1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
95 #include "double-int.h"
102 #include "fold-const.h"
104 #include "hard-reg-set.h"
105 #include "function.h"
106 #include "dominance.h"
108 #include "basic-block.h"
109 #include "tree-ssa-alias.h"
110 #include "internal-fn.h"
111 #include "gimple-fold.h"
112 #include "gimple-expr.h"
115 #include "gimple-iterator.h"
116 #include "gimplify.h"
117 #include "gimplify-me.h"
118 #include "stor-layout.h"
119 #include "gimple-ssa.h"
120 #include "tree-cfg.h"
121 #include "tree-phinodes.h"
122 #include "ssa-iterators.h"
123 #include "stringpool.h"
124 #include "tree-ssanames.h"
127 #include "statistics.h"
129 #include "fixed-value.h"
130 #include "insn-config.h"
135 #include "emit-rtl.h"
139 #include "tree-dfa.h"
140 #include "tree-ssa.h"
141 #include "tree-pass.h"
142 #include "alloc-pool.h"
144 #include "gimple-pretty-print.h"
145 #include "builtins.h"
147 /* FIXME: RTL headers have to be included here for optabs. */
148 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
149 #include "expr.h" /* Because optabs.h wants sepops. */
150 #include "insn-codes.h"
153 /* This structure represents one basic block that either computes a
154 division, or is a common dominator for basic block that compute a
157 /* The basic block represented by this structure. */
160 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
164 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
165 was inserted in BB. */
166 gimple recip_def_stmt
;
168 /* Pointer to a list of "struct occurrence"s for blocks dominated
170 struct occurrence
*children
;
172 /* Pointer to the next "struct occurrence"s in the list of blocks
173 sharing a common dominator. */
174 struct occurrence
*next
;
176 /* The number of divisions that are in BB before compute_merit. The
177 number of divisions that are in BB or post-dominate it after
181 /* True if the basic block has a division, false if it is a common
182 dominator for basic blocks that do. If it is false and trapping
183 math is active, BB is not a candidate for inserting a reciprocal. */
184 bool bb_has_division
;
189 /* Number of 1.0/X ops inserted. */
192 /* Number of 1.0/FUNC ops inserted. */
198 /* Number of cexpi calls inserted. */
204 /* Number of hand-written 16-bit nop / bswaps found. */
207 /* Number of hand-written 32-bit nop / bswaps found. */
210 /* Number of hand-written 64-bit nop / bswaps found. */
212 } nop_stats
, bswap_stats
;
216 /* Number of widening multiplication ops inserted. */
217 int widen_mults_inserted
;
219 /* Number of integer multiply-and-accumulate ops inserted. */
222 /* Number of fp fused multiply-add ops inserted. */
226 /* The instance of "struct occurrence" representing the highest
227 interesting block in the dominator tree. */
228 static struct occurrence
*occ_head
;
230 /* Allocation pool for getting instances of "struct occurrence". */
231 static alloc_pool occ_pool
;
235 /* Allocate and return a new struct occurrence for basic block BB, and
236 whose children list is headed by CHILDREN. */
237 static struct occurrence
*
238 occ_new (basic_block bb
, struct occurrence
*children
)
240 struct occurrence
*occ
;
242 bb
->aux
= occ
= (struct occurrence
*) pool_alloc (occ_pool
);
243 memset (occ
, 0, sizeof (struct occurrence
));
246 occ
->children
= children
;
251 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
252 list of "struct occurrence"s, one per basic block, having IDOM as
253 their common dominator.
255 We try to insert NEW_OCC as deep as possible in the tree, and we also
256 insert any other block that is a common dominator for BB and one
257 block already in the tree. */
260 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
261 struct occurrence
**p_head
)
263 struct occurrence
*occ
, **p_occ
;
265 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
267 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
268 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
271 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
274 occ
->next
= new_occ
->children
;
275 new_occ
->children
= occ
;
277 /* Try the next block (it may as well be dominated by BB). */
280 else if (dom
== occ_bb
)
282 /* OCC_BB dominates BB. Tail recurse to look deeper. */
283 insert_bb (new_occ
, dom
, &occ
->children
);
287 else if (dom
!= idom
)
289 gcc_assert (!dom
->aux
);
291 /* There is a dominator between IDOM and BB, add it and make
292 two children out of NEW_OCC and OCC. First, remove OCC from
298 /* None of the previous blocks has DOM as a dominator: if we tail
299 recursed, we would reexamine them uselessly. Just switch BB with
300 DOM, and go on looking for blocks dominated by DOM. */
301 new_occ
= occ_new (dom
, new_occ
);
306 /* Nothing special, go on with the next element. */
311 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
312 new_occ
->next
= *p_head
;
316 /* Register that we found a division in BB. */
319 register_division_in (basic_block bb
)
321 struct occurrence
*occ
;
323 occ
= (struct occurrence
*) bb
->aux
;
326 occ
= occ_new (bb
, NULL
);
327 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
330 occ
->bb_has_division
= true;
331 occ
->num_divisions
++;
335 /* Compute the number of divisions that postdominate each block in OCC and
339 compute_merit (struct occurrence
*occ
)
341 struct occurrence
*occ_child
;
342 basic_block dom
= occ
->bb
;
344 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
347 if (occ_child
->children
)
348 compute_merit (occ_child
);
351 bb
= single_noncomplex_succ (dom
);
355 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
356 occ
->num_divisions
+= occ_child
->num_divisions
;
361 /* Return whether USE_STMT is a floating-point division by DEF. */
363 is_division_by (gimple use_stmt
, tree def
)
365 return is_gimple_assign (use_stmt
)
366 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
367 && gimple_assign_rhs2 (use_stmt
) == def
368 /* Do not recognize x / x as valid division, as we are getting
369 confused later by replacing all immediate uses x in such
371 && gimple_assign_rhs1 (use_stmt
) != def
;
374 /* Walk the subset of the dominator tree rooted at OCC, setting the
375 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
376 the given basic block. The field may be left NULL, of course,
377 if it is not possible or profitable to do the optimization.
379 DEF_BSI is an iterator pointing at the statement defining DEF.
380 If RECIP_DEF is set, a dominator already has a computation that can
384 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
385 tree def
, tree recip_def
, int threshold
)
389 gimple_stmt_iterator gsi
;
390 struct occurrence
*occ_child
;
393 && (occ
->bb_has_division
|| !flag_trapping_math
)
394 && occ
->num_divisions
>= threshold
)
396 /* Make a variable with the replacement and substitute it. */
397 type
= TREE_TYPE (def
);
398 recip_def
= create_tmp_reg (type
, "reciptmp");
399 new_stmt
= gimple_build_assign (recip_def
, RDIV_EXPR
,
400 build_one_cst (type
), def
);
402 if (occ
->bb_has_division
)
404 /* Case 1: insert before an existing division. */
405 gsi
= gsi_after_labels (occ
->bb
);
406 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
409 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
411 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
413 /* Case 2: insert right after the definition. Note that this will
414 never happen if the definition statement can throw, because in
415 that case the sole successor of the statement's basic block will
416 dominate all the uses as well. */
417 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
421 /* Case 3: insert in a basic block not containing defs/uses. */
422 gsi
= gsi_after_labels (occ
->bb
);
423 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
426 reciprocal_stats
.rdivs_inserted
++;
428 occ
->recip_def_stmt
= new_stmt
;
431 occ
->recip_def
= recip_def
;
432 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
433 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
437 /* Replace the division at USE_P with a multiplication by the reciprocal, if
441 replace_reciprocal (use_operand_p use_p
)
443 gimple use_stmt
= USE_STMT (use_p
);
444 basic_block bb
= gimple_bb (use_stmt
);
445 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
447 if (optimize_bb_for_speed_p (bb
)
448 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
450 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
451 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
452 SET_USE (use_p
, occ
->recip_def
);
453 fold_stmt_inplace (&gsi
);
454 update_stmt (use_stmt
);
459 /* Free OCC and return one more "struct occurrence" to be freed. */
461 static struct occurrence
*
462 free_bb (struct occurrence
*occ
)
464 struct occurrence
*child
, *next
;
466 /* First get the two pointers hanging off OCC. */
468 child
= occ
->children
;
470 pool_free (occ_pool
, occ
);
472 /* Now ensure that we don't recurse unless it is necessary. */
478 next
= free_bb (next
);
485 /* Look for floating-point divisions among DEF's uses, and try to
486 replace them by multiplications with the reciprocal. Add
487 as many statements computing the reciprocal as needed.
489 DEF must be a GIMPLE register of a floating-point type. */
492 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
495 imm_use_iterator use_iter
;
496 struct occurrence
*occ
;
497 int count
= 0, threshold
;
499 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
501 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
503 gimple use_stmt
= USE_STMT (use_p
);
504 if (is_division_by (use_stmt
, def
))
506 register_division_in (gimple_bb (use_stmt
));
511 /* Do the expensive part only if we can hope to optimize something. */
512 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
513 if (count
>= threshold
)
516 for (occ
= occ_head
; occ
; occ
= occ
->next
)
519 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
522 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
524 if (is_division_by (use_stmt
, def
))
526 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
527 replace_reciprocal (use_p
);
532 for (occ
= occ_head
; occ
; )
538 /* Go through all the floating-point SSA_NAMEs, and call
539 execute_cse_reciprocals_1 on each of them. */
542 const pass_data pass_data_cse_reciprocals
=
544 GIMPLE_PASS
, /* type */
546 OPTGROUP_NONE
, /* optinfo_flags */
548 PROP_ssa
, /* properties_required */
549 0, /* properties_provided */
550 0, /* properties_destroyed */
551 0, /* todo_flags_start */
552 TODO_update_ssa
, /* todo_flags_finish */
555 class pass_cse_reciprocals
: public gimple_opt_pass
558 pass_cse_reciprocals (gcc::context
*ctxt
)
559 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
562 /* opt_pass methods: */
563 virtual bool gate (function
*) { return optimize
&& flag_reciprocal_math
; }
564 virtual unsigned int execute (function
*);
566 }; // class pass_cse_reciprocals
569 pass_cse_reciprocals::execute (function
*fun
)
574 occ_pool
= create_alloc_pool ("dominators for recip",
575 sizeof (struct occurrence
),
576 n_basic_blocks_for_fn (fun
) / 3 + 1);
578 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
579 calculate_dominance_info (CDI_DOMINATORS
);
580 calculate_dominance_info (CDI_POST_DOMINATORS
);
582 #ifdef ENABLE_CHECKING
583 FOR_EACH_BB_FN (bb
, fun
)
584 gcc_assert (!bb
->aux
);
587 for (arg
= DECL_ARGUMENTS (fun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
588 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
589 && is_gimple_reg (arg
))
591 tree name
= ssa_default_def (fun
, arg
);
593 execute_cse_reciprocals_1 (NULL
, name
);
596 FOR_EACH_BB_FN (bb
, fun
)
600 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
603 gphi
*phi
= gsi
.phi ();
604 def
= PHI_RESULT (phi
);
605 if (! virtual_operand_p (def
)
606 && FLOAT_TYPE_P (TREE_TYPE (def
)))
607 execute_cse_reciprocals_1 (NULL
, def
);
610 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
613 gimple stmt
= gsi_stmt (gsi
);
615 if (gimple_has_lhs (stmt
)
616 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
617 && FLOAT_TYPE_P (TREE_TYPE (def
))
618 && TREE_CODE (def
) == SSA_NAME
)
619 execute_cse_reciprocals_1 (&gsi
, def
);
622 if (optimize_bb_for_size_p (bb
))
625 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
626 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
629 gimple stmt
= gsi_stmt (gsi
);
632 if (is_gimple_assign (stmt
)
633 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
635 tree arg1
= gimple_assign_rhs2 (stmt
);
638 if (TREE_CODE (arg1
) != SSA_NAME
)
641 stmt1
= SSA_NAME_DEF_STMT (arg1
);
643 if (is_gimple_call (stmt1
)
644 && gimple_call_lhs (stmt1
)
645 && (fndecl
= gimple_call_fndecl (stmt1
))
646 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
647 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
649 enum built_in_function code
;
654 code
= DECL_FUNCTION_CODE (fndecl
);
655 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
657 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
661 /* Check that all uses of the SSA name are divisions,
662 otherwise replacing the defining statement will do
665 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
667 gimple stmt2
= USE_STMT (use_p
);
668 if (is_gimple_debug (stmt2
))
670 if (!is_gimple_assign (stmt2
)
671 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
672 || gimple_assign_rhs1 (stmt2
) == arg1
673 || gimple_assign_rhs2 (stmt2
) != arg1
)
682 gimple_replace_ssa_lhs (stmt1
, arg1
);
683 gimple_call_set_fndecl (stmt1
, fndecl
);
685 reciprocal_stats
.rfuncs_inserted
++;
687 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
689 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
690 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
691 fold_stmt_inplace (&gsi
);
699 statistics_counter_event (fun
, "reciprocal divs inserted",
700 reciprocal_stats
.rdivs_inserted
);
701 statistics_counter_event (fun
, "reciprocal functions inserted",
702 reciprocal_stats
.rfuncs_inserted
);
704 free_dominance_info (CDI_DOMINATORS
);
705 free_dominance_info (CDI_POST_DOMINATORS
);
706 free_alloc_pool (occ_pool
);
713 make_pass_cse_reciprocals (gcc::context
*ctxt
)
715 return new pass_cse_reciprocals (ctxt
);
718 /* Records an occurrence at statement USE_STMT in the vector of trees
719 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
720 is not yet initialized. Returns true if the occurrence was pushed on
721 the vector. Adjusts *TOP_BB to be the basic block dominating all
722 statements in the vector. */
725 maybe_record_sincos (vec
<gimple
> *stmts
,
726 basic_block
*top_bb
, gimple use_stmt
)
728 basic_block use_bb
= gimple_bb (use_stmt
);
730 && (*top_bb
== use_bb
731 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
732 stmts
->safe_push (use_stmt
);
734 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
736 stmts
->safe_push (use_stmt
);
745 /* Look for sin, cos and cexpi calls with the same argument NAME and
746 create a single call to cexpi CSEing the result in this case.
747 We first walk over all immediate uses of the argument collecting
748 statements that we can CSE in a vector and in a second pass replace
749 the statement rhs with a REALPART or IMAGPART expression on the
750 result of the cexpi call we insert before the use statement that
751 dominates all other candidates. */
754 execute_cse_sincos_1 (tree name
)
756 gimple_stmt_iterator gsi
;
757 imm_use_iterator use_iter
;
758 tree fndecl
, res
, type
;
759 gimple def_stmt
, use_stmt
, stmt
;
760 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
761 auto_vec
<gimple
> stmts
;
762 basic_block top_bb
= NULL
;
764 bool cfg_changed
= false;
766 type
= TREE_TYPE (name
);
767 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
769 if (gimple_code (use_stmt
) != GIMPLE_CALL
770 || !gimple_call_lhs (use_stmt
)
771 || !(fndecl
= gimple_call_fndecl (use_stmt
))
772 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
775 switch (DECL_FUNCTION_CODE (fndecl
))
777 CASE_FLT_FN (BUILT_IN_COS
):
778 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
781 CASE_FLT_FN (BUILT_IN_SIN
):
782 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
785 CASE_FLT_FN (BUILT_IN_CEXPI
):
786 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
793 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
796 /* Simply insert cexpi at the beginning of top_bb but not earlier than
797 the name def statement. */
798 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
801 stmt
= gimple_build_call (fndecl
, 1, name
);
802 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
803 gimple_call_set_lhs (stmt
, res
);
805 def_stmt
= SSA_NAME_DEF_STMT (name
);
806 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
807 && gimple_code (def_stmt
) != GIMPLE_PHI
808 && gimple_bb (def_stmt
) == top_bb
)
810 gsi
= gsi_for_stmt (def_stmt
);
811 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
815 gsi
= gsi_after_labels (top_bb
);
816 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
818 sincos_stats
.inserted
++;
820 /* And adjust the recorded old call sites. */
821 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
824 fndecl
= gimple_call_fndecl (use_stmt
);
826 switch (DECL_FUNCTION_CODE (fndecl
))
828 CASE_FLT_FN (BUILT_IN_COS
):
829 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
832 CASE_FLT_FN (BUILT_IN_SIN
):
833 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
836 CASE_FLT_FN (BUILT_IN_CEXPI
):
844 /* Replace call with a copy. */
845 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
847 gsi
= gsi_for_stmt (use_stmt
);
848 gsi_replace (&gsi
, stmt
, true);
849 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
856 /* To evaluate powi(x,n), the floating point value x raised to the
857 constant integer exponent n, we use a hybrid algorithm that
858 combines the "window method" with look-up tables. For an
859 introduction to exponentiation algorithms and "addition chains",
860 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
861 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
862 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
863 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
865 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
866 multiplications to inline before calling the system library's pow
867 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
868 so this default never requires calling pow, powf or powl. */
870 #ifndef POWI_MAX_MULTS
871 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
874 /* The size of the "optimal power tree" lookup table. All
875 exponents less than this value are simply looked up in the
876 powi_table below. This threshold is also used to size the
877 cache of pseudo registers that hold intermediate results. */
878 #define POWI_TABLE_SIZE 256
880 /* The size, in bits of the window, used in the "window method"
881 exponentiation algorithm. This is equivalent to a radix of
882 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
883 #define POWI_WINDOW_SIZE 3
885 /* The following table is an efficient representation of an
886 "optimal power tree". For each value, i, the corresponding
887 value, j, in the table states than an optimal evaluation
888 sequence for calculating pow(x,i) can be found by evaluating
889 pow(x,j)*pow(x,i-j). An optimal power tree for the first
890 100 integers is given in Knuth's "Seminumerical algorithms". */
892 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
894 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
895 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
896 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
897 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
898 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
899 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
900 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
901 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
902 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
903 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
904 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
905 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
906 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
907 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
908 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
909 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
910 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
911 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
912 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
913 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
914 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
915 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
916 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
917 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
918 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
919 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
920 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
921 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
922 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
923 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
924 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
925 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
929 /* Return the number of multiplications required to calculate
930 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
931 subroutine of powi_cost. CACHE is an array indicating
932 which exponents have already been calculated. */
935 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
937 /* If we've already calculated this exponent, then this evaluation
938 doesn't require any additional multiplications. */
943 return powi_lookup_cost (n
- powi_table
[n
], cache
)
944 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
947 /* Return the number of multiplications required to calculate
948 powi(x,n) for an arbitrary x, given the exponent N. This
949 function needs to be kept in sync with powi_as_mults below. */
952 powi_cost (HOST_WIDE_INT n
)
954 bool cache
[POWI_TABLE_SIZE
];
955 unsigned HOST_WIDE_INT digit
;
956 unsigned HOST_WIDE_INT val
;
962 /* Ignore the reciprocal when calculating the cost. */
963 val
= (n
< 0) ? -n
: n
;
965 /* Initialize the exponent cache. */
966 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
971 while (val
>= POWI_TABLE_SIZE
)
975 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
976 result
+= powi_lookup_cost (digit
, cache
)
977 + POWI_WINDOW_SIZE
+ 1;
978 val
>>= POWI_WINDOW_SIZE
;
987 return result
+ powi_lookup_cost (val
, cache
);
990 /* Recursive subroutine of powi_as_mults. This function takes the
991 array, CACHE, of already calculated exponents and an exponent N and
992 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
995 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
996 HOST_WIDE_INT n
, tree
*cache
)
998 tree op0
, op1
, ssa_target
;
999 unsigned HOST_WIDE_INT digit
;
1002 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
1005 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
1007 if (n
< POWI_TABLE_SIZE
)
1009 cache
[n
] = ssa_target
;
1010 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
1011 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
1015 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
1016 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
1017 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
1021 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1025 mult_stmt
= gimple_build_assign (ssa_target
, MULT_EXPR
, op0
, op1
);
1026 gimple_set_location (mult_stmt
, loc
);
1027 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1032 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1033 This function needs to be kept in sync with powi_cost above. */
1036 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1037 tree arg0
, HOST_WIDE_INT n
)
1039 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1044 return build_real (type
, dconst1
);
1046 memset (cache
, 0, sizeof (cache
));
1049 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1053 /* If the original exponent was negative, reciprocate the result. */
1054 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1055 div_stmt
= gimple_build_assign (target
, RDIV_EXPR
,
1056 build_real (type
, dconst1
), result
);
1057 gimple_set_location (div_stmt
, loc
);
1058 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1063 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1064 location info LOC. If the arguments are appropriate, create an
1065 equivalent sequence of statements prior to GSI using an optimal
1066 number of multiplications, and return an expession holding the
1070 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1071 tree arg0
, HOST_WIDE_INT n
)
1073 /* Avoid largest negative number. */
1075 && ((n
>= -1 && n
<= 2)
1076 || (optimize_function_for_speed_p (cfun
)
1077 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1078 return powi_as_mults (gsi
, loc
, arg0
, n
);
1083 /* Build a gimple call statement that calls FN with argument ARG.
1084 Set the lhs of the call statement to a fresh SSA name. Insert the
1085 statement prior to GSI's current position, and return the fresh
1089 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1095 call_stmt
= gimple_build_call (fn
, 1, arg
);
1096 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1097 gimple_set_lhs (call_stmt
, ssa_target
);
1098 gimple_set_location (call_stmt
, loc
);
1099 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1104 /* Build a gimple binary operation with the given CODE and arguments
1105 ARG0, ARG1, assigning the result to a new SSA name for variable
1106 TARGET. Insert the statement prior to GSI's current position, and
1107 return the fresh SSA name.*/
1110 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1111 const char *name
, enum tree_code code
,
1112 tree arg0
, tree arg1
)
1114 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1115 gassign
*stmt
= gimple_build_assign (result
, code
, arg0
, arg1
);
1116 gimple_set_location (stmt
, loc
);
1117 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1121 /* Build a gimple reference operation with the given CODE and argument
1122 ARG, assigning the result to a new SSA name of TYPE with NAME.
1123 Insert the statement prior to GSI's current position, and return
1124 the fresh SSA name. */
1127 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1128 const char *name
, enum tree_code code
, tree arg0
)
1130 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1131 gimple stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1132 gimple_set_location (stmt
, loc
);
1133 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1137 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1138 prior to GSI's current position, and return the fresh SSA name. */
1141 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1142 tree type
, tree val
)
1144 tree result
= make_ssa_name (type
);
1145 gassign
*stmt
= gimple_build_assign (result
, NOP_EXPR
, val
);
1146 gimple_set_location (stmt
, loc
);
1147 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1151 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1152 with location info LOC. If possible, create an equivalent and
1153 less expensive sequence of statements prior to GSI, and return an
1154 expession holding the result. */
1157 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1158 tree arg0
, tree arg1
)
1160 REAL_VALUE_TYPE c
, cint
, dconst1_4
, dconst3_4
, dconst1_3
, dconst1_6
;
1161 REAL_VALUE_TYPE c2
, dconst3
;
1163 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, sqrt_sqrt
, result
, cbrt_x
, powi_cbrt_x
;
1165 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1167 /* If the exponent isn't a constant, there's nothing of interest
1169 if (TREE_CODE (arg1
) != REAL_CST
)
1172 /* If the exponent is equivalent to an integer, expand to an optimal
1173 multiplication sequence when profitable. */
1174 c
= TREE_REAL_CST (arg1
);
1175 n
= real_to_integer (&c
);
1176 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1177 c_is_int
= real_identical (&c
, &cint
);
1180 && ((n
>= -1 && n
<= 2)
1181 || (flag_unsafe_math_optimizations
1182 && optimize_bb_for_speed_p (gsi_bb (*gsi
))
1183 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1184 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1186 /* Attempt various optimizations using sqrt and cbrt. */
1187 type
= TREE_TYPE (arg0
);
1188 mode
= TYPE_MODE (type
);
1189 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1191 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1192 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1195 && REAL_VALUES_EQUAL (c
, dconsthalf
)
1196 && !HONOR_SIGNED_ZEROS (mode
))
1197 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1199 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1200 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1201 so do this optimization even if -Os. Don't do this optimization
1202 if we don't have a hardware sqrt insn. */
1203 dconst1_4
= dconst1
;
1204 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1205 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1207 if (flag_unsafe_math_optimizations
1209 && REAL_VALUES_EQUAL (c
, dconst1_4
)
1213 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1216 return build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1219 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1220 optimizing for space. Don't do this optimization if we don't have
1221 a hardware sqrt insn. */
1222 real_from_integer (&dconst3_4
, VOIDmode
, 3, SIGNED
);
1223 SET_REAL_EXP (&dconst3_4
, REAL_EXP (&dconst3_4
) - 2);
1225 if (flag_unsafe_math_optimizations
1227 && optimize_function_for_speed_p (cfun
)
1228 && REAL_VALUES_EQUAL (c
, dconst3_4
)
1232 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1235 sqrt_sqrt
= build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1237 /* sqrt(x) * sqrt(sqrt(x)) */
1238 return build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1239 sqrt_arg0
, sqrt_sqrt
);
1242 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1243 optimizations since 1./3. is not exactly representable. If x
1244 is negative and finite, the correct value of pow(x,1./3.) is
1245 a NaN with the "invalid" exception raised, because the value
1246 of 1./3. actually has an even denominator. The correct value
1247 of cbrt(x) is a negative real value. */
1248 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1249 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1251 if (flag_unsafe_math_optimizations
1253 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1254 && REAL_VALUES_EQUAL (c
, dconst1_3
))
1255 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1257 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1258 if we don't have a hardware sqrt insn. */
1259 dconst1_6
= dconst1_3
;
1260 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1262 if (flag_unsafe_math_optimizations
1265 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1266 && optimize_function_for_speed_p (cfun
)
1268 && REAL_VALUES_EQUAL (c
, dconst1_6
))
1271 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1274 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1277 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1278 and c not an integer, into
1280 sqrt(x) * powi(x, n/2), n > 0;
1281 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1283 Do not calculate the powi factor when n/2 = 0. */
1284 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1285 n
= real_to_integer (&c2
);
1286 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1287 c2_is_int
= real_identical (&c2
, &cint
);
1289 if (flag_unsafe_math_optimizations
1293 && optimize_function_for_speed_p (cfun
))
1295 tree powi_x_ndiv2
= NULL_TREE
;
1297 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1298 possible or profitable, give up. Skip the degenerate case when
1299 n is 1 or -1, where the result is always 1. */
1300 if (absu_hwi (n
) != 1)
1302 powi_x_ndiv2
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1308 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1309 result of the optimal multiply sequence just calculated. */
1310 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1312 if (absu_hwi (n
) == 1)
1315 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1316 sqrt_arg0
, powi_x_ndiv2
);
1318 /* If n is negative, reciprocate the result. */
1320 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1321 build_real (type
, dconst1
), result
);
1325 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1327 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1328 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1330 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1331 different from pow(x, 1./3.) due to rounding and behavior with
1332 negative x, we need to constrain this transformation to unsafe
1333 math and positive x or finite math. */
1334 real_from_integer (&dconst3
, VOIDmode
, 3, SIGNED
);
1335 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1336 real_round (&c2
, mode
, &c2
);
1337 n
= real_to_integer (&c2
);
1338 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1339 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1340 real_convert (&c2
, mode
, &c2
);
1342 if (flag_unsafe_math_optimizations
1344 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1345 && real_identical (&c2
, &c
)
1347 && optimize_function_for_speed_p (cfun
)
1348 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1350 tree powi_x_ndiv3
= NULL_TREE
;
1352 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1353 possible or profitable, give up. Skip the degenerate case when
1354 abs(n) < 3, where the result is always 1. */
1355 if (absu_hwi (n
) >= 3)
1357 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1363 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1364 as that creates an unnecessary variable. Instead, just produce
1365 either cbrt(x) or cbrt(x) * cbrt(x). */
1366 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1368 if (absu_hwi (n
) % 3 == 1)
1369 powi_cbrt_x
= cbrt_x
;
1371 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1374 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1375 if (absu_hwi (n
) < 3)
1376 result
= powi_cbrt_x
;
1378 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1379 powi_x_ndiv3
, powi_cbrt_x
);
1381 /* If n is negative, reciprocate the result. */
1383 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1384 build_real (type
, dconst1
), result
);
1389 /* No optimizations succeeded. */
1393 /* ARG is the argument to a cabs builtin call in GSI with location info
1394 LOC. Create a sequence of statements prior to GSI that calculates
1395 sqrt(R*R + I*I), where R and I are the real and imaginary components
1396 of ARG, respectively. Return an expression holding the result. */
1399 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1401 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1402 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1403 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1404 machine_mode mode
= TYPE_MODE (type
);
1406 if (!flag_unsafe_math_optimizations
1407 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1409 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1412 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1413 REALPART_EXPR
, arg
);
1414 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1415 real_part
, real_part
);
1416 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1417 IMAGPART_EXPR
, arg
);
1418 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1419 imag_part
, imag_part
);
1420 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1421 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1426 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1427 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1428 an optimal number of multiplies, when n is a constant. */
1432 const pass_data pass_data_cse_sincos
=
1434 GIMPLE_PASS
, /* type */
1435 "sincos", /* name */
1436 OPTGROUP_NONE
, /* optinfo_flags */
1437 TV_NONE
, /* tv_id */
1438 PROP_ssa
, /* properties_required */
1439 0, /* properties_provided */
1440 0, /* properties_destroyed */
1441 0, /* todo_flags_start */
1442 TODO_update_ssa
, /* todo_flags_finish */
1445 class pass_cse_sincos
: public gimple_opt_pass
1448 pass_cse_sincos (gcc::context
*ctxt
)
1449 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1452 /* opt_pass methods: */
1453 virtual bool gate (function
*)
1455 /* We no longer require either sincos or cexp, since powi expansion
1456 piggybacks on this pass. */
1460 virtual unsigned int execute (function
*);
1462 }; // class pass_cse_sincos
1465 pass_cse_sincos::execute (function
*fun
)
1468 bool cfg_changed
= false;
1470 calculate_dominance_info (CDI_DOMINATORS
);
1471 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1473 FOR_EACH_BB_FN (bb
, fun
)
1475 gimple_stmt_iterator gsi
;
1476 bool cleanup_eh
= false;
1478 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1480 gimple stmt
= gsi_stmt (gsi
);
1483 /* Only the last stmt in a bb could throw, no need to call
1484 gimple_purge_dead_eh_edges if we change something in the middle
1485 of a basic block. */
1488 if (is_gimple_call (stmt
)
1489 && gimple_call_lhs (stmt
)
1490 && (fndecl
= gimple_call_fndecl (stmt
))
1491 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1493 tree arg
, arg0
, arg1
, result
;
1497 switch (DECL_FUNCTION_CODE (fndecl
))
1499 CASE_FLT_FN (BUILT_IN_COS
):
1500 CASE_FLT_FN (BUILT_IN_SIN
):
1501 CASE_FLT_FN (BUILT_IN_CEXPI
):
1502 /* Make sure we have either sincos or cexp. */
1503 if (!targetm
.libc_has_function (function_c99_math_complex
)
1504 && !targetm
.libc_has_function (function_sincos
))
1507 arg
= gimple_call_arg (stmt
, 0);
1508 if (TREE_CODE (arg
) == SSA_NAME
)
1509 cfg_changed
|= execute_cse_sincos_1 (arg
);
1512 CASE_FLT_FN (BUILT_IN_POW
):
1513 arg0
= gimple_call_arg (stmt
, 0);
1514 arg1
= gimple_call_arg (stmt
, 1);
1516 loc
= gimple_location (stmt
);
1517 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1521 tree lhs
= gimple_get_lhs (stmt
);
1522 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1523 gimple_set_location (new_stmt
, loc
);
1524 unlink_stmt_vdef (stmt
);
1525 gsi_replace (&gsi
, new_stmt
, true);
1527 if (gimple_vdef (stmt
))
1528 release_ssa_name (gimple_vdef (stmt
));
1532 CASE_FLT_FN (BUILT_IN_POWI
):
1533 arg0
= gimple_call_arg (stmt
, 0);
1534 arg1
= gimple_call_arg (stmt
, 1);
1535 loc
= gimple_location (stmt
);
1537 if (real_minus_onep (arg0
))
1539 tree t0
, t1
, cond
, one
, minus_one
;
1542 t0
= TREE_TYPE (arg0
);
1543 t1
= TREE_TYPE (arg1
);
1544 one
= build_real (t0
, dconst1
);
1545 minus_one
= build_real (t0
, dconstm1
);
1547 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
1548 stmt
= gimple_build_assign (cond
, BIT_AND_EXPR
,
1549 arg1
, build_int_cst (t1
, 1));
1550 gimple_set_location (stmt
, loc
);
1551 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1553 result
= make_temp_ssa_name (t0
, NULL
, "powi");
1554 stmt
= gimple_build_assign (result
, COND_EXPR
, cond
,
1556 gimple_set_location (stmt
, loc
);
1557 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1561 if (!tree_fits_shwi_p (arg1
))
1564 n
= tree_to_shwi (arg1
);
1565 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
1570 tree lhs
= gimple_get_lhs (stmt
);
1571 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1572 gimple_set_location (new_stmt
, loc
);
1573 unlink_stmt_vdef (stmt
);
1574 gsi_replace (&gsi
, new_stmt
, true);
1576 if (gimple_vdef (stmt
))
1577 release_ssa_name (gimple_vdef (stmt
));
1581 CASE_FLT_FN (BUILT_IN_CABS
):
1582 arg0
= gimple_call_arg (stmt
, 0);
1583 loc
= gimple_location (stmt
);
1584 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
1588 tree lhs
= gimple_get_lhs (stmt
);
1589 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1590 gimple_set_location (new_stmt
, loc
);
1591 unlink_stmt_vdef (stmt
);
1592 gsi_replace (&gsi
, new_stmt
, true);
1594 if (gimple_vdef (stmt
))
1595 release_ssa_name (gimple_vdef (stmt
));
1604 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
1607 statistics_counter_event (fun
, "sincos statements inserted",
1608 sincos_stats
.inserted
);
1610 free_dominance_info (CDI_DOMINATORS
);
1611 return cfg_changed
? TODO_cleanup_cfg
: 0;
1617 make_pass_cse_sincos (gcc::context
*ctxt
)
1619 return new pass_cse_sincos (ctxt
);
1622 /* A symbolic number is used to detect byte permutation and selection
1623 patterns. Therefore the field N contains an artificial number
1624 consisting of octet sized markers:
1626 0 - target byte has the value 0
1627 FF - target byte has an unknown value (eg. due to sign extension)
1628 1..size - marker value is the target byte index minus one.
1630 To detect permutations on memory sources (arrays and structures), a symbolic
1631 number is also associated a base address (the array or structure the load is
1632 made from), an offset from the base address and a range which gives the
1633 difference between the highest and lowest accessed memory location to make
1634 such a symbolic number. The range is thus different from size which reflects
1635 the size of the type of current expression. Note that for non memory source,
1636 range holds the same value as size.
1638 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1639 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1640 still have a size of 2 but this time a range of 1. */
1642 struct symbolic_number
{
1647 HOST_WIDE_INT bytepos
;
1650 unsigned HOST_WIDE_INT range
;
1653 #define BITS_PER_MARKER 8
1654 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1655 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1656 #define HEAD_MARKER(n, size) \
1657 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1659 /* The number which the find_bswap_or_nop_1 result should match in
1660 order to have a nop. The number is masked according to the size of
1661 the symbolic number before using it. */
1662 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1663 (uint64_t)0x08070605 << 32 | 0x04030201)
1665 /* The number which the find_bswap_or_nop_1 result should match in
1666 order to have a byte swap. The number is masked according to the
1667 size of the symbolic number before using it. */
1668 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1669 (uint64_t)0x01020304 << 32 | 0x05060708)
1671 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1672 number N. Return false if the requested operation is not permitted
1673 on a symbolic number. */
1676 do_shift_rotate (enum tree_code code
,
1677 struct symbolic_number
*n
,
1680 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1681 unsigned head_marker
;
1683 if (count
% BITS_PER_UNIT
!= 0)
1685 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
1687 /* Zero out the extra bits of N in order to avoid them being shifted
1688 into the significant bits. */
1689 if (size
< 64 / BITS_PER_MARKER
)
1690 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1698 head_marker
= HEAD_MARKER (n
->n
, size
);
1700 /* Arithmetic shift of signed type: result is dependent on the value. */
1701 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
1702 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
1703 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
1704 << ((size
- 1 - i
) * BITS_PER_MARKER
);
1707 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
1710 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
1715 /* Zero unused bits for size. */
1716 if (size
< 64 / BITS_PER_MARKER
)
1717 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1721 /* Perform sanity checking for the symbolic number N and the gimple
1725 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
1729 lhs_type
= gimple_expr_type (stmt
);
1731 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
1734 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
1740 /* Initialize the symbolic number N for the bswap pass from the base element
1741 SRC manipulated by the bitwise OR expression. */
1744 init_symbolic_number (struct symbolic_number
*n
, tree src
)
1748 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
1750 /* Set up the symbolic number N by setting each byte to a value between 1 and
1751 the byte size of rhs1. The highest order byte is set to n->size and the
1752 lowest order byte to 1. */
1753 n
->type
= TREE_TYPE (src
);
1754 size
= TYPE_PRECISION (n
->type
);
1755 if (size
% BITS_PER_UNIT
!= 0)
1757 size
/= BITS_PER_UNIT
;
1758 if (size
> 64 / BITS_PER_MARKER
)
1763 if (size
< 64 / BITS_PER_MARKER
)
1764 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1769 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1770 the answer. If so, REF is that memory source and the base of the memory area
1771 accessed and the offset of the access from that base are recorded in N. */
1774 find_bswap_or_nop_load (gimple stmt
, tree ref
, struct symbolic_number
*n
)
1776 /* Leaf node is an array or component ref. Memorize its base and
1777 offset from base to compare to other such leaf node. */
1778 HOST_WIDE_INT bitsize
, bitpos
;
1780 int unsignedp
, volatilep
;
1781 tree offset
, base_addr
;
1783 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
1786 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
1787 &unsignedp
, &volatilep
, false);
1789 if (TREE_CODE (base_addr
) == MEM_REF
)
1791 offset_int bit_offset
= 0;
1792 tree off
= TREE_OPERAND (base_addr
, 1);
1794 if (!integer_zerop (off
))
1796 offset_int boff
, coff
= mem_ref_offset (base_addr
);
1797 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
1801 base_addr
= TREE_OPERAND (base_addr
, 0);
1803 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1804 if (wi::neg_p (bit_offset
))
1806 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
1807 offset_int tem
= bit_offset
.and_not (mask
);
1808 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1809 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1811 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
1813 offset
= size_binop (PLUS_EXPR
, offset
,
1814 wide_int_to_tree (sizetype
, tem
));
1816 offset
= wide_int_to_tree (sizetype
, tem
);
1819 bitpos
+= bit_offset
.to_shwi ();
1822 if (bitpos
% BITS_PER_UNIT
)
1824 if (bitsize
% BITS_PER_UNIT
)
1827 if (!init_symbolic_number (n
, ref
))
1829 n
->base_addr
= base_addr
;
1831 n
->bytepos
= bitpos
/ BITS_PER_UNIT
;
1832 n
->alias_set
= reference_alias_ptr_type (ref
);
1833 n
->vuse
= gimple_vuse (stmt
);
1837 /* Compute the symbolic number N representing the result of a bitwise OR on 2
1838 symbolic number N1 and N2 whose source statements are respectively
1839 SOURCE_STMT1 and SOURCE_STMT2. */
1842 perform_symbolic_merge (gimple source_stmt1
, struct symbolic_number
*n1
,
1843 gimple source_stmt2
, struct symbolic_number
*n2
,
1844 struct symbolic_number
*n
)
1849 struct symbolic_number
*n_start
;
1851 /* Sources are different, cancel bswap if they are not memory location with
1852 the same base (array, structure, ...). */
1853 if (gimple_assign_rhs1 (source_stmt1
) != gimple_assign_rhs1 (source_stmt2
))
1856 HOST_WIDE_INT start_sub
, end_sub
, end1
, end2
, end
;
1857 struct symbolic_number
*toinc_n_ptr
, *n_end
;
1859 if (!n1
->base_addr
|| !n2
->base_addr
1860 || !operand_equal_p (n1
->base_addr
, n2
->base_addr
, 0))
1863 if (!n1
->offset
!= !n2
->offset
||
1864 (n1
->offset
&& !operand_equal_p (n1
->offset
, n2
->offset
, 0)))
1867 if (n1
->bytepos
< n2
->bytepos
)
1870 start_sub
= n2
->bytepos
- n1
->bytepos
;
1871 source_stmt
= source_stmt1
;
1876 start_sub
= n1
->bytepos
- n2
->bytepos
;
1877 source_stmt
= source_stmt2
;
1880 /* Find the highest address at which a load is performed and
1881 compute related info. */
1882 end1
= n1
->bytepos
+ (n1
->range
- 1);
1883 end2
= n2
->bytepos
+ (n2
->range
- 1);
1887 end_sub
= end2
- end1
;
1892 end_sub
= end1
- end2
;
1894 n_end
= (end2
> end1
) ? n2
: n1
;
1896 /* Find symbolic number whose lsb is the most significant. */
1897 if (BYTES_BIG_ENDIAN
)
1898 toinc_n_ptr
= (n_end
== n1
) ? n2
: n1
;
1900 toinc_n_ptr
= (n_start
== n1
) ? n2
: n1
;
1902 n
->range
= end
- n_start
->bytepos
+ 1;
1904 /* Check that the range of memory covered can be represented by
1905 a symbolic number. */
1906 if (n
->range
> 64 / BITS_PER_MARKER
)
1909 /* Reinterpret byte marks in symbolic number holding the value of
1910 bigger weight according to target endianness. */
1911 inc
= BYTES_BIG_ENDIAN
? end_sub
: start_sub
;
1912 size
= TYPE_PRECISION (n1
->type
) / BITS_PER_UNIT
;
1913 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
1916 (toinc_n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
1917 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
1918 toinc_n_ptr
->n
+= inc
;
1923 n
->range
= n1
->range
;
1925 source_stmt
= source_stmt1
;
1929 || alias_ptr_types_compatible_p (n1
->alias_set
, n2
->alias_set
))
1930 n
->alias_set
= n1
->alias_set
;
1932 n
->alias_set
= ptr_type_node
;
1933 n
->vuse
= n_start
->vuse
;
1934 n
->base_addr
= n_start
->base_addr
;
1935 n
->offset
= n_start
->offset
;
1936 n
->bytepos
= n_start
->bytepos
;
1937 n
->type
= n_start
->type
;
1938 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1940 for (i
= 0, mask
= MARKER_MASK
; i
< size
; i
++, mask
<<= BITS_PER_MARKER
)
1942 uint64_t masked1
, masked2
;
1944 masked1
= n1
->n
& mask
;
1945 masked2
= n2
->n
& mask
;
1946 if (masked1
&& masked2
&& masked1
!= masked2
)
1949 n
->n
= n1
->n
| n2
->n
;
1954 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1955 the operation given by the rhs of STMT on the result. If the operation
1956 could successfully be executed the function returns a gimple stmt whose
1957 rhs's first tree is the expression of the source operand and NULL
1961 find_bswap_or_nop_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
1963 enum tree_code code
;
1964 tree rhs1
, rhs2
= NULL
;
1965 gimple rhs1_stmt
, rhs2_stmt
, source_stmt1
;
1966 enum gimple_rhs_class rhs_class
;
1968 if (!limit
|| !is_gimple_assign (stmt
))
1971 rhs1
= gimple_assign_rhs1 (stmt
);
1973 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
1976 if (TREE_CODE (rhs1
) != SSA_NAME
)
1979 code
= gimple_assign_rhs_code (stmt
);
1980 rhs_class
= gimple_assign_rhs_class (stmt
);
1981 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
1983 if (rhs_class
== GIMPLE_BINARY_RHS
)
1984 rhs2
= gimple_assign_rhs2 (stmt
);
1986 /* Handle unary rhs and binary rhs with integer constants as second
1989 if (rhs_class
== GIMPLE_UNARY_RHS
1990 || (rhs_class
== GIMPLE_BINARY_RHS
1991 && TREE_CODE (rhs2
) == INTEGER_CST
))
1993 if (code
!= BIT_AND_EXPR
1994 && code
!= LSHIFT_EXPR
1995 && code
!= RSHIFT_EXPR
1996 && code
!= LROTATE_EXPR
1997 && code
!= RROTATE_EXPR
1998 && !CONVERT_EXPR_CODE_P (code
))
2001 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
2003 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2004 we have to initialize the symbolic number. */
2007 if (gimple_assign_load_p (stmt
)
2008 || !init_symbolic_number (n
, rhs1
))
2010 source_stmt1
= stmt
;
2017 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2018 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
2019 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
2021 /* Only constants masking full bytes are allowed. */
2022 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
2023 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
2026 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
2035 if (!do_shift_rotate (code
, n
, (int)TREE_INT_CST_LOW (rhs2
)))
2040 int i
, type_size
, old_type_size
;
2043 type
= gimple_expr_type (stmt
);
2044 type_size
= TYPE_PRECISION (type
);
2045 if (type_size
% BITS_PER_UNIT
!= 0)
2047 type_size
/= BITS_PER_UNIT
;
2048 if (type_size
> 64 / BITS_PER_MARKER
)
2051 /* Sign extension: result is dependent on the value. */
2052 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2053 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
2054 && HEAD_MARKER (n
->n
, old_type_size
))
2055 for (i
= 0; i
< type_size
- old_type_size
; i
++)
2056 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
2057 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
2059 if (type_size
< 64 / BITS_PER_MARKER
)
2061 /* If STMT casts to a smaller type mask out the bits not
2062 belonging to the target type. */
2063 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
2067 n
->range
= type_size
;
2073 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
2076 /* Handle binary rhs. */
2078 if (rhs_class
== GIMPLE_BINARY_RHS
)
2080 struct symbolic_number n1
, n2
;
2081 gimple source_stmt
, source_stmt2
;
2083 if (code
!= BIT_IOR_EXPR
)
2086 if (TREE_CODE (rhs2
) != SSA_NAME
)
2089 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2094 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
2099 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
2104 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
2107 if (!n1
.vuse
!= !n2
.vuse
||
2108 (n1
.vuse
&& !operand_equal_p (n1
.vuse
, n2
.vuse
, 0)))
2112 perform_symbolic_merge (source_stmt1
, &n1
, source_stmt2
, &n2
, n
);
2117 if (!verify_symbolic_number_p (n
, stmt
))
2129 /* Check if STMT completes a bswap implementation or a read in a given
2130 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2131 accordingly. It also sets N to represent the kind of operations
2132 performed: size of the resulting expression and whether it works on
2133 a memory source, and if so alias-set and vuse. At last, the
2134 function returns a stmt whose rhs's first tree is the source
2138 find_bswap_or_nop (gimple stmt
, struct symbolic_number
*n
, bool *bswap
)
2140 /* The number which the find_bswap_or_nop_1 result should match in order
2141 to have a full byte swap. The number is shifted to the right
2142 according to the size of the symbolic number before using it. */
2143 uint64_t cmpxchg
= CMPXCHG
;
2144 uint64_t cmpnop
= CMPNOP
;
2149 /* The last parameter determines the depth search limit. It usually
2150 correlates directly to the number n of bytes to be touched. We
2151 increase that number by log2(n) + 1 here in order to also
2152 cover signed -> unsigned conversions of the src operand as can be seen
2153 in libgcc, and for initial shift/and operation of the src operand. */
2154 limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
2155 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
2156 source_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
2161 /* Find real size of result (highest non zero byte). */
2167 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
2171 /* Zero out the extra bits of N and CMP*. */
2172 if (n
->range
< (int) sizeof (int64_t))
2176 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
2177 cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
2181 /* A complete byte swap should make the symbolic number to start with
2182 the largest digit in the highest order byte. Unchanged symbolic
2183 number indicates a read with same endianness as target architecture. */
2186 else if (n
->n
== cmpxchg
)
2191 /* Useless bit manipulation performed by code. */
2192 if (!n
->base_addr
&& n
->n
== cmpnop
)
2195 n
->range
*= BITS_PER_UNIT
;
2201 const pass_data pass_data_optimize_bswap
=
2203 GIMPLE_PASS
, /* type */
2205 OPTGROUP_NONE
, /* optinfo_flags */
2206 TV_NONE
, /* tv_id */
2207 PROP_ssa
, /* properties_required */
2208 0, /* properties_provided */
2209 0, /* properties_destroyed */
2210 0, /* todo_flags_start */
2211 0, /* todo_flags_finish */
2214 class pass_optimize_bswap
: public gimple_opt_pass
2217 pass_optimize_bswap (gcc::context
*ctxt
)
2218 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
2221 /* opt_pass methods: */
2222 virtual bool gate (function
*)
2224 return flag_expensive_optimizations
&& optimize
;
2227 virtual unsigned int execute (function
*);
2229 }; // class pass_optimize_bswap
2231 /* Perform the bswap optimization: replace the expression computed in the rhs
2232 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2233 Which of these alternatives replace the rhs is given by N->base_addr (non
2234 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2235 load to perform are also given in N while the builtin bswap invoke is given
2236 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2237 load statements involved to construct the rhs in CUR_STMT and N->range gives
2238 the size of the rhs expression for maintaining some statistics.
2240 Note that if the replacement involve a load, CUR_STMT is moved just after
2241 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2242 changing of basic block. */
2245 bswap_replace (gimple cur_stmt
, gimple src_stmt
, tree fndecl
, tree bswap_type
,
2246 tree load_type
, struct symbolic_number
*n
, bool bswap
)
2248 gimple_stmt_iterator gsi
;
2252 gsi
= gsi_for_stmt (cur_stmt
);
2253 src
= gimple_assign_rhs1 (src_stmt
);
2254 tgt
= gimple_assign_lhs (cur_stmt
);
2256 /* Need to load the value from memory first. */
2259 gimple_stmt_iterator gsi_ins
= gsi_for_stmt (src_stmt
);
2260 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
2261 tree load_offset_ptr
, aligned_load_type
;
2262 gimple addr_stmt
, load_stmt
;
2265 align
= get_object_alignment (src
);
2267 && align
< GET_MODE_ALIGNMENT (TYPE_MODE (load_type
))
2268 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type
), align
))
2271 /* Move cur_stmt just before one of the load of the original
2272 to ensure it has the same VUSE. See PR61517 for what could
2274 gsi_move_before (&gsi
, &gsi_ins
);
2275 gsi
= gsi_for_stmt (cur_stmt
);
2277 /* Compute address to load from and cast according to the size
2279 addr_expr
= build_fold_addr_expr (unshare_expr (src
));
2280 if (is_gimple_min_invariant (addr_expr
))
2281 addr_tmp
= addr_expr
;
2284 addr_tmp
= make_temp_ssa_name (TREE_TYPE (addr_expr
), NULL
,
2286 addr_stmt
= gimple_build_assign (addr_tmp
, addr_expr
);
2287 gsi_insert_before (&gsi
, addr_stmt
, GSI_SAME_STMT
);
2290 /* Perform the load. */
2291 aligned_load_type
= load_type
;
2292 if (align
< TYPE_ALIGN (load_type
))
2293 aligned_load_type
= build_aligned_type (load_type
, align
);
2294 load_offset_ptr
= build_int_cst (n
->alias_set
, 0);
2295 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
2301 nop_stats
.found_16bit
++;
2302 else if (n
->range
== 32)
2303 nop_stats
.found_32bit
++;
2306 gcc_assert (n
->range
== 64);
2307 nop_stats
.found_64bit
++;
2310 /* Convert the result of load if necessary. */
2311 if (!useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
2313 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
2315 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2316 gimple_set_vuse (load_stmt
, n
->vuse
);
2317 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2318 gimple_assign_set_rhs_with_ops (&gsi
, NOP_EXPR
, val_tmp
);
2322 gimple_assign_set_rhs_with_ops (&gsi
, MEM_REF
, val_expr
);
2323 gimple_set_vuse (cur_stmt
, n
->vuse
);
2325 update_stmt (cur_stmt
);
2330 "%d bit load in target endianness found at: ",
2332 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2338 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
2339 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2340 gimple_set_vuse (load_stmt
, n
->vuse
);
2341 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2347 bswap_stats
.found_16bit
++;
2348 else if (n
->range
== 32)
2349 bswap_stats
.found_32bit
++;
2352 gcc_assert (n
->range
== 64);
2353 bswap_stats
.found_64bit
++;
2358 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2359 are considered as rotation of 2N bit values by N bits is generally not
2360 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2361 0x03040102 while a bswap for that value is 0x04030201. */
2362 if (bswap
&& n
->range
== 16)
2364 tree count
= build_int_cst (NULL
, BITS_PER_UNIT
);
2365 bswap_type
= TREE_TYPE (src
);
2366 src
= fold_build2 (LROTATE_EXPR
, bswap_type
, src
, count
);
2367 bswap_stmt
= gimple_build_assign (NULL
, src
);
2371 /* Convert the src expression if necessary. */
2372 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
2374 gimple convert_stmt
;
2375 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
2376 convert_stmt
= gimple_build_assign (tmp
, NOP_EXPR
, src
);
2377 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2380 bswap_stmt
= gimple_build_call (fndecl
, 1, tmp
);
2385 /* Convert the result if necessary. */
2386 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
2388 gimple convert_stmt
;
2389 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
2390 convert_stmt
= gimple_build_assign (tgt
, NOP_EXPR
, tmp
);
2391 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2394 gimple_set_lhs (bswap_stmt
, tmp
);
2398 fprintf (dump_file
, "%d bit bswap implementation found at: ",
2400 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2403 gsi_insert_after (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
2404 gsi_remove (&gsi
, true);
2408 /* Find manual byte swap implementations as well as load in a given
2409 endianness. Byte swaps are turned into a bswap builtin invokation
2410 while endian loads are converted to bswap builtin invokation or
2411 simple load according to the target endianness. */
2414 pass_optimize_bswap::execute (function
*fun
)
2417 bool bswap32_p
, bswap64_p
;
2418 bool changed
= false;
2419 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
2421 if (BITS_PER_UNIT
!= 8)
2424 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
2425 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
2426 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
2427 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
2428 || (bswap32_p
&& word_mode
== SImode
)));
2430 /* Determine the argument type of the builtins. The code later on
2431 assumes that the return and argument type are the same. */
2434 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2435 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2440 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2441 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2444 memset (&nop_stats
, 0, sizeof (nop_stats
));
2445 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
2447 FOR_EACH_BB_FN (bb
, fun
)
2449 gimple_stmt_iterator gsi
;
2451 /* We do a reverse scan for bswap patterns to make sure we get the
2452 widest match. As bswap pattern matching doesn't handle previously
2453 inserted smaller bswap replacements as sub-patterns, the wider
2454 variant wouldn't be detected. */
2455 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
2457 gimple src_stmt
, cur_stmt
= gsi_stmt (gsi
);
2458 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
2459 enum tree_code code
;
2460 struct symbolic_number n
;
2463 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2464 might be moved to a different basic block by bswap_replace and gsi
2465 must not points to it if that's the case. Moving the gsi_prev
2466 there make sure that gsi points to the statement previous to
2467 cur_stmt while still making sure that all statements are
2468 considered in this basic block. */
2471 if (!is_gimple_assign (cur_stmt
))
2474 code
= gimple_assign_rhs_code (cur_stmt
);
2479 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt
))
2480 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt
))
2490 src_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
);
2498 /* Already in canonical form, nothing to do. */
2499 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
2501 load_type
= uint16_type_node
;
2504 load_type
= uint32_type_node
;
2507 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2508 bswap_type
= bswap32_type
;
2512 load_type
= uint64_type_node
;
2515 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2516 bswap_type
= bswap64_type
;
2523 if (bswap
&& !fndecl
&& n
.range
!= 16)
2526 if (bswap_replace (cur_stmt
, src_stmt
, fndecl
, bswap_type
, load_type
,
2532 statistics_counter_event (fun
, "16-bit nop implementations found",
2533 nop_stats
.found_16bit
);
2534 statistics_counter_event (fun
, "32-bit nop implementations found",
2535 nop_stats
.found_32bit
);
2536 statistics_counter_event (fun
, "64-bit nop implementations found",
2537 nop_stats
.found_64bit
);
2538 statistics_counter_event (fun
, "16-bit bswap implementations found",
2539 bswap_stats
.found_16bit
);
2540 statistics_counter_event (fun
, "32-bit bswap implementations found",
2541 bswap_stats
.found_32bit
);
2542 statistics_counter_event (fun
, "64-bit bswap implementations found",
2543 bswap_stats
.found_64bit
);
2545 return (changed
? TODO_update_ssa
: 0);
2551 make_pass_optimize_bswap (gcc::context
*ctxt
)
2553 return new pass_optimize_bswap (ctxt
);
2556 /* Return true if stmt is a type conversion operation that can be stripped
2557 when used in a widening multiply operation. */
2559 widening_mult_conversion_strippable_p (tree result_type
, gimple stmt
)
2561 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2563 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2568 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2571 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2573 /* If the type of OP has the same precision as the result, then
2574 we can strip this conversion. The multiply operation will be
2575 selected to create the correct extension as a by-product. */
2576 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2579 /* We can also strip a conversion if it preserves the signed-ness of
2580 the operation and doesn't narrow the range. */
2581 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2583 /* If the inner-most type is unsigned, then we can strip any
2584 intermediate widening operation. If it's signed, then the
2585 intermediate widening operation must also be signed. */
2586 if ((TYPE_UNSIGNED (inner_op_type
)
2587 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2588 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2594 return rhs_code
== FIXED_CONVERT_EXPR
;
2597 /* Return true if RHS is a suitable operand for a widening multiplication,
2598 assuming a target type of TYPE.
2599 There are two cases:
2601 - RHS makes some value at least twice as wide. Store that value
2602 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2604 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2605 but leave *TYPE_OUT untouched. */
2608 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2614 if (TREE_CODE (rhs
) == SSA_NAME
)
2616 stmt
= SSA_NAME_DEF_STMT (rhs
);
2617 if (is_gimple_assign (stmt
))
2619 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2623 rhs1
= gimple_assign_rhs1 (stmt
);
2625 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2627 *new_rhs_out
= rhs1
;
2636 type1
= TREE_TYPE (rhs1
);
2638 if (TREE_CODE (type1
) != TREE_CODE (type
)
2639 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2642 *new_rhs_out
= rhs1
;
2647 if (TREE_CODE (rhs
) == INTEGER_CST
)
2657 /* Return true if STMT performs a widening multiplication, assuming the
2658 output type is TYPE. If so, store the unwidened types of the operands
2659 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2660 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2661 and *TYPE2_OUT would give the operands of the multiplication. */
2664 is_widening_mult_p (gimple stmt
,
2665 tree
*type1_out
, tree
*rhs1_out
,
2666 tree
*type2_out
, tree
*rhs2_out
)
2668 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2670 if (TREE_CODE (type
) != INTEGER_TYPE
2671 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2674 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2678 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2682 if (*type1_out
== NULL
)
2684 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
2686 *type1_out
= *type2_out
;
2689 if (*type2_out
== NULL
)
2691 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
2693 *type2_out
= *type1_out
;
2696 /* Ensure that the larger of the two operands comes first. */
2697 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
2701 *type1_out
= *type2_out
;
2704 *rhs1_out
= *rhs2_out
;
2711 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2712 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2713 value is true iff we converted the statement. */
2716 convert_mult_to_widen (gimple stmt
, gimple_stmt_iterator
*gsi
)
2718 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
2719 enum insn_code handler
;
2720 machine_mode to_mode
, from_mode
, actual_mode
;
2722 int actual_precision
;
2723 location_t loc
= gimple_location (stmt
);
2724 bool from_unsigned1
, from_unsigned2
;
2726 lhs
= gimple_assign_lhs (stmt
);
2727 type
= TREE_TYPE (lhs
);
2728 if (TREE_CODE (type
) != INTEGER_TYPE
)
2731 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
2734 to_mode
= TYPE_MODE (type
);
2735 from_mode
= TYPE_MODE (type1
);
2736 from_unsigned1
= TYPE_UNSIGNED (type1
);
2737 from_unsigned2
= TYPE_UNSIGNED (type2
);
2739 if (from_unsigned1
&& from_unsigned2
)
2740 op
= umul_widen_optab
;
2741 else if (!from_unsigned1
&& !from_unsigned2
)
2742 op
= smul_widen_optab
;
2744 op
= usmul_widen_optab
;
2746 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
2749 if (handler
== CODE_FOR_nothing
)
2751 if (op
!= smul_widen_optab
)
2753 /* We can use a signed multiply with unsigned types as long as
2754 there is a wider mode to use, or it is the smaller of the two
2755 types that is unsigned. Note that type1 >= type2, always. */
2756 if ((TYPE_UNSIGNED (type1
)
2757 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2758 || (TYPE_UNSIGNED (type2
)
2759 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2761 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2762 if (GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
2766 op
= smul_widen_optab
;
2767 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
2771 if (handler
== CODE_FOR_nothing
)
2774 from_unsigned1
= from_unsigned2
= false;
2780 /* Ensure that the inputs to the handler are in the correct precison
2781 for the opcode. This will be the full mode size. */
2782 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2783 if (2 * actual_precision
> TYPE_PRECISION (type
))
2785 if (actual_precision
!= TYPE_PRECISION (type1
)
2786 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2787 rhs1
= build_and_insert_cast (gsi
, loc
,
2788 build_nonstandard_integer_type
2789 (actual_precision
, from_unsigned1
), rhs1
);
2790 if (actual_precision
!= TYPE_PRECISION (type2
)
2791 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2792 rhs2
= build_and_insert_cast (gsi
, loc
,
2793 build_nonstandard_integer_type
2794 (actual_precision
, from_unsigned2
), rhs2
);
2796 /* Handle constants. */
2797 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2798 rhs1
= fold_convert (type1
, rhs1
);
2799 if (TREE_CODE (rhs2
) == INTEGER_CST
)
2800 rhs2
= fold_convert (type2
, rhs2
);
2802 gimple_assign_set_rhs1 (stmt
, rhs1
);
2803 gimple_assign_set_rhs2 (stmt
, rhs2
);
2804 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
2806 widen_mul_stats
.widen_mults_inserted
++;
2810 /* Process a single gimple statement STMT, which is found at the
2811 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2812 rhs (given by CODE), and try to convert it into a
2813 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2814 is true iff we converted the statement. */
2817 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
2818 enum tree_code code
)
2820 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
2821 gimple conv1_stmt
= NULL
, conv2_stmt
= NULL
, conv_stmt
;
2822 tree type
, type1
, type2
, optype
;
2823 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
2824 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
2826 enum tree_code wmult_code
;
2827 enum insn_code handler
;
2828 machine_mode to_mode
, from_mode
, actual_mode
;
2829 location_t loc
= gimple_location (stmt
);
2830 int actual_precision
;
2831 bool from_unsigned1
, from_unsigned2
;
2833 lhs
= gimple_assign_lhs (stmt
);
2834 type
= TREE_TYPE (lhs
);
2835 if (TREE_CODE (type
) != INTEGER_TYPE
2836 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2839 if (code
== MINUS_EXPR
)
2840 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
2842 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
2844 rhs1
= gimple_assign_rhs1 (stmt
);
2845 rhs2
= gimple_assign_rhs2 (stmt
);
2847 if (TREE_CODE (rhs1
) == SSA_NAME
)
2849 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2850 if (is_gimple_assign (rhs1_stmt
))
2851 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2854 if (TREE_CODE (rhs2
) == SSA_NAME
)
2856 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2857 if (is_gimple_assign (rhs2_stmt
))
2858 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2861 /* Allow for one conversion statement between the multiply
2862 and addition/subtraction statement. If there are more than
2863 one conversions then we assume they would invalidate this
2864 transformation. If that's not the case then they should have
2865 been folded before now. */
2866 if (CONVERT_EXPR_CODE_P (rhs1_code
))
2868 conv1_stmt
= rhs1_stmt
;
2869 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
2870 if (TREE_CODE (rhs1
) == SSA_NAME
)
2872 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2873 if (is_gimple_assign (rhs1_stmt
))
2874 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2879 if (CONVERT_EXPR_CODE_P (rhs2_code
))
2881 conv2_stmt
= rhs2_stmt
;
2882 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
2883 if (TREE_CODE (rhs2
) == SSA_NAME
)
2885 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2886 if (is_gimple_assign (rhs2_stmt
))
2887 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2893 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2894 is_widening_mult_p, but we still need the rhs returns.
2896 It might also appear that it would be sufficient to use the existing
2897 operands of the widening multiply, but that would limit the choice of
2898 multiply-and-accumulate instructions.
2900 If the widened-multiplication result has more than one uses, it is
2901 probably wiser not to do the conversion. */
2902 if (code
== PLUS_EXPR
2903 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
2905 if (!has_single_use (rhs1
)
2906 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
2907 &type2
, &mult_rhs2
))
2910 conv_stmt
= conv1_stmt
;
2912 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
2914 if (!has_single_use (rhs2
)
2915 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
2916 &type2
, &mult_rhs2
))
2919 conv_stmt
= conv2_stmt
;
2924 to_mode
= TYPE_MODE (type
);
2925 from_mode
= TYPE_MODE (type1
);
2926 from_unsigned1
= TYPE_UNSIGNED (type1
);
2927 from_unsigned2
= TYPE_UNSIGNED (type2
);
2930 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2931 if (from_unsigned1
!= from_unsigned2
)
2933 if (!INTEGRAL_TYPE_P (type
))
2935 /* We can use a signed multiply with unsigned types as long as
2936 there is a wider mode to use, or it is the smaller of the two
2937 types that is unsigned. Note that type1 >= type2, always. */
2939 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2941 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2943 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2944 if (GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
2948 from_unsigned1
= from_unsigned2
= false;
2949 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
2953 /* If there was a conversion between the multiply and addition
2954 then we need to make sure it fits a multiply-and-accumulate.
2955 The should be a single mode change which does not change the
2959 /* We use the original, unmodified data types for this. */
2960 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
2961 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
2962 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
2963 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
2965 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
2967 /* Conversion is a truncate. */
2968 if (TYPE_PRECISION (to_type
) < data_size
)
2971 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
2973 /* Conversion is an extend. Check it's the right sort. */
2974 if (TYPE_UNSIGNED (from_type
) != is_unsigned
2975 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
2978 /* else convert is a no-op for our purposes. */
2981 /* Verify that the machine can perform a widening multiply
2982 accumulate in this mode/signedness combination, otherwise
2983 this transformation is likely to pessimize code. */
2984 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
2985 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
2986 from_mode
, 0, &actual_mode
);
2988 if (handler
== CODE_FOR_nothing
)
2991 /* Ensure that the inputs to the handler are in the correct precison
2992 for the opcode. This will be the full mode size. */
2993 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2994 if (actual_precision
!= TYPE_PRECISION (type1
)
2995 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2996 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
2997 build_nonstandard_integer_type
2998 (actual_precision
, from_unsigned1
),
3000 if (actual_precision
!= TYPE_PRECISION (type2
)
3001 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
3002 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
3003 build_nonstandard_integer_type
3004 (actual_precision
, from_unsigned2
),
3007 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
3008 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
3010 /* Handle constants. */
3011 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
3012 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
3013 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
3014 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
3016 gimple_assign_set_rhs_with_ops (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
3018 update_stmt (gsi_stmt (*gsi
));
3019 widen_mul_stats
.maccs_inserted
++;
3023 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3024 with uses in additions and subtractions to form fused multiply-add
3025 operations. Returns true if successful and MUL_STMT should be removed. */
3028 convert_mult_to_fma (gimple mul_stmt
, tree op1
, tree op2
)
3030 tree mul_result
= gimple_get_lhs (mul_stmt
);
3031 tree type
= TREE_TYPE (mul_result
);
3032 gimple use_stmt
, neguse_stmt
;
3034 use_operand_p use_p
;
3035 imm_use_iterator imm_iter
;
3037 if (FLOAT_TYPE_P (type
)
3038 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
3041 /* We don't want to do bitfield reduction ops. */
3042 if (INTEGRAL_TYPE_P (type
)
3043 && (TYPE_PRECISION (type
)
3044 != GET_MODE_PRECISION (TYPE_MODE (type
))))
3047 /* If the target doesn't support it, don't generate it. We assume that
3048 if fma isn't available then fms, fnma or fnms are not either. */
3049 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
3052 /* If the multiplication has zero uses, it is kept around probably because
3053 of -fnon-call-exceptions. Don't optimize it away in that case,
3055 if (has_zero_uses (mul_result
))
3058 /* Make sure that the multiplication statement becomes dead after
3059 the transformation, thus that all uses are transformed to FMAs.
3060 This means we assume that an FMA operation has the same cost
3062 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
3064 enum tree_code use_code
;
3065 tree result
= mul_result
;
3066 bool negate_p
= false;
3068 use_stmt
= USE_STMT (use_p
);
3070 if (is_gimple_debug (use_stmt
))
3073 /* For now restrict this operations to single basic blocks. In theory
3074 we would want to support sinking the multiplication in
3080 to form a fma in the then block and sink the multiplication to the
3082 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3085 if (!is_gimple_assign (use_stmt
))
3088 use_code
= gimple_assign_rhs_code (use_stmt
);
3090 /* A negate on the multiplication leads to FNMA. */
3091 if (use_code
== NEGATE_EXPR
)
3096 result
= gimple_assign_lhs (use_stmt
);
3098 /* Make sure the negate statement becomes dead with this
3099 single transformation. */
3100 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
3101 &use_p
, &neguse_stmt
))
3104 /* Make sure the multiplication isn't also used on that stmt. */
3105 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
3106 if (USE_FROM_PTR (usep
) == mul_result
)
3110 use_stmt
= neguse_stmt
;
3111 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3113 if (!is_gimple_assign (use_stmt
))
3116 use_code
= gimple_assign_rhs_code (use_stmt
);
3123 if (gimple_assign_rhs2 (use_stmt
) == result
)
3124 negate_p
= !negate_p
;
3129 /* FMA can only be formed from PLUS and MINUS. */
3133 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3134 by a MULT_EXPR that we'll visit later, we might be able to
3135 get a more profitable match with fnma.
3136 OTOH, if we don't, a negate / fma pair has likely lower latency
3137 that a mult / subtract pair. */
3138 if (use_code
== MINUS_EXPR
&& !negate_p
3139 && gimple_assign_rhs1 (use_stmt
) == result
3140 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
3141 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
3143 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
3145 if (TREE_CODE (rhs2
) == SSA_NAME
)
3147 gimple stmt2
= SSA_NAME_DEF_STMT (rhs2
);
3148 if (has_single_use (rhs2
)
3149 && is_gimple_assign (stmt2
)
3150 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
3155 /* We can't handle a * b + a * b. */
3156 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
3159 /* While it is possible to validate whether or not the exact form
3160 that we've recognized is available in the backend, the assumption
3161 is that the transformation is never a loss. For instance, suppose
3162 the target only has the plain FMA pattern available. Consider
3163 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3164 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3165 still have 3 operations, but in the FMA form the two NEGs are
3166 independent and could be run in parallel. */
3169 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
3171 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
3172 enum tree_code use_code
;
3173 tree addop
, mulop1
= op1
, result
= mul_result
;
3174 bool negate_p
= false;
3176 if (is_gimple_debug (use_stmt
))
3179 use_code
= gimple_assign_rhs_code (use_stmt
);
3180 if (use_code
== NEGATE_EXPR
)
3182 result
= gimple_assign_lhs (use_stmt
);
3183 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
3184 gsi_remove (&gsi
, true);
3185 release_defs (use_stmt
);
3187 use_stmt
= neguse_stmt
;
3188 gsi
= gsi_for_stmt (use_stmt
);
3189 use_code
= gimple_assign_rhs_code (use_stmt
);
3193 if (gimple_assign_rhs1 (use_stmt
) == result
)
3195 addop
= gimple_assign_rhs2 (use_stmt
);
3196 /* a * b - c -> a * b + (-c) */
3197 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3198 addop
= force_gimple_operand_gsi (&gsi
,
3199 build1 (NEGATE_EXPR
,
3201 true, NULL_TREE
, true,
3206 addop
= gimple_assign_rhs1 (use_stmt
);
3207 /* a - b * c -> (-b) * c + a */
3208 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3209 negate_p
= !negate_p
;
3213 mulop1
= force_gimple_operand_gsi (&gsi
,
3214 build1 (NEGATE_EXPR
,
3216 true, NULL_TREE
, true,
3219 fma_stmt
= gimple_build_assign (gimple_assign_lhs (use_stmt
),
3220 FMA_EXPR
, mulop1
, op2
, addop
);
3221 gsi_replace (&gsi
, fma_stmt
, true);
3222 widen_mul_stats
.fmas_inserted
++;
3228 /* Find integer multiplications where the operands are extended from
3229 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3230 where appropriate. */
3234 const pass_data pass_data_optimize_widening_mul
=
3236 GIMPLE_PASS
, /* type */
3237 "widening_mul", /* name */
3238 OPTGROUP_NONE
, /* optinfo_flags */
3239 TV_NONE
, /* tv_id */
3240 PROP_ssa
, /* properties_required */
3241 0, /* properties_provided */
3242 0, /* properties_destroyed */
3243 0, /* todo_flags_start */
3244 TODO_update_ssa
, /* todo_flags_finish */
3247 class pass_optimize_widening_mul
: public gimple_opt_pass
3250 pass_optimize_widening_mul (gcc::context
*ctxt
)
3251 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
3254 /* opt_pass methods: */
3255 virtual bool gate (function
*)
3257 return flag_expensive_optimizations
&& optimize
;
3260 virtual unsigned int execute (function
*);
3262 }; // class pass_optimize_widening_mul
3265 pass_optimize_widening_mul::execute (function
*fun
)
3268 bool cfg_changed
= false;
3270 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
3272 FOR_EACH_BB_FN (bb
, fun
)
3274 gimple_stmt_iterator gsi
;
3276 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
3278 gimple stmt
= gsi_stmt (gsi
);
3279 enum tree_code code
;
3281 if (is_gimple_assign (stmt
))
3283 code
= gimple_assign_rhs_code (stmt
);
3287 if (!convert_mult_to_widen (stmt
, &gsi
)
3288 && convert_mult_to_fma (stmt
,
3289 gimple_assign_rhs1 (stmt
),
3290 gimple_assign_rhs2 (stmt
)))
3292 gsi_remove (&gsi
, true);
3293 release_defs (stmt
);
3300 convert_plusminus_to_widen (&gsi
, stmt
, code
);
3306 else if (is_gimple_call (stmt
)
3307 && gimple_call_lhs (stmt
))
3309 tree fndecl
= gimple_call_fndecl (stmt
);
3311 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3313 switch (DECL_FUNCTION_CODE (fndecl
))
3318 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
3319 && REAL_VALUES_EQUAL
3320 (TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
3322 && convert_mult_to_fma (stmt
,
3323 gimple_call_arg (stmt
, 0),
3324 gimple_call_arg (stmt
, 0)))
3326 unlink_stmt_vdef (stmt
);
3327 if (gsi_remove (&gsi
, true)
3328 && gimple_purge_dead_eh_edges (bb
))
3330 release_defs (stmt
);
3343 statistics_counter_event (fun
, "widening multiplications inserted",
3344 widen_mul_stats
.widen_mults_inserted
);
3345 statistics_counter_event (fun
, "widening maccs inserted",
3346 widen_mul_stats
.maccs_inserted
);
3347 statistics_counter_event (fun
, "fused multiply-adds inserted",
3348 widen_mul_stats
.fmas_inserted
);
3350 return cfg_changed
? TODO_cleanup_cfg
: 0;
3356 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
3358 return new pass_optimize_widening_mul (ctxt
);