* es.po: Update.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_posix.cc
blobd10213d917f924b4e086e47affd8b9b8352b60b4
1 //===-- sanitizer_posix.cc ------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and ThreadSanitizer
9 // run-time libraries and implements POSIX-specific functions from
10 // sanitizer_posix.h.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_platform.h"
15 #if SANITIZER_POSIX
17 #include "sanitizer_common.h"
18 #include "sanitizer_libc.h"
19 #include "sanitizer_posix.h"
20 #include "sanitizer_procmaps.h"
21 #include "sanitizer_stacktrace.h"
23 #include <fcntl.h>
24 #include <signal.h>
25 #include <sys/mman.h>
27 #if SANITIZER_LINUX
28 #include <sys/utsname.h>
29 #endif
31 #if SANITIZER_LINUX && !SANITIZER_ANDROID
32 #include <sys/personality.h>
33 #endif
35 #if SANITIZER_FREEBSD
36 // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before
37 // that, it was never implemented. So just define it to zero.
38 #undef MAP_NORESERVE
39 #define MAP_NORESERVE 0
40 #endif
42 namespace __sanitizer {
44 // ------------- sanitizer_common.h
45 uptr GetMmapGranularity() {
46 return GetPageSize();
49 #if SANITIZER_WORDSIZE == 32
50 // Take care of unusable kernel area in top gigabyte.
51 static uptr GetKernelAreaSize() {
52 #if SANITIZER_LINUX && !SANITIZER_X32
53 const uptr gbyte = 1UL << 30;
55 // Firstly check if there are writable segments
56 // mapped to top gigabyte (e.g. stack).
57 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
58 uptr end, prot;
59 while (proc_maps.Next(/*start*/nullptr, &end,
60 /*offset*/nullptr, /*filename*/nullptr,
61 /*filename_size*/0, &prot)) {
62 if ((end >= 3 * gbyte)
63 && (prot & MemoryMappingLayout::kProtectionWrite) != 0)
64 return 0;
67 #if !SANITIZER_ANDROID
68 // Even if nothing is mapped, top Gb may still be accessible
69 // if we are running on 64-bit kernel.
70 // Uname may report misleading results if personality type
71 // is modified (e.g. under schroot) so check this as well.
72 struct utsname uname_info;
73 int pers = personality(0xffffffffUL);
74 if (!(pers & PER_MASK)
75 && uname(&uname_info) == 0
76 && internal_strstr(uname_info.machine, "64"))
77 return 0;
78 #endif // SANITIZER_ANDROID
80 // Top gigabyte is reserved for kernel.
81 return gbyte;
82 #else
83 return 0;
84 #endif // SANITIZER_LINUX && !SANITIZER_X32
86 #endif // SANITIZER_WORDSIZE == 32
88 uptr GetMaxVirtualAddress() {
89 #if SANITIZER_WORDSIZE == 64
90 # if defined(__aarch64__) && SANITIZER_IOS && !SANITIZER_IOSSIM
91 // Ideally, we would derive the upper bound from MACH_VM_MAX_ADDRESS. The
92 // upper bound can change depending on the device.
93 return 0x200000000 - 1;
94 # elif defined(__powerpc64__) || defined(__aarch64__)
95 // On PowerPC64 we have two different address space layouts: 44- and 46-bit.
96 // We somehow need to figure out which one we are using now and choose
97 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
98 // Note that with 'ulimit -s unlimited' the stack is moved away from the top
99 // of the address space, so simply checking the stack address is not enough.
100 // This should (does) work for both PowerPC64 Endian modes.
101 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit.
102 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1;
103 # elif defined(__mips64)
104 return (1ULL << 40) - 1; // 0x000000ffffffffffUL;
105 # elif defined(__s390x__)
106 return (1ULL << 53) - 1; // 0x001fffffffffffffUL;
107 # else
108 return (1ULL << 47) - 1; // 0x00007fffffffffffUL;
109 # endif
110 #else // SANITIZER_WORDSIZE == 32
111 # if defined(__s390__)
112 return (1ULL << 31) - 1; // 0x7fffffff;
113 # else
114 uptr res = (1ULL << 32) - 1; // 0xffffffff;
115 if (!common_flags()->full_address_space)
116 res -= GetKernelAreaSize();
117 CHECK_LT(reinterpret_cast<uptr>(&res), res);
118 return res;
119 # endif
120 #endif // SANITIZER_WORDSIZE
123 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
124 size = RoundUpTo(size, GetPageSizeCached());
125 uptr res = internal_mmap(nullptr, size,
126 PROT_READ | PROT_WRITE,
127 MAP_PRIVATE | MAP_ANON, -1, 0);
128 int reserrno;
129 if (internal_iserror(res, &reserrno))
130 ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno, raw_report);
131 IncreaseTotalMmap(size);
132 return (void *)res;
135 void UnmapOrDie(void *addr, uptr size) {
136 if (!addr || !size) return;
137 uptr res = internal_munmap(addr, size);
138 if (internal_iserror(res)) {
139 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
140 SanitizerToolName, size, size, addr);
141 CHECK("unable to unmap" && 0);
143 DecreaseTotalMmap(size);
146 // We want to map a chunk of address space aligned to 'alignment'.
147 // We do it by maping a bit more and then unmaping redundant pieces.
148 // We probably can do it with fewer syscalls in some OS-dependent way.
149 void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) {
150 CHECK(IsPowerOfTwo(size));
151 CHECK(IsPowerOfTwo(alignment));
152 uptr map_size = size + alignment;
153 uptr map_res = (uptr)MmapOrDie(map_size, mem_type);
154 uptr map_end = map_res + map_size;
155 uptr res = map_res;
156 if (res & (alignment - 1)) // Not aligned.
157 res = (map_res + alignment) & ~(alignment - 1);
158 uptr end = res + size;
159 if (res != map_res)
160 UnmapOrDie((void*)map_res, res - map_res);
161 if (end != map_end)
162 UnmapOrDie((void*)end, map_end - end);
163 return (void*)res;
166 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
167 uptr PageSize = GetPageSizeCached();
168 uptr p = internal_mmap(nullptr,
169 RoundUpTo(size, PageSize),
170 PROT_READ | PROT_WRITE,
171 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
172 -1, 0);
173 int reserrno;
174 if (internal_iserror(p, &reserrno))
175 ReportMmapFailureAndDie(size, mem_type, "allocate noreserve", reserrno);
176 IncreaseTotalMmap(size);
177 return (void *)p;
180 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
181 uptr PageSize = GetPageSizeCached();
182 uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
183 RoundUpTo(size, PageSize),
184 PROT_READ | PROT_WRITE,
185 MAP_PRIVATE | MAP_ANON | MAP_FIXED,
186 -1, 0);
187 int reserrno;
188 if (internal_iserror(p, &reserrno)) {
189 char mem_type[30];
190 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
191 fixed_addr);
192 ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno);
194 IncreaseTotalMmap(size);
195 return (void *)p;
198 bool MprotectNoAccess(uptr addr, uptr size) {
199 return 0 == internal_mprotect((void*)addr, size, PROT_NONE);
202 bool MprotectReadOnly(uptr addr, uptr size) {
203 return 0 == internal_mprotect((void *)addr, size, PROT_READ);
206 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) {
207 int flags;
208 switch (mode) {
209 case RdOnly: flags = O_RDONLY; break;
210 case WrOnly: flags = O_WRONLY | O_CREAT; break;
211 case RdWr: flags = O_RDWR | O_CREAT; break;
213 fd_t res = internal_open(filename, flags, 0660);
214 if (internal_iserror(res, errno_p))
215 return kInvalidFd;
216 return res;
219 void CloseFile(fd_t fd) {
220 internal_close(fd);
223 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
224 error_t *error_p) {
225 uptr res = internal_read(fd, buff, buff_size);
226 if (internal_iserror(res, error_p))
227 return false;
228 if (bytes_read)
229 *bytes_read = res;
230 return true;
233 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
234 error_t *error_p) {
235 uptr res = internal_write(fd, buff, buff_size);
236 if (internal_iserror(res, error_p))
237 return false;
238 if (bytes_written)
239 *bytes_written = res;
240 return true;
243 bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
244 uptr res = internal_rename(oldpath, newpath);
245 return !internal_iserror(res, error_p);
248 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
249 fd_t fd = OpenFile(file_name, RdOnly);
250 CHECK(fd != kInvalidFd);
251 uptr fsize = internal_filesize(fd);
252 CHECK_NE(fsize, (uptr)-1);
253 CHECK_GT(fsize, 0);
254 *buff_size = RoundUpTo(fsize, GetPageSizeCached());
255 uptr map = internal_mmap(nullptr, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0);
256 return internal_iserror(map) ? nullptr : (void *)map;
259 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
260 uptr flags = MAP_SHARED;
261 if (addr) flags |= MAP_FIXED;
262 uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset);
263 int mmap_errno = 0;
264 if (internal_iserror(p, &mmap_errno)) {
265 Printf("could not map writable file (%d, %lld, %zu): %zd, errno: %d\n",
266 fd, (long long)offset, size, p, mmap_errno);
267 return nullptr;
269 return (void *)p;
272 static inline bool IntervalsAreSeparate(uptr start1, uptr end1,
273 uptr start2, uptr end2) {
274 CHECK(start1 <= end1);
275 CHECK(start2 <= end2);
276 return (end1 < start2) || (end2 < start1);
279 // FIXME: this is thread-unsafe, but should not cause problems most of the time.
280 // When the shadow is mapped only a single thread usually exists (plus maybe
281 // several worker threads on Mac, which aren't expected to map big chunks of
282 // memory).
283 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
284 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
285 uptr start, end;
286 while (proc_maps.Next(&start, &end,
287 /*offset*/nullptr, /*filename*/nullptr,
288 /*filename_size*/0, /*protection*/nullptr)) {
289 if (start == end) continue; // Empty range.
290 CHECK_NE(0, end);
291 if (!IntervalsAreSeparate(start, end - 1, range_start, range_end))
292 return false;
294 return true;
297 void DumpProcessMap() {
298 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
299 uptr start, end;
300 const sptr kBufSize = 4095;
301 char *filename = (char*)MmapOrDie(kBufSize, __func__);
302 Report("Process memory map follows:\n");
303 while (proc_maps.Next(&start, &end, /* file_offset */nullptr,
304 filename, kBufSize, /* protection */nullptr)) {
305 Printf("\t%p-%p\t%s\n", (void*)start, (void*)end, filename);
307 Report("End of process memory map.\n");
308 UnmapOrDie(filename, kBufSize);
311 const char *GetPwd() {
312 return GetEnv("PWD");
315 bool IsPathSeparator(const char c) {
316 return c == '/';
319 bool IsAbsolutePath(const char *path) {
320 return path != nullptr && IsPathSeparator(path[0]);
323 void ReportFile::Write(const char *buffer, uptr length) {
324 SpinMutexLock l(mu);
325 static const char *kWriteError =
326 "ReportFile::Write() can't output requested buffer!\n";
327 ReopenIfNecessary();
328 if (length != internal_write(fd, buffer, length)) {
329 internal_write(fd, kWriteError, internal_strlen(kWriteError));
330 Die();
334 bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) {
335 uptr s, e, off, prot;
336 InternalScopedString buff(kMaxPathLength);
337 MemoryMappingLayout proc_maps(/*cache_enabled*/false);
338 while (proc_maps.Next(&s, &e, &off, buff.data(), buff.size(), &prot)) {
339 if ((prot & MemoryMappingLayout::kProtectionExecute) != 0
340 && internal_strcmp(module, buff.data()) == 0) {
341 *start = s;
342 *end = e;
343 return true;
346 return false;
349 SignalContext SignalContext::Create(void *siginfo, void *context) {
350 auto si = (siginfo_t *)siginfo;
351 uptr addr = (uptr)si->si_addr;
352 uptr pc, sp, bp;
353 GetPcSpBp(context, &pc, &sp, &bp);
354 WriteFlag write_flag = GetWriteFlag(context);
355 bool is_memory_access = si->si_signo == SIGSEGV;
356 return SignalContext(context, addr, pc, sp, bp, is_memory_access, write_flag);
359 } // namespace __sanitizer
361 #endif // SANITIZER_POSIX