2010-07-22 Andi Kleen <ak@linux.intel.com>
[official-gcc.git] / gcc / cfg.c
blob127f08c75dff9cb8307eb4b167e8f0d91da5a5f6
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "output.h"
58 #include "function.h"
59 #include "except.h"
60 #include "diagnostic-core.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "tree-pass.h"
66 #include "ggc.h"
67 #include "hashtab.h"
68 #include "alloc-pool.h"
69 #include "df.h"
70 #include "cfgloop.h"
71 #include "tree-flow.h"
73 /* The obstack on which the flow graph components are allocated. */
75 struct bitmap_obstack reg_obstack;
77 void debug_flow_info (void);
78 static void free_edge (edge);
80 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
82 /* Called once at initialization time. */
84 void
85 init_flow (struct function *the_fun)
87 if (!the_fun->cfg)
88 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
89 n_edges_for_function (the_fun) = 0;
90 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
91 = ggc_alloc_cleared_basic_block_def ();
92 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
93 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
94 = ggc_alloc_cleared_basic_block_def ();
95 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
96 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
97 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
98 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
99 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
102 /* Helper function for remove_edge and clear_edges. Frees edge structure
103 without actually unlinking it from the pred/succ lists. */
105 static void
106 free_edge (edge e ATTRIBUTE_UNUSED)
108 n_edges--;
109 ggc_free (e);
112 /* Free the memory associated with the edge structures. */
114 void
115 clear_edges (void)
117 basic_block bb;
118 edge e;
119 edge_iterator ei;
121 FOR_EACH_BB (bb)
123 FOR_EACH_EDGE (e, ei, bb->succs)
124 free_edge (e);
125 VEC_truncate (edge, bb->succs, 0);
126 VEC_truncate (edge, bb->preds, 0);
129 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
130 free_edge (e);
131 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
132 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
134 gcc_assert (!n_edges);
137 /* Allocate memory for basic_block. */
139 basic_block
140 alloc_block (void)
142 basic_block bb;
143 bb = ggc_alloc_cleared_basic_block_def ();
144 return bb;
147 /* Link block B to chain after AFTER. */
148 void
149 link_block (basic_block b, basic_block after)
151 b->next_bb = after->next_bb;
152 b->prev_bb = after;
153 after->next_bb = b;
154 b->next_bb->prev_bb = b;
157 /* Unlink block B from chain. */
158 void
159 unlink_block (basic_block b)
161 b->next_bb->prev_bb = b->prev_bb;
162 b->prev_bb->next_bb = b->next_bb;
163 b->prev_bb = NULL;
164 b->next_bb = NULL;
167 /* Sequentially order blocks and compact the arrays. */
168 void
169 compact_blocks (void)
171 int i;
173 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
174 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
176 if (df)
177 df_compact_blocks ();
178 else
180 basic_block bb;
182 i = NUM_FIXED_BLOCKS;
183 FOR_EACH_BB (bb)
185 SET_BASIC_BLOCK (i, bb);
186 bb->index = i;
187 i++;
189 gcc_assert (i == n_basic_blocks);
191 for (; i < last_basic_block; i++)
192 SET_BASIC_BLOCK (i, NULL);
194 last_basic_block = n_basic_blocks;
197 /* Remove block B from the basic block array. */
199 void
200 expunge_block (basic_block b)
202 unlink_block (b);
203 SET_BASIC_BLOCK (b->index, NULL);
204 n_basic_blocks--;
205 /* We should be able to ggc_free here, but we are not.
206 The dead SSA_NAMES are left pointing to dead statements that are pointing
207 to dead basic blocks making garbage collector to die.
208 We should be able to release all dead SSA_NAMES and at the same time we should
209 clear out BB pointer of dead statements consistently. */
212 /* Connect E to E->src. */
214 static inline void
215 connect_src (edge e)
217 VEC_safe_push (edge, gc, e->src->succs, e);
218 df_mark_solutions_dirty ();
221 /* Connect E to E->dest. */
223 static inline void
224 connect_dest (edge e)
226 basic_block dest = e->dest;
227 VEC_safe_push (edge, gc, dest->preds, e);
228 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
229 df_mark_solutions_dirty ();
232 /* Disconnect edge E from E->src. */
234 static inline void
235 disconnect_src (edge e)
237 basic_block src = e->src;
238 edge_iterator ei;
239 edge tmp;
241 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
243 if (tmp == e)
245 VEC_unordered_remove (edge, src->succs, ei.index);
246 return;
248 else
249 ei_next (&ei);
252 df_mark_solutions_dirty ();
253 gcc_unreachable ();
256 /* Disconnect edge E from E->dest. */
258 static inline void
259 disconnect_dest (edge e)
261 basic_block dest = e->dest;
262 unsigned int dest_idx = e->dest_idx;
264 VEC_unordered_remove (edge, dest->preds, dest_idx);
266 /* If we removed an edge in the middle of the edge vector, we need
267 to update dest_idx of the edge that moved into the "hole". */
268 if (dest_idx < EDGE_COUNT (dest->preds))
269 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
270 df_mark_solutions_dirty ();
273 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
274 created edge. Use this only if you are sure that this edge can't
275 possibly already exist. */
277 edge
278 unchecked_make_edge (basic_block src, basic_block dst, int flags)
280 edge e;
281 e = ggc_alloc_cleared_edge_def ();
282 n_edges++;
284 e->src = src;
285 e->dest = dst;
286 e->flags = flags;
288 connect_src (e);
289 connect_dest (e);
291 execute_on_growing_pred (e);
292 return e;
295 /* Create an edge connecting SRC and DST with FLAGS optionally using
296 edge cache CACHE. Return the new edge, NULL if already exist. */
298 edge
299 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
301 if (edge_cache == NULL
302 || src == ENTRY_BLOCK_PTR
303 || dst == EXIT_BLOCK_PTR)
304 return make_edge (src, dst, flags);
306 /* Does the requested edge already exist? */
307 if (! TEST_BIT (edge_cache, dst->index))
309 /* The edge does not exist. Create one and update the
310 cache. */
311 SET_BIT (edge_cache, dst->index);
312 return unchecked_make_edge (src, dst, flags);
315 /* At this point, we know that the requested edge exists. Adjust
316 flags if necessary. */
317 if (flags)
319 edge e = find_edge (src, dst);
320 e->flags |= flags;
323 return NULL;
326 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
327 created edge or NULL if already exist. */
329 edge
330 make_edge (basic_block src, basic_block dest, int flags)
332 edge e = find_edge (src, dest);
334 /* Make sure we don't add duplicate edges. */
335 if (e)
337 e->flags |= flags;
338 return NULL;
341 return unchecked_make_edge (src, dest, flags);
344 /* Create an edge connecting SRC to DEST and set probability by knowing
345 that it is the single edge leaving SRC. */
347 edge
348 make_single_succ_edge (basic_block src, basic_block dest, int flags)
350 edge e = make_edge (src, dest, flags);
352 e->probability = REG_BR_PROB_BASE;
353 e->count = src->count;
354 return e;
357 /* This function will remove an edge from the flow graph. */
359 void
360 remove_edge_raw (edge e)
362 remove_predictions_associated_with_edge (e);
363 execute_on_shrinking_pred (e);
365 disconnect_src (e);
366 disconnect_dest (e);
368 /* This is probably not needed, but it doesn't hurt. */
369 redirect_edge_var_map_clear (e);
371 free_edge (e);
374 /* Redirect an edge's successor from one block to another. */
376 void
377 redirect_edge_succ (edge e, basic_block new_succ)
379 execute_on_shrinking_pred (e);
381 disconnect_dest (e);
383 e->dest = new_succ;
385 /* Reconnect the edge to the new successor block. */
386 connect_dest (e);
388 execute_on_growing_pred (e);
391 /* Like previous but avoid possible duplicate edge. */
393 edge
394 redirect_edge_succ_nodup (edge e, basic_block new_succ)
396 edge s;
398 s = find_edge (e->src, new_succ);
399 if (s && s != e)
401 s->flags |= e->flags;
402 s->probability += e->probability;
403 if (s->probability > REG_BR_PROB_BASE)
404 s->probability = REG_BR_PROB_BASE;
405 s->count += e->count;
406 remove_edge (e);
407 redirect_edge_var_map_dup (s, e);
408 e = s;
410 else
411 redirect_edge_succ (e, new_succ);
413 return e;
416 /* Redirect an edge's predecessor from one block to another. */
418 void
419 redirect_edge_pred (edge e, basic_block new_pred)
421 disconnect_src (e);
423 e->src = new_pred;
425 /* Reconnect the edge to the new predecessor block. */
426 connect_src (e);
429 /* Clear all basic block flags, with the exception of partitioning and
430 setjmp_target. */
431 void
432 clear_bb_flags (void)
434 basic_block bb;
436 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
437 bb->flags = (BB_PARTITION (bb)
438 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
441 /* Check the consistency of profile information. We can't do that
442 in verify_flow_info, as the counts may get invalid for incompletely
443 solved graphs, later eliminating of conditionals or roundoff errors.
444 It is still practical to have them reported for debugging of simple
445 testcases. */
446 void
447 check_bb_profile (basic_block bb, FILE * file)
449 edge e;
450 int sum = 0;
451 gcov_type lsum;
452 edge_iterator ei;
454 if (profile_status == PROFILE_ABSENT)
455 return;
457 if (bb != EXIT_BLOCK_PTR)
459 FOR_EACH_EDGE (e, ei, bb->succs)
460 sum += e->probability;
461 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
462 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
463 sum * 100.0 / REG_BR_PROB_BASE);
464 lsum = 0;
465 FOR_EACH_EDGE (e, ei, bb->succs)
466 lsum += e->count;
467 if (EDGE_COUNT (bb->succs)
468 && (lsum - bb->count > 100 || lsum - bb->count < -100))
469 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
470 (int) lsum, (int) bb->count);
472 if (bb != ENTRY_BLOCK_PTR)
474 sum = 0;
475 FOR_EACH_EDGE (e, ei, bb->preds)
476 sum += EDGE_FREQUENCY (e);
477 if (abs (sum - bb->frequency) > 100)
478 fprintf (file,
479 "Invalid sum of incoming frequencies %i, should be %i\n",
480 sum, bb->frequency);
481 lsum = 0;
482 FOR_EACH_EDGE (e, ei, bb->preds)
483 lsum += e->count;
484 if (lsum - bb->count > 100 || lsum - bb->count < -100)
485 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
486 (int) lsum, (int) bb->count);
490 /* Write information about registers and basic blocks into FILE.
491 This is part of making a debugging dump. */
493 void
494 dump_regset (regset r, FILE *outf)
496 unsigned i;
497 reg_set_iterator rsi;
499 if (r == NULL)
501 fputs (" (nil)", outf);
502 return;
505 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
507 fprintf (outf, " %d", i);
508 if (i < FIRST_PSEUDO_REGISTER)
509 fprintf (outf, " [%s]",
510 reg_names[i]);
514 /* Print a human-readable representation of R on the standard error
515 stream. This function is designed to be used from within the
516 debugger. */
518 DEBUG_FUNCTION void
519 debug_regset (regset r)
521 dump_regset (r, stderr);
522 putc ('\n', stderr);
525 /* Emit basic block information for BB. HEADER is true if the user wants
526 the generic information and the predecessors, FOOTER is true if they want
527 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
528 global register liveness information. PREFIX is put in front of every
529 line. The output is emitted to FILE. */
530 void
531 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
532 const char *prefix, FILE *file)
534 edge e;
535 edge_iterator ei;
537 if (header)
539 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
540 if (bb->prev_bb)
541 fprintf (file, ", prev %d", bb->prev_bb->index);
542 if (bb->next_bb)
543 fprintf (file, ", next %d", bb->next_bb->index);
544 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
545 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
546 fprintf (file, ", freq %i", bb->frequency);
547 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
548 crash without cfun. */
549 if (cfun && maybe_hot_bb_p (bb))
550 fputs (", maybe hot", file);
551 if (cfun && probably_never_executed_bb_p (bb))
552 fputs (", probably never executed", file);
553 fputs (".\n", file);
555 fprintf (file, "%sPredecessors: ", prefix);
556 FOR_EACH_EDGE (e, ei, bb->preds)
557 dump_edge_info (file, e, 0);
559 if ((flags & TDF_DETAILS)
560 && (bb->flags & BB_RTL)
561 && df)
563 putc ('\n', file);
564 df_dump_top (bb, file);
568 if (footer)
570 fprintf (file, "\n%sSuccessors: ", prefix);
571 FOR_EACH_EDGE (e, ei, bb->succs)
572 dump_edge_info (file, e, 1);
574 if ((flags & TDF_DETAILS)
575 && (bb->flags & BB_RTL)
576 && df)
578 putc ('\n', file);
579 df_dump_bottom (bb, file);
583 putc ('\n', file);
586 /* Dump the register info to FILE. */
588 void
589 dump_reg_info (FILE *file)
591 unsigned int i, max = max_reg_num ();
592 if (reload_completed)
593 return;
595 if (reg_info_p_size < max)
596 max = reg_info_p_size;
598 fprintf (file, "%d registers.\n", max);
599 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
601 enum reg_class rclass, altclass;
603 if (regstat_n_sets_and_refs)
604 fprintf (file, "\nRegister %d used %d times across %d insns",
605 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
606 else if (df)
607 fprintf (file, "\nRegister %d used %d times across %d insns",
608 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
610 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
611 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
612 if (regstat_n_sets_and_refs)
613 fprintf (file, "; set %d time%s", REG_N_SETS (i),
614 (REG_N_SETS (i) == 1) ? "" : "s");
615 else if (df)
616 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
617 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
618 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
619 fputs ("; user var", file);
620 if (REG_N_DEATHS (i) != 1)
621 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
622 if (REG_N_CALLS_CROSSED (i) == 1)
623 fputs ("; crosses 1 call", file);
624 else if (REG_N_CALLS_CROSSED (i))
625 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
626 if (REG_FREQ_CALLS_CROSSED (i))
627 fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
628 if (regno_reg_rtx[i] != NULL
629 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
630 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
632 rclass = reg_preferred_class (i);
633 altclass = reg_alternate_class (i);
634 if (rclass != GENERAL_REGS || altclass != ALL_REGS)
636 if (altclass == ALL_REGS || rclass == ALL_REGS)
637 fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
638 else if (altclass == NO_REGS)
639 fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
640 else
641 fprintf (file, "; pref %s, else %s",
642 reg_class_names[(int) rclass],
643 reg_class_names[(int) altclass]);
646 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
647 fputs ("; pointer", file);
648 fputs (".\n", file);
653 void
654 dump_flow_info (FILE *file, int flags)
656 basic_block bb;
658 /* There are no pseudo registers after reload. Don't dump them. */
659 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
660 dump_reg_info (file);
662 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
663 FOR_ALL_BB (bb)
665 dump_bb_info (bb, true, true, flags, "", file);
666 check_bb_profile (bb, file);
669 putc ('\n', file);
672 DEBUG_FUNCTION void
673 debug_flow_info (void)
675 dump_flow_info (stderr, TDF_DETAILS);
678 void
679 dump_edge_info (FILE *file, edge e, int do_succ)
681 basic_block side = (do_succ ? e->dest : e->src);
682 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
683 if (cfun && side == ENTRY_BLOCK_PTR)
684 fputs (" ENTRY", file);
685 else if (cfun && side == EXIT_BLOCK_PTR)
686 fputs (" EXIT", file);
687 else
688 fprintf (file, " %d", side->index);
690 if (e->probability)
691 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
693 if (e->count)
695 fputs (" count:", file);
696 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
699 if (e->flags)
701 static const char * const bitnames[] = {
702 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
703 "can_fallthru", "irreducible", "sibcall", "loop_exit",
704 "true", "false", "exec"
706 int comma = 0;
707 int i, flags = e->flags;
709 fputs (" (", file);
710 for (i = 0; flags; i++)
711 if (flags & (1 << i))
713 flags &= ~(1 << i);
715 if (comma)
716 fputc (',', file);
717 if (i < (int) ARRAY_SIZE (bitnames))
718 fputs (bitnames[i], file);
719 else
720 fprintf (file, "%d", i);
721 comma = 1;
724 fputc (')', file);
728 /* Simple routines to easily allocate AUX fields of basic blocks. */
730 static struct obstack block_aux_obstack;
731 static void *first_block_aux_obj = 0;
732 static struct obstack edge_aux_obstack;
733 static void *first_edge_aux_obj = 0;
735 /* Allocate a memory block of SIZE as BB->aux. The obstack must
736 be first initialized by alloc_aux_for_blocks. */
738 void
739 alloc_aux_for_block (basic_block bb, int size)
741 /* Verify that aux field is clear. */
742 gcc_assert (!bb->aux && first_block_aux_obj);
743 bb->aux = obstack_alloc (&block_aux_obstack, size);
744 memset (bb->aux, 0, size);
747 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
748 alloc_aux_for_block for each basic block. */
750 void
751 alloc_aux_for_blocks (int size)
753 static int initialized;
755 if (!initialized)
757 gcc_obstack_init (&block_aux_obstack);
758 initialized = 1;
760 else
761 /* Check whether AUX data are still allocated. */
762 gcc_assert (!first_block_aux_obj);
764 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
765 if (size)
767 basic_block bb;
769 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
770 alloc_aux_for_block (bb, size);
774 /* Clear AUX pointers of all blocks. */
776 void
777 clear_aux_for_blocks (void)
779 basic_block bb;
781 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
782 bb->aux = NULL;
785 /* Free data allocated in block_aux_obstack and clear AUX pointers
786 of all blocks. */
788 void
789 free_aux_for_blocks (void)
791 gcc_assert (first_block_aux_obj);
792 obstack_free (&block_aux_obstack, first_block_aux_obj);
793 first_block_aux_obj = NULL;
795 clear_aux_for_blocks ();
798 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
799 be first initialized by alloc_aux_for_edges. */
801 void
802 alloc_aux_for_edge (edge e, int size)
804 /* Verify that aux field is clear. */
805 gcc_assert (!e->aux && first_edge_aux_obj);
806 e->aux = obstack_alloc (&edge_aux_obstack, size);
807 memset (e->aux, 0, size);
810 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
811 alloc_aux_for_edge for each basic edge. */
813 void
814 alloc_aux_for_edges (int size)
816 static int initialized;
818 if (!initialized)
820 gcc_obstack_init (&edge_aux_obstack);
821 initialized = 1;
823 else
824 /* Check whether AUX data are still allocated. */
825 gcc_assert (!first_edge_aux_obj);
827 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
828 if (size)
830 basic_block bb;
832 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
834 edge e;
835 edge_iterator ei;
837 FOR_EACH_EDGE (e, ei, bb->succs)
838 alloc_aux_for_edge (e, size);
843 /* Clear AUX pointers of all edges. */
845 void
846 clear_aux_for_edges (void)
848 basic_block bb;
849 edge e;
851 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
853 edge_iterator ei;
854 FOR_EACH_EDGE (e, ei, bb->succs)
855 e->aux = NULL;
859 /* Free data allocated in edge_aux_obstack and clear AUX pointers
860 of all edges. */
862 void
863 free_aux_for_edges (void)
865 gcc_assert (first_edge_aux_obj);
866 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
867 first_edge_aux_obj = NULL;
869 clear_aux_for_edges ();
872 DEBUG_FUNCTION void
873 debug_bb (basic_block bb)
875 dump_bb (bb, stderr, 0);
878 DEBUG_FUNCTION basic_block
879 debug_bb_n (int n)
881 basic_block bb = BASIC_BLOCK (n);
882 dump_bb (bb, stderr, 0);
883 return bb;
886 /* Dumps cfg related information about basic block BB to FILE. */
888 static void
889 dump_cfg_bb_info (FILE *file, basic_block bb)
891 unsigned i;
892 edge_iterator ei;
893 bool first = true;
894 static const char * const bb_bitnames[] =
896 "new", "reachable", "irreducible_loop", "superblock",
897 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
898 "fwdr", "nothrd"
900 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
901 edge e;
903 fprintf (file, "Basic block %d", bb->index);
904 for (i = 0; i < n_bitnames; i++)
905 if (bb->flags & (1 << i))
907 if (first)
908 fputs (" (", file);
909 else
910 fputs (", ", file);
911 first = false;
912 fputs (bb_bitnames[i], file);
914 if (!first)
915 putc (')', file);
916 putc ('\n', file);
918 fputs ("Predecessors: ", file);
919 FOR_EACH_EDGE (e, ei, bb->preds)
920 dump_edge_info (file, e, 0);
922 fprintf (file, "\nSuccessors: ");
923 FOR_EACH_EDGE (e, ei, bb->succs)
924 dump_edge_info (file, e, 1);
925 fputs ("\n\n", file);
928 /* Dumps a brief description of cfg to FILE. */
930 void
931 brief_dump_cfg (FILE *file)
933 basic_block bb;
935 FOR_EACH_BB (bb)
937 dump_cfg_bb_info (file, bb);
941 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
942 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
943 redirected to destination of TAKEN_EDGE.
945 This function may leave the profile inconsistent in the case TAKEN_EDGE
946 frequency or count is believed to be lower than FREQUENCY or COUNT
947 respectively. */
948 void
949 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
950 gcov_type count, edge taken_edge)
952 edge c;
953 int prob;
954 edge_iterator ei;
956 bb->count -= count;
957 if (bb->count < 0)
959 if (dump_file)
960 fprintf (dump_file, "bb %i count became negative after threading",
961 bb->index);
962 bb->count = 0;
965 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
966 Watch for overflows. */
967 if (bb->frequency)
968 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
969 else
970 prob = 0;
971 if (prob > taken_edge->probability)
973 if (dump_file)
974 fprintf (dump_file, "Jump threading proved probability of edge "
975 "%i->%i too small (it is %i, should be %i).\n",
976 taken_edge->src->index, taken_edge->dest->index,
977 taken_edge->probability, prob);
978 prob = taken_edge->probability;
981 /* Now rescale the probabilities. */
982 taken_edge->probability -= prob;
983 prob = REG_BR_PROB_BASE - prob;
984 bb->frequency -= edge_frequency;
985 if (bb->frequency < 0)
986 bb->frequency = 0;
987 if (prob <= 0)
989 if (dump_file)
990 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
991 "frequency of block should end up being 0, it is %i\n",
992 bb->index, bb->frequency);
993 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
994 ei = ei_start (bb->succs);
995 ei_next (&ei);
996 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
997 c->probability = 0;
999 else if (prob != REG_BR_PROB_BASE)
1001 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
1003 FOR_EACH_EDGE (c, ei, bb->succs)
1005 /* Protect from overflow due to additional scaling. */
1006 if (c->probability > prob)
1007 c->probability = REG_BR_PROB_BASE;
1008 else
1010 c->probability = RDIV (c->probability * scale, 65536);
1011 if (c->probability > REG_BR_PROB_BASE)
1012 c->probability = REG_BR_PROB_BASE;
1017 gcc_assert (bb == taken_edge->src);
1018 taken_edge->count -= count;
1019 if (taken_edge->count < 0)
1021 if (dump_file)
1022 fprintf (dump_file, "edge %i->%i count became negative after threading",
1023 taken_edge->src->index, taken_edge->dest->index);
1024 taken_edge->count = 0;
1028 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1029 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1030 void
1031 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1033 int i;
1034 edge e;
1035 if (num < 0)
1036 num = 0;
1038 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1039 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1040 and still safely fit in int during calculations. */
1041 if (den > 1000)
1043 if (num > 1000000)
1044 return;
1046 num = RDIV (1000 * num, den);
1047 den = 1000;
1049 if (num > 100 * den)
1050 return;
1052 for (i = 0; i < nbbs; i++)
1054 edge_iterator ei;
1055 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1056 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1057 if (bbs[i]->frequency > BB_FREQ_MAX)
1058 bbs[i]->frequency = BB_FREQ_MAX;
1059 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1060 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1061 e->count = RDIV (e->count * num, den);
1065 /* numbers smaller than this value are safe to multiply without getting
1066 64bit overflow. */
1067 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1069 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1070 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1071 function but considerably slower. */
1072 void
1073 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1074 gcov_type den)
1076 int i;
1077 edge e;
1078 gcov_type fraction = RDIV (num * 65536, den);
1080 gcc_assert (fraction >= 0);
1082 if (num < MAX_SAFE_MULTIPLIER)
1083 for (i = 0; i < nbbs; i++)
1085 edge_iterator ei;
1086 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1087 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1088 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1089 else
1090 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1091 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1092 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1093 e->count = RDIV (e->count * num, den);
1094 else
1095 e->count = RDIV (e->count * fraction, 65536);
1097 else
1098 for (i = 0; i < nbbs; i++)
1100 edge_iterator ei;
1101 if (sizeof (gcov_type) > sizeof (int))
1102 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1103 else
1104 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1105 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1106 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1107 e->count = RDIV (e->count * fraction, 65536);
1111 /* Data structures used to maintain mapping between basic blocks and
1112 copies. */
1113 static htab_t bb_original;
1114 static htab_t bb_copy;
1116 /* And between loops and copies. */
1117 static htab_t loop_copy;
1118 static alloc_pool original_copy_bb_pool;
1120 struct htab_bb_copy_original_entry
1122 /* Block we are attaching info to. */
1123 int index1;
1124 /* Index of original or copy (depending on the hashtable) */
1125 int index2;
1128 static hashval_t
1129 bb_copy_original_hash (const void *p)
1131 const struct htab_bb_copy_original_entry *data
1132 = ((const struct htab_bb_copy_original_entry *)p);
1134 return data->index1;
1136 static int
1137 bb_copy_original_eq (const void *p, const void *q)
1139 const struct htab_bb_copy_original_entry *data
1140 = ((const struct htab_bb_copy_original_entry *)p);
1141 const struct htab_bb_copy_original_entry *data2
1142 = ((const struct htab_bb_copy_original_entry *)q);
1144 return data->index1 == data2->index1;
1147 /* Initialize the data structures to maintain mapping between blocks
1148 and its copies. */
1149 void
1150 initialize_original_copy_tables (void)
1152 gcc_assert (!original_copy_bb_pool);
1153 original_copy_bb_pool
1154 = create_alloc_pool ("original_copy",
1155 sizeof (struct htab_bb_copy_original_entry), 10);
1156 bb_original = htab_create (10, bb_copy_original_hash,
1157 bb_copy_original_eq, NULL);
1158 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1159 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1162 /* Free the data structures to maintain mapping between blocks and
1163 its copies. */
1164 void
1165 free_original_copy_tables (void)
1167 gcc_assert (original_copy_bb_pool);
1168 htab_delete (bb_copy);
1169 htab_delete (bb_original);
1170 htab_delete (loop_copy);
1171 free_alloc_pool (original_copy_bb_pool);
1172 bb_copy = NULL;
1173 bb_original = NULL;
1174 loop_copy = NULL;
1175 original_copy_bb_pool = NULL;
1178 /* Removes the value associated with OBJ from table TAB. */
1180 static void
1181 copy_original_table_clear (htab_t tab, unsigned obj)
1183 void **slot;
1184 struct htab_bb_copy_original_entry key, *elt;
1186 if (!original_copy_bb_pool)
1187 return;
1189 key.index1 = obj;
1190 slot = htab_find_slot (tab, &key, NO_INSERT);
1191 if (!slot)
1192 return;
1194 elt = (struct htab_bb_copy_original_entry *) *slot;
1195 htab_clear_slot (tab, slot);
1196 pool_free (original_copy_bb_pool, elt);
1199 /* Sets the value associated with OBJ in table TAB to VAL.
1200 Do nothing when data structures are not initialized. */
1202 static void
1203 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1205 struct htab_bb_copy_original_entry **slot;
1206 struct htab_bb_copy_original_entry key;
1208 if (!original_copy_bb_pool)
1209 return;
1211 key.index1 = obj;
1212 slot = (struct htab_bb_copy_original_entry **)
1213 htab_find_slot (tab, &key, INSERT);
1214 if (!*slot)
1216 *slot = (struct htab_bb_copy_original_entry *)
1217 pool_alloc (original_copy_bb_pool);
1218 (*slot)->index1 = obj;
1220 (*slot)->index2 = val;
1223 /* Set original for basic block. Do nothing when data structures are not
1224 initialized so passes not needing this don't need to care. */
1225 void
1226 set_bb_original (basic_block bb, basic_block original)
1228 copy_original_table_set (bb_original, bb->index, original->index);
1231 /* Get the original basic block. */
1232 basic_block
1233 get_bb_original (basic_block bb)
1235 struct htab_bb_copy_original_entry *entry;
1236 struct htab_bb_copy_original_entry key;
1238 gcc_assert (original_copy_bb_pool);
1240 key.index1 = bb->index;
1241 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1242 if (entry)
1243 return BASIC_BLOCK (entry->index2);
1244 else
1245 return NULL;
1248 /* Set copy for basic block. Do nothing when data structures are not
1249 initialized so passes not needing this don't need to care. */
1250 void
1251 set_bb_copy (basic_block bb, basic_block copy)
1253 copy_original_table_set (bb_copy, bb->index, copy->index);
1256 /* Get the copy of basic block. */
1257 basic_block
1258 get_bb_copy (basic_block bb)
1260 struct htab_bb_copy_original_entry *entry;
1261 struct htab_bb_copy_original_entry key;
1263 gcc_assert (original_copy_bb_pool);
1265 key.index1 = bb->index;
1266 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1267 if (entry)
1268 return BASIC_BLOCK (entry->index2);
1269 else
1270 return NULL;
1273 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1274 initialized so passes not needing this don't need to care. */
1276 void
1277 set_loop_copy (struct loop *loop, struct loop *copy)
1279 if (!copy)
1280 copy_original_table_clear (loop_copy, loop->num);
1281 else
1282 copy_original_table_set (loop_copy, loop->num, copy->num);
1285 /* Get the copy of LOOP. */
1287 struct loop *
1288 get_loop_copy (struct loop *loop)
1290 struct htab_bb_copy_original_entry *entry;
1291 struct htab_bb_copy_original_entry key;
1293 gcc_assert (original_copy_bb_pool);
1295 key.index1 = loop->num;
1296 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1297 if (entry)
1298 return get_loop (entry->index2);
1299 else
1300 return NULL;