* config/xtensa/xtensa.c (call_insn_operand): Check
[official-gcc.git] / gcc / explow.c
blobe6eacdcf0bf74f97d02dae0f42ddf71c7faa155f
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
245 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
251 HOST_WIDE_INT
252 int_expr_size (tree exp)
254 tree t = lang_hooks.expr_size (exp);
256 if (t == 0
257 || TREE_CODE (t) != INTEGER_CST
258 || TREE_OVERFLOW (t)
259 || TREE_INT_CST_HIGH (t) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
262 return -1;
264 return TREE_INT_CST_LOW (t);
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
283 static rtx
284 break_out_memory_refs (rtx x)
286 if (GET_CODE (x) == MEM
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
293 rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 rtx op1 = break_out_memory_refs (XEXP (x, 1));
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 return x;
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
307 used. */
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
311 rtx x)
313 #ifndef POINTERS_EXTEND_UNSIGNED
314 return x;
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode;
317 rtx temp;
318 enum rtx_code code;
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x) == to_mode)
322 return x;
324 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x))
330 case CONST_INT:
331 case CONST_DOUBLE:
332 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
333 code = TRUNCATE;
334 else if (POINTERS_EXTEND_UNSIGNED < 0)
335 break;
336 else if (POINTERS_EXTEND_UNSIGNED > 0)
337 code = ZERO_EXTEND;
338 else
339 code = SIGN_EXTEND;
340 temp = simplify_unary_operation (code, to_mode, x, from_mode);
341 if (temp)
342 return temp;
343 break;
345 case SUBREG:
346 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
347 && GET_MODE (SUBREG_REG (x)) == to_mode)
348 return SUBREG_REG (x);
349 break;
351 case LABEL_REF:
352 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
353 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
354 return temp;
355 break;
357 case SYMBOL_REF:
358 temp = shallow_copy_rtx (x);
359 PUT_MODE (temp, to_mode);
360 return temp;
361 break;
363 case CONST:
364 return gen_rtx_CONST (to_mode,
365 convert_memory_address (to_mode, XEXP (x, 0)));
366 break;
368 case PLUS:
369 case MULT:
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
375 || (GET_CODE (x) == PLUS
376 && GET_CODE (XEXP (x, 1)) == CONST_INT
377 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
379 convert_memory_address (to_mode, XEXP (x, 0)),
380 XEXP (x, 1));
381 break;
383 default:
384 break;
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
406 copy_all_regs (rtx x)
408 if (GET_CODE (x) == REG)
410 if (REGNO (x) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
413 #endif
415 x = copy_to_reg (x);
417 else if (GET_CODE (x) == MEM)
418 x = copy_to_reg (x);
419 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
420 || GET_CODE (x) == MULT)
422 rtx op0 = copy_all_regs (XEXP (x, 0));
423 rtx op1 = copy_all_regs (XEXP (x, 1));
424 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
425 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
427 return x;
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
435 memory_address (enum machine_mode mode, rtx x)
437 rtx oldx = x;
439 if (GET_CODE (x) == ADDRESSOF)
440 return x;
442 x = convert_memory_address (Pmode, x);
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
447 x = force_reg (Pmode, x);
449 /* Accept a QUEUED that refers to a REG
450 even though that isn't a valid address.
451 On attempting to put this in an insn we will call protect_from_queue
452 which will turn it into a REG, which is valid. */
453 else if (GET_CODE (x) == QUEUED
454 && GET_CODE (QUEUED_VAR (x)) == REG)
457 /* We get better cse by rejecting indirect addressing at this stage.
458 Let the combiner create indirect addresses where appropriate.
459 For now, generate the code so that the subexpressions useful to share
460 are visible. But not if cse won't be done! */
461 else
463 if (! cse_not_expected && GET_CODE (x) != REG)
464 x = break_out_memory_refs (x);
466 /* At this point, any valid address is accepted. */
467 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
469 /* If it was valid before but breaking out memory refs invalidated it,
470 use it the old way. */
471 if (memory_address_p (mode, oldx))
472 goto win2;
474 /* Perform machine-dependent transformations on X
475 in certain cases. This is not necessary since the code
476 below can handle all possible cases, but machine-dependent
477 transformations can make better code. */
478 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
480 /* PLUS and MULT can appear in special ways
481 as the result of attempts to make an address usable for indexing.
482 Usually they are dealt with by calling force_operand, below.
483 But a sum containing constant terms is special
484 if removing them makes the sum a valid address:
485 then we generate that address in a register
486 and index off of it. We do this because it often makes
487 shorter code, and because the addresses thus generated
488 in registers often become common subexpressions. */
489 if (GET_CODE (x) == PLUS)
491 rtx constant_term = const0_rtx;
492 rtx y = eliminate_constant_term (x, &constant_term);
493 if (constant_term == const0_rtx
494 || ! memory_address_p (mode, y))
495 x = force_operand (x, NULL_RTX);
496 else
498 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
499 if (! memory_address_p (mode, y))
500 x = force_operand (x, NULL_RTX);
501 else
502 x = y;
506 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
507 x = force_operand (x, NULL_RTX);
509 /* If we have a register that's an invalid address,
510 it must be a hard reg of the wrong class. Copy it to a pseudo. */
511 else if (GET_CODE (x) == REG)
512 x = copy_to_reg (x);
514 /* Last resort: copy the value to a register, since
515 the register is a valid address. */
516 else
517 x = force_reg (Pmode, x);
519 goto done;
521 win2:
522 x = oldx;
523 win:
524 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
525 /* Don't copy an addr via a reg if it is one of our stack slots. */
526 && ! (GET_CODE (x) == PLUS
527 && (XEXP (x, 0) == virtual_stack_vars_rtx
528 || XEXP (x, 0) == virtual_incoming_args_rtx)))
530 if (general_operand (x, Pmode))
531 x = force_reg (Pmode, x);
532 else
533 x = force_operand (x, NULL_RTX);
537 done:
539 /* If we didn't change the address, we are done. Otherwise, mark
540 a reg as a pointer if we have REG or REG + CONST_INT. */
541 if (oldx == x)
542 return x;
543 else if (GET_CODE (x) == REG)
544 mark_reg_pointer (x, BITS_PER_UNIT);
545 else if (GET_CODE (x) == PLUS
546 && GET_CODE (XEXP (x, 0)) == REG
547 && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
550 /* OLDX may have been the address on a temporary. Update the address
551 to indicate that X is now used. */
552 update_temp_slot_address (oldx, x);
554 return x;
557 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
560 memory_address_noforce (enum machine_mode mode, rtx x)
562 int ambient_force_addr = flag_force_addr;
563 rtx val;
565 flag_force_addr = 0;
566 val = memory_address (mode, x);
567 flag_force_addr = ambient_force_addr;
568 return val;
571 /* Convert a mem ref into one with a valid memory address.
572 Pass through anything else unchanged. */
575 validize_mem (rtx ref)
577 if (GET_CODE (ref) != MEM)
578 return ref;
579 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
580 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
581 return ref;
583 /* Don't alter REF itself, since that is probably a stack slot. */
584 return replace_equiv_address (ref, XEXP (ref, 0));
587 /* Given REF, either a MEM or a REG, and T, either the type of X or
588 the expression corresponding to REF, set RTX_UNCHANGING_P if
589 appropriate. */
591 void
592 maybe_set_unchanging (rtx ref, tree t)
594 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
595 initialization is only executed once, or whose initializer always
596 has the same value. Currently we simplify this to PARM_DECLs in the
597 first case, and decls with TREE_CONSTANT initializers in the second.
599 We cannot do this for non-static aggregates, because of the double
600 writes that can be generated by store_constructor, depending on the
601 contents of the initializer. Yes, this does eliminate a good fraction
602 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
603 It also eliminates a good quantity of bugs. Let this be incentive to
604 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
605 solution, perhaps based on alias sets. */
607 if ((TREE_READONLY (t) && DECL_P (t)
608 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
609 && (TREE_CODE (t) == PARM_DECL
610 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
611 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
612 RTX_UNCHANGING_P (ref) = 1;
615 /* Return a modified copy of X with its memory address copied
616 into a temporary register to protect it from side effects.
617 If X is not a MEM, it is returned unchanged (and not copied).
618 Perhaps even if it is a MEM, if there is no need to change it. */
621 stabilize (rtx x)
623 if (GET_CODE (x) != MEM
624 || ! rtx_unstable_p (XEXP (x, 0)))
625 return x;
627 return
628 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
631 /* Copy the value or contents of X to a new temp reg and return that reg. */
634 copy_to_reg (rtx x)
636 rtx temp = gen_reg_rtx (GET_MODE (x));
638 /* If not an operand, must be an address with PLUS and MULT so
639 do the computation. */
640 if (! general_operand (x, VOIDmode))
641 x = force_operand (x, temp);
643 if (x != temp)
644 emit_move_insn (temp, x);
646 return temp;
649 /* Like copy_to_reg but always give the new register mode Pmode
650 in case X is a constant. */
653 copy_addr_to_reg (rtx x)
655 return copy_to_mode_reg (Pmode, x);
658 /* Like copy_to_reg but always give the new register mode MODE
659 in case X is a constant. */
662 copy_to_mode_reg (enum machine_mode mode, rtx x)
664 rtx temp = gen_reg_rtx (mode);
666 /* If not an operand, must be an address with PLUS and MULT so
667 do the computation. */
668 if (! general_operand (x, VOIDmode))
669 x = force_operand (x, temp);
671 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
672 abort ();
673 if (x != temp)
674 emit_move_insn (temp, x);
675 return temp;
678 /* Load X into a register if it is not already one.
679 Use mode MODE for the register.
680 X should be valid for mode MODE, but it may be a constant which
681 is valid for all integer modes; that's why caller must specify MODE.
683 The caller must not alter the value in the register we return,
684 since we mark it as a "constant" register. */
687 force_reg (enum machine_mode mode, rtx x)
689 rtx temp, insn, set;
691 if (GET_CODE (x) == REG)
692 return x;
694 if (general_operand (x, mode))
696 temp = gen_reg_rtx (mode);
697 insn = emit_move_insn (temp, x);
699 else
701 temp = force_operand (x, NULL_RTX);
702 if (GET_CODE (temp) == REG)
703 insn = get_last_insn ();
704 else
706 rtx temp2 = gen_reg_rtx (mode);
707 insn = emit_move_insn (temp2, temp);
708 temp = temp2;
712 /* Let optimizers know that TEMP's value never changes
713 and that X can be substituted for it. Don't get confused
714 if INSN set something else (such as a SUBREG of TEMP). */
715 if (CONSTANT_P (x)
716 && (set = single_set (insn)) != 0
717 && SET_DEST (set) == temp
718 && ! rtx_equal_p (x, SET_SRC (set)))
719 set_unique_reg_note (insn, REG_EQUAL, x);
721 /* Let optimizers know that TEMP is a pointer, and if so, the
722 known alignment of that pointer. */
724 unsigned align = 0;
725 if (GET_CODE (x) == SYMBOL_REF)
727 align = BITS_PER_UNIT;
728 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
729 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
731 else if (GET_CODE (x) == LABEL_REF)
732 align = BITS_PER_UNIT;
733 else if (GET_CODE (x) == CONST
734 && GET_CODE (XEXP (x, 0)) == PLUS
735 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
736 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
738 rtx s = XEXP (XEXP (x, 0), 0);
739 rtx c = XEXP (XEXP (x, 0), 1);
740 unsigned sa, ca;
742 sa = BITS_PER_UNIT;
743 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
744 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
746 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
748 align = MIN (sa, ca);
751 if (align)
752 mark_reg_pointer (temp, align);
755 return temp;
758 /* If X is a memory ref, copy its contents to a new temp reg and return
759 that reg. Otherwise, return X. */
762 force_not_mem (rtx x)
764 rtx temp;
766 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
767 return x;
769 temp = gen_reg_rtx (GET_MODE (x));
771 if (MEM_POINTER (x))
772 REG_POINTER (temp) = 1;
774 emit_move_insn (temp, x);
775 return temp;
778 /* Copy X to TARGET (if it's nonzero and a reg)
779 or to a new temp reg and return that reg.
780 MODE is the mode to use for X in case it is a constant. */
783 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
785 rtx temp;
787 if (target && GET_CODE (target) == REG)
788 temp = target;
789 else
790 temp = gen_reg_rtx (mode);
792 emit_move_insn (temp, x);
793 return temp;
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
800 FOR_CALL is nonzero if this call is promoting args for a call. */
802 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
803 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
804 #endif
806 enum machine_mode
807 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
808 int for_call ATTRIBUTE_UNUSED)
810 enum tree_code code = TREE_CODE (type);
811 int unsignedp = *punsignedp;
813 #ifndef PROMOTE_MODE
814 if (! for_call)
815 return mode;
816 #endif
818 switch (code)
820 #ifdef PROMOTE_FUNCTION_MODE
821 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
822 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
823 #ifdef PROMOTE_MODE
824 if (for_call)
826 #endif
827 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
828 #ifdef PROMOTE_MODE
830 else
832 PROMOTE_MODE (mode, unsignedp, type);
834 #endif
835 break;
836 #endif
838 #ifdef POINTERS_EXTEND_UNSIGNED
839 case REFERENCE_TYPE:
840 case POINTER_TYPE:
841 mode = Pmode;
842 unsignedp = POINTERS_EXTEND_UNSIGNED;
843 break;
844 #endif
846 default:
847 break;
850 *punsignedp = unsignedp;
851 return mode;
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
857 void
858 adjust_stack (rtx adjust)
860 rtx temp;
861 adjust = protect_from_queue (adjust, 0);
863 if (adjust == const0_rtx)
864 return;
866 /* We expect all variable sized adjustments to be multiple of
867 PREFERRED_STACK_BOUNDARY. */
868 if (GET_CODE (adjust) == CONST_INT)
869 stack_pointer_delta -= INTVAL (adjust);
871 temp = expand_binop (Pmode,
872 #ifdef STACK_GROWS_DOWNWARD
873 add_optab,
874 #else
875 sub_optab,
876 #endif
877 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
878 OPTAB_LIB_WIDEN);
880 if (temp != stack_pointer_rtx)
881 emit_move_insn (stack_pointer_rtx, temp);
884 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
885 This pushes when ADJUST is positive. ADJUST need not be constant. */
887 void
888 anti_adjust_stack (rtx adjust)
890 rtx temp;
891 adjust = protect_from_queue (adjust, 0);
893 if (adjust == const0_rtx)
894 return;
896 /* We expect all variable sized adjustments to be multiple of
897 PREFERRED_STACK_BOUNDARY. */
898 if (GET_CODE (adjust) == CONST_INT)
899 stack_pointer_delta += INTVAL (adjust);
901 temp = expand_binop (Pmode,
902 #ifdef STACK_GROWS_DOWNWARD
903 sub_optab,
904 #else
905 add_optab,
906 #endif
907 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
908 OPTAB_LIB_WIDEN);
910 if (temp != stack_pointer_rtx)
911 emit_move_insn (stack_pointer_rtx, temp);
914 /* Round the size of a block to be pushed up to the boundary required
915 by this machine. SIZE is the desired size, which need not be constant. */
918 round_push (rtx size)
920 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
922 if (align == 1)
923 return size;
925 if (GET_CODE (size) == CONST_INT)
927 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
929 if (INTVAL (size) != new)
930 size = GEN_INT (new);
932 else
934 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
935 but we know it can't. So add ourselves and then do
936 TRUNC_DIV_EXPR. */
937 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
938 NULL_RTX, 1, OPTAB_LIB_WIDEN);
939 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
940 NULL_RTX, 1);
941 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
944 return size;
947 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
948 to a previously-created save area. If no save area has been allocated,
949 this function will allocate one. If a save area is specified, it
950 must be of the proper mode.
952 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
953 are emitted at the current position. */
955 void
956 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
958 rtx sa = *psave;
959 /* The default is that we use a move insn and save in a Pmode object. */
960 rtx (*fcn) (rtx, rtx) = gen_move_insn;
961 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
963 /* See if this machine has anything special to do for this kind of save. */
964 switch (save_level)
966 #ifdef HAVE_save_stack_block
967 case SAVE_BLOCK:
968 if (HAVE_save_stack_block)
969 fcn = gen_save_stack_block;
970 break;
971 #endif
972 #ifdef HAVE_save_stack_function
973 case SAVE_FUNCTION:
974 if (HAVE_save_stack_function)
975 fcn = gen_save_stack_function;
976 break;
977 #endif
978 #ifdef HAVE_save_stack_nonlocal
979 case SAVE_NONLOCAL:
980 if (HAVE_save_stack_nonlocal)
981 fcn = gen_save_stack_nonlocal;
982 break;
983 #endif
984 default:
985 break;
988 /* If there is no save area and we have to allocate one, do so. Otherwise
989 verify the save area is the proper mode. */
991 if (sa == 0)
993 if (mode != VOIDmode)
995 if (save_level == SAVE_NONLOCAL)
996 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
997 else
998 *psave = sa = gen_reg_rtx (mode);
1001 else
1003 if (mode == VOIDmode || GET_MODE (sa) != mode)
1004 abort ();
1007 if (after)
1009 rtx seq;
1011 start_sequence ();
1012 /* We must validize inside the sequence, to ensure that any instructions
1013 created by the validize call also get moved to the right place. */
1014 if (sa != 0)
1015 sa = validize_mem (sa);
1016 emit_insn (fcn (sa, stack_pointer_rtx));
1017 seq = get_insns ();
1018 end_sequence ();
1019 emit_insn_after (seq, after);
1021 else
1023 if (sa != 0)
1024 sa = validize_mem (sa);
1025 emit_insn (fcn (sa, stack_pointer_rtx));
1029 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1030 area made by emit_stack_save. If it is zero, we have nothing to do.
1032 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1033 current position. */
1035 void
1036 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1038 /* The default is that we use a move insn. */
1039 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1041 /* See if this machine has anything special to do for this kind of save. */
1042 switch (save_level)
1044 #ifdef HAVE_restore_stack_block
1045 case SAVE_BLOCK:
1046 if (HAVE_restore_stack_block)
1047 fcn = gen_restore_stack_block;
1048 break;
1049 #endif
1050 #ifdef HAVE_restore_stack_function
1051 case SAVE_FUNCTION:
1052 if (HAVE_restore_stack_function)
1053 fcn = gen_restore_stack_function;
1054 break;
1055 #endif
1056 #ifdef HAVE_restore_stack_nonlocal
1057 case SAVE_NONLOCAL:
1058 if (HAVE_restore_stack_nonlocal)
1059 fcn = gen_restore_stack_nonlocal;
1060 break;
1061 #endif
1062 default:
1063 break;
1066 if (sa != 0)
1068 sa = validize_mem (sa);
1069 /* These clobbers prevent the scheduler from moving
1070 references to variable arrays below the code
1071 that deletes (pops) the arrays. */
1072 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1073 gen_rtx_MEM (BLKmode,
1074 gen_rtx_SCRATCH (VOIDmode))));
1075 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1076 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1079 if (after)
1081 rtx seq;
1083 start_sequence ();
1084 emit_insn (fcn (stack_pointer_rtx, sa));
1085 seq = get_insns ();
1086 end_sequence ();
1087 emit_insn_after (seq, after);
1089 else
1090 emit_insn (fcn (stack_pointer_rtx, sa));
1093 #ifdef SETJMP_VIA_SAVE_AREA
1094 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1095 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1096 platforms, the dynamic stack space used can corrupt the original
1097 frame, thus causing a crash if a longjmp unwinds to it. */
1099 void
1100 optimize_save_area_alloca (rtx insns)
1102 rtx insn;
1104 for (insn = insns; insn; insn = NEXT_INSN(insn))
1106 rtx note;
1108 if (GET_CODE (insn) != INSN)
1109 continue;
1111 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1113 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1114 continue;
1116 if (!current_function_calls_setjmp)
1118 rtx pat = PATTERN (insn);
1120 /* If we do not see the note in a pattern matching
1121 these precise characteristics, we did something
1122 entirely wrong in allocate_dynamic_stack_space.
1124 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1125 was defined on a machine where stacks grow towards higher
1126 addresses.
1128 Right now only supported port with stack that grow upward
1129 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1130 if (GET_CODE (pat) != SET
1131 || SET_DEST (pat) != stack_pointer_rtx
1132 || GET_CODE (SET_SRC (pat)) != MINUS
1133 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1134 abort ();
1136 /* This will now be transformed into a (set REG REG)
1137 so we can just blow away all the other notes. */
1138 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1139 REG_NOTES (insn) = NULL_RTX;
1141 else
1143 /* setjmp was called, we must remove the REG_SAVE_AREA
1144 note so that later passes do not get confused by its
1145 presence. */
1146 if (note == REG_NOTES (insn))
1148 REG_NOTES (insn) = XEXP (note, 1);
1150 else
1152 rtx srch;
1154 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1155 if (XEXP (srch, 1) == note)
1156 break;
1158 if (srch == NULL_RTX)
1159 abort ();
1161 XEXP (srch, 1) = XEXP (note, 1);
1164 /* Once we've seen the note of interest, we need not look at
1165 the rest of them. */
1166 break;
1170 #endif /* SETJMP_VIA_SAVE_AREA */
1172 /* Return an rtx representing the address of an area of memory dynamically
1173 pushed on the stack. This region of memory is always aligned to
1174 a multiple of BIGGEST_ALIGNMENT.
1176 Any required stack pointer alignment is preserved.
1178 SIZE is an rtx representing the size of the area.
1179 TARGET is a place in which the address can be placed.
1181 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1184 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1186 #ifdef SETJMP_VIA_SAVE_AREA
1187 rtx setjmpless_size = NULL_RTX;
1188 #endif
1190 /* If we're asking for zero bytes, it doesn't matter what we point
1191 to since we can't dereference it. But return a reasonable
1192 address anyway. */
1193 if (size == const0_rtx)
1194 return virtual_stack_dynamic_rtx;
1196 /* Otherwise, show we're calling alloca or equivalent. */
1197 current_function_calls_alloca = 1;
1199 /* Ensure the size is in the proper mode. */
1200 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1201 size = convert_to_mode (Pmode, size, 1);
1203 /* We can't attempt to minimize alignment necessary, because we don't
1204 know the final value of preferred_stack_boundary yet while executing
1205 this code. */
1206 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1208 /* We will need to ensure that the address we return is aligned to
1209 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1210 always know its final value at this point in the compilation (it
1211 might depend on the size of the outgoing parameter lists, for
1212 example), so we must align the value to be returned in that case.
1213 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1214 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1215 We must also do an alignment operation on the returned value if
1216 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1218 If we have to align, we must leave space in SIZE for the hole
1219 that might result from the alignment operation. */
1221 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1222 #define MUST_ALIGN 1
1223 #else
1224 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1225 #endif
1227 if (MUST_ALIGN)
1228 size
1229 = force_operand (plus_constant (size,
1230 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1231 NULL_RTX);
1233 #ifdef SETJMP_VIA_SAVE_AREA
1234 /* If setjmp restores regs from a save area in the stack frame,
1235 avoid clobbering the reg save area. Note that the offset of
1236 virtual_incoming_args_rtx includes the preallocated stack args space.
1237 It would be no problem to clobber that, but it's on the wrong side
1238 of the old save area. */
1240 rtx dynamic_offset
1241 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1242 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1244 if (!current_function_calls_setjmp)
1246 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1248 /* See optimize_save_area_alloca to understand what is being
1249 set up here. */
1251 /* ??? Code below assumes that the save area needs maximal
1252 alignment. This constraint may be too strong. */
1253 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1254 abort ();
1256 if (GET_CODE (size) == CONST_INT)
1258 HOST_WIDE_INT new = INTVAL (size) / align * align;
1260 if (INTVAL (size) != new)
1261 setjmpless_size = GEN_INT (new);
1262 else
1263 setjmpless_size = size;
1265 else
1267 /* Since we know overflow is not possible, we avoid using
1268 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1269 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1270 GEN_INT (align), NULL_RTX, 1);
1271 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1272 GEN_INT (align), NULL_RTX, 1);
1274 /* Our optimization works based upon being able to perform a simple
1275 transformation of this RTL into a (set REG REG) so make sure things
1276 did in fact end up in a REG. */
1277 if (!register_operand (setjmpless_size, Pmode))
1278 setjmpless_size = force_reg (Pmode, setjmpless_size);
1281 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1282 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1284 #endif /* SETJMP_VIA_SAVE_AREA */
1286 /* Round the size to a multiple of the required stack alignment.
1287 Since the stack if presumed to be rounded before this allocation,
1288 this will maintain the required alignment.
1290 If the stack grows downward, we could save an insn by subtracting
1291 SIZE from the stack pointer and then aligning the stack pointer.
1292 The problem with this is that the stack pointer may be unaligned
1293 between the execution of the subtraction and alignment insns and
1294 some machines do not allow this. Even on those that do, some
1295 signal handlers malfunction if a signal should occur between those
1296 insns. Since this is an extremely rare event, we have no reliable
1297 way of knowing which systems have this problem. So we avoid even
1298 momentarily mis-aligning the stack. */
1300 /* If we added a variable amount to SIZE,
1301 we can no longer assume it is aligned. */
1302 #if !defined (SETJMP_VIA_SAVE_AREA)
1303 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1304 #endif
1305 size = round_push (size);
1307 do_pending_stack_adjust ();
1309 /* We ought to be called always on the toplevel and stack ought to be aligned
1310 properly. */
1311 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1312 abort ();
1314 /* If needed, check that we have the required amount of stack. Take into
1315 account what has already been checked. */
1316 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1317 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1319 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1320 if (target == 0 || GET_CODE (target) != REG
1321 || REGNO (target) < FIRST_PSEUDO_REGISTER
1322 || GET_MODE (target) != Pmode)
1323 target = gen_reg_rtx (Pmode);
1325 mark_reg_pointer (target, known_align);
1327 /* Perform the required allocation from the stack. Some systems do
1328 this differently than simply incrementing/decrementing from the
1329 stack pointer, such as acquiring the space by calling malloc(). */
1330 #ifdef HAVE_allocate_stack
1331 if (HAVE_allocate_stack)
1333 enum machine_mode mode = STACK_SIZE_MODE;
1334 insn_operand_predicate_fn pred;
1336 /* We don't have to check against the predicate for operand 0 since
1337 TARGET is known to be a pseudo of the proper mode, which must
1338 be valid for the operand. For operand 1, convert to the
1339 proper mode and validate. */
1340 if (mode == VOIDmode)
1341 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1343 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1344 if (pred && ! ((*pred) (size, mode)))
1345 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1347 emit_insn (gen_allocate_stack (target, size));
1349 else
1350 #endif
1352 #ifndef STACK_GROWS_DOWNWARD
1353 emit_move_insn (target, virtual_stack_dynamic_rtx);
1354 #endif
1356 /* Check stack bounds if necessary. */
1357 if (current_function_limit_stack)
1359 rtx available;
1360 rtx space_available = gen_label_rtx ();
1361 #ifdef STACK_GROWS_DOWNWARD
1362 available = expand_binop (Pmode, sub_optab,
1363 stack_pointer_rtx, stack_limit_rtx,
1364 NULL_RTX, 1, OPTAB_WIDEN);
1365 #else
1366 available = expand_binop (Pmode, sub_optab,
1367 stack_limit_rtx, stack_pointer_rtx,
1368 NULL_RTX, 1, OPTAB_WIDEN);
1369 #endif
1370 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1371 space_available);
1372 #ifdef HAVE_trap
1373 if (HAVE_trap)
1374 emit_insn (gen_trap ());
1375 else
1376 #endif
1377 error ("stack limits not supported on this target");
1378 emit_barrier ();
1379 emit_label (space_available);
1382 anti_adjust_stack (size);
1383 #ifdef SETJMP_VIA_SAVE_AREA
1384 if (setjmpless_size != NULL_RTX)
1386 rtx note_target = get_last_insn ();
1388 REG_NOTES (note_target)
1389 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1390 REG_NOTES (note_target));
1392 #endif /* SETJMP_VIA_SAVE_AREA */
1394 #ifdef STACK_GROWS_DOWNWARD
1395 emit_move_insn (target, virtual_stack_dynamic_rtx);
1396 #endif
1399 if (MUST_ALIGN)
1401 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1402 but we know it can't. So add ourselves and then do
1403 TRUNC_DIV_EXPR. */
1404 target = expand_binop (Pmode, add_optab, target,
1405 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1406 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1407 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1408 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1409 NULL_RTX, 1);
1410 target = expand_mult (Pmode, target,
1411 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1412 NULL_RTX, 1);
1415 /* Record the new stack level for nonlocal gotos. */
1416 if (nonlocal_goto_handler_slots != 0)
1417 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1419 return target;
1422 /* A front end may want to override GCC's stack checking by providing a
1423 run-time routine to call to check the stack, so provide a mechanism for
1424 calling that routine. */
1426 static GTY(()) rtx stack_check_libfunc;
1428 void
1429 set_stack_check_libfunc (rtx libfunc)
1431 stack_check_libfunc = libfunc;
1434 /* Emit one stack probe at ADDRESS, an address within the stack. */
1436 static void
1437 emit_stack_probe (rtx address)
1439 rtx memref = gen_rtx_MEM (word_mode, address);
1441 MEM_VOLATILE_P (memref) = 1;
1443 if (STACK_CHECK_PROBE_LOAD)
1444 emit_move_insn (gen_reg_rtx (word_mode), memref);
1445 else
1446 emit_move_insn (memref, const0_rtx);
1449 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1450 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1451 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1452 subtract from the stack. If SIZE is constant, this is done
1453 with a fixed number of probes. Otherwise, we must make a loop. */
1455 #ifdef STACK_GROWS_DOWNWARD
1456 #define STACK_GROW_OP MINUS
1457 #else
1458 #define STACK_GROW_OP PLUS
1459 #endif
1461 void
1462 probe_stack_range (HOST_WIDE_INT first, rtx size)
1464 /* First ensure SIZE is Pmode. */
1465 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1466 size = convert_to_mode (Pmode, size, 1);
1468 /* Next see if the front end has set up a function for us to call to
1469 check the stack. */
1470 if (stack_check_libfunc != 0)
1472 rtx addr = memory_address (QImode,
1473 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1474 stack_pointer_rtx,
1475 plus_constant (size, first)));
1477 addr = convert_memory_address (ptr_mode, addr);
1478 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1479 ptr_mode);
1482 /* Next see if we have an insn to check the stack. Use it if so. */
1483 #ifdef HAVE_check_stack
1484 else if (HAVE_check_stack)
1486 insn_operand_predicate_fn pred;
1487 rtx last_addr
1488 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1489 stack_pointer_rtx,
1490 plus_constant (size, first)),
1491 NULL_RTX);
1493 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1494 if (pred && ! ((*pred) (last_addr, Pmode)))
1495 last_addr = copy_to_mode_reg (Pmode, last_addr);
1497 emit_insn (gen_check_stack (last_addr));
1499 #endif
1501 /* If we have to generate explicit probes, see if we have a constant
1502 small number of them to generate. If so, that's the easy case. */
1503 else if (GET_CODE (size) == CONST_INT
1504 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1506 HOST_WIDE_INT offset;
1508 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1509 for values of N from 1 until it exceeds LAST. If only one
1510 probe is needed, this will not generate any code. Then probe
1511 at LAST. */
1512 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1513 offset < INTVAL (size);
1514 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1515 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1516 stack_pointer_rtx,
1517 GEN_INT (offset)));
1519 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1520 stack_pointer_rtx,
1521 plus_constant (size, first)));
1524 /* In the variable case, do the same as above, but in a loop. We emit loop
1525 notes so that loop optimization can be done. */
1526 else
1528 rtx test_addr
1529 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1530 stack_pointer_rtx,
1531 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1532 NULL_RTX);
1533 rtx last_addr
1534 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1535 stack_pointer_rtx,
1536 plus_constant (size, first)),
1537 NULL_RTX);
1538 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1539 rtx loop_lab = gen_label_rtx ();
1540 rtx test_lab = gen_label_rtx ();
1541 rtx end_lab = gen_label_rtx ();
1542 rtx temp;
1544 if (GET_CODE (test_addr) != REG
1545 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1546 test_addr = force_reg (Pmode, test_addr);
1548 emit_note (NOTE_INSN_LOOP_BEG);
1549 emit_jump (test_lab);
1551 emit_label (loop_lab);
1552 emit_stack_probe (test_addr);
1554 emit_note (NOTE_INSN_LOOP_CONT);
1556 #ifdef STACK_GROWS_DOWNWARD
1557 #define CMP_OPCODE GTU
1558 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1559 1, OPTAB_WIDEN);
1560 #else
1561 #define CMP_OPCODE LTU
1562 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1563 1, OPTAB_WIDEN);
1564 #endif
1566 if (temp != test_addr)
1567 abort ();
1569 emit_label (test_lab);
1570 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1571 NULL_RTX, Pmode, 1, loop_lab);
1572 emit_jump (end_lab);
1573 emit_note (NOTE_INSN_LOOP_END);
1574 emit_label (end_lab);
1576 emit_stack_probe (last_addr);
1580 /* Return an rtx representing the register or memory location
1581 in which a scalar value of data type VALTYPE
1582 was returned by a function call to function FUNC.
1583 FUNC is a FUNCTION_DECL node if the precise function is known,
1584 otherwise 0.
1585 OUTGOING is 1 if on a machine with register windows this function
1586 should return the register in which the function will put its result
1587 and 0 otherwise. */
1590 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1591 int outgoing ATTRIBUTE_UNUSED)
1593 rtx val;
1595 #ifdef FUNCTION_OUTGOING_VALUE
1596 if (outgoing)
1597 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1598 else
1599 #endif
1600 val = FUNCTION_VALUE (valtype, func);
1602 if (GET_CODE (val) == REG
1603 && GET_MODE (val) == BLKmode)
1605 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1606 enum machine_mode tmpmode;
1608 /* int_size_in_bytes can return -1. We don't need a check here
1609 since the value of bytes will be large enough that no mode
1610 will match and we will abort later in this function. */
1612 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1613 tmpmode != VOIDmode;
1614 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1616 /* Have we found a large enough mode? */
1617 if (GET_MODE_SIZE (tmpmode) >= bytes)
1618 break;
1621 /* No suitable mode found. */
1622 if (tmpmode == VOIDmode)
1623 abort ();
1625 PUT_MODE (val, tmpmode);
1627 return val;
1630 /* Return an rtx representing the register or memory location
1631 in which a scalar value of mode MODE was returned by a library call. */
1634 hard_libcall_value (enum machine_mode mode)
1636 return LIBCALL_VALUE (mode);
1639 /* Look up the tree code for a given rtx code
1640 to provide the arithmetic operation for REAL_ARITHMETIC.
1641 The function returns an int because the caller may not know
1642 what `enum tree_code' means. */
1645 rtx_to_tree_code (enum rtx_code code)
1647 enum tree_code tcode;
1649 switch (code)
1651 case PLUS:
1652 tcode = PLUS_EXPR;
1653 break;
1654 case MINUS:
1655 tcode = MINUS_EXPR;
1656 break;
1657 case MULT:
1658 tcode = MULT_EXPR;
1659 break;
1660 case DIV:
1661 tcode = RDIV_EXPR;
1662 break;
1663 case SMIN:
1664 tcode = MIN_EXPR;
1665 break;
1666 case SMAX:
1667 tcode = MAX_EXPR;
1668 break;
1669 default:
1670 tcode = LAST_AND_UNUSED_TREE_CODE;
1671 break;
1673 return ((int) tcode);
1676 #include "gt-explow.h"