not numeric.
2593 if Source_Siz
/= Target_Siz
2594 and then not Is_Discrete_Type
(Source_Typ
)
2596 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Source_Siz
)), Src
);
2599 -- In the big endian case, if the lengths of the two types differ, then
2600 -- we must worry about possible left justification in the conversion,
2601 -- and avoiding that is what this is all about.
2603 if Bytes_Big_Endian
and then Source_Siz
/= Target_Siz
then
2605 -- Next step. If the target is not a discrete type, then we first
2606 -- convert to a modular type of the target length, since otherwise,
2607 -- on a big-endian machine, we get left-justification.
2609 if not Is_Discrete_Type
(Target_Typ
) then
2610 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Target_Siz
)), Src
);
2614 -- And now we can do the final conversion to the target type
2616 return Unchecked_Convert_To
(Target_Typ
, Src
);
2617 end RJ_Unchecked_Convert_To
;
2619 ----------------------------------------------
2620 -- Setup_Enumeration_Packed_Array_Reference --
2621 ----------------------------------------------
2623 -- All we have to do here is to find the subscripts that correspond to the
2624 -- index positions that have non-standard enumeration types and insert a
2625 -- Pos attribute to get the proper subscript value.
2627 -- Finally the prefix must be uncheck-converted to the corresponding packed
2630 -- Note that the component type is unchanged, so we do not need to fiddle
2631 -- with the types (Gigi always automatically takes the packed array type if
2632 -- it is set, as it will be in this case).
2634 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
) is
2635 Pfx
: constant Node_Id
:= Prefix
(N
);
2636 Typ
: constant Entity_Id
:= Etype
(N
);
2637 Exprs
: constant List_Id
:= Expressions
(N
);
2641 -- If the array is unconstrained, then we replace the array reference
2642 -- with its actual subtype. This actual subtype will have a packed array
2643 -- type with appropriate bounds.
2645 if not Is_Constrained
(Packed_Array_Type
(Etype
(Pfx
))) then
2646 Convert_To_Actual_Subtype
(Pfx
);
2649 Expr
:= First
(Exprs
);
2650 while Present
(Expr
) loop
2652 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2653 Expr_Typ
: constant Entity_Id
:= Etype
(Expr
);
2656 if Is_Enumeration_Type
(Expr_Typ
)
2657 and then Has_Non_Standard_Rep
(Expr_Typ
)
2660 Make_Attribute_Reference
(Loc
,
2661 Prefix
=> New_Occurrence_Of
(Expr_Typ
, Loc
),
2662 Attribute_Name
=> Name_Pos
,
2663 Expressions
=> New_List
(Relocate_Node
(Expr
))));
2664 Analyze_And_Resolve
(Expr
, Standard_Natural
);
2672 Make_Indexed_Component
(Sloc
(N
),
2674 Unchecked_Convert_To
(Packed_Array_Type
(Etype
(Pfx
)), Pfx
),
2675 Expressions
=> Exprs
));
2677 Analyze_And_Resolve
(N
, Typ
);
2678 end Setup_Enumeration_Packed_Array_Reference
;
2680 -----------------------------------------
2681 -- Setup_Inline_Packed_Array_Reference --
2682 -----------------------------------------
2684 procedure Setup_Inline_Packed_Array_Reference
2687 Obj
: in out Node_Id
;
2689 Shift
: out Node_Id
)
2691 Loc
: constant Source_Ptr
:= Sloc
(N
);
2698 Csiz
:= Component_Size
(Atyp
);
2700 Convert_To_PAT_Type
(Obj
);
2703 Cmask
:= 2 ** Csiz
- 1;
2705 if Is_Array_Type
(PAT
) then
2706 Otyp
:= Component_Type
(PAT
);
2707 Osiz
:= Component_Size
(PAT
);
2712 -- In the case where the PAT is a modular type, we want the actual
2713 -- size in bits of the modular value we use. This is neither the
2714 -- Object_Size nor the Value_Size, either of which may have been
2715 -- reset to strange values, but rather the minimum size. Note that
2716 -- since this is a modular type with full range, the issue of
2717 -- biased representation does not arise.
2719 Osiz
:= UI_From_Int
(Minimum_Size
(Otyp
));
2722 Compute_Linear_Subscript
(Atyp
, N
, Shift
);
2724 -- If the component size is not 1, then the subscript must be multiplied
2725 -- by the component size to get the shift count.
2729 Make_Op_Multiply
(Loc
,
2730 Left_Opnd
=> Make_Integer_Literal
(Loc
, Csiz
),
2731 Right_Opnd
=> Shift
);
2734 -- If we have the array case, then this shift count must be broken down
2735 -- into a byte subscript, and a shift within the byte.
2737 if Is_Array_Type
(PAT
) then
2740 New_Shift
: Node_Id
;
2743 -- We must analyze shift, since we will duplicate it
2745 Set_Parent
(Shift
, N
);
2747 (Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2749 -- The shift count within the word is
2754 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2755 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
));
2757 -- The subscript to be used on the PAT array is
2761 Make_Indexed_Component
(Loc
,
2763 Expressions
=> New_List
(
2764 Make_Op_Divide
(Loc
,
2765 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2766 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
))));
2771 -- For the modular integer case, the object to be manipulated is the
2772 -- entire array, so Obj is unchanged. Note that we will reset its type
2773 -- to PAT before returning to the caller.
2779 -- The one remaining step is to modify the shift count for the
2780 -- big-endian case. Consider the following example in a byte:
2782 -- xxxxxxxx bits of byte
2783 -- vvvvvvvv bits of value
2784 -- 33221100 little-endian numbering
2785 -- 00112233 big-endian numbering
2787 -- Here we have the case of 2-bit fields
2789 -- For the little-endian case, we already have the proper shift count
2790 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2792 -- For the big endian case, we have to adjust the shift count, computing
2793 -- it as (N - F) - Shift, where N is the number of bits in an element of
2794 -- the array used to implement the packed array, F is the number of bits
2795 -- in a source array element, and Shift is the count so far computed.
2797 -- We also have to adjust if the storage order is reversed
2799 if Bytes_Big_Endian
xor Reverse_Storage_Order
(Base_Type
(Atyp
)) then
2801 Make_Op_Subtract
(Loc
,
2802 Left_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
- Csiz
),
2803 Right_Opnd
=> Shift
);
2806 Set_Parent
(Shift
, N
);
2807 Set_Parent
(Obj
, N
);
2808 Analyze_And_Resolve
(Obj
, Otyp
, Suppress
=> All_Checks
);
2809 Analyze_And_Resolve
(Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2811 -- Make sure final type of object is the appropriate packed type
2813 Set_Etype
(Obj
, Otyp
);
2815 end Setup_Inline_Packed_Array_Reference
;