1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "diagnostic.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
45 #include "insn-attr.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
52 #include "optabs-tree.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_cpymem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
77 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
);
79 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
80 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
81 static rtx_insn
*compress_float_constant (rtx
, rtx
);
82 static rtx
get_subtarget (rtx
);
83 static void store_constructor (tree
, rtx
, int, poly_int64
, bool);
84 static rtx
store_field (rtx
, poly_int64
, poly_int64
, poly_uint64
, poly_uint64
,
85 machine_mode
, tree
, alias_set_type
, bool, bool);
87 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
89 static int is_aligning_offset (const_tree
, const_tree
);
90 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
91 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
93 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
95 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
,
97 static rtx
const_vector_from_tree (tree
);
98 static rtx
const_scalar_mask_from_tree (scalar_int_mode
, tree
);
99 static tree
tree_expr_size (const_tree
);
100 static HOST_WIDE_INT
int_expr_size (tree
);
101 static void convert_mode_scalar (rtx
, rtx
, int);
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
109 init_expr_target (void)
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
120 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
126 rtx_insn
*insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
127 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
128 PATTERN (insn
) = pat
;
130 for (machine_mode mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
131 mode
= (machine_mode
) ((int) mode
+ 1))
135 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
136 PUT_MODE (mem
, mode
);
137 PUT_MODE (mem1
, mode
);
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
142 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
143 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
144 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
147 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
150 set_mode_and_regno (reg
, mode
, regno
);
153 SET_DEST (pat
) = reg
;
154 if (recog (pat
, insn
, &num_clobbers
) >= 0)
155 direct_load
[(int) mode
] = 1;
157 SET_SRC (pat
) = mem1
;
158 SET_DEST (pat
) = reg
;
159 if (recog (pat
, insn
, &num_clobbers
) >= 0)
160 direct_load
[(int) mode
] = 1;
163 SET_DEST (pat
) = mem
;
164 if (recog (pat
, insn
, &num_clobbers
) >= 0)
165 direct_store
[(int) mode
] = 1;
168 SET_DEST (pat
) = mem1
;
169 if (recog (pat
, insn
, &num_clobbers
) >= 0)
170 direct_store
[(int) mode
] = 1;
174 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1));
176 opt_scalar_float_mode mode_iter
;
177 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_FLOAT
)
179 scalar_float_mode mode
= mode_iter
.require ();
180 scalar_float_mode srcmode
;
181 FOR_EACH_MODE_UNTIL (srcmode
, mode
)
185 ic
= can_extend_p (mode
, srcmode
, 0);
186 if (ic
== CODE_FOR_nothing
)
189 PUT_MODE (mem
, srcmode
);
191 if (insn_operand_matches (ic
, 1, mem
))
192 float_extend_from_mem
[mode
][srcmode
] = true;
197 /* This is run at the start of compiling a function. */
202 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
212 convert_move (rtx to
, rtx from
, int unsignedp
)
214 machine_mode to_mode
= GET_MODE (to
);
215 machine_mode from_mode
= GET_MODE (from
);
217 gcc_assert (to_mode
!= BLKmode
);
218 gcc_assert (from_mode
!= BLKmode
);
220 /* If the source and destination are already the same, then there's
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
229 scalar_int_mode to_int_mode
;
230 if (GET_CODE (from
) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from
)
232 && is_a
<scalar_int_mode
> (to_mode
, &to_int_mode
)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from
))
234 >= GET_MODE_PRECISION (to_int_mode
))
235 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
237 from
= gen_lowpart (to_int_mode
, SUBREG_REG (from
));
238 from_mode
= to_int_mode
;
241 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
243 if (to_mode
== from_mode
244 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
246 emit_move_insn (to
, from
);
250 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
252 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode
),
253 GET_MODE_BITSIZE (to_mode
)));
255 if (VECTOR_MODE_P (to_mode
))
256 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
258 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
260 emit_move_insn (to
, from
);
264 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
266 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
267 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
271 convert_mode_scalar (to
, from
, unsignedp
);
274 /* Like convert_move, but deals only with scalar modes. */
277 convert_mode_scalar (rtx to
, rtx from
, int unsignedp
)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode
= as_a
<scalar_mode
> (GET_MODE (from
));
281 scalar_mode to_mode
= as_a
<scalar_mode
> (GET_MODE (to
));
282 bool to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
283 bool from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
287 gcc_assert (to_real
== from_real
);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
291 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
299 gcc_assert ((GET_MODE_PRECISION (from_mode
)
300 != GET_MODE_PRECISION (to_mode
))
301 || (DECIMAL_FLOAT_MODE_P (from_mode
)
302 != DECIMAL_FLOAT_MODE_P (to_mode
)));
304 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
305 /* Conversion between decimal float and binary float, same size. */
306 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
307 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
312 /* Try converting directly if the insn is supported. */
314 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
315 if (code
!= CODE_FOR_nothing
)
317 emit_unop_insn (code
, to
, from
,
318 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
322 /* Otherwise use a libcall. */
323 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall
);
329 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
331 insns
= get_insns ();
333 emit_libcall_block (insns
, to
, value
,
334 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
336 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
345 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
352 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
355 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode
));
368 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
369 != CODE_FOR_nothing
);
371 if (full_mode
!= from_mode
)
372 from
= convert_to_mode (full_mode
, from
, unsignedp
);
373 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
377 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode
));
382 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
383 enum insn_code icode
;
385 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
386 gcc_assert (icode
!= CODE_FOR_nothing
);
388 if (to_mode
== full_mode
)
390 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
394 new_from
= gen_reg_rtx (full_mode
);
395 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
397 /* else proceed to integer conversions below. */
398 from_mode
= full_mode
;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
411 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
412 expand_fixed_convert (to
, from
, 0, 0);
414 expand_fixed_convert (to
, from
, 0, 1);
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
422 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
429 scalar_mode lowpart_mode
;
430 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
432 /* Try converting directly if the insn is supported. */
433 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
441 from
= force_reg (from_mode
, from
);
442 emit_unop_insn (code
, to
, from
, equiv_code
);
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
447 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
448 != CODE_FOR_nothing
))
450 rtx word_to
= gen_reg_rtx (word_mode
);
453 if (reg_overlap_mentioned_p (to
, from
))
454 from
= force_reg (from_mode
, from
);
457 convert_move (word_to
, from
, unsignedp
);
458 emit_unop_insn (code
, to
, word_to
, equiv_code
);
462 /* No special multiword conversion insn; do it by hand. */
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
472 from
= force_reg (from_mode
, from
);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
476 lowpart_mode
= word_mode
;
478 lowpart_mode
= from_mode
;
480 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
482 lowpart
= gen_lowpart (lowpart_mode
, to
);
483 emit_move_insn (lowpart
, lowfrom
);
485 /* Compute the value to put in each remaining word. */
487 fill_value
= const0_rtx
;
489 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
490 LT
, lowfrom
, const0_rtx
,
491 lowpart_mode
, 0, -1);
493 /* Fill the remaining words. */
494 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
496 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
497 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
499 gcc_assert (subword
);
501 if (fill_value
!= subword
)
502 emit_move_insn (subword
, fill_value
);
505 insns
= get_insns ();
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
517 && ! MEM_VOLATILE_P (from
)
518 && direct_load
[(int) to_mode
]
519 && ! mode_dependent_address_p (XEXP (from
, 0),
520 MEM_ADDR_SPACE (from
)))
522 || GET_CODE (from
) == SUBREG
))
523 from
= force_reg (from_mode
, from
);
524 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
536 && ! MEM_VOLATILE_P (from
)
537 && direct_load
[(int) to_mode
]
538 && ! mode_dependent_address_p (XEXP (from
, 0),
539 MEM_ADDR_SPACE (from
)))
541 || GET_CODE (from
) == SUBREG
))
542 from
= force_reg (from_mode
, from
);
543 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
544 && !targetm
.hard_regno_mode_ok (REGNO (from
), to_mode
))
545 from
= copy_to_reg (from
);
546 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
553 /* Convert directly if that works. */
554 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
557 emit_unop_insn (code
, to
, from
, equiv_code
);
562 scalar_mode intermediate
;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter
;
568 FOR_EACH_MODE_FROM (intermediate_iter
, from_mode
)
570 scalar_mode intermediate
= intermediate_iter
.require ();
571 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
573 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
,
576 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
577 != CODE_FOR_nothing
))
579 convert_move (to
, convert_to_mode (intermediate
, from
,
580 unsignedp
), unsignedp
);
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount
= (GET_MODE_PRECISION (to_mode
)
588 - GET_MODE_PRECISION (from_mode
));
589 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
590 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
592 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
595 emit_move_insn (to
, tmp
);
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab
, to_mode
,
602 from_mode
) != CODE_FOR_nothing
)
604 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
618 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
619 emit_move_insn (to
, temp
);
623 /* Mode combination is not recognized. */
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
637 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
654 scalar_int_mode int_mode
;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x
) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x
)
661 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x
))
663 >= GET_MODE_PRECISION (int_mode
))
664 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
665 x
= gen_lowpart (int_mode
, SUBREG_REG (x
));
667 if (GET_MODE (x
) != VOIDmode
)
668 oldmode
= GET_MODE (x
);
673 if (CONST_SCALAR_INT_P (x
)
674 && is_int_mode (mode
, &int_mode
))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
680 oldmode
= MAX_MODE_INT
;
681 wide_int w
= wide_int::from (rtx_mode_t (x
, oldmode
),
682 GET_MODE_PRECISION (int_mode
),
683 unsignedp
? UNSIGNED
: SIGNED
);
684 return immed_wide_int_const (w
, int_mode
);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
690 scalar_int_mode int_oldmode
;
691 if (is_int_mode (mode
, &int_mode
)
692 && is_int_mode (oldmode
, &int_oldmode
)
693 && GET_MODE_PRECISION (int_mode
) <= GET_MODE_PRECISION (int_oldmode
)
694 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) int_mode
])
695 || CONST_POLY_INT_P (x
)
697 && (!HARD_REGISTER_P (x
)
698 || targetm
.hard_regno_mode_ok (REGNO (x
), int_mode
))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, GET_MODE (x
)))))
700 return gen_lowpart (int_mode
, x
);
702 /* Converting from integer constant into mode is always equivalent to an
704 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode
),
707 GET_MODE_BITSIZE (oldmode
)));
708 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
711 temp
= gen_reg_rtx (mode
);
712 convert_move (temp
, x
, unsignedp
);
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
720 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces
* BITS_PER_UNIT
, 1).require ();
725 if (align
>= GET_MODE_ALIGNMENT (tmode
))
726 align
= GET_MODE_ALIGNMENT (tmode
);
729 scalar_int_mode xmode
= NARROWEST_INT_MODE
;
730 opt_scalar_int_mode mode_iter
;
731 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
733 tmode
= mode_iter
.require ();
734 if (GET_MODE_SIZE (tmode
) > max_pieces
735 || targetm
.slow_unaligned_access (tmode
, align
))
740 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size
)
751 scalar_int_mode result
= NARROWEST_INT_MODE
;
753 gcc_checking_assert (size
> 1);
755 opt_scalar_int_mode tmode
;
756 FOR_EACH_MODE_IN_CLASS (tmode
, MODE_INT
)
757 if (GET_MODE_SIZE (tmode
.require ()) < size
)
758 result
= tmode
.require ();
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
767 can_do_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
,
768 enum by_pieces_operation op
)
770 return targetm
.use_by_pieces_infrastructure_p (len
, align
, op
,
771 optimize_insn_for_speed_p ());
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
779 can_move_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
)
781 return can_do_by_pieces (len
, align
, MOVE_BY_PIECES
);
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
789 unsigned int max_size
, by_pieces_operation op
)
791 unsigned HOST_WIDE_INT n_insns
= 0;
793 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
795 while (max_size
> 1 && l
> 0)
797 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
798 enum insn_code icode
;
800 unsigned int modesize
= GET_MODE_SIZE (mode
);
802 icode
= optab_handler (mov_optab
, mode
);
803 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
805 unsigned HOST_WIDE_INT n_pieces
= l
/ modesize
;
813 case COMPARE_BY_PIECES
:
814 int batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
815 int batch_ops
= 4 * batch
- 1;
816 unsigned HOST_WIDE_INT full
= n_pieces
/ batch
;
817 n_insns
+= full
* batch_ops
;
818 if (n_pieces
% batch
!= 0)
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc
;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc
;
852 /* True if we have either of the two possible cases of using
855 /* True if this is an address to be used for load operations rather
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn
;
864 pieces_addr (rtx
, bool, by_pieces_constfn
, void *);
865 rtx
adjust (scalar_int_mode
, HOST_WIDE_INT
);
866 void increment_address (HOST_WIDE_INT
);
867 void maybe_predec (HOST_WIDE_INT
);
868 void maybe_postinc (HOST_WIDE_INT
);
869 void decide_autoinc (machine_mode
, bool, HOST_WIDE_INT
);
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
883 pieces_addr::pieces_addr (rtx obj
, bool is_load
, by_pieces_constfn constfn
,
885 : m_obj (obj
), m_is_load (is_load
), m_constfn (constfn
), m_cfndata (cfndata
)
891 rtx addr
= XEXP (obj
, 0);
892 rtx_code code
= GET_CODE (addr
);
894 bool dec
= code
== PRE_DEC
|| code
== POST_DEC
;
895 bool inc
= code
== PRE_INC
|| code
== POST_INC
;
898 m_addr_inc
= dec
? -1 : 1;
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code
!= PRE_INC
&& code
!= POST_DEC
);
911 if (STACK_GROWS_DOWNWARD
)
917 gcc_assert (constfn
!= NULL
);
921 gcc_assert (is_load
);
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
930 pieces_addr::decide_autoinc (machine_mode
ARG_UNUSED (mode
), bool reverse
,
933 if (m_auto
|| m_obj
== NULL_RTX
)
936 bool use_predec
= (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode
)
938 : USE_STORE_PRE_DECREMENT (mode
));
939 bool use_postinc
= (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode
)
941 : USE_STORE_POST_INCREMENT (mode
));
942 machine_mode addr_mode
= get_address_mode (m_obj
);
944 if (use_predec
&& reverse
)
946 m_addr
= copy_to_mode_reg (addr_mode
,
947 plus_constant (addr_mode
,
952 else if (use_postinc
&& !reverse
)
954 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
958 else if (CONSTANT_P (m_addr
))
959 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
967 pieces_addr::adjust (scalar_int_mode mode
, HOST_WIDE_INT offset
)
970 return m_constfn (m_cfndata
, offset
, mode
);
971 if (m_obj
== NULL_RTX
)
974 return adjust_automodify_address (m_obj
, mode
, m_addr
, offset
);
976 return adjust_address (m_obj
, mode
, offset
);
979 /* Emit an add instruction to increment the address by SIZE. */
982 pieces_addr::increment_address (HOST_WIDE_INT size
)
984 rtx amount
= gen_int_mode (size
, GET_MODE (m_addr
));
985 emit_insn (gen_add2_insn (m_addr
, amount
));
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
993 pieces_addr::maybe_predec (HOST_WIDE_INT size
)
995 if (m_explicit_inc
>= 0)
997 gcc_assert (HAVE_PRE_DECREMENT
);
998 increment_address (size
);
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size
)
1007 if (m_explicit_inc
<= 0)
1009 gcc_assert (HAVE_POST_INCREMENT
);
1010 increment_address (size
);
1013 /* This structure is used by do_op_by_pieces to describe the operation
1016 class op_by_pieces_d
1019 pieces_addr m_to
, m_from
;
1020 unsigned HOST_WIDE_INT m_len
;
1021 HOST_WIDE_INT m_offset
;
1022 unsigned int m_align
;
1023 unsigned int m_max_size
;
1026 /* Virtual functions, overriden by derived classes for the specific
1028 virtual void generate (rtx
, rtx
, machine_mode
) = 0;
1029 virtual bool prepare_mode (machine_mode
, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode
)
1035 op_by_pieces_d (rtx
, bool, rtx
, bool, by_pieces_constfn
, void *,
1036 unsigned HOST_WIDE_INT
, unsigned int);
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1046 op_by_pieces_d::op_by_pieces_d (rtx to
, bool to_load
,
1047 rtx from
, bool from_load
,
1048 by_pieces_constfn from_cfn
,
1049 void *from_cfn_data
,
1050 unsigned HOST_WIDE_INT len
,
1052 : m_to (to
, to_load
, NULL
, NULL
),
1053 m_from (from
, from_load
, from_cfn
, from_cfn_data
),
1054 m_len (len
), m_max_size (MOVE_MAX_PIECES
+ 1)
1056 int toi
= m_to
.get_addr_inc ();
1057 int fromi
= m_from
.get_addr_inc ();
1058 if (toi
>= 0 && fromi
>= 0)
1060 else if (toi
<= 0 && fromi
<= 0)
1065 m_offset
= m_reverse
? len
: 0;
1066 align
= MIN (to
? MEM_ALIGN (to
) : align
,
1067 from
? MEM_ALIGN (from
) : align
);
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len
, align
, m_max_size
, MOVE_BY_PIECES
) > 2)
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1077 m_from
.decide_autoinc (mode
, m_reverse
, len
);
1078 m_to
.decide_autoinc (mode
, m_reverse
, len
);
1081 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1091 op_by_pieces_d::run ()
1093 while (m_max_size
> 1 && m_len
> 0)
1095 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1097 if (prepare_mode (mode
, m_align
))
1099 unsigned int size
= GET_MODE_SIZE (mode
);
1100 rtx to1
= NULL_RTX
, from1
;
1102 while (m_len
>= size
)
1107 to1
= m_to
.adjust (mode
, m_offset
);
1108 from1
= m_from
.adjust (mode
, m_offset
);
1110 m_to
.maybe_predec (-(HOST_WIDE_INT
)size
);
1111 m_from
.maybe_predec (-(HOST_WIDE_INT
)size
);
1113 generate (to1
, from1
, mode
);
1115 m_to
.maybe_postinc (size
);
1116 m_from
.maybe_postinc (size
);
1127 m_max_size
= GET_MODE_SIZE (mode
);
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len
);
1134 /* Derived class from op_by_pieces_d, providing support for block move
1137 class move_by_pieces_d
: public op_by_pieces_d
1139 insn_gen_fn m_gen_fun
;
1140 void generate (rtx
, rtx
, machine_mode
);
1141 bool prepare_mode (machine_mode
, unsigned int);
1144 move_by_pieces_d (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1146 : op_by_pieces_d (to
, false, from
, true, NULL
, NULL
, len
, align
)
1149 rtx
finish_retmode (memop_ret
);
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1157 move_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1159 insn_code icode
= optab_handler (mov_optab
, mode
);
1160 m_gen_fun
= GEN_FCN (icode
);
1161 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1171 move_by_pieces_d::generate (rtx op0
, rtx op1
,
1172 machine_mode mode ATTRIBUTE_UNUSED
)
1174 #ifdef PUSH_ROUNDING
1175 if (op0
== NULL_RTX
)
1177 emit_single_push_insn (mode
, op1
, NULL
);
1181 emit_insn (m_gen_fun (op0
, op1
));
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation.
1186 Return value is based on RETMODE argument. */
1189 move_by_pieces_d::finish_retmode (memop_ret retmode
)
1191 gcc_assert (!m_reverse
);
1192 if (retmode
== RETURN_END_MINUS_ONE
)
1194 m_to
.maybe_postinc (-1);
1197 return m_to
.adjust (QImode
, m_offset
);
1200 /* Generate several move instructions to copy LEN bytes from block FROM to
1201 block TO. (These are MEM rtx's with BLKmode).
1203 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1204 used to push FROM to the stack.
1206 ALIGN is maximum stack alignment we can assume.
1208 Return value is based on RETMODE argument. */
1211 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1212 unsigned int align
, memop_ret retmode
)
1214 #ifndef PUSH_ROUNDING
1219 move_by_pieces_d
data (to
, from
, len
, align
);
1223 if (retmode
!= RETURN_BEGIN
)
1224 return data
.finish_retmode (retmode
);
1229 /* Derived class from op_by_pieces_d, providing support for block move
1232 class store_by_pieces_d
: public op_by_pieces_d
1234 insn_gen_fn m_gen_fun
;
1235 void generate (rtx
, rtx
, machine_mode
);
1236 bool prepare_mode (machine_mode
, unsigned int);
1239 store_by_pieces_d (rtx to
, by_pieces_constfn cfn
, void *cfn_data
,
1240 unsigned HOST_WIDE_INT len
, unsigned int align
)
1241 : op_by_pieces_d (to
, false, NULL_RTX
, true, cfn
, cfn_data
, len
, align
)
1244 rtx
finish_retmode (memop_ret
);
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1252 store_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1254 insn_code icode
= optab_handler (mov_optab
, mode
);
1255 m_gen_fun
= GEN_FCN (icode
);
1256 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1266 store_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode
)
1268 emit_insn (m_gen_fun (op0
, op1
));
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation.
1273 Return value is based on RETMODE argument. */
1276 store_by_pieces_d::finish_retmode (memop_ret retmode
)
1278 gcc_assert (!m_reverse
);
1279 if (retmode
== RETURN_END_MINUS_ONE
)
1281 m_to
.maybe_postinc (-1);
1284 return m_to
.adjust (QImode
, m_offset
);
1287 /* Determine whether the LEN bytes generated by CONSTFUN can be
1288 stored to memory using several move instructions. CONSTFUNDATA is
1289 a pointer which will be passed as argument in every CONSTFUN call.
1290 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1291 a memset operation and false if it's a copy of a constant string.
1292 Return nonzero if a call to store_by_pieces should succeed. */
1295 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1296 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1297 void *constfundata
, unsigned int align
, bool memsetp
)
1299 unsigned HOST_WIDE_INT l
;
1300 unsigned int max_size
;
1301 HOST_WIDE_INT offset
= 0;
1302 enum insn_code icode
;
1304 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1305 rtx cst ATTRIBUTE_UNUSED
;
1310 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
1314 optimize_insn_for_speed_p ()))
1317 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
1319 /* We would first store what we can in the largest integer mode, then go to
1320 successively smaller modes. */
1323 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
1327 max_size
= STORE_MAX_PIECES
+ 1;
1328 while (max_size
> 1 && l
> 0)
1330 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
1332 icode
= optab_handler (mov_optab
, mode
);
1333 if (icode
!= CODE_FOR_nothing
1334 && align
>= GET_MODE_ALIGNMENT (mode
))
1336 unsigned int size
= GET_MODE_SIZE (mode
);
1343 cst
= (*constfun
) (constfundata
, offset
, mode
);
1344 if (!targetm
.legitimate_constant_p (mode
, cst
))
1354 max_size
= GET_MODE_SIZE (mode
);
1357 /* The code above should have handled everything. */
1364 /* Generate several move instructions to store LEN bytes generated by
1365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1366 pointer which will be passed as argument in every CONSTFUN call.
1367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1368 a memset operation and false if it's a copy of a constant string.
1369 Return value is based on RETMODE argument. */
1372 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
1373 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1374 void *constfundata
, unsigned int align
, bool memsetp
,
1379 gcc_assert (retmode
!= RETURN_END_MINUS_ONE
);
1383 gcc_assert (targetm
.use_by_pieces_infrastructure_p
1385 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
,
1386 optimize_insn_for_speed_p ()));
1388 store_by_pieces_d
data (to
, constfun
, constfundata
, len
, align
);
1391 if (retmode
!= RETURN_BEGIN
)
1392 return data
.finish_retmode (retmode
);
1397 /* Callback routine for clear_by_pieces.
1398 Return const0_rtx unconditionally. */
1401 clear_by_pieces_1 (void *, HOST_WIDE_INT
, scalar_int_mode
)
1406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1410 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
1415 store_by_pieces_d
data (to
, clear_by_pieces_1
, NULL
, len
, align
);
1419 /* Context used by compare_by_pieces_genfn. It stores the fail label
1420 to jump to in case of miscomparison, and for branch ratios greater than 1,
1421 it stores an accumulator and the current and maximum counts before
1422 emitting another branch. */
1424 class compare_by_pieces_d
: public op_by_pieces_d
1426 rtx_code_label
*m_fail_label
;
1428 int m_count
, m_batch
;
1430 void generate (rtx
, rtx
, machine_mode
);
1431 bool prepare_mode (machine_mode
, unsigned int);
1432 void finish_mode (machine_mode
);
1434 compare_by_pieces_d (rtx op0
, rtx op1
, by_pieces_constfn op1_cfn
,
1435 void *op1_cfn_data
, HOST_WIDE_INT len
, int align
,
1436 rtx_code_label
*fail_label
)
1437 : op_by_pieces_d (op0
, true, op1
, true, op1_cfn
, op1_cfn_data
, len
, align
)
1439 m_fail_label
= fail_label
;
1443 /* A callback used when iterating for a compare_by_pieces_operation.
1444 OP0 and OP1 are the values that have been loaded and should be
1445 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1446 context structure. */
1449 compare_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode mode
)
1453 rtx temp
= expand_binop (mode
, sub_optab
, op0
, op1
, NULL_RTX
,
1454 true, OPTAB_LIB_WIDEN
);
1456 temp
= expand_binop (mode
, ior_optab
, m_accumulator
, temp
, temp
,
1457 true, OPTAB_LIB_WIDEN
);
1458 m_accumulator
= temp
;
1460 if (++m_count
< m_batch
)
1464 op0
= m_accumulator
;
1466 m_accumulator
= NULL_RTX
;
1468 do_compare_rtx_and_jump (op0
, op1
, NE
, true, mode
, NULL_RTX
, NULL
,
1469 m_fail_label
, profile_probability::uninitialized ());
1472 /* Return true if MODE can be used for a set of moves and comparisons,
1473 given an alignment ALIGN. Prepare whatever data is necessary for
1474 later calls to generate. */
1477 compare_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1479 insn_code icode
= optab_handler (mov_optab
, mode
);
1480 if (icode
== CODE_FOR_nothing
1481 || align
< GET_MODE_ALIGNMENT (mode
)
1482 || !can_compare_p (EQ
, mode
, ccp_jump
))
1484 m_batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1487 m_accumulator
= NULL_RTX
;
1492 /* Called after expanding a series of comparisons in MODE. If we have
1493 accumulated results for which we haven't emitted a branch yet, do
1497 compare_by_pieces_d::finish_mode (machine_mode mode
)
1499 if (m_accumulator
!= NULL_RTX
)
1500 do_compare_rtx_and_jump (m_accumulator
, const0_rtx
, NE
, true, mode
,
1501 NULL_RTX
, NULL
, m_fail_label
,
1502 profile_probability::uninitialized ());
1505 /* Generate several move instructions to compare LEN bytes from blocks
1506 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1508 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1509 used to push FROM to the stack.
1511 ALIGN is maximum stack alignment we can assume.
1513 Optionally, the caller can pass a constfn and associated data in A1_CFN
1514 and A1_CFN_DATA. describing that the second operand being compared is a
1515 known constant and how to obtain its data. */
1518 compare_by_pieces (rtx arg0
, rtx arg1
, unsigned HOST_WIDE_INT len
,
1519 rtx target
, unsigned int align
,
1520 by_pieces_constfn a1_cfn
, void *a1_cfn_data
)
1522 rtx_code_label
*fail_label
= gen_label_rtx ();
1523 rtx_code_label
*end_label
= gen_label_rtx ();
1525 if (target
== NULL_RTX
1526 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1527 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
1529 compare_by_pieces_d
data (arg0
, arg1
, a1_cfn
, a1_cfn_data
, len
, align
,
1534 emit_move_insn (target
, const0_rtx
);
1535 emit_jump (end_label
);
1537 emit_label (fail_label
);
1538 emit_move_insn (target
, const1_rtx
);
1539 emit_label (end_label
);
1544 /* Emit code to move a block Y to a block X. This may be done with
1545 string-move instructions, with multiple scalar move instructions,
1546 or with a library call.
1548 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1549 SIZE is an rtx that says how long they are.
1550 ALIGN is the maximum alignment we can assume they have.
1551 METHOD describes what kind of copy this is, and what mechanisms may be used.
1552 MIN_SIZE is the minimal size of block to move
1553 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1554 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1556 Return the address of the new block, if memcpy is called and returns it,
1560 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1561 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1562 unsigned HOST_WIDE_INT min_size
,
1563 unsigned HOST_WIDE_INT max_size
,
1564 unsigned HOST_WIDE_INT probable_max_size
,
1565 bool bail_out_libcall
, bool *is_move_done
)
1572 *is_move_done
= true;
1575 if (CONST_INT_P (size
) && INTVAL (size
) == 0)
1580 case BLOCK_OP_NORMAL
:
1581 case BLOCK_OP_TAILCALL
:
1585 case BLOCK_OP_CALL_PARM
:
1586 may_use_call
= block_move_libcall_safe_for_call_parm ();
1588 /* Make inhibit_defer_pop nonzero around the library call
1589 to force it to pop the arguments right away. */
1593 case BLOCK_OP_NO_LIBCALL
:
1597 case BLOCK_OP_NO_LIBCALL_RET
:
1605 gcc_assert (MEM_P (x
) && MEM_P (y
));
1606 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1607 gcc_assert (align
>= BITS_PER_UNIT
);
1609 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1610 block copy is more efficient for other large modes, e.g. DCmode. */
1611 x
= adjust_address (x
, BLKmode
, 0);
1612 y
= adjust_address (y
, BLKmode
, 0);
1614 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1615 can be incorrect is coming from __builtin_memcpy. */
1616 poly_int64 const_size
;
1617 if (poly_int_rtx_p (size
, &const_size
))
1619 x
= shallow_copy_rtx (x
);
1620 y
= shallow_copy_rtx (y
);
1621 set_mem_size (x
, const_size
);
1622 set_mem_size (y
, const_size
);
1625 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1626 move_by_pieces (x
, y
, INTVAL (size
), align
, RETURN_BEGIN
);
1627 else if (emit_block_move_via_cpymem (x
, y
, size
, align
,
1628 expected_align
, expected_size
,
1629 min_size
, max_size
, probable_max_size
))
1631 else if (may_use_call
1632 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1633 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1635 if (bail_out_libcall
)
1638 *is_move_done
= false;
1642 if (may_use_call
< 0)
1645 retval
= emit_block_copy_via_libcall (x
, y
, size
,
1646 method
== BLOCK_OP_TAILCALL
);
1650 emit_block_move_via_loop (x
, y
, size
, align
);
1652 if (method
== BLOCK_OP_CALL_PARM
)
1659 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1661 unsigned HOST_WIDE_INT max
, min
= 0;
1662 if (GET_CODE (size
) == CONST_INT
)
1663 min
= max
= UINTVAL (size
);
1665 max
= GET_MODE_MASK (GET_MODE (size
));
1666 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1670 /* A subroutine of emit_block_move. Returns true if calling the
1671 block move libcall will not clobber any parameters which may have
1672 already been placed on the stack. */
1675 block_move_libcall_safe_for_call_parm (void)
1677 #if defined (REG_PARM_STACK_SPACE)
1681 /* If arguments are pushed on the stack, then they're safe. */
1685 /* If registers go on the stack anyway, any argument is sure to clobber
1686 an outgoing argument. */
1687 #if defined (REG_PARM_STACK_SPACE)
1688 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1689 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1690 depend on its argument. */
1692 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1693 && REG_PARM_STACK_SPACE (fn
) != 0)
1697 /* If any argument goes in memory, then it might clobber an outgoing
1700 CUMULATIVE_ARGS args_so_far_v
;
1701 cumulative_args_t args_so_far
;
1704 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1705 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1706 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1708 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1709 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1711 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1712 function_arg_info
arg_info (mode
, /*named=*/true);
1713 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, arg_info
);
1714 if (!tmp
|| !REG_P (tmp
))
1716 if (targetm
.calls
.arg_partial_bytes (args_so_far
, arg_info
))
1718 targetm
.calls
.function_arg_advance (args_so_far
, arg_info
);
1724 /* A subroutine of emit_block_move. Expand a cpymem pattern;
1725 return true if successful. */
1728 emit_block_move_via_cpymem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1729 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1730 unsigned HOST_WIDE_INT min_size
,
1731 unsigned HOST_WIDE_INT max_size
,
1732 unsigned HOST_WIDE_INT probable_max_size
)
1734 if (expected_align
< align
)
1735 expected_align
= align
;
1736 if (expected_size
!= -1)
1738 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1739 expected_size
= probable_max_size
;
1740 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1741 expected_size
= min_size
;
1744 /* Since this is a move insn, we don't care about volatility. */
1745 temporary_volatile_ok
v (true);
1747 /* Try the most limited insn first, because there's no point
1748 including more than one in the machine description unless
1749 the more limited one has some advantage. */
1751 opt_scalar_int_mode mode_iter
;
1752 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
1754 scalar_int_mode mode
= mode_iter
.require ();
1755 enum insn_code code
= direct_optab_handler (cpymem_optab
, mode
);
1757 if (code
!= CODE_FOR_nothing
1758 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1759 here because if SIZE is less than the mode mask, as it is
1760 returned by the macro, it will definitely be less than the
1761 actual mode mask. Since SIZE is within the Pmode address
1762 space, we limit MODE to Pmode. */
1763 && ((CONST_INT_P (size
)
1764 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1765 <= (GET_MODE_MASK (mode
) >> 1)))
1766 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1767 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1769 class expand_operand ops
[9];
1772 /* ??? When called via emit_block_move_for_call, it'd be
1773 nice if there were some way to inform the backend, so
1774 that it doesn't fail the expansion because it thinks
1775 emitting the libcall would be more efficient. */
1776 nops
= insn_data
[(int) code
].n_generator_args
;
1777 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1779 create_fixed_operand (&ops
[0], x
);
1780 create_fixed_operand (&ops
[1], y
);
1781 /* The check above guarantees that this size conversion is valid. */
1782 create_convert_operand_to (&ops
[2], size
, mode
, true);
1783 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1786 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1787 create_integer_operand (&ops
[5], expected_size
);
1791 create_integer_operand (&ops
[6], min_size
);
1792 /* If we cannot represent the maximal size,
1793 make parameter NULL. */
1794 if ((HOST_WIDE_INT
) max_size
!= -1)
1795 create_integer_operand (&ops
[7], max_size
);
1797 create_fixed_operand (&ops
[7], NULL
);
1801 /* If we cannot represent the maximal size,
1802 make parameter NULL. */
1803 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1804 create_integer_operand (&ops
[8], probable_max_size
);
1806 create_fixed_operand (&ops
[8], NULL
);
1808 if (maybe_expand_insn (code
, nops
, ops
))
1816 /* A subroutine of emit_block_move. Copy the data via an explicit
1817 loop. This is used only when libcalls are forbidden. */
1818 /* ??? It'd be nice to copy in hunks larger than QImode. */
1821 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1822 unsigned int align ATTRIBUTE_UNUSED
)
1824 rtx_code_label
*cmp_label
, *top_label
;
1825 rtx iter
, x_addr
, y_addr
, tmp
;
1826 machine_mode x_addr_mode
= get_address_mode (x
);
1827 machine_mode y_addr_mode
= get_address_mode (y
);
1828 machine_mode iter_mode
;
1830 iter_mode
= GET_MODE (size
);
1831 if (iter_mode
== VOIDmode
)
1832 iter_mode
= word_mode
;
1834 top_label
= gen_label_rtx ();
1835 cmp_label
= gen_label_rtx ();
1836 iter
= gen_reg_rtx (iter_mode
);
1838 emit_move_insn (iter
, const0_rtx
);
1840 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1841 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1842 do_pending_stack_adjust ();
1844 emit_jump (cmp_label
);
1845 emit_label (top_label
);
1847 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1848 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1850 if (x_addr_mode
!= y_addr_mode
)
1851 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1852 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1854 x
= change_address (x
, QImode
, x_addr
);
1855 y
= change_address (y
, QImode
, y_addr
);
1857 emit_move_insn (x
, y
);
1859 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1860 true, OPTAB_LIB_WIDEN
);
1862 emit_move_insn (iter
, tmp
);
1864 emit_label (cmp_label
);
1866 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1868 profile_probability::guessed_always ()
1869 .apply_scale (9, 10));
1872 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1873 TAILCALL is true if this is a tail call. */
1876 emit_block_op_via_libcall (enum built_in_function fncode
, rtx dst
, rtx src
,
1877 rtx size
, bool tailcall
)
1879 rtx dst_addr
, src_addr
;
1880 tree call_expr
, dst_tree
, src_tree
, size_tree
;
1881 machine_mode size_mode
;
1883 /* Since dst and src are passed to a libcall, mark the corresponding
1884 tree EXPR as addressable. */
1885 tree dst_expr
= MEM_EXPR (dst
);
1886 tree src_expr
= MEM_EXPR (src
);
1888 mark_addressable (dst_expr
);
1890 mark_addressable (src_expr
);
1892 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1893 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1894 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1896 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1897 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1898 src_tree
= make_tree (ptr_type_node
, src_addr
);
1900 size_mode
= TYPE_MODE (sizetype
);
1901 size
= convert_to_mode (size_mode
, size
, 1);
1902 size
= copy_to_mode_reg (size_mode
, size
);
1903 size_tree
= make_tree (sizetype
, size
);
1905 /* It is incorrect to use the libcall calling conventions for calls to
1906 memcpy/memmove/memcmp because they can be provided by the user. */
1907 tree fn
= builtin_decl_implicit (fncode
);
1908 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1909 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1911 return expand_call (call_expr
, NULL_RTX
, false);
1914 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1915 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1916 otherwise return null. */
1919 expand_cmpstrn_or_cmpmem (insn_code icode
, rtx target
, rtx arg1_rtx
,
1920 rtx arg2_rtx
, tree arg3_type
, rtx arg3_rtx
,
1921 HOST_WIDE_INT align
)
1923 machine_mode insn_mode
= insn_data
[icode
].operand
[0].mode
;
1925 if (target
&& (!REG_P (target
) || HARD_REGISTER_P (target
)))
1928 class expand_operand ops
[5];
1929 create_output_operand (&ops
[0], target
, insn_mode
);
1930 create_fixed_operand (&ops
[1], arg1_rtx
);
1931 create_fixed_operand (&ops
[2], arg2_rtx
);
1932 create_convert_operand_from (&ops
[3], arg3_rtx
, TYPE_MODE (arg3_type
),
1933 TYPE_UNSIGNED (arg3_type
));
1934 create_integer_operand (&ops
[4], align
);
1935 if (maybe_expand_insn (icode
, 5, ops
))
1936 return ops
[0].value
;
1940 /* Expand a block compare between X and Y with length LEN using the
1941 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1942 of the expression that was used to calculate the length. ALIGN
1943 gives the known minimum common alignment. */
1946 emit_block_cmp_via_cmpmem (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
1949 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1950 implementing memcmp because it will stop if it encounters two
1952 insn_code icode
= direct_optab_handler (cmpmem_optab
, SImode
);
1954 if (icode
== CODE_FOR_nothing
)
1957 return expand_cmpstrn_or_cmpmem (icode
, target
, x
, y
, len_type
, len
, align
);
1960 /* Emit code to compare a block Y to a block X. This may be done with
1961 string-compare instructions, with multiple scalar instructions,
1962 or with a library call.
1964 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1965 they are. LEN_TYPE is the type of the expression that was used to
1968 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1969 value of a normal memcmp call, instead we can just compare for equality.
1970 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1973 Optionally, the caller can pass a constfn and associated data in Y_CFN
1974 and Y_CFN_DATA. describing that the second operand being compared is a
1975 known constant and how to obtain its data.
1976 Return the result of the comparison, or NULL_RTX if we failed to
1977 perform the operation. */
1980 emit_block_cmp_hints (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
1981 bool equality_only
, by_pieces_constfn y_cfn
,
1986 if (CONST_INT_P (len
) && INTVAL (len
) == 0)
1989 gcc_assert (MEM_P (x
) && MEM_P (y
));
1990 unsigned int align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1991 gcc_assert (align
>= BITS_PER_UNIT
);
1993 x
= adjust_address (x
, BLKmode
, 0);
1994 y
= adjust_address (y
, BLKmode
, 0);
1997 && CONST_INT_P (len
)
1998 && can_do_by_pieces (INTVAL (len
), align
, COMPARE_BY_PIECES
))
1999 result
= compare_by_pieces (x
, y
, INTVAL (len
), target
, align
,
2002 result
= emit_block_cmp_via_cmpmem (x
, y
, len
, len_type
, target
, align
);
2007 /* Copy all or part of a value X into registers starting at REGNO.
2008 The number of registers to be filled is NREGS. */
2011 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
2016 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
2017 x
= validize_mem (force_const_mem (mode
, x
));
2019 /* See if the machine can do this with a load multiple insn. */
2020 if (targetm
.have_load_multiple ())
2022 rtx_insn
*last
= get_last_insn ();
2023 rtx first
= gen_rtx_REG (word_mode
, regno
);
2024 if (rtx_insn
*pat
= targetm
.gen_load_multiple (first
, x
,
2031 delete_insns_since (last
);
2034 for (int i
= 0; i
< nregs
; i
++)
2035 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2036 operand_subword_force (x
, i
, mode
));
2039 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2040 The number of registers to be filled is NREGS. */
2043 move_block_from_reg (int regno
, rtx x
, int nregs
)
2048 /* See if the machine can do this with a store multiple insn. */
2049 if (targetm
.have_store_multiple ())
2051 rtx_insn
*last
= get_last_insn ();
2052 rtx first
= gen_rtx_REG (word_mode
, regno
);
2053 if (rtx_insn
*pat
= targetm
.gen_store_multiple (x
, first
,
2060 delete_insns_since (last
);
2063 for (int i
= 0; i
< nregs
; i
++)
2065 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2069 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2073 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2074 ORIG, where ORIG is a non-consecutive group of registers represented by
2075 a PARALLEL. The clone is identical to the original except in that the
2076 original set of registers is replaced by a new set of pseudo registers.
2077 The new set has the same modes as the original set. */
2080 gen_group_rtx (rtx orig
)
2085 gcc_assert (GET_CODE (orig
) == PARALLEL
);
2087 length
= XVECLEN (orig
, 0);
2088 tmps
= XALLOCAVEC (rtx
, length
);
2090 /* Skip a NULL entry in first slot. */
2091 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2096 for (; i
< length
; i
++)
2098 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2099 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2101 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2104 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2107 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2108 except that values are placed in TMPS[i], and must later be moved
2109 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2112 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
,
2117 machine_mode m
= GET_MODE (orig_src
);
2119 gcc_assert (GET_CODE (dst
) == PARALLEL
);
2122 && !SCALAR_INT_MODE_P (m
)
2123 && !MEM_P (orig_src
)
2124 && GET_CODE (orig_src
) != CONCAT
)
2126 scalar_int_mode imode
;
2127 if (int_mode_for_mode (GET_MODE (orig_src
)).exists (&imode
))
2129 src
= gen_reg_rtx (imode
);
2130 emit_move_insn (gen_lowpart (GET_MODE (orig_src
), src
), orig_src
);
2134 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
2135 emit_move_insn (src
, orig_src
);
2137 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2141 /* Check for a NULL entry, used to indicate that the parameter goes
2142 both on the stack and in registers. */
2143 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2148 /* Process the pieces. */
2149 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2151 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2152 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (dst
, 0, i
), 1));
2153 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2154 poly_int64 shift
= 0;
2156 /* Handle trailing fragments that run over the size of the struct.
2157 It's the target's responsibility to make sure that the fragment
2158 cannot be strictly smaller in some cases and strictly larger
2160 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2161 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2163 /* Arrange to shift the fragment to where it belongs.
2164 extract_bit_field loads to the lsb of the reg. */
2166 #ifdef BLOCK_REG_PADDING
2167 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2168 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2173 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2174 bytelen
= ssize
- bytepos
;
2175 gcc_assert (maybe_gt (bytelen
, 0));
2178 /* If we won't be loading directly from memory, protect the real source
2179 from strange tricks we might play; but make sure that the source can
2180 be loaded directly into the destination. */
2182 if (!MEM_P (orig_src
)
2183 && (!CONSTANT_P (orig_src
)
2184 || (GET_MODE (orig_src
) != mode
2185 && GET_MODE (orig_src
) != VOIDmode
)))
2187 if (GET_MODE (orig_src
) == VOIDmode
)
2188 src
= gen_reg_rtx (mode
);
2190 src
= gen_reg_rtx (GET_MODE (orig_src
));
2192 emit_move_insn (src
, orig_src
);
2195 /* Optimize the access just a bit. */
2197 && (! targetm
.slow_unaligned_access (mode
, MEM_ALIGN (src
))
2198 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
2199 && multiple_p (bytepos
* BITS_PER_UNIT
, GET_MODE_ALIGNMENT (mode
))
2200 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2202 tmps
[i
] = gen_reg_rtx (mode
);
2203 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
2205 else if (COMPLEX_MODE_P (mode
)
2206 && GET_MODE (src
) == mode
2207 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2208 /* Let emit_move_complex do the bulk of the work. */
2210 else if (GET_CODE (src
) == CONCAT
)
2212 poly_int64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2213 poly_int64 slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
2217 if (can_div_trunc_p (bytepos
, slen0
, &elt
, &subpos
)
2218 && known_le (subpos
+ bytelen
, slen0
))
2220 /* The following assumes that the concatenated objects all
2221 have the same size. In this case, a simple calculation
2222 can be used to determine the object and the bit field
2224 tmps
[i
] = XEXP (src
, elt
);
2225 if (maybe_ne (subpos
, 0)
2226 || maybe_ne (subpos
+ bytelen
, slen0
)
2227 || (!CONSTANT_P (tmps
[i
])
2228 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
)))
2229 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
2230 subpos
* BITS_PER_UNIT
,
2231 1, NULL_RTX
, mode
, mode
, false,
2238 gcc_assert (known_eq (bytepos
, 0));
2239 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2240 emit_move_insn (mem
, src
);
2241 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
2242 0, 1, NULL_RTX
, mode
, mode
, false,
2246 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2247 SIMD register, which is currently broken. While we get GCC
2248 to emit proper RTL for these cases, let's dump to memory. */
2249 else if (VECTOR_MODE_P (GET_MODE (dst
))
2252 poly_uint64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2255 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2256 emit_move_insn (mem
, src
);
2257 tmps
[i
] = adjust_address (mem
, mode
, bytepos
);
2259 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
2260 && XVECLEN (dst
, 0) > 1)
2261 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
2262 else if (CONSTANT_P (src
))
2264 if (known_eq (bytelen
, ssize
))
2270 /* TODO: const_wide_int can have sizes other than this... */
2271 gcc_assert (known_eq (2 * bytelen
, ssize
));
2272 split_double (src
, &first
, &second
);
2279 else if (REG_P (src
) && GET_MODE (src
) == mode
)
2282 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
2283 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
2284 mode
, mode
, false, NULL
);
2286 if (maybe_ne (shift
, 0))
2287 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
2292 /* Emit code to move a block SRC of type TYPE to a block DST,
2293 where DST is non-consecutive registers represented by a PARALLEL.
2294 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2298 emit_group_load (rtx dst
, rtx src
, tree type
, poly_int64 ssize
)
2303 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
2304 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2306 /* Copy the extracted pieces into the proper (probable) hard regs. */
2307 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
2309 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
2312 emit_move_insn (d
, tmps
[i
]);
2316 /* Similar, but load SRC into new pseudos in a format that looks like
2317 PARALLEL. This can later be fed to emit_group_move to get things
2318 in the right place. */
2321 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, poly_int64 ssize
)
2326 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
2327 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
2329 /* Convert the vector to look just like the original PARALLEL, except
2330 with the computed values. */
2331 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
2333 rtx e
= XVECEXP (parallel
, 0, i
);
2334 rtx d
= XEXP (e
, 0);
2338 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
2339 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
2341 RTVEC_ELT (vec
, i
) = e
;
2344 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
2347 /* Emit code to move a block SRC to block DST, where SRC and DST are
2348 non-consecutive groups of registers, each represented by a PARALLEL. */
2351 emit_group_move (rtx dst
, rtx src
)
2355 gcc_assert (GET_CODE (src
) == PARALLEL
2356 && GET_CODE (dst
) == PARALLEL
2357 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
2359 /* Skip first entry if NULL. */
2360 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
2361 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
2362 XEXP (XVECEXP (src
, 0, i
), 0));
2365 /* Move a group of registers represented by a PARALLEL into pseudos. */
2368 emit_group_move_into_temps (rtx src
)
2370 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
2373 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
2375 rtx e
= XVECEXP (src
, 0, i
);
2376 rtx d
= XEXP (e
, 0);
2379 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
2380 RTVEC_ELT (vec
, i
) = e
;
2383 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
2386 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2387 where SRC is non-consecutive registers represented by a PARALLEL.
2388 SSIZE represents the total size of block ORIG_DST, or -1 if not
2392 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
,
2396 int start
, finish
, i
;
2397 machine_mode m
= GET_MODE (orig_dst
);
2399 gcc_assert (GET_CODE (src
) == PARALLEL
);
2401 if (!SCALAR_INT_MODE_P (m
)
2402 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
2404 scalar_int_mode imode
;
2405 if (int_mode_for_mode (GET_MODE (orig_dst
)).exists (&imode
))
2407 dst
= gen_reg_rtx (imode
);
2408 emit_group_store (dst
, src
, type
, ssize
);
2409 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
2413 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
2414 emit_group_store (dst
, src
, type
, ssize
);
2416 emit_move_insn (orig_dst
, dst
);
2420 /* Check for a NULL entry, used to indicate that the parameter goes
2421 both on the stack and in registers. */
2422 if (XEXP (XVECEXP (src
, 0, 0), 0))
2426 finish
= XVECLEN (src
, 0);
2428 tmps
= XALLOCAVEC (rtx
, finish
);
2430 /* Copy the (probable) hard regs into pseudos. */
2431 for (i
= start
; i
< finish
; i
++)
2433 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
2434 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
2436 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
2437 emit_move_insn (tmps
[i
], reg
);
2443 /* If we won't be storing directly into memory, protect the real destination
2444 from strange tricks we might play. */
2446 if (GET_CODE (dst
) == PARALLEL
)
2450 /* We can get a PARALLEL dst if there is a conditional expression in
2451 a return statement. In that case, the dst and src are the same,
2452 so no action is necessary. */
2453 if (rtx_equal_p (dst
, src
))
2456 /* It is unclear if we can ever reach here, but we may as well handle
2457 it. Allocate a temporary, and split this into a store/load to/from
2459 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
2460 emit_group_store (temp
, src
, type
, ssize
);
2461 emit_group_load (dst
, temp
, type
, ssize
);
2464 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2466 machine_mode outer
= GET_MODE (dst
);
2472 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2473 dst
= gen_reg_rtx (outer
);
2475 /* Make life a bit easier for combine. */
2476 /* If the first element of the vector is the low part
2477 of the destination mode, use a paradoxical subreg to
2478 initialize the destination. */
2481 inner
= GET_MODE (tmps
[start
]);
2482 bytepos
= subreg_lowpart_offset (inner
, outer
);
2483 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, start
), 1)),
2486 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2490 emit_move_insn (dst
, temp
);
2497 /* If the first element wasn't the low part, try the last. */
2499 && start
< finish
- 1)
2501 inner
= GET_MODE (tmps
[finish
- 1]);
2502 bytepos
= subreg_lowpart_offset (inner
, outer
);
2503 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0,
2507 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2511 emit_move_insn (dst
, temp
);
2518 /* Otherwise, simply initialize the result to zero. */
2520 emit_move_insn (dst
, CONST0_RTX (outer
));
2523 /* Process the pieces. */
2524 for (i
= start
; i
< finish
; i
++)
2526 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, i
), 1));
2527 machine_mode mode
= GET_MODE (tmps
[i
]);
2528 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2529 poly_uint64 adj_bytelen
;
2532 /* Handle trailing fragments that run over the size of the struct.
2533 It's the target's responsibility to make sure that the fragment
2534 cannot be strictly smaller in some cases and strictly larger
2536 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2537 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2538 adj_bytelen
= ssize
- bytepos
;
2540 adj_bytelen
= bytelen
;
2542 if (GET_CODE (dst
) == CONCAT
)
2544 if (known_le (bytepos
+ adj_bytelen
,
2545 GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2546 dest
= XEXP (dst
, 0);
2547 else if (known_ge (bytepos
, GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2549 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2550 dest
= XEXP (dst
, 1);
2554 machine_mode dest_mode
= GET_MODE (dest
);
2555 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2557 gcc_assert (known_eq (bytepos
, 0) && XVECLEN (src
, 0));
2559 if (GET_MODE_ALIGNMENT (dest_mode
)
2560 >= GET_MODE_ALIGNMENT (tmp_mode
))
2562 dest
= assign_stack_temp (dest_mode
,
2563 GET_MODE_SIZE (dest_mode
));
2564 emit_move_insn (adjust_address (dest
,
2572 dest
= assign_stack_temp (tmp_mode
,
2573 GET_MODE_SIZE (tmp_mode
));
2574 emit_move_insn (dest
, tmps
[i
]);
2575 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2581 /* Handle trailing fragments that run over the size of the struct. */
2582 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2584 /* store_bit_field always takes its value from the lsb.
2585 Move the fragment to the lsb if it's not already there. */
2587 #ifdef BLOCK_REG_PADDING
2588 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2589 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2595 poly_int64 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2596 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2600 /* Make sure not to write past the end of the struct. */
2601 store_bit_field (dest
,
2602 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2603 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2604 VOIDmode
, tmps
[i
], false);
2607 /* Optimize the access just a bit. */
2608 else if (MEM_P (dest
)
2609 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (dest
))
2610 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2611 && multiple_p (bytepos
* BITS_PER_UNIT
,
2612 GET_MODE_ALIGNMENT (mode
))
2613 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2614 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2617 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2618 0, 0, mode
, tmps
[i
], false);
2621 /* Copy from the pseudo into the (probable) hard reg. */
2622 if (orig_dst
!= dst
)
2623 emit_move_insn (orig_dst
, dst
);
2626 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2627 of the value stored in X. */
2630 maybe_emit_group_store (rtx x
, tree type
)
2632 machine_mode mode
= TYPE_MODE (type
);
2633 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2634 if (GET_CODE (x
) == PARALLEL
)
2636 rtx result
= gen_reg_rtx (mode
);
2637 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2643 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2645 This is used on targets that return BLKmode values in registers. */
2648 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2650 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2651 rtx src
= NULL
, dst
= NULL
;
2652 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2653 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2654 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2655 fixed_size_mode mode
= as_a
<fixed_size_mode
> (GET_MODE (srcreg
));
2656 fixed_size_mode tmode
= as_a
<fixed_size_mode
> (GET_MODE (target
));
2657 fixed_size_mode copy_mode
;
2659 /* BLKmode registers created in the back-end shouldn't have survived. */
2660 gcc_assert (mode
!= BLKmode
);
2662 /* If the structure doesn't take up a whole number of words, see whether
2663 SRCREG is padded on the left or on the right. If it's on the left,
2664 set PADDING_CORRECTION to the number of bits to skip.
2666 In most ABIs, the structure will be returned at the least end of
2667 the register, which translates to right padding on little-endian
2668 targets and left padding on big-endian targets. The opposite
2669 holds if the structure is returned at the most significant
2670 end of the register. */
2671 if (bytes
% UNITS_PER_WORD
!= 0
2672 && (targetm
.calls
.return_in_msb (type
)
2674 : BYTES_BIG_ENDIAN
))
2676 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2678 /* We can use a single move if we have an exact mode for the size. */
2679 else if (MEM_P (target
)
2680 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
))
2681 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2682 && bytes
== GET_MODE_SIZE (mode
))
2684 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2688 /* And if we additionally have the same mode for a register. */
2689 else if (REG_P (target
)
2690 && GET_MODE (target
) == mode
2691 && bytes
== GET_MODE_SIZE (mode
))
2693 emit_move_insn (target
, srcreg
);
2697 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2698 into a new pseudo which is a full word. */
2699 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2701 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2705 /* Copy the structure BITSIZE bits at a time. If the target lives in
2706 memory, take care of not reading/writing past its end by selecting
2707 a copy mode suited to BITSIZE. This should always be possible given
2710 If the target lives in register, make sure not to select a copy mode
2711 larger than the mode of the register.
2713 We could probably emit more efficient code for machines which do not use
2714 strict alignment, but it doesn't seem worth the effort at the current
2717 copy_mode
= word_mode
;
2720 opt_scalar_int_mode mem_mode
= int_mode_for_size (bitsize
, 1);
2721 if (mem_mode
.exists ())
2722 copy_mode
= mem_mode
.require ();
2724 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2727 for (bitpos
= 0, xbitpos
= padding_correction
;
2728 bitpos
< bytes
* BITS_PER_UNIT
;
2729 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2731 /* We need a new source operand each time xbitpos is on a
2732 word boundary and when xbitpos == padding_correction
2733 (the first time through). */
2734 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2735 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2737 /* We need a new destination operand each time bitpos is on
2739 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2741 else if (bitpos
% BITS_PER_WORD
== 0)
2742 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2744 /* Use xbitpos for the source extraction (right justified) and
2745 bitpos for the destination store (left justified). */
2746 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2747 extract_bit_field (src
, bitsize
,
2748 xbitpos
% BITS_PER_WORD
, 1,
2749 NULL_RTX
, copy_mode
, copy_mode
,
2755 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2756 register if it contains any data, otherwise return null.
2758 This is used on targets that return BLKmode values in registers. */
2761 copy_blkmode_to_reg (machine_mode mode_in
, tree src
)
2764 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2765 unsigned int bitsize
;
2766 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2767 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2768 fixed_size_mode mode
= as_a
<fixed_size_mode
> (mode_in
);
2769 fixed_size_mode dst_mode
;
2770 scalar_int_mode min_mode
;
2772 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2774 x
= expand_normal (src
);
2776 bytes
= arg_int_size_in_bytes (TREE_TYPE (src
));
2780 /* If the structure doesn't take up a whole number of words, see
2781 whether the register value should be padded on the left or on
2782 the right. Set PADDING_CORRECTION to the number of padding
2783 bits needed on the left side.
2785 In most ABIs, the structure will be returned at the least end of
2786 the register, which translates to right padding on little-endian
2787 targets and left padding on big-endian targets. The opposite
2788 holds if the structure is returned at the most significant
2789 end of the register. */
2790 if (bytes
% UNITS_PER_WORD
!= 0
2791 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2793 : BYTES_BIG_ENDIAN
))
2794 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2797 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2798 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2799 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2800 min_mode
= smallest_int_mode_for_size (bitsize
);
2802 /* Copy the structure BITSIZE bits at a time. */
2803 for (bitpos
= 0, xbitpos
= padding_correction
;
2804 bitpos
< bytes
* BITS_PER_UNIT
;
2805 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2807 /* We need a new destination pseudo each time xbitpos is
2808 on a word boundary and when xbitpos == padding_correction
2809 (the first time through). */
2810 if (xbitpos
% BITS_PER_WORD
== 0
2811 || xbitpos
== padding_correction
)
2813 /* Generate an appropriate register. */
2814 dst_word
= gen_reg_rtx (word_mode
);
2815 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2817 /* Clear the destination before we move anything into it. */
2818 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2821 /* Find the largest integer mode that can be used to copy all or as
2822 many bits as possible of the structure if the target supports larger
2823 copies. There are too many corner cases here w.r.t to alignments on
2824 the read/writes. So if there is any padding just use single byte
2826 opt_scalar_int_mode mode_iter
;
2827 if (padding_correction
== 0 && !STRICT_ALIGNMENT
)
2829 FOR_EACH_MODE_FROM (mode_iter
, min_mode
)
2831 unsigned int msize
= GET_MODE_BITSIZE (mode_iter
.require ());
2832 if (msize
<= ((bytes
* BITS_PER_UNIT
) - bitpos
)
2833 && msize
<= BITS_PER_WORD
)
2840 /* We need a new source operand each time bitpos is on a word
2842 if (bitpos
% BITS_PER_WORD
== 0)
2843 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2845 /* Use bitpos for the source extraction (left justified) and
2846 xbitpos for the destination store (right justified). */
2847 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2849 extract_bit_field (src_word
, bitsize
,
2850 bitpos
% BITS_PER_WORD
, 1,
2851 NULL_RTX
, word_mode
, word_mode
,
2856 if (mode
== BLKmode
)
2858 /* Find the smallest integer mode large enough to hold the
2859 entire structure. */
2860 opt_scalar_int_mode mode_iter
;
2861 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2862 if (GET_MODE_SIZE (mode_iter
.require ()) >= bytes
)
2865 /* A suitable mode should have been found. */
2866 mode
= mode_iter
.require ();
2869 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2870 dst_mode
= word_mode
;
2873 dst
= gen_reg_rtx (dst_mode
);
2875 for (i
= 0; i
< n_regs
; i
++)
2876 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2878 if (mode
!= dst_mode
)
2879 dst
= gen_lowpart (mode
, dst
);
2884 /* Add a USE expression for REG to the (possibly empty) list pointed
2885 to by CALL_FUSAGE. REG must denote a hard register. */
2888 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2890 gcc_assert (REG_P (reg
));
2892 if (!HARD_REGISTER_P (reg
))
2896 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2899 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2900 to by CALL_FUSAGE. REG must denote a hard register. */
2903 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2905 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2908 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2911 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2912 starting at REGNO. All of these registers must be hard registers. */
2915 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2919 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2921 for (i
= 0; i
< nregs
; i
++)
2922 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2925 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2926 PARALLEL REGS. This is for calls that pass values in multiple
2927 non-contiguous locations. The Irix 6 ABI has examples of this. */
2930 use_group_regs (rtx
*call_fusage
, rtx regs
)
2934 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2936 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2938 /* A NULL entry means the parameter goes both on the stack and in
2939 registers. This can also be a MEM for targets that pass values
2940 partially on the stack and partially in registers. */
2941 if (reg
!= 0 && REG_P (reg
))
2942 use_reg (call_fusage
, reg
);
2946 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2947 assigment and the code of the expresion on the RHS is CODE. Return
2951 get_def_for_expr (tree name
, enum tree_code code
)
2955 if (TREE_CODE (name
) != SSA_NAME
)
2958 def_stmt
= get_gimple_for_ssa_name (name
);
2960 || gimple_assign_rhs_code (def_stmt
) != code
)
2966 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2967 assigment and the class of the expresion on the RHS is CLASS. Return
2971 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2975 if (TREE_CODE (name
) != SSA_NAME
)
2978 def_stmt
= get_gimple_for_ssa_name (name
);
2980 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2986 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2987 its length in bytes. */
2990 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2991 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2992 unsigned HOST_WIDE_INT min_size
,
2993 unsigned HOST_WIDE_INT max_size
,
2994 unsigned HOST_WIDE_INT probable_max_size
)
2996 machine_mode mode
= GET_MODE (object
);
2999 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
3001 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3002 just move a zero. Otherwise, do this a piece at a time. */
3003 poly_int64 size_val
;
3005 && poly_int_rtx_p (size
, &size_val
)
3006 && known_eq (size_val
, GET_MODE_SIZE (mode
)))
3008 rtx zero
= CONST0_RTX (mode
);
3011 emit_move_insn (object
, zero
);
3015 if (COMPLEX_MODE_P (mode
))
3017 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
3020 write_complex_part (object
, zero
, 0);
3021 write_complex_part (object
, zero
, 1);
3027 if (size
== const0_rtx
)
3030 align
= MEM_ALIGN (object
);
3032 if (CONST_INT_P (size
)
3033 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
3035 optimize_insn_for_speed_p ()))
3036 clear_by_pieces (object
, INTVAL (size
), align
);
3037 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
3038 expected_align
, expected_size
,
3039 min_size
, max_size
, probable_max_size
))
3041 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
3042 return set_storage_via_libcall (object
, size
, const0_rtx
,
3043 method
== BLOCK_OP_TAILCALL
);
3051 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
3053 unsigned HOST_WIDE_INT max
, min
= 0;
3054 if (GET_CODE (size
) == CONST_INT
)
3055 min
= max
= UINTVAL (size
);
3057 max
= GET_MODE_MASK (GET_MODE (size
));
3058 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
3062 /* A subroutine of clear_storage. Expand a call to memset.
3063 Return the return value of memset, 0 otherwise. */
3066 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
3068 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
3069 machine_mode size_mode
;
3071 object
= copy_addr_to_reg (XEXP (object
, 0));
3072 object_tree
= make_tree (ptr_type_node
, object
);
3074 if (!CONST_INT_P (val
))
3075 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
3076 val_tree
= make_tree (integer_type_node
, val
);
3078 size_mode
= TYPE_MODE (sizetype
);
3079 size
= convert_to_mode (size_mode
, size
, 1);
3080 size
= copy_to_mode_reg (size_mode
, size
);
3081 size_tree
= make_tree (sizetype
, size
);
3083 /* It is incorrect to use the libcall calling conventions for calls to
3084 memset because it can be provided by the user. */
3085 fn
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3086 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
3087 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
3089 return expand_call (call_expr
, NULL_RTX
, false);
3092 /* Expand a setmem pattern; return true if successful. */
3095 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
3096 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3097 unsigned HOST_WIDE_INT min_size
,
3098 unsigned HOST_WIDE_INT max_size
,
3099 unsigned HOST_WIDE_INT probable_max_size
)
3101 /* Try the most limited insn first, because there's no point
3102 including more than one in the machine description unless
3103 the more limited one has some advantage. */
3105 if (expected_align
< align
)
3106 expected_align
= align
;
3107 if (expected_size
!= -1)
3109 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
3110 expected_size
= max_size
;
3111 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
3112 expected_size
= min_size
;
3115 opt_scalar_int_mode mode_iter
;
3116 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3118 scalar_int_mode mode
= mode_iter
.require ();
3119 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
3121 if (code
!= CODE_FOR_nothing
3122 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3123 here because if SIZE is less than the mode mask, as it is
3124 returned by the macro, it will definitely be less than the
3125 actual mode mask. Since SIZE is within the Pmode address
3126 space, we limit MODE to Pmode. */
3127 && ((CONST_INT_P (size
)
3128 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3129 <= (GET_MODE_MASK (mode
) >> 1)))
3130 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
3131 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
3133 class expand_operand ops
[9];
3136 nops
= insn_data
[(int) code
].n_generator_args
;
3137 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
3139 create_fixed_operand (&ops
[0], object
);
3140 /* The check above guarantees that this size conversion is valid. */
3141 create_convert_operand_to (&ops
[1], size
, mode
, true);
3142 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
3143 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
3146 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
3147 create_integer_operand (&ops
[5], expected_size
);
3151 create_integer_operand (&ops
[6], min_size
);
3152 /* If we cannot represent the maximal size,
3153 make parameter NULL. */
3154 if ((HOST_WIDE_INT
) max_size
!= -1)
3155 create_integer_operand (&ops
[7], max_size
);
3157 create_fixed_operand (&ops
[7], NULL
);
3161 /* If we cannot represent the maximal size,
3162 make parameter NULL. */
3163 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3164 create_integer_operand (&ops
[8], probable_max_size
);
3166 create_fixed_operand (&ops
[8], NULL
);
3168 if (maybe_expand_insn (code
, nops
, ops
))
3177 /* Write to one of the components of the complex value CPLX. Write VAL to
3178 the real part if IMAG_P is false, and the imaginary part if its true. */
3181 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3187 if (GET_CODE (cplx
) == CONCAT
)
3189 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3193 cmode
= GET_MODE (cplx
);
3194 imode
= GET_MODE_INNER (cmode
);
3195 ibitsize
= GET_MODE_BITSIZE (imode
);
3197 /* For MEMs simplify_gen_subreg may generate an invalid new address
3198 because, e.g., the original address is considered mode-dependent
3199 by the target, which restricts simplify_subreg from invoking
3200 adjust_address_nv. Instead of preparing fallback support for an
3201 invalid address, we call adjust_address_nv directly. */
3204 emit_move_insn (adjust_address_nv (cplx
, imode
,
3205 imag_p
? GET_MODE_SIZE (imode
) : 0),
3210 /* If the sub-object is at least word sized, then we know that subregging
3211 will work. This special case is important, since store_bit_field
3212 wants to operate on integer modes, and there's rarely an OImode to
3213 correspond to TCmode. */
3214 if (ibitsize
>= BITS_PER_WORD
3215 /* For hard regs we have exact predicates. Assume we can split
3216 the original object if it spans an even number of hard regs.
3217 This special case is important for SCmode on 64-bit platforms
3218 where the natural size of floating-point regs is 32-bit. */
3220 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3221 && REG_NREGS (cplx
) % 2 == 0))
3223 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3224 imag_p
? GET_MODE_SIZE (imode
) : 0);
3227 emit_move_insn (part
, val
);
3231 /* simplify_gen_subreg may fail for sub-word MEMs. */
3232 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3235 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
,
3239 /* Extract one of the components of the complex value CPLX. Extract the
3240 real part if IMAG_P is false, and the imaginary part if it's true. */
3243 read_complex_part (rtx cplx
, bool imag_p
)
3249 if (GET_CODE (cplx
) == CONCAT
)
3250 return XEXP (cplx
, imag_p
);
3252 cmode
= GET_MODE (cplx
);
3253 imode
= GET_MODE_INNER (cmode
);
3254 ibitsize
= GET_MODE_BITSIZE (imode
);
3256 /* Special case reads from complex constants that got spilled to memory. */
3257 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3259 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3260 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3262 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3263 if (CONSTANT_CLASS_P (part
))
3264 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3268 /* For MEMs simplify_gen_subreg may generate an invalid new address
3269 because, e.g., the original address is considered mode-dependent
3270 by the target, which restricts simplify_subreg from invoking
3271 adjust_address_nv. Instead of preparing fallback support for an
3272 invalid address, we call adjust_address_nv directly. */
3274 return adjust_address_nv (cplx
, imode
,
3275 imag_p
? GET_MODE_SIZE (imode
) : 0);
3277 /* If the sub-object is at least word sized, then we know that subregging
3278 will work. This special case is important, since extract_bit_field
3279 wants to operate on integer modes, and there's rarely an OImode to
3280 correspond to TCmode. */
3281 if (ibitsize
>= BITS_PER_WORD
3282 /* For hard regs we have exact predicates. Assume we can split
3283 the original object if it spans an even number of hard regs.
3284 This special case is important for SCmode on 64-bit platforms
3285 where the natural size of floating-point regs is 32-bit. */
3287 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3288 && REG_NREGS (cplx
) % 2 == 0))
3290 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3291 imag_p
? GET_MODE_SIZE (imode
) : 0);
3295 /* simplify_gen_subreg may fail for sub-word MEMs. */
3296 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3299 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3300 true, NULL_RTX
, imode
, imode
, false, NULL
);
3303 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3304 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3305 represented in NEW_MODE. If FORCE is true, this will never happen, as
3306 we'll force-create a SUBREG if needed. */
3309 emit_move_change_mode (machine_mode new_mode
,
3310 machine_mode old_mode
, rtx x
, bool force
)
3314 if (push_operand (x
, GET_MODE (x
)))
3316 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3317 MEM_COPY_ATTRIBUTES (ret
, x
);
3321 /* We don't have to worry about changing the address since the
3322 size in bytes is supposed to be the same. */
3323 if (reload_in_progress
)
3325 /* Copy the MEM to change the mode and move any
3326 substitutions from the old MEM to the new one. */
3327 ret
= adjust_address_nv (x
, new_mode
, 0);
3328 copy_replacements (x
, ret
);
3331 ret
= adjust_address (x
, new_mode
, 0);
3335 /* Note that we do want simplify_subreg's behavior of validating
3336 that the new mode is ok for a hard register. If we were to use
3337 simplify_gen_subreg, we would create the subreg, but would
3338 probably run into the target not being able to implement it. */
3339 /* Except, of course, when FORCE is true, when this is exactly what
3340 we want. Which is needed for CCmodes on some targets. */
3342 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3344 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3350 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3351 an integer mode of the same size as MODE. Returns the instruction
3352 emitted, or NULL if such a move could not be generated. */
3355 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3357 scalar_int_mode imode
;
3358 enum insn_code code
;
3360 /* There must exist a mode of the exact size we require. */
3361 if (!int_mode_for_mode (mode
).exists (&imode
))
3364 /* The target must support moves in this mode. */
3365 code
= optab_handler (mov_optab
, imode
);
3366 if (code
== CODE_FOR_nothing
)
3369 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3372 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3375 return emit_insn (GEN_FCN (code
) (x
, y
));
3378 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3379 Return an equivalent MEM that does not use an auto-increment. */
3382 emit_move_resolve_push (machine_mode mode
, rtx x
)
3384 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3387 poly_int64 adjust
= GET_MODE_SIZE (mode
);
3388 #ifdef PUSH_ROUNDING
3389 adjust
= PUSH_ROUNDING (adjust
);
3391 if (code
== PRE_DEC
|| code
== POST_DEC
)
3393 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3395 rtx expr
= XEXP (XEXP (x
, 0), 1);
3397 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3398 poly_int64 val
= rtx_to_poly_int64 (XEXP (expr
, 1));
3399 if (GET_CODE (expr
) == MINUS
)
3401 gcc_assert (known_eq (adjust
, val
) || known_eq (adjust
, -val
));
3405 /* Do not use anti_adjust_stack, since we don't want to update
3406 stack_pointer_delta. */
3407 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3408 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3409 0, OPTAB_LIB_WIDEN
);
3410 if (temp
!= stack_pointer_rtx
)
3411 emit_move_insn (stack_pointer_rtx
, temp
);
3418 temp
= stack_pointer_rtx
;
3423 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3429 return replace_equiv_address (x
, temp
);
3432 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3433 X is known to satisfy push_operand, and MODE is known to be complex.
3434 Returns the last instruction emitted. */
3437 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3439 scalar_mode submode
= GET_MODE_INNER (mode
);
3442 #ifdef PUSH_ROUNDING
3443 poly_int64 submodesize
= GET_MODE_SIZE (submode
);
3445 /* In case we output to the stack, but the size is smaller than the
3446 machine can push exactly, we need to use move instructions. */
3447 if (maybe_ne (PUSH_ROUNDING (submodesize
), submodesize
))
3449 x
= emit_move_resolve_push (mode
, x
);
3450 return emit_move_insn (x
, y
);
3454 /* Note that the real part always precedes the imag part in memory
3455 regardless of machine's endianness. */
3456 switch (GET_CODE (XEXP (x
, 0)))
3470 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3471 read_complex_part (y
, imag_first
));
3472 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3473 read_complex_part (y
, !imag_first
));
3476 /* A subroutine of emit_move_complex. Perform the move from Y to X
3477 via two moves of the parts. Returns the last instruction emitted. */
3480 emit_move_complex_parts (rtx x
, rtx y
)
3482 /* Show the output dies here. This is necessary for SUBREGs
3483 of pseudos since we cannot track their lifetimes correctly;
3484 hard regs shouldn't appear here except as return values. */
3485 if (!reload_completed
&& !reload_in_progress
3486 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3489 write_complex_part (x
, read_complex_part (y
, false), false);
3490 write_complex_part (x
, read_complex_part (y
, true), true);
3492 return get_last_insn ();
3495 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3496 MODE is known to be complex. Returns the last instruction emitted. */
3499 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3503 /* Need to take special care for pushes, to maintain proper ordering
3504 of the data, and possibly extra padding. */
3505 if (push_operand (x
, mode
))
3506 return emit_move_complex_push (mode
, x
, y
);
3508 /* See if we can coerce the target into moving both values at once, except
3509 for floating point where we favor moving as parts if this is easy. */
3510 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3511 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3513 && HARD_REGISTER_P (x
)
3514 && REG_NREGS (x
) == 1)
3516 && HARD_REGISTER_P (y
)
3517 && REG_NREGS (y
) == 1))
3519 /* Not possible if the values are inherently not adjacent. */
3520 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3522 /* Is possible if both are registers (or subregs of registers). */
3523 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3525 /* If one of the operands is a memory, and alignment constraints
3526 are friendly enough, we may be able to do combined memory operations.
3527 We do not attempt this if Y is a constant because that combination is
3528 usually better with the by-parts thing below. */
3529 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3530 && (!STRICT_ALIGNMENT
3531 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3540 /* For memory to memory moves, optimal behavior can be had with the
3541 existing block move logic. */
3542 if (MEM_P (x
) && MEM_P (y
))
3544 emit_block_move (x
, y
, gen_int_mode (GET_MODE_SIZE (mode
), Pmode
),
3545 BLOCK_OP_NO_LIBCALL
);
3546 return get_last_insn ();
3549 ret
= emit_move_via_integer (mode
, x
, y
, true);
3554 return emit_move_complex_parts (x
, y
);
3557 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3558 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3561 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3565 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3568 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3569 if (code
!= CODE_FOR_nothing
)
3571 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3572 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3573 return emit_insn (GEN_FCN (code
) (x
, y
));
3577 /* Otherwise, find the MODE_INT mode of the same width. */
3578 ret
= emit_move_via_integer (mode
, x
, y
, false);
3579 gcc_assert (ret
!= NULL
);
3583 /* Return true if word I of OP lies entirely in the
3584 undefined bits of a paradoxical subreg. */
3587 undefined_operand_subword_p (const_rtx op
, int i
)
3589 if (GET_CODE (op
) != SUBREG
)
3591 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
3592 poly_int64 offset
= i
* UNITS_PER_WORD
+ subreg_memory_offset (op
);
3593 return (known_ge (offset
, GET_MODE_SIZE (innermostmode
))
3594 || known_le (offset
, -UNITS_PER_WORD
));
3597 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3598 MODE is any multi-word or full-word mode that lacks a move_insn
3599 pattern. Note that you will get better code if you define such
3600 patterns, even if they must turn into multiple assembler instructions. */
3603 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3605 rtx_insn
*last_insn
= 0;
3611 /* This function can only handle cases where the number of words is
3612 known at compile time. */
3613 mode_size
= GET_MODE_SIZE (mode
).to_constant ();
3614 gcc_assert (mode_size
>= UNITS_PER_WORD
);
3616 /* If X is a push on the stack, do the push now and replace
3617 X with a reference to the stack pointer. */
3618 if (push_operand (x
, mode
))
3619 x
= emit_move_resolve_push (mode
, x
);
3621 /* If we are in reload, see if either operand is a MEM whose address
3622 is scheduled for replacement. */
3623 if (reload_in_progress
&& MEM_P (x
)
3624 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3625 x
= replace_equiv_address_nv (x
, inner
);
3626 if (reload_in_progress
&& MEM_P (y
)
3627 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3628 y
= replace_equiv_address_nv (y
, inner
);
3632 need_clobber
= false;
3633 for (i
= 0; i
< CEIL (mode_size
, UNITS_PER_WORD
); i
++)
3635 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3638 /* Do not generate code for a move if it would come entirely
3639 from the undefined bits of a paradoxical subreg. */
3640 if (undefined_operand_subword_p (y
, i
))
3643 ypart
= operand_subword (y
, i
, 1, mode
);
3645 /* If we can't get a part of Y, put Y into memory if it is a
3646 constant. Otherwise, force it into a register. Then we must
3647 be able to get a part of Y. */
3648 if (ypart
== 0 && CONSTANT_P (y
))
3650 y
= use_anchored_address (force_const_mem (mode
, y
));
3651 ypart
= operand_subword (y
, i
, 1, mode
);
3653 else if (ypart
== 0)
3654 ypart
= operand_subword_force (y
, i
, mode
);
3656 gcc_assert (xpart
&& ypart
);
3658 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3660 last_insn
= emit_move_insn (xpart
, ypart
);
3666 /* Show the output dies here. This is necessary for SUBREGs
3667 of pseudos since we cannot track their lifetimes correctly;
3668 hard regs shouldn't appear here except as return values.
3669 We never want to emit such a clobber after reload. */
3671 && ! (reload_in_progress
|| reload_completed
)
3672 && need_clobber
!= 0)
3680 /* Low level part of emit_move_insn.
3681 Called just like emit_move_insn, but assumes X and Y
3682 are basically valid. */
3685 emit_move_insn_1 (rtx x
, rtx y
)
3687 machine_mode mode
= GET_MODE (x
);
3688 enum insn_code code
;
3690 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3692 code
= optab_handler (mov_optab
, mode
);
3693 if (code
!= CODE_FOR_nothing
)
3694 return emit_insn (GEN_FCN (code
) (x
, y
));
3696 /* Expand complex moves by moving real part and imag part. */
3697 if (COMPLEX_MODE_P (mode
))
3698 return emit_move_complex (mode
, x
, y
);
3700 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3701 || ALL_FIXED_POINT_MODE_P (mode
))
3703 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3705 /* If we can't find an integer mode, use multi words. */
3709 return emit_move_multi_word (mode
, x
, y
);
3712 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3713 return emit_move_ccmode (mode
, x
, y
);
3715 /* Try using a move pattern for the corresponding integer mode. This is
3716 only safe when simplify_subreg can convert MODE constants into integer
3717 constants. At present, it can only do this reliably if the value
3718 fits within a HOST_WIDE_INT. */
3720 || known_le (GET_MODE_BITSIZE (mode
), HOST_BITS_PER_WIDE_INT
))
3722 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3726 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3731 return emit_move_multi_word (mode
, x
, y
);
3734 /* Generate code to copy Y into X.
3735 Both Y and X must have the same mode, except that
3736 Y can be a constant with VOIDmode.
3737 This mode cannot be BLKmode; use emit_block_move for that.
3739 Return the last instruction emitted. */
3742 emit_move_insn (rtx x
, rtx y
)
3744 machine_mode mode
= GET_MODE (x
);
3745 rtx y_cst
= NULL_RTX
;
3746 rtx_insn
*last_insn
;
3749 gcc_assert (mode
!= BLKmode
3750 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3755 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3756 && (last_insn
= compress_float_constant (x
, y
)))
3761 if (!targetm
.legitimate_constant_p (mode
, y
))
3763 y
= force_const_mem (mode
, y
);
3765 /* If the target's cannot_force_const_mem prevented the spill,
3766 assume that the target's move expanders will also take care
3767 of the non-legitimate constant. */
3771 y
= use_anchored_address (y
);
3775 /* If X or Y are memory references, verify that their addresses are valid
3778 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3780 && ! push_operand (x
, GET_MODE (x
))))
3781 x
= validize_mem (x
);
3784 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3785 MEM_ADDR_SPACE (y
)))
3786 y
= validize_mem (y
);
3788 gcc_assert (mode
!= BLKmode
);
3790 last_insn
= emit_move_insn_1 (x
, y
);
3792 if (y_cst
&& REG_P (x
)
3793 && (set
= single_set (last_insn
)) != NULL_RTX
3794 && SET_DEST (set
) == x
3795 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3796 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3801 /* Generate the body of an instruction to copy Y into X.
3802 It may be a list of insns, if one insn isn't enough. */
3805 gen_move_insn (rtx x
, rtx y
)
3810 emit_move_insn_1 (x
, y
);
3816 /* If Y is representable exactly in a narrower mode, and the target can
3817 perform the extension directly from constant or memory, then emit the
3818 move as an extension. */
3821 compress_float_constant (rtx x
, rtx y
)
3823 machine_mode dstmode
= GET_MODE (x
);
3824 machine_mode orig_srcmode
= GET_MODE (y
);
3825 machine_mode srcmode
;
3826 const REAL_VALUE_TYPE
*r
;
3827 int oldcost
, newcost
;
3828 bool speed
= optimize_insn_for_speed_p ();
3830 r
= CONST_DOUBLE_REAL_VALUE (y
);
3832 if (targetm
.legitimate_constant_p (dstmode
, y
))
3833 oldcost
= set_src_cost (y
, orig_srcmode
, speed
);
3835 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), dstmode
, speed
);
3837 FOR_EACH_MODE_UNTIL (srcmode
, orig_srcmode
)
3841 rtx_insn
*last_insn
;
3843 /* Skip if the target can't extend this way. */
3844 ic
= can_extend_p (dstmode
, srcmode
, 0);
3845 if (ic
== CODE_FOR_nothing
)
3848 /* Skip if the narrowed value isn't exact. */
3849 if (! exact_real_truncate (srcmode
, r
))
3852 trunc_y
= const_double_from_real_value (*r
, srcmode
);
3854 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3856 /* Skip if the target needs extra instructions to perform
3858 if (!insn_operand_matches (ic
, 1, trunc_y
))
3860 /* This is valid, but may not be cheaper than the original. */
3861 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3863 if (oldcost
< newcost
)
3866 else if (float_extend_from_mem
[dstmode
][srcmode
])
3868 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3869 /* This is valid, but may not be cheaper than the original. */
3870 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3872 if (oldcost
< newcost
)
3874 trunc_y
= validize_mem (trunc_y
);
3879 /* For CSE's benefit, force the compressed constant pool entry
3880 into a new pseudo. This constant may be used in different modes,
3881 and if not, combine will put things back together for us. */
3882 trunc_y
= force_reg (srcmode
, trunc_y
);
3884 /* If x is a hard register, perform the extension into a pseudo,
3885 so that e.g. stack realignment code is aware of it. */
3887 if (REG_P (x
) && HARD_REGISTER_P (x
))
3888 target
= gen_reg_rtx (dstmode
);
3890 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3891 last_insn
= get_last_insn ();
3894 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3897 return emit_move_insn (x
, target
);
3904 /* Pushing data onto the stack. */
3906 /* Push a block of length SIZE (perhaps variable)
3907 and return an rtx to address the beginning of the block.
3908 The value may be virtual_outgoing_args_rtx.
3910 EXTRA is the number of bytes of padding to push in addition to SIZE.
3911 BELOW nonzero means this padding comes at low addresses;
3912 otherwise, the padding comes at high addresses. */
3915 push_block (rtx size
, poly_int64 extra
, int below
)
3919 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3920 if (CONSTANT_P (size
))
3921 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3922 else if (REG_P (size
) && known_eq (extra
, 0))
3923 anti_adjust_stack (size
);
3926 temp
= copy_to_mode_reg (Pmode
, size
);
3927 if (maybe_ne (extra
, 0))
3928 temp
= expand_binop (Pmode
, add_optab
, temp
,
3929 gen_int_mode (extra
, Pmode
),
3930 temp
, 0, OPTAB_LIB_WIDEN
);
3931 anti_adjust_stack (temp
);
3934 if (STACK_GROWS_DOWNWARD
)
3936 temp
= virtual_outgoing_args_rtx
;
3937 if (maybe_ne (extra
, 0) && below
)
3938 temp
= plus_constant (Pmode
, temp
, extra
);
3943 if (poly_int_rtx_p (size
, &csize
))
3944 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3945 -csize
- (below
? 0 : extra
));
3946 else if (maybe_ne (extra
, 0) && !below
)
3947 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3948 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3951 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3952 negate_rtx (Pmode
, size
));
3955 return memory_address (NARROWEST_INT_MODE
, temp
);
3958 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3961 mem_autoinc_base (rtx mem
)
3965 rtx addr
= XEXP (mem
, 0);
3966 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3967 return XEXP (addr
, 0);
3972 /* A utility routine used here, in reload, and in try_split. The insns
3973 after PREV up to and including LAST are known to adjust the stack,
3974 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3975 placing notes as appropriate. PREV may be NULL, indicating the
3976 entire insn sequence prior to LAST should be scanned.
3978 The set of allowed stack pointer modifications is small:
3979 (1) One or more auto-inc style memory references (aka pushes),
3980 (2) One or more addition/subtraction with the SP as destination,
3981 (3) A single move insn with the SP as destination,
3982 (4) A call_pop insn,
3983 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3985 Insns in the sequence that do not modify the SP are ignored,
3986 except for noreturn calls.
3988 The return value is the amount of adjustment that can be trivially
3989 verified, via immediate operand or auto-inc. If the adjustment
3990 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3993 find_args_size_adjust (rtx_insn
*insn
)
3998 pat
= PATTERN (insn
);
4001 /* Look for a call_pop pattern. */
4004 /* We have to allow non-call_pop patterns for the case
4005 of emit_single_push_insn of a TLS address. */
4006 if (GET_CODE (pat
) != PARALLEL
)
4009 /* All call_pop have a stack pointer adjust in the parallel.
4010 The call itself is always first, and the stack adjust is
4011 usually last, so search from the end. */
4012 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
4014 set
= XVECEXP (pat
, 0, i
);
4015 if (GET_CODE (set
) != SET
)
4017 dest
= SET_DEST (set
);
4018 if (dest
== stack_pointer_rtx
)
4021 /* We'd better have found the stack pointer adjust. */
4024 /* Fall through to process the extracted SET and DEST
4025 as if it was a standalone insn. */
4027 else if (GET_CODE (pat
) == SET
)
4029 else if ((set
= single_set (insn
)) != NULL
)
4031 else if (GET_CODE (pat
) == PARALLEL
)
4033 /* ??? Some older ports use a parallel with a stack adjust
4034 and a store for a PUSH_ROUNDING pattern, rather than a
4035 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4036 /* ??? See h8300 and m68k, pushqi1. */
4037 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
4039 set
= XVECEXP (pat
, 0, i
);
4040 if (GET_CODE (set
) != SET
)
4042 dest
= SET_DEST (set
);
4043 if (dest
== stack_pointer_rtx
)
4046 /* We do not expect an auto-inc of the sp in the parallel. */
4047 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
4048 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4049 != stack_pointer_rtx
);
4057 dest
= SET_DEST (set
);
4059 /* Look for direct modifications of the stack pointer. */
4060 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
4062 /* Look for a trivial adjustment, otherwise assume nothing. */
4063 /* Note that the SPU restore_stack_block pattern refers to
4064 the stack pointer in V4SImode. Consider that non-trivial. */
4066 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
4067 && strip_offset (SET_SRC (set
), &offset
) == stack_pointer_rtx
)
4069 /* ??? Reload can generate no-op moves, which will be cleaned
4070 up later. Recognize it and continue searching. */
4071 else if (rtx_equal_p (dest
, SET_SRC (set
)))
4074 return HOST_WIDE_INT_MIN
;
4080 /* Otherwise only think about autoinc patterns. */
4081 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
4084 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4085 != stack_pointer_rtx
);
4087 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
4088 mem
= SET_SRC (set
);
4092 addr
= XEXP (mem
, 0);
4093 switch (GET_CODE (addr
))
4097 return GET_MODE_SIZE (GET_MODE (mem
));
4100 return -GET_MODE_SIZE (GET_MODE (mem
));
4103 addr
= XEXP (addr
, 1);
4104 gcc_assert (GET_CODE (addr
) == PLUS
);
4105 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
4106 return rtx_to_poly_int64 (XEXP (addr
, 1));
4114 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
,
4115 poly_int64 end_args_size
)
4117 poly_int64 args_size
= end_args_size
;
4118 bool saw_unknown
= false;
4121 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
4123 if (!NONDEBUG_INSN_P (insn
))
4126 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4127 a call argument containing a TLS address that itself requires
4128 a call to __tls_get_addr. The handling of stack_pointer_delta
4129 in emit_single_push_insn is supposed to ensure that any such
4130 notes are already correct. */
4131 rtx note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4132 gcc_assert (!note
|| known_eq (args_size
, get_args_size (note
)));
4134 poly_int64 this_delta
= find_args_size_adjust (insn
);
4135 if (known_eq (this_delta
, 0))
4138 || ACCUMULATE_OUTGOING_ARGS
4139 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
4143 gcc_assert (!saw_unknown
);
4144 if (known_eq (this_delta
, HOST_WIDE_INT_MIN
))
4148 add_args_size_note (insn
, args_size
);
4149 if (STACK_GROWS_DOWNWARD
)
4150 this_delta
= -poly_uint64 (this_delta
);
4153 args_size
= HOST_WIDE_INT_MIN
;
4155 args_size
-= this_delta
;
4161 #ifdef PUSH_ROUNDING
4162 /* Emit single push insn. */
4165 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4168 poly_int64 rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4170 enum insn_code icode
;
4172 /* If there is push pattern, use it. Otherwise try old way of throwing
4173 MEM representing push operation to move expander. */
4174 icode
= optab_handler (push_optab
, mode
);
4175 if (icode
!= CODE_FOR_nothing
)
4177 class expand_operand ops
[1];
4179 create_input_operand (&ops
[0], x
, mode
);
4180 if (maybe_expand_insn (icode
, 1, ops
))
4183 if (known_eq (GET_MODE_SIZE (mode
), rounded_size
))
4184 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4185 /* If we are to pad downward, adjust the stack pointer first and
4186 then store X into the stack location using an offset. This is
4187 because emit_move_insn does not know how to pad; it does not have
4189 else if (targetm
.calls
.function_arg_padding (mode
, type
) == PAD_DOWNWARD
)
4191 emit_move_insn (stack_pointer_rtx
,
4192 expand_binop (Pmode
,
4193 STACK_GROWS_DOWNWARD
? sub_optab
4196 gen_int_mode (rounded_size
, Pmode
),
4197 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4199 poly_int64 offset
= rounded_size
- GET_MODE_SIZE (mode
);
4200 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4201 /* We have already decremented the stack pointer, so get the
4203 offset
+= rounded_size
;
4205 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4206 /* We have already incremented the stack pointer, so get the
4208 offset
-= rounded_size
;
4210 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, offset
);
4214 if (STACK_GROWS_DOWNWARD
)
4215 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4216 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, -rounded_size
);
4218 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4219 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, rounded_size
);
4221 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4224 dest
= gen_rtx_MEM (mode
, dest_addr
);
4228 set_mem_attributes (dest
, type
, 1);
4230 if (cfun
->tail_call_marked
)
4231 /* Function incoming arguments may overlap with sibling call
4232 outgoing arguments and we cannot allow reordering of reads
4233 from function arguments with stores to outgoing arguments
4234 of sibling calls. */
4235 set_mem_alias_set (dest
, 0);
4237 emit_move_insn (dest
, x
);
4240 /* Emit and annotate a single push insn. */
4243 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4245 poly_int64 delta
, old_delta
= stack_pointer_delta
;
4246 rtx_insn
*prev
= get_last_insn ();
4249 emit_single_push_insn_1 (mode
, x
, type
);
4251 /* Adjust stack_pointer_delta to describe the situation after the push
4252 we just performed. Note that we must do this after the push rather
4253 than before the push in case calculating X needs pushes and pops of
4254 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4255 for such pushes and pops must not include the effect of the future
4257 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4259 last
= get_last_insn ();
4261 /* Notice the common case where we emitted exactly one insn. */
4262 if (PREV_INSN (last
) == prev
)
4264 add_args_size_note (last
, stack_pointer_delta
);
4268 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4269 gcc_assert (known_eq (delta
, HOST_WIDE_INT_MIN
)
4270 || known_eq (delta
, old_delta
));
4274 /* If reading SIZE bytes from X will end up reading from
4275 Y return the number of bytes that overlap. Return -1
4276 if there is no overlap or -2 if we can't determine
4277 (for example when X and Y have different base registers). */
4280 memory_load_overlap (rtx x
, rtx y
, HOST_WIDE_INT size
)
4282 rtx tmp
= plus_constant (Pmode
, x
, size
);
4283 rtx sub
= simplify_gen_binary (MINUS
, Pmode
, tmp
, y
);
4285 if (!CONST_INT_P (sub
))
4288 HOST_WIDE_INT val
= INTVAL (sub
);
4290 return IN_RANGE (val
, 1, size
) ? val
: -1;
4293 /* Generate code to push X onto the stack, assuming it has mode MODE and
4295 MODE is redundant except when X is a CONST_INT (since they don't
4297 SIZE is an rtx for the size of data to be copied (in bytes),
4298 needed only if X is BLKmode.
4299 Return true if successful. May return false if asked to push a
4300 partial argument during a sibcall optimization (as specified by
4301 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4304 ALIGN (in bits) is maximum alignment we can assume.
4306 If PARTIAL and REG are both nonzero, then copy that many of the first
4307 bytes of X into registers starting with REG, and push the rest of X.
4308 The amount of space pushed is decreased by PARTIAL bytes.
4309 REG must be a hard register in this case.
4310 If REG is zero but PARTIAL is not, take any all others actions for an
4311 argument partially in registers, but do not actually load any
4314 EXTRA is the amount in bytes of extra space to leave next to this arg.
4315 This is ignored if an argument block has already been allocated.
4317 On a machine that lacks real push insns, ARGS_ADDR is the address of
4318 the bottom of the argument block for this call. We use indexing off there
4319 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4320 argument block has not been preallocated.
4322 ARGS_SO_FAR is the size of args previously pushed for this call.
4324 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4325 for arguments passed in registers. If nonzero, it will be the number
4326 of bytes required. */
4329 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4330 unsigned int align
, int partial
, rtx reg
, poly_int64 extra
,
4331 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4332 rtx alignment_pad
, bool sibcall_p
)
4335 pad_direction stack_direction
4336 = STACK_GROWS_DOWNWARD
? PAD_DOWNWARD
: PAD_UPWARD
;
4338 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4339 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4340 Default is below for small data on big-endian machines; else above. */
4341 pad_direction where_pad
= targetm
.calls
.function_arg_padding (mode
, type
);
4343 /* Invert direction if stack is post-decrement.
4345 if (STACK_PUSH_CODE
== POST_DEC
)
4346 if (where_pad
!= PAD_NONE
)
4347 where_pad
= (where_pad
== PAD_DOWNWARD
? PAD_UPWARD
: PAD_DOWNWARD
);
4351 int nregs
= partial
/ UNITS_PER_WORD
;
4352 rtx
*tmp_regs
= NULL
;
4353 int overlapping
= 0;
4356 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4358 /* Copy a block into the stack, entirely or partially. */
4365 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4366 used
= partial
- offset
;
4368 if (mode
!= BLKmode
)
4370 /* A value is to be stored in an insufficiently aligned
4371 stack slot; copy via a suitably aligned slot if
4373 size
= gen_int_mode (GET_MODE_SIZE (mode
), Pmode
);
4374 if (!MEM_P (xinner
))
4376 temp
= assign_temp (type
, 1, 1);
4377 emit_move_insn (temp
, xinner
);
4384 /* USED is now the # of bytes we need not copy to the stack
4385 because registers will take care of them. */
4388 xinner
= adjust_address (xinner
, BLKmode
, used
);
4390 /* If the partial register-part of the arg counts in its stack size,
4391 skip the part of stack space corresponding to the registers.
4392 Otherwise, start copying to the beginning of the stack space,
4393 by setting SKIP to 0. */
4394 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4396 #ifdef PUSH_ROUNDING
4397 /* Do it with several push insns if that doesn't take lots of insns
4398 and if there is no difficulty with push insns that skip bytes
4399 on the stack for alignment purposes. */
4402 && CONST_INT_P (size
)
4404 && MEM_ALIGN (xinner
) >= align
4405 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4406 /* Here we avoid the case of a structure whose weak alignment
4407 forces many pushes of a small amount of data,
4408 and such small pushes do rounding that causes trouble. */
4409 && ((!targetm
.slow_unaligned_access (word_mode
, align
))
4410 || align
>= BIGGEST_ALIGNMENT
4411 || known_eq (PUSH_ROUNDING (align
/ BITS_PER_UNIT
),
4412 align
/ BITS_PER_UNIT
))
4413 && known_eq (PUSH_ROUNDING (INTVAL (size
)), INTVAL (size
)))
4415 /* Push padding now if padding above and stack grows down,
4416 or if padding below and stack grows up.
4417 But if space already allocated, this has already been done. */
4418 if (maybe_ne (extra
, 0)
4420 && where_pad
!= PAD_NONE
4421 && where_pad
!= stack_direction
)
4422 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4424 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
,
4428 #endif /* PUSH_ROUNDING */
4432 /* Otherwise make space on the stack and copy the data
4433 to the address of that space. */
4435 /* Deduct words put into registers from the size we must copy. */
4438 if (CONST_INT_P (size
))
4439 size
= GEN_INT (INTVAL (size
) - used
);
4441 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4442 gen_int_mode (used
, GET_MODE (size
)),
4443 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4446 /* Get the address of the stack space.
4447 In this case, we do not deal with EXTRA separately.
4448 A single stack adjust will do. */
4452 temp
= push_block (size
, extra
, where_pad
== PAD_DOWNWARD
);
4455 else if (poly_int_rtx_p (args_so_far
, &offset
))
4456 temp
= memory_address (BLKmode
,
4457 plus_constant (Pmode
, args_addr
,
4460 temp
= memory_address (BLKmode
,
4461 plus_constant (Pmode
,
4462 gen_rtx_PLUS (Pmode
,
4467 if (!ACCUMULATE_OUTGOING_ARGS
)
4469 /* If the source is referenced relative to the stack pointer,
4470 copy it to another register to stabilize it. We do not need
4471 to do this if we know that we won't be changing sp. */
4473 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4474 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4475 temp
= copy_to_reg (temp
);
4478 target
= gen_rtx_MEM (BLKmode
, temp
);
4480 /* We do *not* set_mem_attributes here, because incoming arguments
4481 may overlap with sibling call outgoing arguments and we cannot
4482 allow reordering of reads from function arguments with stores
4483 to outgoing arguments of sibling calls. We do, however, want
4484 to record the alignment of the stack slot. */
4485 /* ALIGN may well be better aligned than TYPE, e.g. due to
4486 PARM_BOUNDARY. Assume the caller isn't lying. */
4487 set_mem_align (target
, align
);
4489 /* If part should go in registers and pushing to that part would
4490 overwrite some of the values that need to go into regs, load the
4491 overlapping values into temporary pseudos to be moved into the hard
4492 regs at the end after the stack pushing has completed.
4493 We cannot load them directly into the hard regs here because
4494 they can be clobbered by the block move expansions.
4497 if (partial
> 0 && reg
!= 0 && mode
== BLKmode
4498 && GET_CODE (reg
) != PARALLEL
)
4500 overlapping
= memory_load_overlap (XEXP (x
, 0), temp
, partial
);
4501 if (overlapping
> 0)
4503 gcc_assert (overlapping
% UNITS_PER_WORD
== 0);
4504 overlapping
/= UNITS_PER_WORD
;
4506 tmp_regs
= XALLOCAVEC (rtx
, overlapping
);
4508 for (int i
= 0; i
< overlapping
; i
++)
4509 tmp_regs
[i
] = gen_reg_rtx (word_mode
);
4511 for (int i
= 0; i
< overlapping
; i
++)
4512 emit_move_insn (tmp_regs
[i
],
4513 operand_subword_force (target
, i
, mode
));
4515 else if (overlapping
== -1)
4517 /* Could not determine whether there is overlap.
4518 Fail the sibcall. */
4526 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4529 else if (partial
> 0)
4531 /* Scalar partly in registers. This case is only supported
4532 for fixed-wdth modes. */
4533 int size
= GET_MODE_SIZE (mode
).to_constant ();
4534 size
/= UNITS_PER_WORD
;
4537 /* # bytes of start of argument
4538 that we must make space for but need not store. */
4539 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4540 int args_offset
= INTVAL (args_so_far
);
4543 /* Push padding now if padding above and stack grows down,
4544 or if padding below and stack grows up.
4545 But if space already allocated, this has already been done. */
4546 if (maybe_ne (extra
, 0)
4548 && where_pad
!= PAD_NONE
4549 && where_pad
!= stack_direction
)
4550 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4552 /* If we make space by pushing it, we might as well push
4553 the real data. Otherwise, we can leave OFFSET nonzero
4554 and leave the space uninitialized. */
4558 /* Now NOT_STACK gets the number of words that we don't need to
4559 allocate on the stack. Convert OFFSET to words too. */
4560 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4561 offset
/= UNITS_PER_WORD
;
4563 /* If the partial register-part of the arg counts in its stack size,
4564 skip the part of stack space corresponding to the registers.
4565 Otherwise, start copying to the beginning of the stack space,
4566 by setting SKIP to 0. */
4567 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4569 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4570 x
= validize_mem (force_const_mem (mode
, x
));
4572 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4573 SUBREGs of such registers are not allowed. */
4574 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4575 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4576 x
= copy_to_reg (x
);
4578 /* Loop over all the words allocated on the stack for this arg. */
4579 /* We can do it by words, because any scalar bigger than a word
4580 has a size a multiple of a word. */
4581 for (i
= size
- 1; i
>= not_stack
; i
--)
4582 if (i
>= not_stack
+ offset
)
4583 if (!emit_push_insn (operand_subword_force (x
, i
, mode
),
4584 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4586 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4588 reg_parm_stack_space
, alignment_pad
, sibcall_p
))
4596 /* Push padding now if padding above and stack grows down,
4597 or if padding below and stack grows up.
4598 But if space already allocated, this has already been done. */
4599 if (maybe_ne (extra
, 0)
4601 && where_pad
!= PAD_NONE
4602 && where_pad
!= stack_direction
)
4603 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4605 #ifdef PUSH_ROUNDING
4606 if (args_addr
== 0 && PUSH_ARGS
)
4607 emit_single_push_insn (mode
, x
, type
);
4611 addr
= simplify_gen_binary (PLUS
, Pmode
, args_addr
, args_so_far
);
4612 dest
= gen_rtx_MEM (mode
, memory_address (mode
, addr
));
4614 /* We do *not* set_mem_attributes here, because incoming arguments
4615 may overlap with sibling call outgoing arguments and we cannot
4616 allow reordering of reads from function arguments with stores
4617 to outgoing arguments of sibling calls. We do, however, want
4618 to record the alignment of the stack slot. */
4619 /* ALIGN may well be better aligned than TYPE, e.g. due to
4620 PARM_BOUNDARY. Assume the caller isn't lying. */
4621 set_mem_align (dest
, align
);
4623 emit_move_insn (dest
, x
);
4627 /* Move the partial arguments into the registers and any overlapping
4628 values that we moved into the pseudos in tmp_regs. */
4629 if (partial
> 0 && reg
!= 0)
4631 /* Handle calls that pass values in multiple non-contiguous locations.
4632 The Irix 6 ABI has examples of this. */
4633 if (GET_CODE (reg
) == PARALLEL
)
4634 emit_group_load (reg
, x
, type
, -1);
4637 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4638 move_block_to_reg (REGNO (reg
), x
, nregs
- overlapping
, mode
);
4640 for (int i
= 0; i
< overlapping
; i
++)
4641 emit_move_insn (gen_rtx_REG (word_mode
, REGNO (reg
)
4642 + nregs
- overlapping
+ i
),
4648 if (maybe_ne (extra
, 0) && args_addr
== 0 && where_pad
== stack_direction
)
4649 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4651 if (alignment_pad
&& args_addr
== 0)
4652 anti_adjust_stack (alignment_pad
);
4657 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4661 get_subtarget (rtx x
)
4665 /* Only registers can be subtargets. */
4667 /* Don't use hard regs to avoid extending their life. */
4668 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4672 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4673 FIELD is a bitfield. Returns true if the optimization was successful,
4674 and there's nothing else to do. */
4677 optimize_bitfield_assignment_op (poly_uint64 pbitsize
,
4678 poly_uint64 pbitpos
,
4679 poly_uint64 pbitregion_start
,
4680 poly_uint64 pbitregion_end
,
4681 machine_mode mode1
, rtx str_rtx
,
4682 tree to
, tree src
, bool reverse
)
4684 /* str_mode is not guaranteed to be a scalar type. */
4685 machine_mode str_mode
= GET_MODE (str_rtx
);
4686 unsigned int str_bitsize
;
4691 enum tree_code code
;
4693 unsigned HOST_WIDE_INT bitsize
, bitpos
, bitregion_start
, bitregion_end
;
4694 if (mode1
!= VOIDmode
4695 || !pbitsize
.is_constant (&bitsize
)
4696 || !pbitpos
.is_constant (&bitpos
)
4697 || !pbitregion_start
.is_constant (&bitregion_start
)
4698 || !pbitregion_end
.is_constant (&bitregion_end
)
4699 || bitsize
>= BITS_PER_WORD
4700 || !GET_MODE_BITSIZE (str_mode
).is_constant (&str_bitsize
)
4701 || str_bitsize
> BITS_PER_WORD
4702 || TREE_SIDE_EFFECTS (to
)
4703 || TREE_THIS_VOLATILE (to
))
4707 if (TREE_CODE (src
) != SSA_NAME
)
4709 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4712 srcstmt
= get_gimple_for_ssa_name (src
);
4714 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4717 code
= gimple_assign_rhs_code (srcstmt
);
4719 op0
= gimple_assign_rhs1 (srcstmt
);
4721 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4722 to find its initialization. Hopefully the initialization will
4723 be from a bitfield load. */
4724 if (TREE_CODE (op0
) == SSA_NAME
)
4726 gimple
*op0stmt
= get_gimple_for_ssa_name (op0
);
4728 /* We want to eventually have OP0 be the same as TO, which
4729 should be a bitfield. */
4731 || !is_gimple_assign (op0stmt
)
4732 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4734 op0
= gimple_assign_rhs1 (op0stmt
);
4737 op1
= gimple_assign_rhs2 (srcstmt
);
4739 if (!operand_equal_p (to
, op0
, 0))
4742 if (MEM_P (str_rtx
))
4744 unsigned HOST_WIDE_INT offset1
;
4746 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4747 str_bitsize
= BITS_PER_WORD
;
4749 scalar_int_mode best_mode
;
4750 if (!get_best_mode (bitsize
, bitpos
, bitregion_start
, bitregion_end
,
4751 MEM_ALIGN (str_rtx
), str_bitsize
, false, &best_mode
))
4753 str_mode
= best_mode
;
4754 str_bitsize
= GET_MODE_BITSIZE (best_mode
);
4757 bitpos
%= str_bitsize
;
4758 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4759 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4761 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4764 /* If the bit field covers the whole REG/MEM, store_field
4765 will likely generate better code. */
4766 if (bitsize
>= str_bitsize
)
4769 /* We can't handle fields split across multiple entities. */
4770 if (bitpos
+ bitsize
> str_bitsize
)
4773 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4774 bitpos
= str_bitsize
- bitpos
- bitsize
;
4780 /* For now, just optimize the case of the topmost bitfield
4781 where we don't need to do any masking and also
4782 1 bit bitfields where xor can be used.
4783 We might win by one instruction for the other bitfields
4784 too if insv/extv instructions aren't used, so that
4785 can be added later. */
4786 if ((reverse
|| bitpos
+ bitsize
!= str_bitsize
)
4787 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4790 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4791 value
= convert_modes (str_mode
,
4792 TYPE_MODE (TREE_TYPE (op1
)), value
,
4793 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4795 /* We may be accessing data outside the field, which means
4796 we can alias adjacent data. */
4797 if (MEM_P (str_rtx
))
4799 str_rtx
= shallow_copy_rtx (str_rtx
);
4800 set_mem_alias_set (str_rtx
, 0);
4801 set_mem_expr (str_rtx
, 0);
4804 if (bitsize
== 1 && (reverse
|| bitpos
+ bitsize
!= str_bitsize
))
4806 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4810 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4812 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4814 value
= flip_storage_order (str_mode
, value
);
4815 result
= expand_binop (str_mode
, binop
, str_rtx
,
4816 value
, str_rtx
, 1, OPTAB_WIDEN
);
4817 if (result
!= str_rtx
)
4818 emit_move_insn (str_rtx
, result
);
4823 if (TREE_CODE (op1
) != INTEGER_CST
)
4825 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4826 value
= convert_modes (str_mode
,
4827 TYPE_MODE (TREE_TYPE (op1
)), value
,
4828 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4830 /* We may be accessing data outside the field, which means
4831 we can alias adjacent data. */
4832 if (MEM_P (str_rtx
))
4834 str_rtx
= shallow_copy_rtx (str_rtx
);
4835 set_mem_alias_set (str_rtx
, 0);
4836 set_mem_expr (str_rtx
, 0);
4839 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4840 if (bitpos
+ bitsize
!= str_bitsize
)
4842 rtx mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< bitsize
) - 1,
4844 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4846 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4848 value
= flip_storage_order (str_mode
, value
);
4849 result
= expand_binop (str_mode
, binop
, str_rtx
,
4850 value
, str_rtx
, 1, OPTAB_WIDEN
);
4851 if (result
!= str_rtx
)
4852 emit_move_insn (str_rtx
, result
);
4862 /* In the C++ memory model, consecutive bit fields in a structure are
4863 considered one memory location.
4865 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4866 returns the bit range of consecutive bits in which this COMPONENT_REF
4867 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4868 and *OFFSET may be adjusted in the process.
4870 If the access does not need to be restricted, 0 is returned in both
4871 *BITSTART and *BITEND. */
4874 get_bit_range (poly_uint64_pod
*bitstart
, poly_uint64_pod
*bitend
, tree exp
,
4875 poly_int64_pod
*bitpos
, tree
*offset
)
4877 poly_int64 bitoffset
;
4880 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4882 field
= TREE_OPERAND (exp
, 1);
4883 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4884 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4885 need to limit the range we can access. */
4888 *bitstart
= *bitend
= 0;
4892 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4893 part of a larger bit field, then the representative does not serve any
4894 useful purpose. This can occur in Ada. */
4895 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4898 poly_int64 rbitsize
, rbitpos
;
4900 int unsignedp
, reversep
, volatilep
= 0;
4901 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4902 &roffset
, &rmode
, &unsignedp
, &reversep
,
4904 if (!multiple_p (rbitpos
, BITS_PER_UNIT
))
4906 *bitstart
= *bitend
= 0;
4911 /* Compute the adjustment to bitpos from the offset of the field
4912 relative to the representative. DECL_FIELD_OFFSET of field and
4913 repr are the same by construction if they are not constants,
4914 see finish_bitfield_layout. */
4915 poly_uint64 field_offset
, repr_offset
;
4916 if (poly_int_tree_p (DECL_FIELD_OFFSET (field
), &field_offset
)
4917 && poly_int_tree_p (DECL_FIELD_OFFSET (repr
), &repr_offset
))
4918 bitoffset
= (field_offset
- repr_offset
) * BITS_PER_UNIT
;
4921 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4922 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4924 /* If the adjustment is larger than bitpos, we would have a negative bit
4925 position for the lower bound and this may wreak havoc later. Adjust
4926 offset and bitpos to make the lower bound non-negative in that case. */
4927 if (maybe_gt (bitoffset
, *bitpos
))
4929 poly_int64 adjust_bits
= upper_bound (bitoffset
, *bitpos
) - *bitpos
;
4930 poly_int64 adjust_bytes
= exact_div (adjust_bits
, BITS_PER_UNIT
);
4932 *bitpos
+= adjust_bits
;
4933 if (*offset
== NULL_TREE
)
4934 *offset
= size_int (-adjust_bytes
);
4936 *offset
= size_binop (MINUS_EXPR
, *offset
, size_int (adjust_bytes
));
4940 *bitstart
= *bitpos
- bitoffset
;
4942 *bitend
= *bitstart
+ tree_to_poly_uint64 (DECL_SIZE (repr
)) - 1;
4945 /* Returns true if BASE is a DECL that does not reside in memory and
4946 has non-BLKmode. DECL_RTL must not be a MEM; if
4947 DECL_RTL was not set yet, return false. */
4950 non_mem_decl_p (tree base
)
4953 || TREE_ADDRESSABLE (base
)
4954 || DECL_MODE (base
) == BLKmode
)
4957 if (!DECL_RTL_SET_P (base
))
4960 return (!MEM_P (DECL_RTL (base
)));
4963 /* Returns true if REF refers to an object that does not
4964 reside in memory and has non-BLKmode. */
4967 mem_ref_refers_to_non_mem_p (tree ref
)
4971 if (TREE_CODE (ref
) == MEM_REF
4972 || TREE_CODE (ref
) == TARGET_MEM_REF
)
4974 tree addr
= TREE_OPERAND (ref
, 0);
4976 if (TREE_CODE (addr
) != ADDR_EXPR
)
4979 base
= TREE_OPERAND (addr
, 0);
4984 return non_mem_decl_p (base
);
4987 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4988 is true, try generating a nontemporal store. */
4991 expand_assignment (tree to
, tree from
, bool nontemporal
)
4997 enum insn_code icode
;
4999 /* Don't crash if the lhs of the assignment was erroneous. */
5000 if (TREE_CODE (to
) == ERROR_MARK
)
5002 expand_normal (from
);
5006 /* Optimize away no-op moves without side-effects. */
5007 if (operand_equal_p (to
, from
, 0))
5010 /* Handle misaligned stores. */
5011 mode
= TYPE_MODE (TREE_TYPE (to
));
5012 if ((TREE_CODE (to
) == MEM_REF
5013 || TREE_CODE (to
) == TARGET_MEM_REF
5016 && !mem_ref_refers_to_non_mem_p (to
)
5017 && ((align
= get_object_alignment (to
))
5018 < GET_MODE_ALIGNMENT (mode
))
5019 && (((icode
= optab_handler (movmisalign_optab
, mode
))
5020 != CODE_FOR_nothing
)
5021 || targetm
.slow_unaligned_access (mode
, align
)))
5025 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
5026 reg
= force_not_mem (reg
);
5027 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5028 if (TREE_CODE (to
) == MEM_REF
&& REF_REVERSE_STORAGE_ORDER (to
))
5029 reg
= flip_storage_order (mode
, reg
);
5031 if (icode
!= CODE_FOR_nothing
)
5033 class expand_operand ops
[2];
5035 create_fixed_operand (&ops
[0], mem
);
5036 create_input_operand (&ops
[1], reg
, mode
);
5037 /* The movmisalign<mode> pattern cannot fail, else the assignment
5038 would silently be omitted. */
5039 expand_insn (icode
, 2, ops
);
5042 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
,
5047 /* Assignment of a structure component needs special treatment
5048 if the structure component's rtx is not simply a MEM.
5049 Assignment of an array element at a constant index, and assignment of
5050 an array element in an unaligned packed structure field, has the same
5051 problem. Same for (partially) storing into a non-memory object. */
5052 if (handled_component_p (to
)
5053 || (TREE_CODE (to
) == MEM_REF
5054 && (REF_REVERSE_STORAGE_ORDER (to
)
5055 || mem_ref_refers_to_non_mem_p (to
)))
5056 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
5059 poly_int64 bitsize
, bitpos
;
5060 poly_uint64 bitregion_start
= 0;
5061 poly_uint64 bitregion_end
= 0;
5063 int unsignedp
, reversep
, volatilep
= 0;
5067 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
5068 &unsignedp
, &reversep
, &volatilep
);
5070 /* Make sure bitpos is not negative, it can wreak havoc later. */
5071 if (maybe_lt (bitpos
, 0))
5073 gcc_assert (offset
== NULL_TREE
);
5074 offset
= size_int (bits_to_bytes_round_down (bitpos
));
5075 bitpos
= num_trailing_bits (bitpos
);
5078 if (TREE_CODE (to
) == COMPONENT_REF
5079 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
5080 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
5081 /* The C++ memory model naturally applies to byte-aligned fields.
5082 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5083 BITSIZE are not byte-aligned, there is no need to limit the range
5084 we can access. This can occur with packed structures in Ada. */
5085 else if (maybe_gt (bitsize
, 0)
5086 && multiple_p (bitsize
, BITS_PER_UNIT
)
5087 && multiple_p (bitpos
, BITS_PER_UNIT
))
5089 bitregion_start
= bitpos
;
5090 bitregion_end
= bitpos
+ bitsize
- 1;
5093 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5095 /* If the field has a mode, we want to access it in the
5096 field's mode, not the computed mode.
5097 If a MEM has VOIDmode (external with incomplete type),
5098 use BLKmode for it instead. */
5101 if (mode1
!= VOIDmode
)
5102 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
5103 else if (GET_MODE (to_rtx
) == VOIDmode
)
5104 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
5109 machine_mode address_mode
;
5112 if (!MEM_P (to_rtx
))
5114 /* We can get constant negative offsets into arrays with broken
5115 user code. Translate this to a trap instead of ICEing. */
5116 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
5117 expand_builtin_trap ();
5118 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
5121 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
5122 address_mode
= get_address_mode (to_rtx
);
5123 if (GET_MODE (offset_rtx
) != address_mode
)
5125 /* We cannot be sure that the RTL in offset_rtx is valid outside
5126 of a memory address context, so force it into a register
5127 before attempting to convert it to the desired mode. */
5128 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
5129 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5132 /* If we have an expression in OFFSET_RTX and a non-zero
5133 byte offset in BITPOS, adding the byte offset before the
5134 OFFSET_RTX results in better intermediate code, which makes
5135 later rtl optimization passes perform better.
5137 We prefer intermediate code like this:
5139 r124:DI=r123:DI+0x18
5144 r124:DI=r123:DI+0x10
5145 [r124:DI+0x8]=r121:DI
5147 This is only done for aligned data values, as these can
5148 be expected to result in single move instructions. */
5150 if (mode1
!= VOIDmode
5151 && maybe_ne (bitpos
, 0)
5152 && maybe_gt (bitsize
, 0)
5153 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
5154 && multiple_p (bitpos
, bitsize
)
5155 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
5156 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
5158 to_rtx
= adjust_address (to_rtx
, mode1
, bytepos
);
5159 bitregion_start
= 0;
5160 if (known_ge (bitregion_end
, poly_uint64 (bitpos
)))
5161 bitregion_end
-= bitpos
;
5165 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5166 highest_pow2_factor_for_target (to
,
5170 /* No action is needed if the target is not a memory and the field
5171 lies completely outside that target. This can occur if the source
5172 code contains an out-of-bounds access to a small array. */
5174 && GET_MODE (to_rtx
) != BLKmode
5175 && known_ge (bitpos
, GET_MODE_PRECISION (GET_MODE (to_rtx
))))
5177 expand_normal (from
);
5180 /* Handle expand_expr of a complex value returning a CONCAT. */
5181 else if (GET_CODE (to_rtx
) == CONCAT
)
5183 machine_mode to_mode
= GET_MODE (to_rtx
);
5184 gcc_checking_assert (COMPLEX_MODE_P (to_mode
));
5185 poly_int64 mode_bitsize
= GET_MODE_BITSIZE (to_mode
);
5186 unsigned short inner_bitsize
= GET_MODE_UNIT_BITSIZE (to_mode
);
5187 if (TYPE_MODE (TREE_TYPE (from
)) == to_mode
5188 && known_eq (bitpos
, 0)
5189 && known_eq (bitsize
, mode_bitsize
))
5190 result
= store_expr (from
, to_rtx
, false, nontemporal
, reversep
);
5191 else if (TYPE_MODE (TREE_TYPE (from
)) == GET_MODE_INNER (to_mode
)
5192 && known_eq (bitsize
, inner_bitsize
)
5193 && (known_eq (bitpos
, 0)
5194 || known_eq (bitpos
, inner_bitsize
)))
5195 result
= store_expr (from
, XEXP (to_rtx
, maybe_ne (bitpos
, 0)),
5196 false, nontemporal
, reversep
);
5197 else if (known_le (bitpos
+ bitsize
, inner_bitsize
))
5198 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
5199 bitregion_start
, bitregion_end
,
5200 mode1
, from
, get_alias_set (to
),
5201 nontemporal
, reversep
);
5202 else if (known_ge (bitpos
, inner_bitsize
))
5203 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
5204 bitpos
- inner_bitsize
,
5205 bitregion_start
, bitregion_end
,
5206 mode1
, from
, get_alias_set (to
),
5207 nontemporal
, reversep
);
5208 else if (known_eq (bitpos
, 0) && known_eq (bitsize
, mode_bitsize
))
5210 result
= expand_normal (from
);
5211 if (GET_CODE (result
) == CONCAT
)
5213 to_mode
= GET_MODE_INNER (to_mode
);
5214 machine_mode from_mode
= GET_MODE_INNER (GET_MODE (result
));
5216 = simplify_gen_subreg (to_mode
, XEXP (result
, 0),
5219 = simplify_gen_subreg (to_mode
, XEXP (result
, 1),
5221 if (!from_real
|| !from_imag
)
5222 goto concat_store_slow
;
5223 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5224 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5230 from_rtx
= change_address (result
, to_mode
, NULL_RTX
);
5233 = simplify_gen_subreg (to_mode
, result
,
5234 TYPE_MODE (TREE_TYPE (from
)), 0);
5237 emit_move_insn (XEXP (to_rtx
, 0),
5238 read_complex_part (from_rtx
, false));
5239 emit_move_insn (XEXP (to_rtx
, 1),
5240 read_complex_part (from_rtx
, true));
5244 machine_mode to_mode
5245 = GET_MODE_INNER (GET_MODE (to_rtx
));
5247 = simplify_gen_subreg (to_mode
, result
,
5248 TYPE_MODE (TREE_TYPE (from
)),
5251 = simplify_gen_subreg (to_mode
, result
,
5252 TYPE_MODE (TREE_TYPE (from
)),
5253 GET_MODE_SIZE (to_mode
));
5254 if (!from_real
|| !from_imag
)
5255 goto concat_store_slow
;
5256 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5257 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5264 rtx temp
= assign_stack_temp (to_mode
,
5265 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5266 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
5267 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
5268 result
= store_field (temp
, bitsize
, bitpos
,
5269 bitregion_start
, bitregion_end
,
5270 mode1
, from
, get_alias_set (to
),
5271 nontemporal
, reversep
);
5272 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
5273 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
5276 /* For calls to functions returning variable length structures, if TO_RTX
5277 is not a MEM, go through a MEM because we must not create temporaries
5279 else if (!MEM_P (to_rtx
)
5280 && TREE_CODE (from
) == CALL_EXPR
5281 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5282 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) != INTEGER_CST
)
5284 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
5285 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5286 result
= store_field (temp
, bitsize
, bitpos
, bitregion_start
,
5287 bitregion_end
, mode1
, from
, get_alias_set (to
),
5288 nontemporal
, reversep
);
5289 emit_move_insn (to_rtx
, temp
);
5295 /* If the field is at offset zero, we could have been given the
5296 DECL_RTX of the parent struct. Don't munge it. */
5297 to_rtx
= shallow_copy_rtx (to_rtx
);
5298 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
5300 MEM_VOLATILE_P (to_rtx
) = 1;
5303 gcc_checking_assert (known_ge (bitpos
, 0));
5304 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
5305 bitregion_start
, bitregion_end
,
5306 mode1
, to_rtx
, to
, from
,
5310 result
= store_field (to_rtx
, bitsize
, bitpos
,
5311 bitregion_start
, bitregion_end
,
5312 mode1
, from
, get_alias_set (to
),
5313 nontemporal
, reversep
);
5317 preserve_temp_slots (result
);
5322 /* If the rhs is a function call and its value is not an aggregate,
5323 call the function before we start to compute the lhs.
5324 This is needed for correct code for cases such as
5325 val = setjmp (buf) on machines where reference to val
5326 requires loading up part of an address in a separate insn.
5328 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5329 since it might be a promoted variable where the zero- or sign- extension
5330 needs to be done. Handling this in the normal way is safe because no
5331 computation is done before the call. The same is true for SSA names. */
5332 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5333 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5334 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5336 || TREE_CODE (to
) == PARM_DECL
5337 || TREE_CODE (to
) == RESULT_DECL
)
5338 && REG_P (DECL_RTL (to
)))
5339 || TREE_CODE (to
) == SSA_NAME
))
5344 value
= expand_normal (from
);
5347 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5349 /* Handle calls that return values in multiple non-contiguous locations.
5350 The Irix 6 ABI has examples of this. */
5351 if (GET_CODE (to_rtx
) == PARALLEL
)
5353 if (GET_CODE (value
) == PARALLEL
)
5354 emit_group_move (to_rtx
, value
);
5356 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5357 int_size_in_bytes (TREE_TYPE (from
)));
5359 else if (GET_CODE (value
) == PARALLEL
)
5360 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5361 int_size_in_bytes (TREE_TYPE (from
)));
5362 else if (GET_MODE (to_rtx
) == BLKmode
)
5364 /* Handle calls that return BLKmode values in registers. */
5366 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5368 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5372 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5373 value
= convert_memory_address_addr_space
5374 (as_a
<scalar_int_mode
> (GET_MODE (to_rtx
)), value
,
5375 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5377 emit_move_insn (to_rtx
, value
);
5380 preserve_temp_slots (to_rtx
);
5385 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5386 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5388 /* Don't move directly into a return register. */
5389 if (TREE_CODE (to
) == RESULT_DECL
5390 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5396 /* If the source is itself a return value, it still is in a pseudo at
5397 this point so we can move it back to the return register directly. */
5399 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5400 && TREE_CODE (from
) != CALL_EXPR
)
5401 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5403 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5405 /* Handle calls that return values in multiple non-contiguous locations.
5406 The Irix 6 ABI has examples of this. */
5407 if (GET_CODE (to_rtx
) == PARALLEL
)
5409 if (GET_CODE (temp
) == PARALLEL
)
5410 emit_group_move (to_rtx
, temp
);
5412 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5413 int_size_in_bytes (TREE_TYPE (from
)));
5416 emit_move_insn (to_rtx
, temp
);
5418 preserve_temp_slots (to_rtx
);
5423 /* In case we are returning the contents of an object which overlaps
5424 the place the value is being stored, use a safe function when copying
5425 a value through a pointer into a structure value return block. */
5426 if (TREE_CODE (to
) == RESULT_DECL
5427 && TREE_CODE (from
) == INDIRECT_REF
5428 && ADDR_SPACE_GENERIC_P
5429 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5430 && refs_may_alias_p (to
, from
)
5431 && cfun
->returns_struct
5432 && !cfun
->returns_pcc_struct
)
5437 size
= expr_size (from
);
5438 from_rtx
= expand_normal (from
);
5440 emit_block_move_via_libcall (XEXP (to_rtx
, 0), XEXP (from_rtx
, 0), size
);
5442 preserve_temp_slots (to_rtx
);
5447 /* Compute FROM and store the value in the rtx we got. */
5450 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
5451 preserve_temp_slots (result
);
5456 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5457 succeeded, false otherwise. */
5460 emit_storent_insn (rtx to
, rtx from
)
5462 class expand_operand ops
[2];
5463 machine_mode mode
= GET_MODE (to
);
5464 enum insn_code code
= optab_handler (storent_optab
, mode
);
5466 if (code
== CODE_FOR_nothing
)
5469 create_fixed_operand (&ops
[0], to
);
5470 create_input_operand (&ops
[1], from
, mode
);
5471 return maybe_expand_insn (code
, 2, ops
);
5474 /* Helper function for store_expr storing of STRING_CST. */
5477 string_cst_read_str (void *data
, HOST_WIDE_INT offset
, scalar_int_mode mode
)
5479 tree str
= (tree
) data
;
5481 gcc_assert (offset
>= 0);
5482 if (offset
>= TREE_STRING_LENGTH (str
))
5485 if ((unsigned HOST_WIDE_INT
) offset
+ GET_MODE_SIZE (mode
)
5486 > (unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (str
))
5488 char *p
= XALLOCAVEC (char, GET_MODE_SIZE (mode
));
5489 size_t l
= TREE_STRING_LENGTH (str
) - offset
;
5490 memcpy (p
, TREE_STRING_POINTER (str
) + offset
, l
);
5491 memset (p
+ l
, '\0', GET_MODE_SIZE (mode
) - l
);
5492 return c_readstr (p
, mode
, false);
5495 return c_readstr (TREE_STRING_POINTER (str
) + offset
, mode
, false);
5498 /* Generate code for computing expression EXP,
5499 and storing the value into TARGET.
5501 If the mode is BLKmode then we may return TARGET itself.
5502 It turns out that in BLKmode it doesn't cause a problem.
5503 because C has no operators that could combine two different
5504 assignments into the same BLKmode object with different values
5505 with no sequence point. Will other languages need this to
5508 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5509 stack, and block moves may need to be treated specially.
5511 If NONTEMPORAL is true, try using a nontemporal store instruction.
5513 If REVERSE is true, the store is to be done in reverse order. */
5516 store_expr (tree exp
, rtx target
, int call_param_p
,
5517 bool nontemporal
, bool reverse
)
5520 rtx alt_rtl
= NULL_RTX
;
5521 location_t loc
= curr_insn_location ();
5523 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5525 /* C++ can generate ?: expressions with a throw expression in one
5526 branch and an rvalue in the other. Here, we resolve attempts to
5527 store the throw expression's nonexistent result. */
5528 gcc_assert (!call_param_p
);
5529 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5532 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5534 /* Perform first part of compound expression, then assign from second
5536 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5537 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5538 return store_expr (TREE_OPERAND (exp
, 1), target
,
5539 call_param_p
, nontemporal
, reverse
);
5541 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5543 /* For conditional expression, get safe form of the target. Then
5544 test the condition, doing the appropriate assignment on either
5545 side. This avoids the creation of unnecessary temporaries.
5546 For non-BLKmode, it is more efficient not to do this. */
5548 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5550 do_pending_stack_adjust ();
5552 jumpifnot (TREE_OPERAND (exp
, 0), lab1
,
5553 profile_probability::uninitialized ());
5554 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5555 nontemporal
, reverse
);
5556 emit_jump_insn (targetm
.gen_jump (lab2
));
5559 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5560 nontemporal
, reverse
);
5566 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5567 /* If this is a scalar in a register that is stored in a wider mode
5568 than the declared mode, compute the result into its declared mode
5569 and then convert to the wider mode. Our value is the computed
5572 rtx inner_target
= 0;
5573 scalar_int_mode outer_mode
= subreg_unpromoted_mode (target
);
5574 scalar_int_mode inner_mode
= subreg_promoted_mode (target
);
5576 /* We can do the conversion inside EXP, which will often result
5577 in some optimizations. Do the conversion in two steps: first
5578 change the signedness, if needed, then the extend. But don't
5579 do this if the type of EXP is a subtype of something else
5580 since then the conversion might involve more than just
5581 converting modes. */
5582 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5583 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5584 && GET_MODE_PRECISION (outer_mode
)
5585 == TYPE_PRECISION (TREE_TYPE (exp
)))
5587 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5588 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5590 /* Some types, e.g. Fortran's logical*4, won't have a signed
5591 version, so use the mode instead. */
5593 = (signed_or_unsigned_type_for
5594 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5596 ntype
= lang_hooks
.types
.type_for_mode
5597 (TYPE_MODE (TREE_TYPE (exp
)),
5598 SUBREG_PROMOTED_SIGN (target
));
5600 exp
= fold_convert_loc (loc
, ntype
, exp
);
5603 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5604 (inner_mode
, SUBREG_PROMOTED_SIGN (target
)),
5607 inner_target
= SUBREG_REG (target
);
5610 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5611 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5614 /* If TEMP is a VOIDmode constant, use convert_modes to make
5615 sure that we properly convert it. */
5616 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5618 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
5619 temp
, SUBREG_PROMOTED_SIGN (target
));
5620 temp
= convert_modes (inner_mode
, outer_mode
, temp
,
5621 SUBREG_PROMOTED_SIGN (target
));
5624 convert_move (SUBREG_REG (target
), temp
,
5625 SUBREG_PROMOTED_SIGN (target
));
5629 else if ((TREE_CODE (exp
) == STRING_CST
5630 || (TREE_CODE (exp
) == MEM_REF
5631 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5632 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5634 && integer_zerop (TREE_OPERAND (exp
, 1))))
5635 && !nontemporal
&& !call_param_p
5638 /* Optimize initialization of an array with a STRING_CST. */
5639 HOST_WIDE_INT exp_len
, str_copy_len
;
5641 tree str
= TREE_CODE (exp
) == STRING_CST
5642 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5644 exp_len
= int_expr_size (exp
);
5648 if (TREE_STRING_LENGTH (str
) <= 0)
5651 if (can_store_by_pieces (exp_len
, string_cst_read_str
, (void *) str
,
5652 MEM_ALIGN (target
), false))
5654 store_by_pieces (target
, exp_len
, string_cst_read_str
, (void *) str
,
5655 MEM_ALIGN (target
), false, RETURN_BEGIN
);
5659 str_copy_len
= TREE_STRING_LENGTH (str
);
5660 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
5662 str_copy_len
+= STORE_MAX_PIECES
- 1;
5663 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5665 if (str_copy_len
>= exp_len
)
5668 if (!can_store_by_pieces (str_copy_len
, string_cst_read_str
,
5669 (void *) str
, MEM_ALIGN (target
), false))
5672 dest_mem
= store_by_pieces (target
, str_copy_len
, string_cst_read_str
,
5673 (void *) str
, MEM_ALIGN (target
), false,
5675 clear_storage (adjust_address_1 (dest_mem
, BLKmode
, 0, 1, 1, 0,
5676 exp_len
- str_copy_len
),
5677 GEN_INT (exp_len
- str_copy_len
), BLOCK_OP_NORMAL
);
5685 /* If we want to use a nontemporal or a reverse order store, force the
5686 value into a register first. */
5687 tmp_target
= nontemporal
|| reverse
? NULL_RTX
: target
;
5688 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5690 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5694 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5695 the same as that of TARGET, adjust the constant. This is needed, for
5696 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5697 only a word-sized value. */
5698 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5699 && TREE_CODE (exp
) != ERROR_MARK
5700 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5702 if (GET_MODE_CLASS (GET_MODE (target
))
5703 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
)))
5704 && known_eq (GET_MODE_BITSIZE (GET_MODE (target
)),
5705 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)))))
5707 rtx t
= simplify_gen_subreg (GET_MODE (target
), temp
,
5708 TYPE_MODE (TREE_TYPE (exp
)), 0);
5712 if (GET_MODE (temp
) == VOIDmode
)
5713 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5714 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5717 /* If value was not generated in the target, store it there.
5718 Convert the value to TARGET's type first if necessary and emit the
5719 pending incrementations that have been queued when expanding EXP.
5720 Note that we cannot emit the whole queue blindly because this will
5721 effectively disable the POST_INC optimization later.
5723 If TEMP and TARGET compare equal according to rtx_equal_p, but
5724 one or both of them are volatile memory refs, we have to distinguish
5726 - expand_expr has used TARGET. In this case, we must not generate
5727 another copy. This can be detected by TARGET being equal according
5729 - expand_expr has not used TARGET - that means that the source just
5730 happens to have the same RTX form. Since temp will have been created
5731 by expand_expr, it will compare unequal according to == .
5732 We must generate a copy in this case, to reach the correct number
5733 of volatile memory references. */
5735 if ((! rtx_equal_p (temp
, target
)
5736 || (temp
!= target
&& (side_effects_p (temp
)
5737 || side_effects_p (target
))))
5738 && TREE_CODE (exp
) != ERROR_MARK
5739 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5740 but TARGET is not valid memory reference, TEMP will differ
5741 from TARGET although it is really the same location. */
5743 && rtx_equal_p (alt_rtl
, target
)
5744 && !side_effects_p (alt_rtl
)
5745 && !side_effects_p (target
))
5746 /* If there's nothing to copy, don't bother. Don't call
5747 expr_size unless necessary, because some front-ends (C++)
5748 expr_size-hook must not be given objects that are not
5749 supposed to be bit-copied or bit-initialized. */
5750 && expr_size (exp
) != const0_rtx
)
5752 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5754 if (GET_MODE (target
) == BLKmode
)
5756 /* Handle calls that return BLKmode values in registers. */
5757 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5758 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5760 store_bit_field (target
,
5761 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5762 0, 0, 0, GET_MODE (temp
), temp
, reverse
);
5765 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5768 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5770 /* Handle copying a string constant into an array. The string
5771 constant may be shorter than the array. So copy just the string's
5772 actual length, and clear the rest. First get the size of the data
5773 type of the string, which is actually the size of the target. */
5774 rtx size
= expr_size (exp
);
5776 if (CONST_INT_P (size
)
5777 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5778 emit_block_move (target
, temp
, size
,
5780 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5783 machine_mode pointer_mode
5784 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5785 machine_mode address_mode
= get_address_mode (target
);
5787 /* Compute the size of the data to copy from the string. */
5789 = size_binop_loc (loc
, MIN_EXPR
,
5790 make_tree (sizetype
, size
),
5791 size_int (TREE_STRING_LENGTH (exp
)));
5793 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5795 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5796 rtx_code_label
*label
= 0;
5798 /* Copy that much. */
5799 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5800 TYPE_UNSIGNED (sizetype
));
5801 emit_block_move (target
, temp
, copy_size_rtx
,
5803 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5805 /* Figure out how much is left in TARGET that we have to clear.
5806 Do all calculations in pointer_mode. */
5807 poly_int64 const_copy_size
;
5808 if (poly_int_rtx_p (copy_size_rtx
, &const_copy_size
))
5810 size
= plus_constant (address_mode
, size
, -const_copy_size
);
5811 target
= adjust_address (target
, BLKmode
, const_copy_size
);
5815 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5816 copy_size_rtx
, NULL_RTX
, 0,
5819 if (GET_MODE (copy_size_rtx
) != address_mode
)
5820 copy_size_rtx
= convert_to_mode (address_mode
,
5822 TYPE_UNSIGNED (sizetype
));
5824 target
= offset_address (target
, copy_size_rtx
,
5825 highest_pow2_factor (copy_size
));
5826 label
= gen_label_rtx ();
5827 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5828 GET_MODE (size
), 0, label
);
5831 if (size
!= const0_rtx
)
5832 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5838 /* Handle calls that return values in multiple non-contiguous locations.
5839 The Irix 6 ABI has examples of this. */
5840 else if (GET_CODE (target
) == PARALLEL
)
5842 if (GET_CODE (temp
) == PARALLEL
)
5843 emit_group_move (target
, temp
);
5845 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5846 int_size_in_bytes (TREE_TYPE (exp
)));
5848 else if (GET_CODE (temp
) == PARALLEL
)
5849 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5850 int_size_in_bytes (TREE_TYPE (exp
)));
5851 else if (GET_MODE (temp
) == BLKmode
)
5852 emit_block_move (target
, temp
, expr_size (exp
),
5854 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5855 /* If we emit a nontemporal store, there is nothing else to do. */
5856 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5861 temp
= flip_storage_order (GET_MODE (target
), temp
);
5862 temp
= force_operand (temp
, target
);
5864 emit_move_insn (target
, temp
);
5871 /* Return true if field F of structure TYPE is a flexible array. */
5874 flexible_array_member_p (const_tree f
, const_tree type
)
5879 return (DECL_CHAIN (f
) == NULL
5880 && TREE_CODE (tf
) == ARRAY_TYPE
5882 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5883 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5884 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5885 && int_size_in_bytes (type
) >= 0);
5888 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5889 must have in order for it to completely initialize a value of type TYPE.
5890 Return -1 if the number isn't known.
5892 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5894 static HOST_WIDE_INT
5895 count_type_elements (const_tree type
, bool for_ctor_p
)
5897 switch (TREE_CODE (type
))
5903 nelts
= array_type_nelts (type
);
5904 if (nelts
&& tree_fits_uhwi_p (nelts
))
5906 unsigned HOST_WIDE_INT n
;
5908 n
= tree_to_uhwi (nelts
) + 1;
5909 if (n
== 0 || for_ctor_p
)
5912 return n
* count_type_elements (TREE_TYPE (type
), false);
5914 return for_ctor_p
? -1 : 1;
5919 unsigned HOST_WIDE_INT n
;
5923 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5924 if (TREE_CODE (f
) == FIELD_DECL
)
5927 n
+= count_type_elements (TREE_TYPE (f
), false);
5928 else if (!flexible_array_member_p (f
, type
))
5929 /* Don't count flexible arrays, which are not supposed
5930 to be initialized. */
5938 case QUAL_UNION_TYPE
:
5943 gcc_assert (!for_ctor_p
);
5944 /* Estimate the number of scalars in each field and pick the
5945 maximum. Other estimates would do instead; the idea is simply
5946 to make sure that the estimate is not sensitive to the ordering
5949 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5950 if (TREE_CODE (f
) == FIELD_DECL
)
5952 m
= count_type_elements (TREE_TYPE (f
), false);
5953 /* If the field doesn't span the whole union, add an extra
5954 scalar for the rest. */
5955 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5956 TYPE_SIZE (type
)) != 1)
5969 unsigned HOST_WIDE_INT nelts
;
5970 if (TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
5978 case FIXED_POINT_TYPE
:
5983 case REFERENCE_TYPE
:
5999 /* Helper for categorize_ctor_elements. Identical interface. */
6002 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6003 HOST_WIDE_INT
*p_unique_nz_elts
,
6004 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6006 unsigned HOST_WIDE_INT idx
;
6007 HOST_WIDE_INT nz_elts
, unique_nz_elts
, init_elts
, num_fields
;
6008 tree value
, purpose
, elt_type
;
6010 /* Whether CTOR is a valid constant initializer, in accordance with what
6011 initializer_constant_valid_p does. If inferred from the constructor
6012 elements, true until proven otherwise. */
6013 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
6014 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
6020 elt_type
= NULL_TREE
;
6022 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
6024 HOST_WIDE_INT mult
= 1;
6026 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
6028 tree lo_index
= TREE_OPERAND (purpose
, 0);
6029 tree hi_index
= TREE_OPERAND (purpose
, 1);
6031 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
6032 mult
= (tree_to_uhwi (hi_index
)
6033 - tree_to_uhwi (lo_index
) + 1);
6036 elt_type
= TREE_TYPE (value
);
6038 switch (TREE_CODE (value
))
6042 HOST_WIDE_INT nz
= 0, unz
= 0, ic
= 0;
6044 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &unz
,
6047 nz_elts
+= mult
* nz
;
6048 unique_nz_elts
+= unz
;
6049 init_elts
+= mult
* ic
;
6051 if (const_from_elts_p
&& const_p
)
6052 const_p
= const_elt_p
;
6059 if (!initializer_zerop (value
))
6068 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
6069 unique_nz_elts
+= TREE_STRING_LENGTH (value
);
6070 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
6074 if (!initializer_zerop (TREE_REALPART (value
)))
6079 if (!initializer_zerop (TREE_IMAGPART (value
)))
6084 init_elts
+= 2 * mult
;
6089 /* We can only construct constant-length vectors using
6091 unsigned int nunits
= VECTOR_CST_NELTS (value
).to_constant ();
6092 for (unsigned int i
= 0; i
< nunits
; ++i
)
6094 tree v
= VECTOR_CST_ELT (value
, i
);
6095 if (!initializer_zerop (v
))
6107 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
6108 nz_elts
+= mult
* tc
;
6109 unique_nz_elts
+= tc
;
6110 init_elts
+= mult
* tc
;
6112 if (const_from_elts_p
&& const_p
)
6114 = initializer_constant_valid_p (value
,
6116 TYPE_REVERSE_STORAGE_ORDER
6124 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
6125 num_fields
, elt_type
))
6126 *p_complete
= false;
6128 *p_nz_elts
+= nz_elts
;
6129 *p_unique_nz_elts
+= unique_nz_elts
;
6130 *p_init_elts
+= init_elts
;
6135 /* Examine CTOR to discover:
6136 * how many scalar fields are set to nonzero values,
6137 and place it in *P_NZ_ELTS;
6138 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6139 high - low + 1 (this can be useful for callers to determine ctors
6140 that could be cheaply initialized with - perhaps nested - loops
6141 compared to copied from huge read-only data),
6142 and place it in *P_UNIQUE_NZ_ELTS;
6143 * how many scalar fields in total are in CTOR,
6144 and place it in *P_ELT_COUNT.
6145 * whether the constructor is complete -- in the sense that every
6146 meaningful byte is explicitly given a value --
6147 and place it in *P_COMPLETE.
6149 Return whether or not CTOR is a valid static constant initializer, the same
6150 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6153 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6154 HOST_WIDE_INT
*p_unique_nz_elts
,
6155 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6158 *p_unique_nz_elts
= 0;
6162 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_unique_nz_elts
,
6163 p_init_elts
, p_complete
);
6166 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6167 of which had type LAST_TYPE. Each element was itself a complete
6168 initializer, in the sense that every meaningful byte was explicitly
6169 given a value. Return true if the same is true for the constructor
6173 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
6174 const_tree last_type
)
6176 if (TREE_CODE (type
) == UNION_TYPE
6177 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6182 gcc_assert (num_elts
== 1 && last_type
);
6184 /* ??? We could look at each element of the union, and find the
6185 largest element. Which would avoid comparing the size of the
6186 initialized element against any tail padding in the union.
6187 Doesn't seem worth the effort... */
6188 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
6191 return count_type_elements (type
, true) == num_elts
;
6194 /* Return 1 if EXP contains mostly (3/4) zeros. */
6197 mostly_zeros_p (const_tree exp
)
6199 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6201 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6204 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6206 return !complete_p
|| nz_elts
< init_elts
/ 4;
6209 return initializer_zerop (exp
);
6212 /* Return 1 if EXP contains all zeros. */
6215 all_zeros_p (const_tree exp
)
6217 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6219 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6222 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6224 return nz_elts
== 0;
6227 return initializer_zerop (exp
);
6230 /* Helper function for store_constructor.
6231 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6232 CLEARED is as for store_constructor.
6233 ALIAS_SET is the alias set to use for any stores.
6234 If REVERSE is true, the store is to be done in reverse order.
6236 This provides a recursive shortcut back to store_constructor when it isn't
6237 necessary to go through store_field. This is so that we can pass through
6238 the cleared field to let store_constructor know that we may not have to
6239 clear a substructure if the outer structure has already been cleared. */
6242 store_constructor_field (rtx target
, poly_uint64 bitsize
, poly_int64 bitpos
,
6243 poly_uint64 bitregion_start
,
6244 poly_uint64 bitregion_end
,
6246 tree exp
, int cleared
,
6247 alias_set_type alias_set
, bool reverse
)
6250 poly_uint64 bytesize
;
6251 if (TREE_CODE (exp
) == CONSTRUCTOR
6252 /* We can only call store_constructor recursively if the size and
6253 bit position are on a byte boundary. */
6254 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
6255 && maybe_ne (bitsize
, 0U)
6256 && multiple_p (bitsize
, BITS_PER_UNIT
, &bytesize
)
6257 /* If we have a nonzero bitpos for a register target, then we just
6258 let store_field do the bitfield handling. This is unlikely to
6259 generate unnecessary clear instructions anyways. */
6260 && (known_eq (bitpos
, 0) || MEM_P (target
)))
6264 machine_mode target_mode
= GET_MODE (target
);
6265 if (target_mode
!= BLKmode
6266 && !multiple_p (bitpos
, GET_MODE_ALIGNMENT (target_mode
)))
6267 target_mode
= BLKmode
;
6268 target
= adjust_address (target
, target_mode
, bytepos
);
6272 /* Update the alias set, if required. */
6273 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
6274 && MEM_ALIAS_SET (target
) != 0)
6276 target
= copy_rtx (target
);
6277 set_mem_alias_set (target
, alias_set
);
6280 store_constructor (exp
, target
, cleared
, bytesize
, reverse
);
6283 store_field (target
, bitsize
, bitpos
, bitregion_start
, bitregion_end
, mode
,
6284 exp
, alias_set
, false, reverse
);
6288 /* Returns the number of FIELD_DECLs in TYPE. */
6291 fields_length (const_tree type
)
6293 tree t
= TYPE_FIELDS (type
);
6296 for (; t
; t
= DECL_CHAIN (t
))
6297 if (TREE_CODE (t
) == FIELD_DECL
)
6304 /* Store the value of constructor EXP into the rtx TARGET.
6305 TARGET is either a REG or a MEM; we know it cannot conflict, since
6306 safe_from_p has been called.
6307 CLEARED is true if TARGET is known to have been zero'd.
6308 SIZE is the number of bytes of TARGET we are allowed to modify: this
6309 may not be the same as the size of EXP if we are assigning to a field
6310 which has been packed to exclude padding bits.
6311 If REVERSE is true, the store is to be done in reverse order. */
6314 store_constructor (tree exp
, rtx target
, int cleared
, poly_int64 size
,
6317 tree type
= TREE_TYPE (exp
);
6318 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
6319 poly_int64 bitregion_end
= known_gt (size
, 0) ? size
* BITS_PER_UNIT
- 1 : 0;
6321 switch (TREE_CODE (type
))
6325 case QUAL_UNION_TYPE
:
6327 unsigned HOST_WIDE_INT idx
;
6330 /* The storage order is specified for every aggregate type. */
6331 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6333 /* If size is zero or the target is already cleared, do nothing. */
6334 if (known_eq (size
, 0) || cleared
)
6336 /* We either clear the aggregate or indicate the value is dead. */
6337 else if ((TREE_CODE (type
) == UNION_TYPE
6338 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6339 && ! CONSTRUCTOR_ELTS (exp
))
6340 /* If the constructor is empty, clear the union. */
6342 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6346 /* If we are building a static constructor into a register,
6347 set the initial value as zero so we can fold the value into
6348 a constant. But if more than one register is involved,
6349 this probably loses. */
6350 else if (REG_P (target
) && TREE_STATIC (exp
)
6351 && known_le (GET_MODE_SIZE (GET_MODE (target
)),
6352 REGMODE_NATURAL_SIZE (GET_MODE (target
))))
6354 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6358 /* If the constructor has fewer fields than the structure or
6359 if we are initializing the structure to mostly zeros, clear
6360 the whole structure first. Don't do this if TARGET is a
6361 register whose mode size isn't equal to SIZE since
6362 clear_storage can't handle this case. */
6363 else if (known_size_p (size
)
6364 && (((int) CONSTRUCTOR_NELTS (exp
) != fields_length (type
))
6365 || mostly_zeros_p (exp
))
6367 || known_eq (GET_MODE_SIZE (GET_MODE (target
)), size
)))
6369 clear_storage (target
, gen_int_mode (size
, Pmode
),
6374 if (REG_P (target
) && !cleared
)
6375 emit_clobber (target
);
6377 /* Store each element of the constructor into the
6378 corresponding field of TARGET. */
6379 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6382 HOST_WIDE_INT bitsize
;
6383 HOST_WIDE_INT bitpos
= 0;
6385 rtx to_rtx
= target
;
6387 /* Just ignore missing fields. We cleared the whole
6388 structure, above, if any fields are missing. */
6392 if (cleared
&& initializer_zerop (value
))
6395 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6396 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6400 mode
= DECL_MODE (field
);
6401 if (DECL_BIT_FIELD (field
))
6404 offset
= DECL_FIELD_OFFSET (field
);
6405 if (tree_fits_shwi_p (offset
)
6406 && tree_fits_shwi_p (bit_position (field
)))
6408 bitpos
= int_bit_position (field
);
6414 /* If this initializes a field that is smaller than a
6415 word, at the start of a word, try to widen it to a full
6416 word. This special case allows us to output C++ member
6417 function initializations in a form that the optimizers
6419 if (WORD_REGISTER_OPERATIONS
6421 && bitsize
< BITS_PER_WORD
6422 && bitpos
% BITS_PER_WORD
== 0
6423 && GET_MODE_CLASS (mode
) == MODE_INT
6424 && TREE_CODE (value
) == INTEGER_CST
6426 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6428 tree type
= TREE_TYPE (value
);
6430 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6432 type
= lang_hooks
.types
.type_for_mode
6433 (word_mode
, TYPE_UNSIGNED (type
));
6434 value
= fold_convert (type
, value
);
6435 /* Make sure the bits beyond the original bitsize are zero
6436 so that we can correctly avoid extra zeroing stores in
6437 later constructor elements. */
6439 = wide_int_to_tree (type
, wi::mask (bitsize
, false,
6441 value
= fold_build2 (BIT_AND_EXPR
, type
, value
, bitsize_mask
);
6444 if (BYTES_BIG_ENDIAN
)
6446 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6447 build_int_cst (type
,
6448 BITS_PER_WORD
- bitsize
));
6449 bitsize
= BITS_PER_WORD
;
6453 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6454 && DECL_NONADDRESSABLE_P (field
))
6456 to_rtx
= copy_rtx (to_rtx
);
6457 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6460 store_constructor_field (to_rtx
, bitsize
, bitpos
,
6461 0, bitregion_end
, mode
,
6463 get_alias_set (TREE_TYPE (field
)),
6471 unsigned HOST_WIDE_INT i
;
6474 tree elttype
= TREE_TYPE (type
);
6476 HOST_WIDE_INT minelt
= 0;
6477 HOST_WIDE_INT maxelt
= 0;
6479 /* The storage order is specified for every aggregate type. */
6480 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6482 domain
= TYPE_DOMAIN (type
);
6483 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6484 && TYPE_MAX_VALUE (domain
)
6485 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6486 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6488 /* If we have constant bounds for the range of the type, get them. */
6491 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6492 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6495 /* If the constructor has fewer elements than the array, clear
6496 the whole array first. Similarly if this is static
6497 constructor of a non-BLKmode object. */
6500 else if (REG_P (target
) && TREE_STATIC (exp
))
6504 unsigned HOST_WIDE_INT idx
;
6506 HOST_WIDE_INT count
= 0, zero_count
= 0;
6507 need_to_clear
= ! const_bounds_p
;
6509 /* This loop is a more accurate version of the loop in
6510 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6511 is also needed to check for missing elements. */
6512 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6514 HOST_WIDE_INT this_node_count
;
6519 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6521 tree lo_index
= TREE_OPERAND (index
, 0);
6522 tree hi_index
= TREE_OPERAND (index
, 1);
6524 if (! tree_fits_uhwi_p (lo_index
)
6525 || ! tree_fits_uhwi_p (hi_index
))
6531 this_node_count
= (tree_to_uhwi (hi_index
)
6532 - tree_to_uhwi (lo_index
) + 1);
6535 this_node_count
= 1;
6537 count
+= this_node_count
;
6538 if (mostly_zeros_p (value
))
6539 zero_count
+= this_node_count
;
6542 /* Clear the entire array first if there are any missing
6543 elements, or if the incidence of zero elements is >=
6546 && (count
< maxelt
- minelt
+ 1
6547 || 4 * zero_count
>= 3 * count
))
6551 if (need_to_clear
&& maybe_gt (size
, 0))
6554 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6556 clear_storage (target
, gen_int_mode (size
, Pmode
),
6561 if (!cleared
&& REG_P (target
))
6562 /* Inform later passes that the old value is dead. */
6563 emit_clobber (target
);
6565 /* Store each element of the constructor into the
6566 corresponding element of TARGET, determined by counting the
6568 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6572 HOST_WIDE_INT bitpos
;
6573 rtx xtarget
= target
;
6575 if (cleared
&& initializer_zerop (value
))
6578 mode
= TYPE_MODE (elttype
);
6579 if (mode
!= BLKmode
)
6580 bitsize
= GET_MODE_BITSIZE (mode
);
6581 else if (!poly_int_tree_p (TYPE_SIZE (elttype
), &bitsize
))
6584 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6586 tree lo_index
= TREE_OPERAND (index
, 0);
6587 tree hi_index
= TREE_OPERAND (index
, 1);
6588 rtx index_r
, pos_rtx
;
6589 HOST_WIDE_INT lo
, hi
, count
;
6592 /* If the range is constant and "small", unroll the loop. */
6594 && tree_fits_shwi_p (lo_index
)
6595 && tree_fits_shwi_p (hi_index
)
6596 && (lo
= tree_to_shwi (lo_index
),
6597 hi
= tree_to_shwi (hi_index
),
6598 count
= hi
- lo
+ 1,
6601 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6602 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6605 lo
-= minelt
; hi
-= minelt
;
6606 for (; lo
<= hi
; lo
++)
6608 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6611 && !MEM_KEEP_ALIAS_SET_P (target
)
6612 && TREE_CODE (type
) == ARRAY_TYPE
6613 && TYPE_NONALIASED_COMPONENT (type
))
6615 target
= copy_rtx (target
);
6616 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6619 store_constructor_field
6620 (target
, bitsize
, bitpos
, 0, bitregion_end
,
6621 mode
, value
, cleared
,
6622 get_alias_set (elttype
), reverse
);
6627 rtx_code_label
*loop_start
= gen_label_rtx ();
6628 rtx_code_label
*loop_end
= gen_label_rtx ();
6631 expand_normal (hi_index
);
6633 index
= build_decl (EXPR_LOCATION (exp
),
6634 VAR_DECL
, NULL_TREE
, domain
);
6635 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6636 SET_DECL_RTL (index
, index_r
);
6637 store_expr (lo_index
, index_r
, 0, false, reverse
);
6639 /* Build the head of the loop. */
6640 do_pending_stack_adjust ();
6641 emit_label (loop_start
);
6643 /* Assign value to element index. */
6645 fold_convert (ssizetype
,
6646 fold_build2 (MINUS_EXPR
,
6649 TYPE_MIN_VALUE (domain
)));
6652 size_binop (MULT_EXPR
, position
,
6653 fold_convert (ssizetype
,
6654 TYPE_SIZE_UNIT (elttype
)));
6656 pos_rtx
= expand_normal (position
);
6657 xtarget
= offset_address (target
, pos_rtx
,
6658 highest_pow2_factor (position
));
6659 xtarget
= adjust_address (xtarget
, mode
, 0);
6660 if (TREE_CODE (value
) == CONSTRUCTOR
)
6661 store_constructor (value
, xtarget
, cleared
,
6662 exact_div (bitsize
, BITS_PER_UNIT
),
6665 store_expr (value
, xtarget
, 0, false, reverse
);
6667 /* Generate a conditional jump to exit the loop. */
6668 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6670 jumpif (exit_cond
, loop_end
,
6671 profile_probability::uninitialized ());
6673 /* Update the loop counter, and jump to the head of
6675 expand_assignment (index
,
6676 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6677 index
, integer_one_node
),
6680 emit_jump (loop_start
);
6682 /* Build the end of the loop. */
6683 emit_label (loop_end
);
6686 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6687 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6692 index
= ssize_int (1);
6695 index
= fold_convert (ssizetype
,
6696 fold_build2 (MINUS_EXPR
,
6699 TYPE_MIN_VALUE (domain
)));
6702 size_binop (MULT_EXPR
, index
,
6703 fold_convert (ssizetype
,
6704 TYPE_SIZE_UNIT (elttype
)));
6705 xtarget
= offset_address (target
,
6706 expand_normal (position
),
6707 highest_pow2_factor (position
));
6708 xtarget
= adjust_address (xtarget
, mode
, 0);
6709 store_expr (value
, xtarget
, 0, false, reverse
);
6714 bitpos
= ((tree_to_shwi (index
) - minelt
)
6715 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6717 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6719 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6720 && TREE_CODE (type
) == ARRAY_TYPE
6721 && TYPE_NONALIASED_COMPONENT (type
))
6723 target
= copy_rtx (target
);
6724 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6726 store_constructor_field (target
, bitsize
, bitpos
, 0,
6727 bitregion_end
, mode
, value
,
6728 cleared
, get_alias_set (elttype
),
6737 unsigned HOST_WIDE_INT idx
;
6738 constructor_elt
*ce
;
6741 insn_code icode
= CODE_FOR_nothing
;
6743 tree elttype
= TREE_TYPE (type
);
6744 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6745 machine_mode eltmode
= TYPE_MODE (elttype
);
6746 HOST_WIDE_INT bitsize
;
6747 HOST_WIDE_INT bitpos
;
6748 rtvec vector
= NULL
;
6750 unsigned HOST_WIDE_INT const_n_elts
;
6751 alias_set_type alias
;
6752 bool vec_vec_init_p
= false;
6753 machine_mode mode
= GET_MODE (target
);
6755 gcc_assert (eltmode
!= BLKmode
);
6757 /* Try using vec_duplicate_optab for uniform vectors. */
6758 if (!TREE_SIDE_EFFECTS (exp
)
6759 && VECTOR_MODE_P (mode
)
6760 && eltmode
== GET_MODE_INNER (mode
)
6761 && ((icode
= optab_handler (vec_duplicate_optab
, mode
))
6762 != CODE_FOR_nothing
)
6763 && (elt
= uniform_vector_p (exp
)))
6765 class expand_operand ops
[2];
6766 create_output_operand (&ops
[0], target
, mode
);
6767 create_input_operand (&ops
[1], expand_normal (elt
), eltmode
);
6768 expand_insn (icode
, 2, ops
);
6769 if (!rtx_equal_p (target
, ops
[0].value
))
6770 emit_move_insn (target
, ops
[0].value
);
6774 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6776 && VECTOR_MODE_P (mode
)
6777 && n_elts
.is_constant (&const_n_elts
))
6779 machine_mode emode
= eltmode
;
6781 if (CONSTRUCTOR_NELTS (exp
)
6782 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
))
6785 tree etype
= TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
);
6786 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp
)
6787 * TYPE_VECTOR_SUBPARTS (etype
),
6789 emode
= TYPE_MODE (etype
);
6791 icode
= convert_optab_handler (vec_init_optab
, mode
, emode
);
6792 if (icode
!= CODE_FOR_nothing
)
6794 unsigned int i
, n
= const_n_elts
;
6796 if (emode
!= eltmode
)
6798 n
= CONSTRUCTOR_NELTS (exp
);
6799 vec_vec_init_p
= true;
6801 vector
= rtvec_alloc (n
);
6802 for (i
= 0; i
< n
; i
++)
6803 RTVEC_ELT (vector
, i
) = CONST0_RTX (emode
);
6807 /* If the constructor has fewer elements than the vector,
6808 clear the whole array first. Similarly if this is static
6809 constructor of a non-BLKmode object. */
6812 else if (REG_P (target
) && TREE_STATIC (exp
))
6816 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6819 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6821 tree sz
= TYPE_SIZE (TREE_TYPE (value
));
6823 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR
, sz
,
6824 TYPE_SIZE (elttype
)));
6826 count
+= n_elts_here
;
6827 if (mostly_zeros_p (value
))
6828 zero_count
+= n_elts_here
;
6831 /* Clear the entire vector first if there are any missing elements,
6832 or if the incidence of zero elements is >= 75%. */
6833 need_to_clear
= (maybe_lt (count
, n_elts
)
6834 || 4 * zero_count
>= 3 * count
);
6837 if (need_to_clear
&& maybe_gt (size
, 0) && !vector
)
6840 emit_move_insn (target
, CONST0_RTX (mode
));
6842 clear_storage (target
, gen_int_mode (size
, Pmode
),
6847 /* Inform later passes that the old value is dead. */
6848 if (!cleared
&& !vector
&& REG_P (target
))
6849 emit_move_insn (target
, CONST0_RTX (mode
));
6852 alias
= MEM_ALIAS_SET (target
);
6854 alias
= get_alias_set (elttype
);
6856 /* Store each element of the constructor into the corresponding
6857 element of TARGET, determined by counting the elements. */
6858 for (idx
= 0, i
= 0;
6859 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6860 idx
++, i
+= bitsize
/ elt_size
)
6862 HOST_WIDE_INT eltpos
;
6863 tree value
= ce
->value
;
6865 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6866 if (cleared
&& initializer_zerop (value
))
6870 eltpos
= tree_to_uhwi (ce
->index
);
6878 gcc_assert (ce
->index
== NULL_TREE
);
6879 gcc_assert (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
);
6883 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6884 RTVEC_ELT (vector
, eltpos
) = expand_normal (value
);
6888 machine_mode value_mode
6889 = (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6890 ? TYPE_MODE (TREE_TYPE (value
)) : eltmode
);
6891 bitpos
= eltpos
* elt_size
;
6892 store_constructor_field (target
, bitsize
, bitpos
, 0,
6893 bitregion_end
, value_mode
,
6894 value
, cleared
, alias
, reverse
);
6899 emit_insn (GEN_FCN (icode
) (target
,
6900 gen_rtx_PARALLEL (mode
, vector
)));
6909 /* Store the value of EXP (an expression tree)
6910 into a subfield of TARGET which has mode MODE and occupies
6911 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6912 If MODE is VOIDmode, it means that we are storing into a bit-field.
6914 BITREGION_START is bitpos of the first bitfield in this region.
6915 BITREGION_END is the bitpos of the ending bitfield in this region.
6916 These two fields are 0, if the C++ memory model does not apply,
6917 or we are not interested in keeping track of bitfield regions.
6919 Always return const0_rtx unless we have something particular to
6922 ALIAS_SET is the alias set for the destination. This value will
6923 (in general) be different from that for TARGET, since TARGET is a
6924 reference to the containing structure.
6926 If NONTEMPORAL is true, try generating a nontemporal store.
6928 If REVERSE is true, the store is to be done in reverse order. */
6931 store_field (rtx target
, poly_int64 bitsize
, poly_int64 bitpos
,
6932 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
6933 machine_mode mode
, tree exp
,
6934 alias_set_type alias_set
, bool nontemporal
, bool reverse
)
6936 if (TREE_CODE (exp
) == ERROR_MARK
)
6939 /* If we have nothing to store, do nothing unless the expression has
6940 side-effects. Don't do that for zero sized addressable lhs of
6942 if (known_eq (bitsize
, 0)
6943 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
6944 || TREE_CODE (exp
) != CALL_EXPR
))
6945 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6947 if (GET_CODE (target
) == CONCAT
)
6949 /* We're storing into a struct containing a single __complex. */
6951 gcc_assert (known_eq (bitpos
, 0));
6952 return store_expr (exp
, target
, 0, nontemporal
, reverse
);
6955 /* If the structure is in a register or if the component
6956 is a bit field, we cannot use addressing to access it.
6957 Use bit-field techniques or SUBREG to store in it. */
6959 poly_int64 decl_bitsize
;
6960 if (mode
== VOIDmode
6961 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6962 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6963 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6965 || GET_CODE (target
) == SUBREG
6966 /* If the field isn't aligned enough to store as an ordinary memref,
6967 store it as a bit field. */
6969 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6970 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
6971 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
)))
6972 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
6973 || (known_size_p (bitsize
)
6975 && maybe_gt (GET_MODE_BITSIZE (mode
), bitsize
))
6976 /* If the RHS and field are a constant size and the size of the
6977 RHS isn't the same size as the bitfield, we must use bitfield
6979 || (known_size_p (bitsize
)
6980 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
6981 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
6983 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6984 we will handle specially below. */
6985 && !(TREE_CODE (exp
) == CONSTRUCTOR
6986 && multiple_p (bitsize
, BITS_PER_UNIT
))
6987 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6988 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6989 includes some extra padding. store_expr / expand_expr will in
6990 that case call get_inner_reference that will have the bitsize
6991 we check here and thus the block move will not clobber the
6992 padding that shouldn't be clobbered. In the future we could
6993 replace the TREE_ADDRESSABLE check with a check that
6994 get_base_address needs to live in memory. */
6995 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
6996 || TREE_CODE (exp
) != COMPONENT_REF
6997 || !multiple_p (bitsize
, BITS_PER_UNIT
)
6998 || !multiple_p (bitpos
, BITS_PER_UNIT
)
6999 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp
, 1)),
7001 || maybe_ne (decl_bitsize
, bitsize
)))
7002 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7003 decl we must use bitfield operations. */
7004 || (known_size_p (bitsize
)
7005 && TREE_CODE (exp
) == MEM_REF
7006 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7007 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7008 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7009 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
7014 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7015 implies a mask operation. If the precision is the same size as
7016 the field we're storing into, that mask is redundant. This is
7017 particularly common with bit field assignments generated by the
7019 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
7022 tree type
= TREE_TYPE (exp
);
7023 if (INTEGRAL_TYPE_P (type
)
7024 && maybe_ne (TYPE_PRECISION (type
),
7025 GET_MODE_BITSIZE (TYPE_MODE (type
)))
7026 && known_eq (bitsize
, TYPE_PRECISION (type
)))
7028 tree op
= gimple_assign_rhs1 (nop_def
);
7029 type
= TREE_TYPE (op
);
7030 if (INTEGRAL_TYPE_P (type
)
7031 && known_ge (TYPE_PRECISION (type
), bitsize
))
7036 temp
= expand_normal (exp
);
7038 /* We don't support variable-sized BLKmode bitfields, since our
7039 handling of BLKmode is bound up with the ability to break
7040 things into words. */
7041 gcc_assert (mode
!= BLKmode
|| bitsize
.is_constant ());
7043 /* Handle calls that return values in multiple non-contiguous locations.
7044 The Irix 6 ABI has examples of this. */
7045 if (GET_CODE (temp
) == PARALLEL
)
7047 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
7048 machine_mode temp_mode
= GET_MODE (temp
);
7049 if (temp_mode
== BLKmode
|| temp_mode
== VOIDmode
)
7050 temp_mode
= smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
7051 rtx temp_target
= gen_reg_rtx (temp_mode
);
7052 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
7056 /* Handle calls that return BLKmode values in registers. */
7057 else if (mode
== BLKmode
&& REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
7059 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
7060 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
7064 /* If the value has aggregate type and an integral mode then, if BITSIZE
7065 is narrower than this mode and this is for big-endian data, we first
7066 need to put the value into the low-order bits for store_bit_field,
7067 except when MODE is BLKmode and BITSIZE larger than the word size
7068 (see the handling of fields larger than a word in store_bit_field).
7069 Moreover, the field may be not aligned on a byte boundary; in this
7070 case, if it has reverse storage order, it needs to be accessed as a
7071 scalar field with reverse storage order and we must first put the
7072 value into target order. */
7073 scalar_int_mode temp_mode
;
7074 if (AGGREGATE_TYPE_P (TREE_TYPE (exp
))
7075 && is_int_mode (GET_MODE (temp
), &temp_mode
))
7077 HOST_WIDE_INT size
= GET_MODE_BITSIZE (temp_mode
);
7079 reverse
= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp
));
7082 temp
= flip_storage_order (temp_mode
, temp
);
7084 gcc_checking_assert (known_le (bitsize
, size
));
7085 if (maybe_lt (bitsize
, size
)
7086 && reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
7087 /* Use of to_constant for BLKmode was checked above. */
7088 && !(mode
== BLKmode
&& bitsize
.to_constant () > BITS_PER_WORD
))
7089 temp
= expand_shift (RSHIFT_EXPR
, temp_mode
, temp
,
7090 size
- bitsize
, NULL_RTX
, 1);
7093 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7094 if (mode
!= VOIDmode
&& mode
!= BLKmode
7095 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
7096 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
7098 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7099 and BITPOS must be aligned on a byte boundary. If so, we simply do
7100 a block copy. Likewise for a BLKmode-like TARGET. */
7101 if (GET_MODE (temp
) == BLKmode
7102 && (GET_MODE (target
) == BLKmode
7104 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
7105 && multiple_p (bitpos
, BITS_PER_UNIT
)
7106 && multiple_p (bitsize
, BITS_PER_UNIT
))))
7108 gcc_assert (MEM_P (target
) && MEM_P (temp
));
7109 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
7110 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
7112 target
= adjust_address (target
, VOIDmode
, bytepos
);
7113 emit_block_move (target
, temp
,
7114 gen_int_mode (bytesize
, Pmode
),
7120 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7121 word size, we need to load the value (see again store_bit_field). */
7122 if (GET_MODE (temp
) == BLKmode
&& known_le (bitsize
, BITS_PER_WORD
))
7124 scalar_int_mode temp_mode
= smallest_int_mode_for_size (bitsize
);
7125 temp
= extract_bit_field (temp
, bitsize
, 0, 1, NULL_RTX
, temp_mode
,
7126 temp_mode
, false, NULL
);
7129 /* Store the value in the bitfield. */
7130 gcc_checking_assert (known_ge (bitpos
, 0));
7131 store_bit_field (target
, bitsize
, bitpos
,
7132 bitregion_start
, bitregion_end
,
7133 mode
, temp
, reverse
);
7139 /* Now build a reference to just the desired component. */
7140 rtx to_rtx
= adjust_address (target
, mode
,
7141 exact_div (bitpos
, BITS_PER_UNIT
));
7143 if (to_rtx
== target
)
7144 to_rtx
= copy_rtx (to_rtx
);
7146 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
7147 set_mem_alias_set (to_rtx
, alias_set
);
7149 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7150 into a target smaller than its type; handle that case now. */
7151 if (TREE_CODE (exp
) == CONSTRUCTOR
&& known_size_p (bitsize
))
7153 poly_int64 bytesize
= exact_div (bitsize
, BITS_PER_UNIT
);
7154 store_constructor (exp
, to_rtx
, 0, bytesize
, reverse
);
7158 return store_expr (exp
, to_rtx
, 0, nontemporal
, reverse
);
7162 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7163 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7164 codes and find the ultimate containing object, which we return.
7166 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7167 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7168 storage order of the field.
7169 If the position of the field is variable, we store a tree
7170 giving the variable offset (in units) in *POFFSET.
7171 This offset is in addition to the bit position.
7172 If the position is not variable, we store 0 in *POFFSET.
7174 If any of the extraction expressions is volatile,
7175 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7177 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7178 Otherwise, it is a mode that can be used to access the field.
7180 If the field describes a variable-sized object, *PMODE is set to
7181 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7182 this case, but the address of the object can be found. */
7185 get_inner_reference (tree exp
, poly_int64_pod
*pbitsize
,
7186 poly_int64_pod
*pbitpos
, tree
*poffset
,
7187 machine_mode
*pmode
, int *punsignedp
,
7188 int *preversep
, int *pvolatilep
)
7191 machine_mode mode
= VOIDmode
;
7192 bool blkmode_bitfield
= false;
7193 tree offset
= size_zero_node
;
7194 poly_offset_int bit_offset
= 0;
7196 /* First get the mode, signedness, storage order and size. We do this from
7197 just the outermost expression. */
7199 if (TREE_CODE (exp
) == COMPONENT_REF
)
7201 tree field
= TREE_OPERAND (exp
, 1);
7202 size_tree
= DECL_SIZE (field
);
7203 if (flag_strict_volatile_bitfields
> 0
7204 && TREE_THIS_VOLATILE (exp
)
7205 && DECL_BIT_FIELD_TYPE (field
)
7206 && DECL_MODE (field
) != BLKmode
)
7207 /* Volatile bitfields should be accessed in the mode of the
7208 field's type, not the mode computed based on the bit
7210 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
7211 else if (!DECL_BIT_FIELD (field
))
7213 mode
= DECL_MODE (field
);
7214 /* For vector fields re-check the target flags, as DECL_MODE
7215 could have been set with different target flags than
7216 the current function has. */
7218 && VECTOR_TYPE_P (TREE_TYPE (field
))
7219 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field
))))
7220 mode
= TYPE_MODE (TREE_TYPE (field
));
7222 else if (DECL_MODE (field
) == BLKmode
)
7223 blkmode_bitfield
= true;
7225 *punsignedp
= DECL_UNSIGNED (field
);
7227 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
7229 size_tree
= TREE_OPERAND (exp
, 1);
7230 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
7231 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
7233 /* For vector types, with the correct size of access, use the mode of
7235 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
7236 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
7237 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
7238 mode
= TYPE_MODE (TREE_TYPE (exp
));
7242 mode
= TYPE_MODE (TREE_TYPE (exp
));
7243 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
7245 if (mode
== BLKmode
)
7246 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
7248 *pbitsize
= GET_MODE_BITSIZE (mode
);
7253 if (! tree_fits_uhwi_p (size_tree
))
7254 mode
= BLKmode
, *pbitsize
= -1;
7256 *pbitsize
= tree_to_uhwi (size_tree
);
7259 *preversep
= reverse_storage_order_for_component_p (exp
);
7261 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7262 and find the ultimate containing object. */
7265 switch (TREE_CODE (exp
))
7268 bit_offset
+= wi::to_poly_offset (TREE_OPERAND (exp
, 2));
7273 tree field
= TREE_OPERAND (exp
, 1);
7274 tree this_offset
= component_ref_field_offset (exp
);
7276 /* If this field hasn't been filled in yet, don't go past it.
7277 This should only happen when folding expressions made during
7278 type construction. */
7279 if (this_offset
== 0)
7282 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
7283 bit_offset
+= wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field
));
7285 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7290 case ARRAY_RANGE_REF
:
7292 tree index
= TREE_OPERAND (exp
, 1);
7293 tree low_bound
= array_ref_low_bound (exp
);
7294 tree unit_size
= array_ref_element_size (exp
);
7296 /* We assume all arrays have sizes that are a multiple of a byte.
7297 First subtract the lower bound, if any, in the type of the
7298 index, then convert to sizetype and multiply by the size of
7299 the array element. */
7300 if (! integer_zerop (low_bound
))
7301 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
7304 offset
= size_binop (PLUS_EXPR
, offset
,
7305 size_binop (MULT_EXPR
,
7306 fold_convert (sizetype
, index
),
7315 bit_offset
+= *pbitsize
;
7318 case VIEW_CONVERT_EXPR
:
7322 /* Hand back the decl for MEM[&decl, off]. */
7323 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
7325 tree off
= TREE_OPERAND (exp
, 1);
7326 if (!integer_zerop (off
))
7328 poly_offset_int boff
= mem_ref_offset (exp
);
7329 boff
<<= LOG2_BITS_PER_UNIT
;
7332 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7340 /* If any reference in the chain is volatile, the effect is volatile. */
7341 if (TREE_THIS_VOLATILE (exp
))
7344 exp
= TREE_OPERAND (exp
, 0);
7348 /* If OFFSET is constant, see if we can return the whole thing as a
7349 constant bit position. Make sure to handle overflow during
7351 if (poly_int_tree_p (offset
))
7353 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset
),
7354 TYPE_PRECISION (sizetype
));
7355 tem
<<= LOG2_BITS_PER_UNIT
;
7357 if (tem
.to_shwi (pbitpos
))
7358 *poffset
= offset
= NULL_TREE
;
7361 /* Otherwise, split it up. */
7364 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7365 if (!bit_offset
.to_shwi (pbitpos
) || maybe_lt (*pbitpos
, 0))
7367 *pbitpos
= num_trailing_bits (bit_offset
.force_shwi ());
7368 poly_offset_int bytes
= bits_to_bytes_round_down (bit_offset
);
7369 offset
= size_binop (PLUS_EXPR
, offset
,
7370 build_int_cst (sizetype
, bytes
.force_shwi ()));
7376 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7377 if (mode
== VOIDmode
7379 && multiple_p (*pbitpos
, BITS_PER_UNIT
)
7380 && multiple_p (*pbitsize
, BITS_PER_UNIT
))
7388 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7390 static unsigned HOST_WIDE_INT
7391 target_align (const_tree target
)
7393 /* We might have a chain of nested references with intermediate misaligning
7394 bitfields components, so need to recurse to find out. */
7396 unsigned HOST_WIDE_INT this_align
, outer_align
;
7398 switch (TREE_CODE (target
))
7404 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7405 outer_align
= target_align (TREE_OPERAND (target
, 0));
7406 return MIN (this_align
, outer_align
);
7409 case ARRAY_RANGE_REF
:
7410 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7411 outer_align
= target_align (TREE_OPERAND (target
, 0));
7412 return MIN (this_align
, outer_align
);
7415 case NON_LVALUE_EXPR
:
7416 case VIEW_CONVERT_EXPR
:
7417 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7418 outer_align
= target_align (TREE_OPERAND (target
, 0));
7419 return MAX (this_align
, outer_align
);
7422 return TYPE_ALIGN (TREE_TYPE (target
));
7427 /* Given an rtx VALUE that may contain additions and multiplications, return
7428 an equivalent value that just refers to a register, memory, or constant.
7429 This is done by generating instructions to perform the arithmetic and
7430 returning a pseudo-register containing the value.
7432 The returned value may be a REG, SUBREG, MEM or constant. */
7435 force_operand (rtx value
, rtx target
)
7438 /* Use subtarget as the target for operand 0 of a binary operation. */
7439 rtx subtarget
= get_subtarget (target
);
7440 enum rtx_code code
= GET_CODE (value
);
7442 /* Check for subreg applied to an expression produced by loop optimizer. */
7444 && !REG_P (SUBREG_REG (value
))
7445 && !MEM_P (SUBREG_REG (value
)))
7448 = simplify_gen_subreg (GET_MODE (value
),
7449 force_reg (GET_MODE (SUBREG_REG (value
)),
7450 force_operand (SUBREG_REG (value
),
7452 GET_MODE (SUBREG_REG (value
)),
7453 SUBREG_BYTE (value
));
7454 code
= GET_CODE (value
);
7457 /* Check for a PIC address load. */
7458 if ((code
== PLUS
|| code
== MINUS
)
7459 && XEXP (value
, 0) == pic_offset_table_rtx
7460 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7461 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7462 || GET_CODE (XEXP (value
, 1)) == CONST
))
7465 subtarget
= gen_reg_rtx (GET_MODE (value
));
7466 emit_move_insn (subtarget
, value
);
7470 if (ARITHMETIC_P (value
))
7472 op2
= XEXP (value
, 1);
7473 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7475 if (code
== MINUS
&& CONST_INT_P (op2
))
7478 op2
= negate_rtx (GET_MODE (value
), op2
);
7481 /* Check for an addition with OP2 a constant integer and our first
7482 operand a PLUS of a virtual register and something else. In that
7483 case, we want to emit the sum of the virtual register and the
7484 constant first and then add the other value. This allows virtual
7485 register instantiation to simply modify the constant rather than
7486 creating another one around this addition. */
7487 if (code
== PLUS
&& CONST_INT_P (op2
)
7488 && GET_CODE (XEXP (value
, 0)) == PLUS
7489 && REG_P (XEXP (XEXP (value
, 0), 0))
7490 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7491 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7493 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7494 XEXP (XEXP (value
, 0), 0), op2
,
7495 subtarget
, 0, OPTAB_LIB_WIDEN
);
7496 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7497 force_operand (XEXP (XEXP (value
,
7499 target
, 0, OPTAB_LIB_WIDEN
);
7502 op1
= force_operand (XEXP (value
, 0), subtarget
);
7503 op2
= force_operand (op2
, NULL_RTX
);
7507 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7509 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7510 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7511 target
, 1, OPTAB_LIB_WIDEN
);
7513 return expand_divmod (0,
7514 FLOAT_MODE_P (GET_MODE (value
))
7515 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7516 GET_MODE (value
), op1
, op2
, target
, 0);
7518 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7521 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7524 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7527 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7528 target
, 0, OPTAB_LIB_WIDEN
);
7530 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7531 target
, 1, OPTAB_LIB_WIDEN
);
7534 if (UNARY_P (value
))
7537 target
= gen_reg_rtx (GET_MODE (value
));
7538 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7545 case FLOAT_TRUNCATE
:
7546 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7551 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7555 case UNSIGNED_FLOAT
:
7556 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7560 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7564 #ifdef INSN_SCHEDULING
7565 /* On machines that have insn scheduling, we want all memory reference to be
7566 explicit, so we need to deal with such paradoxical SUBREGs. */
7567 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7569 = simplify_gen_subreg (GET_MODE (value
),
7570 force_reg (GET_MODE (SUBREG_REG (value
)),
7571 force_operand (SUBREG_REG (value
),
7573 GET_MODE (SUBREG_REG (value
)),
7574 SUBREG_BYTE (value
));
7580 /* Subroutine of expand_expr: return nonzero iff there is no way that
7581 EXP can reference X, which is being modified. TOP_P is nonzero if this
7582 call is going to be used to determine whether we need a temporary
7583 for EXP, as opposed to a recursive call to this function.
7585 It is always safe for this routine to return zero since it merely
7586 searches for optimization opportunities. */
7589 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7595 /* If EXP has varying size, we MUST use a target since we currently
7596 have no way of allocating temporaries of variable size
7597 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7598 So we assume here that something at a higher level has prevented a
7599 clash. This is somewhat bogus, but the best we can do. Only
7600 do this when X is BLKmode and when we are at the top level. */
7601 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7602 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7603 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7604 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7605 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7607 && GET_MODE (x
) == BLKmode
)
7608 /* If X is in the outgoing argument area, it is always safe. */
7610 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7611 || (GET_CODE (XEXP (x
, 0)) == PLUS
7612 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7615 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7616 find the underlying pseudo. */
7617 if (GET_CODE (x
) == SUBREG
)
7620 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7624 /* Now look at our tree code and possibly recurse. */
7625 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7627 case tcc_declaration
:
7628 exp_rtl
= DECL_RTL_IF_SET (exp
);
7634 case tcc_exceptional
:
7635 if (TREE_CODE (exp
) == TREE_LIST
)
7639 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7641 exp
= TREE_CHAIN (exp
);
7644 if (TREE_CODE (exp
) != TREE_LIST
)
7645 return safe_from_p (x
, exp
, 0);
7648 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7650 constructor_elt
*ce
;
7651 unsigned HOST_WIDE_INT idx
;
7653 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7654 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7655 || !safe_from_p (x
, ce
->value
, 0))
7659 else if (TREE_CODE (exp
) == ERROR_MARK
)
7660 return 1; /* An already-visited SAVE_EXPR? */
7665 /* The only case we look at here is the DECL_INITIAL inside a
7667 return (TREE_CODE (exp
) != DECL_EXPR
7668 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7669 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7670 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7673 case tcc_comparison
:
7674 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7679 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7681 case tcc_expression
:
7684 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7685 the expression. If it is set, we conflict iff we are that rtx or
7686 both are in memory. Otherwise, we check all operands of the
7687 expression recursively. */
7689 switch (TREE_CODE (exp
))
7692 /* If the operand is static or we are static, we can't conflict.
7693 Likewise if we don't conflict with the operand at all. */
7694 if (staticp (TREE_OPERAND (exp
, 0))
7695 || TREE_STATIC (exp
)
7696 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7699 /* Otherwise, the only way this can conflict is if we are taking
7700 the address of a DECL a that address if part of X, which is
7702 exp
= TREE_OPERAND (exp
, 0);
7705 if (!DECL_RTL_SET_P (exp
)
7706 || !MEM_P (DECL_RTL (exp
)))
7709 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7715 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7716 get_alias_set (exp
)))
7721 /* Assume that the call will clobber all hard registers and
7723 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7728 case WITH_CLEANUP_EXPR
:
7729 case CLEANUP_POINT_EXPR
:
7730 /* Lowered by gimplify.c. */
7734 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7740 /* If we have an rtx, we do not need to scan our operands. */
7744 nops
= TREE_OPERAND_LENGTH (exp
);
7745 for (i
= 0; i
< nops
; i
++)
7746 if (TREE_OPERAND (exp
, i
) != 0
7747 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7753 /* Should never get a type here. */
7757 /* If we have an rtl, find any enclosed object. Then see if we conflict
7761 if (GET_CODE (exp_rtl
) == SUBREG
)
7763 exp_rtl
= SUBREG_REG (exp_rtl
);
7765 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7769 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7770 are memory and they conflict. */
7771 return ! (rtx_equal_p (x
, exp_rtl
)
7772 || (MEM_P (x
) && MEM_P (exp_rtl
)
7773 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7776 /* If we reach here, it is safe. */
7781 /* Return the highest power of two that EXP is known to be a multiple of.
7782 This is used in updating alignment of MEMs in array references. */
7784 unsigned HOST_WIDE_INT
7785 highest_pow2_factor (const_tree exp
)
7787 unsigned HOST_WIDE_INT ret
;
7788 int trailing_zeros
= tree_ctz (exp
);
7789 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7790 return BIGGEST_ALIGNMENT
;
7791 ret
= HOST_WIDE_INT_1U
<< trailing_zeros
;
7792 if (ret
> BIGGEST_ALIGNMENT
)
7793 return BIGGEST_ALIGNMENT
;
7797 /* Similar, except that the alignment requirements of TARGET are
7798 taken into account. Assume it is at least as aligned as its
7799 type, unless it is a COMPONENT_REF in which case the layout of
7800 the structure gives the alignment. */
7802 static unsigned HOST_WIDE_INT
7803 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7805 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7806 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7808 return MAX (factor
, talign
);
7811 /* Convert the tree comparison code TCODE to the rtl one where the
7812 signedness is UNSIGNEDP. */
7814 static enum rtx_code
7815 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7827 code
= unsignedp
? LTU
: LT
;
7830 code
= unsignedp
? LEU
: LE
;
7833 code
= unsignedp
? GTU
: GT
;
7836 code
= unsignedp
? GEU
: GE
;
7838 case UNORDERED_EXPR
:
7869 /* Subroutine of expand_expr. Expand the two operands of a binary
7870 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7871 The value may be stored in TARGET if TARGET is nonzero. The
7872 MODIFIER argument is as documented by expand_expr. */
7875 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7876 enum expand_modifier modifier
)
7878 if (! safe_from_p (target
, exp1
, 1))
7880 if (operand_equal_p (exp0
, exp1
, 0))
7882 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7883 *op1
= copy_rtx (*op0
);
7887 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7888 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7893 /* Return a MEM that contains constant EXP. DEFER is as for
7894 output_constant_def and MODIFIER is as for expand_expr. */
7897 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7901 mem
= output_constant_def (exp
, defer
);
7902 if (modifier
!= EXPAND_INITIALIZER
)
7903 mem
= use_anchored_address (mem
);
7907 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7908 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7911 expand_expr_addr_expr_1 (tree exp
, rtx target
, scalar_int_mode tmode
,
7912 enum expand_modifier modifier
, addr_space_t as
)
7914 rtx result
, subtarget
;
7916 poly_int64 bitsize
, bitpos
;
7917 int unsignedp
, reversep
, volatilep
= 0;
7920 /* If we are taking the address of a constant and are at the top level,
7921 we have to use output_constant_def since we can't call force_const_mem
7923 /* ??? This should be considered a front-end bug. We should not be
7924 generating ADDR_EXPR of something that isn't an LVALUE. The only
7925 exception here is STRING_CST. */
7926 if (CONSTANT_CLASS_P (exp
))
7928 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7929 if (modifier
< EXPAND_SUM
)
7930 result
= force_operand (result
, target
);
7934 /* Everything must be something allowed by is_gimple_addressable. */
7935 switch (TREE_CODE (exp
))
7938 /* This case will happen via recursion for &a->b. */
7939 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7943 tree tem
= TREE_OPERAND (exp
, 0);
7944 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7945 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7946 return expand_expr (tem
, target
, tmode
, modifier
);
7949 case TARGET_MEM_REF
:
7950 return addr_for_mem_ref (exp
, as
, true);
7953 /* Expand the initializer like constants above. */
7954 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7956 if (modifier
< EXPAND_SUM
)
7957 result
= force_operand (result
, target
);
7961 /* The real part of the complex number is always first, therefore
7962 the address is the same as the address of the parent object. */
7965 inner
= TREE_OPERAND (exp
, 0);
7969 /* The imaginary part of the complex number is always second.
7970 The expression is therefore always offset by the size of the
7973 bitpos
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp
)));
7974 inner
= TREE_OPERAND (exp
, 0);
7977 case COMPOUND_LITERAL_EXPR
:
7978 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7979 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7980 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7981 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7982 the initializers aren't gimplified. */
7983 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7984 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7985 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7986 target
, tmode
, modifier
, as
);
7989 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7990 expand_expr, as that can have various side effects; LABEL_DECLs for
7991 example, may not have their DECL_RTL set yet. Expand the rtl of
7992 CONSTRUCTORs too, which should yield a memory reference for the
7993 constructor's contents. Assume language specific tree nodes can
7994 be expanded in some interesting way. */
7995 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7997 || TREE_CODE (exp
) == CONSTRUCTOR
7998 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
8000 result
= expand_expr (exp
, target
, tmode
,
8001 modifier
== EXPAND_INITIALIZER
8002 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
8004 /* If the DECL isn't in memory, then the DECL wasn't properly
8005 marked TREE_ADDRESSABLE, which will be either a front-end
8006 or a tree optimizer bug. */
8008 gcc_assert (MEM_P (result
));
8009 result
= XEXP (result
, 0);
8011 /* ??? Is this needed anymore? */
8013 TREE_USED (exp
) = 1;
8015 if (modifier
!= EXPAND_INITIALIZER
8016 && modifier
!= EXPAND_CONST_ADDRESS
8017 && modifier
!= EXPAND_SUM
)
8018 result
= force_operand (result
, target
);
8022 /* Pass FALSE as the last argument to get_inner_reference although
8023 we are expanding to RTL. The rationale is that we know how to
8024 handle "aligning nodes" here: we can just bypass them because
8025 they won't change the final object whose address will be returned
8026 (they actually exist only for that purpose). */
8027 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
8028 &unsignedp
, &reversep
, &volatilep
);
8032 /* We must have made progress. */
8033 gcc_assert (inner
!= exp
);
8035 subtarget
= offset
|| maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8036 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8037 inner alignment, force the inner to be sufficiently aligned. */
8038 if (CONSTANT_CLASS_P (inner
)
8039 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
8041 inner
= copy_node (inner
);
8042 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
8043 SET_TYPE_ALIGN (TREE_TYPE (inner
), TYPE_ALIGN (TREE_TYPE (exp
)));
8044 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
8046 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
8052 if (modifier
!= EXPAND_NORMAL
)
8053 result
= force_operand (result
, NULL
);
8054 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
8055 modifier
== EXPAND_INITIALIZER
8056 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
8058 /* expand_expr is allowed to return an object in a mode other
8059 than TMODE. If it did, we need to convert. */
8060 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
8061 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
8062 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
8063 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8064 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
8066 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8067 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
8070 subtarget
= maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8071 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
8072 1, OPTAB_LIB_WIDEN
);
8076 if (maybe_ne (bitpos
, 0))
8078 /* Someone beforehand should have rejected taking the address
8079 of an object that isn't byte-aligned. */
8080 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
8081 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8082 result
= plus_constant (tmode
, result
, bytepos
);
8083 if (modifier
< EXPAND_SUM
)
8084 result
= force_operand (result
, target
);
8090 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8091 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8094 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
8095 enum expand_modifier modifier
)
8097 addr_space_t as
= ADDR_SPACE_GENERIC
;
8098 scalar_int_mode address_mode
= Pmode
;
8099 scalar_int_mode pointer_mode
= ptr_mode
;
8103 /* Target mode of VOIDmode says "whatever's natural". */
8104 if (tmode
== VOIDmode
)
8105 tmode
= TYPE_MODE (TREE_TYPE (exp
));
8107 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
8109 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
8110 address_mode
= targetm
.addr_space
.address_mode (as
);
8111 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
8114 /* We can get called with some Weird Things if the user does silliness
8115 like "(short) &a". In that case, convert_memory_address won't do
8116 the right thing, so ignore the given target mode. */
8117 scalar_int_mode new_tmode
= (tmode
== pointer_mode
8121 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
8122 new_tmode
, modifier
, as
);
8124 /* Despite expand_expr claims concerning ignoring TMODE when not
8125 strictly convenient, stuff breaks if we don't honor it. Note
8126 that combined with the above, we only do this for pointer modes. */
8127 rmode
= GET_MODE (result
);
8128 if (rmode
== VOIDmode
)
8130 if (rmode
!= new_tmode
)
8131 result
= convert_memory_address_addr_space (new_tmode
, result
, as
);
8136 /* Generate code for computing CONSTRUCTOR EXP.
8137 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8138 is TRUE, instead of creating a temporary variable in memory
8139 NULL is returned and the caller needs to handle it differently. */
8142 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
8143 bool avoid_temp_mem
)
8145 tree type
= TREE_TYPE (exp
);
8146 machine_mode mode
= TYPE_MODE (type
);
8148 /* Try to avoid creating a temporary at all. This is possible
8149 if all of the initializer is zero.
8150 FIXME: try to handle all [0..255] initializers we can handle
8152 if (TREE_STATIC (exp
)
8153 && !TREE_ADDRESSABLE (exp
)
8154 && target
!= 0 && mode
== BLKmode
8155 && all_zeros_p (exp
))
8157 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
8161 /* All elts simple constants => refer to a constant in memory. But
8162 if this is a non-BLKmode mode, let it store a field at a time
8163 since that should make a CONST_INT, CONST_WIDE_INT or
8164 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8165 use, it is best to store directly into the target unless the type
8166 is large enough that memcpy will be used. If we are making an
8167 initializer and all operands are constant, put it in memory as
8170 FIXME: Avoid trying to fill vector constructors piece-meal.
8171 Output them with output_constant_def below unless we're sure
8172 they're zeros. This should go away when vector initializers
8173 are treated like VECTOR_CST instead of arrays. */
8174 if ((TREE_STATIC (exp
)
8175 && ((mode
== BLKmode
8176 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
8177 || TREE_ADDRESSABLE (exp
)
8178 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
8179 && (! can_move_by_pieces
8180 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
8182 && ! mostly_zeros_p (exp
))))
8183 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
8184 && TREE_CONSTANT (exp
)))
8191 constructor
= expand_expr_constant (exp
, 1, modifier
);
8193 if (modifier
!= EXPAND_CONST_ADDRESS
8194 && modifier
!= EXPAND_INITIALIZER
8195 && modifier
!= EXPAND_SUM
)
8196 constructor
= validize_mem (constructor
);
8201 /* Handle calls that pass values in multiple non-contiguous
8202 locations. The Irix 6 ABI has examples of this. */
8203 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
8204 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
8209 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
8212 store_constructor (exp
, target
, 0, int_expr_size (exp
), false);
8217 /* expand_expr: generate code for computing expression EXP.
8218 An rtx for the computed value is returned. The value is never null.
8219 In the case of a void EXP, const0_rtx is returned.
8221 The value may be stored in TARGET if TARGET is nonzero.
8222 TARGET is just a suggestion; callers must assume that
8223 the rtx returned may not be the same as TARGET.
8225 If TARGET is CONST0_RTX, it means that the value will be ignored.
8227 If TMODE is not VOIDmode, it suggests generating the
8228 result in mode TMODE. But this is done only when convenient.
8229 Otherwise, TMODE is ignored and the value generated in its natural mode.
8230 TMODE is just a suggestion; callers must assume that
8231 the rtx returned may not have mode TMODE.
8233 Note that TARGET may have neither TMODE nor MODE. In that case, it
8234 probably will not be used.
8236 If MODIFIER is EXPAND_SUM then when EXP is an addition
8237 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8238 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8239 products as above, or REG or MEM, or constant.
8240 Ordinarily in such cases we would output mul or add instructions
8241 and then return a pseudo reg containing the sum.
8243 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8244 it also marks a label as absolutely required (it can't be dead).
8245 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8246 This is used for outputting expressions used in initializers.
8248 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8249 with a constant address even if that address is not normally legitimate.
8250 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8252 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8253 a call parameter. Such targets require special care as we haven't yet
8254 marked TARGET so that it's safe from being trashed by libcalls. We
8255 don't want to use TARGET for anything but the final result;
8256 Intermediate values must go elsewhere. Additionally, calls to
8257 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8259 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8260 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8261 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8262 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8264 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8265 then *ALT_RTL is set to TARGET (before legitimziation).
8267 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8268 In this case, we don't adjust a returned MEM rtx that wouldn't be
8269 sufficiently aligned for its mode; instead, it's up to the caller
8270 to deal with it afterwards. This is used to make sure that unaligned
8271 base objects for which out-of-bounds accesses are supported, for
8272 example record types with trailing arrays, aren't realigned behind
8273 the back of the caller.
8274 The normal operating mode is to pass FALSE for this parameter. */
8277 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8278 enum expand_modifier modifier
, rtx
*alt_rtl
,
8279 bool inner_reference_p
)
8283 /* Handle ERROR_MARK before anybody tries to access its type. */
8284 if (TREE_CODE (exp
) == ERROR_MARK
8285 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8287 ret
= CONST0_RTX (tmode
);
8288 return ret
? ret
: const0_rtx
;
8291 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8296 /* Try to expand the conditional expression which is represented by
8297 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8298 return the rtl reg which represents the result. Otherwise return
8302 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8303 tree treeop1 ATTRIBUTE_UNUSED
,
8304 tree treeop2 ATTRIBUTE_UNUSED
)
8307 rtx op00
, op01
, op1
, op2
;
8308 enum rtx_code comparison_code
;
8309 machine_mode comparison_mode
;
8312 tree type
= TREE_TYPE (treeop1
);
8313 int unsignedp
= TYPE_UNSIGNED (type
);
8314 machine_mode mode
= TYPE_MODE (type
);
8315 machine_mode orig_mode
= mode
;
8316 static bool expanding_cond_expr_using_cmove
= false;
8318 /* Conditional move expansion can end up TERing two operands which,
8319 when recursively hitting conditional expressions can result in
8320 exponential behavior if the cmove expansion ultimatively fails.
8321 It's hardly profitable to TER a cmove into a cmove so avoid doing
8322 that by failing early if we end up recursing. */
8323 if (expanding_cond_expr_using_cmove
)
8326 /* If we cannot do a conditional move on the mode, try doing it
8327 with the promoted mode. */
8328 if (!can_conditionally_move_p (mode
))
8330 mode
= promote_mode (type
, mode
, &unsignedp
);
8331 if (!can_conditionally_move_p (mode
))
8333 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8336 temp
= assign_temp (type
, 0, 1);
8338 expanding_cond_expr_using_cmove
= true;
8340 expand_operands (treeop1
, treeop2
,
8341 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8343 if (TREE_CODE (treeop0
) == SSA_NAME
8344 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8346 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8347 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8348 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8349 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8350 comparison_mode
= TYPE_MODE (type
);
8351 unsignedp
= TYPE_UNSIGNED (type
);
8352 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8354 else if (COMPARISON_CLASS_P (treeop0
))
8356 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8357 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8358 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8359 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8360 unsignedp
= TYPE_UNSIGNED (type
);
8361 comparison_mode
= TYPE_MODE (type
);
8362 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8366 op00
= expand_normal (treeop0
);
8368 comparison_code
= NE
;
8369 comparison_mode
= GET_MODE (op00
);
8370 if (comparison_mode
== VOIDmode
)
8371 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8373 expanding_cond_expr_using_cmove
= false;
8375 if (GET_MODE (op1
) != mode
)
8376 op1
= gen_lowpart (mode
, op1
);
8378 if (GET_MODE (op2
) != mode
)
8379 op2
= gen_lowpart (mode
, op2
);
8381 /* Try to emit the conditional move. */
8382 insn
= emit_conditional_move (temp
, comparison_code
,
8383 op00
, op01
, comparison_mode
,
8387 /* If we could do the conditional move, emit the sequence,
8391 rtx_insn
*seq
= get_insns ();
8394 return convert_modes (orig_mode
, mode
, temp
, 0);
8397 /* Otherwise discard the sequence and fall back to code with
8403 /* A helper function for expand_expr_real_2 to be used with a
8404 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8405 is nonzero, with alignment ALIGN in bits.
8406 Store the value at TARGET if possible (if TARGET is nonzero).
8407 Regardless of TARGET, we return the rtx for where the value is placed.
8408 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8409 then *ALT_RTL is set to TARGET (before legitimziation). */
8412 expand_misaligned_mem_ref (rtx temp
, machine_mode mode
, int unsignedp
,
8413 unsigned int align
, rtx target
, rtx
*alt_rtl
)
8415 enum insn_code icode
;
8417 if ((icode
= optab_handler (movmisalign_optab
, mode
))
8418 != CODE_FOR_nothing
)
8420 class expand_operand ops
[2];
8422 /* We've already validated the memory, and we're creating a
8423 new pseudo destination. The predicates really can't fail,
8424 nor can the generator. */
8425 create_output_operand (&ops
[0], NULL_RTX
, mode
);
8426 create_fixed_operand (&ops
[1], temp
);
8427 expand_insn (icode
, 2, ops
);
8428 temp
= ops
[0].value
;
8430 else if (targetm
.slow_unaligned_access (mode
, align
))
8431 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
8432 0, unsignedp
, target
,
8433 mode
, mode
, false, alt_rtl
);
8438 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8439 enum expand_modifier modifier
)
8441 rtx op0
, op1
, op2
, temp
;
8442 rtx_code_label
*lab
;
8446 scalar_int_mode int_mode
;
8447 enum tree_code code
= ops
->code
;
8449 rtx subtarget
, original_target
;
8451 bool reduce_bit_field
;
8452 location_t loc
= ops
->location
;
8453 tree treeop0
, treeop1
, treeop2
;
8454 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8455 ? reduce_to_bit_field_precision ((expr), \
8461 mode
= TYPE_MODE (type
);
8462 unsignedp
= TYPE_UNSIGNED (type
);
8468 /* We should be called only on simple (binary or unary) expressions,
8469 exactly those that are valid in gimple expressions that aren't
8470 GIMPLE_SINGLE_RHS (or invalid). */
8471 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8472 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8473 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8475 ignore
= (target
== const0_rtx
8476 || ((CONVERT_EXPR_CODE_P (code
)
8477 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8478 && TREE_CODE (type
) == VOID_TYPE
));
8480 /* We should be called only if we need the result. */
8481 gcc_assert (!ignore
);
8483 /* An operation in what may be a bit-field type needs the
8484 result to be reduced to the precision of the bit-field type,
8485 which is narrower than that of the type's mode. */
8486 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8487 && !type_has_mode_precision_p (type
));
8489 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8492 /* Use subtarget as the target for operand 0 of a binary operation. */
8493 subtarget
= get_subtarget (target
);
8494 original_target
= target
;
8498 case NON_LVALUE_EXPR
:
8501 if (treeop0
== error_mark_node
)
8504 if (TREE_CODE (type
) == UNION_TYPE
)
8506 tree valtype
= TREE_TYPE (treeop0
);
8508 /* If both input and output are BLKmode, this conversion isn't doing
8509 anything except possibly changing memory attribute. */
8510 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8512 rtx result
= expand_expr (treeop0
, target
, tmode
,
8515 result
= copy_rtx (result
);
8516 set_mem_attributes (result
, type
, 0);
8522 if (TYPE_MODE (type
) != BLKmode
)
8523 target
= gen_reg_rtx (TYPE_MODE (type
));
8525 target
= assign_temp (type
, 1, 1);
8529 /* Store data into beginning of memory target. */
8530 store_expr (treeop0
,
8531 adjust_address (target
, TYPE_MODE (valtype
), 0),
8532 modifier
== EXPAND_STACK_PARM
,
8533 false, TYPE_REVERSE_STORAGE_ORDER (type
));
8537 gcc_assert (REG_P (target
)
8538 && !TYPE_REVERSE_STORAGE_ORDER (type
));
8540 /* Store this field into a union of the proper type. */
8541 poly_uint64 op0_size
8542 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0
)));
8543 poly_uint64 union_size
= GET_MODE_BITSIZE (mode
);
8544 store_field (target
,
8545 /* The conversion must be constructed so that
8546 we know at compile time how many bits
8548 ordered_min (op0_size
, union_size
),
8549 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0,
8553 /* Return the entire union. */
8557 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8559 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8562 /* If the signedness of the conversion differs and OP0 is
8563 a promoted SUBREG, clear that indication since we now
8564 have to do the proper extension. */
8565 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8566 && GET_CODE (op0
) == SUBREG
)
8567 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8569 return REDUCE_BIT_FIELD (op0
);
8572 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8573 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8574 if (GET_MODE (op0
) == mode
)
8577 /* If OP0 is a constant, just convert it into the proper mode. */
8578 else if (CONSTANT_P (op0
))
8580 tree inner_type
= TREE_TYPE (treeop0
);
8581 machine_mode inner_mode
= GET_MODE (op0
);
8583 if (inner_mode
== VOIDmode
)
8584 inner_mode
= TYPE_MODE (inner_type
);
8586 if (modifier
== EXPAND_INITIALIZER
)
8587 op0
= lowpart_subreg (mode
, op0
, inner_mode
);
8589 op0
= convert_modes (mode
, inner_mode
, op0
,
8590 TYPE_UNSIGNED (inner_type
));
8593 else if (modifier
== EXPAND_INITIALIZER
)
8594 op0
= gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8595 ? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8597 else if (target
== 0)
8598 op0
= convert_to_mode (mode
, op0
,
8599 TYPE_UNSIGNED (TREE_TYPE
8603 convert_move (target
, op0
,
8604 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8608 return REDUCE_BIT_FIELD (op0
);
8610 case ADDR_SPACE_CONVERT_EXPR
:
8612 tree treeop0_type
= TREE_TYPE (treeop0
);
8614 gcc_assert (POINTER_TYPE_P (type
));
8615 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8617 addr_space_t as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8618 addr_space_t as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8620 /* Conversions between pointers to the same address space should
8621 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8622 gcc_assert (as_to
!= as_from
);
8624 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8626 /* Ask target code to handle conversion between pointers
8627 to overlapping address spaces. */
8628 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8629 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8631 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8635 /* For disjoint address spaces, converting anything but a null
8636 pointer invokes undefined behavior. We truncate or extend the
8637 value as if we'd converted via integers, which handles 0 as
8638 required, and all others as the programmer likely expects. */
8639 #ifndef POINTERS_EXTEND_UNSIGNED
8640 const int POINTERS_EXTEND_UNSIGNED
= 1;
8642 op0
= convert_modes (mode
, TYPE_MODE (treeop0_type
),
8643 op0
, POINTERS_EXTEND_UNSIGNED
);
8649 case POINTER_PLUS_EXPR
:
8650 /* Even though the sizetype mode and the pointer's mode can be different
8651 expand is able to handle this correctly and get the correct result out
8652 of the PLUS_EXPR code. */
8653 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8654 if sizetype precision is smaller than pointer precision. */
8655 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8656 treeop1
= fold_convert_loc (loc
, type
,
8657 fold_convert_loc (loc
, ssizetype
,
8659 /* If sizetype precision is larger than pointer precision, truncate the
8660 offset to have matching modes. */
8661 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8662 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8666 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8667 something else, make sure we add the register to the constant and
8668 then to the other thing. This case can occur during strength
8669 reduction and doing it this way will produce better code if the
8670 frame pointer or argument pointer is eliminated.
8672 fold-const.c will ensure that the constant is always in the inner
8673 PLUS_EXPR, so the only case we need to do anything about is if
8674 sp, ap, or fp is our second argument, in which case we must swap
8675 the innermost first argument and our second argument. */
8677 if (TREE_CODE (treeop0
) == PLUS_EXPR
8678 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8680 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8681 || DECL_RTL (treeop1
) == stack_pointer_rtx
8682 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8687 /* If the result is to be ptr_mode and we are adding an integer to
8688 something, we might be forming a constant. So try to use
8689 plus_constant. If it produces a sum and we can't accept it,
8690 use force_operand. This allows P = &ARR[const] to generate
8691 efficient code on machines where a SYMBOL_REF is not a valid
8694 If this is an EXPAND_SUM call, always return the sum. */
8695 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8696 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8698 if (modifier
== EXPAND_STACK_PARM
)
8700 if (TREE_CODE (treeop0
) == INTEGER_CST
8701 && HWI_COMPUTABLE_MODE_P (mode
)
8702 && TREE_CONSTANT (treeop1
))
8706 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8708 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8710 /* Use wi::shwi to ensure that the constant is
8711 truncated according to the mode of OP1, then sign extended
8712 to a HOST_WIDE_INT. Using the constant directly can result
8713 in non-canonical RTL in a 64x32 cross compile. */
8714 wc
= TREE_INT_CST_LOW (treeop0
);
8716 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8717 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8718 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8719 op1
= force_operand (op1
, target
);
8720 return REDUCE_BIT_FIELD (op1
);
8723 else if (TREE_CODE (treeop1
) == INTEGER_CST
8724 && HWI_COMPUTABLE_MODE_P (mode
)
8725 && TREE_CONSTANT (treeop0
))
8729 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8731 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8732 (modifier
== EXPAND_INITIALIZER
8733 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8734 if (! CONSTANT_P (op0
))
8736 op1
= expand_expr (treeop1
, NULL_RTX
,
8737 VOIDmode
, modifier
);
8738 /* Return a PLUS if modifier says it's OK. */
8739 if (modifier
== EXPAND_SUM
8740 || modifier
== EXPAND_INITIALIZER
)
8741 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8744 /* Use wi::shwi to ensure that the constant is
8745 truncated according to the mode of OP1, then sign extended
8746 to a HOST_WIDE_INT. Using the constant directly can result
8747 in non-canonical RTL in a 64x32 cross compile. */
8748 wc
= TREE_INT_CST_LOW (treeop1
);
8750 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8751 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8752 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8753 op0
= force_operand (op0
, target
);
8754 return REDUCE_BIT_FIELD (op0
);
8758 /* Use TER to expand pointer addition of a negated value
8759 as pointer subtraction. */
8760 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8761 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8762 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8763 && TREE_CODE (treeop1
) == SSA_NAME
8764 && TYPE_MODE (TREE_TYPE (treeop0
))
8765 == TYPE_MODE (TREE_TYPE (treeop1
)))
8767 gimple
*def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8770 treeop1
= gimple_assign_rhs1 (def
);
8776 /* No sense saving up arithmetic to be done
8777 if it's all in the wrong mode to form part of an address.
8778 And force_operand won't know whether to sign-extend or
8780 if (modifier
!= EXPAND_INITIALIZER
8781 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8783 expand_operands (treeop0
, treeop1
,
8784 subtarget
, &op0
, &op1
, modifier
);
8785 if (op0
== const0_rtx
)
8787 if (op1
== const0_rtx
)
8792 expand_operands (treeop0
, treeop1
,
8793 subtarget
, &op0
, &op1
, modifier
);
8794 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8797 case POINTER_DIFF_EXPR
:
8799 /* For initializers, we are allowed to return a MINUS of two
8800 symbolic constants. Here we handle all cases when both operands
8802 /* Handle difference of two symbolic constants,
8803 for the sake of an initializer. */
8804 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8805 && really_constant_p (treeop0
)
8806 && really_constant_p (treeop1
))
8808 expand_operands (treeop0
, treeop1
,
8809 NULL_RTX
, &op0
, &op1
, modifier
);
8810 return simplify_gen_binary (MINUS
, mode
, op0
, op1
);
8813 /* No sense saving up arithmetic to be done
8814 if it's all in the wrong mode to form part of an address.
8815 And force_operand won't know whether to sign-extend or
8817 if (modifier
!= EXPAND_INITIALIZER
8818 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8821 expand_operands (treeop0
, treeop1
,
8822 subtarget
, &op0
, &op1
, modifier
);
8824 /* Convert A - const to A + (-const). */
8825 if (CONST_INT_P (op1
))
8827 op1
= negate_rtx (mode
, op1
);
8828 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8833 case WIDEN_MULT_PLUS_EXPR
:
8834 case WIDEN_MULT_MINUS_EXPR
:
8835 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8836 op2
= expand_normal (treeop2
);
8837 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8841 case WIDEN_MULT_EXPR
:
8842 /* If first operand is constant, swap them.
8843 Thus the following special case checks need only
8844 check the second operand. */
8845 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8846 std::swap (treeop0
, treeop1
);
8848 /* First, check if we have a multiplication of one signed and one
8849 unsigned operand. */
8850 if (TREE_CODE (treeop1
) != INTEGER_CST
8851 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8852 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8854 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8855 this_optab
= usmul_widen_optab
;
8856 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8857 != CODE_FOR_nothing
)
8859 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8860 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8863 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8865 /* op0 and op1 might still be constant, despite the above
8866 != INTEGER_CST check. Handle it. */
8867 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8869 op0
= convert_modes (mode
, innermode
, op0
, true);
8870 op1
= convert_modes (mode
, innermode
, op1
, false);
8871 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8872 target
, unsignedp
));
8877 /* Check for a multiplication with matching signedness. */
8878 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8879 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8880 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8881 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8883 tree op0type
= TREE_TYPE (treeop0
);
8884 machine_mode innermode
= TYPE_MODE (op0type
);
8885 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8886 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8887 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8889 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8891 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8892 != CODE_FOR_nothing
)
8894 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8896 /* op0 and op1 might still be constant, despite the above
8897 != INTEGER_CST check. Handle it. */
8898 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8901 op0
= convert_modes (mode
, innermode
, op0
, zextend_p
);
8903 = convert_modes (mode
, innermode
, op1
,
8904 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8905 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8909 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8910 unsignedp
, this_optab
);
8911 return REDUCE_BIT_FIELD (temp
);
8913 if (find_widening_optab_handler (other_optab
, mode
, innermode
)
8915 && innermode
== word_mode
)
8918 op0
= expand_normal (treeop0
);
8919 op1
= expand_normal (treeop1
);
8920 /* op0 and op1 might be constants, despite the above
8921 != INTEGER_CST check. Handle it. */
8922 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8923 goto widen_mult_const
;
8924 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8925 op1
= convert_modes (mode
, word_mode
, op1
,
8926 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8927 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8928 unsignedp
, OPTAB_LIB_WIDEN
);
8929 hipart
= gen_highpart (word_mode
, temp
);
8930 htem
= expand_mult_highpart_adjust (word_mode
, hipart
,
8934 emit_move_insn (hipart
, htem
);
8935 return REDUCE_BIT_FIELD (temp
);
8939 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8940 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8941 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8942 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8945 /* If this is a fixed-point operation, then we cannot use the code
8946 below because "expand_mult" doesn't support sat/no-sat fixed-point
8948 if (ALL_FIXED_POINT_MODE_P (mode
))
8951 /* If first operand is constant, swap them.
8952 Thus the following special case checks need only
8953 check the second operand. */
8954 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8955 std::swap (treeop0
, treeop1
);
8957 /* Attempt to return something suitable for generating an
8958 indexed address, for machines that support that. */
8960 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8961 && tree_fits_shwi_p (treeop1
))
8963 tree exp1
= treeop1
;
8965 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8969 op0
= force_operand (op0
, NULL_RTX
);
8971 op0
= copy_to_mode_reg (mode
, op0
);
8973 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8974 gen_int_mode (tree_to_shwi (exp1
),
8975 TYPE_MODE (TREE_TYPE (exp1
)))));
8978 if (modifier
== EXPAND_STACK_PARM
)
8981 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8982 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8984 case TRUNC_MOD_EXPR
:
8985 case FLOOR_MOD_EXPR
:
8987 case ROUND_MOD_EXPR
:
8989 case TRUNC_DIV_EXPR
:
8990 case FLOOR_DIV_EXPR
:
8992 case ROUND_DIV_EXPR
:
8993 case EXACT_DIV_EXPR
:
8995 /* If this is a fixed-point operation, then we cannot use the code
8996 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8998 if (ALL_FIXED_POINT_MODE_P (mode
))
9001 if (modifier
== EXPAND_STACK_PARM
)
9003 /* Possible optimization: compute the dividend with EXPAND_SUM
9004 then if the divisor is constant can optimize the case
9005 where some terms of the dividend have coeffs divisible by it. */
9006 expand_operands (treeop0
, treeop1
,
9007 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9008 bool mod_p
= code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
9009 || code
== CEIL_MOD_EXPR
|| code
== ROUND_MOD_EXPR
;
9010 if (SCALAR_INT_MODE_P (mode
)
9012 && get_range_pos_neg (treeop0
) == 1
9013 && get_range_pos_neg (treeop1
) == 1)
9015 /* If both arguments are known to be positive when interpreted
9016 as signed, we can expand it as both signed and unsigned
9017 division or modulo. Choose the cheaper sequence in that case. */
9018 bool speed_p
= optimize_insn_for_speed_p ();
9019 do_pending_stack_adjust ();
9021 rtx uns_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 1);
9022 rtx_insn
*uns_insns
= get_insns ();
9025 rtx sgn_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 0);
9026 rtx_insn
*sgn_insns
= get_insns ();
9028 unsigned uns_cost
= seq_cost (uns_insns
, speed_p
);
9029 unsigned sgn_cost
= seq_cost (sgn_insns
, speed_p
);
9031 /* If costs are the same then use as tie breaker the other
9033 if (uns_cost
== sgn_cost
)
9035 uns_cost
= seq_cost (uns_insns
, !speed_p
);
9036 sgn_cost
= seq_cost (sgn_insns
, !speed_p
);
9039 if (uns_cost
< sgn_cost
|| (uns_cost
== sgn_cost
&& unsignedp
))
9041 emit_insn (uns_insns
);
9044 emit_insn (sgn_insns
);
9047 return expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, unsignedp
);
9052 case MULT_HIGHPART_EXPR
:
9053 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9054 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
9058 case FIXED_CONVERT_EXPR
:
9059 op0
= expand_normal (treeop0
);
9060 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9061 target
= gen_reg_rtx (mode
);
9063 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
9064 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9065 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
9066 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
9068 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
9071 case FIX_TRUNC_EXPR
:
9072 op0
= expand_normal (treeop0
);
9073 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9074 target
= gen_reg_rtx (mode
);
9075 expand_fix (target
, op0
, unsignedp
);
9079 op0
= expand_normal (treeop0
);
9080 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9081 target
= gen_reg_rtx (mode
);
9082 /* expand_float can't figure out what to do if FROM has VOIDmode.
9083 So give it the correct mode. With -O, cse will optimize this. */
9084 if (GET_MODE (op0
) == VOIDmode
)
9085 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
9087 expand_float (target
, op0
,
9088 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9092 op0
= expand_expr (treeop0
, subtarget
,
9093 VOIDmode
, EXPAND_NORMAL
);
9094 if (modifier
== EXPAND_STACK_PARM
)
9096 temp
= expand_unop (mode
,
9097 optab_for_tree_code (NEGATE_EXPR
, type
,
9101 return REDUCE_BIT_FIELD (temp
);
9105 op0
= expand_expr (treeop0
, subtarget
,
9106 VOIDmode
, EXPAND_NORMAL
);
9107 if (modifier
== EXPAND_STACK_PARM
)
9110 /* ABS_EXPR is not valid for complex arguments. */
9111 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9112 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
9114 /* Unsigned abs is simply the operand. Testing here means we don't
9115 risk generating incorrect code below. */
9116 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9119 return expand_abs (mode
, op0
, target
, unsignedp
,
9120 safe_from_p (target
, treeop0
, 1));
9124 target
= original_target
;
9126 || modifier
== EXPAND_STACK_PARM
9127 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
9128 || GET_MODE (target
) != mode
9130 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
9131 target
= gen_reg_rtx (mode
);
9132 expand_operands (treeop0
, treeop1
,
9133 target
, &op0
, &op1
, EXPAND_NORMAL
);
9135 /* First try to do it with a special MIN or MAX instruction.
9136 If that does not win, use a conditional jump to select the proper
9138 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9139 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9144 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9145 and similarly for MAX <x, y>. */
9146 if (VECTOR_TYPE_P (type
))
9148 tree t0
= make_tree (type
, op0
);
9149 tree t1
= make_tree (type
, op1
);
9150 tree comparison
= build2 (code
== MIN_EXPR
? LE_EXPR
: GE_EXPR
,
9152 return expand_vec_cond_expr (type
, comparison
, t0
, t1
,
9156 /* At this point, a MEM target is no longer useful; we will get better
9159 if (! REG_P (target
))
9160 target
= gen_reg_rtx (mode
);
9162 /* If op1 was placed in target, swap op0 and op1. */
9163 if (target
!= op0
&& target
== op1
)
9164 std::swap (op0
, op1
);
9166 /* We generate better code and avoid problems with op1 mentioning
9167 target by forcing op1 into a pseudo if it isn't a constant. */
9168 if (! CONSTANT_P (op1
))
9169 op1
= force_reg (mode
, op1
);
9172 enum rtx_code comparison_code
;
9175 if (code
== MAX_EXPR
)
9176 comparison_code
= unsignedp
? GEU
: GE
;
9178 comparison_code
= unsignedp
? LEU
: LE
;
9180 /* Canonicalize to comparisons against 0. */
9181 if (op1
== const1_rtx
)
9183 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9184 or (a != 0 ? a : 1) for unsigned.
9185 For MIN we are safe converting (a <= 1 ? a : 1)
9186 into (a <= 0 ? a : 1) */
9187 cmpop1
= const0_rtx
;
9188 if (code
== MAX_EXPR
)
9189 comparison_code
= unsignedp
? NE
: GT
;
9191 if (op1
== constm1_rtx
&& !unsignedp
)
9193 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9194 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9195 cmpop1
= const0_rtx
;
9196 if (code
== MIN_EXPR
)
9197 comparison_code
= LT
;
9200 /* Use a conditional move if possible. */
9201 if (can_conditionally_move_p (mode
))
9207 /* Try to emit the conditional move. */
9208 insn
= emit_conditional_move (target
, comparison_code
,
9213 /* If we could do the conditional move, emit the sequence,
9217 rtx_insn
*seq
= get_insns ();
9223 /* Otherwise discard the sequence and fall back to code with
9229 emit_move_insn (target
, op0
);
9231 lab
= gen_label_rtx ();
9232 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
9233 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
9234 profile_probability::uninitialized ());
9236 emit_move_insn (target
, op1
);
9241 op0
= expand_expr (treeop0
, subtarget
,
9242 VOIDmode
, EXPAND_NORMAL
);
9243 if (modifier
== EXPAND_STACK_PARM
)
9245 /* In case we have to reduce the result to bitfield precision
9246 for unsigned bitfield expand this as XOR with a proper constant
9248 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
9250 int_mode
= SCALAR_INT_TYPE_MODE (type
);
9251 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
9252 false, GET_MODE_PRECISION (int_mode
));
9254 temp
= expand_binop (int_mode
, xor_optab
, op0
,
9255 immed_wide_int_const (mask
, int_mode
),
9256 target
, 1, OPTAB_LIB_WIDEN
);
9259 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
9263 /* ??? Can optimize bitwise operations with one arg constant.
9264 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9265 and (a bitwise1 b) bitwise2 b (etc)
9266 but that is probably not worth while. */
9275 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
9276 || type_has_mode_precision_p (type
));
9282 /* If this is a fixed-point operation, then we cannot use the code
9283 below because "expand_shift" doesn't support sat/no-sat fixed-point
9285 if (ALL_FIXED_POINT_MODE_P (mode
))
9288 if (! safe_from_p (subtarget
, treeop1
, 1))
9290 if (modifier
== EXPAND_STACK_PARM
)
9292 op0
= expand_expr (treeop0
, subtarget
,
9293 VOIDmode
, EXPAND_NORMAL
);
9295 /* Left shift optimization when shifting across word_size boundary.
9297 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9298 there isn't native instruction to support this wide mode
9299 left shift. Given below scenario:
9301 Type A = (Type) B << C
9304 | dest_high | dest_low |
9308 If the shift amount C caused we shift B to across the word
9309 size boundary, i.e part of B shifted into high half of
9310 destination register, and part of B remains in the low
9311 half, then GCC will use the following left shift expand
9314 1. Initialize dest_low to B.
9315 2. Initialize every bit of dest_high to the sign bit of B.
9316 3. Logic left shift dest_low by C bit to finalize dest_low.
9317 The value of dest_low before this shift is kept in a temp D.
9318 4. Logic left shift dest_high by C.
9319 5. Logic right shift D by (word_size - C).
9320 6. Or the result of 4 and 5 to finalize dest_high.
9322 While, by checking gimple statements, if operand B is
9323 coming from signed extension, then we can simplify above
9326 1. dest_high = src_low >> (word_size - C).
9327 2. dest_low = src_low << C.
9329 We can use one arithmetic right shift to finish all the
9330 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9331 needed from 6 into 2.
9333 The case is similar for zero extension, except that we
9334 initialize dest_high to zero rather than copies of the sign
9335 bit from B. Furthermore, we need to use a logical right shift
9338 The choice of sign-extension versus zero-extension is
9339 determined entirely by whether or not B is signed and is
9340 independent of the current setting of unsignedp. */
9343 if (code
== LSHIFT_EXPR
9346 && GET_MODE_2XWIDER_MODE (word_mode
).exists (&int_mode
)
9348 && TREE_CONSTANT (treeop1
)
9349 && TREE_CODE (treeop0
) == SSA_NAME
)
9351 gimple
*def
= SSA_NAME_DEF_STMT (treeop0
);
9352 if (is_gimple_assign (def
)
9353 && gimple_assign_rhs_code (def
) == NOP_EXPR
)
9355 scalar_int_mode rmode
= SCALAR_INT_TYPE_MODE
9356 (TREE_TYPE (gimple_assign_rhs1 (def
)));
9358 if (GET_MODE_SIZE (rmode
) < GET_MODE_SIZE (int_mode
)
9359 && TREE_INT_CST_LOW (treeop1
) < GET_MODE_BITSIZE (word_mode
)
9360 && ((TREE_INT_CST_LOW (treeop1
) + GET_MODE_BITSIZE (rmode
))
9361 >= GET_MODE_BITSIZE (word_mode
)))
9363 rtx_insn
*seq
, *seq_old
;
9364 poly_uint64 high_off
= subreg_highpart_offset (word_mode
,
9366 bool extend_unsigned
9367 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def
)));
9368 rtx low
= lowpart_subreg (word_mode
, op0
, int_mode
);
9369 rtx dest_low
= lowpart_subreg (word_mode
, target
, int_mode
);
9370 rtx dest_high
= simplify_gen_subreg (word_mode
, target
,
9371 int_mode
, high_off
);
9372 HOST_WIDE_INT ramount
= (BITS_PER_WORD
9373 - TREE_INT_CST_LOW (treeop1
));
9374 tree rshift
= build_int_cst (TREE_TYPE (treeop1
), ramount
);
9377 /* dest_high = src_low >> (word_size - C). */
9378 temp
= expand_variable_shift (RSHIFT_EXPR
, word_mode
, low
,
9381 if (temp
!= dest_high
)
9382 emit_move_insn (dest_high
, temp
);
9384 /* dest_low = src_low << C. */
9385 temp
= expand_variable_shift (LSHIFT_EXPR
, word_mode
, low
,
9386 treeop1
, dest_low
, unsignedp
);
9387 if (temp
!= dest_low
)
9388 emit_move_insn (dest_low
, temp
);
9394 if (have_insn_for (ASHIFT
, int_mode
))
9396 bool speed_p
= optimize_insn_for_speed_p ();
9398 rtx ret_old
= expand_variable_shift (code
, int_mode
,
9403 seq_old
= get_insns ();
9405 if (seq_cost (seq
, speed_p
)
9406 >= seq_cost (seq_old
, speed_p
))
9417 if (temp
== NULL_RTX
)
9418 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9420 if (code
== LSHIFT_EXPR
)
9421 temp
= REDUCE_BIT_FIELD (temp
);
9425 /* Could determine the answer when only additive constants differ. Also,
9426 the addition of one can be handled by changing the condition. */
9433 case UNORDERED_EXPR
:
9442 temp
= do_store_flag (ops
,
9443 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9444 tmode
!= VOIDmode
? tmode
: mode
);
9448 /* Use a compare and a jump for BLKmode comparisons, or for function
9449 type comparisons is have_canonicalize_funcptr_for_compare. */
9452 || modifier
== EXPAND_STACK_PARM
9453 || ! safe_from_p (target
, treeop0
, 1)
9454 || ! safe_from_p (target
, treeop1
, 1)
9455 /* Make sure we don't have a hard reg (such as function's return
9456 value) live across basic blocks, if not optimizing. */
9457 || (!optimize
&& REG_P (target
)
9458 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9459 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9461 emit_move_insn (target
, const0_rtx
);
9463 rtx_code_label
*lab1
= gen_label_rtx ();
9464 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
,
9465 profile_probability::uninitialized ());
9467 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9468 emit_move_insn (target
, constm1_rtx
);
9470 emit_move_insn (target
, const1_rtx
);
9476 /* Get the rtx code of the operands. */
9477 op0
= expand_normal (treeop0
);
9478 op1
= expand_normal (treeop1
);
9481 target
= gen_reg_rtx (TYPE_MODE (type
));
9483 /* If target overlaps with op1, then either we need to force
9484 op1 into a pseudo (if target also overlaps with op0),
9485 or write the complex parts in reverse order. */
9486 switch (GET_CODE (target
))
9489 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9491 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9493 complex_expr_force_op1
:
9494 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9495 emit_move_insn (temp
, op1
);
9499 complex_expr_swap_order
:
9500 /* Move the imaginary (op1) and real (op0) parts to their
9502 write_complex_part (target
, op1
, true);
9503 write_complex_part (target
, op0
, false);
9509 temp
= adjust_address_nv (target
,
9510 GET_MODE_INNER (GET_MODE (target
)), 0);
9511 if (reg_overlap_mentioned_p (temp
, op1
))
9513 scalar_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9514 temp
= adjust_address_nv (target
, imode
,
9515 GET_MODE_SIZE (imode
));
9516 if (reg_overlap_mentioned_p (temp
, op0
))
9517 goto complex_expr_force_op1
;
9518 goto complex_expr_swap_order
;
9522 if (reg_overlap_mentioned_p (target
, op1
))
9524 if (reg_overlap_mentioned_p (target
, op0
))
9525 goto complex_expr_force_op1
;
9526 goto complex_expr_swap_order
;
9531 /* Move the real (op0) and imaginary (op1) parts to their location. */
9532 write_complex_part (target
, op0
, false);
9533 write_complex_part (target
, op1
, true);
9537 case WIDEN_SUM_EXPR
:
9539 tree oprnd0
= treeop0
;
9540 tree oprnd1
= treeop1
;
9542 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9543 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9548 case VEC_UNPACK_HI_EXPR
:
9549 case VEC_UNPACK_LO_EXPR
:
9550 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
9551 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
9553 op0
= expand_normal (treeop0
);
9554 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9560 case VEC_UNPACK_FLOAT_HI_EXPR
:
9561 case VEC_UNPACK_FLOAT_LO_EXPR
:
9563 op0
= expand_normal (treeop0
);
9564 /* The signedness is determined from input operand. */
9565 temp
= expand_widen_pattern_expr
9566 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9567 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9573 case VEC_WIDEN_MULT_HI_EXPR
:
9574 case VEC_WIDEN_MULT_LO_EXPR
:
9575 case VEC_WIDEN_MULT_EVEN_EXPR
:
9576 case VEC_WIDEN_MULT_ODD_EXPR
:
9577 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9578 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9579 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9580 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9582 gcc_assert (target
);
9585 case VEC_PACK_SAT_EXPR
:
9586 case VEC_PACK_FIX_TRUNC_EXPR
:
9587 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9590 case VEC_PACK_TRUNC_EXPR
:
9591 if (VECTOR_BOOLEAN_TYPE_P (type
)
9592 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0
))
9593 && mode
== TYPE_MODE (TREE_TYPE (treeop0
))
9594 && SCALAR_INT_MODE_P (mode
))
9596 class expand_operand eops
[4];
9597 machine_mode imode
= TYPE_MODE (TREE_TYPE (treeop0
));
9598 expand_operands (treeop0
, treeop1
,
9599 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9600 this_optab
= vec_pack_sbool_trunc_optab
;
9601 enum insn_code icode
= optab_handler (this_optab
, imode
);
9602 create_output_operand (&eops
[0], target
, mode
);
9603 create_convert_operand_from (&eops
[1], op0
, imode
, false);
9604 create_convert_operand_from (&eops
[2], op1
, imode
, false);
9605 temp
= GEN_INT (TYPE_VECTOR_SUBPARTS (type
).to_constant ());
9606 create_input_operand (&eops
[3], temp
, imode
);
9607 expand_insn (icode
, 4, eops
);
9608 return eops
[0].value
;
9610 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9613 case VEC_PACK_FLOAT_EXPR
:
9614 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9615 expand_operands (treeop0
, treeop1
,
9616 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9617 this_optab
= optab_for_tree_code (code
, TREE_TYPE (treeop0
),
9619 target
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9620 TYPE_UNSIGNED (TREE_TYPE (treeop0
)),
9622 gcc_assert (target
);
9627 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9628 vec_perm_builder sel
;
9629 if (TREE_CODE (treeop2
) == VECTOR_CST
9630 && tree_to_vec_perm_builder (&sel
, treeop2
))
9632 machine_mode sel_mode
= TYPE_MODE (TREE_TYPE (treeop2
));
9633 temp
= expand_vec_perm_const (mode
, op0
, op1
, sel
,
9638 op2
= expand_normal (treeop2
);
9639 temp
= expand_vec_perm_var (mode
, op0
, op1
, op2
, target
);
9647 tree oprnd0
= treeop0
;
9648 tree oprnd1
= treeop1
;
9649 tree oprnd2
= treeop2
;
9652 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9653 op2
= expand_normal (oprnd2
);
9654 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9661 tree oprnd0
= treeop0
;
9662 tree oprnd1
= treeop1
;
9663 tree oprnd2
= treeop2
;
9666 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9667 op2
= expand_normal (oprnd2
);
9668 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9673 case REALIGN_LOAD_EXPR
:
9675 tree oprnd0
= treeop0
;
9676 tree oprnd1
= treeop1
;
9677 tree oprnd2
= treeop2
;
9680 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9681 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9682 op2
= expand_normal (oprnd2
);
9683 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9691 /* A COND_EXPR with its type being VOID_TYPE represents a
9692 conditional jump and is handled in
9693 expand_gimple_cond_expr. */
9694 gcc_assert (!VOID_TYPE_P (type
));
9696 /* Note that COND_EXPRs whose type is a structure or union
9697 are required to be constructed to contain assignments of
9698 a temporary variable, so that we can evaluate them here
9699 for side effect only. If type is void, we must do likewise. */
9701 gcc_assert (!TREE_ADDRESSABLE (type
)
9703 && TREE_TYPE (treeop1
) != void_type_node
9704 && TREE_TYPE (treeop2
) != void_type_node
);
9706 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9710 /* If we are not to produce a result, we have no target. Otherwise,
9711 if a target was specified use it; it will not be used as an
9712 intermediate target unless it is safe. If no target, use a
9715 if (modifier
!= EXPAND_STACK_PARM
9717 && safe_from_p (original_target
, treeop0
, 1)
9718 && GET_MODE (original_target
) == mode
9719 && !MEM_P (original_target
))
9720 temp
= original_target
;
9722 temp
= assign_temp (type
, 0, 1);
9724 do_pending_stack_adjust ();
9726 rtx_code_label
*lab0
= gen_label_rtx ();
9727 rtx_code_label
*lab1
= gen_label_rtx ();
9728 jumpifnot (treeop0
, lab0
,
9729 profile_probability::uninitialized ());
9730 store_expr (treeop1
, temp
,
9731 modifier
== EXPAND_STACK_PARM
,
9734 emit_jump_insn (targetm
.gen_jump (lab1
));
9737 store_expr (treeop2
, temp
,
9738 modifier
== EXPAND_STACK_PARM
,
9747 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9750 case VEC_DUPLICATE_EXPR
:
9751 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
9752 target
= expand_vector_broadcast (mode
, op0
);
9753 gcc_assert (target
);
9756 case VEC_SERIES_EXPR
:
9757 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, modifier
);
9758 return expand_vec_series_expr (mode
, op0
, op1
, target
);
9760 case BIT_INSERT_EXPR
:
9762 unsigned bitpos
= tree_to_uhwi (treeop2
);
9764 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1
)))
9765 bitsize
= TYPE_PRECISION (TREE_TYPE (treeop1
));
9767 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1
)));
9768 rtx op0
= expand_normal (treeop0
);
9769 rtx op1
= expand_normal (treeop1
);
9770 rtx dst
= gen_reg_rtx (mode
);
9771 emit_move_insn (dst
, op0
);
9772 store_bit_field (dst
, bitsize
, bitpos
, 0, 0,
9773 TYPE_MODE (TREE_TYPE (treeop1
)), op1
, false);
9781 /* Here to do an ordinary binary operator. */
9783 expand_operands (treeop0
, treeop1
,
9784 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9786 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9788 if (modifier
== EXPAND_STACK_PARM
)
9790 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9791 unsignedp
, OPTAB_LIB_WIDEN
);
9793 /* Bitwise operations do not need bitfield reduction as we expect their
9794 operands being properly truncated. */
9795 if (code
== BIT_XOR_EXPR
9796 || code
== BIT_AND_EXPR
9797 || code
== BIT_IOR_EXPR
)
9799 return REDUCE_BIT_FIELD (temp
);
9801 #undef REDUCE_BIT_FIELD
9804 /* Return TRUE if expression STMT is suitable for replacement.
9805 Never consider memory loads as replaceable, because those don't ever lead
9806 into constant expressions. */
9809 stmt_is_replaceable_p (gimple
*stmt
)
9811 if (ssa_is_replaceable_p (stmt
))
9813 /* Don't move around loads. */
9814 if (!gimple_assign_single_p (stmt
)
9815 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9822 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9823 enum expand_modifier modifier
, rtx
*alt_rtl
,
9824 bool inner_reference_p
)
9826 rtx op0
, op1
, temp
, decl_rtl
;
9829 machine_mode mode
, dmode
;
9830 enum tree_code code
= TREE_CODE (exp
);
9831 rtx subtarget
, original_target
;
9834 bool reduce_bit_field
;
9835 location_t loc
= EXPR_LOCATION (exp
);
9836 struct separate_ops ops
;
9837 tree treeop0
, treeop1
, treeop2
;
9838 tree ssa_name
= NULL_TREE
;
9841 type
= TREE_TYPE (exp
);
9842 mode
= TYPE_MODE (type
);
9843 unsignedp
= TYPE_UNSIGNED (type
);
9845 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9846 if (!VL_EXP_CLASS_P (exp
))
9847 switch (TREE_CODE_LENGTH (code
))
9850 case 3: treeop2
= TREE_OPERAND (exp
, 2); /* FALLTHRU */
9851 case 2: treeop1
= TREE_OPERAND (exp
, 1); /* FALLTHRU */
9852 case 1: treeop0
= TREE_OPERAND (exp
, 0); /* FALLTHRU */
9862 ignore
= (target
== const0_rtx
9863 || ((CONVERT_EXPR_CODE_P (code
)
9864 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9865 && TREE_CODE (type
) == VOID_TYPE
));
9867 /* An operation in what may be a bit-field type needs the
9868 result to be reduced to the precision of the bit-field type,
9869 which is narrower than that of the type's mode. */
9870 reduce_bit_field
= (!ignore
9871 && INTEGRAL_TYPE_P (type
)
9872 && !type_has_mode_precision_p (type
));
9874 /* If we are going to ignore this result, we need only do something
9875 if there is a side-effect somewhere in the expression. If there
9876 is, short-circuit the most common cases here. Note that we must
9877 not call expand_expr with anything but const0_rtx in case this
9878 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9882 if (! TREE_SIDE_EFFECTS (exp
))
9885 /* Ensure we reference a volatile object even if value is ignored, but
9886 don't do this if all we are doing is taking its address. */
9887 if (TREE_THIS_VOLATILE (exp
)
9888 && TREE_CODE (exp
) != FUNCTION_DECL
9889 && mode
!= VOIDmode
&& mode
!= BLKmode
9890 && modifier
!= EXPAND_CONST_ADDRESS
)
9892 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9898 if (TREE_CODE_CLASS (code
) == tcc_unary
9899 || code
== BIT_FIELD_REF
9900 || code
== COMPONENT_REF
9901 || code
== INDIRECT_REF
)
9902 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9905 else if (TREE_CODE_CLASS (code
) == tcc_binary
9906 || TREE_CODE_CLASS (code
) == tcc_comparison
9907 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9909 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9910 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9917 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9920 /* Use subtarget as the target for operand 0 of a binary operation. */
9921 subtarget
= get_subtarget (target
);
9922 original_target
= target
;
9928 tree function
= decl_function_context (exp
);
9930 temp
= label_rtx (exp
);
9931 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9933 if (function
!= current_function_decl
9935 LABEL_REF_NONLOCAL_P (temp
) = 1;
9937 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9942 /* ??? ivopts calls expander, without any preparation from
9943 out-of-ssa. So fake instructions as if this was an access to the
9944 base variable. This unnecessarily allocates a pseudo, see how we can
9945 reuse it, if partition base vars have it set already. */
9946 if (!currently_expanding_to_rtl
)
9948 tree var
= SSA_NAME_VAR (exp
);
9949 if (var
&& DECL_RTL_SET_P (var
))
9950 return DECL_RTL (var
);
9951 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9952 LAST_VIRTUAL_REGISTER
+ 1);
9955 g
= get_gimple_for_ssa_name (exp
);
9956 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9958 && modifier
== EXPAND_INITIALIZER
9959 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9960 && (optimize
|| !SSA_NAME_VAR (exp
)
9961 || DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9962 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9963 g
= SSA_NAME_DEF_STMT (exp
);
9967 location_t saved_loc
= curr_insn_location ();
9968 location_t loc
= gimple_location (g
);
9969 if (loc
!= UNKNOWN_LOCATION
)
9970 set_curr_insn_location (loc
);
9971 ops
.code
= gimple_assign_rhs_code (g
);
9972 switch (get_gimple_rhs_class (ops
.code
))
9974 case GIMPLE_TERNARY_RHS
:
9975 ops
.op2
= gimple_assign_rhs3 (g
);
9977 case GIMPLE_BINARY_RHS
:
9978 ops
.op1
= gimple_assign_rhs2 (g
);
9980 /* Try to expand conditonal compare. */
9981 if (targetm
.gen_ccmp_first
)
9983 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9984 r
= expand_ccmp_expr (g
, mode
);
9989 case GIMPLE_UNARY_RHS
:
9990 ops
.op0
= gimple_assign_rhs1 (g
);
9991 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9993 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9995 case GIMPLE_SINGLE_RHS
:
9997 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9998 tmode
, modifier
, alt_rtl
,
10003 gcc_unreachable ();
10005 set_curr_insn_location (saved_loc
);
10006 if (REG_P (r
) && !REG_EXPR (r
))
10007 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
10012 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
10013 exp
= SSA_NAME_VAR (ssa_name
);
10014 goto expand_decl_rtl
;
10018 /* If a static var's type was incomplete when the decl was written,
10019 but the type is complete now, lay out the decl now. */
10020 if (DECL_SIZE (exp
) == 0
10021 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
10022 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
10023 layout_decl (exp
, 0);
10027 case FUNCTION_DECL
:
10029 decl_rtl
= DECL_RTL (exp
);
10031 gcc_assert (decl_rtl
);
10033 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10034 settings for VECTOR_TYPE_P that might switch for the function. */
10035 if (currently_expanding_to_rtl
10036 && code
== VAR_DECL
&& MEM_P (decl_rtl
)
10037 && VECTOR_TYPE_P (type
) && exp
&& DECL_MODE (exp
) != mode
)
10038 decl_rtl
= change_address (decl_rtl
, TYPE_MODE (type
), 0);
10040 decl_rtl
= copy_rtx (decl_rtl
);
10042 /* Record writes to register variables. */
10043 if (modifier
== EXPAND_WRITE
10044 && REG_P (decl_rtl
)
10045 && HARD_REGISTER_P (decl_rtl
))
10046 add_to_hard_reg_set (&crtl
->asm_clobbers
,
10047 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
10049 /* Ensure variable marked as used even if it doesn't go through
10050 a parser. If it hasn't be used yet, write out an external
10053 TREE_USED (exp
) = 1;
10055 /* Show we haven't gotten RTL for this yet. */
10058 /* Variables inherited from containing functions should have
10059 been lowered by this point. */
10061 context
= decl_function_context (exp
);
10063 || SCOPE_FILE_SCOPE_P (context
)
10064 || context
== current_function_decl
10065 || TREE_STATIC (exp
)
10066 || DECL_EXTERNAL (exp
)
10067 /* ??? C++ creates functions that are not TREE_STATIC. */
10068 || TREE_CODE (exp
) == FUNCTION_DECL
);
10070 /* This is the case of an array whose size is to be determined
10071 from its initializer, while the initializer is still being parsed.
10072 ??? We aren't parsing while expanding anymore. */
10074 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
10075 temp
= validize_mem (decl_rtl
);
10077 /* If DECL_RTL is memory, we are in the normal case and the
10078 address is not valid, get the address into a register. */
10080 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
10083 *alt_rtl
= decl_rtl
;
10084 decl_rtl
= use_anchored_address (decl_rtl
);
10085 if (modifier
!= EXPAND_CONST_ADDRESS
10086 && modifier
!= EXPAND_SUM
10087 && !memory_address_addr_space_p (exp
? DECL_MODE (exp
)
10088 : GET_MODE (decl_rtl
),
10089 XEXP (decl_rtl
, 0),
10090 MEM_ADDR_SPACE (decl_rtl
)))
10091 temp
= replace_equiv_address (decl_rtl
,
10092 copy_rtx (XEXP (decl_rtl
, 0)));
10095 /* If we got something, return it. But first, set the alignment
10096 if the address is a register. */
10099 if (exp
&& MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
10100 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
10102 else if (MEM_P (decl_rtl
))
10108 && modifier
!= EXPAND_WRITE
10109 && modifier
!= EXPAND_MEMORY
10110 && modifier
!= EXPAND_INITIALIZER
10111 && modifier
!= EXPAND_CONST_ADDRESS
10112 && modifier
!= EXPAND_SUM
10113 && !inner_reference_p
10115 && MEM_ALIGN (temp
) < GET_MODE_ALIGNMENT (mode
))
10116 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
10117 MEM_ALIGN (temp
), NULL_RTX
, NULL
);
10123 dmode
= DECL_MODE (exp
);
10125 dmode
= TYPE_MODE (TREE_TYPE (ssa_name
));
10127 /* If the mode of DECL_RTL does not match that of the decl,
10128 there are two cases: we are dealing with a BLKmode value
10129 that is returned in a register, or we are dealing with
10130 a promoted value. In the latter case, return a SUBREG
10131 of the wanted mode, but mark it so that we know that it
10132 was already extended. */
10133 if (REG_P (decl_rtl
)
10134 && dmode
!= BLKmode
10135 && GET_MODE (decl_rtl
) != dmode
)
10137 machine_mode pmode
;
10139 /* Get the signedness to be used for this variable. Ensure we get
10140 the same mode we got when the variable was declared. */
10141 if (code
!= SSA_NAME
)
10142 pmode
= promote_decl_mode (exp
, &unsignedp
);
10143 else if ((g
= SSA_NAME_DEF_STMT (ssa_name
))
10144 && gimple_code (g
) == GIMPLE_CALL
10145 && !gimple_call_internal_p (g
))
10146 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
10147 gimple_call_fntype (g
),
10150 pmode
= promote_ssa_mode (ssa_name
, &unsignedp
);
10151 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
10153 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
10154 SUBREG_PROMOTED_VAR_P (temp
) = 1;
10155 SUBREG_PROMOTED_SET (temp
, unsignedp
);
10163 /* Given that TYPE_PRECISION (type) is not always equal to
10164 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10165 the former to the latter according to the signedness of the
10167 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
10168 temp
= immed_wide_int_const
10169 (wi::to_wide (exp
, GET_MODE_PRECISION (mode
)), mode
);
10175 tree tmp
= NULL_TREE
;
10176 if (VECTOR_MODE_P (mode
))
10177 return const_vector_from_tree (exp
);
10178 scalar_int_mode int_mode
;
10179 if (is_int_mode (mode
, &int_mode
))
10181 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
10182 return const_scalar_mask_from_tree (int_mode
, exp
);
10186 = lang_hooks
.types
.type_for_mode (int_mode
, 1);
10188 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
,
10189 type_for_mode
, exp
);
10194 vec
<constructor_elt
, va_gc
> *v
;
10195 /* Constructors need to be fixed-length. FIXME. */
10196 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
10197 vec_alloc (v
, nunits
);
10198 for (unsigned int i
= 0; i
< nunits
; ++i
)
10199 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
10200 tmp
= build_constructor (type
, v
);
10202 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
10207 if (modifier
== EXPAND_WRITE
)
10209 /* Writing into CONST_DECL is always invalid, but handle it
10211 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (exp
));
10212 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
10213 op0
= expand_expr_addr_expr_1 (exp
, NULL_RTX
, address_mode
,
10214 EXPAND_NORMAL
, as
);
10215 op0
= memory_address_addr_space (mode
, op0
, as
);
10216 temp
= gen_rtx_MEM (mode
, op0
);
10217 set_mem_addr_space (temp
, as
);
10220 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
10223 /* If optimized, generate immediate CONST_DOUBLE
10224 which will be turned into memory by reload if necessary.
10226 We used to force a register so that loop.c could see it. But
10227 this does not allow gen_* patterns to perform optimizations with
10228 the constants. It also produces two insns in cases like "x = 1.0;".
10229 On most machines, floating-point constants are not permitted in
10230 many insns, so we'd end up copying it to a register in any case.
10232 Now, we do the copying in expand_binop, if appropriate. */
10233 return const_double_from_real_value (TREE_REAL_CST (exp
),
10234 TYPE_MODE (TREE_TYPE (exp
)));
10237 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
10238 TYPE_MODE (TREE_TYPE (exp
)));
10241 /* Handle evaluating a complex constant in a CONCAT target. */
10242 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
10244 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
10247 rtarg
= XEXP (original_target
, 0);
10248 itarg
= XEXP (original_target
, 1);
10250 /* Move the real and imaginary parts separately. */
10251 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
10252 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
10255 emit_move_insn (rtarg
, op0
);
10257 emit_move_insn (itarg
, op1
);
10259 return original_target
;
10265 temp
= expand_expr_constant (exp
, 1, modifier
);
10267 /* temp contains a constant address.
10268 On RISC machines where a constant address isn't valid,
10269 make some insns to get that address into a register. */
10270 if (modifier
!= EXPAND_CONST_ADDRESS
10271 && modifier
!= EXPAND_INITIALIZER
10272 && modifier
!= EXPAND_SUM
10273 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
10274 MEM_ADDR_SPACE (temp
)))
10275 return replace_equiv_address (temp
,
10276 copy_rtx (XEXP (temp
, 0)));
10280 return immed_wide_int_const (poly_int_cst_value (exp
), mode
);
10284 tree val
= treeop0
;
10285 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
10286 inner_reference_p
);
10288 if (!SAVE_EXPR_RESOLVED_P (exp
))
10290 /* We can indeed still hit this case, typically via builtin
10291 expanders calling save_expr immediately before expanding
10292 something. Assume this means that we only have to deal
10293 with non-BLKmode values. */
10294 gcc_assert (GET_MODE (ret
) != BLKmode
);
10296 val
= build_decl (curr_insn_location (),
10297 VAR_DECL
, NULL
, TREE_TYPE (exp
));
10298 DECL_ARTIFICIAL (val
) = 1;
10299 DECL_IGNORED_P (val
) = 1;
10301 TREE_OPERAND (exp
, 0) = treeop0
;
10302 SAVE_EXPR_RESOLVED_P (exp
) = 1;
10304 if (!CONSTANT_P (ret
))
10305 ret
= copy_to_reg (ret
);
10306 SET_DECL_RTL (val
, ret
);
10314 /* If we don't need the result, just ensure we evaluate any
10318 unsigned HOST_WIDE_INT idx
;
10321 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
10322 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
10327 return expand_constructor (exp
, target
, modifier
, false);
10329 case TARGET_MEM_REF
:
10332 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10333 unsigned int align
;
10335 op0
= addr_for_mem_ref (exp
, as
, true);
10336 op0
= memory_address_addr_space (mode
, op0
, as
);
10337 temp
= gen_rtx_MEM (mode
, op0
);
10338 set_mem_attributes (temp
, exp
, 0);
10339 set_mem_addr_space (temp
, as
);
10340 align
= get_object_alignment (exp
);
10341 if (modifier
!= EXPAND_WRITE
10342 && modifier
!= EXPAND_MEMORY
10344 && align
< GET_MODE_ALIGNMENT (mode
))
10345 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
10346 align
, NULL_RTX
, NULL
);
10352 const bool reverse
= REF_REVERSE_STORAGE_ORDER (exp
);
10354 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10355 machine_mode address_mode
;
10356 tree base
= TREE_OPERAND (exp
, 0);
10359 /* Handle expansion of non-aliased memory with non-BLKmode. That
10360 might end up in a register. */
10361 if (mem_ref_refers_to_non_mem_p (exp
))
10363 poly_int64 offset
= mem_ref_offset (exp
).force_shwi ();
10364 base
= TREE_OPERAND (base
, 0);
10365 poly_uint64 type_size
;
10366 if (known_eq (offset
, 0)
10368 && poly_int_tree_p (TYPE_SIZE (type
), &type_size
)
10369 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base
)), type_size
))
10370 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
10371 target
, tmode
, modifier
);
10372 if (TYPE_MODE (type
) == BLKmode
)
10374 temp
= assign_stack_temp (DECL_MODE (base
),
10375 GET_MODE_SIZE (DECL_MODE (base
)));
10376 store_expr (base
, temp
, 0, false, false);
10377 temp
= adjust_address (temp
, BLKmode
, offset
);
10378 set_mem_size (temp
, int_size_in_bytes (type
));
10381 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
10382 bitsize_int (offset
* BITS_PER_UNIT
));
10383 REF_REVERSE_STORAGE_ORDER (exp
) = reverse
;
10384 return expand_expr (exp
, target
, tmode
, modifier
);
10386 address_mode
= targetm
.addr_space
.address_mode (as
);
10387 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
10389 tree mask
= gimple_assign_rhs2 (def_stmt
);
10390 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
10391 gimple_assign_rhs1 (def_stmt
), mask
);
10392 TREE_OPERAND (exp
, 0) = base
;
10394 align
= get_object_alignment (exp
);
10395 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
10396 op0
= memory_address_addr_space (mode
, op0
, as
);
10397 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
10399 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
10400 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
10401 op0
= memory_address_addr_space (mode
, op0
, as
);
10403 temp
= gen_rtx_MEM (mode
, op0
);
10404 set_mem_attributes (temp
, exp
, 0);
10405 set_mem_addr_space (temp
, as
);
10406 if (TREE_THIS_VOLATILE (exp
))
10407 MEM_VOLATILE_P (temp
) = 1;
10408 if (modifier
!= EXPAND_WRITE
10409 && modifier
!= EXPAND_MEMORY
10410 && !inner_reference_p
10412 && align
< GET_MODE_ALIGNMENT (mode
))
10413 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
, align
,
10414 modifier
== EXPAND_STACK_PARM
10415 ? NULL_RTX
: target
, alt_rtl
);
10417 && modifier
!= EXPAND_MEMORY
10418 && modifier
!= EXPAND_WRITE
)
10419 temp
= flip_storage_order (mode
, temp
);
10426 tree array
= treeop0
;
10427 tree index
= treeop1
;
10430 /* Fold an expression like: "foo"[2].
10431 This is not done in fold so it won't happen inside &.
10432 Don't fold if this is for wide characters since it's too
10433 difficult to do correctly and this is a very rare case. */
10435 if (modifier
!= EXPAND_CONST_ADDRESS
10436 && modifier
!= EXPAND_INITIALIZER
10437 && modifier
!= EXPAND_MEMORY
)
10439 tree t
= fold_read_from_constant_string (exp
);
10442 return expand_expr (t
, target
, tmode
, modifier
);
10445 /* If this is a constant index into a constant array,
10446 just get the value from the array. Handle both the cases when
10447 we have an explicit constructor and when our operand is a variable
10448 that was declared const. */
10450 if (modifier
!= EXPAND_CONST_ADDRESS
10451 && modifier
!= EXPAND_INITIALIZER
10452 && modifier
!= EXPAND_MEMORY
10453 && TREE_CODE (array
) == CONSTRUCTOR
10454 && ! TREE_SIDE_EFFECTS (array
)
10455 && TREE_CODE (index
) == INTEGER_CST
)
10457 unsigned HOST_WIDE_INT ix
;
10460 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
10462 if (tree_int_cst_equal (field
, index
))
10464 if (!TREE_SIDE_EFFECTS (value
))
10465 return expand_expr (fold (value
), target
, tmode
, modifier
);
10470 else if (optimize
>= 1
10471 && modifier
!= EXPAND_CONST_ADDRESS
10472 && modifier
!= EXPAND_INITIALIZER
10473 && modifier
!= EXPAND_MEMORY
10474 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
10475 && TREE_CODE (index
) == INTEGER_CST
10476 && (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
10477 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10479 if (init
== NULL_TREE
)
10481 tree value
= build_zero_cst (type
);
10482 if (TREE_CODE (value
) == CONSTRUCTOR
)
10484 /* If VALUE is a CONSTRUCTOR, this optimization is only
10485 useful if this doesn't store the CONSTRUCTOR into
10486 memory. If it does, it is more efficient to just
10487 load the data from the array directly. */
10488 rtx ret
= expand_constructor (value
, target
,
10490 if (ret
== NULL_RTX
)
10495 return expand_expr (value
, target
, tmode
, modifier
);
10497 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10499 unsigned HOST_WIDE_INT ix
;
10502 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10504 if (tree_int_cst_equal (field
, index
))
10506 if (TREE_SIDE_EFFECTS (value
))
10509 if (TREE_CODE (value
) == CONSTRUCTOR
)
10511 /* If VALUE is a CONSTRUCTOR, this
10512 optimization is only useful if
10513 this doesn't store the CONSTRUCTOR
10514 into memory. If it does, it is more
10515 efficient to just load the data from
10516 the array directly. */
10517 rtx ret
= expand_constructor (value
, target
,
10519 if (ret
== NULL_RTX
)
10524 expand_expr (fold (value
), target
, tmode
, modifier
);
10527 else if (TREE_CODE (init
) == STRING_CST
)
10529 tree low_bound
= array_ref_low_bound (exp
);
10530 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10532 /* Optimize the special case of a zero lower bound.
10534 We convert the lower bound to sizetype to avoid problems
10535 with constant folding. E.g. suppose the lower bound is
10536 1 and its mode is QI. Without the conversion
10537 (ARRAY + (INDEX - (unsigned char)1))
10539 (ARRAY + (-(unsigned char)1) + INDEX)
10541 (ARRAY + 255 + INDEX). Oops! */
10542 if (!integer_zerop (low_bound
))
10543 index1
= size_diffop_loc (loc
, index1
,
10544 fold_convert_loc (loc
, sizetype
,
10547 if (tree_fits_uhwi_p (index1
)
10548 && compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10550 tree type
= TREE_TYPE (TREE_TYPE (init
));
10551 scalar_int_mode mode
;
10553 if (is_int_mode (TYPE_MODE (type
), &mode
)
10554 && GET_MODE_SIZE (mode
) == 1)
10555 return gen_int_mode (TREE_STRING_POINTER (init
)
10556 [TREE_INT_CST_LOW (index1
)],
10562 goto normal_inner_ref
;
10564 case COMPONENT_REF
:
10565 /* If the operand is a CONSTRUCTOR, we can just extract the
10566 appropriate field if it is present. */
10567 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10569 unsigned HOST_WIDE_INT idx
;
10571 scalar_int_mode field_mode
;
10573 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10575 if (field
== treeop1
10576 /* We can normally use the value of the field in the
10577 CONSTRUCTOR. However, if this is a bitfield in
10578 an integral mode that we can fit in a HOST_WIDE_INT,
10579 we must mask only the number of bits in the bitfield,
10580 since this is done implicitly by the constructor. If
10581 the bitfield does not meet either of those conditions,
10582 we can't do this optimization. */
10583 && (! DECL_BIT_FIELD (field
)
10584 || (is_int_mode (DECL_MODE (field
), &field_mode
)
10585 && (GET_MODE_PRECISION (field_mode
)
10586 <= HOST_BITS_PER_WIDE_INT
))))
10588 if (DECL_BIT_FIELD (field
)
10589 && modifier
== EXPAND_STACK_PARM
)
10591 op0
= expand_expr (value
, target
, tmode
, modifier
);
10592 if (DECL_BIT_FIELD (field
))
10594 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10595 scalar_int_mode imode
10596 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field
));
10598 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10600 op1
= gen_int_mode ((HOST_WIDE_INT_1
<< bitsize
) - 1,
10602 op0
= expand_and (imode
, op0
, op1
, target
);
10606 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10608 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10610 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10618 goto normal_inner_ref
;
10620 case BIT_FIELD_REF
:
10621 case ARRAY_RANGE_REF
:
10624 machine_mode mode1
, mode2
;
10625 poly_int64 bitsize
, bitpos
, bytepos
;
10627 int reversep
, volatilep
= 0, must_force_mem
;
10629 = get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
10630 &unsignedp
, &reversep
, &volatilep
);
10631 rtx orig_op0
, memloc
;
10632 bool clear_mem_expr
= false;
10634 /* If we got back the original object, something is wrong. Perhaps
10635 we are evaluating an expression too early. In any event, don't
10636 infinitely recurse. */
10637 gcc_assert (tem
!= exp
);
10639 /* If TEM's type is a union of variable size, pass TARGET to the inner
10640 computation, since it will need a temporary and TARGET is known
10641 to have to do. This occurs in unchecked conversion in Ada. */
10643 = expand_expr_real (tem
,
10644 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10645 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10646 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10648 && modifier
!= EXPAND_STACK_PARM
10649 ? target
: NULL_RTX
),
10651 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10654 /* If the field has a mode, we want to access it in the
10655 field's mode, not the computed mode.
10656 If a MEM has VOIDmode (external with incomplete type),
10657 use BLKmode for it instead. */
10660 if (mode1
!= VOIDmode
)
10661 op0
= adjust_address (op0
, mode1
, 0);
10662 else if (GET_MODE (op0
) == VOIDmode
)
10663 op0
= adjust_address (op0
, BLKmode
, 0);
10667 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10669 /* Make sure bitpos is not negative, it can wreak havoc later. */
10670 if (maybe_lt (bitpos
, 0))
10672 gcc_checking_assert (offset
== NULL_TREE
);
10673 offset
= size_int (bits_to_bytes_round_down (bitpos
));
10674 bitpos
= num_trailing_bits (bitpos
);
10677 /* If we have either an offset, a BLKmode result, or a reference
10678 outside the underlying object, we must force it to memory.
10679 Such a case can occur in Ada if we have unchecked conversion
10680 of an expression from a scalar type to an aggregate type or
10681 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10682 passed a partially uninitialized object or a view-conversion
10683 to a larger size. */
10684 must_force_mem
= (offset
10685 || mode1
== BLKmode
10686 || (mode
== BLKmode
10687 && !int_mode_for_size (bitsize
, 1).exists ())
10688 || maybe_gt (bitpos
+ bitsize
,
10689 GET_MODE_BITSIZE (mode2
)));
10691 /* Handle CONCAT first. */
10692 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10694 if (known_eq (bitpos
, 0)
10695 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
10696 && COMPLEX_MODE_P (mode1
)
10697 && COMPLEX_MODE_P (GET_MODE (op0
))
10698 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1
))
10699 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0
)))))
10702 op0
= flip_storage_order (GET_MODE (op0
), op0
);
10703 if (mode1
!= GET_MODE (op0
))
10706 for (int i
= 0; i
< 2; i
++)
10708 rtx op
= read_complex_part (op0
, i
!= 0);
10709 if (GET_CODE (op
) == SUBREG
)
10710 op
= force_reg (GET_MODE (op
), op
);
10711 rtx temp
= gen_lowpart_common (GET_MODE_INNER (mode1
),
10717 if (!REG_P (op
) && !MEM_P (op
))
10718 op
= force_reg (GET_MODE (op
), op
);
10719 op
= gen_lowpart (GET_MODE_INNER (mode1
), op
);
10723 op0
= gen_rtx_CONCAT (mode1
, parts
[0], parts
[1]);
10727 if (known_eq (bitpos
, 0)
10728 && known_eq (bitsize
,
10729 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10730 && maybe_ne (bitsize
, 0))
10732 op0
= XEXP (op0
, 0);
10733 mode2
= GET_MODE (op0
);
10735 else if (known_eq (bitpos
,
10736 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10737 && known_eq (bitsize
,
10738 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1))))
10739 && maybe_ne (bitpos
, 0)
10740 && maybe_ne (bitsize
, 0))
10742 op0
= XEXP (op0
, 1);
10744 mode2
= GET_MODE (op0
);
10747 /* Otherwise force into memory. */
10748 must_force_mem
= 1;
10751 /* If this is a constant, put it in a register if it is a legitimate
10752 constant and we don't need a memory reference. */
10753 if (CONSTANT_P (op0
)
10754 && mode2
!= BLKmode
10755 && targetm
.legitimate_constant_p (mode2
, op0
)
10756 && !must_force_mem
)
10757 op0
= force_reg (mode2
, op0
);
10759 /* Otherwise, if this is a constant, try to force it to the constant
10760 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10761 is a legitimate constant. */
10762 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10763 op0
= validize_mem (memloc
);
10765 /* Otherwise, if this is a constant or the object is not in memory
10766 and need be, put it there. */
10767 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10769 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10770 emit_move_insn (memloc
, op0
);
10772 clear_mem_expr
= true;
10777 machine_mode address_mode
;
10778 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10781 gcc_assert (MEM_P (op0
));
10783 address_mode
= get_address_mode (op0
);
10784 if (GET_MODE (offset_rtx
) != address_mode
)
10786 /* We cannot be sure that the RTL in offset_rtx is valid outside
10787 of a memory address context, so force it into a register
10788 before attempting to convert it to the desired mode. */
10789 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10790 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10793 /* See the comment in expand_assignment for the rationale. */
10794 if (mode1
!= VOIDmode
10795 && maybe_ne (bitpos
, 0)
10796 && maybe_gt (bitsize
, 0)
10797 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
10798 && multiple_p (bitpos
, bitsize
)
10799 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
10800 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10802 op0
= adjust_address (op0
, mode1
, bytepos
);
10806 op0
= offset_address (op0
, offset_rtx
,
10807 highest_pow2_factor (offset
));
10810 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10811 record its alignment as BIGGEST_ALIGNMENT. */
10813 && known_eq (bitpos
, 0)
10815 && is_aligning_offset (offset
, tem
))
10816 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10818 /* Don't forget about volatility even if this is a bitfield. */
10819 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10821 if (op0
== orig_op0
)
10822 op0
= copy_rtx (op0
);
10824 MEM_VOLATILE_P (op0
) = 1;
10827 if (MEM_P (op0
) && TREE_CODE (tem
) == FUNCTION_DECL
)
10829 if (op0
== orig_op0
)
10830 op0
= copy_rtx (op0
);
10832 set_mem_align (op0
, BITS_PER_UNIT
);
10835 /* In cases where an aligned union has an unaligned object
10836 as a field, we might be extracting a BLKmode value from
10837 an integer-mode (e.g., SImode) object. Handle this case
10838 by doing the extract into an object as wide as the field
10839 (which we know to be the width of a basic mode), then
10840 storing into memory, and changing the mode to BLKmode. */
10841 if (mode1
== VOIDmode
10842 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10843 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10844 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10845 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10846 && modifier
!= EXPAND_CONST_ADDRESS
10847 && modifier
!= EXPAND_INITIALIZER
10848 && modifier
!= EXPAND_MEMORY
)
10849 /* If the bitfield is volatile and the bitsize
10850 is narrower than the access size of the bitfield,
10851 we need to extract bitfields from the access. */
10852 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10853 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10854 && mode1
!= BLKmode
10855 && maybe_lt (bitsize
, GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
))
10856 /* If the field isn't aligned enough to fetch as a memref,
10857 fetch it as a bit field. */
10858 || (mode1
!= BLKmode
10860 ? MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10861 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode1
))
10862 : TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10863 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
10864 && modifier
!= EXPAND_MEMORY
10865 && ((modifier
== EXPAND_CONST_ADDRESS
10866 || modifier
== EXPAND_INITIALIZER
)
10868 : targetm
.slow_unaligned_access (mode1
,
10870 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
10871 /* If the type and the field are a constant size and the
10872 size of the type isn't the same size as the bitfield,
10873 we must use bitfield operations. */
10874 || (known_size_p (bitsize
)
10875 && TYPE_SIZE (TREE_TYPE (exp
))
10876 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
10877 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
10880 machine_mode ext_mode
= mode
;
10882 if (ext_mode
== BLKmode
10883 && ! (target
!= 0 && MEM_P (op0
)
10885 && multiple_p (bitpos
, BITS_PER_UNIT
)))
10886 ext_mode
= int_mode_for_size (bitsize
, 1).else_blk ();
10888 if (ext_mode
== BLKmode
)
10891 target
= assign_temp (type
, 1, 1);
10893 /* ??? Unlike the similar test a few lines below, this one is
10894 very likely obsolete. */
10895 if (known_eq (bitsize
, 0))
10898 /* In this case, BITPOS must start at a byte boundary and
10899 TARGET, if specified, must be a MEM. */
10900 gcc_assert (MEM_P (op0
)
10901 && (!target
|| MEM_P (target
)));
10903 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
10904 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
10905 emit_block_move (target
,
10906 adjust_address (op0
, VOIDmode
, bytepos
),
10907 gen_int_mode (bytesize
, Pmode
),
10908 (modifier
== EXPAND_STACK_PARM
10909 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10914 /* If we have nothing to extract, the result will be 0 for targets
10915 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10916 return 0 for the sake of consistency, as reading a zero-sized
10917 bitfield is valid in Ada and the value is fully specified. */
10918 if (known_eq (bitsize
, 0))
10921 op0
= validize_mem (op0
);
10923 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10924 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10926 /* If the result has aggregate type and the extraction is done in
10927 an integral mode, then the field may be not aligned on a byte
10928 boundary; in this case, if it has reverse storage order, it
10929 needs to be extracted as a scalar field with reverse storage
10930 order and put back into memory order afterwards. */
10931 if (AGGREGATE_TYPE_P (type
)
10932 && GET_MODE_CLASS (ext_mode
) == MODE_INT
)
10933 reversep
= TYPE_REVERSE_STORAGE_ORDER (type
);
10935 gcc_checking_assert (known_ge (bitpos
, 0));
10936 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10937 (modifier
== EXPAND_STACK_PARM
10938 ? NULL_RTX
: target
),
10939 ext_mode
, ext_mode
, reversep
, alt_rtl
);
10941 /* If the result has aggregate type and the mode of OP0 is an
10942 integral mode then, if BITSIZE is narrower than this mode
10943 and this is for big-endian data, we must put the field
10944 into the high-order bits. And we must also put it back
10945 into memory order if it has been previously reversed. */
10946 scalar_int_mode op0_mode
;
10947 if (AGGREGATE_TYPE_P (type
)
10948 && is_int_mode (GET_MODE (op0
), &op0_mode
))
10950 HOST_WIDE_INT size
= GET_MODE_BITSIZE (op0_mode
);
10952 gcc_checking_assert (known_le (bitsize
, size
));
10953 if (maybe_lt (bitsize
, size
)
10954 && reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
10955 op0
= expand_shift (LSHIFT_EXPR
, op0_mode
, op0
,
10956 size
- bitsize
, op0
, 1);
10959 op0
= flip_storage_order (op0_mode
, op0
);
10962 /* If the result type is BLKmode, store the data into a temporary
10963 of the appropriate type, but with the mode corresponding to the
10964 mode for the data we have (op0's mode). */
10965 if (mode
== BLKmode
)
10968 = assign_stack_temp_for_type (ext_mode
,
10969 GET_MODE_BITSIZE (ext_mode
),
10971 emit_move_insn (new_rtx
, op0
);
10972 op0
= copy_rtx (new_rtx
);
10973 PUT_MODE (op0
, BLKmode
);
10979 /* If the result is BLKmode, use that to access the object
10981 if (mode
== BLKmode
)
10984 /* Get a reference to just this component. */
10985 bytepos
= bits_to_bytes_round_down (bitpos
);
10986 if (modifier
== EXPAND_CONST_ADDRESS
10987 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10988 op0
= adjust_address_nv (op0
, mode1
, bytepos
);
10990 op0
= adjust_address (op0
, mode1
, bytepos
);
10992 if (op0
== orig_op0
)
10993 op0
= copy_rtx (op0
);
10995 /* Don't set memory attributes if the base expression is
10996 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
10997 we should just honor its original memory attributes. */
10998 if (!(TREE_CODE (tem
) == SSA_NAME
10999 && (MEM_P (orig_op0
) || CONSTANT_P (orig_op0
))))
11000 set_mem_attributes (op0
, exp
, 0);
11002 if (REG_P (XEXP (op0
, 0)))
11003 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11005 /* If op0 is a temporary because the original expressions was forced
11006 to memory, clear MEM_EXPR so that the original expression cannot
11007 be marked as addressable through MEM_EXPR of the temporary. */
11008 if (clear_mem_expr
)
11009 set_mem_expr (op0
, NULL_TREE
);
11011 MEM_VOLATILE_P (op0
) |= volatilep
;
11014 && modifier
!= EXPAND_MEMORY
11015 && modifier
!= EXPAND_WRITE
)
11016 op0
= flip_storage_order (mode1
, op0
);
11018 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
11019 || modifier
== EXPAND_CONST_ADDRESS
11020 || modifier
== EXPAND_INITIALIZER
)
11024 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
11026 convert_move (target
, op0
, unsignedp
);
11031 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
11034 /* All valid uses of __builtin_va_arg_pack () are removed during
11036 if (CALL_EXPR_VA_ARG_PACK (exp
))
11037 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
11039 tree fndecl
= get_callee_fndecl (exp
), attr
;
11042 /* Don't diagnose the error attribute in thunks, those are
11043 artificially created. */
11044 && !CALL_FROM_THUNK_P (exp
)
11045 && (attr
= lookup_attribute ("error",
11046 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11048 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11049 error ("%Kcall to %qs declared with attribute error: %s", exp
,
11050 identifier_to_locale (ident
),
11051 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11054 /* Don't diagnose the warning attribute in thunks, those are
11055 artificially created. */
11056 && !CALL_FROM_THUNK_P (exp
)
11057 && (attr
= lookup_attribute ("warning",
11058 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11060 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11061 warning_at (tree_nonartificial_location (exp
),
11062 OPT_Wattribute_warning
,
11063 "%Kcall to %qs declared with attribute warning: %s",
11064 exp
, identifier_to_locale (ident
),
11065 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11068 /* Check for a built-in function. */
11069 if (fndecl
&& fndecl_built_in_p (fndecl
))
11071 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
11072 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
11075 return expand_call (exp
, target
, ignore
);
11077 case VIEW_CONVERT_EXPR
:
11080 /* If we are converting to BLKmode, try to avoid an intermediate
11081 temporary by fetching an inner memory reference. */
11082 if (mode
== BLKmode
11083 && poly_int_tree_p (TYPE_SIZE (type
))
11084 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
11085 && handled_component_p (treeop0
))
11087 machine_mode mode1
;
11088 poly_int64 bitsize
, bitpos
, bytepos
;
11090 int reversep
, volatilep
= 0;
11092 = get_inner_reference (treeop0
, &bitsize
, &bitpos
, &offset
, &mode1
,
11093 &unsignedp
, &reversep
, &volatilep
);
11095 /* ??? We should work harder and deal with non-zero offsets. */
11097 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
11099 && known_size_p (bitsize
)
11100 && known_eq (wi::to_poly_offset (TYPE_SIZE (type
)), bitsize
))
11102 /* See the normal_inner_ref case for the rationale. */
11104 = expand_expr_real (tem
,
11105 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11106 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
11108 && modifier
!= EXPAND_STACK_PARM
11109 ? target
: NULL_RTX
),
11111 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
11114 if (MEM_P (orig_op0
))
11118 /* Get a reference to just this component. */
11119 if (modifier
== EXPAND_CONST_ADDRESS
11120 || modifier
== EXPAND_SUM
11121 || modifier
== EXPAND_INITIALIZER
)
11122 op0
= adjust_address_nv (op0
, mode
, bytepos
);
11124 op0
= adjust_address (op0
, mode
, bytepos
);
11126 if (op0
== orig_op0
)
11127 op0
= copy_rtx (op0
);
11129 set_mem_attributes (op0
, treeop0
, 0);
11130 if (REG_P (XEXP (op0
, 0)))
11131 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11133 MEM_VOLATILE_P (op0
) |= volatilep
;
11139 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
11140 NULL
, inner_reference_p
);
11142 /* If the input and output modes are both the same, we are done. */
11143 if (mode
== GET_MODE (op0
))
11145 /* If neither mode is BLKmode, and both modes are the same size
11146 then we can use gen_lowpart. */
11147 else if (mode
!= BLKmode
11148 && GET_MODE (op0
) != BLKmode
11149 && known_eq (GET_MODE_PRECISION (mode
),
11150 GET_MODE_PRECISION (GET_MODE (op0
)))
11151 && !COMPLEX_MODE_P (GET_MODE (op0
)))
11153 if (GET_CODE (op0
) == SUBREG
)
11154 op0
= force_reg (GET_MODE (op0
), op0
);
11155 temp
= gen_lowpart_common (mode
, op0
);
11160 if (!REG_P (op0
) && !MEM_P (op0
))
11161 op0
= force_reg (GET_MODE (op0
), op0
);
11162 op0
= gen_lowpart (mode
, op0
);
11165 /* If both types are integral, convert from one mode to the other. */
11166 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
11167 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
11168 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
11169 /* If the output type is a bit-field type, do an extraction. */
11170 else if (reduce_bit_field
)
11171 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
11172 TYPE_UNSIGNED (type
), NULL_RTX
,
11173 mode
, mode
, false, NULL
);
11174 /* As a last resort, spill op0 to memory, and reload it in a
11176 else if (!MEM_P (op0
))
11178 /* If the operand is not a MEM, force it into memory. Since we
11179 are going to be changing the mode of the MEM, don't call
11180 force_const_mem for constants because we don't allow pool
11181 constants to change mode. */
11182 tree inner_type
= TREE_TYPE (treeop0
);
11184 gcc_assert (!TREE_ADDRESSABLE (exp
));
11186 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
11188 = assign_stack_temp_for_type
11189 (TYPE_MODE (inner_type
),
11190 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
11192 emit_move_insn (target
, op0
);
11196 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11197 output type is such that the operand is known to be aligned, indicate
11198 that it is. Otherwise, we need only be concerned about alignment for
11199 non-BLKmode results. */
11202 enum insn_code icode
;
11204 if (modifier
!= EXPAND_WRITE
11205 && modifier
!= EXPAND_MEMORY
11206 && !inner_reference_p
11208 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
11210 /* If the target does have special handling for unaligned
11211 loads of mode then use them. */
11212 if ((icode
= optab_handler (movmisalign_optab
, mode
))
11213 != CODE_FOR_nothing
)
11217 op0
= adjust_address (op0
, mode
, 0);
11218 /* We've already validated the memory, and we're creating a
11219 new pseudo destination. The predicates really can't
11221 reg
= gen_reg_rtx (mode
);
11223 /* Nor can the insn generator. */
11224 rtx_insn
*insn
= GEN_FCN (icode
) (reg
, op0
);
11228 else if (STRICT_ALIGNMENT
)
11230 poly_uint64 mode_size
= GET_MODE_SIZE (mode
);
11231 poly_uint64 temp_size
= mode_size
;
11232 if (GET_MODE (op0
) != BLKmode
)
11233 temp_size
= upper_bound (temp_size
,
11234 GET_MODE_SIZE (GET_MODE (op0
)));
11236 = assign_stack_temp_for_type (mode
, temp_size
, type
);
11237 rtx new_with_op0_mode
11238 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
11240 gcc_assert (!TREE_ADDRESSABLE (exp
));
11242 if (GET_MODE (op0
) == BLKmode
)
11244 rtx size_rtx
= gen_int_mode (mode_size
, Pmode
);
11245 emit_block_move (new_with_op0_mode
, op0
, size_rtx
,
11246 (modifier
== EXPAND_STACK_PARM
11247 ? BLOCK_OP_CALL_PARM
11248 : BLOCK_OP_NORMAL
));
11251 emit_move_insn (new_with_op0_mode
, op0
);
11257 op0
= adjust_address (op0
, mode
, 0);
11264 tree lhs
= treeop0
;
11265 tree rhs
= treeop1
;
11266 gcc_assert (ignore
);
11268 /* Check for |= or &= of a bitfield of size one into another bitfield
11269 of size 1. In this case, (unless we need the result of the
11270 assignment) we can do this more efficiently with a
11271 test followed by an assignment, if necessary.
11273 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11274 things change so we do, this code should be enhanced to
11276 if (TREE_CODE (lhs
) == COMPONENT_REF
11277 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
11278 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
11279 && TREE_OPERAND (rhs
, 0) == lhs
11280 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
11281 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
11282 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
11284 rtx_code_label
*label
= gen_label_rtx ();
11285 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
11286 profile_probability prob
= profile_probability::uninitialized ();
11288 jumpifnot (TREE_OPERAND (rhs
, 1), label
, prob
);
11290 jumpif (TREE_OPERAND (rhs
, 1), label
, prob
);
11291 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
11293 do_pending_stack_adjust ();
11294 emit_label (label
);
11298 expand_assignment (lhs
, rhs
, false);
11303 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
11305 case REALPART_EXPR
:
11306 op0
= expand_normal (treeop0
);
11307 return read_complex_part (op0
, false);
11309 case IMAGPART_EXPR
:
11310 op0
= expand_normal (treeop0
);
11311 return read_complex_part (op0
, true);
11318 /* Expanded in cfgexpand.c. */
11319 gcc_unreachable ();
11321 case TRY_CATCH_EXPR
:
11323 case EH_FILTER_EXPR
:
11324 case TRY_FINALLY_EXPR
:
11326 /* Lowered by tree-eh.c. */
11327 gcc_unreachable ();
11329 case WITH_CLEANUP_EXPR
:
11330 case CLEANUP_POINT_EXPR
:
11332 case CASE_LABEL_EXPR
:
11337 case COMPOUND_EXPR
:
11338 case PREINCREMENT_EXPR
:
11339 case PREDECREMENT_EXPR
:
11340 case POSTINCREMENT_EXPR
:
11341 case POSTDECREMENT_EXPR
:
11344 case COMPOUND_LITERAL_EXPR
:
11345 /* Lowered by gimplify.c. */
11346 gcc_unreachable ();
11349 /* Function descriptors are not valid except for as
11350 initialization constants, and should not be expanded. */
11351 gcc_unreachable ();
11353 case WITH_SIZE_EXPR
:
11354 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11355 have pulled out the size to use in whatever context it needed. */
11356 return expand_expr_real (treeop0
, original_target
, tmode
,
11357 modifier
, alt_rtl
, inner_reference_p
);
11360 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
11364 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11365 signedness of TYPE), possibly returning the result in TARGET.
11366 TYPE is known to be a partial integer type. */
11368 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
11370 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
11371 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
11373 /* For constant values, reduce using build_int_cst_type. */
11374 poly_int64 const_exp
;
11375 if (poly_int_rtx_p (exp
, &const_exp
))
11377 tree t
= build_int_cst_type (type
, const_exp
);
11378 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
11380 else if (TYPE_UNSIGNED (type
))
11382 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11383 rtx mask
= immed_wide_int_const
11384 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
11385 return expand_and (mode
, exp
, mask
, target
);
11389 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11390 int count
= GET_MODE_PRECISION (mode
) - prec
;
11391 exp
= expand_shift (LSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11392 return expand_shift (RSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11396 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11397 when applied to the address of EXP produces an address known to be
11398 aligned more than BIGGEST_ALIGNMENT. */
11401 is_aligning_offset (const_tree offset
, const_tree exp
)
11403 /* Strip off any conversions. */
11404 while (CONVERT_EXPR_P (offset
))
11405 offset
= TREE_OPERAND (offset
, 0);
11407 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11408 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11409 if (TREE_CODE (offset
) != BIT_AND_EXPR
11410 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
11411 || compare_tree_int (TREE_OPERAND (offset
, 1),
11412 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
11413 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1))
11416 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11417 It must be NEGATE_EXPR. Then strip any more conversions. */
11418 offset
= TREE_OPERAND (offset
, 0);
11419 while (CONVERT_EXPR_P (offset
))
11420 offset
= TREE_OPERAND (offset
, 0);
11422 if (TREE_CODE (offset
) != NEGATE_EXPR
)
11425 offset
= TREE_OPERAND (offset
, 0);
11426 while (CONVERT_EXPR_P (offset
))
11427 offset
= TREE_OPERAND (offset
, 0);
11429 /* This must now be the address of EXP. */
11430 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
11433 /* Return the tree node if an ARG corresponds to a string constant or zero
11434 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11435 non-constant) offset in bytes within the string that ARG is accessing.
11436 If MEM_SIZE is non-zero the storage size of the memory is returned.
11437 If DECL is non-zero the constant declaration is returned if available. */
11440 string_constant (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
11442 tree dummy
= NULL_TREE
;;
11446 /* Store the type of the original expression before conversions
11447 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11449 tree argtype
= TREE_TYPE (arg
);
11454 /* Non-constant index into the character array in an ARRAY_REF
11455 expression or null. */
11456 tree varidx
= NULL_TREE
;
11458 poly_int64 base_off
= 0;
11460 if (TREE_CODE (arg
) == ADDR_EXPR
)
11462 arg
= TREE_OPERAND (arg
, 0);
11464 if (TREE_CODE (arg
) == ARRAY_REF
)
11466 tree idx
= TREE_OPERAND (arg
, 1);
11467 if (TREE_CODE (idx
) != INTEGER_CST
)
11469 /* From a pointer (but not array) argument extract the variable
11470 index to prevent get_addr_base_and_unit_offset() from failing
11471 due to it. Use it later to compute the non-constant offset
11472 into the string and return it to the caller. */
11474 ref
= TREE_OPERAND (arg
, 0);
11476 if (TREE_CODE (TREE_TYPE (arg
)) == ARRAY_TYPE
)
11479 if (!integer_zerop (array_ref_low_bound (arg
)))
11482 if (!integer_onep (array_ref_element_size (arg
)))
11486 array
= get_addr_base_and_unit_offset (ref
, &base_off
);
11488 || (TREE_CODE (array
) != VAR_DECL
11489 && TREE_CODE (array
) != CONST_DECL
11490 && TREE_CODE (array
) != STRING_CST
))
11493 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
11495 tree arg0
= TREE_OPERAND (arg
, 0);
11496 tree arg1
= TREE_OPERAND (arg
, 1);
11499 tree str
= string_constant (arg0
, &offset
, mem_size
, decl
);
11502 str
= string_constant (arg1
, &offset
, mem_size
, decl
);
11508 /* Avoid pointers to arrays (see bug 86622). */
11509 if (POINTER_TYPE_P (TREE_TYPE (arg
))
11510 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg
))) == ARRAY_TYPE
11511 && !(decl
&& !*decl
)
11512 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
11513 && tree_fits_uhwi_p (*mem_size
)
11514 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
11517 tree type
= TREE_TYPE (offset
);
11518 arg1
= fold_convert (type
, arg1
);
11519 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, arg1
);
11524 else if (TREE_CODE (arg
) == SSA_NAME
)
11526 gimple
*stmt
= SSA_NAME_DEF_STMT (arg
);
11527 if (!is_gimple_assign (stmt
))
11530 tree rhs1
= gimple_assign_rhs1 (stmt
);
11531 tree_code code
= gimple_assign_rhs_code (stmt
);
11532 if (code
== ADDR_EXPR
)
11533 return string_constant (rhs1
, ptr_offset
, mem_size
, decl
);
11534 else if (code
!= POINTER_PLUS_EXPR
)
11538 if (tree str
= string_constant (rhs1
, &offset
, mem_size
, decl
))
11540 /* Avoid pointers to arrays (see bug 86622). */
11541 if (POINTER_TYPE_P (TREE_TYPE (rhs1
))
11542 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1
))) == ARRAY_TYPE
11543 && !(decl
&& !*decl
)
11544 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
11545 && tree_fits_uhwi_p (*mem_size
)
11546 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
11549 tree rhs2
= gimple_assign_rhs2 (stmt
);
11550 tree type
= TREE_TYPE (offset
);
11551 rhs2
= fold_convert (type
, rhs2
);
11552 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, rhs2
);
11557 else if (DECL_P (arg
))
11562 tree offset
= wide_int_to_tree (sizetype
, base_off
);
11565 if (TREE_CODE (TREE_TYPE (array
)) != ARRAY_TYPE
)
11568 gcc_assert (TREE_CODE (arg
) == ARRAY_REF
);
11569 tree chartype
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg
, 0)));
11570 if (TREE_CODE (chartype
) != INTEGER_TYPE
)
11573 offset
= fold_convert (sizetype
, varidx
);
11576 if (TREE_CODE (array
) == STRING_CST
)
11578 *ptr_offset
= fold_convert (sizetype
, offset
);
11579 *mem_size
= TYPE_SIZE_UNIT (TREE_TYPE (array
));
11582 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array
)))
11583 >= TREE_STRING_LENGTH (array
));
11587 if (!VAR_P (array
) && TREE_CODE (array
) != CONST_DECL
)
11590 tree init
= ctor_for_folding (array
);
11592 /* Handle variables initialized with string literals. */
11593 if (!init
|| init
== error_mark_node
)
11595 if (TREE_CODE (init
) == CONSTRUCTOR
)
11597 /* Convert the 64-bit constant offset to a wider type to avoid
11600 if (!base_off
.is_constant (&wioff
))
11603 wioff
*= BITS_PER_UNIT
;
11604 if (!wi::fits_uhwi_p (wioff
))
11607 base_off
= wioff
.to_uhwi ();
11608 unsigned HOST_WIDE_INT fieldoff
= 0;
11609 init
= fold_ctor_reference (TREE_TYPE (arg
), init
, base_off
, 0, array
,
11611 HOST_WIDE_INT cstoff
;
11612 if (!base_off
.is_constant (&cstoff
))
11615 cstoff
= (cstoff
- fieldoff
) / BITS_PER_UNIT
;
11616 tree off
= build_int_cst (sizetype
, cstoff
);
11618 offset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
, off
);
11626 *ptr_offset
= offset
;
11628 tree inittype
= TREE_TYPE (init
);
11630 if (TREE_CODE (init
) == INTEGER_CST
11631 && (TREE_CODE (TREE_TYPE (array
)) == INTEGER_TYPE
11632 || TYPE_MAIN_VARIANT (inittype
) == char_type_node
))
11634 /* For a reference to (address of) a single constant character,
11635 store the native representation of the character in CHARBUF.
11636 If the reference is to an element of an array or a member
11637 of a struct, only consider narrow characters until ctors
11638 for wide character arrays are transformed to STRING_CSTs
11639 like those for narrow arrays. */
11640 unsigned char charbuf
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11641 int len
= native_encode_expr (init
, charbuf
, sizeof charbuf
, 0);
11644 /* Construct a string literal with elements of INITTYPE and
11645 the representation above. Then strip
11646 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11647 init
= build_string_literal (len
, (char *)charbuf
, inittype
);
11648 init
= TREE_OPERAND (TREE_OPERAND (init
, 0), 0);
11652 tree initsize
= TYPE_SIZE_UNIT (inittype
);
11654 if (TREE_CODE (init
) == CONSTRUCTOR
&& initializer_zerop (init
))
11656 /* Fold an empty/zero constructor for an implicitly initialized
11657 object or subobject into the empty string. */
11659 /* Determine the character type from that of the original
11661 tree chartype
= argtype
;
11662 if (POINTER_TYPE_P (chartype
))
11663 chartype
= TREE_TYPE (chartype
);
11664 while (TREE_CODE (chartype
) == ARRAY_TYPE
)
11665 chartype
= TREE_TYPE (chartype
);
11666 /* Convert a char array to an empty STRING_CST having an array
11667 of the expected type. */
11669 initsize
= integer_zero_node
;
11671 unsigned HOST_WIDE_INT size
= tree_to_uhwi (initsize
);
11672 init
= build_string_literal (size
? 1 : 0, "", chartype
, size
);
11673 init
= TREE_OPERAND (init
, 0);
11674 init
= TREE_OPERAND (init
, 0);
11676 *ptr_offset
= integer_zero_node
;
11682 if (TREE_CODE (init
) != STRING_CST
)
11685 *mem_size
= initsize
;
11687 gcc_checking_assert (tree_to_shwi (initsize
) >= TREE_STRING_LENGTH (init
));
11692 /* Compute the modular multiplicative inverse of A modulo M
11693 using extended Euclid's algorithm. Assumes A and M are coprime. */
11695 mod_inv (const wide_int
&a
, const wide_int
&b
)
11697 /* Verify the assumption. */
11698 gcc_checking_assert (wi::eq_p (wi::gcd (a
, b
), 1));
11700 unsigned int p
= a
.get_precision () + 1;
11701 gcc_checking_assert (b
.get_precision () + 1 == p
);
11702 wide_int c
= wide_int::from (a
, p
, UNSIGNED
);
11703 wide_int d
= wide_int::from (b
, p
, UNSIGNED
);
11704 wide_int x0
= wide_int::from (0, p
, UNSIGNED
);
11705 wide_int x1
= wide_int::from (1, p
, UNSIGNED
);
11707 if (wi::eq_p (b
, 1))
11708 return wide_int::from (1, p
, UNSIGNED
);
11710 while (wi::gt_p (c
, 1, UNSIGNED
))
11713 wide_int q
= wi::divmod_trunc (c
, d
, UNSIGNED
, &d
);
11716 x0
= wi::sub (x1
, wi::mul (q
, x0
));
11719 if (wi::lt_p (x1
, 0, SIGNED
))
11724 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11725 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11726 for C2 > 0 to x & C3 == C2
11727 for C2 < 0 to x & C3 == (C2 & C3). */
11729 maybe_optimize_pow2p_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
11731 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
11732 tree treeop0
= gimple_assign_rhs1 (stmt
);
11733 tree treeop1
= gimple_assign_rhs2 (stmt
);
11734 tree type
= TREE_TYPE (*arg0
);
11735 scalar_int_mode mode
;
11736 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
11738 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
11739 || TYPE_PRECISION (type
) <= 1
11740 || TYPE_UNSIGNED (type
)
11741 /* Signed x % c == 0 should have been optimized into unsigned modulo
11743 || integer_zerop (*arg1
)
11744 /* If c is known to be non-negative, modulo will be expanded as unsigned
11746 || get_range_pos_neg (treeop0
) == 1)
11749 /* x % c == d where d < 0 && d <= -c should be always false. */
11750 if (tree_int_cst_sgn (*arg1
) == -1
11751 && -wi::to_widest (treeop1
) >= wi::to_widest (*arg1
))
11754 int prec
= TYPE_PRECISION (type
);
11755 wide_int w
= wi::to_wide (treeop1
) - 1;
11756 w
|= wi::shifted_mask (0, prec
- 1, true, prec
);
11757 tree c3
= wide_int_to_tree (type
, w
);
11759 if (tree_int_cst_sgn (*arg1
) == -1)
11760 c4
= wide_int_to_tree (type
, w
& wi::to_wide (*arg1
));
11762 rtx op0
= expand_normal (treeop0
);
11763 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
11765 bool speed_p
= optimize_insn_for_speed_p ();
11767 do_pending_stack_adjust ();
11769 location_t loc
= gimple_location (stmt
);
11770 struct separate_ops ops
;
11771 ops
.code
= TRUNC_MOD_EXPR
;
11772 ops
.location
= loc
;
11773 ops
.type
= TREE_TYPE (treeop0
);
11776 ops
.op2
= NULL_TREE
;
11778 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
11780 rtx_insn
*moinsns
= get_insns ();
11783 unsigned mocost
= seq_cost (moinsns
, speed_p
);
11784 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
11785 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
11787 ops
.code
= BIT_AND_EXPR
;
11788 ops
.location
= loc
;
11789 ops
.type
= TREE_TYPE (treeop0
);
11792 ops
.op2
= NULL_TREE
;
11794 rtx mur
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
11796 rtx_insn
*muinsns
= get_insns ();
11799 unsigned mucost
= seq_cost (muinsns
, speed_p
);
11800 mucost
+= rtx_cost (mur
, mode
, EQ
, 0, speed_p
);
11801 mucost
+= rtx_cost (expand_normal (c4
), mode
, EQ
, 1, speed_p
);
11803 if (mocost
<= mucost
)
11805 emit_insn (moinsns
);
11806 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
11810 emit_insn (muinsns
);
11811 *arg0
= make_tree (TREE_TYPE (*arg0
), mur
);
11816 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11818 (X - C2) * C3 <= C4 (or >), where
11819 C3 is modular multiplicative inverse of C1 and 1<<prec and
11820 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11821 if C2 > ((1<<prec) - 1) % C1).
11822 If C1 is even, S = ctz (C1) and C2 is 0, use
11823 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11824 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11826 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11828 (X * C3) + C4 <= 2 * C4, where
11829 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11830 C4 is ((1<<(prec - 1) - 1) / C1).
11831 If C1 is even, S = ctz(C1), use
11832 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11833 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11834 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11836 See the Hacker's Delight book, section 10-17. */
11838 maybe_optimize_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
11840 gcc_checking_assert (code
== EQ_EXPR
|| code
== NE_EXPR
);
11841 gcc_checking_assert (TREE_CODE (*arg1
) == INTEGER_CST
);
11846 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
11850 tree treeop0
= gimple_assign_rhs1 (stmt
);
11851 tree treeop1
= gimple_assign_rhs2 (stmt
);
11852 if (TREE_CODE (treeop0
) != SSA_NAME
11853 || TREE_CODE (treeop1
) != INTEGER_CST
11854 /* Don't optimize the undefined behavior case x % 0;
11855 x % 1 should have been optimized into zero, punt if
11856 it makes it here for whatever reason;
11857 x % -c should have been optimized into x % c. */
11858 || compare_tree_int (treeop1
, 2) <= 0
11859 /* Likewise x % c == d where d >= c should be always false. */
11860 || tree_int_cst_le (treeop1
, *arg1
))
11863 /* Unsigned x % pow2 is handled right already, for signed
11864 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11865 if (integer_pow2p (treeop1
))
11866 return maybe_optimize_pow2p_mod_cmp (code
, arg0
, arg1
);
11868 tree type
= TREE_TYPE (*arg0
);
11869 scalar_int_mode mode
;
11870 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
11872 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
11873 || TYPE_PRECISION (type
) <= 1)
11876 signop sgn
= UNSIGNED
;
11877 /* If both operands are known to have the sign bit clear, handle
11878 even the signed modulo case as unsigned. treeop1 is always
11879 positive >= 2, checked above. */
11880 if (!TYPE_UNSIGNED (type
) && get_range_pos_neg (treeop0
) != 1)
11883 if (!TYPE_UNSIGNED (type
))
11885 if (tree_int_cst_sgn (*arg1
) == -1)
11887 type
= unsigned_type_for (type
);
11888 if (!type
|| TYPE_MODE (type
) != TYPE_MODE (TREE_TYPE (*arg0
)))
11892 int prec
= TYPE_PRECISION (type
);
11893 wide_int w
= wi::to_wide (treeop1
);
11894 int shift
= wi::ctz (w
);
11895 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11896 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11897 If C1 is odd, we can handle all cases by subtracting
11898 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11899 e.g. by testing for overflow on the subtraction, punt on that for now
11901 if ((sgn
== SIGNED
|| shift
) && !integer_zerop (*arg1
))
11905 wide_int x
= wi::umod_trunc (wi::mask (prec
, false, prec
), w
);
11906 if (wi::gtu_p (wi::to_wide (*arg1
), x
))
11910 imm_use_iterator imm_iter
;
11911 use_operand_p use_p
;
11912 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, treeop0
)
11914 gimple
*use_stmt
= USE_STMT (use_p
);
11915 /* Punt if treeop0 is used in the same bb in a division
11916 or another modulo with the same divisor. We should expect
11917 the division and modulo combined together. */
11918 if (use_stmt
== stmt
11919 || gimple_bb (use_stmt
) != gimple_bb (stmt
))
11921 if (!is_gimple_assign (use_stmt
)
11922 || (gimple_assign_rhs_code (use_stmt
) != TRUNC_DIV_EXPR
11923 && gimple_assign_rhs_code (use_stmt
) != TRUNC_MOD_EXPR
))
11925 if (gimple_assign_rhs1 (use_stmt
) != treeop0
11926 || !operand_equal_p (gimple_assign_rhs2 (use_stmt
), treeop1
, 0))
11931 w
= wi::lrshift (w
, shift
);
11932 wide_int a
= wide_int::from (w
, prec
+ 1, UNSIGNED
);
11933 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
11934 wide_int m
= wide_int::from (mod_inv (a
, b
), prec
, UNSIGNED
);
11935 tree c3
= wide_int_to_tree (type
, m
);
11936 tree c5
= NULL_TREE
;
11938 if (sgn
== UNSIGNED
)
11940 d
= wi::divmod_trunc (wi::mask (prec
, false, prec
), w
, UNSIGNED
, &e
);
11941 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11942 otherwise use < or subtract one from C4. E.g. for
11943 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11944 x % 3U == 1 already needs to be
11945 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
11946 if (!shift
&& wi::gtu_p (wi::to_wide (*arg1
), e
))
11949 d
= wi::lrshift (d
, shift
);
11953 e
= wi::udiv_trunc (wi::mask (prec
- 1, false, prec
), w
);
11955 d
= wi::lshift (e
, 1);
11958 e
= wi::bit_and (e
, wi::mask (shift
, true, prec
));
11959 d
= wi::lrshift (e
, shift
- 1);
11961 c5
= wide_int_to_tree (type
, e
);
11963 tree c4
= wide_int_to_tree (type
, d
);
11965 rtx op0
= expand_normal (treeop0
);
11966 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
11968 bool speed_p
= optimize_insn_for_speed_p ();
11970 do_pending_stack_adjust ();
11972 location_t loc
= gimple_location (stmt
);
11973 struct separate_ops ops
;
11974 ops
.code
= TRUNC_MOD_EXPR
;
11975 ops
.location
= loc
;
11976 ops
.type
= TREE_TYPE (treeop0
);
11979 ops
.op2
= NULL_TREE
;
11981 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
11983 rtx_insn
*moinsns
= get_insns ();
11986 unsigned mocost
= seq_cost (moinsns
, speed_p
);
11987 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
11988 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
11990 tree t
= fold_convert_loc (loc
, type
, treeop0
);
11991 if (!integer_zerop (*arg1
))
11992 t
= fold_build2_loc (loc
, MINUS_EXPR
, type
, t
, fold_convert (type
, *arg1
));
11993 t
= fold_build2_loc (loc
, MULT_EXPR
, type
, t
, c3
);
11995 t
= fold_build2_loc (loc
, PLUS_EXPR
, type
, t
, c5
);
11998 tree s
= build_int_cst (NULL_TREE
, shift
);
11999 t
= fold_build2_loc (loc
, RROTATE_EXPR
, type
, t
, s
);
12003 rtx mur
= expand_normal (t
);
12004 rtx_insn
*muinsns
= get_insns ();
12007 unsigned mucost
= seq_cost (muinsns
, speed_p
);
12008 mucost
+= rtx_cost (mur
, mode
, LE
, 0, speed_p
);
12009 mucost
+= rtx_cost (expand_normal (c4
), mode
, LE
, 1, speed_p
);
12011 if (mocost
<= mucost
)
12013 emit_insn (moinsns
);
12014 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
12018 emit_insn (muinsns
);
12019 *arg0
= make_tree (type
, mur
);
12021 return code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
12024 /* Generate code to calculate OPS, and exploded expression
12025 using a store-flag instruction and return an rtx for the result.
12026 OPS reflects a comparison.
12028 If TARGET is nonzero, store the result there if convenient.
12030 Return zero if there is no suitable set-flag instruction
12031 available on this machine.
12033 Once expand_expr has been called on the arguments of the comparison,
12034 we are committed to doing the store flag, since it is not safe to
12035 re-evaluate the expression. We emit the store-flag insn by calling
12036 emit_store_flag, but only expand the arguments if we have a reason
12037 to believe that emit_store_flag will be successful. If we think that
12038 it will, but it isn't, we have to simulate the store-flag with a
12039 set/jump/set sequence. */
12042 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
12044 enum rtx_code code
;
12045 tree arg0
, arg1
, type
;
12046 machine_mode operand_mode
;
12049 rtx subtarget
= target
;
12050 location_t loc
= ops
->location
;
12055 /* Don't crash if the comparison was erroneous. */
12056 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
12059 type
= TREE_TYPE (arg0
);
12060 operand_mode
= TYPE_MODE (type
);
12061 unsignedp
= TYPE_UNSIGNED (type
);
12063 /* We won't bother with BLKmode store-flag operations because it would mean
12064 passing a lot of information to emit_store_flag. */
12065 if (operand_mode
== BLKmode
)
12068 /* We won't bother with store-flag operations involving function pointers
12069 when function pointers must be canonicalized before comparisons. */
12070 if (targetm
.have_canonicalize_funcptr_for_compare ()
12071 && ((POINTER_TYPE_P (TREE_TYPE (arg0
))
12072 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0
))))
12073 || (POINTER_TYPE_P (TREE_TYPE (arg1
))
12074 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1
))))))
12080 /* For vector typed comparisons emit code to generate the desired
12081 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12082 expander for this. */
12083 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
12085 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
12086 if (VECTOR_BOOLEAN_TYPE_P (ops
->type
)
12087 && expand_vec_cmp_expr_p (TREE_TYPE (arg0
), ops
->type
, ops
->code
))
12088 return expand_vec_cmp_expr (ops
->type
, ifexp
, target
);
12091 tree if_true
= constant_boolean_node (true, ops
->type
);
12092 tree if_false
= constant_boolean_node (false, ops
->type
);
12093 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
,
12098 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12099 into (x - C2) * C3 < C4. */
12100 if ((ops
->code
== EQ_EXPR
|| ops
->code
== NE_EXPR
)
12101 && TREE_CODE (arg0
) == SSA_NAME
12102 && TREE_CODE (arg1
) == INTEGER_CST
)
12104 enum tree_code code
= maybe_optimize_mod_cmp (ops
->code
, &arg0
, &arg1
);
12105 if (code
!= ops
->code
)
12107 struct separate_ops nops
= *ops
;
12108 nops
.code
= ops
->code
= code
;
12111 nops
.type
= TREE_TYPE (arg0
);
12112 return do_store_flag (&nops
, target
, mode
);
12116 /* Get the rtx comparison code to use. We know that EXP is a comparison
12117 operation of some type. Some comparisons against 1 and -1 can be
12118 converted to comparisons with zero. Do so here so that the tests
12119 below will be aware that we have a comparison with zero. These
12120 tests will not catch constants in the first operand, but constants
12121 are rarely passed as the first operand. */
12132 if (integer_onep (arg1
))
12133 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
12135 code
= unsignedp
? LTU
: LT
;
12138 if (! unsignedp
&& integer_all_onesp (arg1
))
12139 arg1
= integer_zero_node
, code
= LT
;
12141 code
= unsignedp
? LEU
: LE
;
12144 if (! unsignedp
&& integer_all_onesp (arg1
))
12145 arg1
= integer_zero_node
, code
= GE
;
12147 code
= unsignedp
? GTU
: GT
;
12150 if (integer_onep (arg1
))
12151 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
12153 code
= unsignedp
? GEU
: GE
;
12156 case UNORDERED_EXPR
:
12182 gcc_unreachable ();
12185 /* Put a constant second. */
12186 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
12187 || TREE_CODE (arg0
) == FIXED_CST
)
12189 std::swap (arg0
, arg1
);
12190 code
= swap_condition (code
);
12193 /* If this is an equality or inequality test of a single bit, we can
12194 do this by shifting the bit being tested to the low-order bit and
12195 masking the result with the constant 1. If the condition was EQ,
12196 we xor it with 1. This does not require an scc insn and is faster
12197 than an scc insn even if we have it.
12199 The code to make this transformation was moved into fold_single_bit_test,
12200 so we just call into the folder and expand its result. */
12202 if ((code
== NE
|| code
== EQ
)
12203 && integer_zerop (arg1
)
12204 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
12206 gimple
*srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
12208 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
12210 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
12211 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
12212 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
12213 gimple_assign_rhs1 (srcstmt
),
12214 gimple_assign_rhs2 (srcstmt
));
12215 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
12217 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
12221 if (! get_subtarget (target
)
12222 || GET_MODE (subtarget
) != operand_mode
)
12225 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
12228 target
= gen_reg_rtx (mode
);
12230 /* Try a cstore if possible. */
12231 return emit_store_flag_force (target
, code
, op0
, op1
,
12232 operand_mode
, unsignedp
,
12233 (TYPE_PRECISION (ops
->type
) == 1
12234 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
12237 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12238 0 otherwise (i.e. if there is no casesi instruction).
12240 DEFAULT_PROBABILITY is the probability of jumping to the default
12243 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
12244 rtx table_label
, rtx default_label
, rtx fallback_label
,
12245 profile_probability default_probability
)
12247 class expand_operand ops
[5];
12248 scalar_int_mode index_mode
= SImode
;
12249 rtx op1
, op2
, index
;
12251 if (! targetm
.have_casesi ())
12254 /* The index must be some form of integer. Convert it to SImode. */
12255 scalar_int_mode omode
= SCALAR_INT_TYPE_MODE (index_type
);
12256 if (GET_MODE_BITSIZE (omode
) > GET_MODE_BITSIZE (index_mode
))
12258 rtx rangertx
= expand_normal (range
);
12260 /* We must handle the endpoints in the original mode. */
12261 index_expr
= build2 (MINUS_EXPR
, index_type
,
12262 index_expr
, minval
);
12263 minval
= integer_zero_node
;
12264 index
= expand_normal (index_expr
);
12266 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
12267 omode
, 1, default_label
,
12268 default_probability
);
12269 /* Now we can safely truncate. */
12270 index
= convert_to_mode (index_mode
, index
, 0);
12274 if (omode
!= index_mode
)
12276 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
12277 index_expr
= fold_convert (index_type
, index_expr
);
12280 index
= expand_normal (index_expr
);
12283 do_pending_stack_adjust ();
12285 op1
= expand_normal (minval
);
12286 op2
= expand_normal (range
);
12288 create_input_operand (&ops
[0], index
, index_mode
);
12289 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
12290 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
12291 create_fixed_operand (&ops
[3], table_label
);
12292 create_fixed_operand (&ops
[4], (default_label
12294 : fallback_label
));
12295 expand_jump_insn (targetm
.code_for_casesi
, 5, ops
);
12299 /* Attempt to generate a tablejump instruction; same concept. */
12300 /* Subroutine of the next function.
12302 INDEX is the value being switched on, with the lowest value
12303 in the table already subtracted.
12304 MODE is its expected mode (needed if INDEX is constant).
12305 RANGE is the length of the jump table.
12306 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12308 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12309 index value is out of range.
12310 DEFAULT_PROBABILITY is the probability of jumping to
12311 the default label. */
12314 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
12315 rtx default_label
, profile_probability default_probability
)
12319 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
12320 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
12322 /* Do an unsigned comparison (in the proper mode) between the index
12323 expression and the value which represents the length of the range.
12324 Since we just finished subtracting the lower bound of the range
12325 from the index expression, this comparison allows us to simultaneously
12326 check that the original index expression value is both greater than
12327 or equal to the minimum value of the range and less than or equal to
12328 the maximum value of the range. */
12331 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
12332 default_label
, default_probability
);
12334 /* If index is in range, it must fit in Pmode.
12335 Convert to Pmode so we can index with it. */
12338 unsigned int width
;
12340 /* We know the value of INDEX is between 0 and RANGE. If we have a
12341 sign-extended subreg, and RANGE does not have the sign bit set, then
12342 we have a value that is valid for both sign and zero extension. In
12343 this case, we get better code if we sign extend. */
12344 if (GET_CODE (index
) == SUBREG
12345 && SUBREG_PROMOTED_VAR_P (index
)
12346 && SUBREG_PROMOTED_SIGNED_P (index
)
12347 && ((width
= GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
)))
12348 <= HOST_BITS_PER_WIDE_INT
)
12349 && ! (UINTVAL (range
) & (HOST_WIDE_INT_1U
<< (width
- 1))))
12350 index
= convert_to_mode (Pmode
, index
, 0);
12352 index
= convert_to_mode (Pmode
, index
, 1);
12355 /* Don't let a MEM slip through, because then INDEX that comes
12356 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12357 and break_out_memory_refs will go to work on it and mess it up. */
12358 #ifdef PIC_CASE_VECTOR_ADDRESS
12359 if (flag_pic
&& !REG_P (index
))
12360 index
= copy_to_mode_reg (Pmode
, index
);
12363 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12364 GET_MODE_SIZE, because this indicates how large insns are. The other
12365 uses should all be Pmode, because they are addresses. This code
12366 could fail if addresses and insns are not the same size. */
12367 index
= simplify_gen_binary (MULT
, Pmode
, index
,
12368 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
12370 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
12371 gen_rtx_LABEL_REF (Pmode
, table_label
));
12373 #ifdef PIC_CASE_VECTOR_ADDRESS
12375 index
= PIC_CASE_VECTOR_ADDRESS (index
);
12378 index
= memory_address (CASE_VECTOR_MODE
, index
);
12379 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
12380 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
12381 convert_move (temp
, vector
, 0);
12383 emit_jump_insn (targetm
.gen_tablejump (temp
, table_label
));
12385 /* If we are generating PIC code or if the table is PC-relative, the
12386 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12387 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
12392 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
12393 rtx table_label
, rtx default_label
,
12394 profile_probability default_probability
)
12398 if (! targetm
.have_tablejump ())
12401 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
12402 fold_convert (index_type
, index_expr
),
12403 fold_convert (index_type
, minval
));
12404 index
= expand_normal (index_expr
);
12405 do_pending_stack_adjust ();
12407 do_tablejump (index
, TYPE_MODE (index_type
),
12408 convert_modes (TYPE_MODE (index_type
),
12409 TYPE_MODE (TREE_TYPE (range
)),
12410 expand_normal (range
),
12411 TYPE_UNSIGNED (TREE_TYPE (range
))),
12412 table_label
, default_label
, default_probability
);
12416 /* Return a CONST_VECTOR rtx representing vector mask for
12417 a VECTOR_CST of booleans. */
12419 const_vector_mask_from_tree (tree exp
)
12421 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
12422 machine_mode inner
= GET_MODE_INNER (mode
);
12424 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
12425 VECTOR_CST_NELTS_PER_PATTERN (exp
));
12426 unsigned int count
= builder
.encoded_nelts ();
12427 for (unsigned int i
= 0; i
< count
; ++i
)
12429 tree elt
= VECTOR_CST_ELT (exp
, i
);
12430 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
12431 if (integer_zerop (elt
))
12432 builder
.quick_push (CONST0_RTX (inner
));
12433 else if (integer_onep (elt
)
12434 || integer_minus_onep (elt
))
12435 builder
.quick_push (CONSTM1_RTX (inner
));
12437 gcc_unreachable ();
12439 return builder
.build ();
12442 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12443 Return a constant scalar rtx of mode MODE in which bit X is set if element
12444 X of EXP is nonzero. */
12446 const_scalar_mask_from_tree (scalar_int_mode mode
, tree exp
)
12448 wide_int res
= wi::zero (GET_MODE_PRECISION (mode
));
12451 /* The result has a fixed number of bits so the input must too. */
12452 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
12453 for (unsigned int i
= 0; i
< nunits
; ++i
)
12455 elt
= VECTOR_CST_ELT (exp
, i
);
12456 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
12457 if (integer_all_onesp (elt
))
12458 res
= wi::set_bit (res
, i
);
12460 gcc_assert (integer_zerop (elt
));
12463 return immed_wide_int_const (res
, mode
);
12466 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12468 const_vector_from_tree (tree exp
)
12470 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
12472 if (initializer_zerop (exp
))
12473 return CONST0_RTX (mode
);
12475 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
12476 return const_vector_mask_from_tree (exp
);
12478 machine_mode inner
= GET_MODE_INNER (mode
);
12480 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
12481 VECTOR_CST_NELTS_PER_PATTERN (exp
));
12482 unsigned int count
= builder
.encoded_nelts ();
12483 for (unsigned int i
= 0; i
< count
; ++i
)
12485 tree elt
= VECTOR_CST_ELT (exp
, i
);
12486 if (TREE_CODE (elt
) == REAL_CST
)
12487 builder
.quick_push (const_double_from_real_value (TREE_REAL_CST (elt
),
12489 else if (TREE_CODE (elt
) == FIXED_CST
)
12490 builder
.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
12493 builder
.quick_push (immed_wide_int_const (wi::to_poly_wide (elt
),
12496 return builder
.build ();
12499 /* Build a decl for a personality function given a language prefix. */
12502 build_personality_function (const char *lang
)
12504 const char *unwind_and_version
;
12508 switch (targetm_common
.except_unwind_info (&global_options
))
12513 unwind_and_version
= "_sj0";
12517 unwind_and_version
= "_v0";
12520 unwind_and_version
= "_seh0";
12523 gcc_unreachable ();
12526 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
12528 type
= build_function_type_list (integer_type_node
, integer_type_node
,
12529 long_long_unsigned_type_node
,
12530 ptr_type_node
, ptr_type_node
, NULL_TREE
);
12531 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
12532 get_identifier (name
), type
);
12533 DECL_ARTIFICIAL (decl
) = 1;
12534 DECL_EXTERNAL (decl
) = 1;
12535 TREE_PUBLIC (decl
) = 1;
12537 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12538 are the flags assigned by targetm.encode_section_info. */
12539 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
12544 /* Extracts the personality function of DECL and returns the corresponding
12548 get_personality_function (tree decl
)
12550 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
12551 enum eh_personality_kind pk
;
12553 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
12554 if (pk
== eh_personality_none
)
12558 && pk
== eh_personality_any
)
12559 personality
= lang_hooks
.eh_personality ();
12561 if (pk
== eh_personality_lang
)
12562 gcc_assert (personality
!= NULL_TREE
);
12564 return XEXP (DECL_RTL (personality
), 0);
12567 /* Returns a tree for the size of EXP in bytes. */
12570 tree_expr_size (const_tree exp
)
12573 && DECL_SIZE_UNIT (exp
) != 0)
12574 return DECL_SIZE_UNIT (exp
);
12576 return size_in_bytes (TREE_TYPE (exp
));
12579 /* Return an rtx for the size in bytes of the value of EXP. */
12582 expr_size (tree exp
)
12586 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12587 size
= TREE_OPERAND (exp
, 1);
12590 size
= tree_expr_size (exp
);
12592 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
12595 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
12598 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12599 if the size can vary or is larger than an integer. */
12601 static HOST_WIDE_INT
12602 int_expr_size (tree exp
)
12606 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12607 size
= TREE_OPERAND (exp
, 1);
12610 size
= tree_expr_size (exp
);
12614 if (size
== 0 || !tree_fits_shwi_p (size
))
12617 return tree_to_shwi (size
);