RISC-V: Fix more splitters accidentally calling gen_reg_rtx.
[official-gcc.git] / gcc / rtl.h
blobc054861f896efc2d6165af958f006e8408c50178
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 class GTY(()) mem_attrs
150 public:
151 mem_attrs ();
153 /* The expression that the MEM accesses, or null if not known.
154 This expression might be larger than the memory reference itself.
155 (In other words, the MEM might access only part of the object.) */
156 tree expr;
158 /* The offset of the memory reference from the start of EXPR.
159 Only valid if OFFSET_KNOWN_P. */
160 poly_int64 offset;
162 /* The size of the memory reference in bytes. Only valid if
163 SIZE_KNOWN_P. */
164 poly_int64 size;
166 /* The alias set of the memory reference. */
167 alias_set_type alias;
169 /* The alignment of the reference in bits. Always a multiple of
170 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
171 than the memory reference itself. */
172 unsigned int align;
174 /* The address space that the memory reference uses. */
175 unsigned char addrspace;
177 /* True if OFFSET is known. */
178 bool offset_known_p;
180 /* True if SIZE is known. */
181 bool size_known_p;
184 /* Structure used to describe the attributes of a REG in similar way as
185 mem_attrs does for MEM above. Note that the OFFSET field is calculated
186 in the same way as for mem_attrs, rather than in the same way as a
187 SUBREG_BYTE. For example, if a big-endian target stores a byte
188 object in the low part of a 4-byte register, the OFFSET field
189 will be -3 rather than 0. */
191 class GTY((for_user)) reg_attrs {
192 public:
193 tree decl; /* decl corresponding to REG. */
194 poly_int64 offset; /* Offset from start of DECL. */
197 /* Common union for an element of an rtx. */
199 union rtunion
201 int rt_int;
202 unsigned int rt_uint;
203 poly_uint16_pod rt_subreg;
204 const char *rt_str;
205 rtx rt_rtx;
206 rtvec rt_rtvec;
207 machine_mode rt_type;
208 addr_diff_vec_flags rt_addr_diff_vec_flags;
209 struct cselib_val *rt_cselib;
210 tree rt_tree;
211 basic_block rt_bb;
212 mem_attrs *rt_mem;
213 class constant_descriptor_rtx *rt_constant;
214 struct dw_cfi_node *rt_cfi;
217 /* Describes the properties of a REG. */
218 struct GTY(()) reg_info {
219 /* The value of REGNO. */
220 unsigned int regno;
222 /* The value of REG_NREGS. */
223 unsigned int nregs : 8;
224 unsigned int unused : 24;
226 /* The value of REG_ATTRS. */
227 reg_attrs *attrs;
230 /* This structure remembers the position of a SYMBOL_REF within an
231 object_block structure. A SYMBOL_REF only provides this information
232 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
233 struct GTY(()) block_symbol {
234 /* The usual SYMBOL_REF fields. */
235 rtunion GTY ((skip)) fld[2];
237 /* The block that contains this object. */
238 struct object_block *block;
240 /* The offset of this object from the start of its block. It is negative
241 if the symbol has not yet been assigned an offset. */
242 HOST_WIDE_INT offset;
245 /* Describes a group of objects that are to be placed together in such
246 a way that their relative positions are known. */
247 struct GTY((for_user)) object_block {
248 /* The section in which these objects should be placed. */
249 section *sect;
251 /* The alignment of the first object, measured in bits. */
252 unsigned int alignment;
254 /* The total size of the objects, measured in bytes. */
255 HOST_WIDE_INT size;
257 /* The SYMBOL_REFs for each object. The vector is sorted in
258 order of increasing offset and the following conditions will
259 hold for each element X:
261 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
262 !SYMBOL_REF_ANCHOR_P (X)
263 SYMBOL_REF_BLOCK (X) == [address of this structure]
264 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
265 vec<rtx, va_gc> *objects;
267 /* All the anchor SYMBOL_REFs used to address these objects, sorted
268 in order of increasing offset, and then increasing TLS model.
269 The following conditions will hold for each element X in this vector:
271 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
272 SYMBOL_REF_ANCHOR_P (X)
273 SYMBOL_REF_BLOCK (X) == [address of this structure]
274 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
275 vec<rtx, va_gc> *anchors;
278 struct GTY((variable_size)) hwivec_def {
279 HOST_WIDE_INT elem[1];
282 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
283 #define CWI_GET_NUM_ELEM(RTX) \
284 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
285 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
286 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
288 struct GTY((variable_size)) const_poly_int_def {
289 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
292 /* RTL expression ("rtx"). */
294 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
295 field for gengtype to recognize that inheritance is occurring,
296 so that all subclasses are redirected to the traversal hook for the
297 base class.
298 However, all of the fields are in the base class, and special-casing
299 is at work. Hence we use desc and tag of 0, generating a switch
300 statement of the form:
301 switch (0)
303 case 0: // all the work happens here
305 in order to work with the existing special-casing in gengtype. */
307 struct GTY((desc("0"), tag("0"),
308 chain_next ("RTX_NEXT (&%h)"),
309 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
310 /* The kind of expression this is. */
311 ENUM_BITFIELD(rtx_code) code: 16;
313 /* The kind of value the expression has. */
314 ENUM_BITFIELD(machine_mode) mode : 8;
316 /* 1 in a MEM if we should keep the alias set for this mem unchanged
317 when we access a component.
318 1 in a JUMP_INSN if it is a crossing jump.
319 1 in a CALL_INSN if it is a sibling call.
320 1 in a SET that is for a return.
321 In a CODE_LABEL, part of the two-bit alternate entry field.
322 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
323 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
324 1 in a SUBREG generated by LRA for reload insns.
325 1 in a REG if this is a static chain register.
326 Dumped as "/j" in RTL dumps. */
327 unsigned int jump : 1;
328 /* In a CODE_LABEL, part of the two-bit alternate entry field.
329 1 in a MEM if it cannot trap.
330 1 in a CALL_INSN logically equivalent to
331 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
332 Dumped as "/c" in RTL dumps. */
333 unsigned int call : 1;
334 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
335 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
336 1 in a SYMBOL_REF if it addresses something in the per-function
337 constants pool.
338 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
339 1 in a NOTE, or EXPR_LIST for a const call.
340 1 in a JUMP_INSN of an annulling branch.
341 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
342 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
343 1 in a clobber temporarily created for LRA.
344 Dumped as "/u" in RTL dumps. */
345 unsigned int unchanging : 1;
346 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
347 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
348 if it has been deleted.
349 1 in a REG expression if corresponds to a variable declared by the user,
350 0 for an internally generated temporary.
351 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
352 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
353 non-local label.
354 In a SYMBOL_REF, this flag is used for machine-specific purposes.
355 In a PREFETCH, this flag indicates that it should be considered a
356 scheduling barrier.
357 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
358 Dumped as "/v" in RTL dumps. */
359 unsigned int volatil : 1;
360 /* 1 in a REG if the register is used only in exit code a loop.
361 1 in a SUBREG expression if was generated from a variable with a
362 promoted mode.
363 1 in a CODE_LABEL if the label is used for nonlocal gotos
364 and must not be deleted even if its count is zero.
365 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
366 together with the preceding insn. Valid only within sched.
367 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
368 from the target of a branch. Valid from reorg until end of compilation;
369 cleared before used.
371 The name of the field is historical. It used to be used in MEMs
372 to record whether the MEM accessed part of a structure.
373 Dumped as "/s" in RTL dumps. */
374 unsigned int in_struct : 1;
375 /* At the end of RTL generation, 1 if this rtx is used. This is used for
376 copying shared structure. See `unshare_all_rtl'.
377 In a REG, this is not needed for that purpose, and used instead
378 in `leaf_renumber_regs_insn'.
379 1 in a SYMBOL_REF, means that emit_library_call
380 has used it as the function.
381 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
382 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
383 unsigned int used : 1;
384 /* 1 in an INSN or a SET if this rtx is related to the call frame,
385 either changing how we compute the frame address or saving and
386 restoring registers in the prologue and epilogue.
387 1 in a REG or MEM if it is a pointer.
388 1 in a SYMBOL_REF if it addresses something in the per-function
389 constant string pool.
390 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
391 Dumped as "/f" in RTL dumps. */
392 unsigned frame_related : 1;
393 /* 1 in a REG or PARALLEL that is the current function's return value.
394 1 in a SYMBOL_REF for a weak symbol.
395 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
396 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
397 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
398 Dumped as "/i" in RTL dumps. */
399 unsigned return_val : 1;
401 union {
402 /* The final union field is aligned to 64 bits on LP64 hosts,
403 giving a 32-bit gap after the fields above. We optimize the
404 layout for that case and use the gap for extra code-specific
405 information. */
407 /* The ORIGINAL_REGNO of a REG. */
408 unsigned int original_regno;
410 /* The INSN_UID of an RTX_INSN-class code. */
411 int insn_uid;
413 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
414 unsigned int symbol_ref_flags;
416 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
417 enum var_init_status var_location_status;
419 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
420 HOST_WIDE_INTs in the hwivec_def. */
421 unsigned int num_elem;
423 /* Information about a CONST_VECTOR. */
424 struct
426 /* The value of CONST_VECTOR_NPATTERNS. */
427 unsigned int npatterns : 16;
429 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
430 unsigned int nelts_per_pattern : 8;
432 /* For future expansion. */
433 unsigned int unused : 8;
434 } const_vector;
435 } GTY ((skip)) u2;
437 /* The first element of the operands of this rtx.
438 The number of operands and their types are controlled
439 by the `code' field, according to rtl.def. */
440 union u {
441 rtunion fld[1];
442 HOST_WIDE_INT hwint[1];
443 struct reg_info reg;
444 struct block_symbol block_sym;
445 struct real_value rv;
446 struct fixed_value fv;
447 struct hwivec_def hwiv;
448 struct const_poly_int_def cpi;
449 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
452 /* A node for constructing singly-linked lists of rtx. */
454 struct GTY(()) rtx_expr_list : public rtx_def
456 private:
457 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
459 public:
460 /* Get next in list. */
461 rtx_expr_list *next () const;
463 /* Get at the underlying rtx. */
464 rtx element () const;
467 template <>
468 template <>
469 inline bool
470 is_a_helper <rtx_expr_list *>::test (rtx rt)
472 return rt->code == EXPR_LIST;
475 struct GTY(()) rtx_insn_list : public rtx_def
477 private:
478 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
480 This is an instance of:
482 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
484 i.e. a node for constructing singly-linked lists of rtx_insn *, where
485 the list is "external" to the insn (as opposed to the doubly-linked
486 list embedded within rtx_insn itself). */
488 public:
489 /* Get next in list. */
490 rtx_insn_list *next () const;
492 /* Get at the underlying instruction. */
493 rtx_insn *insn () const;
497 template <>
498 template <>
499 inline bool
500 is_a_helper <rtx_insn_list *>::test (rtx rt)
502 return rt->code == INSN_LIST;
505 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
506 typically (but not always) of rtx_insn *, used in the late passes. */
508 struct GTY(()) rtx_sequence : public rtx_def
510 private:
511 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
513 public:
514 /* Get number of elements in sequence. */
515 int len () const;
517 /* Get i-th element of the sequence. */
518 rtx element (int index) const;
520 /* Get i-th element of the sequence, with a checked cast to
521 rtx_insn *. */
522 rtx_insn *insn (int index) const;
525 template <>
526 template <>
527 inline bool
528 is_a_helper <rtx_sequence *>::test (rtx rt)
530 return rt->code == SEQUENCE;
533 template <>
534 template <>
535 inline bool
536 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
538 return rt->code == SEQUENCE;
541 struct GTY(()) rtx_insn : public rtx_def
543 public:
544 /* No extra fields, but adds the invariant:
546 (INSN_P (X)
547 || NOTE_P (X)
548 || JUMP_TABLE_DATA_P (X)
549 || BARRIER_P (X)
550 || LABEL_P (X))
552 i.e. that we must be able to use the following:
553 INSN_UID ()
554 NEXT_INSN ()
555 PREV_INSN ()
556 i.e. we have an rtx that has an INSN_UID field and can be part of
557 a linked list of insns.
560 /* Returns true if this insn has been deleted. */
562 bool deleted () const { return volatil; }
564 /* Mark this insn as deleted. */
566 void set_deleted () { volatil = true; }
568 /* Mark this insn as not deleted. */
570 void set_undeleted () { volatil = false; }
573 /* Subclasses of rtx_insn. */
575 struct GTY(()) rtx_debug_insn : public rtx_insn
577 /* No extra fields, but adds the invariant:
578 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
579 i.e. an annotation for tracking variable assignments.
581 This is an instance of:
582 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
583 from rtl.def. */
586 struct GTY(()) rtx_nonjump_insn : public rtx_insn
588 /* No extra fields, but adds the invariant:
589 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
590 i.e an instruction that cannot jump.
592 This is an instance of:
593 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
594 from rtl.def. */
597 struct GTY(()) rtx_jump_insn : public rtx_insn
599 public:
600 /* No extra fields, but adds the invariant:
601 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
602 i.e. an instruction that can possibly jump.
604 This is an instance of:
605 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
606 from rtl.def. */
608 /* Returns jump target of this instruction. The returned value is not
609 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
610 expression. Also, when the code label is marked "deleted", it is
611 replaced by a NOTE. In some cases the value is NULL_RTX. */
613 inline rtx jump_label () const;
615 /* Returns jump target cast to rtx_code_label *. */
617 inline rtx_code_label *jump_target () const;
619 /* Set jump target. */
621 inline void set_jump_target (rtx_code_label *);
624 struct GTY(()) rtx_call_insn : public rtx_insn
626 /* No extra fields, but adds the invariant:
627 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
628 i.e. an instruction that can possibly call a subroutine
629 but which will not change which instruction comes next
630 in the current function.
632 This is an instance of:
633 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
634 from rtl.def. */
637 struct GTY(()) rtx_jump_table_data : public rtx_insn
639 /* No extra fields, but adds the invariant:
640 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
641 i.e. a data for a jump table, considered an instruction for
642 historical reasons.
644 This is an instance of:
645 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
646 from rtl.def. */
648 /* This can be either:
650 (a) a table of absolute jumps, in which case PATTERN (this) is an
651 ADDR_VEC with arg 0 a vector of labels, or
653 (b) a table of relative jumps (e.g. for -fPIC), in which case
654 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
655 arg 1 the vector of labels.
657 This method gets the underlying vec. */
659 inline rtvec get_labels () const;
660 inline scalar_int_mode get_data_mode () const;
663 struct GTY(()) rtx_barrier : public rtx_insn
665 /* No extra fields, but adds the invariant:
666 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
667 i.e. a marker that indicates that control will not flow through.
669 This is an instance of:
670 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
671 from rtl.def. */
674 struct GTY(()) rtx_code_label : public rtx_insn
676 /* No extra fields, but adds the invariant:
677 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
678 i.e. a label in the assembler.
680 This is an instance of:
681 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
682 from rtl.def. */
685 struct GTY(()) rtx_note : public rtx_insn
687 /* No extra fields, but adds the invariant:
688 NOTE_P(X) aka (GET_CODE (X) == NOTE)
689 i.e. a note about the corresponding source code.
691 This is an instance of:
692 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
693 from rtl.def. */
696 /* The size in bytes of an rtx header (code, mode and flags). */
697 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
699 /* The size in bytes of an rtx with code CODE. */
700 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
702 #define NULL_RTX (rtx) 0
704 /* The "next" and "previous" RTX, relative to this one. */
706 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
707 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
709 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
711 #define RTX_PREV(X) ((INSN_P (X) \
712 || NOTE_P (X) \
713 || JUMP_TABLE_DATA_P (X) \
714 || BARRIER_P (X) \
715 || LABEL_P (X)) \
716 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
717 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
718 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
720 /* Define macros to access the `code' field of the rtx. */
722 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
723 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
725 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
726 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
728 /* RTL vector. These appear inside RTX's when there is a need
729 for a variable number of things. The principle use is inside
730 PARALLEL expressions. */
732 struct GTY(()) rtvec_def {
733 int num_elem; /* number of elements */
734 rtx GTY ((length ("%h.num_elem"))) elem[1];
737 #define NULL_RTVEC (rtvec) 0
739 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
740 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
742 /* Predicate yielding nonzero iff X is an rtx for a register. */
743 #define REG_P(X) (GET_CODE (X) == REG)
745 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
746 #define MEM_P(X) (GET_CODE (X) == MEM)
748 #if TARGET_SUPPORTS_WIDE_INT
750 /* Match CONST_*s that can represent compile-time constant integers. */
751 #define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_WIDE_INT
755 /* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757 #define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_WIDE_INT: \
760 case CONST_POLY_INT: \
761 case CONST_DOUBLE: \
762 case CONST_FIXED
764 /* Match all CONST_* rtxes. */
765 #define CASE_CONST_ANY \
766 case CONST_INT: \
767 case CONST_WIDE_INT: \
768 case CONST_POLY_INT: \
769 case CONST_DOUBLE: \
770 case CONST_FIXED: \
771 case CONST_VECTOR
773 #else
775 /* Match CONST_*s that can represent compile-time constant integers. */
776 #define CASE_CONST_SCALAR_INT \
777 case CONST_INT: \
778 case CONST_DOUBLE
780 /* Match CONST_*s for which pointer equality corresponds to value
781 equality. */
782 #define CASE_CONST_UNIQUE \
783 case CONST_INT: \
784 case CONST_DOUBLE: \
785 case CONST_FIXED
787 /* Match all CONST_* rtxes. */
788 #define CASE_CONST_ANY \
789 case CONST_INT: \
790 case CONST_DOUBLE: \
791 case CONST_FIXED: \
792 case CONST_VECTOR
793 #endif
795 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
796 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
798 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
799 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
801 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
802 integer. */
803 #define CONST_POLY_INT_P(X) \
804 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
806 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
807 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
809 /* Predicate yielding true iff X is an rtx for a double-int
810 or floating point constant. */
811 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
813 /* Predicate yielding true iff X is an rtx for a double-int. */
814 #define CONST_DOUBLE_AS_INT_P(X) \
815 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
817 /* Predicate yielding true iff X is an rtx for a integer const. */
818 #if TARGET_SUPPORTS_WIDE_INT
819 #define CONST_SCALAR_INT_P(X) \
820 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
821 #else
822 #define CONST_SCALAR_INT_P(X) \
823 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
824 #endif
826 /* Predicate yielding true iff X is an rtx for a double-int. */
827 #define CONST_DOUBLE_AS_FLOAT_P(X) \
828 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
830 /* Predicate yielding nonzero iff X is a label insn. */
831 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
833 /* Predicate yielding nonzero iff X is a jump insn. */
834 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
836 /* Predicate yielding nonzero iff X is a call insn. */
837 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
839 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
840 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
842 /* Predicate yielding nonzero iff X is a debug note/insn. */
843 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
845 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
846 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
848 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
849 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
850 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
851 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
852 /* Nonzero if DEBUG_INSN_P may possibly hold. */
853 #define MAY_HAVE_DEBUG_INSNS \
854 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
856 /* Predicate yielding nonzero iff X is a real insn. */
857 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
859 /* Predicate yielding nonzero iff X is a note insn. */
860 #define NOTE_P(X) (GET_CODE (X) == NOTE)
862 /* Predicate yielding nonzero iff X is a barrier insn. */
863 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
865 /* Predicate yielding nonzero iff X is a data for a jump table. */
866 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
868 /* Predicate yielding nonzero iff RTX is a subreg. */
869 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
871 /* Predicate yielding true iff RTX is a symbol ref. */
872 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
874 template <>
875 template <>
876 inline bool
877 is_a_helper <rtx_insn *>::test (rtx rt)
879 return (INSN_P (rt)
880 || NOTE_P (rt)
881 || JUMP_TABLE_DATA_P (rt)
882 || BARRIER_P (rt)
883 || LABEL_P (rt));
886 template <>
887 template <>
888 inline bool
889 is_a_helper <const rtx_insn *>::test (const_rtx rt)
891 return (INSN_P (rt)
892 || NOTE_P (rt)
893 || JUMP_TABLE_DATA_P (rt)
894 || BARRIER_P (rt)
895 || LABEL_P (rt));
898 template <>
899 template <>
900 inline bool
901 is_a_helper <rtx_debug_insn *>::test (rtx rt)
903 return DEBUG_INSN_P (rt);
906 template <>
907 template <>
908 inline bool
909 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
911 return NONJUMP_INSN_P (rt);
914 template <>
915 template <>
916 inline bool
917 is_a_helper <rtx_jump_insn *>::test (rtx rt)
919 return JUMP_P (rt);
922 template <>
923 template <>
924 inline bool
925 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
927 return JUMP_P (insn);
930 template <>
931 template <>
932 inline bool
933 is_a_helper <rtx_call_insn *>::test (rtx rt)
935 return CALL_P (rt);
938 template <>
939 template <>
940 inline bool
941 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
943 return CALL_P (insn);
946 template <>
947 template <>
948 inline bool
949 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
951 return JUMP_TABLE_DATA_P (rt);
954 template <>
955 template <>
956 inline bool
957 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
959 return JUMP_TABLE_DATA_P (insn);
962 template <>
963 template <>
964 inline bool
965 is_a_helper <rtx_barrier *>::test (rtx rt)
967 return BARRIER_P (rt);
970 template <>
971 template <>
972 inline bool
973 is_a_helper <rtx_code_label *>::test (rtx rt)
975 return LABEL_P (rt);
978 template <>
979 template <>
980 inline bool
981 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
983 return LABEL_P (insn);
986 template <>
987 template <>
988 inline bool
989 is_a_helper <rtx_note *>::test (rtx rt)
991 return NOTE_P (rt);
994 template <>
995 template <>
996 inline bool
997 is_a_helper <rtx_note *>::test (rtx_insn *insn)
999 return NOTE_P (insn);
1002 /* Predicate yielding nonzero iff X is a return or simple_return. */
1003 #define ANY_RETURN_P(X) \
1004 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1006 /* 1 if X is a unary operator. */
1008 #define UNARY_P(X) \
1009 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1011 /* 1 if X is a binary operator. */
1013 #define BINARY_P(X) \
1014 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1016 /* 1 if X is an arithmetic operator. */
1018 #define ARITHMETIC_P(X) \
1019 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1020 == RTX_ARITHMETIC_RESULT)
1022 /* 1 if X is an arithmetic operator. */
1024 #define COMMUTATIVE_ARITH_P(X) \
1025 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1027 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1028 These two are sometimes selected together because it is possible to
1029 swap the two operands. */
1031 #define SWAPPABLE_OPERANDS_P(X) \
1032 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1033 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1034 | (1 << RTX_COMPARE)))
1036 /* 1 if X is a non-commutative operator. */
1038 #define NON_COMMUTATIVE_P(X) \
1039 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1040 == RTX_NON_COMMUTATIVE_RESULT)
1042 /* 1 if X is a commutative operator on integers. */
1044 #define COMMUTATIVE_P(X) \
1045 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1046 == RTX_COMMUTATIVE_RESULT)
1048 /* 1 if X is a relational operator. */
1050 #define COMPARISON_P(X) \
1051 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1053 /* 1 if X is a constant value that is an integer. */
1055 #define CONSTANT_P(X) \
1056 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1058 /* 1 if X is a LABEL_REF. */
1059 #define LABEL_REF_P(X) \
1060 (GET_CODE (X) == LABEL_REF)
1062 /* 1 if X can be used to represent an object. */
1063 #define OBJECT_P(X) \
1064 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1066 /* General accessor macros for accessing the fields of an rtx. */
1068 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1069 /* The bit with a star outside the statement expr and an & inside is
1070 so that N can be evaluated only once. */
1071 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1072 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1073 const enum rtx_code _code = GET_CODE (_rtx); \
1074 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1075 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1076 __FUNCTION__); \
1077 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1078 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1079 __FUNCTION__); \
1080 &_rtx->u.fld[_n]; }))
1082 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1083 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1084 const enum rtx_code _code = GET_CODE (_rtx); \
1085 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1086 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1087 __FUNCTION__); \
1088 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1089 && GET_RTX_FORMAT (_code)[_n] != C2) \
1090 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1091 __FUNCTION__); \
1092 &_rtx->u.fld[_n]; }))
1094 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1095 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1096 if (GET_CODE (_rtx) != (C)) \
1097 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 &_rtx->u.fld[_n]; }))
1101 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1102 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1103 const enum rtx_code _code = GET_CODE (_rtx); \
1104 if (_code != (C1) && _code != (C2)) \
1105 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1106 __FUNCTION__); \
1107 &_rtx->u.fld[_n]; }))
1109 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1110 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1111 const enum rtx_code _code = GET_CODE (_rtx); \
1112 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1113 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1114 __LINE__, __FUNCTION__); \
1115 &_rtx->u.fld[_n]; }))
1117 #define RTVEC_ELT(RTVEC, I) __extension__ \
1118 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1119 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1120 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1121 __FUNCTION__); \
1122 &_rtvec->elem[_i]; }))
1124 #define XWINT(RTX, N) __extension__ \
1125 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1126 const enum rtx_code _code = GET_CODE (_rtx); \
1127 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1128 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1129 __FUNCTION__); \
1130 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1131 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1132 __FUNCTION__); \
1133 &_rtx->u.hwint[_n]; }))
1135 #define CWI_ELT(RTX, I) __extension__ \
1136 (*({ __typeof (RTX) const _cwi = (RTX); \
1137 int _max = CWI_GET_NUM_ELEM (_cwi); \
1138 const int _i = (I); \
1139 if (_i < 0 || _i >= _max) \
1140 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 &_cwi->u.hwiv.elem[_i]; }))
1144 #define XCWINT(RTX, N, C) __extension__ \
1145 (*({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != (C)) \
1147 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1148 __FUNCTION__); \
1149 &_rtx->u.hwint[N]; }))
1151 #define XCMWINT(RTX, N, C, M) __extension__ \
1152 (*({ __typeof (RTX) const _rtx = (RTX); \
1153 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1154 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1155 __LINE__, __FUNCTION__); \
1156 &_rtx->u.hwint[N]; }))
1158 #define XCNMPRV(RTX, C, M) __extension__ \
1159 ({ __typeof (RTX) const _rtx = (RTX); \
1160 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1161 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1162 __LINE__, __FUNCTION__); \
1163 &_rtx->u.rv; })
1165 #define XCNMPFV(RTX, C, M) __extension__ \
1166 ({ __typeof (RTX) const _rtx = (RTX); \
1167 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1168 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1169 __LINE__, __FUNCTION__); \
1170 &_rtx->u.fv; })
1172 #define REG_CHECK(RTX) __extension__ \
1173 ({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != REG) \
1175 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1176 __FUNCTION__); \
1177 &_rtx->u.reg; })
1179 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1180 ({ __typeof (RTX) const _symbol = (RTX); \
1181 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1182 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1183 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1184 __FUNCTION__); \
1185 &_symbol->u.block_sym; })
1187 #define HWIVEC_CHECK(RTX,C) __extension__ \
1188 ({ __typeof (RTX) const _symbol = (RTX); \
1189 RTL_CHECKC1 (_symbol, 0, C); \
1190 &_symbol->u.hwiv; })
1192 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1193 const char *)
1194 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1195 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1196 const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1199 int, const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1202 int, const char *)
1203 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1204 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1205 const char *, int, const char *)
1206 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1207 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1208 enum rtx_code, const char *, int,
1209 const char *)
1210 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1211 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1212 bool, const char *, int, const char *)
1213 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1215 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1216 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1217 const char *)
1218 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1219 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1220 const char *)
1221 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1223 #else /* not ENABLE_RTL_CHECKING */
1225 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1226 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1227 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1228 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1229 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1230 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1231 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1232 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1233 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1234 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1235 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1236 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1237 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1238 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1239 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1240 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1242 #endif
1244 /* General accessor macros for accessing the flags of an rtx. */
1246 /* Access an individual rtx flag, with no checking of any kind. */
1247 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1249 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1250 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1251 ({ __typeof (RTX) const _rtx = (RTX); \
1252 if (GET_CODE (_rtx) != C1) \
1253 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1254 __FUNCTION__); \
1255 _rtx; })
1257 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1258 ({ __typeof (RTX) const _rtx = (RTX); \
1259 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1260 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1261 __FUNCTION__); \
1262 _rtx; })
1264 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1265 ({ __typeof (RTX) const _rtx = (RTX); \
1266 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1267 && GET_CODE (_rtx) != C3) \
1268 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1269 __FUNCTION__); \
1270 _rtx; })
1272 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1273 ({ __typeof (RTX) const _rtx = (RTX); \
1274 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1275 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1276 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1277 __FUNCTION__); \
1278 _rtx; })
1280 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1281 ({ __typeof (RTX) const _rtx = (RTX); \
1282 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1283 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1284 && GET_CODE (_rtx) != C5) \
1285 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1286 __FUNCTION__); \
1287 _rtx; })
1289 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1290 __extension__ \
1291 ({ __typeof (RTX) const _rtx = (RTX); \
1292 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1293 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1294 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1295 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1296 __FUNCTION__); \
1297 _rtx; })
1299 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1300 __extension__ \
1301 ({ __typeof (RTX) const _rtx = (RTX); \
1302 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1303 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1304 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1305 && GET_CODE (_rtx) != C7) \
1306 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1307 __FUNCTION__); \
1308 _rtx; })
1310 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1311 __extension__ \
1312 ({ __typeof (RTX) const _rtx = (RTX); \
1313 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1314 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1315 __FUNCTION__); \
1316 _rtx; })
1318 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1319 int, const char *)
1320 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1323 #else /* not ENABLE_RTL_FLAG_CHECKING */
1325 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1326 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1327 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1328 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1329 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1330 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1331 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1332 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1333 #endif
1335 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1336 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1337 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1338 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1339 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1340 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1341 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1342 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1343 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1344 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1346 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1347 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1349 /* These are like XINT, etc. except that they expect a '0' field instead
1350 of the normal type code. */
1352 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1353 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1354 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1355 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1356 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1357 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1358 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1359 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1360 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1361 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1362 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1363 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1365 /* Access a '0' field with any type. */
1366 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1368 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1369 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1370 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1371 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1372 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1373 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1374 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1375 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1376 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1377 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1378 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1380 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1381 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1383 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1384 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1387 /* Methods of rtx_expr_list. */
1389 inline rtx_expr_list *rtx_expr_list::next () const
1391 rtx tmp = XEXP (this, 1);
1392 return safe_as_a <rtx_expr_list *> (tmp);
1395 inline rtx rtx_expr_list::element () const
1397 return XEXP (this, 0);
1400 /* Methods of rtx_insn_list. */
1402 inline rtx_insn_list *rtx_insn_list::next () const
1404 rtx tmp = XEXP (this, 1);
1405 return safe_as_a <rtx_insn_list *> (tmp);
1408 inline rtx_insn *rtx_insn_list::insn () const
1410 rtx tmp = XEXP (this, 0);
1411 return safe_as_a <rtx_insn *> (tmp);
1414 /* Methods of rtx_sequence. */
1416 inline int rtx_sequence::len () const
1418 return XVECLEN (this, 0);
1421 inline rtx rtx_sequence::element (int index) const
1423 return XVECEXP (this, 0, index);
1426 inline rtx_insn *rtx_sequence::insn (int index) const
1428 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1431 /* ACCESS MACROS for particular fields of insns. */
1433 /* Holds a unique number for each insn.
1434 These are not necessarily sequentially increasing. */
1435 inline int INSN_UID (const_rtx insn)
1437 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1438 (insn))->u2.insn_uid;
1440 inline int& INSN_UID (rtx insn)
1442 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1443 (insn))->u2.insn_uid;
1446 /* Chain insns together in sequence. */
1448 /* For now these are split in two: an rvalue form:
1449 PREV_INSN/NEXT_INSN
1450 and an lvalue form:
1451 SET_NEXT_INSN/SET_PREV_INSN. */
1453 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1455 rtx prev = XEXP (insn, 0);
1456 return safe_as_a <rtx_insn *> (prev);
1459 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1461 return XEXP (insn, 0);
1464 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1466 rtx next = XEXP (insn, 1);
1467 return safe_as_a <rtx_insn *> (next);
1470 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1472 return XEXP (insn, 1);
1475 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1477 return XBBDEF (insn, 2);
1480 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1482 return XBBDEF (insn, 2);
1485 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1487 BLOCK_FOR_INSN (insn) = bb;
1490 /* The body of an insn. */
1491 inline rtx PATTERN (const_rtx insn)
1493 return XEXP (insn, 3);
1496 inline rtx& PATTERN (rtx insn)
1498 return XEXP (insn, 3);
1501 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1503 return XUINT (insn, 4);
1506 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1508 return XUINT (insn, 4);
1511 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1513 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1516 /* LOCATION of an RTX if relevant. */
1517 #define RTL_LOCATION(X) (INSN_P (X) ? \
1518 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1519 : UNKNOWN_LOCATION)
1521 /* Code number of instruction, from when it was recognized.
1522 -1 means this instruction has not been recognized yet. */
1523 #define INSN_CODE(INSN) XINT (INSN, 5)
1525 inline rtvec rtx_jump_table_data::get_labels () const
1527 rtx pat = PATTERN (this);
1528 if (GET_CODE (pat) == ADDR_VEC)
1529 return XVEC (pat, 0);
1530 else
1531 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1534 /* Return the mode of the data in the table, which is always a scalar
1535 integer. */
1537 inline scalar_int_mode
1538 rtx_jump_table_data::get_data_mode () const
1540 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1543 /* If LABEL is followed by a jump table, return the table, otherwise
1544 return null. */
1546 inline rtx_jump_table_data *
1547 jump_table_for_label (const rtx_code_label *label)
1549 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1552 #define RTX_FRAME_RELATED_P(RTX) \
1553 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1554 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1556 /* 1 if JUMP RTX is a crossing jump. */
1557 #define CROSSING_JUMP_P(RTX) \
1558 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1560 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1561 TREE_READONLY. */
1562 #define RTL_CONST_CALL_P(RTX) \
1563 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1565 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1566 DECL_PURE_P. */
1567 #define RTL_PURE_CALL_P(RTX) \
1568 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1570 /* 1 if RTX is a call to a const or pure function. */
1571 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1572 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1574 /* 1 if RTX is a call to a looping const or pure function. Built from
1575 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1576 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1577 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1579 /* 1 if RTX is a call_insn for a sibling call. */
1580 #define SIBLING_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1583 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1584 #define INSN_ANNULLED_BRANCH_P(RTX) \
1585 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1587 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1588 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1589 executed if the branch is taken. For annulled branches with this bit
1590 clear, the insn should be executed only if the branch is not taken. */
1591 #define INSN_FROM_TARGET_P(RTX) \
1592 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1593 CALL_INSN)->in_struct)
1595 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1596 See the comments for ADDR_DIFF_VEC in rtl.def. */
1597 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1599 /* In a VALUE, the value cselib has assigned to RTX.
1600 This is a "struct cselib_val", see cselib.h. */
1601 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1603 /* Holds a list of notes on what this insn does to various REGs.
1604 It is a chain of EXPR_LIST rtx's, where the second operand is the
1605 chain pointer and the first operand is the REG being described.
1606 The mode field of the EXPR_LIST contains not a real machine mode
1607 but a value from enum reg_note. */
1608 #define REG_NOTES(INSN) XEXP(INSN, 6)
1610 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1611 question. */
1612 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1614 enum reg_note
1616 #define DEF_REG_NOTE(NAME) NAME,
1617 #include "reg-notes.def"
1618 #undef DEF_REG_NOTE
1619 REG_NOTE_MAX
1622 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1623 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1624 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1625 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1627 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1629 extern const char * const reg_note_name[];
1630 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1632 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1633 USE, CLOBBER and SET expressions.
1634 USE expressions list the registers filled with arguments that
1635 are passed to the function.
1636 CLOBBER expressions document the registers explicitly clobbered
1637 by this CALL_INSN.
1638 SET expressions say that the return value of the call (the SET_DEST)
1639 is equivalent to a value available before the call (the SET_SRC).
1640 This kind of SET is used when the return value is predictable in
1641 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1642 it does not affect register liveness.
1644 Pseudo registers cannot be mentioned in this list. */
1645 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1647 /* The label-number of a code-label. The assembler label
1648 is made from `L' and the label-number printed in decimal.
1649 Label numbers are unique in a compilation. */
1650 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1652 /* In a NOTE that is a line number, this is a string for the file name that the
1653 line is in. We use the same field to record block numbers temporarily in
1654 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1655 between ints and pointers if we use a different macro for the block number.)
1658 /* Opaque data. */
1659 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1660 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1661 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1662 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1663 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1664 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1665 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1666 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1667 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1668 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1670 /* In a NOTE that is a line number, this is the line number.
1671 Other kinds of NOTEs are identified by negative numbers here. */
1672 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1674 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1675 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1676 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1678 /* Nonzero if INSN is a debug nonbind marker note,
1679 for which NOTE_MARKER_LOCATION can be used. */
1680 #define NOTE_MARKER_P(INSN) \
1681 (NOTE_P (INSN) && \
1682 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1683 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1685 /* Variable declaration and the location of a variable. */
1686 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1687 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1689 /* Initialization status of the variable in the location. Status
1690 can be unknown, uninitialized or initialized. See enumeration
1691 type below. */
1692 #define PAT_VAR_LOCATION_STATUS(PAT) \
1693 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1694 ->u2.var_location_status)
1696 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1697 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1698 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1699 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1700 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1701 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1702 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1704 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1705 location/value tracking annotation. */
1706 #define DEBUG_BIND_INSN_P(INSN) \
1707 (DEBUG_INSN_P (INSN) \
1708 && (GET_CODE (PATTERN (INSN)) \
1709 == VAR_LOCATION))
1710 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1711 source location marker. */
1712 #define DEBUG_MARKER_INSN_P(INSN) \
1713 (DEBUG_INSN_P (INSN) \
1714 && (GET_CODE (PATTERN (INSN)) \
1715 != VAR_LOCATION))
1716 /* Evaluate to the marker kind. */
1717 #define INSN_DEBUG_MARKER_KIND(INSN) \
1718 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1719 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1720 ? NOTE_INSN_BEGIN_STMT \
1721 : GET_MODE (PATTERN (INSN)) == BLKmode \
1722 ? NOTE_INSN_INLINE_ENTRY \
1723 : (enum insn_note)-1) \
1724 : (enum insn_note)-1)
1725 /* Create patterns for debug markers. These and the above abstract
1726 the representation, so that it's easier to get rid of the abuse of
1727 the mode to hold the marker kind. Other marker types are
1728 envisioned, so a single bit flag won't do; maybe separate RTL codes
1729 wouldn't be a problem. */
1730 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1731 gen_rtx_DEBUG_MARKER (VOIDmode)
1732 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1733 gen_rtx_DEBUG_MARKER (BLKmode)
1735 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1736 #define INSN_VAR_LOCATION(INSN) \
1737 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1738 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1739 #define INSN_VAR_LOCATION_PTR(INSN) \
1740 (&PATTERN (INSN))
1742 /* Accessors for a tree-expanded var location debug insn. */
1743 #define INSN_VAR_LOCATION_DECL(INSN) \
1744 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1745 #define INSN_VAR_LOCATION_LOC(INSN) \
1746 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1747 #define INSN_VAR_LOCATION_STATUS(INSN) \
1748 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1750 /* Expand to the RTL that denotes an unknown variable location in a
1751 DEBUG_INSN. */
1752 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1754 /* Determine whether X is such an unknown location. */
1755 #define VAR_LOC_UNKNOWN_P(X) \
1756 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1758 /* 1 if RTX is emitted after a call, but it should take effect before
1759 the call returns. */
1760 #define NOTE_DURING_CALL_P(RTX) \
1761 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1763 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1764 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1766 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1767 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1769 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1770 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1772 /* Codes that appear in the NOTE_KIND field for kinds of notes
1773 that are not line numbers. These codes are all negative.
1775 Notice that we do not try to use zero here for any of
1776 the special note codes because sometimes the source line
1777 actually can be zero! This happens (for example) when we
1778 are generating code for the per-translation-unit constructor
1779 and destructor routines for some C++ translation unit. */
1781 enum insn_note
1783 #define DEF_INSN_NOTE(NAME) NAME,
1784 #include "insn-notes.def"
1785 #undef DEF_INSN_NOTE
1787 NOTE_INSN_MAX
1790 /* Names for NOTE insn's other than line numbers. */
1792 extern const char * const note_insn_name[NOTE_INSN_MAX];
1793 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1794 (note_insn_name[(NOTE_CODE)])
1796 /* The name of a label, in case it corresponds to an explicit label
1797 in the input source code. */
1798 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1800 /* In jump.c, each label contains a count of the number
1801 of LABEL_REFs that point at it, so unused labels can be deleted. */
1802 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1804 /* Labels carry a two-bit field composed of the ->jump and ->call
1805 bits. This field indicates whether the label is an alternate
1806 entry point, and if so, what kind. */
1807 enum label_kind
1809 LABEL_NORMAL = 0, /* ordinary label */
1810 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1811 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1812 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1815 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1817 /* Retrieve the kind of LABEL. */
1818 #define LABEL_KIND(LABEL) __extension__ \
1819 ({ __typeof (LABEL) const _label = (LABEL); \
1820 if (! LABEL_P (_label)) \
1821 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1822 __FUNCTION__); \
1823 (enum label_kind) ((_label->jump << 1) | _label->call); })
1825 /* Set the kind of LABEL. */
1826 #define SET_LABEL_KIND(LABEL, KIND) do { \
1827 __typeof (LABEL) const _label = (LABEL); \
1828 const unsigned int _kind = (KIND); \
1829 if (! LABEL_P (_label)) \
1830 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1831 __FUNCTION__); \
1832 _label->jump = ((_kind >> 1) & 1); \
1833 _label->call = (_kind & 1); \
1834 } while (0)
1836 #else
1838 /* Retrieve the kind of LABEL. */
1839 #define LABEL_KIND(LABEL) \
1840 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1842 /* Set the kind of LABEL. */
1843 #define SET_LABEL_KIND(LABEL, KIND) do { \
1844 rtx const _label = (LABEL); \
1845 const unsigned int _kind = (KIND); \
1846 _label->jump = ((_kind >> 1) & 1); \
1847 _label->call = (_kind & 1); \
1848 } while (0)
1850 #endif /* rtl flag checking */
1852 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1854 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1855 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1856 be decremented and possibly the label can be deleted. */
1857 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1859 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1861 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1864 /* Methods of rtx_jump_insn. */
1866 inline rtx rtx_jump_insn::jump_label () const
1868 return JUMP_LABEL (this);
1871 inline rtx_code_label *rtx_jump_insn::jump_target () const
1873 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1876 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1878 JUMP_LABEL (this) = target;
1881 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1882 goes through all the LABEL_REFs that jump to that label. The chain
1883 eventually winds up at the CODE_LABEL: it is circular. */
1884 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1886 /* Get the label that a LABEL_REF references. */
1887 static inline rtx_insn *
1888 label_ref_label (const_rtx ref)
1890 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1893 /* Set the label that LABEL_REF ref refers to. */
1895 static inline void
1896 set_label_ref_label (rtx ref, rtx_insn *label)
1898 XCEXP (ref, 0, LABEL_REF) = label;
1901 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1902 be used on RHS. Use SET_REGNO to change the value. */
1903 #define REGNO(RTX) (rhs_regno(RTX))
1904 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1906 /* Return the number of consecutive registers in a REG. This is always
1907 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1908 hard registers. */
1909 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1911 /* ORIGINAL_REGNO holds the number the register originally had; for a
1912 pseudo register turned into a hard reg this will hold the old pseudo
1913 register number. */
1914 #define ORIGINAL_REGNO(RTX) \
1915 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1917 /* Force the REGNO macro to only be used on the lhs. */
1918 static inline unsigned int
1919 rhs_regno (const_rtx x)
1921 return REG_CHECK (x)->regno;
1924 /* Return the final register in REG X plus one. */
1925 static inline unsigned int
1926 END_REGNO (const_rtx x)
1928 return REGNO (x) + REG_NREGS (x);
1931 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1932 bypassing the df machinery. */
1933 static inline void
1934 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1936 reg_info *reg = REG_CHECK (x);
1937 reg->regno = regno;
1938 reg->nregs = nregs;
1941 /* 1 if RTX is a reg or parallel that is the current function's return
1942 value. */
1943 #define REG_FUNCTION_VALUE_P(RTX) \
1944 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1946 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1947 #define REG_USERVAR_P(RTX) \
1948 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1950 /* 1 if RTX is a reg that holds a pointer value. */
1951 #define REG_POINTER(RTX) \
1952 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1954 /* 1 if RTX is a mem that holds a pointer value. */
1955 #define MEM_POINTER(RTX) \
1956 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1958 /* 1 if the given register REG corresponds to a hard register. */
1959 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1961 /* 1 if the given register number REG_NO corresponds to a hard register. */
1962 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1964 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1965 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1966 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1968 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1969 elements actually needed to represent the constant.
1970 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1971 significant HOST_WIDE_INT. */
1972 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1973 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1974 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1976 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1977 individual coefficients, in the form of a trailing_wide_ints structure. */
1978 #define CONST_POLY_INT_COEFFS(RTX) \
1979 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1980 CONST_POLY_INT)->u.cpi.coeffs)
1982 /* For a CONST_DOUBLE:
1983 #if TARGET_SUPPORTS_WIDE_INT == 0
1984 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1985 low-order word and ..._HIGH the high-order.
1986 #endif
1987 For a float, there is a REAL_VALUE_TYPE structure, and
1988 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1989 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1990 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1991 #define CONST_DOUBLE_REAL_VALUE(r) \
1992 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1994 #define CONST_FIXED_VALUE(r) \
1995 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1996 #define CONST_FIXED_VALUE_HIGH(r) \
1997 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1998 #define CONST_FIXED_VALUE_LOW(r) \
1999 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2001 /* For a CONST_VECTOR, return element #n. */
2002 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2004 /* See rtl.texi for a description of these macros. */
2005 #define CONST_VECTOR_NPATTERNS(RTX) \
2006 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2007 ->u2.const_vector.npatterns)
2009 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2010 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2011 ->u2.const_vector.nelts_per_pattern)
2013 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2014 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2016 #define CONST_VECTOR_STEPPED_P(RTX) \
2017 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2019 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2021 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2023 inline unsigned int
2024 const_vector_encoded_nelts (const_rtx x)
2026 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2029 /* For a CONST_VECTOR, return the number of elements in a vector. */
2030 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2032 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2033 SUBREG_BYTE extracts the byte-number. */
2035 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2036 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2038 /* in rtlanal.c */
2039 /* Return the right cost to give to an operation
2040 to make the cost of the corresponding register-to-register instruction
2041 N times that of a fast register-to-register instruction. */
2042 #define COSTS_N_INSNS(N) ((N) * 4)
2044 /* Maximum cost of an rtl expression. This value has the special meaning
2045 not to use an rtx with this cost under any circumstances. */
2046 #define MAX_COST INT_MAX
2048 /* Return true if CODE always has VOIDmode. */
2050 static inline bool
2051 always_void_p (enum rtx_code code)
2053 return code == SET;
2056 /* A structure to hold all available cost information about an rtl
2057 expression. */
2058 struct full_rtx_costs
2060 int speed;
2061 int size;
2064 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2065 static inline void
2066 init_costs_to_max (struct full_rtx_costs *c)
2068 c->speed = MAX_COST;
2069 c->size = MAX_COST;
2072 /* Initialize a full_rtx_costs structure C to zero cost. */
2073 static inline void
2074 init_costs_to_zero (struct full_rtx_costs *c)
2076 c->speed = 0;
2077 c->size = 0;
2080 /* Compare two full_rtx_costs structures A and B, returning true
2081 if A < B when optimizing for speed. */
2082 static inline bool
2083 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2084 bool speed)
2086 if (speed)
2087 return (a->speed < b->speed
2088 || (a->speed == b->speed && a->size < b->size));
2089 else
2090 return (a->size < b->size
2091 || (a->size == b->size && a->speed < b->speed));
2094 /* Increase both members of the full_rtx_costs structure C by the
2095 cost of N insns. */
2096 static inline void
2097 costs_add_n_insns (struct full_rtx_costs *c, int n)
2099 c->speed += COSTS_N_INSNS (n);
2100 c->size += COSTS_N_INSNS (n);
2103 /* Describes the shape of a subreg:
2105 inner_mode == the mode of the SUBREG_REG
2106 offset == the SUBREG_BYTE
2107 outer_mode == the mode of the SUBREG itself. */
2108 class subreg_shape {
2109 public:
2110 subreg_shape (machine_mode, poly_uint16, machine_mode);
2111 bool operator == (const subreg_shape &) const;
2112 bool operator != (const subreg_shape &) const;
2113 unsigned HOST_WIDE_INT unique_id () const;
2115 machine_mode inner_mode;
2116 poly_uint16 offset;
2117 machine_mode outer_mode;
2120 inline
2121 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2122 poly_uint16 offset_in,
2123 machine_mode outer_mode_in)
2124 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2127 inline bool
2128 subreg_shape::operator == (const subreg_shape &other) const
2130 return (inner_mode == other.inner_mode
2131 && known_eq (offset, other.offset)
2132 && outer_mode == other.outer_mode);
2135 inline bool
2136 subreg_shape::operator != (const subreg_shape &other) const
2138 return !operator == (other);
2141 /* Return an integer that uniquely identifies this shape. Structures
2142 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2143 current mode is anywhere near being 65536 bytes in size, so the
2144 id comfortably fits in an int. */
2146 inline unsigned HOST_WIDE_INT
2147 subreg_shape::unique_id () const
2149 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2150 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2151 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2152 int res = (int) inner_mode + ((int) outer_mode << 8);
2153 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2154 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2155 return res;
2158 /* Return the shape of a SUBREG rtx. */
2160 static inline subreg_shape
2161 shape_of_subreg (const_rtx x)
2163 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2164 SUBREG_BYTE (x), GET_MODE (x));
2167 /* Information about an address. This structure is supposed to be able
2168 to represent all supported target addresses. Please extend it if it
2169 is not yet general enough. */
2170 struct address_info {
2171 /* The mode of the value being addressed, or VOIDmode if this is
2172 a load-address operation with no known address mode. */
2173 machine_mode mode;
2175 /* The address space. */
2176 addr_space_t as;
2178 /* True if this is an RTX_AUTOINC address. */
2179 bool autoinc_p;
2181 /* A pointer to the top-level address. */
2182 rtx *outer;
2184 /* A pointer to the inner address, after all address mutations
2185 have been stripped from the top-level address. It can be one
2186 of the following:
2188 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2190 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2191 points to the step value, depending on whether the step is variable
2192 or constant respectively. SEGMENT is null.
2194 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2195 with null fields evaluating to 0. */
2196 rtx *inner;
2198 /* Components that make up *INNER. Each one may be null or nonnull.
2199 When nonnull, their meanings are as follows:
2201 - *SEGMENT is the "segment" of memory to which the address refers.
2202 This value is entirely target-specific and is only called a "segment"
2203 because that's its most typical use. It contains exactly one UNSPEC,
2204 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2205 reloading.
2207 - *BASE is a variable expression representing a base address.
2208 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2210 - *INDEX is a variable expression representing an index value.
2211 It may be a scaled expression, such as a MULT. It has exactly
2212 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2214 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2215 unmutated RTX_CONST_OBJ. */
2216 rtx *segment;
2217 rtx *base;
2218 rtx *index;
2219 rtx *disp;
2221 rtx *segment_term;
2222 rtx *base_term;
2223 rtx *index_term;
2224 rtx *disp_term;
2226 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2227 of BASE_TERM, otherwise it is null. */
2228 rtx *base_term2;
2230 /* ADDRESS if this structure describes an address operand, MEM if
2231 it describes a MEM address. */
2232 enum rtx_code addr_outer_code;
2234 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2235 enum rtx_code base_outer_code;
2238 /* This is used to bundle an rtx and a mode together so that the pair
2239 can be used with the wi:: routines. If we ever put modes into rtx
2240 integer constants, this should go away and then just pass an rtx in. */
2241 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2243 namespace wi
2245 template <>
2246 struct int_traits <rtx_mode_t>
2248 static const enum precision_type precision_type = VAR_PRECISION;
2249 static const bool host_dependent_precision = false;
2250 /* This ought to be true, except for the special case that BImode
2251 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2252 static const bool is_sign_extended = false;
2253 static unsigned int get_precision (const rtx_mode_t &);
2254 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2255 const rtx_mode_t &);
2259 inline unsigned int
2260 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2262 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2265 inline wi::storage_ref
2266 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2267 unsigned int precision,
2268 const rtx_mode_t &x)
2270 gcc_checking_assert (precision == get_precision (x));
2271 switch (GET_CODE (x.first))
2273 case CONST_INT:
2274 if (precision < HOST_BITS_PER_WIDE_INT)
2275 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2276 targets is 1 rather than -1. */
2277 gcc_checking_assert (INTVAL (x.first)
2278 == sext_hwi (INTVAL (x.first), precision)
2279 || (x.second == BImode && INTVAL (x.first) == 1));
2281 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2283 case CONST_WIDE_INT:
2284 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2285 CONST_WIDE_INT_NUNITS (x.first), precision);
2287 #if TARGET_SUPPORTS_WIDE_INT == 0
2288 case CONST_DOUBLE:
2289 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2290 #endif
2292 default:
2293 gcc_unreachable ();
2297 namespace wi
2299 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2300 wide_int min_value (machine_mode, signop);
2301 wide_int max_value (machine_mode, signop);
2304 inline wi::hwi_with_prec
2305 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2307 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2310 /* Produce the smallest number that is represented in MODE. The precision
2311 is taken from MODE and the sign from SGN. */
2312 inline wide_int
2313 wi::min_value (machine_mode mode, signop sgn)
2315 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2318 /* Produce the largest number that is represented in MODE. The precision
2319 is taken from MODE and the sign from SGN. */
2320 inline wide_int
2321 wi::max_value (machine_mode mode, signop sgn)
2323 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2326 namespace wi
2328 typedef poly_int<NUM_POLY_INT_COEFFS,
2329 generic_wide_int <wide_int_ref_storage <false, false> > >
2330 rtx_to_poly_wide_ref;
2331 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2334 /* Return the value of a CONST_POLY_INT in its native precision. */
2336 inline wi::rtx_to_poly_wide_ref
2337 const_poly_int_value (const_rtx x)
2339 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2340 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2341 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2342 return res;
2345 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2346 can then be extracted using wi::to_poly_wide. */
2348 inline bool
2349 poly_int_rtx_p (const_rtx x)
2351 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2354 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2355 MODE is the mode of X. */
2357 inline wi::rtx_to_poly_wide_ref
2358 wi::to_poly_wide (const_rtx x, machine_mode mode)
2360 if (CONST_POLY_INT_P (x))
2361 return const_poly_int_value (x);
2362 return rtx_mode_t (const_cast<rtx> (x), mode);
2365 /* Return the value of X as a poly_int64. */
2367 inline poly_int64
2368 rtx_to_poly_int64 (const_rtx x)
2370 if (CONST_POLY_INT_P (x))
2372 poly_int64 res;
2373 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2374 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2375 return res;
2377 return INTVAL (x);
2380 /* Return true if arbitrary value X is an integer constant that can
2381 be represented as a poly_int64. Store the value in *RES if so,
2382 otherwise leave it unmodified. */
2384 inline bool
2385 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2387 if (CONST_INT_P (x))
2389 *res = INTVAL (x);
2390 return true;
2392 if (CONST_POLY_INT_P (x))
2394 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2395 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2396 return false;
2397 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2398 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2399 return true;
2401 return false;
2404 extern void init_rtlanal (void);
2405 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2406 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2407 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2408 struct full_rtx_costs *);
2409 extern poly_uint64 subreg_lsb (const_rtx);
2410 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2411 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2412 poly_uint64);
2413 extern bool read_modify_subreg_p (const_rtx);
2415 /* Return the subreg byte offset for a subreg whose outer mode is
2416 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2417 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2418 the inner value. This is the inverse of subreg_lsb_1 (which converts
2419 byte offsets to bit shifts). */
2421 inline poly_uint64
2422 subreg_offset_from_lsb (machine_mode outer_mode,
2423 machine_mode inner_mode,
2424 poly_uint64 lsb_shift)
2426 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2427 GET_MODE_SIZE (inner_mode), lsb_shift);
2430 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2431 poly_uint64, machine_mode);
2432 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2433 poly_uint64, machine_mode);
2434 extern unsigned int subreg_regno (const_rtx);
2435 extern int simplify_subreg_regno (unsigned int, machine_mode,
2436 poly_uint64, machine_mode);
2437 extern unsigned int subreg_nregs (const_rtx);
2438 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2439 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2440 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2441 extern bool constant_pool_constant_p (rtx);
2442 extern bool truncated_to_mode (machine_mode, const_rtx);
2443 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2444 extern void split_double (rtx, rtx *, rtx *);
2445 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2446 extern void decompose_address (struct address_info *, rtx *,
2447 machine_mode, addr_space_t, enum rtx_code);
2448 extern void decompose_lea_address (struct address_info *, rtx *);
2449 extern void decompose_mem_address (struct address_info *, rtx);
2450 extern void update_address (struct address_info *);
2451 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2452 extern enum rtx_code get_index_code (const struct address_info *);
2454 /* 1 if RTX is a subreg containing a reg that is already known to be
2455 sign- or zero-extended from the mode of the subreg to the mode of
2456 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2457 extension.
2459 When used as a LHS, is means that this extension must be done
2460 when assigning to SUBREG_REG. */
2462 #define SUBREG_PROMOTED_VAR_P(RTX) \
2463 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2465 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2466 this gives the necessary extensions:
2467 0 - signed (SPR_SIGNED)
2468 1 - normal unsigned (SPR_UNSIGNED)
2469 2 - value is both sign and unsign extended for mode
2470 (SPR_SIGNED_AND_UNSIGNED).
2471 -1 - pointer unsigned, which most often can be handled like unsigned
2472 extension, except for generating instructions where we need to
2473 emit special code (ptr_extend insns) on some architectures
2474 (SPR_POINTER). */
2476 const int SRP_POINTER = -1;
2477 const int SRP_SIGNED = 0;
2478 const int SRP_UNSIGNED = 1;
2479 const int SRP_SIGNED_AND_UNSIGNED = 2;
2481 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2482 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2483 do { \
2484 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2485 (RTX), SUBREG); \
2486 switch (VAL) \
2488 case SRP_POINTER: \
2489 _rtx->volatil = 0; \
2490 _rtx->unchanging = 0; \
2491 break; \
2492 case SRP_SIGNED: \
2493 _rtx->volatil = 0; \
2494 _rtx->unchanging = 1; \
2495 break; \
2496 case SRP_UNSIGNED: \
2497 _rtx->volatil = 1; \
2498 _rtx->unchanging = 0; \
2499 break; \
2500 case SRP_SIGNED_AND_UNSIGNED: \
2501 _rtx->volatil = 1; \
2502 _rtx->unchanging = 1; \
2503 break; \
2505 } while (0)
2507 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2508 including SRP_SIGNED_AND_UNSIGNED if promoted for
2509 both signed and unsigned. */
2510 #define SUBREG_PROMOTED_GET(RTX) \
2511 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2512 + (RTX)->unchanging - 1)
2514 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2515 #define SUBREG_PROMOTED_SIGN(RTX) \
2516 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2517 : (RTX)->unchanging - 1)
2519 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2520 for SIGNED type. */
2521 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2522 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2524 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2525 for UNSIGNED type. */
2526 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2527 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2529 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2530 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2531 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2532 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2533 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2535 /* True if the REG is the static chain register for some CALL_INSN. */
2536 #define STATIC_CHAIN_REG_P(RTX) \
2537 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2539 /* True if the subreg was generated by LRA for reload insns. Such
2540 subregs are valid only during LRA. */
2541 #define LRA_SUBREG_P(RTX) \
2542 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2544 /* Access various components of an ASM_OPERANDS rtx. */
2546 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2547 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2548 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2549 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2550 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2551 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2552 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2553 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2554 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2555 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2556 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2557 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2558 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2559 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2560 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2561 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2562 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2563 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2565 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2566 #define MEM_READONLY_P(RTX) \
2567 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2569 /* 1 if RTX is a mem and we should keep the alias set for this mem
2570 unchanged when we access a component. Set to 1, or example, when we
2571 are already in a non-addressable component of an aggregate. */
2572 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2573 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2575 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2576 #define MEM_VOLATILE_P(RTX) \
2577 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2578 ASM_INPUT)->volatil)
2580 /* 1 if RTX is a mem that cannot trap. */
2581 #define MEM_NOTRAP_P(RTX) \
2582 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2584 /* The memory attribute block. We provide access macros for each value
2585 in the block and provide defaults if none specified. */
2586 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2588 /* The register attribute block. We provide access macros for each value
2589 in the block and provide defaults if none specified. */
2590 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2592 #ifndef GENERATOR_FILE
2593 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2594 set, and may alias anything. Otherwise, the MEM can only alias
2595 MEMs in a conflicting alias set. This value is set in a
2596 language-dependent manner in the front-end, and should not be
2597 altered in the back-end. These set numbers are tested with
2598 alias_sets_conflict_p. */
2599 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2601 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2602 refer to part of a DECL. It may also be a COMPONENT_REF. */
2603 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2605 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2606 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2608 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2609 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2611 /* For a MEM rtx, the address space. */
2612 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2614 /* For a MEM rtx, true if its MEM_SIZE is known. */
2615 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2617 /* For a MEM rtx, the size in bytes of the MEM. */
2618 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2620 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2621 mode as a default when STRICT_ALIGNMENT, but not if not. */
2622 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2623 #else
2624 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2625 #endif
2627 /* For a REG rtx, the decl it is known to refer to, if it is known to
2628 refer to part of a DECL. */
2629 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2631 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2632 HOST_WIDE_INT. */
2633 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2635 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2636 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2637 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2638 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2639 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2640 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2641 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2642 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2644 /* 1 if RTX is a label_ref for a nonlocal label. */
2645 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2646 REG_LABEL_TARGET note. */
2647 #define LABEL_REF_NONLOCAL_P(RTX) \
2648 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2650 /* 1 if RTX is a code_label that should always be considered to be needed. */
2651 #define LABEL_PRESERVE_P(RTX) \
2652 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2654 /* During sched, 1 if RTX is an insn that must be scheduled together
2655 with the preceding insn. */
2656 #define SCHED_GROUP_P(RTX) \
2657 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2658 JUMP_INSN, CALL_INSN)->in_struct)
2660 /* For a SET rtx, SET_DEST is the place that is set
2661 and SET_SRC is the value it is set to. */
2662 #define SET_DEST(RTX) XC3EXP (RTX, 0, SET, CLOBBER, CLOBBER_HIGH)
2663 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2664 #define SET_IS_RETURN_P(RTX) \
2665 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2667 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2668 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2669 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2671 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2672 conditionally executing the code on, COND_EXEC_CODE is the code
2673 to execute if the condition is true. */
2674 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2675 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2677 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2678 constants pool. */
2679 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2680 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2682 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2683 tree constant pool. This information is private to varasm.c. */
2684 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2685 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2686 (RTX), SYMBOL_REF)->frame_related)
2688 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2689 #define SYMBOL_REF_FLAG(RTX) \
2690 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2692 /* 1 if RTX is a symbol_ref that has been the library function in
2693 emit_library_call. */
2694 #define SYMBOL_REF_USED(RTX) \
2695 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2697 /* 1 if RTX is a symbol_ref for a weak symbol. */
2698 #define SYMBOL_REF_WEAK(RTX) \
2699 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2701 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2702 SYMBOL_REF_CONSTANT. */
2703 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2705 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2706 pool symbol. */
2707 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2708 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2710 /* The tree (decl or constant) associated with the symbol, or null. */
2711 #define SYMBOL_REF_DECL(RTX) \
2712 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2714 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2715 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2716 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2718 /* The rtx constant pool entry for a symbol, or null. */
2719 #define SYMBOL_REF_CONSTANT(RTX) \
2720 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2722 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2723 information derivable from the tree decl associated with this symbol.
2724 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2725 decl. In some cases this is a bug. But beyond that, it's nice to cache
2726 this information to avoid recomputing it. Finally, this allows space for
2727 the target to store more than one bit of information, as with
2728 SYMBOL_REF_FLAG. */
2729 #define SYMBOL_REF_FLAGS(RTX) \
2730 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2731 ->u2.symbol_ref_flags)
2733 /* These flags are common enough to be defined for all targets. They
2734 are computed by the default version of targetm.encode_section_info. */
2736 /* Set if this symbol is a function. */
2737 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2738 #define SYMBOL_REF_FUNCTION_P(RTX) \
2739 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2740 /* Set if targetm.binds_local_p is true. */
2741 #define SYMBOL_FLAG_LOCAL (1 << 1)
2742 #define SYMBOL_REF_LOCAL_P(RTX) \
2743 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2744 /* Set if targetm.in_small_data_p is true. */
2745 #define SYMBOL_FLAG_SMALL (1 << 2)
2746 #define SYMBOL_REF_SMALL_P(RTX) \
2747 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2748 /* The three-bit field at [5:3] is true for TLS variables; use
2749 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2750 #define SYMBOL_FLAG_TLS_SHIFT 3
2751 #define SYMBOL_REF_TLS_MODEL(RTX) \
2752 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2753 /* Set if this symbol is not defined in this translation unit. */
2754 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2755 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2756 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2757 /* Set if this symbol has a block_symbol structure associated with it. */
2758 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2759 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2760 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2761 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2762 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2763 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2764 #define SYMBOL_REF_ANCHOR_P(RTX) \
2765 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2767 /* Subsequent bits are available for the target to use. */
2768 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2769 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2771 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2772 structure to which the symbol belongs, or NULL if it has not been
2773 assigned a block. */
2774 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2776 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2777 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2778 RTX has not yet been assigned to a block, or it has not been given an
2779 offset within that block. */
2780 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2782 /* True if RTX is flagged to be a scheduling barrier. */
2783 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2784 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2786 /* Indicate whether the machine has any sort of auto increment addressing.
2787 If not, we can avoid checking for REG_INC notes. */
2789 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2790 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2791 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2792 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2793 #define AUTO_INC_DEC 1
2794 #else
2795 #define AUTO_INC_DEC 0
2796 #endif
2798 /* Define a macro to look for REG_INC notes,
2799 but save time on machines where they never exist. */
2801 #if AUTO_INC_DEC
2802 #define FIND_REG_INC_NOTE(INSN, REG) \
2803 ((REG) != NULL_RTX && REG_P ((REG)) \
2804 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2805 : find_reg_note ((INSN), REG_INC, (REG)))
2806 #else
2807 #define FIND_REG_INC_NOTE(INSN, REG) 0
2808 #endif
2810 #ifndef HAVE_PRE_INCREMENT
2811 #define HAVE_PRE_INCREMENT 0
2812 #endif
2814 #ifndef HAVE_PRE_DECREMENT
2815 #define HAVE_PRE_DECREMENT 0
2816 #endif
2818 #ifndef HAVE_POST_INCREMENT
2819 #define HAVE_POST_INCREMENT 0
2820 #endif
2822 #ifndef HAVE_POST_DECREMENT
2823 #define HAVE_POST_DECREMENT 0
2824 #endif
2826 #ifndef HAVE_POST_MODIFY_DISP
2827 #define HAVE_POST_MODIFY_DISP 0
2828 #endif
2830 #ifndef HAVE_POST_MODIFY_REG
2831 #define HAVE_POST_MODIFY_REG 0
2832 #endif
2834 #ifndef HAVE_PRE_MODIFY_DISP
2835 #define HAVE_PRE_MODIFY_DISP 0
2836 #endif
2838 #ifndef HAVE_PRE_MODIFY_REG
2839 #define HAVE_PRE_MODIFY_REG 0
2840 #endif
2843 /* Some architectures do not have complete pre/post increment/decrement
2844 instruction sets, or only move some modes efficiently. These macros
2845 allow us to tune autoincrement generation. */
2847 #ifndef USE_LOAD_POST_INCREMENT
2848 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2849 #endif
2851 #ifndef USE_LOAD_POST_DECREMENT
2852 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2853 #endif
2855 #ifndef USE_LOAD_PRE_INCREMENT
2856 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2857 #endif
2859 #ifndef USE_LOAD_PRE_DECREMENT
2860 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2861 #endif
2863 #ifndef USE_STORE_POST_INCREMENT
2864 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2865 #endif
2867 #ifndef USE_STORE_POST_DECREMENT
2868 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2869 #endif
2871 #ifndef USE_STORE_PRE_INCREMENT
2872 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2873 #endif
2875 #ifndef USE_STORE_PRE_DECREMENT
2876 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2877 #endif
2879 /* Nonzero when we are generating CONCATs. */
2880 extern int generating_concat_p;
2882 /* Nonzero when we are expanding trees to RTL. */
2883 extern int currently_expanding_to_rtl;
2885 /* Generally useful functions. */
2887 #ifndef GENERATOR_FILE
2888 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2889 rather than size. */
2891 static inline int
2892 set_rtx_cost (rtx x, bool speed_p)
2894 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2897 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2899 static inline void
2900 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2902 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2905 /* Return the cost of moving X into a register, relative to the cost
2906 of a register move. SPEED_P is true if optimizing for speed rather
2907 than size. */
2909 static inline int
2910 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2912 return rtx_cost (x, mode, SET, 1, speed_p);
2915 /* Like set_src_cost, but return both the speed and size costs in C. */
2917 static inline void
2918 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2920 get_full_rtx_cost (x, mode, SET, 1, c);
2922 #endif
2924 /* A convenience macro to validate the arguments of a zero_extract
2925 expression. It determines whether SIZE lies inclusively within
2926 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2927 and the sum lies inclusively within [1, RANGE]. RANGE must be
2928 >= 1, but SIZE and POS may be negative. */
2929 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2930 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2931 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2932 - (unsigned HOST_WIDE_INT)(POS)))
2934 /* In explow.c */
2935 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2936 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2937 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2938 extern HOST_WIDE_INT get_stack_check_protect (void);
2940 /* In rtl.c */
2941 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2942 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2943 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2944 #define const_wide_int_alloc(NWORDS) \
2945 rtx_alloc_v (CONST_WIDE_INT, \
2946 (sizeof (struct hwivec_def) \
2947 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2949 extern rtvec rtvec_alloc (int);
2950 extern rtvec shallow_copy_rtvec (rtvec);
2951 extern bool shared_const_p (const_rtx);
2952 extern rtx copy_rtx (rtx);
2953 extern enum rtx_code classify_insn (rtx);
2954 extern void dump_rtx_statistics (void);
2956 /* In emit-rtl.c */
2957 extern rtx copy_rtx_if_shared (rtx);
2959 /* In rtl.c */
2960 extern unsigned int rtx_size (const_rtx);
2961 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2962 extern int rtx_equal_p (const_rtx, const_rtx);
2963 extern bool rtvec_all_equal_p (const_rtvec);
2965 /* Return true if X is a vector constant with a duplicated element value. */
2967 inline bool
2968 const_vec_duplicate_p (const_rtx x)
2970 return (GET_CODE (x) == CONST_VECTOR
2971 && CONST_VECTOR_NPATTERNS (x) == 1
2972 && CONST_VECTOR_DUPLICATE_P (x));
2975 /* Return true if X is a vector constant with a duplicated element value.
2976 Store the duplicated element in *ELT if so. */
2978 template <typename T>
2979 inline bool
2980 const_vec_duplicate_p (T x, T *elt)
2982 if (const_vec_duplicate_p (x))
2984 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2985 return true;
2987 return false;
2990 /* Return true if X is a vector with a duplicated element value, either
2991 constant or nonconstant. Store the duplicated element in *ELT if so. */
2993 template <typename T>
2994 inline bool
2995 vec_duplicate_p (T x, T *elt)
2997 if (GET_CODE (x) == VEC_DUPLICATE
2998 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3000 *elt = XEXP (x, 0);
3001 return true;
3003 return const_vec_duplicate_p (x, elt);
3006 /* If X is a vector constant with a duplicated element value, return that
3007 element value, otherwise return X. */
3009 template <typename T>
3010 inline T
3011 unwrap_const_vec_duplicate (T x)
3013 if (const_vec_duplicate_p (x))
3014 x = CONST_VECTOR_ELT (x, 0);
3015 return x;
3018 /* In emit-rtl.c. */
3019 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3020 extern rtx const_vector_elt (const_rtx, unsigned int);
3021 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3023 /* Return true if X is an integer constant vector that contains a linear
3024 series of the form:
3026 { B, B + S, B + 2 * S, B + 3 * S, ... }
3028 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3030 inline bool
3031 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3033 if (GET_CODE (x) == CONST_VECTOR
3034 && CONST_VECTOR_NPATTERNS (x) == 1
3035 && !CONST_VECTOR_DUPLICATE_P (x))
3036 return const_vec_series_p_1 (x, base_out, step_out);
3037 return false;
3040 /* Return true if X is a vector that contains a linear series of the
3041 form:
3043 { B, B + S, B + 2 * S, B + 3 * S, ... }
3045 where B and S are constant or nonconstant. Store B and S in
3046 *BASE_OUT and *STEP_OUT on sucess. */
3048 inline bool
3049 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3051 if (GET_CODE (x) == VEC_SERIES)
3053 *base_out = XEXP (x, 0);
3054 *step_out = XEXP (x, 1);
3055 return true;
3057 return const_vec_series_p (x, base_out, step_out);
3060 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3062 inline scalar_int_mode
3063 subreg_unpromoted_mode (rtx x)
3065 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3066 return as_a <scalar_int_mode> (GET_MODE (x));
3069 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3071 inline scalar_int_mode
3072 subreg_promoted_mode (rtx x)
3074 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3075 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3078 /* In emit-rtl.c */
3079 extern rtvec gen_rtvec_v (int, rtx *);
3080 extern rtvec gen_rtvec_v (int, rtx_insn **);
3081 extern rtx gen_reg_rtx (machine_mode);
3082 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3083 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3084 extern rtx gen_reg_rtx_and_attrs (rtx);
3085 extern rtx_code_label *gen_label_rtx (void);
3086 extern rtx gen_lowpart_common (machine_mode, rtx);
3088 /* In cse.c */
3089 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3091 /* In emit-rtl.c */
3092 extern rtx gen_highpart (machine_mode, rtx);
3093 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3094 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3096 /* In emit-rtl.c */
3097 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3098 extern int subreg_lowpart_p (const_rtx);
3099 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3101 /* Return true if a subreg of mode OUTERMODE would only access part of
3102 an inner register with mode INNERMODE. The other bits of the inner
3103 register would then be "don't care" on read. The behavior for writes
3104 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3105 chunk would be clobbered but other bits would be preserved. */
3107 inline bool
3108 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3110 /* Modes involved in a subreg must be ordered. In particular, we must
3111 always know at compile time whether the subreg is paradoxical. */
3112 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3113 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3114 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3115 return maybe_lt (outer_prec, inner_prec);
3118 /* Likewise return true if X is a subreg that is smaller than the inner
3119 register. Use read_modify_subreg_p to test whether writing to such
3120 a subreg preserves any part of the inner register. */
3122 inline bool
3123 partial_subreg_p (const_rtx x)
3125 if (GET_CODE (x) != SUBREG)
3126 return false;
3127 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3130 /* Return true if a subreg with the given outer and inner modes is
3131 paradoxical. */
3133 inline bool
3134 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3136 /* Modes involved in a subreg must be ordered. In particular, we must
3137 always know at compile time whether the subreg is paradoxical. */
3138 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3139 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3140 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3141 return maybe_gt (outer_prec, inner_prec);
3144 /* Return true if X is a paradoxical subreg, false otherwise. */
3146 inline bool
3147 paradoxical_subreg_p (const_rtx x)
3149 if (GET_CODE (x) != SUBREG)
3150 return false;
3151 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3154 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3156 inline poly_uint64
3157 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3159 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3160 GET_MODE_SIZE (innermode));
3163 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3164 return the smaller of the two modes if they are different sizes,
3165 otherwise return the outer mode. */
3167 inline machine_mode
3168 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3170 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3173 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3174 return the mode that is big enough to hold both the outer and inner
3175 values. Prefer the outer mode in the event of a tie. */
3177 inline machine_mode
3178 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3180 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3183 /* Likewise for subreg X. */
3185 inline machine_mode
3186 wider_subreg_mode (const_rtx x)
3188 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3191 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3193 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3195 inline poly_uint64
3196 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3198 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3199 GET_MODE_SIZE (innermode));
3202 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3203 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3204 poly_uint64);
3205 extern poly_int64 subreg_memory_offset (const_rtx);
3206 extern rtx make_safe_from (rtx, rtx);
3207 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3208 addr_space_t, bool, bool);
3209 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3210 addr_space_t);
3211 #define convert_memory_address(to_mode,x) \
3212 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3213 extern const char *get_insn_name (int);
3214 extern rtx_insn *get_last_insn_anywhere (void);
3215 extern rtx_insn *get_first_nonnote_insn (void);
3216 extern rtx_insn *get_last_nonnote_insn (void);
3217 extern void start_sequence (void);
3218 extern void push_to_sequence (rtx_insn *);
3219 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3220 extern void end_sequence (void);
3221 #if TARGET_SUPPORTS_WIDE_INT == 0
3222 extern double_int rtx_to_double_int (const_rtx);
3223 #endif
3224 extern void cwi_output_hex (FILE *, const_rtx);
3225 #if TARGET_SUPPORTS_WIDE_INT == 0
3226 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3227 machine_mode);
3228 #endif
3229 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3231 /* In varasm.c */
3232 extern rtx force_const_mem (machine_mode, rtx);
3234 /* In varasm.c */
3236 struct function;
3237 extern rtx get_pool_constant (const_rtx);
3238 extern rtx get_pool_constant_mark (rtx, bool *);
3239 extern fixed_size_mode get_pool_mode (const_rtx);
3240 extern rtx simplify_subtraction (rtx);
3241 extern void decide_function_section (tree);
3243 /* In emit-rtl.c */
3244 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3245 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3246 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3247 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3248 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3249 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3250 location_t);
3251 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3252 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3253 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3254 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3255 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3256 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3257 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3258 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3259 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3260 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3261 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3262 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3263 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3264 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3265 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3266 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3267 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3268 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3269 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3270 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3271 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3272 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3273 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3274 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3275 extern rtx_insn *emit_insn (rtx);
3276 extern rtx_insn *emit_debug_insn (rtx);
3277 extern rtx_insn *emit_jump_insn (rtx);
3278 extern rtx_insn *emit_call_insn (rtx);
3279 extern rtx_code_label *emit_label (rtx);
3280 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3281 extern rtx_barrier *emit_barrier (void);
3282 extern rtx_note *emit_note (enum insn_note);
3283 extern rtx_note *emit_note_copy (rtx_note *);
3284 extern rtx_insn *gen_clobber (rtx);
3285 extern rtx_insn *emit_clobber (rtx);
3286 extern rtx_insn *gen_use (rtx);
3287 extern rtx_insn *emit_use (rtx);
3288 extern rtx_insn *make_insn_raw (rtx);
3289 extern void add_function_usage_to (rtx, rtx);
3290 extern rtx_call_insn *last_call_insn (void);
3291 extern rtx_insn *previous_insn (rtx_insn *);
3292 extern rtx_insn *next_insn (rtx_insn *);
3293 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3294 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3295 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3296 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3297 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3298 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3299 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3300 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3301 extern rtx_insn *prev_real_insn (rtx_insn *);
3302 extern rtx_insn *next_real_insn (rtx_insn *);
3303 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3304 extern rtx_insn *next_real_nondebug_insn (rtx);
3305 extern rtx_insn *prev_active_insn (rtx_insn *);
3306 extern rtx_insn *next_active_insn (rtx_insn *);
3307 extern int active_insn_p (const rtx_insn *);
3308 extern rtx_insn *next_cc0_user (rtx_insn *);
3309 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3311 /* In emit-rtl.c */
3312 extern int insn_line (const rtx_insn *);
3313 extern const char * insn_file (const rtx_insn *);
3314 extern tree insn_scope (const rtx_insn *);
3315 extern expanded_location insn_location (const rtx_insn *);
3316 extern location_t prologue_location, epilogue_location;
3318 /* In jump.c */
3319 extern enum rtx_code reverse_condition (enum rtx_code);
3320 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3321 extern enum rtx_code swap_condition (enum rtx_code);
3322 extern enum rtx_code unsigned_condition (enum rtx_code);
3323 extern enum rtx_code signed_condition (enum rtx_code);
3324 extern void mark_jump_label (rtx, rtx_insn *, int);
3326 /* Return true if integer comparison operator CODE interprets its operands
3327 as unsigned. */
3329 inline bool
3330 unsigned_condition_p (enum rtx_code code)
3332 return unsigned_condition (code) == code;
3335 /* In jump.c */
3336 extern rtx_insn *delete_related_insns (rtx);
3338 /* In recog.c */
3339 extern rtx *find_constant_term_loc (rtx *);
3341 /* In emit-rtl.c */
3342 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3344 /* In insn-recog.c (generated by genrecog). */
3345 extern rtx_insn *split_insns (rtx, rtx_insn *);
3347 /* In simplify-rtx.c */
3348 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3349 rtx, machine_mode);
3350 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3351 machine_mode);
3352 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3353 rtx, rtx);
3354 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3355 rtx);
3356 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3357 machine_mode, rtx, rtx, rtx);
3358 extern rtx simplify_const_relational_operation (enum rtx_code,
3359 machine_mode, rtx, rtx);
3360 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3361 machine_mode, rtx, rtx);
3362 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3363 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3364 machine_mode);
3365 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3366 machine_mode, rtx, rtx, rtx);
3367 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3368 machine_mode, rtx, rtx);
3369 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3370 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3371 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3372 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3373 rtx (*fn) (rtx, const_rtx, void *), void *);
3374 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3375 extern rtx simplify_rtx (const_rtx);
3376 extern rtx avoid_constant_pool_reference (rtx);
3377 extern rtx delegitimize_mem_from_attrs (rtx);
3378 extern bool mode_signbit_p (machine_mode, const_rtx);
3379 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3380 extern bool val_signbit_known_set_p (machine_mode,
3381 unsigned HOST_WIDE_INT);
3382 extern bool val_signbit_known_clear_p (machine_mode,
3383 unsigned HOST_WIDE_INT);
3385 /* In reginfo.c */
3386 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int, bool);
3387 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3389 /* In emit-rtl.c */
3390 extern rtx set_for_reg_notes (rtx);
3391 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3392 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3393 extern void set_insn_deleted (rtx_insn *);
3395 /* Functions in rtlanal.c */
3397 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3398 extern bool contains_symbol_ref_p (const_rtx);
3399 extern bool contains_symbolic_reference_p (const_rtx);
3400 extern bool contains_constant_pool_address_p (const_rtx);
3402 /* Handle the cheap and common cases inline for performance. */
3404 inline rtx single_set (const rtx_insn *insn)
3406 if (!INSN_P (insn))
3407 return NULL_RTX;
3409 if (GET_CODE (PATTERN (insn)) == SET)
3410 return PATTERN (insn);
3412 /* Defer to the more expensive case. */
3413 return single_set_2 (insn, PATTERN (insn));
3416 extern scalar_int_mode get_address_mode (rtx mem);
3417 extern int rtx_addr_can_trap_p (const_rtx);
3418 extern bool nonzero_address_p (const_rtx);
3419 extern int rtx_unstable_p (const_rtx);
3420 extern bool rtx_varies_p (const_rtx, bool);
3421 extern bool rtx_addr_varies_p (const_rtx, bool);
3422 extern rtx get_call_rtx_from (const rtx_insn *);
3423 extern HOST_WIDE_INT get_integer_term (const_rtx);
3424 extern rtx get_related_value (const_rtx);
3425 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3426 extern void split_const (rtx, rtx *, rtx *);
3427 extern rtx strip_offset (rtx, poly_int64_pod *);
3428 extern poly_int64 get_args_size (const_rtx);
3429 extern bool unsigned_reg_p (rtx);
3430 extern int reg_mentioned_p (const_rtx, const_rtx);
3431 extern int count_occurrences (const_rtx, const_rtx, int);
3432 extern int reg_referenced_p (const_rtx, const_rtx);
3433 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3434 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3435 extern int commutative_operand_precedence (rtx);
3436 extern bool swap_commutative_operands_p (rtx, rtx);
3437 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3438 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3439 extern int modified_in_p (const_rtx, const_rtx);
3440 extern int reg_set_p (const_rtx, const_rtx);
3441 extern int multiple_sets (const_rtx);
3442 extern int set_noop_p (const_rtx);
3443 extern int noop_move_p (const rtx_insn *);
3444 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3445 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3446 extern const_rtx set_of (const_rtx, const_rtx);
3447 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3448 extern void record_hard_reg_uses (rtx *, void *);
3449 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3450 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3451 extern void note_pattern_stores (const_rtx,
3452 void (*) (rtx, const_rtx, void *), void *);
3453 extern void note_stores (const rtx_insn *,
3454 void (*) (rtx, const_rtx, void *), void *);
3455 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3456 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3457 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3458 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3459 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3460 extern rtx find_reg_equal_equiv_note (const_rtx);
3461 extern rtx find_constant_src (const rtx_insn *);
3462 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3463 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3464 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3465 extern void add_reg_note (rtx, enum reg_note, rtx);
3466 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3467 extern void add_args_size_note (rtx_insn *, poly_int64);
3468 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3469 extern rtx duplicate_reg_note (rtx);
3470 extern void remove_note (rtx_insn *, const_rtx);
3471 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3472 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3473 extern int side_effects_p (const_rtx);
3474 extern int volatile_refs_p (const_rtx);
3475 extern int volatile_insn_p (const_rtx);
3476 extern int may_trap_p_1 (const_rtx, unsigned);
3477 extern int may_trap_p (const_rtx);
3478 extern int may_trap_or_fault_p (const_rtx);
3479 extern bool can_throw_internal (const_rtx);
3480 extern bool can_throw_external (const_rtx);
3481 extern bool insn_could_throw_p (const_rtx);
3482 extern bool insn_nothrow_p (const_rtx);
3483 extern bool can_nonlocal_goto (const rtx_insn *);
3484 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3485 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3486 extern int inequality_comparisons_p (const_rtx);
3487 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3488 extern void replace_label (rtx *, rtx, rtx, bool);
3489 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3490 extern bool rtx_referenced_p (const_rtx, const_rtx);
3491 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3492 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3493 extern int computed_jump_p (const rtx_insn *);
3494 extern bool tls_referenced_p (const_rtx);
3495 extern bool contains_mem_rtx_p (rtx x);
3496 extern bool reg_is_clobbered_by_clobber_high (unsigned int, machine_mode,
3497 const_rtx);
3499 /* Convenient wrapper for reg_is_clobbered_by_clobber_high. */
3500 inline bool
3501 reg_is_clobbered_by_clobber_high (const_rtx x, const_rtx clobber_high_op)
3503 return reg_is_clobbered_by_clobber_high (REGNO (x), GET_MODE (x),
3504 clobber_high_op);
3507 /* Overload for refers_to_regno_p for checking a single register. */
3508 inline bool
3509 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3511 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3514 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3515 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3516 NULL. The callback is passed the same opaque ARG passed to
3517 for_each_inc_dec. Return zero to continue looking for other
3518 autoinc operations or any other value to interrupt the traversal and
3519 return that value to the caller of for_each_inc_dec. */
3520 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3521 rtx srcoff, void *arg);
3522 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3524 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3525 rtx *, rtx *);
3526 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3527 rtx_equal_p_callback_function);
3529 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3530 machine_mode *);
3531 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3532 bool, hash_rtx_callback_function);
3534 extern rtx regno_use_in (unsigned int, rtx);
3535 extern int auto_inc_p (const_rtx);
3536 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3537 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3538 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3539 extern int loc_mentioned_in_p (rtx *, const_rtx);
3540 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3541 extern bool keep_with_call_p (const rtx_insn *);
3542 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3543 extern int pattern_cost (rtx, bool);
3544 extern int insn_cost (rtx_insn *, bool);
3545 extern unsigned seq_cost (const rtx_insn *, bool);
3547 /* Given an insn and condition, return a canonical description of
3548 the test being made. */
3549 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3550 int, int);
3552 /* Given a JUMP_INSN, return a canonical description of the test
3553 being made. */
3554 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3556 /* Information about a subreg of a hard register. */
3557 struct subreg_info
3559 /* Offset of first hard register involved in the subreg. */
3560 int offset;
3561 /* Number of hard registers involved in the subreg. In the case of
3562 a paradoxical subreg, this is the number of registers that would
3563 be modified by writing to the subreg; some of them may be don't-care
3564 when reading from the subreg. */
3565 int nregs;
3566 /* Whether this subreg can be represented as a hard reg with the new
3567 mode (by adding OFFSET to the original hard register). */
3568 bool representable_p;
3571 extern void subreg_get_info (unsigned int, machine_mode,
3572 poly_uint64, machine_mode,
3573 struct subreg_info *);
3575 /* lists.c */
3577 extern void free_EXPR_LIST_list (rtx_expr_list **);
3578 extern void free_INSN_LIST_list (rtx_insn_list **);
3579 extern void free_EXPR_LIST_node (rtx);
3580 extern void free_INSN_LIST_node (rtx);
3581 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3582 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3583 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3584 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3585 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3586 extern rtx remove_list_elem (rtx, rtx *);
3587 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3588 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3591 /* reginfo.c */
3593 /* Resize reg info. */
3594 extern bool resize_reg_info (void);
3595 /* Free up register info memory. */
3596 extern void free_reg_info (void);
3597 extern void init_subregs_of_mode (void);
3598 extern void finish_subregs_of_mode (void);
3600 /* recog.c */
3601 extern rtx extract_asm_operands (rtx);
3602 extern int asm_noperands (const_rtx);
3603 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3604 machine_mode *, location_t *);
3605 extern void get_referenced_operands (const char *, bool *, unsigned int);
3607 extern enum reg_class reg_preferred_class (int);
3608 extern enum reg_class reg_alternate_class (int);
3609 extern enum reg_class reg_allocno_class (int);
3610 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3611 enum reg_class);
3613 extern void split_all_insns (void);
3614 extern unsigned int split_all_insns_noflow (void);
3616 #define MAX_SAVED_CONST_INT 64
3617 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3619 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3620 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3621 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3622 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3623 extern GTY(()) rtx const_true_rtx;
3625 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3627 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3628 same as VOIDmode. */
3630 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3632 /* Likewise, for the constants 1 and 2 and -1. */
3634 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3635 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3636 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3638 extern GTY(()) rtx pc_rtx;
3639 extern GTY(()) rtx cc0_rtx;
3640 extern GTY(()) rtx ret_rtx;
3641 extern GTY(()) rtx simple_return_rtx;
3642 extern GTY(()) rtx_insn *invalid_insn_rtx;
3644 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3645 is used to represent the frame pointer. This is because the
3646 hard frame pointer and the automatic variables are separated by an amount
3647 that cannot be determined until after register allocation. We can assume
3648 that in this case ELIMINABLE_REGS will be defined, one action of which
3649 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3650 #ifndef HARD_FRAME_POINTER_REGNUM
3651 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3652 #endif
3654 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3655 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3656 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3657 #endif
3659 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3660 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3661 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3662 #endif
3664 /* Index labels for global_rtl. */
3665 enum global_rtl_index
3667 GR_STACK_POINTER,
3668 GR_FRAME_POINTER,
3669 /* For register elimination to work properly these hard_frame_pointer_rtx,
3670 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3671 the same register. */
3672 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3673 GR_ARG_POINTER = GR_FRAME_POINTER,
3674 #endif
3675 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3676 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3677 #else
3678 GR_HARD_FRAME_POINTER,
3679 #endif
3680 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3681 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3682 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3683 #else
3684 GR_ARG_POINTER,
3685 #endif
3686 #endif
3687 GR_VIRTUAL_INCOMING_ARGS,
3688 GR_VIRTUAL_STACK_ARGS,
3689 GR_VIRTUAL_STACK_DYNAMIC,
3690 GR_VIRTUAL_OUTGOING_ARGS,
3691 GR_VIRTUAL_CFA,
3692 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3694 GR_MAX
3697 /* Target-dependent globals. */
3698 struct GTY(()) target_rtl {
3699 /* All references to the hard registers in global_rtl_index go through
3700 these unique rtl objects. On machines where the frame-pointer and
3701 arg-pointer are the same register, they use the same unique object.
3703 After register allocation, other rtl objects which used to be pseudo-regs
3704 may be clobbered to refer to the frame-pointer register.
3705 But references that were originally to the frame-pointer can be
3706 distinguished from the others because they contain frame_pointer_rtx.
3708 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3709 tricky: until register elimination has taken place hard_frame_pointer_rtx
3710 should be used if it is being set, and frame_pointer_rtx otherwise. After
3711 register elimination hard_frame_pointer_rtx should always be used.
3712 On machines where the two registers are same (most) then these are the
3713 same. */
3714 rtx x_global_rtl[GR_MAX];
3716 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3717 rtx x_pic_offset_table_rtx;
3719 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3720 This is used to implement __builtin_return_address for some machines;
3721 see for instance the MIPS port. */
3722 rtx x_return_address_pointer_rtx;
3724 /* Commonly used RTL for hard registers. These objects are not
3725 necessarily unique, so we allocate them separately from global_rtl.
3726 They are initialized once per compilation unit, then copied into
3727 regno_reg_rtx at the beginning of each function. */
3728 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3730 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3731 rtx x_top_of_stack[MAX_MACHINE_MODE];
3733 /* Static hunks of RTL used by the aliasing code; these are treated
3734 as persistent to avoid unnecessary RTL allocations. */
3735 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3737 /* The default memory attributes for each mode. */
3738 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3740 /* Track if RTL has been initialized. */
3741 bool target_specific_initialized;
3744 extern GTY(()) struct target_rtl default_target_rtl;
3745 #if SWITCHABLE_TARGET
3746 extern struct target_rtl *this_target_rtl;
3747 #else
3748 #define this_target_rtl (&default_target_rtl)
3749 #endif
3751 #define global_rtl \
3752 (this_target_rtl->x_global_rtl)
3753 #define pic_offset_table_rtx \
3754 (this_target_rtl->x_pic_offset_table_rtx)
3755 #define return_address_pointer_rtx \
3756 (this_target_rtl->x_return_address_pointer_rtx)
3757 #define top_of_stack \
3758 (this_target_rtl->x_top_of_stack)
3759 #define mode_mem_attrs \
3760 (this_target_rtl->x_mode_mem_attrs)
3762 /* All references to certain hard regs, except those created
3763 by allocating pseudo regs into them (when that's possible),
3764 go through these unique rtx objects. */
3765 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3766 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3767 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3768 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3770 #ifndef GENERATOR_FILE
3771 /* Return the attributes of a MEM rtx. */
3772 static inline const class mem_attrs *
3773 get_mem_attrs (const_rtx x)
3775 class mem_attrs *attrs;
3777 attrs = MEM_ATTRS (x);
3778 if (!attrs)
3779 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3780 return attrs;
3782 #endif
3784 /* Include the RTL generation functions. */
3786 #ifndef GENERATOR_FILE
3787 #include "genrtl.h"
3788 #undef gen_rtx_ASM_INPUT
3789 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3790 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3791 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3792 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3793 #endif
3795 /* There are some RTL codes that require special attention; the
3796 generation functions included above do the raw handling. If you
3797 add to this list, modify special_rtx in gengenrtl.c as well. */
3799 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3800 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3801 extern rtx_insn *
3802 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3803 basic_block bb, rtx pattern, int location, int code,
3804 rtx reg_notes);
3805 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3806 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3807 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3808 extern rtx gen_raw_REG (machine_mode, unsigned int);
3809 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3810 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3811 extern rtx gen_rtx_MEM (machine_mode, rtx);
3812 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3813 enum var_init_status);
3815 #ifdef GENERATOR_FILE
3816 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3817 #else
3818 static inline void
3819 PUT_MODE (rtx x, machine_mode mode)
3821 if (REG_P (x))
3822 set_mode_and_regno (x, mode, REGNO (x));
3823 else
3824 PUT_MODE_RAW (x, mode);
3826 #endif
3828 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3830 /* Virtual registers are used during RTL generation to refer to locations into
3831 the stack frame when the actual location isn't known until RTL generation
3832 is complete. The routine instantiate_virtual_regs replaces these with
3833 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3834 a constant. */
3836 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3838 /* This points to the first word of the incoming arguments passed on the stack,
3839 either by the caller or by the callee when pretending it was passed by the
3840 caller. */
3842 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3844 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3846 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3847 variable on the stack. Otherwise, it points to the first variable on
3848 the stack. */
3850 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3852 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3854 /* This points to the location of dynamically-allocated memory on the stack
3855 immediately after the stack pointer has been adjusted by the amount
3856 desired. */
3858 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3860 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3862 /* This points to the location in the stack at which outgoing arguments should
3863 be written when the stack is pre-pushed (arguments pushed using push
3864 insns always use sp). */
3866 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3868 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3870 /* This points to the Canonical Frame Address of the function. This
3871 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3872 but is calculated relative to the arg pointer for simplicity; the
3873 frame pointer nor stack pointer are necessarily fixed relative to
3874 the CFA until after reload. */
3876 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3878 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3880 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3882 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3883 when finalized. */
3885 #define virtual_preferred_stack_boundary_rtx \
3886 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3888 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3889 ((FIRST_VIRTUAL_REGISTER) + 5)
3891 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3893 /* Nonzero if REGNUM is a pointer into the stack frame. */
3894 #define REGNO_PTR_FRAME_P(REGNUM) \
3895 ((REGNUM) == STACK_POINTER_REGNUM \
3896 || (REGNUM) == FRAME_POINTER_REGNUM \
3897 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3898 || (REGNUM) == ARG_POINTER_REGNUM \
3899 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3900 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3902 /* REGNUM never really appearing in the INSN stream. */
3903 #define INVALID_REGNUM (~(unsigned int) 0)
3905 /* REGNUM for which no debug information can be generated. */
3906 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3908 extern rtx output_constant_def (tree, int);
3909 extern rtx lookup_constant_def (tree);
3911 /* Nonzero after end of reload pass.
3912 Set to 1 or 0 by reload1.c. */
3914 extern int reload_completed;
3916 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3917 extern int epilogue_completed;
3919 /* Set to 1 while reload_as_needed is operating.
3920 Required by some machines to handle any generated moves differently. */
3922 extern int reload_in_progress;
3924 /* Set to 1 while in lra. */
3925 extern int lra_in_progress;
3927 /* This macro indicates whether you may create a new
3928 pseudo-register. */
3930 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3932 #ifdef STACK_REGS
3933 /* Nonzero after end of regstack pass.
3934 Set to 1 or 0 by reg-stack.c. */
3935 extern int regstack_completed;
3936 #endif
3938 /* If this is nonzero, we do not bother generating VOLATILE
3939 around volatile memory references, and we are willing to
3940 output indirect addresses. If cse is to follow, we reject
3941 indirect addresses so a useful potential cse is generated;
3942 if it is used only once, instruction combination will produce
3943 the same indirect address eventually. */
3944 extern int cse_not_expected;
3946 /* Translates rtx code to tree code, for those codes needed by
3947 real_arithmetic. The function returns an int because the caller may not
3948 know what `enum tree_code' means. */
3950 extern int rtx_to_tree_code (enum rtx_code);
3952 /* In cse.c */
3953 extern int delete_trivially_dead_insns (rtx_insn *, int);
3954 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3955 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3957 /* In dse.c */
3958 extern bool check_for_inc_dec (rtx_insn *insn);
3960 /* In jump.c */
3961 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3962 extern bool jump_to_label_p (const rtx_insn *);
3963 extern int condjump_p (const rtx_insn *);
3964 extern int any_condjump_p (const rtx_insn *);
3965 extern int any_uncondjump_p (const rtx_insn *);
3966 extern rtx pc_set (const rtx_insn *);
3967 extern rtx condjump_label (const rtx_insn *);
3968 extern int simplejump_p (const rtx_insn *);
3969 extern int returnjump_p (const rtx_insn *);
3970 extern int eh_returnjump_p (rtx_insn *);
3971 extern int onlyjump_p (const rtx_insn *);
3972 extern int only_sets_cc0_p (const_rtx);
3973 extern int sets_cc0_p (const_rtx);
3974 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3975 extern int invert_jump (rtx_jump_insn *, rtx, int);
3976 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3977 extern int true_regnum (const_rtx);
3978 extern unsigned int reg_or_subregno (const_rtx);
3979 extern int redirect_jump_1 (rtx_insn *, rtx);
3980 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3981 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3982 extern void rebuild_jump_labels (rtx_insn *);
3983 extern void rebuild_jump_labels_chain (rtx_insn *);
3984 extern rtx reversed_comparison (const_rtx, machine_mode);
3985 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3986 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3987 const_rtx, const rtx_insn *);
3988 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3989 extern int condjump_in_parallel_p (const rtx_insn *);
3991 /* In emit-rtl.c. */
3992 extern int max_reg_num (void);
3993 extern int max_label_num (void);
3994 extern int get_first_label_num (void);
3995 extern void maybe_set_first_label_num (rtx_code_label *);
3996 extern void delete_insns_since (rtx_insn *);
3997 extern void mark_reg_pointer (rtx, int);
3998 extern void mark_user_reg (rtx);
3999 extern void reset_used_flags (rtx);
4000 extern void set_used_flags (rtx);
4001 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4002 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4003 extern int get_max_insn_count (void);
4004 extern int in_sequence_p (void);
4005 extern void init_emit (void);
4006 extern void init_emit_regs (void);
4007 extern void init_derived_machine_modes (void);
4008 extern void init_emit_once (void);
4009 extern void push_topmost_sequence (void);
4010 extern void pop_topmost_sequence (void);
4011 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4012 extern unsigned int unshare_all_rtl (void);
4013 extern void unshare_all_rtl_again (rtx_insn *);
4014 extern void unshare_all_rtl_in_chain (rtx_insn *);
4015 extern void verify_rtl_sharing (void);
4016 extern void add_insn (rtx_insn *);
4017 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4018 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4019 extern void remove_insn (rtx_insn *);
4020 extern rtx_insn *emit (rtx, bool = true);
4021 extern void emit_insn_at_entry (rtx);
4022 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4023 extern rtx gen_const_mem (machine_mode, rtx);
4024 extern rtx gen_frame_mem (machine_mode, rtx);
4025 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4026 extern bool validate_subreg (machine_mode, machine_mode,
4027 const_rtx, poly_uint64);
4029 /* In combine.c */
4030 extern unsigned int extended_count (const_rtx, machine_mode, int);
4031 extern rtx remove_death (unsigned int, rtx_insn *);
4032 extern void dump_combine_stats (FILE *);
4033 extern void dump_combine_total_stats (FILE *);
4034 extern rtx make_compound_operation (rtx, enum rtx_code);
4036 /* In sched-rgn.c. */
4037 extern void schedule_insns (void);
4039 /* In sched-ebb.c. */
4040 extern void schedule_ebbs (void);
4042 /* In sel-sched-dump.c. */
4043 extern void sel_sched_fix_param (const char *param, const char *val);
4045 /* In print-rtl.c */
4046 extern const char *print_rtx_head;
4047 extern void debug (const rtx_def &ref);
4048 extern void debug (const rtx_def *ptr);
4049 extern void debug_rtx (const_rtx);
4050 extern void debug_rtx_list (const rtx_insn *, int);
4051 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4052 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4053 extern void print_mem_expr (FILE *, const_tree);
4054 extern void print_rtl (FILE *, const_rtx);
4055 extern void print_simple_rtl (FILE *, const_rtx);
4056 extern int print_rtl_single (FILE *, const_rtx);
4057 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4058 extern void print_inline_rtx (FILE *, const_rtx, int);
4060 /* In stmt.c */
4061 extern void expand_null_return (void);
4062 extern void expand_naked_return (void);
4063 extern void emit_jump (rtx);
4065 /* Memory operation built-ins differ by return value. Mapping
4066 of the enum values is following:
4067 - RETURN_BEGIN - return destination, e.g. memcpy
4068 - RETURN_END - return destination + n, e.g. mempcpy
4069 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4070 null byte of the string, e.g. strcpy
4073 enum memop_ret
4075 RETURN_BEGIN,
4076 RETURN_END,
4077 RETURN_END_MINUS_ONE
4080 /* In expr.c */
4081 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4082 unsigned int, memop_ret);
4083 extern poly_int64 find_args_size_adjust (rtx_insn *);
4084 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4086 /* In expmed.c */
4087 extern void init_expmed (void);
4088 extern void expand_inc (rtx, rtx);
4089 extern void expand_dec (rtx, rtx);
4091 /* In lower-subreg.c */
4092 extern void init_lower_subreg (void);
4094 /* In gcse.c */
4095 extern bool can_copy_p (machine_mode);
4096 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4097 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4099 /* In cprop.c */
4100 extern rtx fis_get_condition (rtx_insn *);
4102 /* In ira.c */
4103 extern HARD_REG_SET eliminable_regset;
4104 extern void mark_elimination (int, int);
4106 /* In reginfo.c */
4107 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4108 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4109 extern void globalize_reg (tree, int);
4110 extern void init_reg_modes_target (void);
4111 extern void init_regs (void);
4112 extern void reinit_regs (void);
4113 extern void init_fake_stack_mems (void);
4114 extern void save_register_info (void);
4115 extern void init_reg_sets (void);
4116 extern void regclass (rtx, int);
4117 extern void reg_scan (rtx_insn *, unsigned int);
4118 extern void fix_register (const char *, int, int);
4119 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4121 /* In reload1.c */
4122 extern int function_invariant_p (const_rtx);
4124 /* In calls.c */
4125 enum libcall_type
4127 LCT_NORMAL = 0,
4128 LCT_CONST = 1,
4129 LCT_PURE = 2,
4130 LCT_NORETURN = 3,
4131 LCT_THROW = 4,
4132 LCT_RETURNS_TWICE = 5
4135 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4136 machine_mode, int, rtx_mode_t *);
4138 /* Output a library call and discard the returned value. FUN is the
4139 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4140 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4141 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4142 another LCT_ value for other types of library calls.
4144 There are different overloads of this function for different numbers
4145 of arguments. In each case the argument value is followed by its mode. */
4147 inline void
4148 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4150 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4153 inline void
4154 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4155 rtx arg1, machine_mode arg1_mode)
4157 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4158 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4161 inline void
4162 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4163 rtx arg1, machine_mode arg1_mode,
4164 rtx arg2, machine_mode arg2_mode)
4166 rtx_mode_t args[] = {
4167 rtx_mode_t (arg1, arg1_mode),
4168 rtx_mode_t (arg2, arg2_mode)
4170 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4173 inline void
4174 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4175 rtx arg1, machine_mode arg1_mode,
4176 rtx arg2, machine_mode arg2_mode,
4177 rtx arg3, machine_mode arg3_mode)
4179 rtx_mode_t args[] = {
4180 rtx_mode_t (arg1, arg1_mode),
4181 rtx_mode_t (arg2, arg2_mode),
4182 rtx_mode_t (arg3, arg3_mode)
4184 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4187 inline void
4188 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4189 rtx arg1, machine_mode arg1_mode,
4190 rtx arg2, machine_mode arg2_mode,
4191 rtx arg3, machine_mode arg3_mode,
4192 rtx arg4, machine_mode arg4_mode)
4194 rtx_mode_t args[] = {
4195 rtx_mode_t (arg1, arg1_mode),
4196 rtx_mode_t (arg2, arg2_mode),
4197 rtx_mode_t (arg3, arg3_mode),
4198 rtx_mode_t (arg4, arg4_mode)
4200 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4203 /* Like emit_library_call, but return the value produced by the call.
4204 Use VALUE to store the result if it is nonnull, otherwise pick a
4205 convenient location. */
4207 inline rtx
4208 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4209 machine_mode outmode)
4211 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4214 inline rtx
4215 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4216 machine_mode outmode,
4217 rtx arg1, machine_mode arg1_mode)
4219 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4220 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4223 inline rtx
4224 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4225 machine_mode outmode,
4226 rtx arg1, machine_mode arg1_mode,
4227 rtx arg2, machine_mode arg2_mode)
4229 rtx_mode_t args[] = {
4230 rtx_mode_t (arg1, arg1_mode),
4231 rtx_mode_t (arg2, arg2_mode)
4233 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4236 inline rtx
4237 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4238 machine_mode outmode,
4239 rtx arg1, machine_mode arg1_mode,
4240 rtx arg2, machine_mode arg2_mode,
4241 rtx arg3, machine_mode arg3_mode)
4243 rtx_mode_t args[] = {
4244 rtx_mode_t (arg1, arg1_mode),
4245 rtx_mode_t (arg2, arg2_mode),
4246 rtx_mode_t (arg3, arg3_mode)
4248 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4251 inline rtx
4252 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4253 machine_mode outmode,
4254 rtx arg1, machine_mode arg1_mode,
4255 rtx arg2, machine_mode arg2_mode,
4256 rtx arg3, machine_mode arg3_mode,
4257 rtx arg4, machine_mode arg4_mode)
4259 rtx_mode_t args[] = {
4260 rtx_mode_t (arg1, arg1_mode),
4261 rtx_mode_t (arg2, arg2_mode),
4262 rtx_mode_t (arg3, arg3_mode),
4263 rtx_mode_t (arg4, arg4_mode)
4265 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4268 /* In varasm.c */
4269 extern void init_varasm_once (void);
4271 extern rtx make_debug_expr_from_rtl (const_rtx);
4273 /* In read-rtl.c */
4274 #ifdef GENERATOR_FILE
4275 extern bool read_rtx (const char *, vec<rtx> *);
4276 #endif
4278 /* In alias.c */
4279 extern rtx canon_rtx (rtx);
4280 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4281 extern rtx get_addr (rtx);
4282 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4283 const_rtx, rtx);
4284 extern int read_dependence (const_rtx, const_rtx);
4285 extern int anti_dependence (const_rtx, const_rtx);
4286 extern int canon_anti_dependence (const_rtx, bool,
4287 const_rtx, machine_mode, rtx);
4288 extern int output_dependence (const_rtx, const_rtx);
4289 extern int canon_output_dependence (const_rtx, bool,
4290 const_rtx, machine_mode, rtx);
4291 extern int may_alias_p (const_rtx, const_rtx);
4292 extern void init_alias_target (void);
4293 extern void init_alias_analysis (void);
4294 extern void end_alias_analysis (void);
4295 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4296 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4297 extern bool may_be_sp_based_p (rtx);
4298 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4299 extern rtx gen_hard_reg_clobber_high (machine_mode, unsigned int);
4300 extern rtx get_reg_known_value (unsigned int);
4301 extern bool get_reg_known_equiv_p (unsigned int);
4302 extern rtx get_reg_base_value (unsigned int);
4304 #ifdef STACK_REGS
4305 extern int stack_regs_mentioned (const_rtx insn);
4306 #endif
4308 /* In toplev.c */
4309 extern GTY(()) rtx stack_limit_rtx;
4311 /* In var-tracking.c */
4312 extern unsigned int variable_tracking_main (void);
4313 extern void delete_vta_debug_insns (bool);
4315 /* In stor-layout.c. */
4316 extern void get_mode_bounds (scalar_int_mode, int,
4317 scalar_int_mode, rtx *, rtx *);
4319 /* In loop-iv.c */
4320 extern rtx canon_condition (rtx);
4321 extern void simplify_using_condition (rtx, rtx *, bitmap);
4323 /* In final.c */
4324 extern unsigned int compute_alignments (void);
4325 extern void update_alignments (vec<rtx> &);
4326 extern int asm_str_count (const char *templ);
4328 struct rtl_hooks
4330 rtx (*gen_lowpart) (machine_mode, rtx);
4331 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4332 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4333 unsigned HOST_WIDE_INT *);
4334 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4335 unsigned int *);
4336 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4338 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4341 /* Each pass can provide its own. */
4342 extern struct rtl_hooks rtl_hooks;
4344 /* ... but then it has to restore these. */
4345 extern const struct rtl_hooks general_rtl_hooks;
4347 /* Keep this for the nonce. */
4348 #define gen_lowpart rtl_hooks.gen_lowpart
4350 extern void insn_locations_init (void);
4351 extern void insn_locations_finalize (void);
4352 extern void set_curr_insn_location (location_t);
4353 extern location_t curr_insn_location (void);
4354 extern void set_insn_locations (rtx_insn *, location_t);
4356 /* rtl-error.c */
4357 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4358 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4359 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4360 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4362 #define fatal_insn(msgid, insn) \
4363 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4364 #define fatal_insn_not_found(insn) \
4365 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4367 /* reginfo.c */
4368 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4370 /* Information about the function that is propagated by the RTL backend.
4371 Available only for functions that has been already assembled. */
4373 struct GTY(()) cgraph_rtl_info {
4374 unsigned int preferred_incoming_stack_boundary;
4376 /* Call unsaved hard registers really used by the corresponding
4377 function (including ones used by functions called by the
4378 function). */
4379 HARD_REG_SET function_used_regs;
4380 /* Set if function_used_regs is valid. */
4381 unsigned function_used_regs_valid: 1;
4384 /* If loads from memories of mode MODE always sign or zero extend,
4385 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4386 otherwise. */
4388 inline rtx_code
4389 load_extend_op (machine_mode mode)
4391 scalar_int_mode int_mode;
4392 if (is_a <scalar_int_mode> (mode, &int_mode)
4393 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4394 return LOAD_EXTEND_OP (int_mode);
4395 return UNKNOWN;
4398 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4399 and return the base. Return X otherwise. */
4401 inline rtx
4402 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4404 if (GET_CODE (x) == PLUS)
4406 poly_int64 suboffset;
4407 x = strip_offset (x, &suboffset);
4408 *offset = poly_uint64 (*offset) + suboffset;
4410 return x;
4413 /* Return true if X is an operation that always operates on the full
4414 registers for WORD_REGISTER_OPERATIONS architectures. */
4416 inline bool
4417 word_register_operation_p (const_rtx x)
4419 switch (GET_CODE (x))
4421 case CONST_INT:
4422 case ROTATE:
4423 case ROTATERT:
4424 case SIGN_EXTRACT:
4425 case ZERO_EXTRACT:
4426 return false;
4428 default:
4429 return true;
4433 /* gtype-desc.c. */
4434 extern void gt_ggc_mx (rtx &);
4435 extern void gt_pch_nx (rtx &);
4436 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4438 #endif /* ! GCC_RTL_H */