RISC-V: Fix more splitters accidentally calling gen_reg_rtx.
[official-gcc.git] / gcc / recog.c
blobf3e8a4c998b0cc85eb3ef0b0cdb3582254a2dd3c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
69 int volatile_ok;
71 struct recog_data_d recog_data;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative *recog_op_alt;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
115 static bool
116 asm_labels_ok (rtx body)
118 rtx asmop;
119 int i;
121 asmop = extract_asm_operands (body);
122 if (asmop == NULL_RTX)
123 return true;
125 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127 return false;
129 return true;
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x)
138 int noperands;
139 rtx *operands;
140 const char **constraints;
141 int i;
143 if (!asm_labels_ok (x))
144 return 0;
146 /* Post-reload, be more strict with things. */
147 if (reload_completed)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn *insn = make_insn_raw (x);
151 extract_insn (insn);
152 constrain_operands (1, get_enabled_alternatives (insn));
153 return which_alternative >= 0;
156 noperands = asm_noperands (x);
157 if (noperands < 0)
158 return 0;
159 if (noperands == 0)
160 return 1;
162 operands = XALLOCAVEC (rtx, noperands);
163 constraints = XALLOCAVEC (const char *, noperands);
165 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
167 for (i = 0; i < noperands; i++)
169 const char *c = constraints[i];
170 if (c[0] == '%')
171 c++;
172 if (! asm_operand_ok (operands[i], c, constraints))
173 return 0;
176 return 1;
179 /* Static data for the next two routines. */
181 struct change_t
183 rtx object;
184 int old_code;
185 bool unshare;
186 rtx *loc;
187 rtx old;
190 static change_t *changes;
191 static int changes_allocated;
193 static int num_changes = 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202 the change in place.
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
216 rtx old = *loc;
218 if (old == new_rtx || rtx_equal_p (old, new_rtx))
219 return 1;
221 gcc_assert (in_group != 0 || num_changes == 0);
223 *loc = new_rtx;
225 /* Save the information describing this change. */
226 if (num_changes >= changes_allocated)
228 if (changes_allocated == 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated = MAX_RECOG_OPERANDS * 5;
232 else
233 changes_allocated *= 2;
235 changes = XRESIZEVEC (change_t, changes, changes_allocated);
238 changes[num_changes].object = object;
239 changes[num_changes].loc = loc;
240 changes[num_changes].old = old;
241 changes[num_changes].unshare = unshare;
243 if (object && !MEM_P (object))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
246 case invalid. */
247 changes[num_changes].old_code = INSN_CODE (object);
248 INSN_CODE (object) = -1;
251 num_changes++;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
256 if (in_group)
257 return 1;
258 else
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263 UNSHARE to false. */
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
268 return validate_change_1 (object, loc, new_rtx, in_group, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to true. */
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
277 return validate_change_1 (object, loc, new_rtx, in_group, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
289 if (COMMUTATIVE_P (x)
290 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem = XEXP (x, 0);
295 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297 return true;
299 else
300 return false;
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn *insn, bool in_group)
314 rtx pat = PATTERN (insn);
315 int num_clobbers = 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
317 clobbers. */
318 int icode = recog (pat, insn,
319 (GET_CODE (pat) == SET
320 && ! reload_completed
321 && ! reload_in_progress)
322 ? &num_clobbers : 0);
323 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329 || (!is_asm && icode < 0))
330 return 1;
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers > 0)
337 rtx newpat;
339 if (added_clobbers_hard_reg_p (icode))
340 return 1;
342 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343 XVECEXP (newpat, 0, 0) = pat;
344 add_clobbers (newpat, icode);
345 if (in_group)
346 validate_change (insn, &PATTERN (insn), newpat, 1);
347 else
348 PATTERN (insn) = pat = newpat;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed)
354 extract_insn (insn);
356 if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 return 1;
360 INSN_CODE (insn) = icode;
361 return 0;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
368 return num_changes;
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num)
377 int i;
378 rtx last_validated = NULL_RTX;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
381 rerecognition.
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
387 the insn. */
389 for (i = num; i < num_changes; i++)
391 rtx object = changes[i].object;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object == 0 || object == last_validated)
396 continue;
398 if (MEM_P (object))
400 if (! memory_address_addr_space_p (GET_MODE (object),
401 XEXP (object, 0),
402 MEM_ADDR_SPACE (object)))
403 break;
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
407 changes[i].old
408 && REG_P (changes[i].old)
409 && asm_noperands (PATTERN (object)) > 0
410 && REG_EXPR (changes[i].old) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
423 rtx pat = PATTERN (object);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
434 rtx newpat;
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
440 int j;
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
469 last_validated = object;
472 return (i == num_changes);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
479 void
480 confirm_change_group (void)
482 int i;
483 rtx last_object = NULL;
485 for (i = 0; i < num_changes; i++)
487 rtx object = changes[i].object;
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (as_a <rtx_insn *> (last_object));
498 last_object = object;
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 num_changes = 0;
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
517 return 1;
519 else
521 cancel_changes (0);
522 return 0;
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
532 return num_changes;
535 /* Retract the changes numbered NUM and up. */
537 void
538 cancel_changes (int num)
540 int i;
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
550 num_changes = num;
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
559 machine_mode op0_mode)
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx = NULL_RTX;
564 scalar_int_mode is_mode;
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code))
581 case RTX_UNARY:
582 if (CONSTANT_P (XEXP (x, 0)))
583 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
584 op0_mode);
585 break;
586 case RTX_COMM_ARITH:
587 case RTX_BIN_ARITH:
588 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
589 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
590 XEXP (x, 1));
591 break;
592 case RTX_COMPARE:
593 case RTX_COMM_COMPARE:
594 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
595 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
596 XEXP (x, 0), XEXP (x, 1));
597 break;
598 default:
599 break;
601 if (new_rtx)
603 validate_change (object, loc, new_rtx, 1);
604 return;
607 switch (code)
609 case PLUS:
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
615 validate_change (object, loc,
616 simplify_gen_binary
617 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
618 break;
619 case MINUS:
620 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
621 validate_change (object, loc,
622 simplify_gen_binary
623 (PLUS, GET_MODE (x), XEXP (x, 0),
624 simplify_gen_unary (NEG,
625 GET_MODE (x), XEXP (x, 1),
626 GET_MODE (x))), 1);
627 break;
628 case ZERO_EXTEND:
629 case SIGN_EXTEND:
630 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
632 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
633 op0_mode);
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
636 if (!new_rtx)
637 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
638 validate_change (object, loc, new_rtx, 1);
640 break;
641 case SUBREG:
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
644 SUBREG_BYTE (x));
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
648 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
649 if (new_rtx)
650 validate_change (object, loc, new_rtx, 1);
651 break;
652 case ZERO_EXTRACT:
653 case SIGN_EXTRACT:
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
659 if (MEM_P (XEXP (x, 0))
660 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
661 && CONST_INT_P (XEXP (x, 1))
662 && CONST_INT_P (XEXP (x, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x, 0)))
665 && !MEM_VOLATILE_P (XEXP (x, 0)))
667 int pos = INTVAL (XEXP (x, 2));
668 machine_mode new_mode = is_mode;
669 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
670 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
672 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
673 scalar_int_mode wanted_mode = (new_mode == VOIDmode
674 ? word_mode
675 : as_a <scalar_int_mode> (new_mode));
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
680 int offset = pos / BITS_PER_UNIT;
681 rtx newmem;
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
686 offset =
687 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
688 offset);
690 gcc_assert (GET_MODE_PRECISION (wanted_mode)
691 == GET_MODE_BITSIZE (wanted_mode));
692 pos %= GET_MODE_BITSIZE (wanted_mode);
694 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
696 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
697 validate_change (object, &XEXP (x, 0), newmem, 1);
701 break;
703 default:
704 break;
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
711 static void
712 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
713 bool simplify)
715 int i, j;
716 const char *fmt;
717 rtx x = *loc;
718 enum rtx_code code;
719 machine_mode op0_mode = VOIDmode;
720 int prev_changes = num_changes;
722 if (!x)
723 return;
725 code = GET_CODE (x);
726 fmt = GET_RTX_FORMAT (code);
727 if (fmt[0] == 'e')
728 op0_mode = GET_MODE (XEXP (x, 0));
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
734 if (x == from
735 || (REG_P (x) && REG_P (from)
736 && GET_MODE (x) == GET_MODE (from)
737 && REGNO (x) == REGNO (from))
738 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
739 && rtx_equal_p (x, from)))
741 validate_unshare_change (object, loc, to, 1);
742 return;
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
750 if (GET_CODE (x) == PARALLEL)
752 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
754 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
760 (x, 0, j))));
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
762 from, to, object, simplify);
764 else
765 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
766 simplify);
769 else
770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
772 if (fmt[i] == 'e')
773 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
774 else if (fmt[i] == 'E')
775 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
776 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
777 simplify);
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes == prev_changes)
782 return;
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
788 op0_mode = GET_MODE (XEXP (x, 0));
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
792 if (simplify)
793 simplify_while_replacing (loc, to, object, op0_mode);
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
801 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
803 validate_replace_rtx_1 (loc, from, to, insn, true);
804 return apply_change_group ();
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
811 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
813 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
814 return apply_change_group ();
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
819 INSN is still valid.
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
824 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
826 validate_replace_rtx_1 (where, from, to, insn, true);
827 return apply_change_group ();
830 /* Same as above, but do not simplify rtx afterwards. */
832 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
833 rtx_insn *insn)
835 validate_replace_rtx_1 (where, from, to, insn, false);
836 return apply_change_group ();
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
843 void
844 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
846 rtx note;
847 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
848 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849 if (REG_NOTE_KIND (note) == REG_EQUAL
850 || REG_NOTE_KIND (note) == REG_EQUIV)
851 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
857 rtx from; /* Old RTX */
858 rtx to; /* New RTX */
859 rtx_insn *insn; /* Insn in which substitution is occurring. */
862 static void
863 validate_replace_src_1 (rtx *x, void *data)
865 struct validate_replace_src_data *d
866 = (struct validate_replace_src_data *) data;
868 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
872 SET_DESTs. */
874 void
875 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
877 struct validate_replace_src_data d;
879 d.from = from;
880 d.to = to;
881 d.insn = insn;
882 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
889 bool
890 validate_simplify_insn (rtx_insn *insn)
892 int i;
893 rtx pat = NULL;
894 rtx newpat = NULL;
896 pat = PATTERN (insn);
898 if (GET_CODE (pat) == SET)
900 newpat = simplify_rtx (SET_SRC (pat));
901 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
902 validate_change (insn, &SET_SRC (pat), newpat, 1);
903 newpat = simplify_rtx (SET_DEST (pat));
904 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
905 validate_change (insn, &SET_DEST (pat), newpat, 1);
907 else if (GET_CODE (pat) == PARALLEL)
908 for (i = 0; i < XVECLEN (pat, 0); i++)
910 rtx s = XVECEXP (pat, 0, i);
912 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
914 newpat = simplify_rtx (SET_SRC (s));
915 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
916 validate_change (insn, &SET_SRC (s), newpat, 1);
917 newpat = simplify_rtx (SET_DEST (s));
918 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
919 validate_change (insn, &SET_DEST (s), newpat, 1);
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
930 next_insn_tests_no_inequality (rtx_insn *insn)
932 rtx_insn *next = next_cc0_user (insn);
934 /* If there is no next insn, we have to take the conservative choice. */
935 if (next == 0)
936 return 0;
938 return (INSN_P (next)
939 && ! inequality_comparisons_p (PATTERN (next)));
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
951 it has.
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
957 general_operand (rtx op, machine_mode mode)
959 enum rtx_code code = GET_CODE (op);
961 if (mode == VOIDmode)
962 mode = GET_MODE (op);
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
967 && GET_MODE_CLASS (mode) != MODE_INT
968 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
969 return 0;
971 if (CONST_INT_P (op)
972 && mode != VOIDmode
973 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
974 return 0;
976 if (CONSTANT_P (op))
977 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
978 || mode == VOIDmode)
979 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
980 && targetm.legitimate_constant_p (mode == VOIDmode
981 ? GET_MODE (op)
982 : mode, op));
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
987 if (GET_MODE (op) != mode)
988 return 0;
990 if (code == SUBREG)
992 rtx sub = SUBREG_REG (op);
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed && MEM_P (sub)
1000 && paradoxical_subreg_p (op))
1001 return 0;
1002 #endif
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op), 0)
1011 && MEM_P (sub))
1012 return 0;
1014 if (REG_P (sub)
1015 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1017 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1021 valid. */
1022 && ! LRA_SUBREG_P (op))
1023 return 0;
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1032 mode. */
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op))
1035 return 0;
1037 op = sub;
1038 code = GET_CODE (op);
1041 if (code == REG)
1042 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1045 if (code == MEM)
1047 rtx y = XEXP (op, 0);
1049 if (! volatile_ok && MEM_VOLATILE_P (op))
1050 return 0;
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1055 transformations. */
1056 if (lra_in_progress
1057 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 return 1;
1061 return 0;
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065 of mode MODE.
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1071 address_operand (rtx op, machine_mode mode)
1073 /* Wrong mode for an address expr. */
1074 if (GET_MODE (op) != VOIDmode
1075 && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1076 return false;
1078 return memory_address_p (mode, op);
1081 /* Return 1 if OP is a register reference of mode MODE.
1082 If MODE is VOIDmode, accept a register in any mode.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 register_operand (rtx op, machine_mode mode)
1090 if (GET_CODE (op) == SUBREG)
1092 rtx sub = SUBREG_REG (op);
1094 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 because it is guaranteed to be reloaded into one.
1096 Just make sure the MEM is valid in itself.
1097 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 but currently it does result from (SUBREG (REG)...) where the
1099 reg went on the stack.) */
1100 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1101 return 0;
1103 else if (!REG_P (op))
1104 return 0;
1105 return general_operand (op, mode);
1108 /* Return 1 for a register in Pmode; ignore the tested mode. */
1111 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1113 return register_operand (op, Pmode);
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117 or a hard register. */
1120 scratch_operand (rtx op, machine_mode mode)
1122 if (GET_MODE (op) != mode && mode != VOIDmode)
1123 return 0;
1125 return (GET_CODE (op) == SCRATCH
1126 || (REG_P (op)
1127 && (lra_in_progress
1128 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1129 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1134 The main use of this function is as a predicate in match_operand
1135 expressions in the machine description. */
1138 immediate_operand (rtx op, machine_mode mode)
1140 /* Don't accept CONST_INT or anything similar
1141 if the caller wants something floating. */
1142 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143 && GET_MODE_CLASS (mode) != MODE_INT
1144 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1145 return 0;
1147 if (CONST_INT_P (op)
1148 && mode != VOIDmode
1149 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1150 return 0;
1152 return (CONSTANT_P (op)
1153 && (GET_MODE (op) == mode || mode == VOIDmode
1154 || GET_MODE (op) == VOIDmode)
1155 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 && targetm.legitimate_constant_p (mode == VOIDmode
1157 ? GET_MODE (op)
1158 : mode, op));
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1164 const_int_operand (rtx op, machine_mode mode)
1166 if (!CONST_INT_P (op))
1167 return 0;
1169 if (mode != VOIDmode
1170 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1171 return 0;
1173 return 1;
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1178 of mode MODE. */
1180 const_scalar_int_operand (rtx op, machine_mode mode)
1182 if (!CONST_SCALAR_INT_P (op))
1183 return 0;
1185 if (CONST_INT_P (op))
1186 return const_int_operand (op, mode);
1188 if (mode != VOIDmode)
1190 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1191 int prec = GET_MODE_PRECISION (int_mode);
1192 int bitsize = GET_MODE_BITSIZE (int_mode);
1194 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1195 return 0;
1197 if (prec == bitsize)
1198 return 1;
1199 else
1201 /* Multiword partial int. */
1202 HOST_WIDE_INT x
1203 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1204 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1207 return 1;
1210 /* Returns 1 if OP is an operand that is a constant integer or constant
1211 floating-point number of MODE. */
1214 const_double_operand (rtx op, machine_mode mode)
1216 return (GET_CODE (op) == CONST_DOUBLE)
1217 && (GET_MODE (op) == mode || mode == VOIDmode);
1219 #else
1220 /* Returns 1 if OP is an operand that is a constant integer or constant
1221 floating-point number of MODE. */
1224 const_double_operand (rtx op, machine_mode mode)
1226 /* Don't accept CONST_INT or anything similar
1227 if the caller wants something floating. */
1228 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1229 && GET_MODE_CLASS (mode) != MODE_INT
1230 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1231 return 0;
1233 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1234 && (mode == VOIDmode || GET_MODE (op) == mode
1235 || GET_MODE (op) == VOIDmode));
1237 #endif
1238 /* Return 1 if OP is a general operand that is not an immediate
1239 operand of mode MODE. */
1242 nonimmediate_operand (rtx op, machine_mode mode)
1244 return (general_operand (op, mode) && ! CONSTANT_P (op));
1247 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1250 nonmemory_operand (rtx op, machine_mode mode)
1252 if (CONSTANT_P (op))
1253 return immediate_operand (op, mode);
1254 return register_operand (op, mode);
1257 /* Return 1 if OP is a valid operand that stands for pushing a
1258 value of mode MODE onto the stack.
1260 The main use of this function is as a predicate in match_operand
1261 expressions in the machine description. */
1264 push_operand (rtx op, machine_mode mode)
1266 if (!MEM_P (op))
1267 return 0;
1269 if (mode != VOIDmode && GET_MODE (op) != mode)
1270 return 0;
1272 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1274 #ifdef PUSH_ROUNDING
1275 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1276 #endif
1278 op = XEXP (op, 0);
1280 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1282 if (GET_CODE (op) != STACK_PUSH_CODE)
1283 return 0;
1285 else
1287 poly_int64 offset;
1288 if (GET_CODE (op) != PRE_MODIFY
1289 || GET_CODE (XEXP (op, 1)) != PLUS
1290 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1291 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1292 || (STACK_GROWS_DOWNWARD
1293 ? maybe_ne (offset, -rounded_size)
1294 : maybe_ne (offset, rounded_size)))
1295 return 0;
1298 return XEXP (op, 0) == stack_pointer_rtx;
1301 /* Return 1 if OP is a valid operand that stands for popping a
1302 value of mode MODE off the stack.
1304 The main use of this function is as a predicate in match_operand
1305 expressions in the machine description. */
1308 pop_operand (rtx op, machine_mode mode)
1310 if (!MEM_P (op))
1311 return 0;
1313 if (mode != VOIDmode && GET_MODE (op) != mode)
1314 return 0;
1316 op = XEXP (op, 0);
1318 if (GET_CODE (op) != STACK_POP_CODE)
1319 return 0;
1321 return XEXP (op, 0) == stack_pointer_rtx;
1324 /* Return 1 if ADDR is a valid memory address
1325 for mode MODE in address space AS. */
1328 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1329 rtx addr, addr_space_t as)
1331 #ifdef GO_IF_LEGITIMATE_ADDRESS
1332 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1333 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1334 return 0;
1336 win:
1337 return 1;
1338 #else
1339 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1340 #endif
1343 /* Return 1 if OP is a valid memory reference with mode MODE,
1344 including a valid address.
1346 The main use of this function is as a predicate in match_operand
1347 expressions in the machine description. */
1350 memory_operand (rtx op, machine_mode mode)
1352 rtx inner;
1354 if (! reload_completed)
1355 /* Note that no SUBREG is a memory operand before end of reload pass,
1356 because (SUBREG (MEM...)) forces reloading into a register. */
1357 return MEM_P (op) && general_operand (op, mode);
1359 if (mode != VOIDmode && GET_MODE (op) != mode)
1360 return 0;
1362 inner = op;
1363 if (GET_CODE (inner) == SUBREG)
1364 inner = SUBREG_REG (inner);
1366 return (MEM_P (inner) && general_operand (op, mode));
1369 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1370 that is, a memory reference whose address is a general_operand. */
1373 indirect_operand (rtx op, machine_mode mode)
1375 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1376 if (! reload_completed
1377 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1379 if (mode != VOIDmode && GET_MODE (op) != mode)
1380 return 0;
1382 /* The only way that we can have a general_operand as the resulting
1383 address is if OFFSET is zero and the address already is an operand
1384 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1385 operand. */
1386 poly_int64 offset;
1387 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1388 return (known_eq (offset + SUBREG_BYTE (op), 0)
1389 && general_operand (addr, Pmode));
1392 return (MEM_P (op)
1393 && memory_operand (op, mode)
1394 && general_operand (XEXP (op, 0), Pmode));
1397 /* Return 1 if this is an ordered comparison operator (not including
1398 ORDERED and UNORDERED). */
1401 ordered_comparison_operator (rtx op, machine_mode mode)
1403 if (mode != VOIDmode && GET_MODE (op) != mode)
1404 return false;
1405 switch (GET_CODE (op))
1407 case EQ:
1408 case NE:
1409 case LT:
1410 case LTU:
1411 case LE:
1412 case LEU:
1413 case GT:
1414 case GTU:
1415 case GE:
1416 case GEU:
1417 return true;
1418 default:
1419 return false;
1423 /* Return 1 if this is a comparison operator. This allows the use of
1424 MATCH_OPERATOR to recognize all the branch insns. */
1427 comparison_operator (rtx op, machine_mode mode)
1429 return ((mode == VOIDmode || GET_MODE (op) == mode)
1430 && COMPARISON_P (op));
1433 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1436 extract_asm_operands (rtx body)
1438 rtx tmp;
1439 switch (GET_CODE (body))
1441 case ASM_OPERANDS:
1442 return body;
1444 case SET:
1445 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1446 tmp = SET_SRC (body);
1447 if (GET_CODE (tmp) == ASM_OPERANDS)
1448 return tmp;
1449 break;
1451 case PARALLEL:
1452 tmp = XVECEXP (body, 0, 0);
1453 if (GET_CODE (tmp) == ASM_OPERANDS)
1454 return tmp;
1455 if (GET_CODE (tmp) == SET)
1457 tmp = SET_SRC (tmp);
1458 if (GET_CODE (tmp) == ASM_OPERANDS)
1459 return tmp;
1461 break;
1463 default:
1464 break;
1466 return NULL;
1469 /* If BODY is an insn body that uses ASM_OPERANDS,
1470 return the number of operands (both input and output) in the insn.
1471 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1472 return 0.
1473 Otherwise return -1. */
1476 asm_noperands (const_rtx body)
1478 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1479 int i, n_sets = 0;
1481 if (asm_op == NULL)
1483 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1484 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1486 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1487 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1488 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1489 return -1;
1490 return 0;
1492 return -1;
1495 if (GET_CODE (body) == SET)
1496 n_sets = 1;
1497 else if (GET_CODE (body) == PARALLEL)
1499 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1501 /* Multiple output operands, or 1 output plus some clobbers:
1502 body is
1503 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1504 /* Count backwards through CLOBBERs to determine number of SETs. */
1505 for (i = XVECLEN (body, 0); i > 0; i--)
1507 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1508 break;
1509 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1510 return -1;
1513 /* N_SETS is now number of output operands. */
1514 n_sets = i;
1516 /* Verify that all the SETs we have
1517 came from a single original asm_operands insn
1518 (so that invalid combinations are blocked). */
1519 for (i = 0; i < n_sets; i++)
1521 rtx elt = XVECEXP (body, 0, i);
1522 if (GET_CODE (elt) != SET)
1523 return -1;
1524 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1525 return -1;
1526 /* If these ASM_OPERANDS rtx's came from different original insns
1527 then they aren't allowed together. */
1528 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1529 != ASM_OPERANDS_INPUT_VEC (asm_op))
1530 return -1;
1533 else
1535 /* 0 outputs, but some clobbers:
1536 body is [(asm_operands ...) (clobber (reg ...))...]. */
1537 /* Make sure all the other parallel things really are clobbers. */
1538 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1539 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1540 return -1;
1544 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1545 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1548 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1549 copy its operands (both input and output) into the vector OPERANDS,
1550 the locations of the operands within the insn into the vector OPERAND_LOCS,
1551 and the constraints for the operands into CONSTRAINTS.
1552 Write the modes of the operands into MODES.
1553 Write the location info into LOC.
1554 Return the assembler-template.
1555 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1556 return the basic assembly string.
1558 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1559 we don't store that info. */
1561 const char *
1562 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1563 const char **constraints, machine_mode *modes,
1564 location_t *loc)
1566 int nbase = 0, n, i;
1567 rtx asmop;
1569 switch (GET_CODE (body))
1571 case ASM_OPERANDS:
1572 /* Zero output asm: BODY is (asm_operands ...). */
1573 asmop = body;
1574 break;
1576 case SET:
1577 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1578 asmop = SET_SRC (body);
1580 /* The output is in the SET.
1581 Its constraint is in the ASM_OPERANDS itself. */
1582 if (operands)
1583 operands[0] = SET_DEST (body);
1584 if (operand_locs)
1585 operand_locs[0] = &SET_DEST (body);
1586 if (constraints)
1587 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1588 if (modes)
1589 modes[0] = GET_MODE (SET_DEST (body));
1590 nbase = 1;
1591 break;
1593 case PARALLEL:
1595 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1597 asmop = XVECEXP (body, 0, 0);
1598 if (GET_CODE (asmop) == SET)
1600 asmop = SET_SRC (asmop);
1602 /* At least one output, plus some CLOBBERs. The outputs are in
1603 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1604 for (i = 0; i < nparallel; i++)
1606 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1607 break; /* Past last SET */
1608 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1609 if (operands)
1610 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1611 if (operand_locs)
1612 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1613 if (constraints)
1614 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1615 if (modes)
1616 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1618 nbase = i;
1620 else if (GET_CODE (asmop) == ASM_INPUT)
1622 if (loc)
1623 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1624 return XSTR (asmop, 0);
1626 break;
1629 default:
1630 gcc_unreachable ();
1633 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1634 for (i = 0; i < n; i++)
1636 if (operand_locs)
1637 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1638 if (operands)
1639 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1640 if (constraints)
1641 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1642 if (modes)
1643 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1645 nbase += n;
1647 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1648 for (i = 0; i < n; i++)
1650 if (operand_locs)
1651 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1652 if (operands)
1653 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1654 if (constraints)
1655 constraints[nbase + i] = "";
1656 if (modes)
1657 modes[nbase + i] = Pmode;
1660 if (loc)
1661 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1663 return ASM_OPERANDS_TEMPLATE (asmop);
1666 /* Parse inline assembly string STRING and determine which operands are
1667 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1668 to true if operand I is referenced.
1670 This is intended to distinguish barrier-like asms such as:
1672 asm ("" : "=m" (...));
1674 from real references such as:
1676 asm ("sw\t$0, %0" : "=m" (...)); */
1678 void
1679 get_referenced_operands (const char *string, bool *used,
1680 unsigned int noperands)
1682 memset (used, 0, sizeof (bool) * noperands);
1683 const char *p = string;
1684 while (*p)
1685 switch (*p)
1687 case '%':
1688 p += 1;
1689 /* A letter followed by a digit indicates an operand number. */
1690 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1691 p += 1;
1692 if (ISDIGIT (*p))
1694 char *endptr;
1695 unsigned long opnum = strtoul (p, &endptr, 10);
1696 if (endptr != p && opnum < noperands)
1697 used[opnum] = true;
1698 p = endptr;
1700 else
1701 p += 1;
1702 break;
1704 default:
1705 p++;
1706 break;
1710 /* Check if an asm_operand matches its constraints.
1711 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1714 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1716 int result = 0;
1717 bool incdec_ok = false;
1719 /* Use constrain_operands after reload. */
1720 gcc_assert (!reload_completed);
1722 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1723 many alternatives as required to match the other operands. */
1724 if (*constraint == '\0')
1725 result = 1;
1727 while (*constraint)
1729 enum constraint_num cn;
1730 char c = *constraint;
1731 int len;
1732 switch (c)
1734 case ',':
1735 constraint++;
1736 continue;
1738 case '0': case '1': case '2': case '3': case '4':
1739 case '5': case '6': case '7': case '8': case '9':
1740 /* If caller provided constraints pointer, look up
1741 the matching constraint. Otherwise, our caller should have
1742 given us the proper matching constraint, but we can't
1743 actually fail the check if they didn't. Indicate that
1744 results are inconclusive. */
1745 if (constraints)
1747 char *end;
1748 unsigned long match;
1750 match = strtoul (constraint, &end, 10);
1751 if (!result)
1752 result = asm_operand_ok (op, constraints[match], NULL);
1753 constraint = (const char *) end;
1755 else
1758 constraint++;
1759 while (ISDIGIT (*constraint));
1760 if (! result)
1761 result = -1;
1763 continue;
1765 /* The rest of the compiler assumes that reloading the address
1766 of a MEM into a register will make it fit an 'o' constraint.
1767 That is, if it sees a MEM operand for an 'o' constraint,
1768 it assumes that (mem (base-reg)) will fit.
1770 That assumption fails on targets that don't have offsettable
1771 addresses at all. We therefore need to treat 'o' asm
1772 constraints as a special case and only accept operands that
1773 are already offsettable, thus proving that at least one
1774 offsettable address exists. */
1775 case 'o': /* offsettable */
1776 if (offsettable_nonstrict_memref_p (op))
1777 result = 1;
1778 break;
1780 case 'g':
1781 if (general_operand (op, VOIDmode))
1782 result = 1;
1783 break;
1785 case '<':
1786 case '>':
1787 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1788 to exist, excepting those that expand_call created. Further,
1789 on some machines which do not have generalized auto inc/dec,
1790 an inc/dec is not a memory_operand.
1792 Match any memory and hope things are resolved after reload. */
1793 incdec_ok = true;
1794 /* FALLTHRU */
1795 default:
1796 cn = lookup_constraint (constraint);
1797 switch (get_constraint_type (cn))
1799 case CT_REGISTER:
1800 if (!result
1801 && reg_class_for_constraint (cn) != NO_REGS
1802 && GET_MODE (op) != BLKmode
1803 && register_operand (op, VOIDmode))
1804 result = 1;
1805 break;
1807 case CT_CONST_INT:
1808 if (!result
1809 && CONST_INT_P (op)
1810 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1811 result = 1;
1812 break;
1814 case CT_MEMORY:
1815 case CT_SPECIAL_MEMORY:
1816 /* Every memory operand can be reloaded to fit. */
1817 result = result || memory_operand (op, VOIDmode);
1818 break;
1820 case CT_ADDRESS:
1821 /* Every address operand can be reloaded to fit. */
1822 result = result || address_operand (op, VOIDmode);
1823 break;
1825 case CT_FIXED_FORM:
1826 result = result || constraint_satisfied_p (op, cn);
1827 break;
1829 break;
1831 len = CONSTRAINT_LEN (c, constraint);
1833 constraint++;
1834 while (--len && *constraint && *constraint != ',');
1835 if (len)
1836 return 0;
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1841 switch (GET_CODE (XEXP (op, 0)))
1843 case PRE_INC:
1844 case POST_INC:
1845 case PRE_DEC:
1846 case POST_DEC:
1847 case PRE_MODIFY:
1848 case POST_MODIFY:
1849 return 0;
1850 default:
1851 break;
1854 return result;
1857 /* Given an rtx *P, if it is a sum containing an integer constant term,
1858 return the location (type rtx *) of the pointer to that constant term.
1859 Otherwise, return a null pointer. */
1861 rtx *
1862 find_constant_term_loc (rtx *p)
1864 rtx *tem;
1865 enum rtx_code code = GET_CODE (*p);
1867 /* If *P IS such a constant term, P is its location. */
1869 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1870 || code == CONST)
1871 return p;
1873 /* Otherwise, if not a sum, it has no constant term. */
1875 if (GET_CODE (*p) != PLUS)
1876 return 0;
1878 /* If one of the summands is constant, return its location. */
1880 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1881 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1882 return p;
1884 /* Otherwise, check each summand for containing a constant term. */
1886 if (XEXP (*p, 0) != 0)
1888 tem = find_constant_term_loc (&XEXP (*p, 0));
1889 if (tem != 0)
1890 return tem;
1893 if (XEXP (*p, 1) != 0)
1895 tem = find_constant_term_loc (&XEXP (*p, 1));
1896 if (tem != 0)
1897 return tem;
1900 return 0;
1903 /* Return 1 if OP is a memory reference
1904 whose address contains no side effects
1905 and remains valid after the addition
1906 of a positive integer less than the
1907 size of the object being referenced.
1909 We assume that the original address is valid and do not check it.
1911 This uses strict_memory_address_p as a subroutine, so
1912 don't use it before reload. */
1915 offsettable_memref_p (rtx op)
1917 return ((MEM_P (op))
1918 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1919 MEM_ADDR_SPACE (op)));
1922 /* Similar, but don't require a strictly valid mem ref:
1923 consider pseudo-regs valid as index or base regs. */
1926 offsettable_nonstrict_memref_p (rtx op)
1928 return ((MEM_P (op))
1929 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1930 MEM_ADDR_SPACE (op)));
1933 /* Return 1 if Y is a memory address which contains no side effects
1934 and would remain valid for address space AS after the addition of
1935 a positive integer less than the size of that mode.
1937 We assume that the original address is valid and do not check it.
1938 We do check that it is valid for narrower modes.
1940 If STRICTP is nonzero, we require a strictly valid address,
1941 for the sake of use in reload.c. */
1944 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1945 addr_space_t as)
1947 enum rtx_code ycode = GET_CODE (y);
1948 rtx z;
1949 rtx y1 = y;
1950 rtx *y2;
1951 int (*addressp) (machine_mode, rtx, addr_space_t) =
1952 (strictp ? strict_memory_address_addr_space_p
1953 : memory_address_addr_space_p);
1954 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1956 if (CONSTANT_ADDRESS_P (y))
1957 return 1;
1959 /* Adjusting an offsettable address involves changing to a narrower mode.
1960 Make sure that's OK. */
1962 if (mode_dependent_address_p (y, as))
1963 return 0;
1965 machine_mode address_mode = GET_MODE (y);
1966 if (address_mode == VOIDmode)
1967 address_mode = targetm.addr_space.address_mode (as);
1968 #ifdef POINTERS_EXTEND_UNSIGNED
1969 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1970 #endif
1972 /* ??? How much offset does an offsettable BLKmode reference need?
1973 Clearly that depends on the situation in which it's being used.
1974 However, the current situation in which we test 0xffffffff is
1975 less than ideal. Caveat user. */
1976 if (known_eq (mode_sz, 0))
1977 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1979 /* If the expression contains a constant term,
1980 see if it remains valid when max possible offset is added. */
1982 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1984 int good;
1986 y1 = *y2;
1987 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1988 /* Use QImode because an odd displacement may be automatically invalid
1989 for any wider mode. But it should be valid for a single byte. */
1990 good = (*addressp) (QImode, y, as);
1992 /* In any case, restore old contents of memory. */
1993 *y2 = y1;
1994 return good;
1997 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1998 return 0;
2000 /* The offset added here is chosen as the maximum offset that
2001 any instruction could need to add when operating on something
2002 of the specified mode. We assume that if Y and Y+c are
2003 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2004 go inside a LO_SUM here, so we do so as well. */
2005 if (GET_CODE (y) == LO_SUM
2006 && mode != BLKmode
2007 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2008 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2009 plus_constant (address_mode, XEXP (y, 1),
2010 mode_sz - 1));
2011 #ifdef POINTERS_EXTEND_UNSIGNED
2012 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2013 else if (POINTERS_EXTEND_UNSIGNED > 0
2014 && GET_CODE (y) == ZERO_EXTEND
2015 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2016 z = gen_rtx_ZERO_EXTEND (address_mode,
2017 plus_constant (pointer_mode, XEXP (y, 0),
2018 mode_sz - 1));
2019 #endif
2020 else
2021 z = plus_constant (address_mode, y, mode_sz - 1);
2023 /* Use QImode because an odd displacement may be automatically invalid
2024 for any wider mode. But it should be valid for a single byte. */
2025 return (*addressp) (QImode, z, as);
2028 /* Return 1 if ADDR is an address-expression whose effect depends
2029 on the mode of the memory reference it is used in.
2031 ADDRSPACE is the address space associated with the address.
2033 Autoincrement addressing is a typical example of mode-dependence
2034 because the amount of the increment depends on the mode. */
2036 bool
2037 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2039 /* Auto-increment addressing with anything other than post_modify
2040 or pre_modify always introduces a mode dependency. Catch such
2041 cases now instead of deferring to the target. */
2042 if (GET_CODE (addr) == PRE_INC
2043 || GET_CODE (addr) == POST_INC
2044 || GET_CODE (addr) == PRE_DEC
2045 || GET_CODE (addr) == POST_DEC)
2046 return true;
2048 return targetm.mode_dependent_address_p (addr, addrspace);
2051 /* Return true if boolean attribute ATTR is supported. */
2053 static bool
2054 have_bool_attr (bool_attr attr)
2056 switch (attr)
2058 case BA_ENABLED:
2059 return HAVE_ATTR_enabled;
2060 case BA_PREFERRED_FOR_SIZE:
2061 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2062 case BA_PREFERRED_FOR_SPEED:
2063 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2065 gcc_unreachable ();
2068 /* Return the value of ATTR for instruction INSN. */
2070 static bool
2071 get_bool_attr (rtx_insn *insn, bool_attr attr)
2073 switch (attr)
2075 case BA_ENABLED:
2076 return get_attr_enabled (insn);
2077 case BA_PREFERRED_FOR_SIZE:
2078 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2079 case BA_PREFERRED_FOR_SPEED:
2080 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2082 gcc_unreachable ();
2085 /* Like get_bool_attr_mask, but don't use the cache. */
2087 static alternative_mask
2088 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2090 /* Temporarily install enough information for get_attr_<foo> to assume
2091 that the insn operands are already cached. As above, the attribute
2092 mustn't depend on the values of operands, so we don't provide their
2093 real values here. */
2094 rtx_insn *old_insn = recog_data.insn;
2095 int old_alternative = which_alternative;
2097 recog_data.insn = insn;
2098 alternative_mask mask = ALL_ALTERNATIVES;
2099 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2100 for (int i = 0; i < n_alternatives; i++)
2102 which_alternative = i;
2103 if (!get_bool_attr (insn, attr))
2104 mask &= ~ALTERNATIVE_BIT (i);
2107 recog_data.insn = old_insn;
2108 which_alternative = old_alternative;
2109 return mask;
2112 /* Return the mask of operand alternatives that are allowed for INSN
2113 by boolean attribute ATTR. This mask depends only on INSN and on
2114 the current target; it does not depend on things like the values of
2115 operands. */
2117 static alternative_mask
2118 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2120 /* Quick exit for asms and for targets that don't use these attributes. */
2121 int code = INSN_CODE (insn);
2122 if (code < 0 || !have_bool_attr (attr))
2123 return ALL_ALTERNATIVES;
2125 /* Calling get_attr_<foo> can be expensive, so cache the mask
2126 for speed. */
2127 if (!this_target_recog->x_bool_attr_masks[code][attr])
2128 this_target_recog->x_bool_attr_masks[code][attr]
2129 = get_bool_attr_mask_uncached (insn, attr);
2130 return this_target_recog->x_bool_attr_masks[code][attr];
2133 /* Return the set of alternatives of INSN that are allowed by the current
2134 target. */
2136 alternative_mask
2137 get_enabled_alternatives (rtx_insn *insn)
2139 return get_bool_attr_mask (insn, BA_ENABLED);
2142 /* Return the set of alternatives of INSN that are allowed by the current
2143 target and are preferred for the current size/speed optimization
2144 choice. */
2146 alternative_mask
2147 get_preferred_alternatives (rtx_insn *insn)
2149 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2150 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2151 else
2152 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2155 /* Return the set of alternatives of INSN that are allowed by the current
2156 target and are preferred for the size/speed optimization choice
2157 associated with BB. Passing a separate BB is useful if INSN has not
2158 been emitted yet or if we are considering moving it to a different
2159 block. */
2161 alternative_mask
2162 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2164 if (optimize_bb_for_speed_p (bb))
2165 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2166 else
2167 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2170 /* Assert that the cached boolean attributes for INSN are still accurate.
2171 The backend is required to define these attributes in a way that only
2172 depends on the current target (rather than operands, compiler phase,
2173 etc.). */
2175 bool
2176 check_bool_attrs (rtx_insn *insn)
2178 int code = INSN_CODE (insn);
2179 if (code >= 0)
2180 for (int i = 0; i <= BA_LAST; ++i)
2182 enum bool_attr attr = (enum bool_attr) i;
2183 if (this_target_recog->x_bool_attr_masks[code][attr])
2184 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2185 == get_bool_attr_mask_uncached (insn, attr));
2187 return true;
2190 /* Like extract_insn, but save insn extracted and don't extract again, when
2191 called again for the same insn expecting that recog_data still contain the
2192 valid information. This is used primary by gen_attr infrastructure that
2193 often does extract insn again and again. */
2194 void
2195 extract_insn_cached (rtx_insn *insn)
2197 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2198 return;
2199 extract_insn (insn);
2200 recog_data.insn = insn;
2203 /* Do uncached extract_insn, constrain_operands and complain about failures.
2204 This should be used when extracting a pre-existing constrained instruction
2205 if the caller wants to know which alternative was chosen. */
2206 void
2207 extract_constrain_insn (rtx_insn *insn)
2209 extract_insn (insn);
2210 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2211 fatal_insn_not_found (insn);
2214 /* Do cached extract_insn, constrain_operands and complain about failures.
2215 Used by insn_attrtab. */
2216 void
2217 extract_constrain_insn_cached (rtx_insn *insn)
2219 extract_insn_cached (insn);
2220 if (which_alternative == -1
2221 && !constrain_operands (reload_completed,
2222 get_enabled_alternatives (insn)))
2223 fatal_insn_not_found (insn);
2226 /* Do cached constrain_operands on INSN and complain about failures. */
2228 constrain_operands_cached (rtx_insn *insn, int strict)
2230 if (which_alternative == -1)
2231 return constrain_operands (strict, get_enabled_alternatives (insn));
2232 else
2233 return 1;
2236 /* Analyze INSN and fill in recog_data. */
2238 void
2239 extract_insn (rtx_insn *insn)
2241 int i;
2242 int icode;
2243 int noperands;
2244 rtx body = PATTERN (insn);
2246 recog_data.n_operands = 0;
2247 recog_data.n_alternatives = 0;
2248 recog_data.n_dups = 0;
2249 recog_data.is_asm = false;
2251 switch (GET_CODE (body))
2253 case USE:
2254 case CLOBBER:
2255 case ASM_INPUT:
2256 case ADDR_VEC:
2257 case ADDR_DIFF_VEC:
2258 case VAR_LOCATION:
2259 case DEBUG_MARKER:
2260 return;
2262 case SET:
2263 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2264 goto asm_insn;
2265 else
2266 goto normal_insn;
2267 case PARALLEL:
2268 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2269 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2270 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2271 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2272 goto asm_insn;
2273 else
2274 goto normal_insn;
2275 case ASM_OPERANDS:
2276 asm_insn:
2277 recog_data.n_operands = noperands = asm_noperands (body);
2278 if (noperands >= 0)
2280 /* This insn is an `asm' with operands. */
2282 /* expand_asm_operands makes sure there aren't too many operands. */
2283 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2285 /* Now get the operand values and constraints out of the insn. */
2286 decode_asm_operands (body, recog_data.operand,
2287 recog_data.operand_loc,
2288 recog_data.constraints,
2289 recog_data.operand_mode, NULL);
2290 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2291 if (noperands > 0)
2293 const char *p = recog_data.constraints[0];
2294 recog_data.n_alternatives = 1;
2295 while (*p)
2296 recog_data.n_alternatives += (*p++ == ',');
2298 recog_data.is_asm = true;
2299 break;
2301 fatal_insn_not_found (insn);
2303 default:
2304 normal_insn:
2305 /* Ordinary insn: recognize it, get the operands via insn_extract
2306 and get the constraints. */
2308 icode = recog_memoized (insn);
2309 if (icode < 0)
2310 fatal_insn_not_found (insn);
2312 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2313 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2314 recog_data.n_dups = insn_data[icode].n_dups;
2316 insn_extract (insn);
2318 for (i = 0; i < noperands; i++)
2320 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2321 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2322 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2323 /* VOIDmode match_operands gets mode from their real operand. */
2324 if (recog_data.operand_mode[i] == VOIDmode)
2325 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2328 for (i = 0; i < noperands; i++)
2329 recog_data.operand_type[i]
2330 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2331 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2332 : OP_IN);
2334 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2336 recog_data.insn = NULL;
2337 which_alternative = -1;
2340 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2341 operands, N_ALTERNATIVES alternatives and constraint strings
2342 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2343 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2344 if the insn is an asm statement and preprocessing should take the
2345 asm operands into account, e.g. to determine whether they could be
2346 addresses in constraints that require addresses; it should then
2347 point to an array of pointers to each operand. */
2349 void
2350 preprocess_constraints (int n_operands, int n_alternatives,
2351 const char **constraints,
2352 operand_alternative *op_alt_base,
2353 rtx **oploc)
2355 for (int i = 0; i < n_operands; i++)
2357 int j;
2358 struct operand_alternative *op_alt;
2359 const char *p = constraints[i];
2361 op_alt = op_alt_base;
2363 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2365 op_alt[i].cl = NO_REGS;
2366 op_alt[i].constraint = p;
2367 op_alt[i].matches = -1;
2368 op_alt[i].matched = -1;
2370 if (*p == '\0' || *p == ',')
2372 op_alt[i].anything_ok = 1;
2373 continue;
2376 for (;;)
2378 char c = *p;
2379 if (c == '#')
2381 c = *++p;
2382 while (c != ',' && c != '\0');
2383 if (c == ',' || c == '\0')
2385 p++;
2386 break;
2389 switch (c)
2391 case '?':
2392 op_alt[i].reject += 6;
2393 break;
2394 case '!':
2395 op_alt[i].reject += 600;
2396 break;
2397 case '&':
2398 op_alt[i].earlyclobber = 1;
2399 break;
2401 case '0': case '1': case '2': case '3': case '4':
2402 case '5': case '6': case '7': case '8': case '9':
2404 char *end;
2405 op_alt[i].matches = strtoul (p, &end, 10);
2406 op_alt[op_alt[i].matches].matched = i;
2407 p = end;
2409 continue;
2411 case 'X':
2412 op_alt[i].anything_ok = 1;
2413 break;
2415 case 'g':
2416 op_alt[i].cl =
2417 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2418 break;
2420 default:
2421 enum constraint_num cn = lookup_constraint (p);
2422 enum reg_class cl;
2423 switch (get_constraint_type (cn))
2425 case CT_REGISTER:
2426 cl = reg_class_for_constraint (cn);
2427 if (cl != NO_REGS)
2428 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2429 break;
2431 case CT_CONST_INT:
2432 break;
2434 case CT_MEMORY:
2435 case CT_SPECIAL_MEMORY:
2436 op_alt[i].memory_ok = 1;
2437 break;
2439 case CT_ADDRESS:
2440 if (oploc && !address_operand (*oploc[i], VOIDmode))
2441 break;
2443 op_alt[i].is_address = 1;
2444 op_alt[i].cl
2445 = (reg_class_subunion
2446 [(int) op_alt[i].cl]
2447 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2448 ADDRESS, SCRATCH)]);
2449 break;
2451 case CT_FIXED_FORM:
2452 break;
2454 break;
2456 p += CONSTRAINT_LEN (c, p);
2462 /* Return an array of operand_alternative instructions for
2463 instruction ICODE. */
2465 const operand_alternative *
2466 preprocess_insn_constraints (unsigned int icode)
2468 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2469 if (this_target_recog->x_op_alt[icode])
2470 return this_target_recog->x_op_alt[icode];
2472 int n_operands = insn_data[icode].n_operands;
2473 if (n_operands == 0)
2474 return 0;
2475 /* Always provide at least one alternative so that which_op_alt ()
2476 works correctly. If the instruction has 0 alternatives (i.e. all
2477 constraint strings are empty) then each operand in this alternative
2478 will have anything_ok set. */
2479 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2480 int n_entries = n_operands * n_alternatives;
2482 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2483 const char **constraints = XALLOCAVEC (const char *, n_operands);
2485 for (int i = 0; i < n_operands; ++i)
2486 constraints[i] = insn_data[icode].operand[i].constraint;
2487 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2488 NULL);
2490 this_target_recog->x_op_alt[icode] = op_alt;
2491 return op_alt;
2494 /* After calling extract_insn, you can use this function to extract some
2495 information from the constraint strings into a more usable form.
2496 The collected data is stored in recog_op_alt. */
2498 void
2499 preprocess_constraints (rtx_insn *insn)
2501 int icode = INSN_CODE (insn);
2502 if (icode >= 0)
2503 recog_op_alt = preprocess_insn_constraints (icode);
2504 else
2506 int n_operands = recog_data.n_operands;
2507 int n_alternatives = recog_data.n_alternatives;
2508 int n_entries = n_operands * n_alternatives;
2509 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2510 preprocess_constraints (n_operands, n_alternatives,
2511 recog_data.constraints, asm_op_alt,
2512 NULL);
2513 recog_op_alt = asm_op_alt;
2517 /* Check the operands of an insn against the insn's operand constraints
2518 and return 1 if they match any of the alternatives in ALTERNATIVES.
2520 The information about the insn's operands, constraints, operand modes
2521 etc. is obtained from the global variables set up by extract_insn.
2523 WHICH_ALTERNATIVE is set to a number which indicates which
2524 alternative of constraints was matched: 0 for the first alternative,
2525 1 for the next, etc.
2527 In addition, when two operands are required to match
2528 and it happens that the output operand is (reg) while the
2529 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2530 make the output operand look like the input.
2531 This is because the output operand is the one the template will print.
2533 This is used in final, just before printing the assembler code and by
2534 the routines that determine an insn's attribute.
2536 If STRICT is a positive nonzero value, it means that we have been
2537 called after reload has been completed. In that case, we must
2538 do all checks strictly. If it is zero, it means that we have been called
2539 before reload has completed. In that case, we first try to see if we can
2540 find an alternative that matches strictly. If not, we try again, this
2541 time assuming that reload will fix up the insn. This provides a "best
2542 guess" for the alternative and is used to compute attributes of insns prior
2543 to reload. A negative value of STRICT is used for this internal call. */
2545 struct funny_match
2547 int this_op, other;
2551 constrain_operands (int strict, alternative_mask alternatives)
2553 const char *constraints[MAX_RECOG_OPERANDS];
2554 int matching_operands[MAX_RECOG_OPERANDS];
2555 int earlyclobber[MAX_RECOG_OPERANDS];
2556 int c;
2558 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2559 int funny_match_index;
2561 which_alternative = 0;
2562 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2563 return 1;
2565 for (c = 0; c < recog_data.n_operands; c++)
2567 constraints[c] = recog_data.constraints[c];
2568 matching_operands[c] = -1;
2573 int seen_earlyclobber_at = -1;
2574 int opno;
2575 int lose = 0;
2576 funny_match_index = 0;
2578 if (!TEST_BIT (alternatives, which_alternative))
2580 int i;
2582 for (i = 0; i < recog_data.n_operands; i++)
2583 constraints[i] = skip_alternative (constraints[i]);
2585 which_alternative++;
2586 continue;
2589 for (opno = 0; opno < recog_data.n_operands; opno++)
2591 rtx op = recog_data.operand[opno];
2592 machine_mode mode = GET_MODE (op);
2593 const char *p = constraints[opno];
2594 int offset = 0;
2595 int win = 0;
2596 int val;
2597 int len;
2599 earlyclobber[opno] = 0;
2601 /* A unary operator may be accepted by the predicate, but it
2602 is irrelevant for matching constraints. */
2603 if (UNARY_P (op))
2604 op = XEXP (op, 0);
2606 if (GET_CODE (op) == SUBREG)
2608 if (REG_P (SUBREG_REG (op))
2609 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2610 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2611 GET_MODE (SUBREG_REG (op)),
2612 SUBREG_BYTE (op),
2613 GET_MODE (op));
2614 op = SUBREG_REG (op);
2617 /* An empty constraint or empty alternative
2618 allows anything which matched the pattern. */
2619 if (*p == 0 || *p == ',')
2620 win = 1;
2623 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2625 case '\0':
2626 len = 0;
2627 break;
2628 case ',':
2629 c = '\0';
2630 break;
2632 case '#':
2633 /* Ignore rest of this alternative as far as
2634 constraint checking is concerned. */
2636 p++;
2637 while (*p && *p != ',');
2638 len = 0;
2639 break;
2641 case '&':
2642 earlyclobber[opno] = 1;
2643 if (seen_earlyclobber_at < 0)
2644 seen_earlyclobber_at = opno;
2645 break;
2647 case '0': case '1': case '2': case '3': case '4':
2648 case '5': case '6': case '7': case '8': case '9':
2650 /* This operand must be the same as a previous one.
2651 This kind of constraint is used for instructions such
2652 as add when they take only two operands.
2654 Note that the lower-numbered operand is passed first.
2656 If we are not testing strictly, assume that this
2657 constraint will be satisfied. */
2659 char *end;
2660 int match;
2662 match = strtoul (p, &end, 10);
2663 p = end;
2665 if (strict < 0)
2666 val = 1;
2667 else
2669 rtx op1 = recog_data.operand[match];
2670 rtx op2 = recog_data.operand[opno];
2672 /* A unary operator may be accepted by the predicate,
2673 but it is irrelevant for matching constraints. */
2674 if (UNARY_P (op1))
2675 op1 = XEXP (op1, 0);
2676 if (UNARY_P (op2))
2677 op2 = XEXP (op2, 0);
2679 val = operands_match_p (op1, op2);
2682 matching_operands[opno] = match;
2683 matching_operands[match] = opno;
2685 if (val != 0)
2686 win = 1;
2688 /* If output is *x and input is *--x, arrange later
2689 to change the output to *--x as well, since the
2690 output op is the one that will be printed. */
2691 if (val == 2 && strict > 0)
2693 funny_match[funny_match_index].this_op = opno;
2694 funny_match[funny_match_index++].other = match;
2697 len = 0;
2698 break;
2700 case 'p':
2701 /* p is used for address_operands. When we are called by
2702 gen_reload, no one will have checked that the address is
2703 strictly valid, i.e., that all pseudos requiring hard regs
2704 have gotten them. We also want to make sure we have a
2705 valid mode. */
2706 if ((GET_MODE (op) == VOIDmode
2707 || SCALAR_INT_MODE_P (GET_MODE (op)))
2708 && (strict <= 0
2709 || (strict_memory_address_p
2710 (recog_data.operand_mode[opno], op))))
2711 win = 1;
2712 break;
2714 /* No need to check general_operand again;
2715 it was done in insn-recog.c. Well, except that reload
2716 doesn't check the validity of its replacements, but
2717 that should only matter when there's a bug. */
2718 case 'g':
2719 /* Anything goes unless it is a REG and really has a hard reg
2720 but the hard reg is not in the class GENERAL_REGS. */
2721 if (REG_P (op))
2723 if (strict < 0
2724 || GENERAL_REGS == ALL_REGS
2725 || (reload_in_progress
2726 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2727 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2728 win = 1;
2730 else if (strict < 0 || general_operand (op, mode))
2731 win = 1;
2732 break;
2734 default:
2736 enum constraint_num cn = lookup_constraint (p);
2737 enum reg_class cl = reg_class_for_constraint (cn);
2738 if (cl != NO_REGS)
2740 if (strict < 0
2741 || (strict == 0
2742 && REG_P (op)
2743 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2744 || (strict == 0 && GET_CODE (op) == SCRATCH)
2745 || (REG_P (op)
2746 && reg_fits_class_p (op, cl, offset, mode)))
2747 win = 1;
2750 else if (constraint_satisfied_p (op, cn))
2751 win = 1;
2753 else if (insn_extra_memory_constraint (cn)
2754 /* Every memory operand can be reloaded to fit. */
2755 && ((strict < 0 && MEM_P (op))
2756 /* Before reload, accept what reload can turn
2757 into a mem. */
2758 || (strict < 0 && CONSTANT_P (op))
2759 /* Before reload, accept a pseudo,
2760 since LRA can turn it into a mem. */
2761 || (strict < 0 && targetm.lra_p () && REG_P (op)
2762 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2763 /* During reload, accept a pseudo */
2764 || (reload_in_progress && REG_P (op)
2765 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2766 win = 1;
2767 else if (insn_extra_address_constraint (cn)
2768 /* Every address operand can be reloaded to fit. */
2769 && strict < 0)
2770 win = 1;
2771 /* Cater to architectures like IA-64 that define extra memory
2772 constraints without using define_memory_constraint. */
2773 else if (reload_in_progress
2774 && REG_P (op)
2775 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2776 && reg_renumber[REGNO (op)] < 0
2777 && reg_equiv_mem (REGNO (op)) != 0
2778 && constraint_satisfied_p
2779 (reg_equiv_mem (REGNO (op)), cn))
2780 win = 1;
2781 break;
2784 while (p += len, c);
2786 constraints[opno] = p;
2787 /* If this operand did not win somehow,
2788 this alternative loses. */
2789 if (! win)
2790 lose = 1;
2792 /* This alternative won; the operands are ok.
2793 Change whichever operands this alternative says to change. */
2794 if (! lose)
2796 int opno, eopno;
2798 /* See if any earlyclobber operand conflicts with some other
2799 operand. */
2801 if (strict > 0 && seen_earlyclobber_at >= 0)
2802 for (eopno = seen_earlyclobber_at;
2803 eopno < recog_data.n_operands;
2804 eopno++)
2805 /* Ignore earlyclobber operands now in memory,
2806 because we would often report failure when we have
2807 two memory operands, one of which was formerly a REG. */
2808 if (earlyclobber[eopno]
2809 && REG_P (recog_data.operand[eopno]))
2810 for (opno = 0; opno < recog_data.n_operands; opno++)
2811 if ((MEM_P (recog_data.operand[opno])
2812 || recog_data.operand_type[opno] != OP_OUT)
2813 && opno != eopno
2814 /* Ignore things like match_operator operands. */
2815 && *recog_data.constraints[opno] != 0
2816 && ! (matching_operands[opno] == eopno
2817 && operands_match_p (recog_data.operand[opno],
2818 recog_data.operand[eopno]))
2819 && ! safe_from_earlyclobber (recog_data.operand[opno],
2820 recog_data.operand[eopno]))
2821 lose = 1;
2823 if (! lose)
2825 while (--funny_match_index >= 0)
2827 recog_data.operand[funny_match[funny_match_index].other]
2828 = recog_data.operand[funny_match[funny_match_index].this_op];
2831 /* For operands without < or > constraints reject side-effects. */
2832 if (AUTO_INC_DEC && recog_data.is_asm)
2834 for (opno = 0; opno < recog_data.n_operands; opno++)
2835 if (MEM_P (recog_data.operand[opno]))
2836 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2838 case PRE_INC:
2839 case POST_INC:
2840 case PRE_DEC:
2841 case POST_DEC:
2842 case PRE_MODIFY:
2843 case POST_MODIFY:
2844 if (strchr (recog_data.constraints[opno], '<') == NULL
2845 && strchr (recog_data.constraints[opno], '>')
2846 == NULL)
2847 return 0;
2848 break;
2849 default:
2850 break;
2854 return 1;
2858 which_alternative++;
2860 while (which_alternative < recog_data.n_alternatives);
2862 which_alternative = -1;
2863 /* If we are about to reject this, but we are not to test strictly,
2864 try a very loose test. Only return failure if it fails also. */
2865 if (strict == 0)
2866 return constrain_operands (-1, alternatives);
2867 else
2868 return 0;
2871 /* Return true iff OPERAND (assumed to be a REG rtx)
2872 is a hard reg in class CLASS when its regno is offset by OFFSET
2873 and changed to mode MODE.
2874 If REG occupies multiple hard regs, all of them must be in CLASS. */
2876 bool
2877 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2878 machine_mode mode)
2880 unsigned int regno = REGNO (operand);
2882 if (cl == NO_REGS)
2883 return false;
2885 /* Regno must not be a pseudo register. Offset may be negative. */
2886 return (HARD_REGISTER_NUM_P (regno)
2887 && HARD_REGISTER_NUM_P (regno + offset)
2888 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2889 regno + offset));
2892 /* Split single instruction. Helper function for split_all_insns and
2893 split_all_insns_noflow. Return last insn in the sequence if successful,
2894 or NULL if unsuccessful. */
2896 static rtx_insn *
2897 split_insn (rtx_insn *insn)
2899 /* Split insns here to get max fine-grain parallelism. */
2900 rtx_insn *first = PREV_INSN (insn);
2901 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2902 rtx insn_set, last_set, note;
2904 if (last == insn)
2905 return NULL;
2907 /* If the original instruction was a single set that was known to be
2908 equivalent to a constant, see if we can say the same about the last
2909 instruction in the split sequence. The two instructions must set
2910 the same destination. */
2911 insn_set = single_set (insn);
2912 if (insn_set)
2914 last_set = single_set (last);
2915 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2917 note = find_reg_equal_equiv_note (insn);
2918 if (note && CONSTANT_P (XEXP (note, 0)))
2919 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2920 else if (CONSTANT_P (SET_SRC (insn_set)))
2921 set_unique_reg_note (last, REG_EQUAL,
2922 copy_rtx (SET_SRC (insn_set)));
2926 /* try_split returns the NOTE that INSN became. */
2927 SET_INSN_DELETED (insn);
2929 /* ??? Coddle to md files that generate subregs in post-reload
2930 splitters instead of computing the proper hard register. */
2931 if (reload_completed && first != last)
2933 first = NEXT_INSN (first);
2934 for (;;)
2936 if (INSN_P (first))
2937 cleanup_subreg_operands (first);
2938 if (first == last)
2939 break;
2940 first = NEXT_INSN (first);
2944 return last;
2947 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2949 void
2950 split_all_insns (void)
2952 bool changed;
2953 bool need_cfg_cleanup = false;
2954 basic_block bb;
2956 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2957 bitmap_clear (blocks);
2958 changed = false;
2960 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2962 rtx_insn *insn, *next;
2963 bool finish = false;
2965 rtl_profile_for_bb (bb);
2966 for (insn = BB_HEAD (bb); !finish ; insn = next)
2968 /* Can't use `next_real_insn' because that might go across
2969 CODE_LABELS and short-out basic blocks. */
2970 next = NEXT_INSN (insn);
2971 finish = (insn == BB_END (bb));
2973 /* If INSN has a REG_EH_REGION note and we split INSN, the
2974 resulting split may not have/need REG_EH_REGION notes.
2976 If that happens and INSN was the last reference to the
2977 given EH region, then the EH region will become unreachable.
2978 We cannot leave the unreachable blocks in the CFG as that
2979 will trigger a checking failure.
2981 So track if INSN has a REG_EH_REGION note. If so and we
2982 split INSN, then trigger a CFG cleanup. */
2983 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2984 if (INSN_P (insn))
2986 rtx set = single_set (insn);
2988 /* Don't split no-op move insns. These should silently
2989 disappear later in final. Splitting such insns would
2990 break the code that handles LIBCALL blocks. */
2991 if (set && set_noop_p (set))
2993 /* Nops get in the way while scheduling, so delete them
2994 now if register allocation has already been done. It
2995 is too risky to try to do this before register
2996 allocation, and there are unlikely to be very many
2997 nops then anyways. */
2998 if (reload_completed)
2999 delete_insn_and_edges (insn);
3000 if (note)
3001 need_cfg_cleanup = true;
3003 else
3005 if (split_insn (insn))
3007 bitmap_set_bit (blocks, bb->index);
3008 changed = true;
3009 if (note)
3010 need_cfg_cleanup = true;
3017 default_rtl_profile ();
3018 if (changed)
3020 find_many_sub_basic_blocks (blocks);
3022 /* Splitting could drop an REG_EH_REGION if it potentially
3023 trapped in its original form, but does not in its split
3024 form. Consider a FLOAT_TRUNCATE which splits into a memory
3025 store/load pair and -fnon-call-exceptions. */
3026 if (need_cfg_cleanup)
3027 cleanup_cfg (0);
3030 checking_verify_flow_info ();
3033 /* Same as split_all_insns, but do not expect CFG to be available.
3034 Used by machine dependent reorg passes. */
3036 unsigned int
3037 split_all_insns_noflow (void)
3039 rtx_insn *next, *insn;
3041 for (insn = get_insns (); insn; insn = next)
3043 next = NEXT_INSN (insn);
3044 if (INSN_P (insn))
3046 /* Don't split no-op move insns. These should silently
3047 disappear later in final. Splitting such insns would
3048 break the code that handles LIBCALL blocks. */
3049 rtx set = single_set (insn);
3050 if (set && set_noop_p (set))
3052 /* Nops get in the way while scheduling, so delete them
3053 now if register allocation has already been done. It
3054 is too risky to try to do this before register
3055 allocation, and there are unlikely to be very many
3056 nops then anyways.
3058 ??? Should we use delete_insn when the CFG isn't valid? */
3059 if (reload_completed)
3060 delete_insn_and_edges (insn);
3062 else
3063 split_insn (insn);
3066 return 0;
3069 struct peep2_insn_data
3071 rtx_insn *insn;
3072 regset live_before;
3075 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3076 static int peep2_current;
3078 static bool peep2_do_rebuild_jump_labels;
3079 static bool peep2_do_cleanup_cfg;
3081 /* The number of instructions available to match a peep2. */
3082 int peep2_current_count;
3084 /* A marker indicating the last insn of the block. The live_before regset
3085 for this element is correct, indicating DF_LIVE_OUT for the block. */
3086 #define PEEP2_EOB invalid_insn_rtx
3088 /* Wrap N to fit into the peep2_insn_data buffer. */
3090 static int
3091 peep2_buf_position (int n)
3093 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3094 n -= MAX_INSNS_PER_PEEP2 + 1;
3095 return n;
3098 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3099 does not exist. Used by the recognizer to find the next insn to match
3100 in a multi-insn pattern. */
3102 rtx_insn *
3103 peep2_next_insn (int n)
3105 gcc_assert (n <= peep2_current_count);
3107 n = peep2_buf_position (peep2_current + n);
3109 return peep2_insn_data[n].insn;
3112 /* Return true if REGNO is dead before the Nth non-note insn
3113 after `current'. */
3116 peep2_regno_dead_p (int ofs, int regno)
3118 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3120 ofs = peep2_buf_position (peep2_current + ofs);
3122 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3124 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3127 /* Similarly for a REG. */
3130 peep2_reg_dead_p (int ofs, rtx reg)
3132 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3134 ofs = peep2_buf_position (peep2_current + ofs);
3136 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3138 unsigned int end_regno = END_REGNO (reg);
3139 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3140 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3141 return 0;
3142 return 1;
3145 /* Regno offset to be used in the register search. */
3146 static int search_ofs;
3148 /* Try to find a hard register of mode MODE, matching the register class in
3149 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3150 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3151 in which case the only condition is that the register must be available
3152 before CURRENT_INSN.
3153 Registers that already have bits set in REG_SET will not be considered.
3155 If an appropriate register is available, it will be returned and the
3156 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3157 returned. */
3160 peep2_find_free_register (int from, int to, const char *class_str,
3161 machine_mode mode, HARD_REG_SET *reg_set)
3163 enum reg_class cl;
3164 HARD_REG_SET live;
3165 df_ref def;
3166 int i;
3168 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3169 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3171 from = peep2_buf_position (peep2_current + from);
3172 to = peep2_buf_position (peep2_current + to);
3174 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3175 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3177 while (from != to)
3179 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3181 /* Don't use registers set or clobbered by the insn. */
3182 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3183 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3185 from = peep2_buf_position (from + 1);
3188 cl = reg_class_for_constraint (lookup_constraint (class_str));
3190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3192 int raw_regno, regno, success, j;
3194 /* Distribute the free registers as much as possible. */
3195 raw_regno = search_ofs + i;
3196 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3197 raw_regno -= FIRST_PSEUDO_REGISTER;
3198 #ifdef REG_ALLOC_ORDER
3199 regno = reg_alloc_order[raw_regno];
3200 #else
3201 regno = raw_regno;
3202 #endif
3204 /* Can it support the mode we need? */
3205 if (!targetm.hard_regno_mode_ok (regno, mode))
3206 continue;
3208 success = 1;
3209 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3211 /* Don't allocate fixed registers. */
3212 if (fixed_regs[regno + j])
3214 success = 0;
3215 break;
3217 /* Don't allocate global registers. */
3218 if (global_regs[regno + j])
3220 success = 0;
3221 break;
3223 /* Make sure the register is of the right class. */
3224 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3226 success = 0;
3227 break;
3229 /* And that we don't create an extra save/restore. */
3230 if (! call_used_or_fixed_reg_p (regno + j)
3231 && ! df_regs_ever_live_p (regno + j))
3233 success = 0;
3234 break;
3237 if (! targetm.hard_regno_scratch_ok (regno + j))
3239 success = 0;
3240 break;
3243 /* And we don't clobber traceback for noreturn functions. */
3244 if ((regno + j == FRAME_POINTER_REGNUM
3245 || regno + j == HARD_FRAME_POINTER_REGNUM)
3246 && (! reload_completed || frame_pointer_needed))
3248 success = 0;
3249 break;
3252 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3253 || TEST_HARD_REG_BIT (live, regno + j))
3255 success = 0;
3256 break;
3260 if (success)
3262 add_to_hard_reg_set (reg_set, mode, regno);
3264 /* Start the next search with the next register. */
3265 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3266 raw_regno = 0;
3267 search_ofs = raw_regno;
3269 return gen_rtx_REG (mode, regno);
3273 search_ofs = 0;
3274 return NULL_RTX;
3277 /* Forget all currently tracked instructions, only remember current
3278 LIVE regset. */
3280 static void
3281 peep2_reinit_state (regset live)
3283 int i;
3285 /* Indicate that all slots except the last holds invalid data. */
3286 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3287 peep2_insn_data[i].insn = NULL;
3288 peep2_current_count = 0;
3290 /* Indicate that the last slot contains live_after data. */
3291 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3292 peep2_current = MAX_INSNS_PER_PEEP2;
3294 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3297 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3298 starting at INSN. Perform the replacement, removing the old insns and
3299 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3300 if the replacement is rejected. */
3302 static rtx_insn *
3303 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3305 int i;
3306 rtx_insn *last, *before_try, *x;
3307 rtx eh_note, as_note;
3308 rtx_insn *old_insn;
3309 rtx_insn *new_insn;
3310 bool was_call = false;
3312 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3313 match more than one insn, or to be split into more than one insn. */
3314 old_insn = peep2_insn_data[peep2_current].insn;
3315 if (RTX_FRAME_RELATED_P (old_insn))
3317 bool any_note = false;
3318 rtx note;
3320 if (match_len != 0)
3321 return NULL;
3323 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3324 may be in the stream for the purpose of register allocation. */
3325 if (active_insn_p (attempt))
3326 new_insn = attempt;
3327 else
3328 new_insn = next_active_insn (attempt);
3329 if (next_active_insn (new_insn))
3330 return NULL;
3332 /* We have a 1-1 replacement. Copy over any frame-related info. */
3333 RTX_FRAME_RELATED_P (new_insn) = 1;
3335 /* Allow the backend to fill in a note during the split. */
3336 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3337 switch (REG_NOTE_KIND (note))
3339 case REG_FRAME_RELATED_EXPR:
3340 case REG_CFA_DEF_CFA:
3341 case REG_CFA_ADJUST_CFA:
3342 case REG_CFA_OFFSET:
3343 case REG_CFA_REGISTER:
3344 case REG_CFA_EXPRESSION:
3345 case REG_CFA_RESTORE:
3346 case REG_CFA_SET_VDRAP:
3347 any_note = true;
3348 break;
3349 default:
3350 break;
3353 /* If the backend didn't supply a note, copy one over. */
3354 if (!any_note)
3355 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3356 switch (REG_NOTE_KIND (note))
3358 case REG_FRAME_RELATED_EXPR:
3359 case REG_CFA_DEF_CFA:
3360 case REG_CFA_ADJUST_CFA:
3361 case REG_CFA_OFFSET:
3362 case REG_CFA_REGISTER:
3363 case REG_CFA_EXPRESSION:
3364 case REG_CFA_RESTORE:
3365 case REG_CFA_SET_VDRAP:
3366 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3367 any_note = true;
3368 break;
3369 default:
3370 break;
3373 /* If there still isn't a note, make sure the unwind info sees the
3374 same expression as before the split. */
3375 if (!any_note)
3377 rtx old_set, new_set;
3379 /* The old insn had better have been simple, or annotated. */
3380 old_set = single_set (old_insn);
3381 gcc_assert (old_set != NULL);
3383 new_set = single_set (new_insn);
3384 if (!new_set || !rtx_equal_p (new_set, old_set))
3385 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3388 /* Copy prologue/epilogue status. This is required in order to keep
3389 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3390 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3393 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3394 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3395 cfg-related call notes. */
3396 for (i = 0; i <= match_len; ++i)
3398 int j;
3399 rtx note;
3401 j = peep2_buf_position (peep2_current + i);
3402 old_insn = peep2_insn_data[j].insn;
3403 if (!CALL_P (old_insn))
3404 continue;
3405 was_call = true;
3407 new_insn = attempt;
3408 while (new_insn != NULL_RTX)
3410 if (CALL_P (new_insn))
3411 break;
3412 new_insn = NEXT_INSN (new_insn);
3415 gcc_assert (new_insn != NULL_RTX);
3417 CALL_INSN_FUNCTION_USAGE (new_insn)
3418 = CALL_INSN_FUNCTION_USAGE (old_insn);
3419 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3421 for (note = REG_NOTES (old_insn);
3422 note;
3423 note = XEXP (note, 1))
3424 switch (REG_NOTE_KIND (note))
3426 case REG_NORETURN:
3427 case REG_SETJMP:
3428 case REG_TM:
3429 case REG_CALL_NOCF_CHECK:
3430 add_reg_note (new_insn, REG_NOTE_KIND (note),
3431 XEXP (note, 0));
3432 break;
3433 default:
3434 /* Discard all other reg notes. */
3435 break;
3438 /* Croak if there is another call in the sequence. */
3439 while (++i <= match_len)
3441 j = peep2_buf_position (peep2_current + i);
3442 old_insn = peep2_insn_data[j].insn;
3443 gcc_assert (!CALL_P (old_insn));
3445 break;
3448 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3449 move those notes over to the new sequence. */
3450 as_note = NULL;
3451 for (i = match_len; i >= 0; --i)
3453 int j = peep2_buf_position (peep2_current + i);
3454 old_insn = peep2_insn_data[j].insn;
3456 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3457 if (as_note)
3458 break;
3461 i = peep2_buf_position (peep2_current + match_len);
3462 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3464 /* Replace the old sequence with the new. */
3465 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3466 last = emit_insn_after_setloc (attempt,
3467 peep2_insn_data[i].insn,
3468 INSN_LOCATION (peepinsn));
3469 if (JUMP_P (peepinsn) && JUMP_P (last))
3470 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3471 before_try = PREV_INSN (insn);
3472 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3474 /* Re-insert the EH_REGION notes. */
3475 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3477 edge eh_edge;
3478 edge_iterator ei;
3480 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3481 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3482 break;
3484 if (eh_note)
3485 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3487 if (eh_edge)
3488 for (x = last; x != before_try; x = PREV_INSN (x))
3489 if (x != BB_END (bb)
3490 && (can_throw_internal (x)
3491 || can_nonlocal_goto (x)))
3493 edge nfte, nehe;
3494 int flags;
3496 nfte = split_block (bb, x);
3497 flags = (eh_edge->flags
3498 & (EDGE_EH | EDGE_ABNORMAL));
3499 if (CALL_P (x))
3500 flags |= EDGE_ABNORMAL_CALL;
3501 nehe = make_edge (nfte->src, eh_edge->dest,
3502 flags);
3504 nehe->probability = eh_edge->probability;
3505 nfte->probability = nehe->probability.invert ();
3507 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3508 bb = nfte->src;
3509 eh_edge = nehe;
3512 /* Converting possibly trapping insn to non-trapping is
3513 possible. Zap dummy outgoing edges. */
3514 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3517 /* Re-insert the ARGS_SIZE notes. */
3518 if (as_note)
3519 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3521 /* If we generated a jump instruction, it won't have
3522 JUMP_LABEL set. Recompute after we're done. */
3523 for (x = last; x != before_try; x = PREV_INSN (x))
3524 if (JUMP_P (x))
3526 peep2_do_rebuild_jump_labels = true;
3527 break;
3530 return last;
3533 /* After performing a replacement in basic block BB, fix up the life
3534 information in our buffer. LAST is the last of the insns that we
3535 emitted as a replacement. PREV is the insn before the start of
3536 the replacement. MATCH_LEN is the number of instructions that were
3537 matched, and which now need to be replaced in the buffer. */
3539 static void
3540 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3541 rtx_insn *prev)
3543 int i = peep2_buf_position (peep2_current + match_len + 1);
3544 rtx_insn *x;
3545 regset_head live;
3547 INIT_REG_SET (&live);
3548 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3550 gcc_assert (peep2_current_count >= match_len + 1);
3551 peep2_current_count -= match_len + 1;
3553 x = last;
3556 if (INSN_P (x))
3558 df_insn_rescan (x);
3559 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3561 peep2_current_count++;
3562 if (--i < 0)
3563 i = MAX_INSNS_PER_PEEP2;
3564 peep2_insn_data[i].insn = x;
3565 df_simulate_one_insn_backwards (bb, x, &live);
3566 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3569 x = PREV_INSN (x);
3571 while (x != prev);
3572 CLEAR_REG_SET (&live);
3574 peep2_current = i;
3577 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3578 Return true if we added it, false otherwise. The caller will try to match
3579 peepholes against the buffer if we return false; otherwise it will try to
3580 add more instructions to the buffer. */
3582 static bool
3583 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3585 int pos;
3587 /* Once we have filled the maximum number of insns the buffer can hold,
3588 allow the caller to match the insns against peepholes. We wait until
3589 the buffer is full in case the target has similar peepholes of different
3590 length; we always want to match the longest if possible. */
3591 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3592 return false;
3594 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3595 any other pattern, lest it change the semantics of the frame info. */
3596 if (RTX_FRAME_RELATED_P (insn))
3598 /* Let the buffer drain first. */
3599 if (peep2_current_count > 0)
3600 return false;
3601 /* Now the insn will be the only thing in the buffer. */
3604 pos = peep2_buf_position (peep2_current + peep2_current_count);
3605 peep2_insn_data[pos].insn = insn;
3606 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3607 peep2_current_count++;
3609 df_simulate_one_insn_forwards (bb, insn, live);
3610 return true;
3613 /* Perform the peephole2 optimization pass. */
3615 static void
3616 peephole2_optimize (void)
3618 rtx_insn *insn;
3619 bitmap live;
3620 int i;
3621 basic_block bb;
3623 peep2_do_cleanup_cfg = false;
3624 peep2_do_rebuild_jump_labels = false;
3626 df_set_flags (DF_LR_RUN_DCE);
3627 df_note_add_problem ();
3628 df_analyze ();
3630 /* Initialize the regsets we're going to use. */
3631 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3632 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3633 search_ofs = 0;
3634 live = BITMAP_ALLOC (&reg_obstack);
3636 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3638 bool past_end = false;
3639 int pos;
3641 rtl_profile_for_bb (bb);
3643 /* Start up propagation. */
3644 bitmap_copy (live, DF_LR_IN (bb));
3645 df_simulate_initialize_forwards (bb, live);
3646 peep2_reinit_state (live);
3648 insn = BB_HEAD (bb);
3649 for (;;)
3651 rtx_insn *attempt, *head;
3652 int match_len;
3654 if (!past_end && !NONDEBUG_INSN_P (insn))
3656 next_insn:
3657 insn = NEXT_INSN (insn);
3658 if (insn == NEXT_INSN (BB_END (bb)))
3659 past_end = true;
3660 continue;
3662 if (!past_end && peep2_fill_buffer (bb, insn, live))
3663 goto next_insn;
3665 /* If we did not fill an empty buffer, it signals the end of the
3666 block. */
3667 if (peep2_current_count == 0)
3668 break;
3670 /* The buffer filled to the current maximum, so try to match. */
3672 pos = peep2_buf_position (peep2_current + peep2_current_count);
3673 peep2_insn_data[pos].insn = PEEP2_EOB;
3674 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3676 /* Match the peephole. */
3677 head = peep2_insn_data[peep2_current].insn;
3678 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3679 if (attempt != NULL)
3681 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3682 if (last)
3684 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3685 continue;
3689 /* No match: advance the buffer by one insn. */
3690 peep2_current = peep2_buf_position (peep2_current + 1);
3691 peep2_current_count--;
3695 default_rtl_profile ();
3696 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3697 BITMAP_FREE (peep2_insn_data[i].live_before);
3698 BITMAP_FREE (live);
3699 if (peep2_do_rebuild_jump_labels)
3700 rebuild_jump_labels (get_insns ());
3701 if (peep2_do_cleanup_cfg)
3702 cleanup_cfg (CLEANUP_CFG_CHANGED);
3705 /* Common predicates for use with define_bypass. */
3707 /* Helper function for store_data_bypass_p, handle just a single SET
3708 IN_SET. */
3710 static bool
3711 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3713 if (!MEM_P (SET_DEST (in_set)))
3714 return false;
3716 rtx out_set = single_set (out_insn);
3717 if (out_set)
3718 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3720 rtx out_pat = PATTERN (out_insn);
3721 if (GET_CODE (out_pat) != PARALLEL)
3722 return false;
3724 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3726 rtx out_exp = XVECEXP (out_pat, 0, i);
3728 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE
3729 || GET_CODE (out_exp) == CLOBBER_HIGH)
3730 continue;
3732 gcc_assert (GET_CODE (out_exp) == SET);
3734 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3735 return false;
3738 return true;
3741 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3742 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3743 must be either a single_set or a PARALLEL with SETs inside. */
3746 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3748 rtx in_set = single_set (in_insn);
3749 if (in_set)
3750 return store_data_bypass_p_1 (out_insn, in_set);
3752 rtx in_pat = PATTERN (in_insn);
3753 if (GET_CODE (in_pat) != PARALLEL)
3754 return false;
3756 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3758 rtx in_exp = XVECEXP (in_pat, 0, i);
3760 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE
3761 || GET_CODE (in_exp) == CLOBBER_HIGH)
3762 continue;
3764 gcc_assert (GET_CODE (in_exp) == SET);
3766 if (!store_data_bypass_p_1 (out_insn, in_exp))
3767 return false;
3770 return true;
3773 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3774 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3775 or multiple set; IN_INSN should be single_set for truth, but for convenience
3776 of insn categorization may be any JUMP or CALL insn. */
3779 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3781 rtx out_set, in_set;
3783 in_set = single_set (in_insn);
3784 if (! in_set)
3786 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3787 return false;
3790 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3791 return false;
3792 in_set = SET_SRC (in_set);
3794 out_set = single_set (out_insn);
3795 if (out_set)
3797 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3798 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3799 return false;
3801 else
3803 rtx out_pat;
3804 int i;
3806 out_pat = PATTERN (out_insn);
3807 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3809 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3811 rtx exp = XVECEXP (out_pat, 0, i);
3813 if (GET_CODE (exp) == CLOBBER || GET_CODE (exp) == CLOBBER_HIGH)
3814 continue;
3816 gcc_assert (GET_CODE (exp) == SET);
3818 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3819 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3820 return false;
3824 return true;
3827 static unsigned int
3828 rest_of_handle_peephole2 (void)
3830 if (HAVE_peephole2)
3831 peephole2_optimize ();
3833 return 0;
3836 namespace {
3838 const pass_data pass_data_peephole2 =
3840 RTL_PASS, /* type */
3841 "peephole2", /* name */
3842 OPTGROUP_NONE, /* optinfo_flags */
3843 TV_PEEPHOLE2, /* tv_id */
3844 0, /* properties_required */
3845 0, /* properties_provided */
3846 0, /* properties_destroyed */
3847 0, /* todo_flags_start */
3848 TODO_df_finish, /* todo_flags_finish */
3851 class pass_peephole2 : public rtl_opt_pass
3853 public:
3854 pass_peephole2 (gcc::context *ctxt)
3855 : rtl_opt_pass (pass_data_peephole2, ctxt)
3858 /* opt_pass methods: */
3859 /* The epiphany backend creates a second instance of this pass, so we need
3860 a clone method. */
3861 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3862 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3863 virtual unsigned int execute (function *)
3865 return rest_of_handle_peephole2 ();
3868 }; // class pass_peephole2
3870 } // anon namespace
3872 rtl_opt_pass *
3873 make_pass_peephole2 (gcc::context *ctxt)
3875 return new pass_peephole2 (ctxt);
3878 namespace {
3880 const pass_data pass_data_split_all_insns =
3882 RTL_PASS, /* type */
3883 "split1", /* name */
3884 OPTGROUP_NONE, /* optinfo_flags */
3885 TV_NONE, /* tv_id */
3886 0, /* properties_required */
3887 PROP_rtl_split_insns, /* properties_provided */
3888 0, /* properties_destroyed */
3889 0, /* todo_flags_start */
3890 0, /* todo_flags_finish */
3893 class pass_split_all_insns : public rtl_opt_pass
3895 public:
3896 pass_split_all_insns (gcc::context *ctxt)
3897 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3900 /* opt_pass methods: */
3901 /* The epiphany backend creates a second instance of this pass, so
3902 we need a clone method. */
3903 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3904 virtual unsigned int execute (function *)
3906 split_all_insns ();
3907 return 0;
3910 }; // class pass_split_all_insns
3912 } // anon namespace
3914 rtl_opt_pass *
3915 make_pass_split_all_insns (gcc::context *ctxt)
3917 return new pass_split_all_insns (ctxt);
3920 namespace {
3922 const pass_data pass_data_split_after_reload =
3924 RTL_PASS, /* type */
3925 "split2", /* name */
3926 OPTGROUP_NONE, /* optinfo_flags */
3927 TV_NONE, /* tv_id */
3928 0, /* properties_required */
3929 0, /* properties_provided */
3930 0, /* properties_destroyed */
3931 0, /* todo_flags_start */
3932 0, /* todo_flags_finish */
3935 class pass_split_after_reload : public rtl_opt_pass
3937 public:
3938 pass_split_after_reload (gcc::context *ctxt)
3939 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3942 /* opt_pass methods: */
3943 virtual bool gate (function *)
3945 /* If optimizing, then go ahead and split insns now. */
3946 if (optimize > 0)
3947 return true;
3949 #ifdef STACK_REGS
3950 return true;
3951 #else
3952 return false;
3953 #endif
3956 virtual unsigned int execute (function *)
3958 split_all_insns ();
3959 return 0;
3962 }; // class pass_split_after_reload
3964 } // anon namespace
3966 rtl_opt_pass *
3967 make_pass_split_after_reload (gcc::context *ctxt)
3969 return new pass_split_after_reload (ctxt);
3972 namespace {
3974 const pass_data pass_data_split_before_regstack =
3976 RTL_PASS, /* type */
3977 "split3", /* name */
3978 OPTGROUP_NONE, /* optinfo_flags */
3979 TV_NONE, /* tv_id */
3980 0, /* properties_required */
3981 0, /* properties_provided */
3982 0, /* properties_destroyed */
3983 0, /* todo_flags_start */
3984 0, /* todo_flags_finish */
3987 class pass_split_before_regstack : public rtl_opt_pass
3989 public:
3990 pass_split_before_regstack (gcc::context *ctxt)
3991 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3994 /* opt_pass methods: */
3995 virtual bool gate (function *);
3996 virtual unsigned int execute (function *)
3998 split_all_insns ();
3999 return 0;
4002 }; // class pass_split_before_regstack
4004 bool
4005 pass_split_before_regstack::gate (function *)
4007 #if HAVE_ATTR_length && defined (STACK_REGS)
4008 /* If flow2 creates new instructions which need splitting
4009 and scheduling after reload is not done, they might not be
4010 split until final which doesn't allow splitting
4011 if HAVE_ATTR_length. */
4012 # ifdef INSN_SCHEDULING
4013 return (optimize && !flag_schedule_insns_after_reload);
4014 # else
4015 return (optimize);
4016 # endif
4017 #else
4018 return 0;
4019 #endif
4022 } // anon namespace
4024 rtl_opt_pass *
4025 make_pass_split_before_regstack (gcc::context *ctxt)
4027 return new pass_split_before_regstack (ctxt);
4030 static unsigned int
4031 rest_of_handle_split_before_sched2 (void)
4033 #ifdef INSN_SCHEDULING
4034 split_all_insns ();
4035 #endif
4036 return 0;
4039 namespace {
4041 const pass_data pass_data_split_before_sched2 =
4043 RTL_PASS, /* type */
4044 "split4", /* name */
4045 OPTGROUP_NONE, /* optinfo_flags */
4046 TV_NONE, /* tv_id */
4047 0, /* properties_required */
4048 0, /* properties_provided */
4049 0, /* properties_destroyed */
4050 0, /* todo_flags_start */
4051 0, /* todo_flags_finish */
4054 class pass_split_before_sched2 : public rtl_opt_pass
4056 public:
4057 pass_split_before_sched2 (gcc::context *ctxt)
4058 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4061 /* opt_pass methods: */
4062 virtual bool gate (function *)
4064 #ifdef INSN_SCHEDULING
4065 return optimize > 0 && flag_schedule_insns_after_reload;
4066 #else
4067 return false;
4068 #endif
4071 virtual unsigned int execute (function *)
4073 return rest_of_handle_split_before_sched2 ();
4076 }; // class pass_split_before_sched2
4078 } // anon namespace
4080 rtl_opt_pass *
4081 make_pass_split_before_sched2 (gcc::context *ctxt)
4083 return new pass_split_before_sched2 (ctxt);
4086 namespace {
4088 const pass_data pass_data_split_for_shorten_branches =
4090 RTL_PASS, /* type */
4091 "split5", /* name */
4092 OPTGROUP_NONE, /* optinfo_flags */
4093 TV_NONE, /* tv_id */
4094 0, /* properties_required */
4095 0, /* properties_provided */
4096 0, /* properties_destroyed */
4097 0, /* todo_flags_start */
4098 0, /* todo_flags_finish */
4101 class pass_split_for_shorten_branches : public rtl_opt_pass
4103 public:
4104 pass_split_for_shorten_branches (gcc::context *ctxt)
4105 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4108 /* opt_pass methods: */
4109 virtual bool gate (function *)
4111 /* The placement of the splitting that we do for shorten_branches
4112 depends on whether regstack is used by the target or not. */
4113 #if HAVE_ATTR_length && !defined (STACK_REGS)
4114 return true;
4115 #else
4116 return false;
4117 #endif
4120 virtual unsigned int execute (function *)
4122 return split_all_insns_noflow ();
4125 }; // class pass_split_for_shorten_branches
4127 } // anon namespace
4129 rtl_opt_pass *
4130 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4132 return new pass_split_for_shorten_branches (ctxt);
4135 /* (Re)initialize the target information after a change in target. */
4137 void
4138 recog_init ()
4140 /* The information is zero-initialized, so we don't need to do anything
4141 first time round. */
4142 if (!this_target_recog->x_initialized)
4144 this_target_recog->x_initialized = true;
4145 return;
4147 memset (this_target_recog->x_bool_attr_masks, 0,
4148 sizeof (this_target_recog->x_bool_attr_masks));
4149 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4150 if (this_target_recog->x_op_alt[i])
4152 free (this_target_recog->x_op_alt[i]);
4153 this_target_recog->x_op_alt[i] = 0;