1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
40 #include "cfgcleanup.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
48 #define STACK_POP_CODE POST_DEC
52 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx_insn
*, bool);
53 static void validate_replace_src_1 (rtx
*, void *);
54 static rtx_insn
*split_insn (rtx_insn
*);
56 struct target_recog default_target_recog
;
58 struct target_recog
*this_target_recog
= &default_target_recog
;
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
71 struct recog_data_d recog_data
;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative
*recog_op_alt
;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt
[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES
];
82 /* On return from `constrain_operands', indicate which alternative
85 int which_alternative
;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed
;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
101 init_recog_no_volatile (void)
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
116 asm_labels_ok (rtx body
)
121 asmop
= extract_asm_operands (body
);
122 if (asmop
== NULL_RTX
)
125 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x
)
140 const char **constraints
;
143 if (!asm_labels_ok (x
))
146 /* Post-reload, be more strict with things. */
147 if (reload_completed
)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn
*insn
= make_insn_raw (x
);
152 constrain_operands (1, get_enabled_alternatives (insn
));
153 return which_alternative
>= 0;
156 noperands
= asm_noperands (x
);
162 operands
= XALLOCAVEC (rtx
, noperands
);
163 constraints
= XALLOCAVEC (const char *, noperands
);
165 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
167 for (i
= 0; i
< noperands
; i
++)
169 const char *c
= constraints
[i
];
172 if (! asm_operand_ok (operands
[i
], c
, constraints
))
179 /* Static data for the next two routines. */
190 static change_t
*changes
;
191 static int changes_allocated
;
193 static int num_changes
= 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
214 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
218 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
221 gcc_assert (in_group
!= 0 || num_changes
== 0);
225 /* Save the information describing this change. */
226 if (num_changes
>= changes_allocated
)
228 if (changes_allocated
== 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
233 changes_allocated
*= 2;
235 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
238 changes
[num_changes
].object
= object
;
239 changes
[num_changes
].loc
= loc
;
240 changes
[num_changes
].old
= old
;
241 changes
[num_changes
].unshare
= unshare
;
243 if (object
&& !MEM_P (object
))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 changes
[num_changes
].old_code
= INSN_CODE (object
);
248 INSN_CODE (object
) = -1;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
266 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
268 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
275 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
277 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
287 canonicalize_change_group (rtx_insn
*insn
, rtx x
)
289 if (COMMUTATIVE_P (x
)
290 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem
= XEXP (x
, 0);
295 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
296 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn
*insn
, bool in_group
)
314 rtx pat
= PATTERN (insn
);
315 int num_clobbers
= 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
318 int icode
= recog (pat
, insn
,
319 (GET_CODE (pat
) == SET
320 && ! reload_completed
321 && ! reload_in_progress
)
322 ? &num_clobbers
: 0);
323 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
329 || (!is_asm
&& icode
< 0))
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers
> 0)
339 if (added_clobbers_hard_reg_p (icode
))
342 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
343 XVECEXP (newpat
, 0, 0) = pat
;
344 add_clobbers (newpat
, icode
);
346 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
348 PATTERN (insn
) = pat
= newpat
;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed
)
356 if (! constrain_operands (1, get_preferred_alternatives (insn
)))
360 INSN_CODE (insn
) = icode
;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num
)
378 rtx last_validated
= NULL_RTX
;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
389 for (i
= num
; i
< num_changes
; i
++)
391 rtx object
= changes
[i
].object
;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object
== 0 || object
== last_validated
)
400 if (! memory_address_addr_space_p (GET_MODE (object
),
402 MEM_ADDR_SPACE (object
)))
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 && REG_P (changes
[i
].old
)
409 && asm_noperands (PATTERN (object
)) > 0
410 && REG_EXPR (changes
[i
].old
) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes
[i
].old
))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
413 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
419 else if (DEBUG_INSN_P (object
))
421 else if (insn_invalid_p (as_a
<rtx_insn
*> (object
), true))
423 rtx pat
= PATTERN (object
);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat
) == PARALLEL
431 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object
)) < 0)
436 if (XVECLEN (pat
, 0) == 2)
437 newpat
= XVECEXP (pat
, 0, 0);
443 = gen_rtx_PARALLEL (VOIDmode
,
444 rtvec_alloc (XVECLEN (pat
, 0) - 1));
445 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
446 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object
, &PATTERN (object
), newpat
, 1);
461 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
462 || GET_CODE (pat
) == VAR_LOCATION
)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
469 last_validated
= object
;
472 return (i
== num_changes
);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
480 confirm_change_group (void)
483 rtx last_object
= NULL
;
485 for (i
= 0; i
< num_changes
; i
++)
487 rtx object
= changes
[i
].object
;
489 if (changes
[i
].unshare
)
490 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
496 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
497 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
498 last_object
= object
;
502 if (last_object
&& INSN_P (last_object
))
503 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
535 /* Retract the changes numbered NUM and up. */
538 cancel_changes (int num
)
542 /* Back out all the changes. Do this in the opposite order in which
544 for (i
= num_changes
- 1; i
>= num
; i
--)
546 *changes
[i
].loc
= changes
[i
].old
;
547 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
548 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
558 simplify_while_replacing (rtx
*loc
, rtx to
, rtx_insn
*object
,
559 machine_mode op0_mode
)
562 enum rtx_code code
= GET_CODE (x
);
563 rtx new_rtx
= NULL_RTX
;
564 scalar_int_mode is_mode
;
566 if (SWAPPABLE_OPERANDS_P (x
)
567 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
569 validate_unshare_change (object
, loc
,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
571 : swap_condition (code
),
572 GET_MODE (x
), XEXP (x
, 1),
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code
))
582 if (CONSTANT_P (XEXP (x
, 0)))
583 new_rtx
= simplify_unary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
588 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
589 new_rtx
= simplify_binary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
593 case RTX_COMM_COMPARE
:
594 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
595 new_rtx
= simplify_relational_operation (code
, GET_MODE (x
), op0_mode
,
596 XEXP (x
, 0), XEXP (x
, 1));
603 validate_change (object
, loc
, new_rtx
, 1);
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
615 validate_change (object
, loc
,
617 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
620 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
621 validate_change (object
, loc
,
623 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
624 simplify_gen_unary (NEG
,
625 GET_MODE (x
), XEXP (x
, 1),
630 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
632 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
637 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
638 validate_change (object
, loc
, new_rtx
, 1);
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
648 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
650 validate_change (object
, loc
, new_rtx
, 1);
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
659 if (MEM_P (XEXP (x
, 0))
660 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &is_mode
)
661 && CONST_INT_P (XEXP (x
, 1))
662 && CONST_INT_P (XEXP (x
, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x
, 0)))
665 && !MEM_VOLATILE_P (XEXP (x
, 0)))
667 int pos
= INTVAL (XEXP (x
, 2));
668 machine_mode new_mode
= is_mode
;
669 if (GET_CODE (x
) == ZERO_EXTRACT
&& targetm
.have_extzv ())
670 new_mode
= insn_data
[targetm
.code_for_extzv
].operand
[1].mode
;
671 else if (GET_CODE (x
) == SIGN_EXTRACT
&& targetm
.have_extv ())
672 new_mode
= insn_data
[targetm
.code_for_extv
].operand
[1].mode
;
673 scalar_int_mode wanted_mode
= (new_mode
== VOIDmode
675 : as_a
<scalar_int_mode
> (new_mode
));
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
680 int offset
= pos
/ BITS_PER_UNIT
;
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
687 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
690 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
691 == GET_MODE_BITSIZE (wanted_mode
));
692 pos
%= GET_MODE_BITSIZE (wanted_mode
);
694 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
696 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
697 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
712 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx_insn
*object
,
719 machine_mode op0_mode
= VOIDmode
;
720 int prev_changes
= num_changes
;
726 fmt
= GET_RTX_FORMAT (code
);
728 op0_mode
= GET_MODE (XEXP (x
, 0));
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
735 || (REG_P (x
) && REG_P (from
)
736 && GET_MODE (x
) == GET_MODE (from
)
737 && REGNO (x
) == REGNO (from
))
738 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
739 && rtx_equal_p (x
, from
)))
741 validate_unshare_change (object
, loc
, to
, 1);
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
750 if (GET_CODE (x
) == PARALLEL
)
752 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
754 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
762 from
, to
, object
, simplify
);
765 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
770 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
773 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
774 else if (fmt
[i
] == 'E')
775 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
776 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes
== prev_changes
)
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
788 op0_mode
= GET_MODE (XEXP (x
, 0));
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
793 simplify_while_replacing (loc
, to
, object
, op0_mode
);
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
801 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx_insn
*insn
, rtx
*loc
)
803 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
804 return apply_change_group ();
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
811 validate_replace_rtx (rtx from
, rtx to
, rtx_insn
*insn
)
813 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
814 return apply_change_group ();
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
824 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx_insn
*insn
)
826 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
827 return apply_change_group ();
830 /* Same as above, but do not simplify rtx afterwards. */
832 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
835 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
836 return apply_change_group ();
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
844 validate_replace_rtx_group (rtx from
, rtx to
, rtx_insn
*insn
)
847 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
848 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
849 if (REG_NOTE_KIND (note
) == REG_EQUAL
850 || REG_NOTE_KIND (note
) == REG_EQUIV
)
851 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
857 rtx from
; /* Old RTX */
858 rtx to
; /* New RTX */
859 rtx_insn
*insn
; /* Insn in which substitution is occurring. */
863 validate_replace_src_1 (rtx
*x
, void *data
)
865 struct validate_replace_src_data
*d
866 = (struct validate_replace_src_data
*) data
;
868 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
875 validate_replace_src_group (rtx from
, rtx to
, rtx_insn
*insn
)
877 struct validate_replace_src_data d
;
882 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
890 validate_simplify_insn (rtx_insn
*insn
)
896 pat
= PATTERN (insn
);
898 if (GET_CODE (pat
) == SET
)
900 newpat
= simplify_rtx (SET_SRC (pat
));
901 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
902 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
903 newpat
= simplify_rtx (SET_DEST (pat
));
904 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
905 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
907 else if (GET_CODE (pat
) == PARALLEL
)
908 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
910 rtx s
= XVECEXP (pat
, 0, i
);
912 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
914 newpat
= simplify_rtx (SET_SRC (s
));
915 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
916 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
917 newpat
= simplify_rtx (SET_DEST (s
));
918 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
919 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
930 next_insn_tests_no_inequality (rtx_insn
*insn
)
932 rtx_insn
*next
= next_cc0_user (insn
);
934 /* If there is no next insn, we have to take the conservative choice. */
938 return (INSN_P (next
)
939 && ! inequality_comparisons_p (PATTERN (next
)));
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
957 general_operand (rtx op
, machine_mode mode
)
959 enum rtx_code code
= GET_CODE (op
);
961 if (mode
== VOIDmode
)
962 mode
= GET_MODE (op
);
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
967 && GET_MODE_CLASS (mode
) != MODE_INT
968 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
973 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
977 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
979 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
980 && targetm
.legitimate_constant_p (mode
== VOIDmode
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
987 if (GET_MODE (op
) != mode
)
992 rtx sub
= SUBREG_REG (op
);
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed
&& MEM_P (sub
)
1000 && paradoxical_subreg_p (op
))
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op
), 0)
1015 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1017 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1022 && ! LRA_SUBREG_P (op
))
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op
))
1038 code
= GET_CODE (op
);
1042 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1047 rtx y
= XEXP (op
, 0);
1049 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1057 || memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1064 /* Return 1 if OP is a valid memory address for a memory reference
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1071 address_operand (rtx op
, machine_mode mode
)
1073 /* Wrong mode for an address expr. */
1074 if (GET_MODE (op
) != VOIDmode
1075 && ! SCALAR_INT_MODE_P (GET_MODE (op
)))
1078 return memory_address_p (mode
, op
);
1081 /* Return 1 if OP is a register reference of mode MODE.
1082 If MODE is VOIDmode, accept a register in any mode.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 register_operand (rtx op
, machine_mode mode
)
1090 if (GET_CODE (op
) == SUBREG
)
1092 rtx sub
= SUBREG_REG (op
);
1094 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 because it is guaranteed to be reloaded into one.
1096 Just make sure the MEM is valid in itself.
1097 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 but currently it does result from (SUBREG (REG)...) where the
1099 reg went on the stack.) */
1100 if (!REG_P (sub
) && (reload_completed
|| !MEM_P (sub
)))
1103 else if (!REG_P (op
))
1105 return general_operand (op
, mode
);
1108 /* Return 1 for a register in Pmode; ignore the tested mode. */
1111 pmode_register_operand (rtx op
, machine_mode mode ATTRIBUTE_UNUSED
)
1113 return register_operand (op
, Pmode
);
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117 or a hard register. */
1120 scratch_operand (rtx op
, machine_mode mode
)
1122 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1125 return (GET_CODE (op
) == SCRATCH
1128 || (REGNO (op
) < FIRST_PSEUDO_REGISTER
1129 && REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
))));
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1134 The main use of this function is as a predicate in match_operand
1135 expressions in the machine description. */
1138 immediate_operand (rtx op
, machine_mode mode
)
1140 /* Don't accept CONST_INT or anything similar
1141 if the caller wants something floating. */
1142 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1143 && GET_MODE_CLASS (mode
) != MODE_INT
1144 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1147 if (CONST_INT_P (op
)
1149 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1152 return (CONSTANT_P (op
)
1153 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1154 || GET_MODE (op
) == VOIDmode
)
1155 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1156 && targetm
.legitimate_constant_p (mode
== VOIDmode
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1164 const_int_operand (rtx op
, machine_mode mode
)
1166 if (!CONST_INT_P (op
))
1169 if (mode
!= VOIDmode
1170 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1180 const_scalar_int_operand (rtx op
, machine_mode mode
)
1182 if (!CONST_SCALAR_INT_P (op
))
1185 if (CONST_INT_P (op
))
1186 return const_int_operand (op
, mode
);
1188 if (mode
!= VOIDmode
)
1190 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (mode
);
1191 int prec
= GET_MODE_PRECISION (int_mode
);
1192 int bitsize
= GET_MODE_BITSIZE (int_mode
);
1194 if (CONST_WIDE_INT_NUNITS (op
) * HOST_BITS_PER_WIDE_INT
> bitsize
)
1197 if (prec
== bitsize
)
1201 /* Multiword partial int. */
1203 = CONST_WIDE_INT_ELT (op
, CONST_WIDE_INT_NUNITS (op
) - 1);
1204 return (sext_hwi (x
, prec
& (HOST_BITS_PER_WIDE_INT
- 1)) == x
);
1210 /* Returns 1 if OP is an operand that is a constant integer or constant
1211 floating-point number of MODE. */
1214 const_double_operand (rtx op
, machine_mode mode
)
1216 return (GET_CODE (op
) == CONST_DOUBLE
)
1217 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
);
1220 /* Returns 1 if OP is an operand that is a constant integer or constant
1221 floating-point number of MODE. */
1224 const_double_operand (rtx op
, machine_mode mode
)
1226 /* Don't accept CONST_INT or anything similar
1227 if the caller wants something floating. */
1228 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1229 && GET_MODE_CLASS (mode
) != MODE_INT
1230 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1233 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1234 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1235 || GET_MODE (op
) == VOIDmode
));
1238 /* Return 1 if OP is a general operand that is not an immediate
1239 operand of mode MODE. */
1242 nonimmediate_operand (rtx op
, machine_mode mode
)
1244 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1247 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1250 nonmemory_operand (rtx op
, machine_mode mode
)
1252 if (CONSTANT_P (op
))
1253 return immediate_operand (op
, mode
);
1254 return register_operand (op
, mode
);
1257 /* Return 1 if OP is a valid operand that stands for pushing a
1258 value of mode MODE onto the stack.
1260 The main use of this function is as a predicate in match_operand
1261 expressions in the machine description. */
1264 push_operand (rtx op
, machine_mode mode
)
1269 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1272 poly_int64 rounded_size
= GET_MODE_SIZE (mode
);
1274 #ifdef PUSH_ROUNDING
1275 rounded_size
= PUSH_ROUNDING (MACRO_INT (rounded_size
));
1280 if (known_eq (rounded_size
, GET_MODE_SIZE (mode
)))
1282 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1288 if (GET_CODE (op
) != PRE_MODIFY
1289 || GET_CODE (XEXP (op
, 1)) != PLUS
1290 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1291 || !poly_int_rtx_p (XEXP (XEXP (op
, 1), 1), &offset
)
1292 || (STACK_GROWS_DOWNWARD
1293 ? maybe_ne (offset
, -rounded_size
)
1294 : maybe_ne (offset
, rounded_size
)))
1298 return XEXP (op
, 0) == stack_pointer_rtx
;
1301 /* Return 1 if OP is a valid operand that stands for popping a
1302 value of mode MODE off the stack.
1304 The main use of this function is as a predicate in match_operand
1305 expressions in the machine description. */
1308 pop_operand (rtx op
, machine_mode mode
)
1313 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1318 if (GET_CODE (op
) != STACK_POP_CODE
)
1321 return XEXP (op
, 0) == stack_pointer_rtx
;
1324 /* Return 1 if ADDR is a valid memory address
1325 for mode MODE in address space AS. */
1328 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED
,
1329 rtx addr
, addr_space_t as
)
1331 #ifdef GO_IF_LEGITIMATE_ADDRESS
1332 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1333 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1339 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1343 /* Return 1 if OP is a valid memory reference with mode MODE,
1344 including a valid address.
1346 The main use of this function is as a predicate in match_operand
1347 expressions in the machine description. */
1350 memory_operand (rtx op
, machine_mode mode
)
1354 if (! reload_completed
)
1355 /* Note that no SUBREG is a memory operand before end of reload pass,
1356 because (SUBREG (MEM...)) forces reloading into a register. */
1357 return MEM_P (op
) && general_operand (op
, mode
);
1359 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1363 if (GET_CODE (inner
) == SUBREG
)
1364 inner
= SUBREG_REG (inner
);
1366 return (MEM_P (inner
) && general_operand (op
, mode
));
1369 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1370 that is, a memory reference whose address is a general_operand. */
1373 indirect_operand (rtx op
, machine_mode mode
)
1375 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1376 if (! reload_completed
1377 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1379 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1382 /* The only way that we can have a general_operand as the resulting
1383 address is if OFFSET is zero and the address already is an operand
1384 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1387 rtx addr
= strip_offset (XEXP (SUBREG_REG (op
), 0), &offset
);
1388 return (known_eq (offset
+ SUBREG_BYTE (op
), 0)
1389 && general_operand (addr
, Pmode
));
1393 && memory_operand (op
, mode
)
1394 && general_operand (XEXP (op
, 0), Pmode
));
1397 /* Return 1 if this is an ordered comparison operator (not including
1398 ORDERED and UNORDERED). */
1401 ordered_comparison_operator (rtx op
, machine_mode mode
)
1403 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1405 switch (GET_CODE (op
))
1423 /* Return 1 if this is a comparison operator. This allows the use of
1424 MATCH_OPERATOR to recognize all the branch insns. */
1427 comparison_operator (rtx op
, machine_mode mode
)
1429 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1430 && COMPARISON_P (op
));
1433 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1436 extract_asm_operands (rtx body
)
1439 switch (GET_CODE (body
))
1445 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1446 tmp
= SET_SRC (body
);
1447 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1452 tmp
= XVECEXP (body
, 0, 0);
1453 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1455 if (GET_CODE (tmp
) == SET
)
1457 tmp
= SET_SRC (tmp
);
1458 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1469 /* If BODY is an insn body that uses ASM_OPERANDS,
1470 return the number of operands (both input and output) in the insn.
1471 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1473 Otherwise return -1. */
1476 asm_noperands (const_rtx body
)
1478 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1483 if (GET_CODE (body
) == PARALLEL
&& XVECLEN (body
, 0) >= 2
1484 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
1486 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1487 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1488 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1495 if (GET_CODE (body
) == SET
)
1497 else if (GET_CODE (body
) == PARALLEL
)
1499 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1501 /* Multiple output operands, or 1 output plus some clobbers:
1503 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1504 /* Count backwards through CLOBBERs to determine number of SETs. */
1505 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1507 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1509 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1513 /* N_SETS is now number of output operands. */
1516 /* Verify that all the SETs we have
1517 came from a single original asm_operands insn
1518 (so that invalid combinations are blocked). */
1519 for (i
= 0; i
< n_sets
; i
++)
1521 rtx elt
= XVECEXP (body
, 0, i
);
1522 if (GET_CODE (elt
) != SET
)
1524 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1526 /* If these ASM_OPERANDS rtx's came from different original insns
1527 then they aren't allowed together. */
1528 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1529 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1535 /* 0 outputs, but some clobbers:
1536 body is [(asm_operands ...) (clobber (reg ...))...]. */
1537 /* Make sure all the other parallel things really are clobbers. */
1538 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1539 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1544 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1545 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1548 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1549 copy its operands (both input and output) into the vector OPERANDS,
1550 the locations of the operands within the insn into the vector OPERAND_LOCS,
1551 and the constraints for the operands into CONSTRAINTS.
1552 Write the modes of the operands into MODES.
1553 Write the location info into LOC.
1554 Return the assembler-template.
1555 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1556 return the basic assembly string.
1558 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1559 we don't store that info. */
1562 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1563 const char **constraints
, machine_mode
*modes
,
1566 int nbase
= 0, n
, i
;
1569 switch (GET_CODE (body
))
1572 /* Zero output asm: BODY is (asm_operands ...). */
1577 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1578 asmop
= SET_SRC (body
);
1580 /* The output is in the SET.
1581 Its constraint is in the ASM_OPERANDS itself. */
1583 operands
[0] = SET_DEST (body
);
1585 operand_locs
[0] = &SET_DEST (body
);
1587 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1589 modes
[0] = GET_MODE (SET_DEST (body
));
1595 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1597 asmop
= XVECEXP (body
, 0, 0);
1598 if (GET_CODE (asmop
) == SET
)
1600 asmop
= SET_SRC (asmop
);
1602 /* At least one output, plus some CLOBBERs. The outputs are in
1603 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1604 for (i
= 0; i
< nparallel
; i
++)
1606 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1607 break; /* Past last SET */
1608 gcc_assert (GET_CODE (XVECEXP (body
, 0, i
)) == SET
);
1610 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1612 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1614 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1616 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1620 else if (GET_CODE (asmop
) == ASM_INPUT
)
1623 *loc
= ASM_INPUT_SOURCE_LOCATION (asmop
);
1624 return XSTR (asmop
, 0);
1633 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1634 for (i
= 0; i
< n
; i
++)
1637 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1639 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1641 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1643 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1647 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1648 for (i
= 0; i
< n
; i
++)
1651 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1653 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1655 constraints
[nbase
+ i
] = "";
1657 modes
[nbase
+ i
] = Pmode
;
1661 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1663 return ASM_OPERANDS_TEMPLATE (asmop
);
1666 /* Parse inline assembly string STRING and determine which operands are
1667 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1668 to true if operand I is referenced.
1670 This is intended to distinguish barrier-like asms such as:
1672 asm ("" : "=m" (...));
1674 from real references such as:
1676 asm ("sw\t$0, %0" : "=m" (...)); */
1679 get_referenced_operands (const char *string
, bool *used
,
1680 unsigned int noperands
)
1682 memset (used
, 0, sizeof (bool) * noperands
);
1683 const char *p
= string
;
1689 /* A letter followed by a digit indicates an operand number. */
1690 if (ISALPHA (p
[0]) && ISDIGIT (p
[1]))
1695 unsigned long opnum
= strtoul (p
, &endptr
, 10);
1696 if (endptr
!= p
&& opnum
< noperands
)
1710 /* Check if an asm_operand matches its constraints.
1711 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1714 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1717 bool incdec_ok
= false;
1719 /* Use constrain_operands after reload. */
1720 gcc_assert (!reload_completed
);
1722 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1723 many alternatives as required to match the other operands. */
1724 if (*constraint
== '\0')
1729 enum constraint_num cn
;
1730 char c
= *constraint
;
1738 case '0': case '1': case '2': case '3': case '4':
1739 case '5': case '6': case '7': case '8': case '9':
1740 /* If caller provided constraints pointer, look up
1741 the matching constraint. Otherwise, our caller should have
1742 given us the proper matching constraint, but we can't
1743 actually fail the check if they didn't. Indicate that
1744 results are inconclusive. */
1748 unsigned long match
;
1750 match
= strtoul (constraint
, &end
, 10);
1752 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1753 constraint
= (const char *) end
;
1759 while (ISDIGIT (*constraint
));
1765 /* The rest of the compiler assumes that reloading the address
1766 of a MEM into a register will make it fit an 'o' constraint.
1767 That is, if it sees a MEM operand for an 'o' constraint,
1768 it assumes that (mem (base-reg)) will fit.
1770 That assumption fails on targets that don't have offsettable
1771 addresses at all. We therefore need to treat 'o' asm
1772 constraints as a special case and only accept operands that
1773 are already offsettable, thus proving that at least one
1774 offsettable address exists. */
1775 case 'o': /* offsettable */
1776 if (offsettable_nonstrict_memref_p (op
))
1781 if (general_operand (op
, VOIDmode
))
1787 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1788 to exist, excepting those that expand_call created. Further,
1789 on some machines which do not have generalized auto inc/dec,
1790 an inc/dec is not a memory_operand.
1792 Match any memory and hope things are resolved after reload. */
1796 cn
= lookup_constraint (constraint
);
1797 switch (get_constraint_type (cn
))
1801 && reg_class_for_constraint (cn
) != NO_REGS
1802 && GET_MODE (op
) != BLKmode
1803 && register_operand (op
, VOIDmode
))
1810 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
1815 case CT_SPECIAL_MEMORY
:
1816 /* Every memory operand can be reloaded to fit. */
1817 result
= result
|| memory_operand (op
, VOIDmode
);
1821 /* Every address operand can be reloaded to fit. */
1822 result
= result
|| address_operand (op
, VOIDmode
);
1826 result
= result
|| constraint_satisfied_p (op
, cn
);
1831 len
= CONSTRAINT_LEN (c
, constraint
);
1834 while (--len
&& *constraint
&& *constraint
!= ',');
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (AUTO_INC_DEC
&& !incdec_ok
&& result
&& MEM_P (op
))
1841 switch (GET_CODE (XEXP (op
, 0)))
1857 /* Given an rtx *P, if it is a sum containing an integer constant term,
1858 return the location (type rtx *) of the pointer to that constant term.
1859 Otherwise, return a null pointer. */
1862 find_constant_term_loc (rtx
*p
)
1865 enum rtx_code code
= GET_CODE (*p
);
1867 /* If *P IS such a constant term, P is its location. */
1869 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1873 /* Otherwise, if not a sum, it has no constant term. */
1875 if (GET_CODE (*p
) != PLUS
)
1878 /* If one of the summands is constant, return its location. */
1880 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1881 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1884 /* Otherwise, check each summand for containing a constant term. */
1886 if (XEXP (*p
, 0) != 0)
1888 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1893 if (XEXP (*p
, 1) != 0)
1895 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1903 /* Return 1 if OP is a memory reference
1904 whose address contains no side effects
1905 and remains valid after the addition
1906 of a positive integer less than the
1907 size of the object being referenced.
1909 We assume that the original address is valid and do not check it.
1911 This uses strict_memory_address_p as a subroutine, so
1912 don't use it before reload. */
1915 offsettable_memref_p (rtx op
)
1917 return ((MEM_P (op
))
1918 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1919 MEM_ADDR_SPACE (op
)));
1922 /* Similar, but don't require a strictly valid mem ref:
1923 consider pseudo-regs valid as index or base regs. */
1926 offsettable_nonstrict_memref_p (rtx op
)
1928 return ((MEM_P (op
))
1929 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1930 MEM_ADDR_SPACE (op
)));
1933 /* Return 1 if Y is a memory address which contains no side effects
1934 and would remain valid for address space AS after the addition of
1935 a positive integer less than the size of that mode.
1937 We assume that the original address is valid and do not check it.
1938 We do check that it is valid for narrower modes.
1940 If STRICTP is nonzero, we require a strictly valid address,
1941 for the sake of use in reload.c. */
1944 offsettable_address_addr_space_p (int strictp
, machine_mode mode
, rtx y
,
1947 enum rtx_code ycode
= GET_CODE (y
);
1951 int (*addressp
) (machine_mode
, rtx
, addr_space_t
) =
1952 (strictp
? strict_memory_address_addr_space_p
1953 : memory_address_addr_space_p
);
1954 poly_int64 mode_sz
= GET_MODE_SIZE (mode
);
1956 if (CONSTANT_ADDRESS_P (y
))
1959 /* Adjusting an offsettable address involves changing to a narrower mode.
1960 Make sure that's OK. */
1962 if (mode_dependent_address_p (y
, as
))
1965 machine_mode address_mode
= GET_MODE (y
);
1966 if (address_mode
== VOIDmode
)
1967 address_mode
= targetm
.addr_space
.address_mode (as
);
1968 #ifdef POINTERS_EXTEND_UNSIGNED
1969 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1972 /* ??? How much offset does an offsettable BLKmode reference need?
1973 Clearly that depends on the situation in which it's being used.
1974 However, the current situation in which we test 0xffffffff is
1975 less than ideal. Caveat user. */
1976 if (known_eq (mode_sz
, 0))
1977 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1979 /* If the expression contains a constant term,
1980 see if it remains valid when max possible offset is added. */
1982 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1987 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1988 /* Use QImode because an odd displacement may be automatically invalid
1989 for any wider mode. But it should be valid for a single byte. */
1990 good
= (*addressp
) (QImode
, y
, as
);
1992 /* In any case, restore old contents of memory. */
1997 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
2000 /* The offset added here is chosen as the maximum offset that
2001 any instruction could need to add when operating on something
2002 of the specified mode. We assume that if Y and Y+c are
2003 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2004 go inside a LO_SUM here, so we do so as well. */
2005 if (GET_CODE (y
) == LO_SUM
2007 && known_le (mode_sz
, GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
))
2008 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2009 plus_constant (address_mode
, XEXP (y
, 1),
2011 #ifdef POINTERS_EXTEND_UNSIGNED
2012 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2013 else if (POINTERS_EXTEND_UNSIGNED
> 0
2014 && GET_CODE (y
) == ZERO_EXTEND
2015 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2016 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2017 plus_constant (pointer_mode
, XEXP (y
, 0),
2021 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2023 /* Use QImode because an odd displacement may be automatically invalid
2024 for any wider mode. But it should be valid for a single byte. */
2025 return (*addressp
) (QImode
, z
, as
);
2028 /* Return 1 if ADDR is an address-expression whose effect depends
2029 on the mode of the memory reference it is used in.
2031 ADDRSPACE is the address space associated with the address.
2033 Autoincrement addressing is a typical example of mode-dependence
2034 because the amount of the increment depends on the mode. */
2037 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2039 /* Auto-increment addressing with anything other than post_modify
2040 or pre_modify always introduces a mode dependency. Catch such
2041 cases now instead of deferring to the target. */
2042 if (GET_CODE (addr
) == PRE_INC
2043 || GET_CODE (addr
) == POST_INC
2044 || GET_CODE (addr
) == PRE_DEC
2045 || GET_CODE (addr
) == POST_DEC
)
2048 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2051 /* Return true if boolean attribute ATTR is supported. */
2054 have_bool_attr (bool_attr attr
)
2059 return HAVE_ATTR_enabled
;
2060 case BA_PREFERRED_FOR_SIZE
:
2061 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_size
;
2062 case BA_PREFERRED_FOR_SPEED
:
2063 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_speed
;
2068 /* Return the value of ATTR for instruction INSN. */
2071 get_bool_attr (rtx_insn
*insn
, bool_attr attr
)
2076 return get_attr_enabled (insn
);
2077 case BA_PREFERRED_FOR_SIZE
:
2078 return get_attr_enabled (insn
) && get_attr_preferred_for_size (insn
);
2079 case BA_PREFERRED_FOR_SPEED
:
2080 return get_attr_enabled (insn
) && get_attr_preferred_for_speed (insn
);
2085 /* Like get_bool_attr_mask, but don't use the cache. */
2087 static alternative_mask
2088 get_bool_attr_mask_uncached (rtx_insn
*insn
, bool_attr attr
)
2090 /* Temporarily install enough information for get_attr_<foo> to assume
2091 that the insn operands are already cached. As above, the attribute
2092 mustn't depend on the values of operands, so we don't provide their
2093 real values here. */
2094 rtx_insn
*old_insn
= recog_data
.insn
;
2095 int old_alternative
= which_alternative
;
2097 recog_data
.insn
= insn
;
2098 alternative_mask mask
= ALL_ALTERNATIVES
;
2099 int n_alternatives
= insn_data
[INSN_CODE (insn
)].n_alternatives
;
2100 for (int i
= 0; i
< n_alternatives
; i
++)
2102 which_alternative
= i
;
2103 if (!get_bool_attr (insn
, attr
))
2104 mask
&= ~ALTERNATIVE_BIT (i
);
2107 recog_data
.insn
= old_insn
;
2108 which_alternative
= old_alternative
;
2112 /* Return the mask of operand alternatives that are allowed for INSN
2113 by boolean attribute ATTR. This mask depends only on INSN and on
2114 the current target; it does not depend on things like the values of
2117 static alternative_mask
2118 get_bool_attr_mask (rtx_insn
*insn
, bool_attr attr
)
2120 /* Quick exit for asms and for targets that don't use these attributes. */
2121 int code
= INSN_CODE (insn
);
2122 if (code
< 0 || !have_bool_attr (attr
))
2123 return ALL_ALTERNATIVES
;
2125 /* Calling get_attr_<foo> can be expensive, so cache the mask
2127 if (!this_target_recog
->x_bool_attr_masks
[code
][attr
])
2128 this_target_recog
->x_bool_attr_masks
[code
][attr
]
2129 = get_bool_attr_mask_uncached (insn
, attr
);
2130 return this_target_recog
->x_bool_attr_masks
[code
][attr
];
2133 /* Return the set of alternatives of INSN that are allowed by the current
2137 get_enabled_alternatives (rtx_insn
*insn
)
2139 return get_bool_attr_mask (insn
, BA_ENABLED
);
2142 /* Return the set of alternatives of INSN that are allowed by the current
2143 target and are preferred for the current size/speed optimization
2147 get_preferred_alternatives (rtx_insn
*insn
)
2149 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
)))
2150 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2152 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2155 /* Return the set of alternatives of INSN that are allowed by the current
2156 target and are preferred for the size/speed optimization choice
2157 associated with BB. Passing a separate BB is useful if INSN has not
2158 been emitted yet or if we are considering moving it to a different
2162 get_preferred_alternatives (rtx_insn
*insn
, basic_block bb
)
2164 if (optimize_bb_for_speed_p (bb
))
2165 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2167 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2170 /* Assert that the cached boolean attributes for INSN are still accurate.
2171 The backend is required to define these attributes in a way that only
2172 depends on the current target (rather than operands, compiler phase,
2176 check_bool_attrs (rtx_insn
*insn
)
2178 int code
= INSN_CODE (insn
);
2180 for (int i
= 0; i
<= BA_LAST
; ++i
)
2182 enum bool_attr attr
= (enum bool_attr
) i
;
2183 if (this_target_recog
->x_bool_attr_masks
[code
][attr
])
2184 gcc_assert (this_target_recog
->x_bool_attr_masks
[code
][attr
]
2185 == get_bool_attr_mask_uncached (insn
, attr
));
2190 /* Like extract_insn, but save insn extracted and don't extract again, when
2191 called again for the same insn expecting that recog_data still contain the
2192 valid information. This is used primary by gen_attr infrastructure that
2193 often does extract insn again and again. */
2195 extract_insn_cached (rtx_insn
*insn
)
2197 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2199 extract_insn (insn
);
2200 recog_data
.insn
= insn
;
2203 /* Do uncached extract_insn, constrain_operands and complain about failures.
2204 This should be used when extracting a pre-existing constrained instruction
2205 if the caller wants to know which alternative was chosen. */
2207 extract_constrain_insn (rtx_insn
*insn
)
2209 extract_insn (insn
);
2210 if (!constrain_operands (reload_completed
, get_enabled_alternatives (insn
)))
2211 fatal_insn_not_found (insn
);
2214 /* Do cached extract_insn, constrain_operands and complain about failures.
2215 Used by insn_attrtab. */
2217 extract_constrain_insn_cached (rtx_insn
*insn
)
2219 extract_insn_cached (insn
);
2220 if (which_alternative
== -1
2221 && !constrain_operands (reload_completed
,
2222 get_enabled_alternatives (insn
)))
2223 fatal_insn_not_found (insn
);
2226 /* Do cached constrain_operands on INSN and complain about failures. */
2228 constrain_operands_cached (rtx_insn
*insn
, int strict
)
2230 if (which_alternative
== -1)
2231 return constrain_operands (strict
, get_enabled_alternatives (insn
));
2236 /* Analyze INSN and fill in recog_data. */
2239 extract_insn (rtx_insn
*insn
)
2244 rtx body
= PATTERN (insn
);
2246 recog_data
.n_operands
= 0;
2247 recog_data
.n_alternatives
= 0;
2248 recog_data
.n_dups
= 0;
2249 recog_data
.is_asm
= false;
2251 switch (GET_CODE (body
))
2263 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2268 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2269 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2270 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
2271 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
2277 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2280 /* This insn is an `asm' with operands. */
2282 /* expand_asm_operands makes sure there aren't too many operands. */
2283 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2285 /* Now get the operand values and constraints out of the insn. */
2286 decode_asm_operands (body
, recog_data
.operand
,
2287 recog_data
.operand_loc
,
2288 recog_data
.constraints
,
2289 recog_data
.operand_mode
, NULL
);
2290 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2293 const char *p
= recog_data
.constraints
[0];
2294 recog_data
.n_alternatives
= 1;
2296 recog_data
.n_alternatives
+= (*p
++ == ',');
2298 recog_data
.is_asm
= true;
2301 fatal_insn_not_found (insn
);
2305 /* Ordinary insn: recognize it, get the operands via insn_extract
2306 and get the constraints. */
2308 icode
= recog_memoized (insn
);
2310 fatal_insn_not_found (insn
);
2312 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2313 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2314 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2316 insn_extract (insn
);
2318 for (i
= 0; i
< noperands
; i
++)
2320 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2321 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2322 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2323 /* VOIDmode match_operands gets mode from their real operand. */
2324 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2325 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2328 for (i
= 0; i
< noperands
; i
++)
2329 recog_data
.operand_type
[i
]
2330 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2331 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2334 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2336 recog_data
.insn
= NULL
;
2337 which_alternative
= -1;
2340 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2341 operands, N_ALTERNATIVES alternatives and constraint strings
2342 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2343 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2344 if the insn is an asm statement and preprocessing should take the
2345 asm operands into account, e.g. to determine whether they could be
2346 addresses in constraints that require addresses; it should then
2347 point to an array of pointers to each operand. */
2350 preprocess_constraints (int n_operands
, int n_alternatives
,
2351 const char **constraints
,
2352 operand_alternative
*op_alt_base
,
2355 for (int i
= 0; i
< n_operands
; i
++)
2358 struct operand_alternative
*op_alt
;
2359 const char *p
= constraints
[i
];
2361 op_alt
= op_alt_base
;
2363 for (j
= 0; j
< n_alternatives
; j
++, op_alt
+= n_operands
)
2365 op_alt
[i
].cl
= NO_REGS
;
2366 op_alt
[i
].constraint
= p
;
2367 op_alt
[i
].matches
= -1;
2368 op_alt
[i
].matched
= -1;
2370 if (*p
== '\0' || *p
== ',')
2372 op_alt
[i
].anything_ok
= 1;
2382 while (c
!= ',' && c
!= '\0');
2383 if (c
== ',' || c
== '\0')
2392 op_alt
[i
].reject
+= 6;
2395 op_alt
[i
].reject
+= 600;
2398 op_alt
[i
].earlyclobber
= 1;
2401 case '0': case '1': case '2': case '3': case '4':
2402 case '5': case '6': case '7': case '8': case '9':
2405 op_alt
[i
].matches
= strtoul (p
, &end
, 10);
2406 op_alt
[op_alt
[i
].matches
].matched
= i
;
2412 op_alt
[i
].anything_ok
= 1;
2417 reg_class_subunion
[(int) op_alt
[i
].cl
][(int) GENERAL_REGS
];
2421 enum constraint_num cn
= lookup_constraint (p
);
2423 switch (get_constraint_type (cn
))
2426 cl
= reg_class_for_constraint (cn
);
2428 op_alt
[i
].cl
= reg_class_subunion
[op_alt
[i
].cl
][cl
];
2435 case CT_SPECIAL_MEMORY
:
2436 op_alt
[i
].memory_ok
= 1;
2440 if (oploc
&& !address_operand (*oploc
[i
], VOIDmode
))
2443 op_alt
[i
].is_address
= 1;
2445 = (reg_class_subunion
2446 [(int) op_alt
[i
].cl
]
2447 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2448 ADDRESS
, SCRATCH
)]);
2456 p
+= CONSTRAINT_LEN (c
, p
);
2462 /* Return an array of operand_alternative instructions for
2463 instruction ICODE. */
2465 const operand_alternative
*
2466 preprocess_insn_constraints (unsigned int icode
)
2468 gcc_checking_assert (IN_RANGE (icode
, 0, NUM_INSN_CODES
- 1));
2469 if (this_target_recog
->x_op_alt
[icode
])
2470 return this_target_recog
->x_op_alt
[icode
];
2472 int n_operands
= insn_data
[icode
].n_operands
;
2473 if (n_operands
== 0)
2475 /* Always provide at least one alternative so that which_op_alt ()
2476 works correctly. If the instruction has 0 alternatives (i.e. all
2477 constraint strings are empty) then each operand in this alternative
2478 will have anything_ok set. */
2479 int n_alternatives
= MAX (insn_data
[icode
].n_alternatives
, 1);
2480 int n_entries
= n_operands
* n_alternatives
;
2482 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
, n_entries
);
2483 const char **constraints
= XALLOCAVEC (const char *, n_operands
);
2485 for (int i
= 0; i
< n_operands
; ++i
)
2486 constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2487 preprocess_constraints (n_operands
, n_alternatives
, constraints
, op_alt
,
2490 this_target_recog
->x_op_alt
[icode
] = op_alt
;
2494 /* After calling extract_insn, you can use this function to extract some
2495 information from the constraint strings into a more usable form.
2496 The collected data is stored in recog_op_alt. */
2499 preprocess_constraints (rtx_insn
*insn
)
2501 int icode
= INSN_CODE (insn
);
2503 recog_op_alt
= preprocess_insn_constraints (icode
);
2506 int n_operands
= recog_data
.n_operands
;
2507 int n_alternatives
= recog_data
.n_alternatives
;
2508 int n_entries
= n_operands
* n_alternatives
;
2509 memset (asm_op_alt
, 0, n_entries
* sizeof (operand_alternative
));
2510 preprocess_constraints (n_operands
, n_alternatives
,
2511 recog_data
.constraints
, asm_op_alt
,
2513 recog_op_alt
= asm_op_alt
;
2517 /* Check the operands of an insn against the insn's operand constraints
2518 and return 1 if they match any of the alternatives in ALTERNATIVES.
2520 The information about the insn's operands, constraints, operand modes
2521 etc. is obtained from the global variables set up by extract_insn.
2523 WHICH_ALTERNATIVE is set to a number which indicates which
2524 alternative of constraints was matched: 0 for the first alternative,
2525 1 for the next, etc.
2527 In addition, when two operands are required to match
2528 and it happens that the output operand is (reg) while the
2529 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2530 make the output operand look like the input.
2531 This is because the output operand is the one the template will print.
2533 This is used in final, just before printing the assembler code and by
2534 the routines that determine an insn's attribute.
2536 If STRICT is a positive nonzero value, it means that we have been
2537 called after reload has been completed. In that case, we must
2538 do all checks strictly. If it is zero, it means that we have been called
2539 before reload has completed. In that case, we first try to see if we can
2540 find an alternative that matches strictly. If not, we try again, this
2541 time assuming that reload will fix up the insn. This provides a "best
2542 guess" for the alternative and is used to compute attributes of insns prior
2543 to reload. A negative value of STRICT is used for this internal call. */
2551 constrain_operands (int strict
, alternative_mask alternatives
)
2553 const char *constraints
[MAX_RECOG_OPERANDS
];
2554 int matching_operands
[MAX_RECOG_OPERANDS
];
2555 int earlyclobber
[MAX_RECOG_OPERANDS
];
2558 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2559 int funny_match_index
;
2561 which_alternative
= 0;
2562 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2565 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2567 constraints
[c
] = recog_data
.constraints
[c
];
2568 matching_operands
[c
] = -1;
2573 int seen_earlyclobber_at
= -1;
2576 funny_match_index
= 0;
2578 if (!TEST_BIT (alternatives
, which_alternative
))
2582 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2583 constraints
[i
] = skip_alternative (constraints
[i
]);
2585 which_alternative
++;
2589 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2591 rtx op
= recog_data
.operand
[opno
];
2592 machine_mode mode
= GET_MODE (op
);
2593 const char *p
= constraints
[opno
];
2599 earlyclobber
[opno
] = 0;
2601 /* A unary operator may be accepted by the predicate, but it
2602 is irrelevant for matching constraints. */
2606 if (GET_CODE (op
) == SUBREG
)
2608 if (REG_P (SUBREG_REG (op
))
2609 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2610 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2611 GET_MODE (SUBREG_REG (op
)),
2614 op
= SUBREG_REG (op
);
2617 /* An empty constraint or empty alternative
2618 allows anything which matched the pattern. */
2619 if (*p
== 0 || *p
== ',')
2623 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2633 /* Ignore rest of this alternative as far as
2634 constraint checking is concerned. */
2637 while (*p
&& *p
!= ',');
2642 earlyclobber
[opno
] = 1;
2643 if (seen_earlyclobber_at
< 0)
2644 seen_earlyclobber_at
= opno
;
2647 case '0': case '1': case '2': case '3': case '4':
2648 case '5': case '6': case '7': case '8': case '9':
2650 /* This operand must be the same as a previous one.
2651 This kind of constraint is used for instructions such
2652 as add when they take only two operands.
2654 Note that the lower-numbered operand is passed first.
2656 If we are not testing strictly, assume that this
2657 constraint will be satisfied. */
2662 match
= strtoul (p
, &end
, 10);
2669 rtx op1
= recog_data
.operand
[match
];
2670 rtx op2
= recog_data
.operand
[opno
];
2672 /* A unary operator may be accepted by the predicate,
2673 but it is irrelevant for matching constraints. */
2675 op1
= XEXP (op1
, 0);
2677 op2
= XEXP (op2
, 0);
2679 val
= operands_match_p (op1
, op2
);
2682 matching_operands
[opno
] = match
;
2683 matching_operands
[match
] = opno
;
2688 /* If output is *x and input is *--x, arrange later
2689 to change the output to *--x as well, since the
2690 output op is the one that will be printed. */
2691 if (val
== 2 && strict
> 0)
2693 funny_match
[funny_match_index
].this_op
= opno
;
2694 funny_match
[funny_match_index
++].other
= match
;
2701 /* p is used for address_operands. When we are called by
2702 gen_reload, no one will have checked that the address is
2703 strictly valid, i.e., that all pseudos requiring hard regs
2704 have gotten them. We also want to make sure we have a
2706 if ((GET_MODE (op
) == VOIDmode
2707 || SCALAR_INT_MODE_P (GET_MODE (op
)))
2709 || (strict_memory_address_p
2710 (recog_data
.operand_mode
[opno
], op
))))
2714 /* No need to check general_operand again;
2715 it was done in insn-recog.c. Well, except that reload
2716 doesn't check the validity of its replacements, but
2717 that should only matter when there's a bug. */
2719 /* Anything goes unless it is a REG and really has a hard reg
2720 but the hard reg is not in the class GENERAL_REGS. */
2724 || GENERAL_REGS
== ALL_REGS
2725 || (reload_in_progress
2726 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2727 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2730 else if (strict
< 0 || general_operand (op
, mode
))
2736 enum constraint_num cn
= lookup_constraint (p
);
2737 enum reg_class cl
= reg_class_for_constraint (cn
);
2743 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2744 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2746 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2750 else if (constraint_satisfied_p (op
, cn
))
2753 else if (insn_extra_memory_constraint (cn
)
2754 /* Every memory operand can be reloaded to fit. */
2755 && ((strict
< 0 && MEM_P (op
))
2756 /* Before reload, accept what reload can turn
2758 || (strict
< 0 && CONSTANT_P (op
))
2759 /* Before reload, accept a pseudo,
2760 since LRA can turn it into a mem. */
2761 || (strict
< 0 && targetm
.lra_p () && REG_P (op
)
2762 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2763 /* During reload, accept a pseudo */
2764 || (reload_in_progress
&& REG_P (op
)
2765 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2767 else if (insn_extra_address_constraint (cn
)
2768 /* Every address operand can be reloaded to fit. */
2771 /* Cater to architectures like IA-64 that define extra memory
2772 constraints without using define_memory_constraint. */
2773 else if (reload_in_progress
2775 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2776 && reg_renumber
[REGNO (op
)] < 0
2777 && reg_equiv_mem (REGNO (op
)) != 0
2778 && constraint_satisfied_p
2779 (reg_equiv_mem (REGNO (op
)), cn
))
2784 while (p
+= len
, c
);
2786 constraints
[opno
] = p
;
2787 /* If this operand did not win somehow,
2788 this alternative loses. */
2792 /* This alternative won; the operands are ok.
2793 Change whichever operands this alternative says to change. */
2798 /* See if any earlyclobber operand conflicts with some other
2801 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2802 for (eopno
= seen_earlyclobber_at
;
2803 eopno
< recog_data
.n_operands
;
2805 /* Ignore earlyclobber operands now in memory,
2806 because we would often report failure when we have
2807 two memory operands, one of which was formerly a REG. */
2808 if (earlyclobber
[eopno
]
2809 && REG_P (recog_data
.operand
[eopno
]))
2810 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2811 if ((MEM_P (recog_data
.operand
[opno
])
2812 || recog_data
.operand_type
[opno
] != OP_OUT
)
2814 /* Ignore things like match_operator operands. */
2815 && *recog_data
.constraints
[opno
] != 0
2816 && ! (matching_operands
[opno
] == eopno
2817 && operands_match_p (recog_data
.operand
[opno
],
2818 recog_data
.operand
[eopno
]))
2819 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2820 recog_data
.operand
[eopno
]))
2825 while (--funny_match_index
>= 0)
2827 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2828 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2831 /* For operands without < or > constraints reject side-effects. */
2832 if (AUTO_INC_DEC
&& recog_data
.is_asm
)
2834 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2835 if (MEM_P (recog_data
.operand
[opno
]))
2836 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2844 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2845 && strchr (recog_data
.constraints
[opno
], '>')
2858 which_alternative
++;
2860 while (which_alternative
< recog_data
.n_alternatives
);
2862 which_alternative
= -1;
2863 /* If we are about to reject this, but we are not to test strictly,
2864 try a very loose test. Only return failure if it fails also. */
2866 return constrain_operands (-1, alternatives
);
2871 /* Return true iff OPERAND (assumed to be a REG rtx)
2872 is a hard reg in class CLASS when its regno is offset by OFFSET
2873 and changed to mode MODE.
2874 If REG occupies multiple hard regs, all of them must be in CLASS. */
2877 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2880 unsigned int regno
= REGNO (operand
);
2885 /* Regno must not be a pseudo register. Offset may be negative. */
2886 return (HARD_REGISTER_NUM_P (regno
)
2887 && HARD_REGISTER_NUM_P (regno
+ offset
)
2888 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2892 /* Split single instruction. Helper function for split_all_insns and
2893 split_all_insns_noflow. Return last insn in the sequence if successful,
2894 or NULL if unsuccessful. */
2897 split_insn (rtx_insn
*insn
)
2899 /* Split insns here to get max fine-grain parallelism. */
2900 rtx_insn
*first
= PREV_INSN (insn
);
2901 rtx_insn
*last
= try_split (PATTERN (insn
), insn
, 1);
2902 rtx insn_set
, last_set
, note
;
2907 /* If the original instruction was a single set that was known to be
2908 equivalent to a constant, see if we can say the same about the last
2909 instruction in the split sequence. The two instructions must set
2910 the same destination. */
2911 insn_set
= single_set (insn
);
2914 last_set
= single_set (last
);
2915 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2917 note
= find_reg_equal_equiv_note (insn
);
2918 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2919 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2920 else if (CONSTANT_P (SET_SRC (insn_set
)))
2921 set_unique_reg_note (last
, REG_EQUAL
,
2922 copy_rtx (SET_SRC (insn_set
)));
2926 /* try_split returns the NOTE that INSN became. */
2927 SET_INSN_DELETED (insn
);
2929 /* ??? Coddle to md files that generate subregs in post-reload
2930 splitters instead of computing the proper hard register. */
2931 if (reload_completed
&& first
!= last
)
2933 first
= NEXT_INSN (first
);
2937 cleanup_subreg_operands (first
);
2940 first
= NEXT_INSN (first
);
2947 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2950 split_all_insns (void)
2953 bool need_cfg_cleanup
= false;
2956 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
2957 bitmap_clear (blocks
);
2960 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2962 rtx_insn
*insn
, *next
;
2963 bool finish
= false;
2965 rtl_profile_for_bb (bb
);
2966 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2968 /* Can't use `next_real_insn' because that might go across
2969 CODE_LABELS and short-out basic blocks. */
2970 next
= NEXT_INSN (insn
);
2971 finish
= (insn
== BB_END (bb
));
2973 /* If INSN has a REG_EH_REGION note and we split INSN, the
2974 resulting split may not have/need REG_EH_REGION notes.
2976 If that happens and INSN was the last reference to the
2977 given EH region, then the EH region will become unreachable.
2978 We cannot leave the unreachable blocks in the CFG as that
2979 will trigger a checking failure.
2981 So track if INSN has a REG_EH_REGION note. If so and we
2982 split INSN, then trigger a CFG cleanup. */
2983 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
2986 rtx set
= single_set (insn
);
2988 /* Don't split no-op move insns. These should silently
2989 disappear later in final. Splitting such insns would
2990 break the code that handles LIBCALL blocks. */
2991 if (set
&& set_noop_p (set
))
2993 /* Nops get in the way while scheduling, so delete them
2994 now if register allocation has already been done. It
2995 is too risky to try to do this before register
2996 allocation, and there are unlikely to be very many
2997 nops then anyways. */
2998 if (reload_completed
)
2999 delete_insn_and_edges (insn
);
3001 need_cfg_cleanup
= true;
3005 if (split_insn (insn
))
3007 bitmap_set_bit (blocks
, bb
->index
);
3010 need_cfg_cleanup
= true;
3017 default_rtl_profile ();
3020 find_many_sub_basic_blocks (blocks
);
3022 /* Splitting could drop an REG_EH_REGION if it potentially
3023 trapped in its original form, but does not in its split
3024 form. Consider a FLOAT_TRUNCATE which splits into a memory
3025 store/load pair and -fnon-call-exceptions. */
3026 if (need_cfg_cleanup
)
3030 checking_verify_flow_info ();
3033 /* Same as split_all_insns, but do not expect CFG to be available.
3034 Used by machine dependent reorg passes. */
3037 split_all_insns_noflow (void)
3039 rtx_insn
*next
, *insn
;
3041 for (insn
= get_insns (); insn
; insn
= next
)
3043 next
= NEXT_INSN (insn
);
3046 /* Don't split no-op move insns. These should silently
3047 disappear later in final. Splitting such insns would
3048 break the code that handles LIBCALL blocks. */
3049 rtx set
= single_set (insn
);
3050 if (set
&& set_noop_p (set
))
3052 /* Nops get in the way while scheduling, so delete them
3053 now if register allocation has already been done. It
3054 is too risky to try to do this before register
3055 allocation, and there are unlikely to be very many
3058 ??? Should we use delete_insn when the CFG isn't valid? */
3059 if (reload_completed
)
3060 delete_insn_and_edges (insn
);
3069 struct peep2_insn_data
3075 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
3076 static int peep2_current
;
3078 static bool peep2_do_rebuild_jump_labels
;
3079 static bool peep2_do_cleanup_cfg
;
3081 /* The number of instructions available to match a peep2. */
3082 int peep2_current_count
;
3084 /* A marker indicating the last insn of the block. The live_before regset
3085 for this element is correct, indicating DF_LIVE_OUT for the block. */
3086 #define PEEP2_EOB invalid_insn_rtx
3088 /* Wrap N to fit into the peep2_insn_data buffer. */
3091 peep2_buf_position (int n
)
3093 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3094 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3098 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3099 does not exist. Used by the recognizer to find the next insn to match
3100 in a multi-insn pattern. */
3103 peep2_next_insn (int n
)
3105 gcc_assert (n
<= peep2_current_count
);
3107 n
= peep2_buf_position (peep2_current
+ n
);
3109 return peep2_insn_data
[n
].insn
;
3112 /* Return true if REGNO is dead before the Nth non-note insn
3116 peep2_regno_dead_p (int ofs
, int regno
)
3118 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3120 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3122 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3124 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3127 /* Similarly for a REG. */
3130 peep2_reg_dead_p (int ofs
, rtx reg
)
3132 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3134 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3136 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3138 unsigned int end_regno
= END_REGNO (reg
);
3139 for (unsigned int regno
= REGNO (reg
); regno
< end_regno
; ++regno
)
3140 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
))
3145 /* Regno offset to be used in the register search. */
3146 static int search_ofs
;
3148 /* Try to find a hard register of mode MODE, matching the register class in
3149 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3150 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3151 in which case the only condition is that the register must be available
3152 before CURRENT_INSN.
3153 Registers that already have bits set in REG_SET will not be considered.
3155 If an appropriate register is available, it will be returned and the
3156 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3160 peep2_find_free_register (int from
, int to
, const char *class_str
,
3161 machine_mode mode
, HARD_REG_SET
*reg_set
)
3168 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3169 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3171 from
= peep2_buf_position (peep2_current
+ from
);
3172 to
= peep2_buf_position (peep2_current
+ to
);
3174 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3175 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3179 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3181 /* Don't use registers set or clobbered by the insn. */
3182 FOR_EACH_INSN_DEF (def
, peep2_insn_data
[from
].insn
)
3183 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
3185 from
= peep2_buf_position (from
+ 1);
3188 cl
= reg_class_for_constraint (lookup_constraint (class_str
));
3190 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3192 int raw_regno
, regno
, success
, j
;
3194 /* Distribute the free registers as much as possible. */
3195 raw_regno
= search_ofs
+ i
;
3196 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3197 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3198 #ifdef REG_ALLOC_ORDER
3199 regno
= reg_alloc_order
[raw_regno
];
3204 /* Can it support the mode we need? */
3205 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
3209 for (j
= 0; success
&& j
< hard_regno_nregs (regno
, mode
); j
++)
3211 /* Don't allocate fixed registers. */
3212 if (fixed_regs
[regno
+ j
])
3217 /* Don't allocate global registers. */
3218 if (global_regs
[regno
+ j
])
3223 /* Make sure the register is of the right class. */
3224 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3229 /* And that we don't create an extra save/restore. */
3230 if (! call_used_or_fixed_reg_p (regno
+ j
)
3231 && ! df_regs_ever_live_p (regno
+ j
))
3237 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3243 /* And we don't clobber traceback for noreturn functions. */
3244 if ((regno
+ j
== FRAME_POINTER_REGNUM
3245 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3246 && (! reload_completed
|| frame_pointer_needed
))
3252 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3253 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3262 add_to_hard_reg_set (reg_set
, mode
, regno
);
3264 /* Start the next search with the next register. */
3265 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3267 search_ofs
= raw_regno
;
3269 return gen_rtx_REG (mode
, regno
);
3277 /* Forget all currently tracked instructions, only remember current
3281 peep2_reinit_state (regset live
)
3285 /* Indicate that all slots except the last holds invalid data. */
3286 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3287 peep2_insn_data
[i
].insn
= NULL
;
3288 peep2_current_count
= 0;
3290 /* Indicate that the last slot contains live_after data. */
3291 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3292 peep2_current
= MAX_INSNS_PER_PEEP2
;
3294 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3297 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3298 starting at INSN. Perform the replacement, removing the old insns and
3299 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3300 if the replacement is rejected. */
3303 peep2_attempt (basic_block bb
, rtx_insn
*insn
, int match_len
, rtx_insn
*attempt
)
3306 rtx_insn
*last
, *before_try
, *x
;
3307 rtx eh_note
, as_note
;
3310 bool was_call
= false;
3312 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3313 match more than one insn, or to be split into more than one insn. */
3314 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3315 if (RTX_FRAME_RELATED_P (old_insn
))
3317 bool any_note
= false;
3323 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3324 may be in the stream for the purpose of register allocation. */
3325 if (active_insn_p (attempt
))
3328 new_insn
= next_active_insn (attempt
);
3329 if (next_active_insn (new_insn
))
3332 /* We have a 1-1 replacement. Copy over any frame-related info. */
3333 RTX_FRAME_RELATED_P (new_insn
) = 1;
3335 /* Allow the backend to fill in a note during the split. */
3336 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3337 switch (REG_NOTE_KIND (note
))
3339 case REG_FRAME_RELATED_EXPR
:
3340 case REG_CFA_DEF_CFA
:
3341 case REG_CFA_ADJUST_CFA
:
3342 case REG_CFA_OFFSET
:
3343 case REG_CFA_REGISTER
:
3344 case REG_CFA_EXPRESSION
:
3345 case REG_CFA_RESTORE
:
3346 case REG_CFA_SET_VDRAP
:
3353 /* If the backend didn't supply a note, copy one over. */
3355 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3356 switch (REG_NOTE_KIND (note
))
3358 case REG_FRAME_RELATED_EXPR
:
3359 case REG_CFA_DEF_CFA
:
3360 case REG_CFA_ADJUST_CFA
:
3361 case REG_CFA_OFFSET
:
3362 case REG_CFA_REGISTER
:
3363 case REG_CFA_EXPRESSION
:
3364 case REG_CFA_RESTORE
:
3365 case REG_CFA_SET_VDRAP
:
3366 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3373 /* If there still isn't a note, make sure the unwind info sees the
3374 same expression as before the split. */
3377 rtx old_set
, new_set
;
3379 /* The old insn had better have been simple, or annotated. */
3380 old_set
= single_set (old_insn
);
3381 gcc_assert (old_set
!= NULL
);
3383 new_set
= single_set (new_insn
);
3384 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3385 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3388 /* Copy prologue/epilogue status. This is required in order to keep
3389 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3390 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3393 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3394 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3395 cfg-related call notes. */
3396 for (i
= 0; i
<= match_len
; ++i
)
3401 j
= peep2_buf_position (peep2_current
+ i
);
3402 old_insn
= peep2_insn_data
[j
].insn
;
3403 if (!CALL_P (old_insn
))
3408 while (new_insn
!= NULL_RTX
)
3410 if (CALL_P (new_insn
))
3412 new_insn
= NEXT_INSN (new_insn
);
3415 gcc_assert (new_insn
!= NULL_RTX
);
3417 CALL_INSN_FUNCTION_USAGE (new_insn
)
3418 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3419 SIBLING_CALL_P (new_insn
) = SIBLING_CALL_P (old_insn
);
3421 for (note
= REG_NOTES (old_insn
);
3423 note
= XEXP (note
, 1))
3424 switch (REG_NOTE_KIND (note
))
3429 case REG_CALL_NOCF_CHECK
:
3430 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3434 /* Discard all other reg notes. */
3438 /* Croak if there is another call in the sequence. */
3439 while (++i
<= match_len
)
3441 j
= peep2_buf_position (peep2_current
+ i
);
3442 old_insn
= peep2_insn_data
[j
].insn
;
3443 gcc_assert (!CALL_P (old_insn
));
3448 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3449 move those notes over to the new sequence. */
3451 for (i
= match_len
; i
>= 0; --i
)
3453 int j
= peep2_buf_position (peep2_current
+ i
);
3454 old_insn
= peep2_insn_data
[j
].insn
;
3456 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3461 i
= peep2_buf_position (peep2_current
+ match_len
);
3462 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3464 /* Replace the old sequence with the new. */
3465 rtx_insn
*peepinsn
= peep2_insn_data
[i
].insn
;
3466 last
= emit_insn_after_setloc (attempt
,
3467 peep2_insn_data
[i
].insn
,
3468 INSN_LOCATION (peepinsn
));
3469 if (JUMP_P (peepinsn
) && JUMP_P (last
))
3470 CROSSING_JUMP_P (last
) = CROSSING_JUMP_P (peepinsn
);
3471 before_try
= PREV_INSN (insn
);
3472 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3474 /* Re-insert the EH_REGION notes. */
3475 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3480 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3481 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3485 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3488 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3489 if (x
!= BB_END (bb
)
3490 && (can_throw_internal (x
)
3491 || can_nonlocal_goto (x
)))
3496 nfte
= split_block (bb
, x
);
3497 flags
= (eh_edge
->flags
3498 & (EDGE_EH
| EDGE_ABNORMAL
));
3500 flags
|= EDGE_ABNORMAL_CALL
;
3501 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3504 nehe
->probability
= eh_edge
->probability
;
3505 nfte
->probability
= nehe
->probability
.invert ();
3507 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3512 /* Converting possibly trapping insn to non-trapping is
3513 possible. Zap dummy outgoing edges. */
3514 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3517 /* Re-insert the ARGS_SIZE notes. */
3519 fixup_args_size_notes (before_try
, last
, get_args_size (as_note
));
3521 /* If we generated a jump instruction, it won't have
3522 JUMP_LABEL set. Recompute after we're done. */
3523 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3526 peep2_do_rebuild_jump_labels
= true;
3533 /* After performing a replacement in basic block BB, fix up the life
3534 information in our buffer. LAST is the last of the insns that we
3535 emitted as a replacement. PREV is the insn before the start of
3536 the replacement. MATCH_LEN is the number of instructions that were
3537 matched, and which now need to be replaced in the buffer. */
3540 peep2_update_life (basic_block bb
, int match_len
, rtx_insn
*last
,
3543 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3547 INIT_REG_SET (&live
);
3548 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3550 gcc_assert (peep2_current_count
>= match_len
+ 1);
3551 peep2_current_count
-= match_len
+ 1;
3559 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3561 peep2_current_count
++;
3563 i
= MAX_INSNS_PER_PEEP2
;
3564 peep2_insn_data
[i
].insn
= x
;
3565 df_simulate_one_insn_backwards (bb
, x
, &live
);
3566 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3572 CLEAR_REG_SET (&live
);
3577 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3578 Return true if we added it, false otherwise. The caller will try to match
3579 peepholes against the buffer if we return false; otherwise it will try to
3580 add more instructions to the buffer. */
3583 peep2_fill_buffer (basic_block bb
, rtx_insn
*insn
, regset live
)
3587 /* Once we have filled the maximum number of insns the buffer can hold,
3588 allow the caller to match the insns against peepholes. We wait until
3589 the buffer is full in case the target has similar peepholes of different
3590 length; we always want to match the longest if possible. */
3591 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3594 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3595 any other pattern, lest it change the semantics of the frame info. */
3596 if (RTX_FRAME_RELATED_P (insn
))
3598 /* Let the buffer drain first. */
3599 if (peep2_current_count
> 0)
3601 /* Now the insn will be the only thing in the buffer. */
3604 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3605 peep2_insn_data
[pos
].insn
= insn
;
3606 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3607 peep2_current_count
++;
3609 df_simulate_one_insn_forwards (bb
, insn
, live
);
3613 /* Perform the peephole2 optimization pass. */
3616 peephole2_optimize (void)
3623 peep2_do_cleanup_cfg
= false;
3624 peep2_do_rebuild_jump_labels
= false;
3626 df_set_flags (DF_LR_RUN_DCE
);
3627 df_note_add_problem ();
3630 /* Initialize the regsets we're going to use. */
3631 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3632 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3634 live
= BITMAP_ALLOC (®_obstack
);
3636 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3638 bool past_end
= false;
3641 rtl_profile_for_bb (bb
);
3643 /* Start up propagation. */
3644 bitmap_copy (live
, DF_LR_IN (bb
));
3645 df_simulate_initialize_forwards (bb
, live
);
3646 peep2_reinit_state (live
);
3648 insn
= BB_HEAD (bb
);
3651 rtx_insn
*attempt
, *head
;
3654 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3657 insn
= NEXT_INSN (insn
);
3658 if (insn
== NEXT_INSN (BB_END (bb
)))
3662 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3665 /* If we did not fill an empty buffer, it signals the end of the
3667 if (peep2_current_count
== 0)
3670 /* The buffer filled to the current maximum, so try to match. */
3672 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3673 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3674 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3676 /* Match the peephole. */
3677 head
= peep2_insn_data
[peep2_current
].insn
;
3678 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3679 if (attempt
!= NULL
)
3681 rtx_insn
*last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3684 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3689 /* No match: advance the buffer by one insn. */
3690 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3691 peep2_current_count
--;
3695 default_rtl_profile ();
3696 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3697 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3699 if (peep2_do_rebuild_jump_labels
)
3700 rebuild_jump_labels (get_insns ());
3701 if (peep2_do_cleanup_cfg
)
3702 cleanup_cfg (CLEANUP_CFG_CHANGED
);
3705 /* Common predicates for use with define_bypass. */
3707 /* Helper function for store_data_bypass_p, handle just a single SET
3711 store_data_bypass_p_1 (rtx_insn
*out_insn
, rtx in_set
)
3713 if (!MEM_P (SET_DEST (in_set
)))
3716 rtx out_set
= single_set (out_insn
);
3718 return !reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
));
3720 rtx out_pat
= PATTERN (out_insn
);
3721 if (GET_CODE (out_pat
) != PARALLEL
)
3724 for (int i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3726 rtx out_exp
= XVECEXP (out_pat
, 0, i
);
3728 if (GET_CODE (out_exp
) == CLOBBER
|| GET_CODE (out_exp
) == USE
3729 || GET_CODE (out_exp
) == CLOBBER_HIGH
)
3732 gcc_assert (GET_CODE (out_exp
) == SET
);
3734 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3741 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3742 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3743 must be either a single_set or a PARALLEL with SETs inside. */
3746 store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3748 rtx in_set
= single_set (in_insn
);
3750 return store_data_bypass_p_1 (out_insn
, in_set
);
3752 rtx in_pat
= PATTERN (in_insn
);
3753 if (GET_CODE (in_pat
) != PARALLEL
)
3756 for (int i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3758 rtx in_exp
= XVECEXP (in_pat
, 0, i
);
3760 if (GET_CODE (in_exp
) == CLOBBER
|| GET_CODE (in_exp
) == USE
3761 || GET_CODE (in_exp
) == CLOBBER_HIGH
)
3764 gcc_assert (GET_CODE (in_exp
) == SET
);
3766 if (!store_data_bypass_p_1 (out_insn
, in_exp
))
3773 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3774 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3775 or multiple set; IN_INSN should be single_set for truth, but for convenience
3776 of insn categorization may be any JUMP or CALL insn. */
3779 if_test_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3781 rtx out_set
, in_set
;
3783 in_set
= single_set (in_insn
);
3786 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3790 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3792 in_set
= SET_SRC (in_set
);
3794 out_set
= single_set (out_insn
);
3797 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3798 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3806 out_pat
= PATTERN (out_insn
);
3807 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3809 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3811 rtx exp
= XVECEXP (out_pat
, 0, i
);
3813 if (GET_CODE (exp
) == CLOBBER
|| GET_CODE (exp
) == CLOBBER_HIGH
)
3816 gcc_assert (GET_CODE (exp
) == SET
);
3818 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3819 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3828 rest_of_handle_peephole2 (void)
3831 peephole2_optimize ();
3838 const pass_data pass_data_peephole2
=
3840 RTL_PASS
, /* type */
3841 "peephole2", /* name */
3842 OPTGROUP_NONE
, /* optinfo_flags */
3843 TV_PEEPHOLE2
, /* tv_id */
3844 0, /* properties_required */
3845 0, /* properties_provided */
3846 0, /* properties_destroyed */
3847 0, /* todo_flags_start */
3848 TODO_df_finish
, /* todo_flags_finish */
3851 class pass_peephole2
: public rtl_opt_pass
3854 pass_peephole2 (gcc::context
*ctxt
)
3855 : rtl_opt_pass (pass_data_peephole2
, ctxt
)
3858 /* opt_pass methods: */
3859 /* The epiphany backend creates a second instance of this pass, so we need
3861 opt_pass
* clone () { return new pass_peephole2 (m_ctxt
); }
3862 virtual bool gate (function
*) { return (optimize
> 0 && flag_peephole2
); }
3863 virtual unsigned int execute (function
*)
3865 return rest_of_handle_peephole2 ();
3868 }; // class pass_peephole2
3873 make_pass_peephole2 (gcc::context
*ctxt
)
3875 return new pass_peephole2 (ctxt
);
3880 const pass_data pass_data_split_all_insns
=
3882 RTL_PASS
, /* type */
3883 "split1", /* name */
3884 OPTGROUP_NONE
, /* optinfo_flags */
3885 TV_NONE
, /* tv_id */
3886 0, /* properties_required */
3887 PROP_rtl_split_insns
, /* properties_provided */
3888 0, /* properties_destroyed */
3889 0, /* todo_flags_start */
3890 0, /* todo_flags_finish */
3893 class pass_split_all_insns
: public rtl_opt_pass
3896 pass_split_all_insns (gcc::context
*ctxt
)
3897 : rtl_opt_pass (pass_data_split_all_insns
, ctxt
)
3900 /* opt_pass methods: */
3901 /* The epiphany backend creates a second instance of this pass, so
3902 we need a clone method. */
3903 opt_pass
* clone () { return new pass_split_all_insns (m_ctxt
); }
3904 virtual unsigned int execute (function
*)
3910 }; // class pass_split_all_insns
3915 make_pass_split_all_insns (gcc::context
*ctxt
)
3917 return new pass_split_all_insns (ctxt
);
3922 const pass_data pass_data_split_after_reload
=
3924 RTL_PASS
, /* type */
3925 "split2", /* name */
3926 OPTGROUP_NONE
, /* optinfo_flags */
3927 TV_NONE
, /* tv_id */
3928 0, /* properties_required */
3929 0, /* properties_provided */
3930 0, /* properties_destroyed */
3931 0, /* todo_flags_start */
3932 0, /* todo_flags_finish */
3935 class pass_split_after_reload
: public rtl_opt_pass
3938 pass_split_after_reload (gcc::context
*ctxt
)
3939 : rtl_opt_pass (pass_data_split_after_reload
, ctxt
)
3942 /* opt_pass methods: */
3943 virtual bool gate (function
*)
3945 /* If optimizing, then go ahead and split insns now. */
3956 virtual unsigned int execute (function
*)
3962 }; // class pass_split_after_reload
3967 make_pass_split_after_reload (gcc::context
*ctxt
)
3969 return new pass_split_after_reload (ctxt
);
3974 const pass_data pass_data_split_before_regstack
=
3976 RTL_PASS
, /* type */
3977 "split3", /* name */
3978 OPTGROUP_NONE
, /* optinfo_flags */
3979 TV_NONE
, /* tv_id */
3980 0, /* properties_required */
3981 0, /* properties_provided */
3982 0, /* properties_destroyed */
3983 0, /* todo_flags_start */
3984 0, /* todo_flags_finish */
3987 class pass_split_before_regstack
: public rtl_opt_pass
3990 pass_split_before_regstack (gcc::context
*ctxt
)
3991 : rtl_opt_pass (pass_data_split_before_regstack
, ctxt
)
3994 /* opt_pass methods: */
3995 virtual bool gate (function
*);
3996 virtual unsigned int execute (function
*)
4002 }; // class pass_split_before_regstack
4005 pass_split_before_regstack::gate (function
*)
4007 #if HAVE_ATTR_length && defined (STACK_REGS)
4008 /* If flow2 creates new instructions which need splitting
4009 and scheduling after reload is not done, they might not be
4010 split until final which doesn't allow splitting
4011 if HAVE_ATTR_length. */
4012 # ifdef INSN_SCHEDULING
4013 return (optimize
&& !flag_schedule_insns_after_reload
);
4025 make_pass_split_before_regstack (gcc::context
*ctxt
)
4027 return new pass_split_before_regstack (ctxt
);
4031 rest_of_handle_split_before_sched2 (void)
4033 #ifdef INSN_SCHEDULING
4041 const pass_data pass_data_split_before_sched2
=
4043 RTL_PASS
, /* type */
4044 "split4", /* name */
4045 OPTGROUP_NONE
, /* optinfo_flags */
4046 TV_NONE
, /* tv_id */
4047 0, /* properties_required */
4048 0, /* properties_provided */
4049 0, /* properties_destroyed */
4050 0, /* todo_flags_start */
4051 0, /* todo_flags_finish */
4054 class pass_split_before_sched2
: public rtl_opt_pass
4057 pass_split_before_sched2 (gcc::context
*ctxt
)
4058 : rtl_opt_pass (pass_data_split_before_sched2
, ctxt
)
4061 /* opt_pass methods: */
4062 virtual bool gate (function
*)
4064 #ifdef INSN_SCHEDULING
4065 return optimize
> 0 && flag_schedule_insns_after_reload
;
4071 virtual unsigned int execute (function
*)
4073 return rest_of_handle_split_before_sched2 ();
4076 }; // class pass_split_before_sched2
4081 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4083 return new pass_split_before_sched2 (ctxt
);
4088 const pass_data pass_data_split_for_shorten_branches
=
4090 RTL_PASS
, /* type */
4091 "split5", /* name */
4092 OPTGROUP_NONE
, /* optinfo_flags */
4093 TV_NONE
, /* tv_id */
4094 0, /* properties_required */
4095 0, /* properties_provided */
4096 0, /* properties_destroyed */
4097 0, /* todo_flags_start */
4098 0, /* todo_flags_finish */
4101 class pass_split_for_shorten_branches
: public rtl_opt_pass
4104 pass_split_for_shorten_branches (gcc::context
*ctxt
)
4105 : rtl_opt_pass (pass_data_split_for_shorten_branches
, ctxt
)
4108 /* opt_pass methods: */
4109 virtual bool gate (function
*)
4111 /* The placement of the splitting that we do for shorten_branches
4112 depends on whether regstack is used by the target or not. */
4113 #if HAVE_ATTR_length && !defined (STACK_REGS)
4120 virtual unsigned int execute (function
*)
4122 return split_all_insns_noflow ();
4125 }; // class pass_split_for_shorten_branches
4130 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4132 return new pass_split_for_shorten_branches (ctxt
);
4135 /* (Re)initialize the target information after a change in target. */
4140 /* The information is zero-initialized, so we don't need to do anything
4141 first time round. */
4142 if (!this_target_recog
->x_initialized
)
4144 this_target_recog
->x_initialized
= true;
4147 memset (this_target_recog
->x_bool_attr_masks
, 0,
4148 sizeof (this_target_recog
->x_bool_attr_masks
));
4149 for (unsigned int i
= 0; i
< NUM_INSN_CODES
; ++i
)
4150 if (this_target_recog
->x_op_alt
[i
])
4152 free (this_target_recog
->x_op_alt
[i
]);
4153 this_target_recog
->x_op_alt
[i
] = 0;