1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
41 #include "gimple-pretty-print.h"
43 #include "fold-const.h"
46 #include "gimple-iterator.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
57 #include "langhooks.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
65 #include "tree-inline.h"
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
99 [Protection of stack variables]
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
126 Slot 3/ [24 bytes for variable 'a']
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
132 Slot 6/ [8 bytes for variable 'b']
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
140 1/ The first 8 bytes contain a magical asan number that is always
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
157 4/ The following 8 bytes are reserved for internal use by the run-time.
159 The shadow memory for that stack layout is going to look like this:
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
206 [Protection of global variables]
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
222 // Address of the beginning of the global variable.
225 // Initial size of the global variable.
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
232 // Name of the global variable.
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value
;
249 static bool asan_shadow_offset_computed
;
250 static vec
<char *> sanitized_sections
;
251 static tree last_alloca_addr
;
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
256 hash_set
<tree
> *asan_handled_variables
= NULL
;
258 hash_set
<tree
> *asan_used_labels
= NULL
;
260 /* Sets shadow offset to value in string VAL. */
263 set_asan_shadow_offset (const char *val
)
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value
= strtoull (val
, &endp
, 0);
271 asan_shadow_offset_value
= strtoul (val
, &endp
, 0);
273 if (!(*val
!= '\0' && *endp
== '\0' && errno
== 0))
276 asan_shadow_offset_computed
= true;
281 /* Set list of user-defined sections that need to be sanitized. */
284 set_sanitized_sections (const char *sections
)
288 FOR_EACH_VEC_ELT (sanitized_sections
, i
, pat
)
290 sanitized_sections
.truncate (0);
292 for (const char *s
= sections
; *s
; )
295 for (end
= s
; *end
&& *end
!= ','; ++end
);
296 size_t len
= end
- s
;
297 sanitized_sections
.safe_push (xstrndup (s
, len
));
298 s
= *end
? end
+ 1 : end
;
303 asan_mark_p (gimple
*stmt
, enum asan_mark_flags flag
)
305 return (gimple_call_internal_p (stmt
, IFN_ASAN_MARK
)
306 && tree_to_uhwi (gimple_call_arg (stmt
, 0)) == flag
);
310 asan_sanitize_stack_p (void)
312 return (sanitize_flags_p (SANITIZE_ADDRESS
) && ASAN_STACK
);
316 asan_sanitize_allocas_p (void)
318 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS
);
321 /* Checks whether section SEC should be sanitized. */
324 section_sanitized_p (const char *sec
)
328 FOR_EACH_VEC_ELT (sanitized_sections
, i
, pat
)
329 if (fnmatch (pat
, sec
, FNM_PERIOD
) == 0)
334 /* Returns Asan shadow offset. */
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
339 if (!asan_shadow_offset_computed
)
341 asan_shadow_offset_computed
= true;
342 asan_shadow_offset_value
= targetm
.asan_shadow_offset ();
344 return asan_shadow_offset_value
;
347 alias_set_type asan_shadow_set
= -1;
349 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
350 alias set is used for all shadow memory accesses. */
351 static GTY(()) tree shadow_ptr_types
[3];
353 /* Decl for __asan_option_detect_stack_use_after_return. */
354 static GTY(()) tree asan_detect_stack_use_after_return
;
356 /* Hashtable support for memory references used by gimple
359 /* This type represents a reference to a memory region. */
362 /* The expression of the beginning of the memory region. */
365 /* The size of the access. */
366 HOST_WIDE_INT access_size
;
369 object_allocator
<asan_mem_ref
> asan_mem_ref_pool ("asan_mem_ref");
371 /* Initializes an instance of asan_mem_ref. */
374 asan_mem_ref_init (asan_mem_ref
*ref
, tree start
, HOST_WIDE_INT access_size
)
377 ref
->access_size
= access_size
;
380 /* Allocates memory for an instance of asan_mem_ref into the memory
381 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
382 START is the address of (or the expression pointing to) the
383 beginning of memory reference. ACCESS_SIZE is the size of the
384 access to the referenced memory. */
387 asan_mem_ref_new (tree start
, HOST_WIDE_INT access_size
)
389 asan_mem_ref
*ref
= asan_mem_ref_pool
.allocate ();
391 asan_mem_ref_init (ref
, start
, access_size
);
395 /* This builds and returns a pointer to the end of the memory region
396 that starts at START and of length LEN. */
399 asan_mem_ref_get_end (tree start
, tree len
)
401 if (len
== NULL_TREE
|| integer_zerop (len
))
404 if (!ptrofftype_p (len
))
405 len
= convert_to_ptrofftype (len
);
407 return fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (start
), start
, len
);
410 /* Return a tree expression that represents the end of the referenced
411 memory region. Beware that this function can actually build a new
415 asan_mem_ref_get_end (const asan_mem_ref
*ref
, tree len
)
417 return asan_mem_ref_get_end (ref
->start
, len
);
420 struct asan_mem_ref_hasher
: nofree_ptr_hash
<asan_mem_ref
>
422 static inline hashval_t
hash (const asan_mem_ref
*);
423 static inline bool equal (const asan_mem_ref
*, const asan_mem_ref
*);
426 /* Hash a memory reference. */
429 asan_mem_ref_hasher::hash (const asan_mem_ref
*mem_ref
)
431 return iterative_hash_expr (mem_ref
->start
, 0);
434 /* Compare two memory references. We accept the length of either
435 memory references to be NULL_TREE. */
438 asan_mem_ref_hasher::equal (const asan_mem_ref
*m1
,
439 const asan_mem_ref
*m2
)
441 return operand_equal_p (m1
->start
, m2
->start
, 0);
444 static hash_table
<asan_mem_ref_hasher
> *asan_mem_ref_ht
;
446 /* Returns a reference to the hash table containing memory references.
447 This function ensures that the hash table is created. Note that
448 this hash table is updated by the function
449 update_mem_ref_hash_table. */
451 static hash_table
<asan_mem_ref_hasher
> *
452 get_mem_ref_hash_table ()
454 if (!asan_mem_ref_ht
)
455 asan_mem_ref_ht
= new hash_table
<asan_mem_ref_hasher
> (10);
457 return asan_mem_ref_ht
;
460 /* Clear all entries from the memory references hash table. */
463 empty_mem_ref_hash_table ()
466 asan_mem_ref_ht
->empty ();
469 /* Free the memory references hash table. */
472 free_mem_ref_resources ()
474 delete asan_mem_ref_ht
;
475 asan_mem_ref_ht
= NULL
;
477 asan_mem_ref_pool
.release ();
480 /* Return true iff the memory reference REF has been instrumented. */
483 has_mem_ref_been_instrumented (tree ref
, HOST_WIDE_INT access_size
)
486 asan_mem_ref_init (&r
, ref
, access_size
);
488 asan_mem_ref
*saved_ref
= get_mem_ref_hash_table ()->find (&r
);
489 return saved_ref
&& saved_ref
->access_size
>= access_size
;
492 /* Return true iff the memory reference REF has been instrumented. */
495 has_mem_ref_been_instrumented (const asan_mem_ref
*ref
)
497 return has_mem_ref_been_instrumented (ref
->start
, ref
->access_size
);
500 /* Return true iff access to memory region starting at REF and of
501 length LEN has been instrumented. */
504 has_mem_ref_been_instrumented (const asan_mem_ref
*ref
, tree len
)
506 HOST_WIDE_INT size_in_bytes
507 = tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
509 return size_in_bytes
!= -1
510 && has_mem_ref_been_instrumented (ref
->start
, size_in_bytes
);
513 /* Set REF to the memory reference present in a gimple assignment
514 ASSIGNMENT. Return true upon successful completion, false
518 get_mem_ref_of_assignment (const gassign
*assignment
,
522 gcc_assert (gimple_assign_single_p (assignment
));
524 if (gimple_store_p (assignment
)
525 && !gimple_clobber_p (assignment
))
527 ref
->start
= gimple_assign_lhs (assignment
);
528 *ref_is_store
= true;
530 else if (gimple_assign_load_p (assignment
))
532 ref
->start
= gimple_assign_rhs1 (assignment
);
533 *ref_is_store
= false;
538 ref
->access_size
= int_size_in_bytes (TREE_TYPE (ref
->start
));
542 /* Return address of last allocated dynamic alloca. */
545 get_last_alloca_addr ()
547 if (last_alloca_addr
)
548 return last_alloca_addr
;
550 last_alloca_addr
= create_tmp_reg (ptr_type_node
, "last_alloca_addr");
551 gassign
*g
= gimple_build_assign (last_alloca_addr
, null_pointer_node
);
552 edge e
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
553 gsi_insert_on_edge_immediate (e
, g
);
554 return last_alloca_addr
;
557 /* Insert __asan_allocas_unpoison (top, bottom) call before
558 __builtin_stack_restore (new_sp) call.
559 The pseudocode of this routine should look like this:
560 top = last_alloca_addr;
562 __asan_allocas_unpoison (top, bot);
563 last_alloca_addr = new_sp;
564 __builtin_stack_restore (new_sp);
565 In general, we can't use new_sp as bot parameter because on some
566 architectures SP has non zero offset from dynamic stack area. Moreover, on
567 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
568 particular function only after all callees were expanded to rtl.
569 The most noticeable example is PowerPC{,64}, see
570 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
571 To overcome the issue we use following trick: pass new_sp as a second
572 parameter to __asan_allocas_unpoison and rewrite it during expansion with
573 new_sp + (virtual_dynamic_stack_rtx - sp) later in
574 expand_asan_emit_allocas_unpoison function. */
577 handle_builtin_stack_restore (gcall
*call
, gimple_stmt_iterator
*iter
)
579 if (!iter
|| !asan_sanitize_allocas_p ())
582 tree last_alloca
= get_last_alloca_addr ();
583 tree restored_stack
= gimple_call_arg (call
, 0);
584 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON
);
585 gimple
*g
= gimple_build_call (fn
, 2, last_alloca
, restored_stack
);
586 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
587 g
= gimple_build_assign (last_alloca
, restored_stack
);
588 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
591 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
592 should replace this call with another one with changed parameters and
593 replace all its uses with new address, so
594 addr = __builtin_alloca (old_size, align);
596 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
597 Following two statements are optimized out if we know that
598 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
600 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
601 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
602 right_redzone_size = ASAN_RED_ZONE_SIZE;
603 additional_size = left_redzone_size + partial_redzone_size +
605 new_size = old_size + additional_size;
606 new_alloca = __builtin_alloca (new_size, max (align, 32))
607 __asan_alloca_poison (new_alloca, old_size)
608 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
609 last_alloca_addr = new_alloca;
610 ADDITIONAL_SIZE is added to make new memory allocation contain not only
611 requested memory, but also left, partial and right redzones as well as some
612 additional space, required by alignment. */
615 handle_builtin_alloca (gcall
*call
, gimple_stmt_iterator
*iter
)
617 if (!iter
|| !asan_sanitize_allocas_p ())
622 const HOST_WIDE_INT redzone_mask
= ASAN_RED_ZONE_SIZE
- 1;
624 tree last_alloca
= get_last_alloca_addr ();
625 tree callee
= gimple_call_fndecl (call
);
626 tree old_size
= gimple_call_arg (call
, 0);
627 tree ptr_type
= gimple_call_lhs (call
) ? TREE_TYPE (gimple_call_lhs (call
))
629 tree partial_size
= NULL_TREE
;
631 = DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
632 ? 0 : tree_to_uhwi (gimple_call_arg (call
, 1));
634 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
635 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
637 align
= MAX (align
, ASAN_RED_ZONE_SIZE
* BITS_PER_UNIT
);
639 tree alloca_rz_mask
= build_int_cst (size_type_node
, redzone_mask
);
640 tree redzone_size
= build_int_cst (size_type_node
, ASAN_RED_ZONE_SIZE
);
642 /* Extract lower bits from old_size. */
643 wide_int size_nonzero_bits
= get_nonzero_bits (old_size
);
645 = wi::uhwi (redzone_mask
, wi::get_precision (size_nonzero_bits
));
646 wide_int old_size_lower_bits
= wi::bit_and (size_nonzero_bits
, rz_mask
);
648 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
649 redzone. Otherwise, compute its size here. */
650 if (wi::ne_p (old_size_lower_bits
, 0))
652 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
653 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
654 g
= gimple_build_assign (make_ssa_name (size_type_node
, NULL
),
655 BIT_AND_EXPR
, old_size
, alloca_rz_mask
);
656 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
657 tree misalign
= gimple_assign_lhs (g
);
658 g
= gimple_build_assign (make_ssa_name (size_type_node
, NULL
), MINUS_EXPR
,
659 redzone_size
, misalign
);
660 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
661 partial_size
= gimple_assign_lhs (g
);
664 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
665 tree additional_size
= build_int_cst (size_type_node
, align
/ BITS_PER_UNIT
666 + ASAN_RED_ZONE_SIZE
);
667 /* If alloca has partial redzone, include it to additional_size too. */
670 /* additional_size += partial_size. */
671 g
= gimple_build_assign (make_ssa_name (size_type_node
), PLUS_EXPR
,
672 partial_size
, additional_size
);
673 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
674 additional_size
= gimple_assign_lhs (g
);
677 /* new_size = old_size + additional_size. */
678 g
= gimple_build_assign (make_ssa_name (size_type_node
), PLUS_EXPR
, old_size
,
680 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
681 tree new_size
= gimple_assign_lhs (g
);
683 /* Build new __builtin_alloca call:
684 new_alloca_with_rz = __builtin_alloca (new_size, align). */
685 tree fn
= builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
686 gg
= gimple_build_call (fn
, 2, new_size
,
687 build_int_cst (size_type_node
, align
));
688 tree new_alloca_with_rz
= make_ssa_name (ptr_type
, gg
);
689 gimple_call_set_lhs (gg
, new_alloca_with_rz
);
690 gsi_insert_before (iter
, gg
, GSI_SAME_STMT
);
692 /* new_alloca = new_alloca_with_rz + align. */
693 g
= gimple_build_assign (make_ssa_name (ptr_type
), POINTER_PLUS_EXPR
,
695 build_int_cst (size_type_node
,
696 align
/ BITS_PER_UNIT
));
697 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
698 tree new_alloca
= gimple_assign_lhs (g
);
700 /* Poison newly created alloca redzones:
701 __asan_alloca_poison (new_alloca, old_size). */
702 fn
= builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON
);
703 gg
= gimple_build_call (fn
, 2, new_alloca
, old_size
);
704 gsi_insert_before (iter
, gg
, GSI_SAME_STMT
);
706 /* Save new_alloca_with_rz value into last_alloca to use it during
707 allocas unpoisoning. */
708 g
= gimple_build_assign (last_alloca
, new_alloca_with_rz
);
709 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
711 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
712 replace_call_with_value (iter
, new_alloca
);
715 /* Return the memory references contained in a gimple statement
716 representing a builtin call that has to do with memory access. */
719 get_mem_refs_of_builtin_call (gcall
*call
,
731 gimple_stmt_iterator
*iter
= NULL
)
733 gcc_checking_assert (gimple_call_builtin_p (call
, BUILT_IN_NORMAL
));
735 tree callee
= gimple_call_fndecl (call
);
736 tree source0
= NULL_TREE
, source1
= NULL_TREE
,
737 dest
= NULL_TREE
, len
= NULL_TREE
;
738 bool is_store
= true, got_reference_p
= false;
739 HOST_WIDE_INT access_size
= 1;
741 *intercepted_p
= asan_intercepted_p ((DECL_FUNCTION_CODE (callee
)));
743 switch (DECL_FUNCTION_CODE (callee
))
745 /* (s, s, n) style memops. */
747 case BUILT_IN_MEMCMP
:
748 source0
= gimple_call_arg (call
, 0);
749 source1
= gimple_call_arg (call
, 1);
750 len
= gimple_call_arg (call
, 2);
753 /* (src, dest, n) style memops. */
755 source0
= gimple_call_arg (call
, 0);
756 dest
= gimple_call_arg (call
, 1);
757 len
= gimple_call_arg (call
, 2);
760 /* (dest, src, n) style memops. */
761 case BUILT_IN_MEMCPY
:
762 case BUILT_IN_MEMCPY_CHK
:
763 case BUILT_IN_MEMMOVE
:
764 case BUILT_IN_MEMMOVE_CHK
:
765 case BUILT_IN_MEMPCPY
:
766 case BUILT_IN_MEMPCPY_CHK
:
767 dest
= gimple_call_arg (call
, 0);
768 source0
= gimple_call_arg (call
, 1);
769 len
= gimple_call_arg (call
, 2);
772 /* (dest, n) style memops. */
774 dest
= gimple_call_arg (call
, 0);
775 len
= gimple_call_arg (call
, 1);
778 /* (dest, x, n) style memops*/
779 case BUILT_IN_MEMSET
:
780 case BUILT_IN_MEMSET_CHK
:
781 dest
= gimple_call_arg (call
, 0);
782 len
= gimple_call_arg (call
, 2);
785 case BUILT_IN_STRLEN
:
786 source0
= gimple_call_arg (call
, 0);
787 len
= gimple_call_lhs (call
);
790 case BUILT_IN_STACK_RESTORE
:
791 handle_builtin_stack_restore (call
, iter
);
794 CASE_BUILT_IN_ALLOCA
:
795 handle_builtin_alloca (call
, iter
);
797 /* And now the __atomic* and __sync builtins.
798 These are handled differently from the classical memory memory
799 access builtins above. */
801 case BUILT_IN_ATOMIC_LOAD_1
:
804 case BUILT_IN_SYNC_FETCH_AND_ADD_1
:
805 case BUILT_IN_SYNC_FETCH_AND_SUB_1
:
806 case BUILT_IN_SYNC_FETCH_AND_OR_1
:
807 case BUILT_IN_SYNC_FETCH_AND_AND_1
:
808 case BUILT_IN_SYNC_FETCH_AND_XOR_1
:
809 case BUILT_IN_SYNC_FETCH_AND_NAND_1
:
810 case BUILT_IN_SYNC_ADD_AND_FETCH_1
:
811 case BUILT_IN_SYNC_SUB_AND_FETCH_1
:
812 case BUILT_IN_SYNC_OR_AND_FETCH_1
:
813 case BUILT_IN_SYNC_AND_AND_FETCH_1
:
814 case BUILT_IN_SYNC_XOR_AND_FETCH_1
:
815 case BUILT_IN_SYNC_NAND_AND_FETCH_1
:
816 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
817 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1
:
818 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1
:
819 case BUILT_IN_SYNC_LOCK_RELEASE_1
:
820 case BUILT_IN_ATOMIC_EXCHANGE_1
:
821 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
822 case BUILT_IN_ATOMIC_STORE_1
:
823 case BUILT_IN_ATOMIC_ADD_FETCH_1
:
824 case BUILT_IN_ATOMIC_SUB_FETCH_1
:
825 case BUILT_IN_ATOMIC_AND_FETCH_1
:
826 case BUILT_IN_ATOMIC_NAND_FETCH_1
:
827 case BUILT_IN_ATOMIC_XOR_FETCH_1
:
828 case BUILT_IN_ATOMIC_OR_FETCH_1
:
829 case BUILT_IN_ATOMIC_FETCH_ADD_1
:
830 case BUILT_IN_ATOMIC_FETCH_SUB_1
:
831 case BUILT_IN_ATOMIC_FETCH_AND_1
:
832 case BUILT_IN_ATOMIC_FETCH_NAND_1
:
833 case BUILT_IN_ATOMIC_FETCH_XOR_1
:
834 case BUILT_IN_ATOMIC_FETCH_OR_1
:
838 case BUILT_IN_ATOMIC_LOAD_2
:
841 case BUILT_IN_SYNC_FETCH_AND_ADD_2
:
842 case BUILT_IN_SYNC_FETCH_AND_SUB_2
:
843 case BUILT_IN_SYNC_FETCH_AND_OR_2
:
844 case BUILT_IN_SYNC_FETCH_AND_AND_2
:
845 case BUILT_IN_SYNC_FETCH_AND_XOR_2
:
846 case BUILT_IN_SYNC_FETCH_AND_NAND_2
:
847 case BUILT_IN_SYNC_ADD_AND_FETCH_2
:
848 case BUILT_IN_SYNC_SUB_AND_FETCH_2
:
849 case BUILT_IN_SYNC_OR_AND_FETCH_2
:
850 case BUILT_IN_SYNC_AND_AND_FETCH_2
:
851 case BUILT_IN_SYNC_XOR_AND_FETCH_2
:
852 case BUILT_IN_SYNC_NAND_AND_FETCH_2
:
853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
854 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2
:
855 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2
:
856 case BUILT_IN_SYNC_LOCK_RELEASE_2
:
857 case BUILT_IN_ATOMIC_EXCHANGE_2
:
858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
859 case BUILT_IN_ATOMIC_STORE_2
:
860 case BUILT_IN_ATOMIC_ADD_FETCH_2
:
861 case BUILT_IN_ATOMIC_SUB_FETCH_2
:
862 case BUILT_IN_ATOMIC_AND_FETCH_2
:
863 case BUILT_IN_ATOMIC_NAND_FETCH_2
:
864 case BUILT_IN_ATOMIC_XOR_FETCH_2
:
865 case BUILT_IN_ATOMIC_OR_FETCH_2
:
866 case BUILT_IN_ATOMIC_FETCH_ADD_2
:
867 case BUILT_IN_ATOMIC_FETCH_SUB_2
:
868 case BUILT_IN_ATOMIC_FETCH_AND_2
:
869 case BUILT_IN_ATOMIC_FETCH_NAND_2
:
870 case BUILT_IN_ATOMIC_FETCH_XOR_2
:
871 case BUILT_IN_ATOMIC_FETCH_OR_2
:
875 case BUILT_IN_ATOMIC_LOAD_4
:
878 case BUILT_IN_SYNC_FETCH_AND_ADD_4
:
879 case BUILT_IN_SYNC_FETCH_AND_SUB_4
:
880 case BUILT_IN_SYNC_FETCH_AND_OR_4
:
881 case BUILT_IN_SYNC_FETCH_AND_AND_4
:
882 case BUILT_IN_SYNC_FETCH_AND_XOR_4
:
883 case BUILT_IN_SYNC_FETCH_AND_NAND_4
:
884 case BUILT_IN_SYNC_ADD_AND_FETCH_4
:
885 case BUILT_IN_SYNC_SUB_AND_FETCH_4
:
886 case BUILT_IN_SYNC_OR_AND_FETCH_4
:
887 case BUILT_IN_SYNC_AND_AND_FETCH_4
:
888 case BUILT_IN_SYNC_XOR_AND_FETCH_4
:
889 case BUILT_IN_SYNC_NAND_AND_FETCH_4
:
890 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
891 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4
:
892 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4
:
893 case BUILT_IN_SYNC_LOCK_RELEASE_4
:
894 case BUILT_IN_ATOMIC_EXCHANGE_4
:
895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
896 case BUILT_IN_ATOMIC_STORE_4
:
897 case BUILT_IN_ATOMIC_ADD_FETCH_4
:
898 case BUILT_IN_ATOMIC_SUB_FETCH_4
:
899 case BUILT_IN_ATOMIC_AND_FETCH_4
:
900 case BUILT_IN_ATOMIC_NAND_FETCH_4
:
901 case BUILT_IN_ATOMIC_XOR_FETCH_4
:
902 case BUILT_IN_ATOMIC_OR_FETCH_4
:
903 case BUILT_IN_ATOMIC_FETCH_ADD_4
:
904 case BUILT_IN_ATOMIC_FETCH_SUB_4
:
905 case BUILT_IN_ATOMIC_FETCH_AND_4
:
906 case BUILT_IN_ATOMIC_FETCH_NAND_4
:
907 case BUILT_IN_ATOMIC_FETCH_XOR_4
:
908 case BUILT_IN_ATOMIC_FETCH_OR_4
:
912 case BUILT_IN_ATOMIC_LOAD_8
:
915 case BUILT_IN_SYNC_FETCH_AND_ADD_8
:
916 case BUILT_IN_SYNC_FETCH_AND_SUB_8
:
917 case BUILT_IN_SYNC_FETCH_AND_OR_8
:
918 case BUILT_IN_SYNC_FETCH_AND_AND_8
:
919 case BUILT_IN_SYNC_FETCH_AND_XOR_8
:
920 case BUILT_IN_SYNC_FETCH_AND_NAND_8
:
921 case BUILT_IN_SYNC_ADD_AND_FETCH_8
:
922 case BUILT_IN_SYNC_SUB_AND_FETCH_8
:
923 case BUILT_IN_SYNC_OR_AND_FETCH_8
:
924 case BUILT_IN_SYNC_AND_AND_FETCH_8
:
925 case BUILT_IN_SYNC_XOR_AND_FETCH_8
:
926 case BUILT_IN_SYNC_NAND_AND_FETCH_8
:
927 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
928 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8
:
929 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8
:
930 case BUILT_IN_SYNC_LOCK_RELEASE_8
:
931 case BUILT_IN_ATOMIC_EXCHANGE_8
:
932 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
933 case BUILT_IN_ATOMIC_STORE_8
:
934 case BUILT_IN_ATOMIC_ADD_FETCH_8
:
935 case BUILT_IN_ATOMIC_SUB_FETCH_8
:
936 case BUILT_IN_ATOMIC_AND_FETCH_8
:
937 case BUILT_IN_ATOMIC_NAND_FETCH_8
:
938 case BUILT_IN_ATOMIC_XOR_FETCH_8
:
939 case BUILT_IN_ATOMIC_OR_FETCH_8
:
940 case BUILT_IN_ATOMIC_FETCH_ADD_8
:
941 case BUILT_IN_ATOMIC_FETCH_SUB_8
:
942 case BUILT_IN_ATOMIC_FETCH_AND_8
:
943 case BUILT_IN_ATOMIC_FETCH_NAND_8
:
944 case BUILT_IN_ATOMIC_FETCH_XOR_8
:
945 case BUILT_IN_ATOMIC_FETCH_OR_8
:
949 case BUILT_IN_ATOMIC_LOAD_16
:
952 case BUILT_IN_SYNC_FETCH_AND_ADD_16
:
953 case BUILT_IN_SYNC_FETCH_AND_SUB_16
:
954 case BUILT_IN_SYNC_FETCH_AND_OR_16
:
955 case BUILT_IN_SYNC_FETCH_AND_AND_16
:
956 case BUILT_IN_SYNC_FETCH_AND_XOR_16
:
957 case BUILT_IN_SYNC_FETCH_AND_NAND_16
:
958 case BUILT_IN_SYNC_ADD_AND_FETCH_16
:
959 case BUILT_IN_SYNC_SUB_AND_FETCH_16
:
960 case BUILT_IN_SYNC_OR_AND_FETCH_16
:
961 case BUILT_IN_SYNC_AND_AND_FETCH_16
:
962 case BUILT_IN_SYNC_XOR_AND_FETCH_16
:
963 case BUILT_IN_SYNC_NAND_AND_FETCH_16
:
964 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
965 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16
:
966 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16
:
967 case BUILT_IN_SYNC_LOCK_RELEASE_16
:
968 case BUILT_IN_ATOMIC_EXCHANGE_16
:
969 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
970 case BUILT_IN_ATOMIC_STORE_16
:
971 case BUILT_IN_ATOMIC_ADD_FETCH_16
:
972 case BUILT_IN_ATOMIC_SUB_FETCH_16
:
973 case BUILT_IN_ATOMIC_AND_FETCH_16
:
974 case BUILT_IN_ATOMIC_NAND_FETCH_16
:
975 case BUILT_IN_ATOMIC_XOR_FETCH_16
:
976 case BUILT_IN_ATOMIC_OR_FETCH_16
:
977 case BUILT_IN_ATOMIC_FETCH_ADD_16
:
978 case BUILT_IN_ATOMIC_FETCH_SUB_16
:
979 case BUILT_IN_ATOMIC_FETCH_AND_16
:
980 case BUILT_IN_ATOMIC_FETCH_NAND_16
:
981 case BUILT_IN_ATOMIC_FETCH_XOR_16
:
982 case BUILT_IN_ATOMIC_FETCH_OR_16
:
987 dest
= gimple_call_arg (call
, 0);
988 /* DEST represents the address of a memory location.
989 instrument_derefs wants the memory location, so lets
990 dereference the address DEST before handing it to
991 instrument_derefs. */
992 tree type
= build_nonstandard_integer_type (access_size
994 dest
= build2 (MEM_REF
, type
, dest
,
995 build_int_cst (build_pointer_type (char_type_node
), 0));
1000 /* The other builtins memory access are not instrumented in this
1001 function because they either don't have any length parameter,
1002 or their length parameter is just a limit. */
1006 if (len
!= NULL_TREE
)
1008 if (source0
!= NULL_TREE
)
1010 src0
->start
= source0
;
1011 src0
->access_size
= access_size
;
1013 *src0_is_store
= false;
1016 if (source1
!= NULL_TREE
)
1018 src1
->start
= source1
;
1019 src1
->access_size
= access_size
;
1021 *src1_is_store
= false;
1024 if (dest
!= NULL_TREE
)
1027 dst
->access_size
= access_size
;
1029 *dst_is_store
= true;
1032 got_reference_p
= true;
1037 dst
->access_size
= access_size
;
1038 *dst_len
= NULL_TREE
;
1039 *dst_is_store
= is_store
;
1040 *dest_is_deref
= true;
1041 got_reference_p
= true;
1044 return got_reference_p
;
1047 /* Return true iff a given gimple statement has been instrumented.
1048 Note that the statement is "defined" by the memory references it
1052 has_stmt_been_instrumented_p (gimple
*stmt
)
1054 if (gimple_assign_single_p (stmt
))
1058 asan_mem_ref_init (&r
, NULL
, 1);
1060 if (get_mem_ref_of_assignment (as_a
<gassign
*> (stmt
), &r
,
1062 return has_mem_ref_been_instrumented (&r
);
1064 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1066 asan_mem_ref src0
, src1
, dest
;
1067 asan_mem_ref_init (&src0
, NULL
, 1);
1068 asan_mem_ref_init (&src1
, NULL
, 1);
1069 asan_mem_ref_init (&dest
, NULL
, 1);
1071 tree src0_len
= NULL_TREE
, src1_len
= NULL_TREE
, dest_len
= NULL_TREE
;
1072 bool src0_is_store
= false, src1_is_store
= false,
1073 dest_is_store
= false, dest_is_deref
= false, intercepted_p
= true;
1074 if (get_mem_refs_of_builtin_call (as_a
<gcall
*> (stmt
),
1075 &src0
, &src0_len
, &src0_is_store
,
1076 &src1
, &src1_len
, &src1_is_store
,
1077 &dest
, &dest_len
, &dest_is_store
,
1078 &dest_is_deref
, &intercepted_p
))
1080 if (src0
.start
!= NULL_TREE
1081 && !has_mem_ref_been_instrumented (&src0
, src0_len
))
1084 if (src1
.start
!= NULL_TREE
1085 && !has_mem_ref_been_instrumented (&src1
, src1_len
))
1088 if (dest
.start
!= NULL_TREE
1089 && !has_mem_ref_been_instrumented (&dest
, dest_len
))
1095 else if (is_gimple_call (stmt
) && gimple_store_p (stmt
))
1098 asan_mem_ref_init (&r
, NULL
, 1);
1100 r
.start
= gimple_call_lhs (stmt
);
1101 r
.access_size
= int_size_in_bytes (TREE_TYPE (r
.start
));
1102 return has_mem_ref_been_instrumented (&r
);
1108 /* Insert a memory reference into the hash table. */
1111 update_mem_ref_hash_table (tree ref
, HOST_WIDE_INT access_size
)
1113 hash_table
<asan_mem_ref_hasher
> *ht
= get_mem_ref_hash_table ();
1116 asan_mem_ref_init (&r
, ref
, access_size
);
1118 asan_mem_ref
**slot
= ht
->find_slot (&r
, INSERT
);
1119 if (*slot
== NULL
|| (*slot
)->access_size
< access_size
)
1120 *slot
= asan_mem_ref_new (ref
, access_size
);
1123 /* Initialize shadow_ptr_types array. */
1126 asan_init_shadow_ptr_types (void)
1128 asan_shadow_set
= new_alias_set ();
1129 tree types
[3] = { signed_char_type_node
, short_integer_type_node
,
1130 integer_type_node
};
1132 for (unsigned i
= 0; i
< 3; i
++)
1134 shadow_ptr_types
[i
] = build_distinct_type_copy (types
[i
]);
1135 TYPE_ALIAS_SET (shadow_ptr_types
[i
]) = asan_shadow_set
;
1136 shadow_ptr_types
[i
] = build_pointer_type (shadow_ptr_types
[i
]);
1139 initialize_sanitizer_builtins ();
1142 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1145 asan_pp_string (pretty_printer
*pp
)
1147 const char *buf
= pp_formatted_text (pp
);
1148 size_t len
= strlen (buf
);
1149 tree ret
= build_string (len
+ 1, buf
);
1151 = build_array_type (TREE_TYPE (shadow_ptr_types
[0]),
1152 build_index_type (size_int (len
)));
1153 TREE_READONLY (ret
) = 1;
1154 TREE_STATIC (ret
) = 1;
1155 return build1 (ADDR_EXPR
, shadow_ptr_types
[0], ret
);
1158 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1162 asan_clear_shadow (rtx shadow_mem
, HOST_WIDE_INT len
)
1164 rtx_insn
*insn
, *insns
, *jump
;
1165 rtx_code_label
*top_label
;
1168 gcc_assert ((len
& 3) == 0);
1170 clear_storage (shadow_mem
, GEN_INT (len
), BLOCK_OP_NORMAL
);
1171 insns
= get_insns ();
1173 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1176 if (insn
== NULL_RTX
)
1182 top_label
= gen_label_rtx ();
1183 addr
= copy_to_mode_reg (Pmode
, XEXP (shadow_mem
, 0));
1184 shadow_mem
= adjust_automodify_address (shadow_mem
, SImode
, addr
, 0);
1185 end
= force_reg (Pmode
, plus_constant (Pmode
, addr
, len
));
1186 emit_label (top_label
);
1188 emit_move_insn (shadow_mem
, const0_rtx
);
1189 tmp
= expand_simple_binop (Pmode
, PLUS
, addr
, gen_int_mode (4, Pmode
), addr
,
1190 true, OPTAB_LIB_WIDEN
);
1192 emit_move_insn (addr
, tmp
);
1193 emit_cmp_and_jump_insns (addr
, end
, LT
, NULL_RTX
, Pmode
, true, top_label
);
1194 jump
= get_last_insn ();
1195 gcc_assert (JUMP_P (jump
));
1196 add_reg_br_prob_note (jump
,
1197 profile_probability::guessed_always ()
1198 .apply_scale (80, 100));
1202 asan_function_start (void)
1204 section
*fnsec
= function_section (current_function_decl
);
1205 switch_to_section (fnsec
);
1206 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LASANPC",
1207 current_function_funcdef_no
);
1210 /* Return number of shadow bytes that are occupied by a local variable
1213 static unsigned HOST_WIDE_INT
1214 shadow_mem_size (unsigned HOST_WIDE_INT size
)
1216 /* It must be possible to align stack variables to granularity
1217 of shadow memory. */
1218 gcc_assert (BITS_PER_UNIT
1219 * ASAN_SHADOW_GRANULARITY
<= MAX_SUPPORTED_STACK_ALIGNMENT
);
1221 return ROUND_UP (size
, ASAN_SHADOW_GRANULARITY
) / ASAN_SHADOW_GRANULARITY
;
1224 /* Always emit 4 bytes at a time. */
1225 #define RZ_BUFFER_SIZE 4
1227 /* ASAN redzone buffer container that handles emission of shadow bytes. */
1228 class asan_redzone_buffer
1232 asan_redzone_buffer (rtx shadow_mem
, HOST_WIDE_INT prev_offset
):
1233 m_shadow_mem (shadow_mem
), m_prev_offset (prev_offset
),
1234 m_original_offset (prev_offset
), m_shadow_bytes (RZ_BUFFER_SIZE
)
1237 /* Emit VALUE shadow byte at a given OFFSET. */
1238 void emit_redzone_byte (HOST_WIDE_INT offset
, unsigned char value
);
1240 /* Emit RTX emission of the content of the buffer. */
1241 void flush_redzone_payload (void);
1244 /* Flush if the content of the buffer is full
1245 (equal to RZ_BUFFER_SIZE). */
1246 void flush_if_full (void);
1248 /* Memory where we last emitted a redzone payload. */
1251 /* Relative offset where we last emitted a redzone payload. */
1252 HOST_WIDE_INT m_prev_offset
;
1254 /* Relative original offset. Used for checking only. */
1255 HOST_WIDE_INT m_original_offset
;
1258 /* Buffer with redzone payload. */
1259 auto_vec
<unsigned char> m_shadow_bytes
;
1262 /* Emit VALUE shadow byte at a given OFFSET. */
1265 asan_redzone_buffer::emit_redzone_byte (HOST_WIDE_INT offset
,
1266 unsigned char value
)
1268 gcc_assert ((offset
& (ASAN_SHADOW_GRANULARITY
- 1)) == 0);
1269 gcc_assert (offset
>= m_prev_offset
);
1272 = m_prev_offset
+ ASAN_SHADOW_GRANULARITY
* m_shadow_bytes
.length ();
1275 /* Consecutive shadow memory byte. */
1276 m_shadow_bytes
.safe_push (value
);
1281 if (!m_shadow_bytes
.is_empty ())
1282 flush_redzone_payload ();
1284 /* Maybe start earlier in order to use aligned store. */
1285 HOST_WIDE_INT align
= (offset
- m_prev_offset
) % ASAN_RED_ZONE_SIZE
;
1289 for (unsigned i
= 0; i
< align
/ BITS_PER_UNIT
; i
++)
1290 m_shadow_bytes
.safe_push (0);
1293 /* Adjust m_prev_offset and m_shadow_mem. */
1294 HOST_WIDE_INT diff
= offset
- m_prev_offset
;
1295 m_shadow_mem
= adjust_address (m_shadow_mem
, VOIDmode
,
1296 diff
>> ASAN_SHADOW_SHIFT
);
1297 m_prev_offset
= offset
;
1298 m_shadow_bytes
.safe_push (value
);
1303 /* Emit RTX emission of the content of the buffer. */
1306 asan_redzone_buffer::flush_redzone_payload (void)
1308 gcc_assert (WORDS_BIG_ENDIAN
== BYTES_BIG_ENDIAN
);
1310 if (m_shadow_bytes
.is_empty ())
1313 /* Be sure we always emit to an aligned address. */
1314 gcc_assert (((m_prev_offset
- m_original_offset
)
1315 & (ASAN_RED_ZONE_SIZE
- 1)) == 0);
1317 /* Fill it to RZ_BUFFER_SIZE bytes with zeros if needed. */
1318 unsigned l
= m_shadow_bytes
.length ();
1319 for (unsigned i
= 0; i
<= RZ_BUFFER_SIZE
- l
; i
++)
1320 m_shadow_bytes
.safe_push (0);
1322 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1324 "Flushing rzbuffer at offset %" PRId64
" with: ", m_prev_offset
);
1326 unsigned HOST_WIDE_INT val
= 0;
1327 for (unsigned i
= 0; i
< RZ_BUFFER_SIZE
; i
++)
1330 = m_shadow_bytes
[BYTES_BIG_ENDIAN
? RZ_BUFFER_SIZE
- i
- 1 : i
];
1331 val
|= (unsigned HOST_WIDE_INT
)v
<< (BITS_PER_UNIT
* i
);
1332 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1333 fprintf (dump_file
, "%02x ", v
);
1336 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1337 fprintf (dump_file
, "\n");
1339 rtx c
= gen_int_mode (val
, SImode
);
1340 m_shadow_mem
= adjust_address (m_shadow_mem
, SImode
, 0);
1341 emit_move_insn (m_shadow_mem
, c
);
1342 m_shadow_bytes
.truncate (0);
1345 /* Flush if the content of the buffer is full
1346 (equal to RZ_BUFFER_SIZE). */
1349 asan_redzone_buffer::flush_if_full (void)
1351 if (m_shadow_bytes
.length () == RZ_BUFFER_SIZE
)
1352 flush_redzone_payload ();
1355 /* Insert code to protect stack vars. The prologue sequence should be emitted
1356 directly, epilogue sequence returned. BASE is the register holding the
1357 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1358 array contains pairs of offsets in reverse order, always the end offset
1359 of some gap that needs protection followed by starting offset,
1360 and DECLS is an array of representative decls for each var partition.
1361 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1362 elements long (OFFSETS include gap before the first variable as well
1363 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1364 register which stack vars DECL_RTLs are based on. Either BASE should be
1365 assigned to PBASE, when not doing use after return protection, or
1366 corresponding address based on __asan_stack_malloc* return value. */
1369 asan_emit_stack_protection (rtx base
, rtx pbase
, unsigned int alignb
,
1370 HOST_WIDE_INT
*offsets
, tree
*decls
, int length
)
1372 rtx shadow_base
, shadow_mem
, ret
, mem
, orig_base
;
1373 rtx_code_label
*lab
;
1376 HOST_WIDE_INT base_offset
= offsets
[length
- 1];
1377 HOST_WIDE_INT base_align_bias
= 0, offset
, prev_offset
;
1378 HOST_WIDE_INT asan_frame_size
= offsets
[0] - base_offset
;
1379 HOST_WIDE_INT last_offset
, last_size
, last_size_aligned
;
1381 unsigned char cur_shadow_byte
= ASAN_STACK_MAGIC_LEFT
;
1382 tree str_cst
, decl
, id
;
1383 int use_after_return_class
= -1;
1385 if (shadow_ptr_types
[0] == NULL_TREE
)
1386 asan_init_shadow_ptr_types ();
1388 expanded_location cfun_xloc
1389 = expand_location (DECL_SOURCE_LOCATION (current_function_decl
));
1391 /* First of all, prepare the description string. */
1392 pretty_printer asan_pp
;
1394 pp_decimal_int (&asan_pp
, length
/ 2 - 1);
1395 pp_space (&asan_pp
);
1396 for (l
= length
- 2; l
; l
-= 2)
1398 tree decl
= decls
[l
/ 2 - 1];
1399 pp_wide_integer (&asan_pp
, offsets
[l
] - base_offset
);
1400 pp_space (&asan_pp
);
1401 pp_wide_integer (&asan_pp
, offsets
[l
- 1] - offsets
[l
]);
1402 pp_space (&asan_pp
);
1404 expanded_location xloc
1405 = expand_location (DECL_SOURCE_LOCATION (decl
));
1408 if (xloc
.file
== cfun_xloc
.file
)
1409 sprintf (location
, ":%d", xloc
.line
);
1413 if (DECL_P (decl
) && DECL_NAME (decl
))
1416 = IDENTIFIER_LENGTH (DECL_NAME (decl
)) + strlen (location
);
1417 pp_decimal_int (&asan_pp
, idlen
);
1418 pp_space (&asan_pp
);
1419 pp_tree_identifier (&asan_pp
, DECL_NAME (decl
));
1420 pp_string (&asan_pp
, location
);
1423 pp_string (&asan_pp
, "9 <unknown>");
1426 pp_space (&asan_pp
);
1428 str_cst
= asan_pp_string (&asan_pp
);
1430 /* Emit the prologue sequence. */
1431 if (asan_frame_size
> 32 && asan_frame_size
<= 65536 && pbase
1432 && ASAN_USE_AFTER_RETURN
)
1434 use_after_return_class
= floor_log2 (asan_frame_size
- 1) - 5;
1435 /* __asan_stack_malloc_N guarantees alignment
1436 N < 6 ? (64 << N) : 4096 bytes. */
1437 if (alignb
> (use_after_return_class
< 6
1438 ? (64U << use_after_return_class
) : 4096U))
1439 use_after_return_class
= -1;
1440 else if (alignb
> ASAN_RED_ZONE_SIZE
&& (asan_frame_size
& (alignb
- 1)))
1441 base_align_bias
= ((asan_frame_size
+ alignb
- 1)
1442 & ~(alignb
- HOST_WIDE_INT_1
)) - asan_frame_size
;
1445 /* Align base if target is STRICT_ALIGNMENT. */
1446 if (STRICT_ALIGNMENT
)
1448 const HOST_WIDE_INT align
1449 = (GET_MODE_ALIGNMENT (SImode
) / BITS_PER_UNIT
) << ASAN_SHADOW_SHIFT
;
1450 base
= expand_binop (Pmode
, and_optab
, base
, gen_int_mode (-align
, Pmode
),
1451 NULL_RTX
, 1, OPTAB_DIRECT
);
1454 if (use_after_return_class
== -1 && pbase
)
1455 emit_move_insn (pbase
, base
);
1457 base
= expand_binop (Pmode
, add_optab
, base
,
1458 gen_int_mode (base_offset
- base_align_bias
, Pmode
),
1459 NULL_RTX
, 1, OPTAB_DIRECT
);
1460 orig_base
= NULL_RTX
;
1461 if (use_after_return_class
!= -1)
1463 if (asan_detect_stack_use_after_return
== NULL_TREE
)
1465 id
= get_identifier ("__asan_option_detect_stack_use_after_return");
1466 decl
= build_decl (BUILTINS_LOCATION
, VAR_DECL
, id
,
1468 SET_DECL_ASSEMBLER_NAME (decl
, id
);
1469 TREE_ADDRESSABLE (decl
) = 1;
1470 DECL_ARTIFICIAL (decl
) = 1;
1471 DECL_IGNORED_P (decl
) = 1;
1472 DECL_EXTERNAL (decl
) = 1;
1473 TREE_STATIC (decl
) = 1;
1474 TREE_PUBLIC (decl
) = 1;
1475 TREE_USED (decl
) = 1;
1476 asan_detect_stack_use_after_return
= decl
;
1478 orig_base
= gen_reg_rtx (Pmode
);
1479 emit_move_insn (orig_base
, base
);
1480 ret
= expand_normal (asan_detect_stack_use_after_return
);
1481 lab
= gen_label_rtx ();
1482 emit_cmp_and_jump_insns (ret
, const0_rtx
, EQ
, NULL_RTX
,
1484 profile_probability::very_likely ());
1485 snprintf (buf
, sizeof buf
, "__asan_stack_malloc_%d",
1486 use_after_return_class
);
1487 ret
= init_one_libfunc (buf
);
1488 ret
= emit_library_call_value (ret
, NULL_RTX
, LCT_NORMAL
, ptr_mode
,
1489 GEN_INT (asan_frame_size
1491 TYPE_MODE (pointer_sized_int_node
));
1492 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1493 and NULL otherwise. Check RET value is NULL here and jump over the
1494 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1495 emit_cmp_and_jump_insns (ret
, const0_rtx
, EQ
, NULL_RTX
,
1497 profile_probability:: very_unlikely ());
1498 ret
= convert_memory_address (Pmode
, ret
);
1499 emit_move_insn (base
, ret
);
1501 emit_move_insn (pbase
, expand_binop (Pmode
, add_optab
, base
,
1502 gen_int_mode (base_align_bias
1503 - base_offset
, Pmode
),
1504 NULL_RTX
, 1, OPTAB_DIRECT
));
1506 mem
= gen_rtx_MEM (ptr_mode
, base
);
1507 mem
= adjust_address (mem
, VOIDmode
, base_align_bias
);
1508 emit_move_insn (mem
, gen_int_mode (ASAN_STACK_FRAME_MAGIC
, ptr_mode
));
1509 mem
= adjust_address (mem
, VOIDmode
, GET_MODE_SIZE (ptr_mode
));
1510 emit_move_insn (mem
, expand_normal (str_cst
));
1511 mem
= adjust_address (mem
, VOIDmode
, GET_MODE_SIZE (ptr_mode
));
1512 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASANPC", current_function_funcdef_no
);
1513 id
= get_identifier (buf
);
1514 decl
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
1515 VAR_DECL
, id
, char_type_node
);
1516 SET_DECL_ASSEMBLER_NAME (decl
, id
);
1517 TREE_ADDRESSABLE (decl
) = 1;
1518 TREE_READONLY (decl
) = 1;
1519 DECL_ARTIFICIAL (decl
) = 1;
1520 DECL_IGNORED_P (decl
) = 1;
1521 TREE_STATIC (decl
) = 1;
1522 TREE_PUBLIC (decl
) = 0;
1523 TREE_USED (decl
) = 1;
1524 DECL_INITIAL (decl
) = decl
;
1525 TREE_ASM_WRITTEN (decl
) = 1;
1526 TREE_ASM_WRITTEN (id
) = 1;
1527 emit_move_insn (mem
, expand_normal (build_fold_addr_expr (decl
)));
1528 shadow_base
= expand_binop (Pmode
, lshr_optab
, base
,
1529 gen_int_shift_amount (Pmode
, ASAN_SHADOW_SHIFT
),
1530 NULL_RTX
, 1, OPTAB_DIRECT
);
1532 = plus_constant (Pmode
, shadow_base
,
1533 asan_shadow_offset ()
1534 + (base_align_bias
>> ASAN_SHADOW_SHIFT
));
1535 gcc_assert (asan_shadow_set
!= -1
1536 && (ASAN_RED_ZONE_SIZE
>> ASAN_SHADOW_SHIFT
) == 4);
1537 shadow_mem
= gen_rtx_MEM (SImode
, shadow_base
);
1538 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1539 if (STRICT_ALIGNMENT
)
1540 set_mem_align (shadow_mem
, (GET_MODE_ALIGNMENT (SImode
)));
1541 prev_offset
= base_offset
;
1543 asan_redzone_buffer
rz_buffer (shadow_mem
, prev_offset
);
1544 for (l
= length
; l
; l
-= 2)
1547 cur_shadow_byte
= ASAN_STACK_MAGIC_RIGHT
;
1548 offset
= offsets
[l
- 1];
1550 bool extra_byte
= (offset
- base_offset
) & (ASAN_SHADOW_GRANULARITY
- 1);
1551 /* If a red-zone is not aligned to ASAN_SHADOW_GRANULARITY then
1552 the previous stack variable has size % ASAN_SHADOW_GRANULARITY != 0.
1553 In that case we have to emit one extra byte that will describe
1554 how many bytes (our of ASAN_SHADOW_GRANULARITY) can be accessed. */
1558 = base_offset
+ ((offset
- base_offset
)
1559 & ~(ASAN_SHADOW_GRANULARITY
- HOST_WIDE_INT_1
));
1560 rz_buffer
.emit_redzone_byte (aoff
, offset
- aoff
);
1561 offset
= aoff
+ ASAN_SHADOW_GRANULARITY
;
1564 /* Calculate size of red zone payload. */
1565 while (offset
< offsets
[l
- 2])
1567 rz_buffer
.emit_redzone_byte (offset
, cur_shadow_byte
);
1568 offset
+= ASAN_SHADOW_GRANULARITY
;
1571 cur_shadow_byte
= ASAN_STACK_MAGIC_MIDDLE
;
1574 /* As the automatic variables are aligned to
1575 ASAN_RED_ZONE_SIZE / ASAN_SHADOW_GRANULARITY, the buffer should be
1577 gcc_assert (rz_buffer
.m_shadow_bytes
.is_empty ());
1579 do_pending_stack_adjust ();
1581 /* Construct epilogue sequence. */
1585 if (use_after_return_class
!= -1)
1587 rtx_code_label
*lab2
= gen_label_rtx ();
1588 char c
= (char) ASAN_STACK_MAGIC_USE_AFTER_RET
;
1589 emit_cmp_and_jump_insns (orig_base
, base
, EQ
, NULL_RTX
,
1591 profile_probability::very_likely ());
1592 shadow_mem
= gen_rtx_MEM (BLKmode
, shadow_base
);
1593 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1594 mem
= gen_rtx_MEM (ptr_mode
, base
);
1595 mem
= adjust_address (mem
, VOIDmode
, base_align_bias
);
1596 emit_move_insn (mem
, gen_int_mode (ASAN_STACK_RETIRED_MAGIC
, ptr_mode
));
1597 unsigned HOST_WIDE_INT sz
= asan_frame_size
>> ASAN_SHADOW_SHIFT
;
1598 if (use_after_return_class
< 5
1599 && can_store_by_pieces (sz
, builtin_memset_read_str
, &c
,
1600 BITS_PER_UNIT
, true))
1601 store_by_pieces (shadow_mem
, sz
, builtin_memset_read_str
, &c
,
1602 BITS_PER_UNIT
, true, RETURN_BEGIN
);
1603 else if (use_after_return_class
>= 5
1604 || !set_storage_via_setmem (shadow_mem
,
1606 gen_int_mode (c
, QImode
),
1607 BITS_PER_UNIT
, BITS_PER_UNIT
,
1610 snprintf (buf
, sizeof buf
, "__asan_stack_free_%d",
1611 use_after_return_class
);
1612 ret
= init_one_libfunc (buf
);
1613 rtx addr
= convert_memory_address (ptr_mode
, base
);
1614 rtx orig_addr
= convert_memory_address (ptr_mode
, orig_base
);
1615 emit_library_call (ret
, LCT_NORMAL
, ptr_mode
, addr
, ptr_mode
,
1616 GEN_INT (asan_frame_size
+ base_align_bias
),
1617 TYPE_MODE (pointer_sized_int_node
),
1618 orig_addr
, ptr_mode
);
1620 lab
= gen_label_rtx ();
1625 shadow_mem
= gen_rtx_MEM (BLKmode
, shadow_base
);
1626 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1628 if (STRICT_ALIGNMENT
)
1629 set_mem_align (shadow_mem
, (GET_MODE_ALIGNMENT (SImode
)));
1631 prev_offset
= base_offset
;
1632 last_offset
= base_offset
;
1634 last_size_aligned
= 0;
1635 for (l
= length
; l
; l
-= 2)
1637 offset
= base_offset
+ ((offsets
[l
- 1] - base_offset
)
1638 & ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
));
1639 if (last_offset
+ last_size_aligned
< offset
)
1641 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1642 (last_offset
- prev_offset
)
1643 >> ASAN_SHADOW_SHIFT
);
1644 prev_offset
= last_offset
;
1645 asan_clear_shadow (shadow_mem
, last_size_aligned
>> ASAN_SHADOW_SHIFT
);
1646 last_offset
= offset
;
1650 last_size
= offset
- last_offset
;
1651 last_size
+= base_offset
+ ((offsets
[l
- 2] - base_offset
)
1652 & ~(ASAN_MIN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
))
1655 /* Unpoison shadow memory that corresponds to a variable that is
1656 is subject of use-after-return sanitization. */
1659 decl
= decls
[l
/ 2 - 2];
1660 if (asan_handled_variables
!= NULL
1661 && asan_handled_variables
->contains (decl
))
1663 HOST_WIDE_INT size
= offsets
[l
- 3] - offsets
[l
- 2];
1664 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1666 const char *n
= (DECL_NAME (decl
)
1667 ? IDENTIFIER_POINTER (DECL_NAME (decl
))
1669 fprintf (dump_file
, "Unpoisoning shadow stack for variable: "
1670 "%s (%" PRId64
" B)\n", n
, size
);
1673 last_size
+= size
& ~(ASAN_MIN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
);
1677 = ((last_size
+ (ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
))
1678 & ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
));
1680 if (last_size_aligned
)
1682 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1683 (last_offset
- prev_offset
)
1684 >> ASAN_SHADOW_SHIFT
);
1685 asan_clear_shadow (shadow_mem
, last_size_aligned
>> ASAN_SHADOW_SHIFT
);
1688 /* Clean-up set with instrumented stack variables. */
1689 delete asan_handled_variables
;
1690 asan_handled_variables
= NULL
;
1691 delete asan_used_labels
;
1692 asan_used_labels
= NULL
;
1694 do_pending_stack_adjust ();
1698 insns
= get_insns ();
1703 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1704 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1705 indicates whether we're emitting new instructions sequence or not. */
1708 asan_emit_allocas_unpoison (rtx top
, rtx bot
, rtx_insn
*before
)
1711 push_to_sequence (before
);
1714 rtx ret
= init_one_libfunc ("__asan_allocas_unpoison");
1715 top
= convert_memory_address (ptr_mode
, top
);
1716 bot
= convert_memory_address (ptr_mode
, bot
);
1717 emit_library_call (ret
, LCT_NORMAL
, ptr_mode
,
1718 top
, ptr_mode
, bot
, ptr_mode
);
1720 do_pending_stack_adjust ();
1721 rtx_insn
*insns
= get_insns ();
1726 /* Return true if DECL, a global var, might be overridden and needs
1727 therefore a local alias. */
1730 asan_needs_local_alias (tree decl
)
1732 return DECL_WEAK (decl
) || !targetm
.binds_local_p (decl
);
1735 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1736 therefore doesn't need protection. */
1739 is_odr_indicator (tree decl
)
1741 return (DECL_ARTIFICIAL (decl
)
1742 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl
)));
1745 /* Return true if DECL is a VAR_DECL that should be protected
1746 by Address Sanitizer, by appending a red zone with protected
1747 shadow memory after it and aligning it to at least
1748 ASAN_RED_ZONE_SIZE bytes. */
1751 asan_protect_global (tree decl
, bool ignore_decl_rtl_set_p
)
1758 if (TREE_CODE (decl
) == STRING_CST
)
1760 /* Instrument all STRING_CSTs except those created
1761 by asan_pp_string here. */
1762 if (shadow_ptr_types
[0] != NULL_TREE
1763 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
1764 && TREE_TYPE (TREE_TYPE (decl
)) == TREE_TYPE (shadow_ptr_types
[0]))
1769 /* TLS vars aren't statically protectable. */
1770 || DECL_THREAD_LOCAL_P (decl
)
1771 /* Externs will be protected elsewhere. */
1772 || DECL_EXTERNAL (decl
)
1773 /* PR sanitizer/81697: For architectures that use section anchors first
1774 call to asan_protect_global may occur before DECL_RTL (decl) is set.
1775 We should ignore DECL_RTL_SET_P then, because otherwise the first call
1776 to asan_protect_global will return FALSE and the following calls on the
1777 same decl after setting DECL_RTL (decl) will return TRUE and we'll end
1778 up with inconsistency at runtime. */
1779 || (!DECL_RTL_SET_P (decl
) && !ignore_decl_rtl_set_p
)
1780 /* Comdat vars pose an ABI problem, we can't know if
1781 the var that is selected by the linker will have
1783 || DECL_ONE_ONLY (decl
)
1784 /* Similarly for common vars. People can use -fno-common.
1785 Note: Linux kernel is built with -fno-common, so we do instrument
1786 globals there even if it is C. */
1787 || (DECL_COMMON (decl
) && TREE_PUBLIC (decl
))
1788 /* Don't protect if using user section, often vars placed
1789 into user section from multiple TUs are then assumed
1790 to be an array of such vars, putting padding in there
1791 breaks this assumption. */
1792 || (DECL_SECTION_NAME (decl
) != NULL
1793 && !symtab_node::get (decl
)->implicit_section
1794 && !section_sanitized_p (DECL_SECTION_NAME (decl
)))
1795 || DECL_SIZE (decl
) == 0
1796 || ASAN_RED_ZONE_SIZE
* BITS_PER_UNIT
> MAX_OFILE_ALIGNMENT
1797 || TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
1798 || !valid_constant_size_p (DECL_SIZE_UNIT (decl
))
1799 || DECL_ALIGN_UNIT (decl
) > 2 * ASAN_RED_ZONE_SIZE
1800 || TREE_TYPE (decl
) == ubsan_get_source_location_type ()
1801 || is_odr_indicator (decl
))
1804 if (!ignore_decl_rtl_set_p
|| DECL_RTL_SET_P (decl
))
1807 rtl
= DECL_RTL (decl
);
1808 if (!MEM_P (rtl
) || GET_CODE (XEXP (rtl
, 0)) != SYMBOL_REF
)
1810 symbol
= XEXP (rtl
, 0);
1812 if (CONSTANT_POOL_ADDRESS_P (symbol
)
1813 || TREE_CONSTANT_POOL_ADDRESS_P (symbol
))
1817 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl
)))
1820 if (!TARGET_SUPPORTS_ALIASES
&& asan_needs_local_alias (decl
))
1826 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1827 IS_STORE is either 1 (for a store) or 0 (for a load). */
1830 report_error_func (bool is_store
, bool recover_p
, HOST_WIDE_INT size_in_bytes
,
1833 static enum built_in_function report
[2][2][6]
1834 = { { { BUILT_IN_ASAN_REPORT_LOAD1
, BUILT_IN_ASAN_REPORT_LOAD2
,
1835 BUILT_IN_ASAN_REPORT_LOAD4
, BUILT_IN_ASAN_REPORT_LOAD8
,
1836 BUILT_IN_ASAN_REPORT_LOAD16
, BUILT_IN_ASAN_REPORT_LOAD_N
},
1837 { BUILT_IN_ASAN_REPORT_STORE1
, BUILT_IN_ASAN_REPORT_STORE2
,
1838 BUILT_IN_ASAN_REPORT_STORE4
, BUILT_IN_ASAN_REPORT_STORE8
,
1839 BUILT_IN_ASAN_REPORT_STORE16
, BUILT_IN_ASAN_REPORT_STORE_N
} },
1840 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT
,
1841 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT
,
1842 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT
,
1843 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT
,
1844 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT
,
1845 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT
},
1846 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT
,
1847 BUILT_IN_ASAN_REPORT_STORE2_NOABORT
,
1848 BUILT_IN_ASAN_REPORT_STORE4_NOABORT
,
1849 BUILT_IN_ASAN_REPORT_STORE8_NOABORT
,
1850 BUILT_IN_ASAN_REPORT_STORE16_NOABORT
,
1851 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT
} } };
1852 if (size_in_bytes
== -1)
1855 return builtin_decl_implicit (report
[recover_p
][is_store
][5]);
1858 int size_log2
= exact_log2 (size_in_bytes
);
1859 return builtin_decl_implicit (report
[recover_p
][is_store
][size_log2
]);
1862 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1863 IS_STORE is either 1 (for a store) or 0 (for a load). */
1866 check_func (bool is_store
, bool recover_p
, HOST_WIDE_INT size_in_bytes
,
1869 static enum built_in_function check
[2][2][6]
1870 = { { { BUILT_IN_ASAN_LOAD1
, BUILT_IN_ASAN_LOAD2
,
1871 BUILT_IN_ASAN_LOAD4
, BUILT_IN_ASAN_LOAD8
,
1872 BUILT_IN_ASAN_LOAD16
, BUILT_IN_ASAN_LOADN
},
1873 { BUILT_IN_ASAN_STORE1
, BUILT_IN_ASAN_STORE2
,
1874 BUILT_IN_ASAN_STORE4
, BUILT_IN_ASAN_STORE8
,
1875 BUILT_IN_ASAN_STORE16
, BUILT_IN_ASAN_STOREN
} },
1876 { { BUILT_IN_ASAN_LOAD1_NOABORT
,
1877 BUILT_IN_ASAN_LOAD2_NOABORT
,
1878 BUILT_IN_ASAN_LOAD4_NOABORT
,
1879 BUILT_IN_ASAN_LOAD8_NOABORT
,
1880 BUILT_IN_ASAN_LOAD16_NOABORT
,
1881 BUILT_IN_ASAN_LOADN_NOABORT
},
1882 { BUILT_IN_ASAN_STORE1_NOABORT
,
1883 BUILT_IN_ASAN_STORE2_NOABORT
,
1884 BUILT_IN_ASAN_STORE4_NOABORT
,
1885 BUILT_IN_ASAN_STORE8_NOABORT
,
1886 BUILT_IN_ASAN_STORE16_NOABORT
,
1887 BUILT_IN_ASAN_STOREN_NOABORT
} } };
1888 if (size_in_bytes
== -1)
1891 return builtin_decl_implicit (check
[recover_p
][is_store
][5]);
1894 int size_log2
= exact_log2 (size_in_bytes
);
1895 return builtin_decl_implicit (check
[recover_p
][is_store
][size_log2
]);
1898 /* Split the current basic block and create a condition statement
1899 insertion point right before or after the statement pointed to by
1900 ITER. Return an iterator to the point at which the caller might
1901 safely insert the condition statement.
1903 THEN_BLOCK must be set to the address of an uninitialized instance
1904 of basic_block. The function will then set *THEN_BLOCK to the
1905 'then block' of the condition statement to be inserted by the
1908 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1909 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1911 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1912 block' of the condition statement to be inserted by the caller.
1914 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1915 statements starting from *ITER, and *THEN_BLOCK is a new empty
1918 *ITER is adjusted to point to always point to the first statement
1919 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1920 same as what ITER was pointing to prior to calling this function,
1921 if BEFORE_P is true; otherwise, it is its following statement. */
1923 gimple_stmt_iterator
1924 create_cond_insert_point (gimple_stmt_iterator
*iter
,
1926 bool then_more_likely_p
,
1927 bool create_then_fallthru_edge
,
1928 basic_block
*then_block
,
1929 basic_block
*fallthrough_block
)
1931 gimple_stmt_iterator gsi
= *iter
;
1933 if (!gsi_end_p (gsi
) && before_p
)
1936 basic_block cur_bb
= gsi_bb (*iter
);
1938 edge e
= split_block (cur_bb
, gsi_stmt (gsi
));
1940 /* Get a hold on the 'condition block', the 'then block' and the
1942 basic_block cond_bb
= e
->src
;
1943 basic_block fallthru_bb
= e
->dest
;
1944 basic_block then_bb
= create_empty_bb (cond_bb
);
1947 add_bb_to_loop (then_bb
, cond_bb
->loop_father
);
1948 loops_state_set (LOOPS_NEED_FIXUP
);
1951 /* Set up the newly created 'then block'. */
1952 e
= make_edge (cond_bb
, then_bb
, EDGE_TRUE_VALUE
);
1953 profile_probability fallthrough_probability
1954 = then_more_likely_p
1955 ? profile_probability::very_unlikely ()
1956 : profile_probability::very_likely ();
1957 e
->probability
= fallthrough_probability
.invert ();
1958 then_bb
->count
= e
->count ();
1959 if (create_then_fallthru_edge
)
1960 make_single_succ_edge (then_bb
, fallthru_bb
, EDGE_FALLTHRU
);
1962 /* Set up the fallthrough basic block. */
1963 e
= find_edge (cond_bb
, fallthru_bb
);
1964 e
->flags
= EDGE_FALSE_VALUE
;
1965 e
->probability
= fallthrough_probability
;
1967 /* Update dominance info for the newly created then_bb; note that
1968 fallthru_bb's dominance info has already been updated by
1970 if (dom_info_available_p (CDI_DOMINATORS
))
1971 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, cond_bb
);
1973 *then_block
= then_bb
;
1974 *fallthrough_block
= fallthru_bb
;
1975 *iter
= gsi_start_bb (fallthru_bb
);
1977 return gsi_last_bb (cond_bb
);
1980 /* Insert an if condition followed by a 'then block' right before the
1981 statement pointed to by ITER. The fallthrough block -- which is the
1982 else block of the condition as well as the destination of the
1983 outcoming edge of the 'then block' -- starts with the statement
1986 COND is the condition of the if.
1988 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1989 'then block' is higher than the probability of the edge to the
1992 Upon completion of the function, *THEN_BB is set to the newly
1993 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1996 *ITER is adjusted to still point to the same statement it was
1997 pointing to initially. */
2000 insert_if_then_before_iter (gcond
*cond
,
2001 gimple_stmt_iterator
*iter
,
2002 bool then_more_likely_p
,
2003 basic_block
*then_bb
,
2004 basic_block
*fallthrough_bb
)
2006 gimple_stmt_iterator cond_insert_point
=
2007 create_cond_insert_point (iter
,
2010 /*create_then_fallthru_edge=*/true,
2013 gsi_insert_after (&cond_insert_point
, cond
, GSI_NEW_STMT
);
2016 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
2017 If RETURN_ADDRESS is set to true, return memory location instread
2018 of a value in the shadow memory. */
2021 build_shadow_mem_access (gimple_stmt_iterator
*gsi
, location_t location
,
2022 tree base_addr
, tree shadow_ptr_type
,
2023 bool return_address
= false)
2025 tree t
, uintptr_type
= TREE_TYPE (base_addr
);
2026 tree shadow_type
= TREE_TYPE (shadow_ptr_type
);
2029 t
= build_int_cst (uintptr_type
, ASAN_SHADOW_SHIFT
);
2030 g
= gimple_build_assign (make_ssa_name (uintptr_type
), RSHIFT_EXPR
,
2032 gimple_set_location (g
, location
);
2033 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
2035 t
= build_int_cst (uintptr_type
, asan_shadow_offset ());
2036 g
= gimple_build_assign (make_ssa_name (uintptr_type
), PLUS_EXPR
,
2037 gimple_assign_lhs (g
), t
);
2038 gimple_set_location (g
, location
);
2039 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
2041 g
= gimple_build_assign (make_ssa_name (shadow_ptr_type
), NOP_EXPR
,
2042 gimple_assign_lhs (g
));
2043 gimple_set_location (g
, location
);
2044 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
2046 if (!return_address
)
2048 t
= build2 (MEM_REF
, shadow_type
, gimple_assign_lhs (g
),
2049 build_int_cst (shadow_ptr_type
, 0));
2050 g
= gimple_build_assign (make_ssa_name (shadow_type
), MEM_REF
, t
);
2051 gimple_set_location (g
, location
);
2052 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
2055 return gimple_assign_lhs (g
);
2058 /* BASE can already be an SSA_NAME; in that case, do not create a
2059 new SSA_NAME for it. */
2062 maybe_create_ssa_name (location_t loc
, tree base
, gimple_stmt_iterator
*iter
,
2065 if (TREE_CODE (base
) == SSA_NAME
)
2067 gimple
*g
= gimple_build_assign (make_ssa_name (TREE_TYPE (base
)),
2068 TREE_CODE (base
), base
);
2069 gimple_set_location (g
, loc
);
2071 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
2073 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
2074 return gimple_assign_lhs (g
);
2077 /* LEN can already have necessary size and precision;
2078 in that case, do not create a new variable. */
2081 maybe_cast_to_ptrmode (location_t loc
, tree len
, gimple_stmt_iterator
*iter
,
2084 if (ptrofftype_p (len
))
2086 gimple
*g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
2088 gimple_set_location (g
, loc
);
2090 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
2092 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
2093 return gimple_assign_lhs (g
);
2096 /* Instrument the memory access instruction BASE. Insert new
2097 statements before or after ITER.
2099 Note that the memory access represented by BASE can be either an
2100 SSA_NAME, or a non-SSA expression. LOCATION is the source code
2101 location. IS_STORE is TRUE for a store, FALSE for a load.
2102 BEFORE_P is TRUE for inserting the instrumentation code before
2103 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
2104 for a scalar memory access and FALSE for memory region access.
2105 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
2106 length. ALIGN tells alignment of accessed memory object.
2108 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
2109 memory region have already been instrumented.
2111 If BEFORE_P is TRUE, *ITER is arranged to still point to the
2112 statement it was pointing to prior to calling this function,
2113 otherwise, it points to the statement logically following it. */
2116 build_check_stmt (location_t loc
, tree base
, tree len
,
2117 HOST_WIDE_INT size_in_bytes
, gimple_stmt_iterator
*iter
,
2118 bool is_non_zero_len
, bool before_p
, bool is_store
,
2119 bool is_scalar_access
, unsigned int align
= 0)
2121 gimple_stmt_iterator gsi
= *iter
;
2124 gcc_assert (!(size_in_bytes
> 0 && !is_non_zero_len
));
2128 base
= unshare_expr (base
);
2129 base
= maybe_create_ssa_name (loc
, base
, &gsi
, before_p
);
2133 len
= unshare_expr (len
);
2134 len
= maybe_cast_to_ptrmode (loc
, len
, iter
, before_p
);
2138 gcc_assert (size_in_bytes
!= -1);
2139 len
= build_int_cst (pointer_sized_int_node
, size_in_bytes
);
2142 if (size_in_bytes
> 1)
2144 if ((size_in_bytes
& (size_in_bytes
- 1)) != 0
2145 || size_in_bytes
> 16)
2146 is_scalar_access
= false;
2147 else if (align
&& align
< size_in_bytes
* BITS_PER_UNIT
)
2149 /* On non-strict alignment targets, if
2150 16-byte access is just 8-byte aligned,
2151 this will result in misaligned shadow
2152 memory 2 byte load, but otherwise can
2153 be handled using one read. */
2154 if (size_in_bytes
!= 16
2156 || align
< 8 * BITS_PER_UNIT
)
2157 is_scalar_access
= false;
2161 HOST_WIDE_INT flags
= 0;
2163 flags
|= ASAN_CHECK_STORE
;
2164 if (is_non_zero_len
)
2165 flags
|= ASAN_CHECK_NON_ZERO_LEN
;
2166 if (is_scalar_access
)
2167 flags
|= ASAN_CHECK_SCALAR_ACCESS
;
2169 g
= gimple_build_call_internal (IFN_ASAN_CHECK
, 4,
2170 build_int_cst (integer_type_node
, flags
),
2172 build_int_cst (integer_type_node
,
2173 align
/ BITS_PER_UNIT
));
2174 gimple_set_location (g
, loc
);
2176 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
2179 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
2185 /* If T represents a memory access, add instrumentation code before ITER.
2186 LOCATION is source code location.
2187 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2190 instrument_derefs (gimple_stmt_iterator
*iter
, tree t
,
2191 location_t location
, bool is_store
)
2193 if (is_store
&& !ASAN_INSTRUMENT_WRITES
)
2195 if (!is_store
&& !ASAN_INSTRUMENT_READS
)
2199 HOST_WIDE_INT size_in_bytes
;
2200 if (location
== UNKNOWN_LOCATION
)
2201 location
= EXPR_LOCATION (t
);
2203 type
= TREE_TYPE (t
);
2204 switch (TREE_CODE (t
))
2218 size_in_bytes
= int_size_in_bytes (type
);
2219 if (size_in_bytes
<= 0)
2222 poly_int64 bitsize
, bitpos
;
2225 int unsignedp
, reversep
, volatilep
= 0;
2226 tree inner
= get_inner_reference (t
, &bitsize
, &bitpos
, &offset
, &mode
,
2227 &unsignedp
, &reversep
, &volatilep
);
2229 if (TREE_CODE (t
) == COMPONENT_REF
2230 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t
, 1)) != NULL_TREE
)
2232 tree repr
= DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t
, 1));
2233 instrument_derefs (iter
, build3 (COMPONENT_REF
, TREE_TYPE (repr
),
2234 TREE_OPERAND (t
, 0), repr
,
2235 TREE_OPERAND (t
, 2)),
2236 location
, is_store
);
2240 if (!multiple_p (bitpos
, BITS_PER_UNIT
)
2241 || maybe_ne (bitsize
, size_in_bytes
* BITS_PER_UNIT
))
2244 if (VAR_P (inner
) && DECL_HARD_REGISTER (inner
))
2247 poly_int64 decl_size
;
2249 && offset
== NULL_TREE
2250 && DECL_SIZE (inner
)
2251 && poly_int_tree_p (DECL_SIZE (inner
), &decl_size
)
2252 && known_subrange_p (bitpos
, bitsize
, 0, decl_size
))
2254 if (DECL_THREAD_LOCAL_P (inner
))
2256 if (!ASAN_GLOBALS
&& is_global_var (inner
))
2258 if (!TREE_STATIC (inner
))
2260 /* Automatic vars in the current function will be always
2262 if (decl_function_context (inner
) == current_function_decl
2263 && (!asan_sanitize_use_after_scope ()
2264 || !TREE_ADDRESSABLE (inner
)))
2267 /* Always instrument external vars, they might be dynamically
2269 else if (!DECL_EXTERNAL (inner
))
2271 /* For static vars if they are known not to be dynamically
2272 initialized, they will be always accessible. */
2273 varpool_node
*vnode
= varpool_node::get (inner
);
2274 if (vnode
&& !vnode
->dynamically_initialized
)
2279 base
= build_fold_addr_expr (t
);
2280 if (!has_mem_ref_been_instrumented (base
, size_in_bytes
))
2282 unsigned int align
= get_object_alignment (t
);
2283 build_check_stmt (location
, base
, NULL_TREE
, size_in_bytes
, iter
,
2284 /*is_non_zero_len*/size_in_bytes
> 0, /*before_p=*/true,
2285 is_store
, /*is_scalar_access*/true, align
);
2286 update_mem_ref_hash_table (base
, size_in_bytes
);
2287 update_mem_ref_hash_table (t
, size_in_bytes
);
2292 /* Insert a memory reference into the hash table if access length
2293 can be determined in compile time. */
2296 maybe_update_mem_ref_hash_table (tree base
, tree len
)
2298 if (!POINTER_TYPE_P (TREE_TYPE (base
))
2299 || !INTEGRAL_TYPE_P (TREE_TYPE (len
)))
2302 HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
2304 if (size_in_bytes
!= -1)
2305 update_mem_ref_hash_table (base
, size_in_bytes
);
2308 /* Instrument an access to a contiguous memory region that starts at
2309 the address pointed to by BASE, over a length of LEN (expressed in
2310 the sizeof (*BASE) bytes). ITER points to the instruction before
2311 which the instrumentation instructions must be inserted. LOCATION
2312 is the source location that the instrumentation instructions must
2313 have. If IS_STORE is true, then the memory access is a store;
2314 otherwise, it's a load. */
2317 instrument_mem_region_access (tree base
, tree len
,
2318 gimple_stmt_iterator
*iter
,
2319 location_t location
, bool is_store
)
2321 if (!POINTER_TYPE_P (TREE_TYPE (base
))
2322 || !INTEGRAL_TYPE_P (TREE_TYPE (len
))
2323 || integer_zerop (len
))
2326 HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
2328 if ((size_in_bytes
== -1)
2329 || !has_mem_ref_been_instrumented (base
, size_in_bytes
))
2331 build_check_stmt (location
, base
, len
, size_in_bytes
, iter
,
2332 /*is_non_zero_len*/size_in_bytes
> 0, /*before_p*/true,
2333 is_store
, /*is_scalar_access*/false, /*align*/0);
2336 maybe_update_mem_ref_hash_table (base
, len
);
2337 *iter
= gsi_for_stmt (gsi_stmt (*iter
));
2340 /* Instrument the call to a built-in memory access function that is
2341 pointed to by the iterator ITER.
2343 Upon completion, return TRUE iff *ITER has been advanced to the
2344 statement following the one it was originally pointing to. */
2347 instrument_builtin_call (gimple_stmt_iterator
*iter
)
2349 if (!ASAN_MEMINTRIN
)
2352 bool iter_advanced_p
= false;
2353 gcall
*call
= as_a
<gcall
*> (gsi_stmt (*iter
));
2355 gcc_checking_assert (gimple_call_builtin_p (call
, BUILT_IN_NORMAL
));
2357 location_t loc
= gimple_location (call
);
2359 asan_mem_ref src0
, src1
, dest
;
2360 asan_mem_ref_init (&src0
, NULL
, 1);
2361 asan_mem_ref_init (&src1
, NULL
, 1);
2362 asan_mem_ref_init (&dest
, NULL
, 1);
2364 tree src0_len
= NULL_TREE
, src1_len
= NULL_TREE
, dest_len
= NULL_TREE
;
2365 bool src0_is_store
= false, src1_is_store
= false, dest_is_store
= false,
2366 dest_is_deref
= false, intercepted_p
= true;
2368 if (get_mem_refs_of_builtin_call (call
,
2369 &src0
, &src0_len
, &src0_is_store
,
2370 &src1
, &src1_len
, &src1_is_store
,
2371 &dest
, &dest_len
, &dest_is_store
,
2372 &dest_is_deref
, &intercepted_p
, iter
))
2376 instrument_derefs (iter
, dest
.start
, loc
, dest_is_store
);
2378 iter_advanced_p
= true;
2380 else if (!intercepted_p
2381 && (src0_len
|| src1_len
|| dest_len
))
2383 if (src0
.start
!= NULL_TREE
)
2384 instrument_mem_region_access (src0
.start
, src0_len
,
2385 iter
, loc
, /*is_store=*/false);
2386 if (src1
.start
!= NULL_TREE
)
2387 instrument_mem_region_access (src1
.start
, src1_len
,
2388 iter
, loc
, /*is_store=*/false);
2389 if (dest
.start
!= NULL_TREE
)
2390 instrument_mem_region_access (dest
.start
, dest_len
,
2391 iter
, loc
, /*is_store=*/true);
2393 *iter
= gsi_for_stmt (call
);
2395 iter_advanced_p
= true;
2399 if (src0
.start
!= NULL_TREE
)
2400 maybe_update_mem_ref_hash_table (src0
.start
, src0_len
);
2401 if (src1
.start
!= NULL_TREE
)
2402 maybe_update_mem_ref_hash_table (src1
.start
, src1_len
);
2403 if (dest
.start
!= NULL_TREE
)
2404 maybe_update_mem_ref_hash_table (dest
.start
, dest_len
);
2407 return iter_advanced_p
;
2410 /* Instrument the assignment statement ITER if it is subject to
2411 instrumentation. Return TRUE iff instrumentation actually
2412 happened. In that case, the iterator ITER is advanced to the next
2413 logical expression following the one initially pointed to by ITER,
2414 and the relevant memory reference that which access has been
2415 instrumented is added to the memory references hash table. */
2418 maybe_instrument_assignment (gimple_stmt_iterator
*iter
)
2420 gimple
*s
= gsi_stmt (*iter
);
2422 gcc_assert (gimple_assign_single_p (s
));
2424 tree ref_expr
= NULL_TREE
;
2425 bool is_store
, is_instrumented
= false;
2427 if (gimple_store_p (s
))
2429 ref_expr
= gimple_assign_lhs (s
);
2431 instrument_derefs (iter
, ref_expr
,
2432 gimple_location (s
),
2434 is_instrumented
= true;
2437 if (gimple_assign_load_p (s
))
2439 ref_expr
= gimple_assign_rhs1 (s
);
2441 instrument_derefs (iter
, ref_expr
,
2442 gimple_location (s
),
2444 is_instrumented
= true;
2447 if (is_instrumented
)
2450 return is_instrumented
;
2453 /* Instrument the function call pointed to by the iterator ITER, if it
2454 is subject to instrumentation. At the moment, the only function
2455 calls that are instrumented are some built-in functions that access
2456 memory. Look at instrument_builtin_call to learn more.
2458 Upon completion return TRUE iff *ITER was advanced to the statement
2459 following the one it was originally pointing to. */
2462 maybe_instrument_call (gimple_stmt_iterator
*iter
)
2464 gimple
*stmt
= gsi_stmt (*iter
);
2465 bool is_builtin
= gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
);
2467 if (is_builtin
&& instrument_builtin_call (iter
))
2470 if (gimple_call_noreturn_p (stmt
))
2474 tree callee
= gimple_call_fndecl (stmt
);
2475 switch (DECL_FUNCTION_CODE (callee
))
2477 case BUILT_IN_UNREACHABLE
:
2479 /* Don't instrument these. */
2485 tree decl
= builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN
);
2486 gimple
*g
= gimple_build_call (decl
, 0);
2487 gimple_set_location (g
, gimple_location (stmt
));
2488 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
2491 bool instrumented
= false;
2492 if (gimple_store_p (stmt
))
2494 tree ref_expr
= gimple_call_lhs (stmt
);
2495 instrument_derefs (iter
, ref_expr
,
2496 gimple_location (stmt
),
2499 instrumented
= true;
2502 /* Walk through gimple_call arguments and check them id needed. */
2503 unsigned args_num
= gimple_call_num_args (stmt
);
2504 for (unsigned i
= 0; i
< args_num
; ++i
)
2506 tree arg
= gimple_call_arg (stmt
, i
);
2507 /* If ARG is not a non-aggregate register variable, compiler in general
2508 creates temporary for it and pass it as argument to gimple call.
2509 But in some cases, e.g. when we pass by value a small structure that
2510 fits to register, compiler can avoid extra overhead by pulling out
2511 these temporaries. In this case, we should check the argument. */
2512 if (!is_gimple_reg (arg
) && !is_gimple_min_invariant (arg
))
2514 instrument_derefs (iter
, arg
,
2515 gimple_location (stmt
),
2516 /*is_store=*/false);
2517 instrumented
= true;
2522 return instrumented
;
2525 /* Walk each instruction of all basic block and instrument those that
2526 represent memory references: loads, stores, or function calls.
2527 In a given basic block, this function avoids instrumenting memory
2528 references that have already been instrumented. */
2531 transform_statements (void)
2533 basic_block bb
, last_bb
= NULL
;
2534 gimple_stmt_iterator i
;
2535 int saved_last_basic_block
= last_basic_block_for_fn (cfun
);
2537 FOR_EACH_BB_FN (bb
, cfun
)
2539 basic_block prev_bb
= bb
;
2541 if (bb
->index
>= saved_last_basic_block
) continue;
2543 /* Flush the mem ref hash table, if current bb doesn't have
2544 exactly one predecessor, or if that predecessor (skipping
2545 over asan created basic blocks) isn't the last processed
2546 basic block. Thus we effectively flush on extended basic
2547 block boundaries. */
2548 while (single_pred_p (prev_bb
))
2550 prev_bb
= single_pred (prev_bb
);
2551 if (prev_bb
->index
< saved_last_basic_block
)
2554 if (prev_bb
!= last_bb
)
2555 empty_mem_ref_hash_table ();
2558 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
);)
2560 gimple
*s
= gsi_stmt (i
);
2562 if (has_stmt_been_instrumented_p (s
))
2564 else if (gimple_assign_single_p (s
)
2565 && !gimple_clobber_p (s
)
2566 && maybe_instrument_assignment (&i
))
2567 /* Nothing to do as maybe_instrument_assignment advanced
2569 else if (is_gimple_call (s
) && maybe_instrument_call (&i
))
2570 /* Nothing to do as maybe_instrument_call
2571 advanced the iterator I. */;
2574 /* No instrumentation happened.
2576 If the current instruction is a function call that
2577 might free something, let's forget about the memory
2578 references that got instrumented. Otherwise we might
2579 miss some instrumentation opportunities. Do the same
2580 for a ASAN_MARK poisoning internal function. */
2581 if (is_gimple_call (s
)
2582 && (!nonfreeing_call_p (s
)
2583 || asan_mark_p (s
, ASAN_MARK_POISON
)))
2584 empty_mem_ref_hash_table ();
2590 free_mem_ref_resources ();
2594 __asan_before_dynamic_init (module_name)
2596 __asan_after_dynamic_init ()
2600 asan_dynamic_init_call (bool after_p
)
2602 if (shadow_ptr_types
[0] == NULL_TREE
)
2603 asan_init_shadow_ptr_types ();
2605 tree fn
= builtin_decl_implicit (after_p
2606 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2607 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT
);
2608 tree module_name_cst
= NULL_TREE
;
2611 pretty_printer module_name_pp
;
2612 pp_string (&module_name_pp
, main_input_filename
);
2614 module_name_cst
= asan_pp_string (&module_name_pp
);
2615 module_name_cst
= fold_convert (const_ptr_type_node
,
2619 return build_call_expr (fn
, after_p
? 0 : 1, module_name_cst
);
2623 struct __asan_global
2627 uptr __size_with_redzone;
2629 const void *__module_name;
2630 uptr __has_dynamic_init;
2631 __asan_global_source_location *__location;
2632 char *__odr_indicator;
2636 asan_global_struct (void)
2638 static const char *field_names
[]
2639 = { "__beg", "__size", "__size_with_redzone",
2640 "__name", "__module_name", "__has_dynamic_init", "__location",
2641 "__odr_indicator" };
2642 tree fields
[ARRAY_SIZE (field_names
)], ret
;
2645 ret
= make_node (RECORD_TYPE
);
2646 for (i
= 0; i
< ARRAY_SIZE (field_names
); i
++)
2649 = build_decl (UNKNOWN_LOCATION
, FIELD_DECL
,
2650 get_identifier (field_names
[i
]),
2651 (i
== 0 || i
== 3) ? const_ptr_type_node
2652 : pointer_sized_int_node
);
2653 DECL_CONTEXT (fields
[i
]) = ret
;
2655 DECL_CHAIN (fields
[i
- 1]) = fields
[i
];
2657 tree type_decl
= build_decl (input_location
, TYPE_DECL
,
2658 get_identifier ("__asan_global"), ret
);
2659 DECL_IGNORED_P (type_decl
) = 1;
2660 DECL_ARTIFICIAL (type_decl
) = 1;
2661 TYPE_FIELDS (ret
) = fields
[0];
2662 TYPE_NAME (ret
) = type_decl
;
2663 TYPE_STUB_DECL (ret
) = type_decl
;
2668 /* Create and return odr indicator symbol for DECL.
2669 TYPE is __asan_global struct type as returned by asan_global_struct. */
2672 create_odr_indicator (tree decl
, tree type
)
2675 tree uptr
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type
)));
2677 = (HAS_DECL_ASSEMBLER_NAME_P (decl
) ? DECL_ASSEMBLER_NAME (decl
)
2678 : DECL_NAME (decl
));
2679 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2680 if (decl_name
== NULL_TREE
)
2681 return build_int_cst (uptr
, 0);
2682 const char *dname
= IDENTIFIER_POINTER (decl_name
);
2683 if (HAS_DECL_ASSEMBLER_NAME_P (decl
))
2684 dname
= targetm
.strip_name_encoding (dname
);
2685 size_t len
= strlen (dname
) + sizeof ("__odr_asan_");
2686 name
= XALLOCAVEC (char, len
);
2687 snprintf (name
, len
, "__odr_asan_%s", dname
);
2688 #ifndef NO_DOT_IN_LABEL
2689 name
[sizeof ("__odr_asan") - 1] = '.';
2690 #elif !defined(NO_DOLLAR_IN_LABEL)
2691 name
[sizeof ("__odr_asan") - 1] = '$';
2693 tree var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (name
),
2695 TREE_ADDRESSABLE (var
) = 1;
2696 TREE_READONLY (var
) = 0;
2697 TREE_THIS_VOLATILE (var
) = 1;
2698 DECL_GIMPLE_REG_P (var
) = 0;
2699 DECL_ARTIFICIAL (var
) = 1;
2700 DECL_IGNORED_P (var
) = 1;
2701 TREE_STATIC (var
) = 1;
2702 TREE_PUBLIC (var
) = 1;
2703 DECL_VISIBILITY (var
) = DECL_VISIBILITY (decl
);
2704 DECL_VISIBILITY_SPECIFIED (var
) = DECL_VISIBILITY_SPECIFIED (decl
);
2706 TREE_USED (var
) = 1;
2707 tree ctor
= build_constructor_va (TREE_TYPE (var
), 1, NULL_TREE
,
2708 build_int_cst (unsigned_type_node
, 0));
2709 TREE_CONSTANT (ctor
) = 1;
2710 TREE_STATIC (ctor
) = 1;
2711 DECL_INITIAL (var
) = ctor
;
2712 DECL_ATTRIBUTES (var
) = tree_cons (get_identifier ("asan odr indicator"),
2713 NULL
, DECL_ATTRIBUTES (var
));
2714 make_decl_rtl (var
);
2715 varpool_node::finalize_decl (var
);
2716 return fold_convert (uptr
, build_fold_addr_expr (var
));
2719 /* Return true if DECL, a global var, might be overridden and needs
2720 an additional odr indicator symbol. */
2723 asan_needs_odr_indicator_p (tree decl
)
2725 /* Don't emit ODR indicators for kernel because:
2726 a) Kernel is written in C thus doesn't need ODR indicators.
2727 b) Some kernel code may have assumptions about symbols containing specific
2728 patterns in their names. Since ODR indicators contain original names
2729 of symbols they are emitted for, these assumptions would be broken for
2730 ODR indicator symbols. */
2731 return (!(flag_sanitize
& SANITIZE_KERNEL_ADDRESS
)
2732 && !DECL_ARTIFICIAL (decl
)
2733 && !DECL_WEAK (decl
)
2734 && TREE_PUBLIC (decl
));
2737 /* Append description of a single global DECL into vector V.
2738 TYPE is __asan_global struct type as returned by asan_global_struct. */
2741 asan_add_global (tree decl
, tree type
, vec
<constructor_elt
, va_gc
> *v
)
2743 tree init
, uptr
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type
)));
2744 unsigned HOST_WIDE_INT size
;
2745 tree str_cst
, module_name_cst
, refdecl
= decl
;
2746 vec
<constructor_elt
, va_gc
> *vinner
= NULL
;
2748 pretty_printer asan_pp
, module_name_pp
;
2750 if (DECL_NAME (decl
))
2751 pp_tree_identifier (&asan_pp
, DECL_NAME (decl
));
2753 pp_string (&asan_pp
, "<unknown>");
2754 str_cst
= asan_pp_string (&asan_pp
);
2756 pp_string (&module_name_pp
, main_input_filename
);
2757 module_name_cst
= asan_pp_string (&module_name_pp
);
2759 if (asan_needs_local_alias (decl
))
2762 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASAN", vec_safe_length (v
) + 1);
2763 refdecl
= build_decl (DECL_SOURCE_LOCATION (decl
),
2764 VAR_DECL
, get_identifier (buf
), TREE_TYPE (decl
));
2765 TREE_ADDRESSABLE (refdecl
) = TREE_ADDRESSABLE (decl
);
2766 TREE_READONLY (refdecl
) = TREE_READONLY (decl
);
2767 TREE_THIS_VOLATILE (refdecl
) = TREE_THIS_VOLATILE (decl
);
2768 DECL_GIMPLE_REG_P (refdecl
) = DECL_GIMPLE_REG_P (decl
);
2769 DECL_ARTIFICIAL (refdecl
) = DECL_ARTIFICIAL (decl
);
2770 DECL_IGNORED_P (refdecl
) = DECL_IGNORED_P (decl
);
2771 TREE_STATIC (refdecl
) = 1;
2772 TREE_PUBLIC (refdecl
) = 0;
2773 TREE_USED (refdecl
) = 1;
2774 assemble_alias (refdecl
, DECL_ASSEMBLER_NAME (decl
));
2777 tree odr_indicator_ptr
2778 = (asan_needs_odr_indicator_p (decl
) ? create_odr_indicator (decl
, type
)
2779 : build_int_cst (uptr
, 0));
2780 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2781 fold_convert (const_ptr_type_node
,
2782 build_fold_addr_expr (refdecl
)));
2783 size
= tree_to_uhwi (DECL_SIZE_UNIT (decl
));
2784 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, build_int_cst (uptr
, size
));
2785 size
+= asan_red_zone_size (size
);
2786 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, build_int_cst (uptr
, size
));
2787 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2788 fold_convert (const_ptr_type_node
, str_cst
));
2789 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2790 fold_convert (const_ptr_type_node
, module_name_cst
));
2791 varpool_node
*vnode
= varpool_node::get (decl
);
2792 int has_dynamic_init
= 0;
2793 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2794 proper fix for PR 79061 will be applied. */
2796 has_dynamic_init
= vnode
? vnode
->dynamically_initialized
: 0;
2797 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2798 build_int_cst (uptr
, has_dynamic_init
));
2799 tree locptr
= NULL_TREE
;
2800 location_t loc
= DECL_SOURCE_LOCATION (decl
);
2801 expanded_location xloc
= expand_location (loc
);
2802 if (xloc
.file
!= NULL
)
2804 static int lasanloccnt
= 0;
2806 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASANLOC", ++lasanloccnt
);
2807 tree var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (buf
),
2808 ubsan_get_source_location_type ());
2809 TREE_STATIC (var
) = 1;
2810 TREE_PUBLIC (var
) = 0;
2811 DECL_ARTIFICIAL (var
) = 1;
2812 DECL_IGNORED_P (var
) = 1;
2813 pretty_printer filename_pp
;
2814 pp_string (&filename_pp
, xloc
.file
);
2815 tree str
= asan_pp_string (&filename_pp
);
2816 tree ctor
= build_constructor_va (TREE_TYPE (var
), 3,
2817 NULL_TREE
, str
, NULL_TREE
,
2818 build_int_cst (unsigned_type_node
,
2819 xloc
.line
), NULL_TREE
,
2820 build_int_cst (unsigned_type_node
,
2822 TREE_CONSTANT (ctor
) = 1;
2823 TREE_STATIC (ctor
) = 1;
2824 DECL_INITIAL (var
) = ctor
;
2825 varpool_node::finalize_decl (var
);
2826 locptr
= fold_convert (uptr
, build_fold_addr_expr (var
));
2829 locptr
= build_int_cst (uptr
, 0);
2830 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, locptr
);
2831 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, odr_indicator_ptr
);
2832 init
= build_constructor (type
, vinner
);
2833 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, init
);
2836 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2838 initialize_sanitizer_builtins (void)
2842 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT
))
2845 tree BT_FN_VOID
= build_function_type_list (void_type_node
, NULL_TREE
);
2847 = build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
2848 tree BT_FN_VOID_CONST_PTR
2849 = build_function_type_list (void_type_node
, const_ptr_type_node
, NULL_TREE
);
2850 tree BT_FN_VOID_PTR_PTR
2851 = build_function_type_list (void_type_node
, ptr_type_node
,
2852 ptr_type_node
, NULL_TREE
);
2853 tree BT_FN_VOID_PTR_PTR_PTR
2854 = build_function_type_list (void_type_node
, ptr_type_node
,
2855 ptr_type_node
, ptr_type_node
, NULL_TREE
);
2856 tree BT_FN_VOID_PTR_PTRMODE
2857 = build_function_type_list (void_type_node
, ptr_type_node
,
2858 pointer_sized_int_node
, NULL_TREE
);
2860 = build_function_type_list (void_type_node
, integer_type_node
, NULL_TREE
);
2861 tree BT_FN_SIZE_CONST_PTR_INT
2862 = build_function_type_list (size_type_node
, const_ptr_type_node
,
2863 integer_type_node
, NULL_TREE
);
2865 tree BT_FN_VOID_UINT8_UINT8
2866 = build_function_type_list (void_type_node
, unsigned_char_type_node
,
2867 unsigned_char_type_node
, NULL_TREE
);
2868 tree BT_FN_VOID_UINT16_UINT16
2869 = build_function_type_list (void_type_node
, uint16_type_node
,
2870 uint16_type_node
, NULL_TREE
);
2871 tree BT_FN_VOID_UINT32_UINT32
2872 = build_function_type_list (void_type_node
, uint32_type_node
,
2873 uint32_type_node
, NULL_TREE
);
2874 tree BT_FN_VOID_UINT64_UINT64
2875 = build_function_type_list (void_type_node
, uint64_type_node
,
2876 uint64_type_node
, NULL_TREE
);
2877 tree BT_FN_VOID_FLOAT_FLOAT
2878 = build_function_type_list (void_type_node
, float_type_node
,
2879 float_type_node
, NULL_TREE
);
2880 tree BT_FN_VOID_DOUBLE_DOUBLE
2881 = build_function_type_list (void_type_node
, double_type_node
,
2882 double_type_node
, NULL_TREE
);
2883 tree BT_FN_VOID_UINT64_PTR
2884 = build_function_type_list (void_type_node
, uint64_type_node
,
2885 ptr_type_node
, NULL_TREE
);
2887 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT
[5];
2888 tree BT_FN_IX_CONST_VPTR_INT
[5];
2889 tree BT_FN_IX_VPTR_IX_INT
[5];
2890 tree BT_FN_VOID_VPTR_IX_INT
[5];
2892 = build_pointer_type (build_qualified_type (void_type_node
,
2893 TYPE_QUAL_VOLATILE
));
2895 = build_pointer_type (build_qualified_type (void_type_node
,
2899 = lang_hooks
.types
.type_for_size (BOOL_TYPE_SIZE
, 1);
2901 for (i
= 0; i
< 5; i
++)
2903 tree ix
= build_nonstandard_integer_type (BITS_PER_UNIT
* (1 << i
), 1);
2904 BT_FN_BOOL_VPTR_PTR_IX_INT_INT
[i
]
2905 = build_function_type_list (boolt
, vptr
, ptr_type_node
, ix
,
2906 integer_type_node
, integer_type_node
,
2908 BT_FN_IX_CONST_VPTR_INT
[i
]
2909 = build_function_type_list (ix
, cvptr
, integer_type_node
, NULL_TREE
);
2910 BT_FN_IX_VPTR_IX_INT
[i
]
2911 = build_function_type_list (ix
, vptr
, ix
, integer_type_node
,
2913 BT_FN_VOID_VPTR_IX_INT
[i
]
2914 = build_function_type_list (void_type_node
, vptr
, ix
,
2915 integer_type_node
, NULL_TREE
);
2917 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2918 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2919 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2920 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2921 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2922 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2923 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2924 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2925 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2926 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2927 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2928 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2929 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2930 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2931 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2932 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2933 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2934 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2935 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2936 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2937 #undef ATTR_NOTHROW_LEAF_LIST
2938 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2939 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2940 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2941 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2942 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2943 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2944 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2945 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2946 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2947 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2948 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2949 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2950 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2951 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2952 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2953 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2954 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2955 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2956 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2957 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2958 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2959 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2960 #undef DEF_BUILTIN_STUB
2961 #define DEF_BUILTIN_STUB(ENUM, NAME)
2962 #undef DEF_SANITIZER_BUILTIN_1
2963 #define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
2965 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2966 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2967 set_call_expr_flags (decl, ATTRS); \
2968 set_builtin_decl (ENUM, decl, true); \
2970 #undef DEF_SANITIZER_BUILTIN
2971 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2972 DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
2974 #include "sanitizer.def"
2976 /* -fsanitize=object-size uses __builtin_object_size, but that might
2977 not be available for e.g. Fortran at this point. We use
2978 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2979 if ((flag_sanitize
& SANITIZE_OBJECT_SIZE
)
2980 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE
))
2981 DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE
, "object_size",
2982 BT_FN_SIZE_CONST_PTR_INT
,
2983 ATTR_PURE_NOTHROW_LEAF_LIST
);
2985 #undef DEF_SANITIZER_BUILTIN_1
2986 #undef DEF_SANITIZER_BUILTIN
2987 #undef DEF_BUILTIN_STUB
2990 /* Called via htab_traverse. Count number of emitted
2991 STRING_CSTs in the constant hash table. */
2994 count_string_csts (constant_descriptor_tree
**slot
,
2995 unsigned HOST_WIDE_INT
*data
)
2997 struct constant_descriptor_tree
*desc
= *slot
;
2998 if (TREE_CODE (desc
->value
) == STRING_CST
2999 && TREE_ASM_WRITTEN (desc
->value
)
3000 && asan_protect_global (desc
->value
))
3005 /* Helper structure to pass two parameters to
3008 struct asan_add_string_csts_data
3011 vec
<constructor_elt
, va_gc
> *v
;
3014 /* Called via hash_table::traverse. Call asan_add_global
3015 on emitted STRING_CSTs from the constant hash table. */
3018 add_string_csts (constant_descriptor_tree
**slot
,
3019 asan_add_string_csts_data
*aascd
)
3021 struct constant_descriptor_tree
*desc
= *slot
;
3022 if (TREE_CODE (desc
->value
) == STRING_CST
3023 && TREE_ASM_WRITTEN (desc
->value
)
3024 && asan_protect_global (desc
->value
))
3026 asan_add_global (SYMBOL_REF_DECL (XEXP (desc
->rtl
, 0)),
3027 aascd
->type
, aascd
->v
);
3032 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
3033 invoke ggc_collect. */
3034 static GTY(()) tree asan_ctor_statements
;
3036 /* Module-level instrumentation.
3037 - Insert __asan_init_vN() into the list of CTORs.
3038 - TODO: insert redzones around globals.
3042 asan_finish_file (void)
3044 varpool_node
*vnode
;
3045 unsigned HOST_WIDE_INT gcount
= 0;
3047 if (shadow_ptr_types
[0] == NULL_TREE
)
3048 asan_init_shadow_ptr_types ();
3049 /* Avoid instrumenting code in the asan ctors/dtors.
3050 We don't need to insert padding after the description strings,
3051 nor after .LASAN* array. */
3052 flag_sanitize
&= ~SANITIZE_ADDRESS
;
3054 /* For user-space we want asan constructors to run first.
3055 Linux kernel does not support priorities other than default, and the only
3056 other user of constructors is coverage. So we run with the default
3058 int priority
= flag_sanitize
& SANITIZE_USER_ADDRESS
3059 ? MAX_RESERVED_INIT_PRIORITY
- 1 : DEFAULT_INIT_PRIORITY
;
3061 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
3063 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_INIT
);
3064 append_to_statement_list (build_call_expr (fn
, 0), &asan_ctor_statements
);
3065 fn
= builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK
);
3066 append_to_statement_list (build_call_expr (fn
, 0), &asan_ctor_statements
);
3068 FOR_EACH_DEFINED_VARIABLE (vnode
)
3069 if (TREE_ASM_WRITTEN (vnode
->decl
)
3070 && asan_protect_global (vnode
->decl
))
3072 hash_table
<tree_descriptor_hasher
> *const_desc_htab
= constant_pool_htab ();
3073 const_desc_htab
->traverse
<unsigned HOST_WIDE_INT
*, count_string_csts
>
3077 tree type
= asan_global_struct (), var
, ctor
;
3078 tree dtor_statements
= NULL_TREE
;
3079 vec
<constructor_elt
, va_gc
> *v
;
3082 type
= build_array_type_nelts (type
, gcount
);
3083 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASAN", 0);
3084 var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (buf
),
3086 TREE_STATIC (var
) = 1;
3087 TREE_PUBLIC (var
) = 0;
3088 DECL_ARTIFICIAL (var
) = 1;
3089 DECL_IGNORED_P (var
) = 1;
3090 vec_alloc (v
, gcount
);
3091 FOR_EACH_DEFINED_VARIABLE (vnode
)
3092 if (TREE_ASM_WRITTEN (vnode
->decl
)
3093 && asan_protect_global (vnode
->decl
))
3094 asan_add_global (vnode
->decl
, TREE_TYPE (type
), v
);
3095 struct asan_add_string_csts_data aascd
;
3096 aascd
.type
= TREE_TYPE (type
);
3098 const_desc_htab
->traverse
<asan_add_string_csts_data
*, add_string_csts
>
3100 ctor
= build_constructor (type
, v
);
3101 TREE_CONSTANT (ctor
) = 1;
3102 TREE_STATIC (ctor
) = 1;
3103 DECL_INITIAL (var
) = ctor
;
3104 SET_DECL_ALIGN (var
, MAX (DECL_ALIGN (var
),
3105 ASAN_SHADOW_GRANULARITY
* BITS_PER_UNIT
));
3107 varpool_node::finalize_decl (var
);
3109 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS
);
3110 tree gcount_tree
= build_int_cst (pointer_sized_int_node
, gcount
);
3111 append_to_statement_list (build_call_expr (fn
, 2,
3112 build_fold_addr_expr (var
),
3114 &asan_ctor_statements
);
3116 fn
= builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS
);
3117 append_to_statement_list (build_call_expr (fn
, 2,
3118 build_fold_addr_expr (var
),
3121 cgraph_build_static_cdtor ('D', dtor_statements
, priority
);
3123 if (asan_ctor_statements
)
3124 cgraph_build_static_cdtor ('I', asan_ctor_statements
, priority
);
3125 flag_sanitize
|= SANITIZE_ADDRESS
;
3128 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
3129 on SHADOW address. Newly added statements will be added to ITER with
3130 given location LOC. We mark SIZE bytes in shadow memory, where
3131 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
3132 end of a variable. */
3135 asan_store_shadow_bytes (gimple_stmt_iterator
*iter
, location_t loc
,
3137 unsigned HOST_WIDE_INT base_addr_offset
,
3138 bool is_clobber
, unsigned size
,
3139 unsigned last_chunk_size
)
3141 tree shadow_ptr_type
;
3146 shadow_ptr_type
= shadow_ptr_types
[0];
3149 shadow_ptr_type
= shadow_ptr_types
[1];
3152 shadow_ptr_type
= shadow_ptr_types
[2];
3158 unsigned char c
= (char) is_clobber
? ASAN_STACK_MAGIC_USE_AFTER_SCOPE
: 0;
3159 unsigned HOST_WIDE_INT val
= 0;
3160 unsigned last_pos
= size
;
3161 if (last_chunk_size
&& !is_clobber
)
3162 last_pos
= BYTES_BIG_ENDIAN
? 0 : size
- 1;
3163 for (unsigned i
= 0; i
< size
; ++i
)
3165 unsigned char shadow_c
= c
;
3167 shadow_c
= last_chunk_size
;
3168 val
|= (unsigned HOST_WIDE_INT
) shadow_c
<< (BITS_PER_UNIT
* i
);
3171 /* Handle last chunk in unpoisoning. */
3172 tree magic
= build_int_cst (TREE_TYPE (shadow_ptr_type
), val
);
3174 tree dest
= build2 (MEM_REF
, TREE_TYPE (shadow_ptr_type
), shadow
,
3175 build_int_cst (shadow_ptr_type
, base_addr_offset
));
3177 gimple
*g
= gimple_build_assign (dest
, magic
);
3178 gimple_set_location (g
, loc
);
3179 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
3182 /* Expand the ASAN_MARK builtins. */
3185 asan_expand_mark_ifn (gimple_stmt_iterator
*iter
)
3187 gimple
*g
= gsi_stmt (*iter
);
3188 location_t loc
= gimple_location (g
);
3189 HOST_WIDE_INT flag
= tree_to_shwi (gimple_call_arg (g
, 0));
3190 bool is_poison
= ((asan_mark_flags
)flag
) == ASAN_MARK_POISON
;
3192 tree base
= gimple_call_arg (g
, 1);
3193 gcc_checking_assert (TREE_CODE (base
) == ADDR_EXPR
);
3194 tree decl
= TREE_OPERAND (base
, 0);
3196 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3197 if (TREE_CODE (decl
) == COMPONENT_REF
3198 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl
, 0)))
3199 decl
= TREE_OPERAND (decl
, 0);
3201 gcc_checking_assert (TREE_CODE (decl
) == VAR_DECL
);
3205 if (asan_handled_variables
== NULL
)
3206 asan_handled_variables
= new hash_set
<tree
> (16);
3207 asan_handled_variables
->add (decl
);
3209 tree len
= gimple_call_arg (g
, 2);
3211 gcc_assert (tree_fits_shwi_p (len
));
3212 unsigned HOST_WIDE_INT size_in_bytes
= tree_to_shwi (len
);
3213 gcc_assert (size_in_bytes
);
3215 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3217 gimple_set_location (g
, loc
);
3218 gsi_replace (iter
, g
, false);
3219 tree base_addr
= gimple_assign_lhs (g
);
3221 /* Generate direct emission if size_in_bytes is small. */
3222 if (size_in_bytes
<= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD
)
3224 const unsigned HOST_WIDE_INT shadow_size
3225 = shadow_mem_size (size_in_bytes
);
3226 const unsigned int shadow_align
3227 = (get_pointer_alignment (base
) / BITS_PER_UNIT
) >> ASAN_SHADOW_SHIFT
;
3229 tree shadow
= build_shadow_mem_access (iter
, loc
, base_addr
,
3230 shadow_ptr_types
[0], true);
3232 for (unsigned HOST_WIDE_INT offset
= 0; offset
< shadow_size
;)
3235 if (shadow_size
- offset
>= 4
3236 && (!STRICT_ALIGNMENT
|| shadow_align
>= 4))
3238 else if (shadow_size
- offset
>= 2
3239 && (!STRICT_ALIGNMENT
|| shadow_align
>= 2))
3242 unsigned HOST_WIDE_INT last_chunk_size
= 0;
3243 unsigned HOST_WIDE_INT s
= (offset
+ size
) * ASAN_SHADOW_GRANULARITY
;
3244 if (s
> size_in_bytes
)
3245 last_chunk_size
= ASAN_SHADOW_GRANULARITY
- (s
- size_in_bytes
);
3247 asan_store_shadow_bytes (iter
, loc
, shadow
, offset
, is_poison
,
3248 size
, last_chunk_size
);
3254 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3256 gimple_set_location (g
, loc
);
3257 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3258 tree sz_arg
= gimple_assign_lhs (g
);
3261 = builtin_decl_implicit (is_poison
? BUILT_IN_ASAN_POISON_STACK_MEMORY
3262 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY
);
3263 g
= gimple_build_call (fun
, 2, base_addr
, sz_arg
);
3264 gimple_set_location (g
, loc
);
3265 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
3271 /* Expand the ASAN_{LOAD,STORE} builtins. */
3274 asan_expand_check_ifn (gimple_stmt_iterator
*iter
, bool use_calls
)
3276 gimple
*g
= gsi_stmt (*iter
);
3277 location_t loc
= gimple_location (g
);
3279 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
3280 recover_p
= (flag_sanitize_recover
& SANITIZE_USER_ADDRESS
) != 0;
3282 recover_p
= (flag_sanitize_recover
& SANITIZE_KERNEL_ADDRESS
) != 0;
3284 HOST_WIDE_INT flags
= tree_to_shwi (gimple_call_arg (g
, 0));
3285 gcc_assert (flags
< ASAN_CHECK_LAST
);
3286 bool is_scalar_access
= (flags
& ASAN_CHECK_SCALAR_ACCESS
) != 0;
3287 bool is_store
= (flags
& ASAN_CHECK_STORE
) != 0;
3288 bool is_non_zero_len
= (flags
& ASAN_CHECK_NON_ZERO_LEN
) != 0;
3290 tree base
= gimple_call_arg (g
, 1);
3291 tree len
= gimple_call_arg (g
, 2);
3292 HOST_WIDE_INT align
= tree_to_shwi (gimple_call_arg (g
, 3));
3294 HOST_WIDE_INT size_in_bytes
3295 = is_scalar_access
&& tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
3299 /* Instrument using callbacks. */
3300 gimple
*g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3302 gimple_set_location (g
, loc
);
3303 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3304 tree base_addr
= gimple_assign_lhs (g
);
3307 tree fun
= check_func (is_store
, recover_p
, size_in_bytes
, &nargs
);
3309 g
= gimple_build_call (fun
, 1, base_addr
);
3312 gcc_assert (nargs
== 2);
3313 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3315 gimple_set_location (g
, loc
);
3316 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3317 tree sz_arg
= gimple_assign_lhs (g
);
3318 g
= gimple_build_call (fun
, nargs
, base_addr
, sz_arg
);
3320 gimple_set_location (g
, loc
);
3321 gsi_replace (iter
, g
, false);
3325 HOST_WIDE_INT real_size_in_bytes
= size_in_bytes
== -1 ? 1 : size_in_bytes
;
3327 tree shadow_ptr_type
= shadow_ptr_types
[real_size_in_bytes
== 16 ? 1 : 0];
3328 tree shadow_type
= TREE_TYPE (shadow_ptr_type
);
3330 gimple_stmt_iterator gsi
= *iter
;
3332 if (!is_non_zero_len
)
3334 /* So, the length of the memory area to asan-protect is
3335 non-constant. Let's guard the generated instrumentation code
3340 //asan instrumentation code goes here.
3342 // falltrough instructions, starting with *ITER. */
3344 g
= gimple_build_cond (NE_EXPR
,
3346 build_int_cst (TREE_TYPE (len
), 0),
3347 NULL_TREE
, NULL_TREE
);
3348 gimple_set_location (g
, loc
);
3350 basic_block then_bb
, fallthrough_bb
;
3351 insert_if_then_before_iter (as_a
<gcond
*> (g
), iter
,
3352 /*then_more_likely_p=*/true,
3353 &then_bb
, &fallthrough_bb
);
3354 /* Note that fallthrough_bb starts with the statement that was
3355 pointed to by ITER. */
3357 /* The 'then block' of the 'if (len != 0) condition is where
3358 we'll generate the asan instrumentation code now. */
3359 gsi
= gsi_last_bb (then_bb
);
3362 /* Get an iterator on the point where we can add the condition
3363 statement for the instrumentation. */
3364 basic_block then_bb
, else_bb
;
3365 gsi
= create_cond_insert_point (&gsi
, /*before_p*/false,
3366 /*then_more_likely_p=*/false,
3367 /*create_then_fallthru_edge*/recover_p
,
3371 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3373 gimple_set_location (g
, loc
);
3374 gsi_insert_before (&gsi
, g
, GSI_NEW_STMT
);
3375 tree base_addr
= gimple_assign_lhs (g
);
3378 if (real_size_in_bytes
>= 8)
3380 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_addr
,
3386 /* Slow path for 1, 2 and 4 byte accesses. */
3387 /* Test (shadow != 0)
3388 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3389 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_addr
,
3391 gimple
*shadow_test
= build_assign (NE_EXPR
, shadow
, 0);
3392 gimple_seq seq
= NULL
;
3393 gimple_seq_add_stmt (&seq
, shadow_test
);
3394 /* Aligned (>= 8 bytes) can test just
3395 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3399 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
,
3401 gimple_seq_add_stmt (&seq
,
3402 build_type_cast (shadow_type
,
3403 gimple_seq_last (seq
)));
3404 if (real_size_in_bytes
> 1)
3405 gimple_seq_add_stmt (&seq
,
3406 build_assign (PLUS_EXPR
,
3407 gimple_seq_last (seq
),
3408 real_size_in_bytes
- 1));
3409 t
= gimple_assign_lhs (gimple_seq_last_stmt (seq
));
3412 t
= build_int_cst (shadow_type
, real_size_in_bytes
- 1);
3413 gimple_seq_add_stmt (&seq
, build_assign (GE_EXPR
, t
, shadow
));
3414 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
, shadow_test
,
3415 gimple_seq_last (seq
)));
3416 t
= gimple_assign_lhs (gimple_seq_last (seq
));
3417 gimple_seq_set_location (seq
, loc
);
3418 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
3420 /* For non-constant, misaligned or otherwise weird access sizes,
3421 check first and last byte. */
3422 if (size_in_bytes
== -1)
3424 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3426 build_int_cst (pointer_sized_int_node
, 1));
3427 gimple_set_location (g
, loc
);
3428 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3429 tree last
= gimple_assign_lhs (g
);
3430 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3431 PLUS_EXPR
, base_addr
, last
);
3432 gimple_set_location (g
, loc
);
3433 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3434 tree base_end_addr
= gimple_assign_lhs (g
);
3436 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_end_addr
,
3438 gimple
*shadow_test
= build_assign (NE_EXPR
, shadow
, 0);
3439 gimple_seq seq
= NULL
;
3440 gimple_seq_add_stmt (&seq
, shadow_test
);
3441 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
,
3443 gimple_seq_add_stmt (&seq
, build_type_cast (shadow_type
,
3444 gimple_seq_last (seq
)));
3445 gimple_seq_add_stmt (&seq
, build_assign (GE_EXPR
,
3446 gimple_seq_last (seq
),
3448 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
, shadow_test
,
3449 gimple_seq_last (seq
)));
3450 gimple_seq_add_stmt (&seq
, build_assign (BIT_IOR_EXPR
, t
,
3451 gimple_seq_last (seq
)));
3452 t
= gimple_assign_lhs (gimple_seq_last (seq
));
3453 gimple_seq_set_location (seq
, loc
);
3454 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
3458 g
= gimple_build_cond (NE_EXPR
, t
, build_int_cst (TREE_TYPE (t
), 0),
3459 NULL_TREE
, NULL_TREE
);
3460 gimple_set_location (g
, loc
);
3461 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3463 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3464 gsi
= gsi_start_bb (then_bb
);
3466 tree fun
= report_error_func (is_store
, recover_p
, size_in_bytes
, &nargs
);
3467 g
= gimple_build_call (fun
, nargs
, base_addr
, len
);
3468 gimple_set_location (g
, loc
);
3469 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3471 gsi_remove (iter
, true);
3472 *iter
= gsi_start_bb (else_bb
);
3477 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3478 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3481 create_asan_shadow_var (tree var_decl
,
3482 hash_map
<tree
, tree
> &shadow_vars_mapping
)
3484 tree
*slot
= shadow_vars_mapping
.get (var_decl
);
3487 tree shadow_var
= copy_node (var_decl
);
3490 memset (&id
, 0, sizeof (copy_body_data
));
3491 id
.src_fn
= id
.dst_fn
= current_function_decl
;
3492 copy_decl_for_dup_finish (&id
, var_decl
, shadow_var
);
3494 DECL_ARTIFICIAL (shadow_var
) = 1;
3495 DECL_IGNORED_P (shadow_var
) = 1;
3496 DECL_SEEN_IN_BIND_EXPR_P (shadow_var
) = 0;
3497 gimple_add_tmp_var (shadow_var
);
3499 shadow_vars_mapping
.put (var_decl
, shadow_var
);
3506 /* Expand ASAN_POISON ifn. */
3509 asan_expand_poison_ifn (gimple_stmt_iterator
*iter
,
3510 bool *need_commit_edge_insert
,
3511 hash_map
<tree
, tree
> &shadow_vars_mapping
)
3513 gimple
*g
= gsi_stmt (*iter
);
3514 tree poisoned_var
= gimple_call_lhs (g
);
3515 if (!poisoned_var
|| has_zero_uses (poisoned_var
))
3517 gsi_remove (iter
, true);
3521 if (SSA_NAME_VAR (poisoned_var
) == NULL_TREE
)
3522 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var
,
3523 create_tmp_var (TREE_TYPE (poisoned_var
)));
3525 tree shadow_var
= create_asan_shadow_var (SSA_NAME_VAR (poisoned_var
),
3526 shadow_vars_mapping
);
3529 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
3530 recover_p
= (flag_sanitize_recover
& SANITIZE_USER_ADDRESS
) != 0;
3532 recover_p
= (flag_sanitize_recover
& SANITIZE_KERNEL_ADDRESS
) != 0;
3533 tree size
= DECL_SIZE_UNIT (shadow_var
);
3535 = gimple_build_call_internal (IFN_ASAN_MARK
, 3,
3536 build_int_cst (integer_type_node
,
3538 build_fold_addr_expr (shadow_var
), size
);
3541 imm_use_iterator imm_iter
;
3542 FOR_EACH_IMM_USE_STMT (use
, imm_iter
, poisoned_var
)
3544 if (is_gimple_debug (use
))
3548 bool store_p
= gimple_call_internal_p (use
, IFN_ASAN_POISON_USE
);
3549 tree fun
= report_error_func (store_p
, recover_p
, tree_to_uhwi (size
),
3552 gcall
*call
= gimple_build_call (fun
, 1,
3553 build_fold_addr_expr (shadow_var
));
3554 gimple_set_location (call
, gimple_location (use
));
3555 gimple
*call_to_insert
= call
;
3557 /* The USE can be a gimple PHI node. If so, insert the call on
3558 all edges leading to the PHI node. */
3559 if (is_a
<gphi
*> (use
))
3561 gphi
*phi
= dyn_cast
<gphi
*> (use
);
3562 for (unsigned i
= 0; i
< gimple_phi_num_args (phi
); ++i
)
3563 if (gimple_phi_arg_def (phi
, i
) == poisoned_var
)
3565 edge e
= gimple_phi_arg_edge (phi
, i
);
3567 /* Do not insert on an edge we can't split. */
3568 if (e
->flags
& EDGE_ABNORMAL
)
3571 if (call_to_insert
== NULL
)
3572 call_to_insert
= gimple_copy (call
);
3574 gsi_insert_seq_on_edge (e
, call_to_insert
);
3575 *need_commit_edge_insert
= true;
3576 call_to_insert
= NULL
;
3581 gimple_stmt_iterator gsi
= gsi_for_stmt (use
);
3583 gsi_replace (&gsi
, call
, true);
3585 gsi_insert_before (&gsi
, call
, GSI_NEW_STMT
);
3589 SSA_NAME_IS_DEFAULT_DEF (poisoned_var
) = true;
3590 SSA_NAME_DEF_STMT (poisoned_var
) = gimple_build_nop ();
3591 gsi_replace (iter
, poison_call
, false);
3596 /* Instrument the current function. */
3599 asan_instrument (void)
3601 if (shadow_ptr_types
[0] == NULL_TREE
)
3602 asan_init_shadow_ptr_types ();
3603 transform_statements ();
3604 last_alloca_addr
= NULL_TREE
;
3611 return sanitize_flags_p (SANITIZE_ADDRESS
);
3616 const pass_data pass_data_asan
=
3618 GIMPLE_PASS
, /* type */
3620 OPTGROUP_NONE
, /* optinfo_flags */
3621 TV_NONE
, /* tv_id */
3622 ( PROP_ssa
| PROP_cfg
| PROP_gimple_leh
), /* properties_required */
3623 0, /* properties_provided */
3624 0, /* properties_destroyed */
3625 0, /* todo_flags_start */
3626 TODO_update_ssa
, /* todo_flags_finish */
3629 class pass_asan
: public gimple_opt_pass
3632 pass_asan (gcc::context
*ctxt
)
3633 : gimple_opt_pass (pass_data_asan
, ctxt
)
3636 /* opt_pass methods: */
3637 opt_pass
* clone () { return new pass_asan (m_ctxt
); }
3638 virtual bool gate (function
*) { return gate_asan (); }
3639 virtual unsigned int execute (function
*) { return asan_instrument (); }
3641 }; // class pass_asan
3646 make_pass_asan (gcc::context
*ctxt
)
3648 return new pass_asan (ctxt
);
3653 const pass_data pass_data_asan_O0
=
3655 GIMPLE_PASS
, /* type */
3657 OPTGROUP_NONE
, /* optinfo_flags */
3658 TV_NONE
, /* tv_id */
3659 ( PROP_ssa
| PROP_cfg
| PROP_gimple_leh
), /* properties_required */
3660 0, /* properties_provided */
3661 0, /* properties_destroyed */
3662 0, /* todo_flags_start */
3663 TODO_update_ssa
, /* todo_flags_finish */
3666 class pass_asan_O0
: public gimple_opt_pass
3669 pass_asan_O0 (gcc::context
*ctxt
)
3670 : gimple_opt_pass (pass_data_asan_O0
, ctxt
)
3673 /* opt_pass methods: */
3674 virtual bool gate (function
*) { return !optimize
&& gate_asan (); }
3675 virtual unsigned int execute (function
*) { return asan_instrument (); }
3677 }; // class pass_asan_O0
3682 make_pass_asan_O0 (gcc::context
*ctxt
)
3684 return new pass_asan_O0 (ctxt
);
3687 #include "gt-asan.h"