2015-05-12 Pierre-Marie de Rodat <derodat@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob001365b712f765478b6b7f49f1e74b1d2897a709
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Targparm; use Targparm;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Subprogram_Order (N : Node_Id);
157 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
158 -- the alpha ordering rule for N if this ordering requirement applicable.
160 procedure Check_Returns
161 (HSS : Node_Id;
162 Mode : Character;
163 Err : out Boolean;
164 Proc : Entity_Id := Empty);
165 -- Called to check for missing return statements in a function body, or for
166 -- returns present in a procedure body which has No_Return set. HSS is the
167 -- handled statement sequence for the subprogram body. This procedure
168 -- checks all flow paths to make sure they either have return (Mode = 'F',
169 -- used for functions) or do not have a return (Mode = 'P', used for
170 -- No_Return procedures). The flag Err is set if there are any control
171 -- paths not explicitly terminated by a return in the function case, and is
172 -- True otherwise. Proc is the entity for the procedure case and is used
173 -- in posting the warning message.
175 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
176 -- In Ada 2012, a primitive equality operator on an untagged record type
177 -- must appear before the type is frozen, and have the same visibility as
178 -- that of the type. This procedure checks that this rule is met, and
179 -- otherwise emits an error on the subprogram declaration and a warning
180 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
181 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
182 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
183 -- is set, otherwise the call has no effect.
185 procedure Enter_Overloaded_Entity (S : Entity_Id);
186 -- This procedure makes S, a new overloaded entity, into the first visible
187 -- entity with that name.
189 function Is_Non_Overriding_Operation
190 (Prev_E : Entity_Id;
191 New_E : Entity_Id) return Boolean;
192 -- Enforce the rule given in 12.3(18): a private operation in an instance
193 -- overrides an inherited operation only if the corresponding operation
194 -- was overriding in the generic. This needs to be checked for primitive
195 -- operations of types derived (in the generic unit) from formal private
196 -- or formal derived types.
198 procedure Make_Inequality_Operator (S : Entity_Id);
199 -- Create the declaration for an inequality operator that is implicitly
200 -- created by a user-defined equality operator that yields a boolean.
202 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
207 ---------------------------------------------
208 -- Analyze_Abstract_Subprogram_Declaration --
209 ---------------------------------------------
211 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
212 Designator : constant Entity_Id :=
213 Analyze_Subprogram_Specification (Specification (N));
214 Scop : constant Entity_Id := Current_Scope;
216 begin
217 -- The abstract subprogram declaration may be subject to pragma Ghost
218 -- with policy Ignore. Set the mode now to ensure that any nodes
219 -- generated during analysis and expansion are properly flagged as
220 -- ignored Ghost.
222 Set_Ghost_Mode (N);
223 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
225 Generate_Definition (Designator);
227 Set_Is_Abstract_Subprogram (Designator);
228 New_Overloaded_Entity (Designator);
229 Check_Delayed_Subprogram (Designator);
231 Set_Categorization_From_Scope (Designator, Scop);
233 -- An abstract subprogram declared within a Ghost region is rendered
234 -- Ghost (SPARK RM 6.9(2)).
236 if Comes_From_Source (Designator) and then Ghost_Mode > None then
237 Set_Is_Ghost_Entity (Designator);
238 end if;
240 if Ekind (Scope (Designator)) = E_Protected_Type then
241 Error_Msg_N
242 ("abstract subprogram not allowed in protected type", N);
244 -- Issue a warning if the abstract subprogram is neither a dispatching
245 -- operation nor an operation that overrides an inherited subprogram or
246 -- predefined operator, since this most likely indicates a mistake.
248 elsif Warn_On_Redundant_Constructs
249 and then not Is_Dispatching_Operation (Designator)
250 and then not Present (Overridden_Operation (Designator))
251 and then (not Is_Operator_Symbol_Name (Chars (Designator))
252 or else Scop /= Scope (Etype (First_Formal (Designator))))
253 then
254 Error_Msg_N
255 ("abstract subprogram is not dispatching or overriding?r?", N);
256 end if;
258 Generate_Reference_To_Formals (Designator);
259 Check_Eliminated (Designator);
261 if Has_Aspects (N) then
262 Analyze_Aspect_Specifications (N, Designator);
263 end if;
264 end Analyze_Abstract_Subprogram_Declaration;
266 ---------------------------------
267 -- Analyze_Expression_Function --
268 ---------------------------------
270 procedure Analyze_Expression_Function (N : Node_Id) is
271 Expr : constant Node_Id := Expression (N);
272 Loc : constant Source_Ptr := Sloc (N);
273 LocX : constant Source_Ptr := Sloc (Expr);
274 Spec : constant Node_Id := Specification (N);
276 Def_Id : Entity_Id;
278 Prev : Entity_Id;
279 -- If the expression is a completion, Prev is the entity whose
280 -- declaration is completed. Def_Id is needed to analyze the spec.
282 New_Body : Node_Id;
283 New_Spec : Node_Id;
284 Ret : Node_Id;
286 begin
287 -- This is one of the occasions on which we transform the tree during
288 -- semantic analysis. If this is a completion, transform the expression
289 -- function into an equivalent subprogram body, and analyze it.
291 -- Expression functions are inlined unconditionally. The back-end will
292 -- determine whether this is possible.
294 Inline_Processing_Required := True;
296 -- Create a specification for the generated body. This must be done
297 -- prior to the analysis of the initial declaration.
299 New_Spec := Copy_Subprogram_Spec (Spec);
300 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
302 -- If there are previous overloadable entities with the same name,
303 -- check whether any of them is completed by the expression function.
304 -- In a generic context a formal subprogram has no completion.
306 if Present (Prev)
307 and then Is_Overloadable (Prev)
308 and then not Is_Formal_Subprogram (Prev)
309 then
310 Def_Id := Analyze_Subprogram_Specification (Spec);
311 Prev := Find_Corresponding_Spec (N);
313 -- The previous entity may be an expression function as well, in
314 -- which case the redeclaration is illegal.
316 if Present (Prev)
317 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
318 N_Expression_Function
319 then
320 Error_Msg_Sloc := Sloc (Prev);
321 Error_Msg_N ("& conflicts with declaration#", Def_Id);
322 return;
323 end if;
324 end if;
326 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
328 New_Body :=
329 Make_Subprogram_Body (Loc,
330 Specification => New_Spec,
331 Declarations => Empty_List,
332 Handled_Statement_Sequence =>
333 Make_Handled_Sequence_Of_Statements (LocX,
334 Statements => New_List (Ret)));
336 -- If the expression completes a generic subprogram, we must create a
337 -- separate node for the body, because at instantiation the original
338 -- node of the generic copy must be a generic subprogram body, and
339 -- cannot be a expression function. Otherwise we just rewrite the
340 -- expression with the non-generic body.
342 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
343 Insert_After (N, New_Body);
345 -- Propagate any aspects or pragmas that apply to the expression
346 -- function to the proper body when the expression function acts
347 -- as a completion.
349 if Has_Aspects (N) then
350 Move_Aspects (N, To => New_Body);
351 end if;
353 Relocate_Pragmas_To_Body (New_Body);
355 Rewrite (N, Make_Null_Statement (Loc));
356 Set_Has_Completion (Prev, False);
357 Analyze (N);
358 Analyze (New_Body);
359 Set_Is_Inlined (Prev);
361 -- If the expression function is a completion, the previous declaration
362 -- must come from source. We know already that appears in the current
363 -- scope. The entity itself may be internally created if within a body
364 -- to be inlined.
366 elsif Present (Prev)
367 and then Comes_From_Source (Parent (Prev))
368 and then not Is_Formal_Subprogram (Prev)
369 then
370 Set_Has_Completion (Prev, False);
372 -- An expression function that is a completion freezes the
373 -- expression. This means freezing the return type, and if it is
374 -- an access type, freezing its designated type as well.
376 -- Note that we cannot defer this freezing to the analysis of the
377 -- expression itself, because a freeze node might appear in a nested
378 -- scope, leading to an elaboration order issue in gigi.
380 Freeze_Before (N, Etype (Prev));
382 if Is_Access_Type (Etype (Prev)) then
383 Freeze_Before (N, Designated_Type (Etype (Prev)));
384 end if;
386 -- For navigation purposes, indicate that the function is a body
388 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
389 Rewrite (N, New_Body);
391 -- Correct the parent pointer of the aspect specification list to
392 -- reference the rewritten node.
394 if Has_Aspects (N) then
395 Set_Parent (Aspect_Specifications (N), N);
396 end if;
398 -- Propagate any pragmas that apply to the expression function to the
399 -- proper body when the expression function acts as a completion.
400 -- Aspects are automatically transfered because of node rewriting.
402 Relocate_Pragmas_To_Body (N);
403 Analyze (N);
405 -- Prev is the previous entity with the same name, but it is can
406 -- be an unrelated spec that is not completed by the expression
407 -- function. In that case the relevant entity is the one in the body.
408 -- Not clear that the backend can inline it in this case ???
410 if Has_Completion (Prev) then
411 Set_Is_Inlined (Prev);
413 -- The formals of the expression function are body formals,
414 -- and do not appear in the ali file, which will only contain
415 -- references to the formals of the original subprogram spec.
417 declare
418 F1 : Entity_Id;
419 F2 : Entity_Id;
421 begin
422 F1 := First_Formal (Def_Id);
423 F2 := First_Formal (Prev);
425 while Present (F1) loop
426 Set_Spec_Entity (F1, F2);
427 Next_Formal (F1);
428 Next_Formal (F2);
429 end loop;
430 end;
432 else
433 Set_Is_Inlined (Defining_Entity (New_Body));
434 end if;
436 -- If this is not a completion, create both a declaration and a body, so
437 -- that the expression can be inlined whenever possible.
439 else
440 -- An expression function that is not a completion is not a
441 -- subprogram declaration, and thus cannot appear in a protected
442 -- definition.
444 if Nkind (Parent (N)) = N_Protected_Definition then
445 Error_Msg_N
446 ("an expression function is not a legal protected operation", N);
447 end if;
449 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
451 -- Correct the parent pointer of the aspect specification list to
452 -- reference the rewritten node.
454 if Has_Aspects (N) then
455 Set_Parent (Aspect_Specifications (N), N);
456 end if;
458 Analyze (N);
460 -- Within a generic pre-analyze the original expression for name
461 -- capture. The body is also generated but plays no role in
462 -- this because it is not part of the original source.
464 if Inside_A_Generic then
465 declare
466 Id : constant Entity_Id := Defining_Entity (N);
468 begin
469 Set_Has_Completion (Id);
470 Push_Scope (Id);
471 Install_Formals (Id);
472 Preanalyze_Spec_Expression (Expr, Etype (Id));
473 End_Scope;
474 end;
475 end if;
477 Set_Is_Inlined (Defining_Entity (N));
479 -- Establish the linkages between the spec and the body. These are
480 -- used when the expression function acts as the prefix of attribute
481 -- 'Access in order to freeze the original expression which has been
482 -- moved to the generated body.
484 Set_Corresponding_Body (N, Defining_Entity (New_Body));
485 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
487 -- To prevent premature freeze action, insert the new body at the end
488 -- of the current declarations, or at the end of the package spec.
489 -- However, resolve usage names now, to prevent spurious visibility
490 -- on later entities. Note that the function can now be called in
491 -- the current declarative part, which will appear to be prior to
492 -- the presence of the body in the code. There are nevertheless no
493 -- order of elaboration issues because all name resolution has taken
494 -- place at the point of declaration.
496 declare
497 Decls : List_Id := List_Containing (N);
498 Par : constant Node_Id := Parent (Decls);
499 Id : constant Entity_Id := Defining_Entity (N);
501 begin
502 -- If this is a wrapper created for in an instance for a formal
503 -- subprogram, insert body after declaration, to be analyzed when
504 -- the enclosing instance is analyzed.
506 if GNATprove_Mode
507 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
508 then
509 Insert_After (N, New_Body);
511 else
512 if Nkind (Par) = N_Package_Specification
513 and then Decls = Visible_Declarations (Par)
514 and then Present (Private_Declarations (Par))
515 and then not Is_Empty_List (Private_Declarations (Par))
516 then
517 Decls := Private_Declarations (Par);
518 end if;
520 Insert_After (Last (Decls), New_Body);
521 Push_Scope (Id);
522 Install_Formals (Id);
524 -- Preanalyze the expression for name capture, except in an
525 -- instance, where this has been done during generic analysis,
526 -- and will be redone when analyzing the body.
528 declare
529 Expr : constant Node_Id := Expression (Ret);
531 begin
532 Set_Parent (Expr, Ret);
534 if not In_Instance then
535 Preanalyze_Spec_Expression (Expr, Etype (Id));
536 end if;
537 end;
539 End_Scope;
540 end if;
541 end;
542 end if;
544 -- If the return expression is a static constant, we suppress warning
545 -- messages on unused formals, which in most cases will be noise.
547 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
548 Is_OK_Static_Expression (Expr));
549 end Analyze_Expression_Function;
551 ----------------------------------------
552 -- Analyze_Extended_Return_Statement --
553 ----------------------------------------
555 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
556 begin
557 Check_Compiler_Unit ("extended return statement", N);
558 Analyze_Return_Statement (N);
559 end Analyze_Extended_Return_Statement;
561 ----------------------------
562 -- Analyze_Function_Call --
563 ----------------------------
565 procedure Analyze_Function_Call (N : Node_Id) is
566 Actuals : constant List_Id := Parameter_Associations (N);
567 Func_Nam : constant Node_Id := Name (N);
568 Actual : Node_Id;
570 begin
571 Analyze (Func_Nam);
573 -- A call of the form A.B (X) may be an Ada 2005 call, which is
574 -- rewritten as B (A, X). If the rewriting is successful, the call
575 -- has been analyzed and we just return.
577 if Nkind (Func_Nam) = N_Selected_Component
578 and then Name (N) /= Func_Nam
579 and then Is_Rewrite_Substitution (N)
580 and then Present (Etype (N))
581 then
582 return;
583 end if;
585 -- If error analyzing name, then set Any_Type as result type and return
587 if Etype (Func_Nam) = Any_Type then
588 Set_Etype (N, Any_Type);
589 return;
590 end if;
592 -- Otherwise analyze the parameters
594 if Present (Actuals) then
595 Actual := First (Actuals);
596 while Present (Actual) loop
597 Analyze (Actual);
598 Check_Parameterless_Call (Actual);
599 Next (Actual);
600 end loop;
601 end if;
603 Analyze_Call (N);
604 end Analyze_Function_Call;
606 -----------------------------
607 -- Analyze_Function_Return --
608 -----------------------------
610 procedure Analyze_Function_Return (N : Node_Id) is
611 Loc : constant Source_Ptr := Sloc (N);
612 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
613 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
615 R_Type : constant Entity_Id := Etype (Scope_Id);
616 -- Function result subtype
618 procedure Check_Limited_Return (Expr : Node_Id);
619 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
620 -- limited types. Used only for simple return statements.
621 -- Expr is the expression returned.
623 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
624 -- Check that the return_subtype_indication properly matches the result
625 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
627 --------------------------
628 -- Check_Limited_Return --
629 --------------------------
631 procedure Check_Limited_Return (Expr : Node_Id) is
632 begin
633 -- Ada 2005 (AI-318-02): Return-by-reference types have been
634 -- removed and replaced by anonymous access results. This is an
635 -- incompatibility with Ada 95. Not clear whether this should be
636 -- enforced yet or perhaps controllable with special switch. ???
638 -- A limited interface that is not immutably limited is OK.
640 if Is_Limited_Interface (R_Type)
641 and then
642 not (Is_Task_Interface (R_Type)
643 or else Is_Protected_Interface (R_Type)
644 or else Is_Synchronized_Interface (R_Type))
645 then
646 null;
648 elsif Is_Limited_Type (R_Type)
649 and then not Is_Interface (R_Type)
650 and then Comes_From_Source (N)
651 and then not In_Instance_Body
652 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
653 then
654 -- Error in Ada 2005
656 if Ada_Version >= Ada_2005
657 and then not Debug_Flag_Dot_L
658 and then not GNAT_Mode
659 then
660 Error_Msg_N
661 ("(Ada 2005) cannot copy object of a limited type "
662 & "(RM-2005 6.5(5.5/2))", Expr);
664 if Is_Limited_View (R_Type) then
665 Error_Msg_N
666 ("\return by reference not permitted in Ada 2005", Expr);
667 end if;
669 -- Warn in Ada 95 mode, to give folks a heads up about this
670 -- incompatibility.
672 -- In GNAT mode, this is just a warning, to allow it to be
673 -- evilly turned off. Otherwise it is a real error.
675 -- In a generic context, simplify the warning because it makes
676 -- no sense to discuss pass-by-reference or copy.
678 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
679 if Inside_A_Generic then
680 Error_Msg_N
681 ("return of limited object not permitted in Ada 2005 "
682 & "(RM-2005 6.5(5.5/2))?y?", Expr);
684 elsif Is_Limited_View (R_Type) then
685 Error_Msg_N
686 ("return by reference not permitted in Ada 2005 "
687 & "(RM-2005 6.5(5.5/2))?y?", Expr);
688 else
689 Error_Msg_N
690 ("cannot copy object of a limited type in Ada 2005 "
691 & "(RM-2005 6.5(5.5/2))?y?", Expr);
692 end if;
694 -- Ada 95 mode, compatibility warnings disabled
696 else
697 return; -- skip continuation messages below
698 end if;
700 if not Inside_A_Generic then
701 Error_Msg_N
702 ("\consider switching to return of access type", Expr);
703 Explain_Limited_Type (R_Type, Expr);
704 end if;
705 end if;
706 end Check_Limited_Return;
708 -------------------------------------
709 -- Check_Return_Subtype_Indication --
710 -------------------------------------
712 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
713 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
715 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
716 -- Subtype given in the extended return statement (must match R_Type)
718 Subtype_Ind : constant Node_Id :=
719 Object_Definition (Original_Node (Obj_Decl));
721 R_Type_Is_Anon_Access : constant Boolean :=
722 Ekind_In (R_Type,
723 E_Anonymous_Access_Subprogram_Type,
724 E_Anonymous_Access_Protected_Subprogram_Type,
725 E_Anonymous_Access_Type);
726 -- True if return type of the function is an anonymous access type
727 -- Can't we make Is_Anonymous_Access_Type in einfo ???
729 R_Stm_Type_Is_Anon_Access : constant Boolean :=
730 Ekind_In (R_Stm_Type,
731 E_Anonymous_Access_Subprogram_Type,
732 E_Anonymous_Access_Protected_Subprogram_Type,
733 E_Anonymous_Access_Type);
734 -- True if type of the return object is an anonymous access type
736 procedure Error_No_Match (N : Node_Id);
737 -- Output error messages for case where types do not statically
738 -- match. N is the location for the messages.
740 --------------------
741 -- Error_No_Match --
742 --------------------
744 procedure Error_No_Match (N : Node_Id) is
745 begin
746 Error_Msg_N
747 ("subtype must statically match function result subtype", N);
749 if not Predicates_Match (R_Stm_Type, R_Type) then
750 Error_Msg_Node_2 := R_Type;
751 Error_Msg_NE
752 ("\predicate of& does not match predicate of&",
753 N, R_Stm_Type);
754 end if;
755 end Error_No_Match;
757 -- Start of processing for Check_Return_Subtype_Indication
759 begin
760 -- First, avoid cascaded errors
762 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
763 return;
764 end if;
766 -- "return access T" case; check that the return statement also has
767 -- "access T", and that the subtypes statically match:
768 -- if this is an access to subprogram the signatures must match.
770 if R_Type_Is_Anon_Access then
771 if R_Stm_Type_Is_Anon_Access then
773 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
774 then
775 if Base_Type (Designated_Type (R_Stm_Type)) /=
776 Base_Type (Designated_Type (R_Type))
777 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
778 then
779 Error_No_Match (Subtype_Mark (Subtype_Ind));
780 end if;
782 else
783 -- For two anonymous access to subprogram types, the
784 -- types themselves must be type conformant.
786 if not Conforming_Types
787 (R_Stm_Type, R_Type, Fully_Conformant)
788 then
789 Error_No_Match (Subtype_Ind);
790 end if;
791 end if;
793 else
794 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
795 end if;
797 -- If the return object is of an anonymous access type, then report
798 -- an error if the function's result type is not also anonymous.
800 elsif R_Stm_Type_Is_Anon_Access
801 and then not R_Type_Is_Anon_Access
802 then
803 Error_Msg_N ("anonymous access not allowed for function with "
804 & "named access result", Subtype_Ind);
806 -- Subtype indication case: check that the return object's type is
807 -- covered by the result type, and that the subtypes statically match
808 -- when the result subtype is constrained. Also handle record types
809 -- with unknown discriminants for which we have built the underlying
810 -- record view. Coverage is needed to allow specific-type return
811 -- objects when the result type is class-wide (see AI05-32).
813 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
814 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
815 and then
816 Covers
817 (Base_Type (R_Type),
818 Underlying_Record_View (Base_Type (R_Stm_Type))))
819 then
820 -- A null exclusion may be present on the return type, on the
821 -- function specification, on the object declaration or on the
822 -- subtype itself.
824 if Is_Access_Type (R_Type)
825 and then
826 (Can_Never_Be_Null (R_Type)
827 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
828 Can_Never_Be_Null (R_Stm_Type)
829 then
830 Error_No_Match (Subtype_Ind);
831 end if;
833 -- AI05-103: for elementary types, subtypes must statically match
835 if Is_Constrained (R_Type)
836 or else Is_Access_Type (R_Type)
837 then
838 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
839 Error_No_Match (Subtype_Ind);
840 end if;
841 end if;
843 -- All remaining cases are illegal
845 -- Note: previous versions of this subprogram allowed the return
846 -- value to be the ancestor of the return type if the return type
847 -- was a null extension. This was plainly incorrect.
849 else
850 Error_Msg_N
851 ("wrong type for return_subtype_indication", Subtype_Ind);
852 end if;
853 end Check_Return_Subtype_Indication;
855 ---------------------
856 -- Local Variables --
857 ---------------------
859 Expr : Node_Id;
860 Obj_Decl : Node_Id;
862 -- Start of processing for Analyze_Function_Return
864 begin
865 Set_Return_Present (Scope_Id);
867 if Nkind (N) = N_Simple_Return_Statement then
868 Expr := Expression (N);
870 -- Guard against a malformed expression. The parser may have tried to
871 -- recover but the node is not analyzable.
873 if Nkind (Expr) = N_Error then
874 Set_Etype (Expr, Any_Type);
875 Expander_Mode_Save_And_Set (False);
876 return;
878 else
879 -- The resolution of a controlled [extension] aggregate associated
880 -- with a return statement creates a temporary which needs to be
881 -- finalized on function exit. Wrap the return statement inside a
882 -- block so that the finalization machinery can detect this case.
883 -- This early expansion is done only when the return statement is
884 -- not part of a handled sequence of statements.
886 if Nkind_In (Expr, N_Aggregate,
887 N_Extension_Aggregate)
888 and then Needs_Finalization (R_Type)
889 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
890 then
891 Rewrite (N,
892 Make_Block_Statement (Loc,
893 Handled_Statement_Sequence =>
894 Make_Handled_Sequence_Of_Statements (Loc,
895 Statements => New_List (Relocate_Node (N)))));
897 Analyze (N);
898 return;
899 end if;
901 Analyze (Expr);
903 -- Ada 2005 (AI-251): If the type of the returned object is
904 -- an access to an interface type then we add an implicit type
905 -- conversion to force the displacement of the "this" pointer to
906 -- reference the secondary dispatch table. We cannot delay the
907 -- generation of this implicit conversion until the expansion
908 -- because in this case the type resolution changes the decoration
909 -- of the expression node to match R_Type; by contrast, if the
910 -- returned object is a class-wide interface type then it is too
911 -- early to generate here the implicit conversion since the return
912 -- statement may be rewritten by the expander into an extended
913 -- return statement whose expansion takes care of adding the
914 -- implicit type conversion to displace the pointer to the object.
916 if Expander_Active
917 and then Serious_Errors_Detected = 0
918 and then Is_Access_Type (R_Type)
919 and then Nkind (Expr) /= N_Null
920 and then Is_Interface (Designated_Type (R_Type))
921 and then Is_Progenitor (Designated_Type (R_Type),
922 Designated_Type (Etype (Expr)))
923 then
924 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
925 Analyze (Expr);
926 end if;
928 Resolve (Expr, R_Type);
929 Check_Limited_Return (Expr);
930 end if;
932 -- RETURN only allowed in SPARK as the last statement in function
934 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
935 and then
936 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
937 or else Present (Next (N)))
938 then
939 Check_SPARK_05_Restriction
940 ("RETURN should be the last statement in function", N);
941 end if;
943 else
944 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
945 Obj_Decl := Last (Return_Object_Declarations (N));
947 -- Analyze parts specific to extended_return_statement:
949 declare
950 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
951 HSS : constant Node_Id := Handled_Statement_Sequence (N);
953 begin
954 Expr := Expression (Obj_Decl);
956 -- Note: The check for OK_For_Limited_Init will happen in
957 -- Analyze_Object_Declaration; we treat it as a normal
958 -- object declaration.
960 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
961 Analyze (Obj_Decl);
963 Check_Return_Subtype_Indication (Obj_Decl);
965 if Present (HSS) then
966 Analyze (HSS);
968 if Present (Exception_Handlers (HSS)) then
970 -- ???Has_Nested_Block_With_Handler needs to be set.
971 -- Probably by creating an actual N_Block_Statement.
972 -- Probably in Expand.
974 null;
975 end if;
976 end if;
978 -- Mark the return object as referenced, since the return is an
979 -- implicit reference of the object.
981 Set_Referenced (Defining_Identifier (Obj_Decl));
983 Check_References (Stm_Entity);
985 -- Check RM 6.5 (5.9/3)
987 if Has_Aliased then
988 if Ada_Version < Ada_2012 then
990 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
991 -- Can it really happen (extended return???)
993 Error_Msg_N
994 ("aliased only allowed for limited return objects "
995 & "in Ada 2012??", N);
997 elsif not Is_Limited_View (R_Type) then
998 Error_Msg_N
999 ("aliased only allowed for limited return objects", N);
1000 end if;
1001 end if;
1002 end;
1003 end if;
1005 -- Case of Expr present
1007 if Present (Expr)
1009 -- Defend against previous errors
1011 and then Nkind (Expr) /= N_Empty
1012 and then Present (Etype (Expr))
1013 then
1014 -- Apply constraint check. Note that this is done before the implicit
1015 -- conversion of the expression done for anonymous access types to
1016 -- ensure correct generation of the null-excluding check associated
1017 -- with null-excluding expressions found in return statements.
1019 Apply_Constraint_Check (Expr, R_Type);
1021 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1022 -- type, apply an implicit conversion of the expression to that type
1023 -- to force appropriate static and run-time accessibility checks.
1025 if Ada_Version >= Ada_2005
1026 and then Ekind (R_Type) = E_Anonymous_Access_Type
1027 then
1028 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1029 Analyze_And_Resolve (Expr, R_Type);
1031 -- If this is a local anonymous access to subprogram, the
1032 -- accessibility check can be applied statically. The return is
1033 -- illegal if the access type of the return expression is declared
1034 -- inside of the subprogram (except if it is the subtype indication
1035 -- of an extended return statement).
1037 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1038 if not Comes_From_Source (Current_Scope)
1039 or else Ekind (Current_Scope) = E_Return_Statement
1040 then
1041 null;
1043 elsif
1044 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1045 then
1046 Error_Msg_N ("cannot return local access to subprogram", N);
1047 end if;
1049 -- The expression cannot be of a formal incomplete type
1051 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1052 and then Is_Generic_Type (Etype (Expr))
1053 then
1054 Error_Msg_N
1055 ("cannot return expression of a formal incomplete type", N);
1056 end if;
1058 -- If the result type is class-wide, then check that the return
1059 -- expression's type is not declared at a deeper level than the
1060 -- function (RM05-6.5(5.6/2)).
1062 if Ada_Version >= Ada_2005
1063 and then Is_Class_Wide_Type (R_Type)
1064 then
1065 if Type_Access_Level (Etype (Expr)) >
1066 Subprogram_Access_Level (Scope_Id)
1067 then
1068 Error_Msg_N
1069 ("level of return expression type is deeper than "
1070 & "class-wide function!", Expr);
1071 end if;
1072 end if;
1074 -- Check incorrect use of dynamically tagged expression
1076 if Is_Tagged_Type (R_Type) then
1077 Check_Dynamically_Tagged_Expression
1078 (Expr => Expr,
1079 Typ => R_Type,
1080 Related_Nod => N);
1081 end if;
1083 -- ??? A real run-time accessibility check is needed in cases
1084 -- involving dereferences of access parameters. For now we just
1085 -- check the static cases.
1087 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1088 and then Is_Limited_View (Etype (Scope_Id))
1089 and then Object_Access_Level (Expr) >
1090 Subprogram_Access_Level (Scope_Id)
1091 then
1092 -- Suppress the message in a generic, where the rewriting
1093 -- is irrelevant.
1095 if Inside_A_Generic then
1096 null;
1098 else
1099 Rewrite (N,
1100 Make_Raise_Program_Error (Loc,
1101 Reason => PE_Accessibility_Check_Failed));
1102 Analyze (N);
1104 Error_Msg_Warn := SPARK_Mode /= On;
1105 Error_Msg_N ("cannot return a local value by reference<<", N);
1106 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1107 end if;
1108 end if;
1110 if Known_Null (Expr)
1111 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1112 and then Null_Exclusion_Present (Parent (Scope_Id))
1113 then
1114 Apply_Compile_Time_Constraint_Error
1115 (N => Expr,
1116 Msg => "(Ada 2005) null not allowed for "
1117 & "null-excluding return??",
1118 Reason => CE_Null_Not_Allowed);
1119 end if;
1121 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1122 -- has no initializing expression.
1124 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1125 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1126 Subprogram_Access_Level (Scope_Id)
1127 then
1128 Error_Msg_N
1129 ("level of return expression type is deeper than "
1130 & "class-wide function!", Obj_Decl);
1131 end if;
1132 end if;
1133 end Analyze_Function_Return;
1135 -------------------------------------
1136 -- Analyze_Generic_Subprogram_Body --
1137 -------------------------------------
1139 procedure Analyze_Generic_Subprogram_Body
1140 (N : Node_Id;
1141 Gen_Id : Entity_Id)
1143 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1144 Kind : constant Entity_Kind := Ekind (Gen_Id);
1145 Body_Id : Entity_Id;
1146 New_N : Node_Id;
1147 Spec : Node_Id;
1149 begin
1150 -- Copy body and disable expansion while analyzing the generic For a
1151 -- stub, do not copy the stub (which would load the proper body), this
1152 -- will be done when the proper body is analyzed.
1154 if Nkind (N) /= N_Subprogram_Body_Stub then
1155 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1156 Rewrite (N, New_N);
1158 -- Once the contents of the generic copy and the template are
1159 -- swapped, do the same for their respective aspect specifications.
1161 Exchange_Aspects (N, New_N);
1163 -- Collect all contract-related source pragmas found within the
1164 -- template and attach them to the contract of the subprogram body.
1165 -- This contract is used in the capture of global references within
1166 -- annotations.
1168 Create_Generic_Contract (N);
1170 Start_Generic;
1171 end if;
1173 Spec := Specification (N);
1175 -- Within the body of the generic, the subprogram is callable, and
1176 -- behaves like the corresponding non-generic unit.
1178 Body_Id := Defining_Entity (Spec);
1180 if Kind = E_Generic_Procedure
1181 and then Nkind (Spec) /= N_Procedure_Specification
1182 then
1183 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1184 return;
1186 elsif Kind = E_Generic_Function
1187 and then Nkind (Spec) /= N_Function_Specification
1188 then
1189 Error_Msg_N ("invalid body for generic function ", Body_Id);
1190 return;
1191 end if;
1193 Set_Corresponding_Body (Gen_Decl, Body_Id);
1195 if Has_Completion (Gen_Id)
1196 and then Nkind (Parent (N)) /= N_Subunit
1197 then
1198 Error_Msg_N ("duplicate generic body", N);
1199 return;
1200 else
1201 Set_Has_Completion (Gen_Id);
1202 end if;
1204 if Nkind (N) = N_Subprogram_Body_Stub then
1205 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1206 else
1207 Set_Corresponding_Spec (N, Gen_Id);
1208 end if;
1210 if Nkind (Parent (N)) = N_Compilation_Unit then
1211 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1212 end if;
1214 -- Make generic parameters immediately visible in the body. They are
1215 -- needed to process the formals declarations. Then make the formals
1216 -- visible in a separate step.
1218 Push_Scope (Gen_Id);
1220 declare
1221 E : Entity_Id;
1222 First_Ent : Entity_Id;
1224 begin
1225 First_Ent := First_Entity (Gen_Id);
1227 E := First_Ent;
1228 while Present (E) and then not Is_Formal (E) loop
1229 Install_Entity (E);
1230 Next_Entity (E);
1231 end loop;
1233 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1235 -- Now generic formals are visible, and the specification can be
1236 -- analyzed, for subsequent conformance check.
1238 Body_Id := Analyze_Subprogram_Specification (Spec);
1240 -- Make formal parameters visible
1242 if Present (E) then
1244 -- E is the first formal parameter, we loop through the formals
1245 -- installing them so that they will be visible.
1247 Set_First_Entity (Gen_Id, E);
1248 while Present (E) loop
1249 Install_Entity (E);
1250 Next_Formal (E);
1251 end loop;
1252 end if;
1254 -- Visible generic entity is callable within its own body
1256 Set_Ekind (Gen_Id, Ekind (Body_Id));
1257 Set_Ekind (Body_Id, E_Subprogram_Body);
1258 Set_Convention (Body_Id, Convention (Gen_Id));
1259 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1260 Set_Scope (Body_Id, Scope (Gen_Id));
1262 -- Inherit the "ghostness" of the generic spec. Note that this
1263 -- property is not directly inherited as the body may be subject
1264 -- to a different Ghost assertion policy.
1266 if Is_Ghost_Entity (Gen_Id) or else Ghost_Mode > None then
1267 Set_Is_Ghost_Entity (Body_Id);
1269 -- The Ghost policy in effect at the point of declaration and at
1270 -- the point of completion must match (SPARK RM 6.9(15)).
1272 Check_Ghost_Completion (Gen_Id, Body_Id);
1273 end if;
1275 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1277 if Nkind (N) = N_Subprogram_Body_Stub then
1279 -- No body to analyze, so restore state of generic unit
1281 Set_Ekind (Gen_Id, Kind);
1282 Set_Ekind (Body_Id, Kind);
1284 if Present (First_Ent) then
1285 Set_First_Entity (Gen_Id, First_Ent);
1286 end if;
1288 End_Scope;
1289 return;
1290 end if;
1292 -- If this is a compilation unit, it must be made visible explicitly,
1293 -- because the compilation of the declaration, unlike other library
1294 -- unit declarations, does not. If it is not a unit, the following
1295 -- is redundant but harmless.
1297 Set_Is_Immediately_Visible (Gen_Id);
1298 Reference_Body_Formals (Gen_Id, Body_Id);
1300 if Is_Child_Unit (Gen_Id) then
1301 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1302 end if;
1304 Set_Actual_Subtypes (N, Current_Scope);
1306 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1307 Set_SPARK_Pragma_Inherited (Body_Id, True);
1309 -- Analyze any aspect specifications that appear on the generic
1310 -- subprogram body.
1312 if Has_Aspects (N) then
1313 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1314 end if;
1316 Analyze_Declarations (Declarations (N));
1317 Check_Completion;
1319 -- When a generic subprogram body appears inside a package, its
1320 -- contract is analyzed at the end of the package body declarations.
1321 -- This is due to the delay with respect of the package contract upon
1322 -- which the body contract may depend. When the generic subprogram
1323 -- body is a compilation unit, this delay is not necessary.
1325 if Nkind (Parent (N)) = N_Compilation_Unit then
1326 Analyze_Subprogram_Body_Contract (Body_Id);
1328 -- Capture all global references in a generic subprogram body
1329 -- that acts as a compilation unit now that the contract has
1330 -- been analyzed.
1332 Save_Global_References_In_Contract
1333 (Templ => Original_Node (N),
1334 Gen_Id => Gen_Id);
1335 end if;
1337 Analyze (Handled_Statement_Sequence (N));
1338 Save_Global_References (Original_Node (N));
1340 -- Prior to exiting the scope, include generic formals again (if any
1341 -- are present) in the set of local entities.
1343 if Present (First_Ent) then
1344 Set_First_Entity (Gen_Id, First_Ent);
1345 end if;
1347 Check_References (Gen_Id);
1348 end;
1350 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1351 End_Scope;
1352 Check_Subprogram_Order (N);
1354 -- Outside of its body, unit is generic again
1356 Set_Ekind (Gen_Id, Kind);
1357 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1359 if Style_Check then
1360 Style.Check_Identifier (Body_Id, Gen_Id);
1361 end if;
1363 End_Generic;
1364 end Analyze_Generic_Subprogram_Body;
1366 ----------------------------
1367 -- Analyze_Null_Procedure --
1368 ----------------------------
1370 procedure Analyze_Null_Procedure
1371 (N : Node_Id;
1372 Is_Completion : out Boolean)
1374 Loc : constant Source_Ptr := Sloc (N);
1375 Spec : constant Node_Id := Specification (N);
1376 Designator : Entity_Id;
1377 Form : Node_Id;
1378 Null_Body : Node_Id := Empty;
1379 Prev : Entity_Id;
1381 begin
1382 -- Capture the profile of the null procedure before analysis, for
1383 -- expansion at the freeze point and at each point of call. The body is
1384 -- used if the procedure has preconditions, or if it is a completion. In
1385 -- the first case the body is analyzed at the freeze point, in the other
1386 -- it replaces the null procedure declaration.
1388 Null_Body :=
1389 Make_Subprogram_Body (Loc,
1390 Specification => New_Copy_Tree (Spec),
1391 Declarations => New_List,
1392 Handled_Statement_Sequence =>
1393 Make_Handled_Sequence_Of_Statements (Loc,
1394 Statements => New_List (Make_Null_Statement (Loc))));
1396 -- Create new entities for body and formals
1398 Set_Defining_Unit_Name (Specification (Null_Body),
1399 Make_Defining_Identifier
1400 (Sloc (Defining_Entity (N)),
1401 Chars (Defining_Entity (N))));
1403 Form := First (Parameter_Specifications (Specification (Null_Body)));
1404 while Present (Form) loop
1405 Set_Defining_Identifier (Form,
1406 Make_Defining_Identifier
1407 (Sloc (Defining_Identifier (Form)),
1408 Chars (Defining_Identifier (Form))));
1409 Next (Form);
1410 end loop;
1412 -- Determine whether the null procedure may be a completion of a generic
1413 -- suprogram, in which case we use the new null body as the completion
1414 -- and set minimal semantic information on the original declaration,
1415 -- which is rewritten as a null statement.
1417 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1419 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1420 Insert_Before (N, Null_Body);
1421 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1423 Rewrite (N, Make_Null_Statement (Loc));
1424 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1425 Is_Completion := True;
1426 return;
1428 else
1429 -- Resolve the types of the formals now, because the freeze point
1430 -- may appear in a different context, e.g. an instantiation.
1432 Form := First (Parameter_Specifications (Specification (Null_Body)));
1433 while Present (Form) loop
1434 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1435 Find_Type (Parameter_Type (Form));
1437 elsif
1438 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1439 then
1440 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1442 else
1443 -- The case of a null procedure with a formal that is an
1444 -- access_to_subprogram type, and that is used as an actual
1445 -- in an instantiation is left to the enthusiastic reader.
1447 null;
1448 end if;
1450 Next (Form);
1451 end loop;
1452 end if;
1454 -- If there are previous overloadable entities with the same name,
1455 -- check whether any of them is completed by the null procedure.
1457 if Present (Prev) and then Is_Overloadable (Prev) then
1458 Designator := Analyze_Subprogram_Specification (Spec);
1459 Prev := Find_Corresponding_Spec (N);
1460 end if;
1462 if No (Prev) or else not Comes_From_Source (Prev) then
1463 Designator := Analyze_Subprogram_Specification (Spec);
1464 Set_Has_Completion (Designator);
1466 -- Signal to caller that this is a procedure declaration
1468 Is_Completion := False;
1470 -- Null procedures are always inlined, but generic formal subprograms
1471 -- which appear as such in the internal instance of formal packages,
1472 -- need no completion and are not marked Inline.
1474 if Expander_Active
1475 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1476 then
1477 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1478 Set_Body_To_Inline (N, Null_Body);
1479 Set_Is_Inlined (Designator);
1480 end if;
1482 else
1483 -- The null procedure is a completion. We unconditionally rewrite
1484 -- this as a null body (even if expansion is not active), because
1485 -- there are various error checks that are applied on this body
1486 -- when it is analyzed (e.g. correct aspect placement).
1488 if Has_Completion (Prev) then
1489 Error_Msg_Sloc := Sloc (Prev);
1490 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1491 end if;
1493 Is_Completion := True;
1494 Rewrite (N, Null_Body);
1495 Analyze (N);
1496 end if;
1497 end Analyze_Null_Procedure;
1499 -----------------------------
1500 -- Analyze_Operator_Symbol --
1501 -----------------------------
1503 -- An operator symbol such as "+" or "and" may appear in context where the
1504 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1505 -- is just a string, as in (conjunction = "or"). In these cases the parser
1506 -- generates this node, and the semantics does the disambiguation. Other
1507 -- such case are actuals in an instantiation, the generic unit in an
1508 -- instantiation, and pragma arguments.
1510 procedure Analyze_Operator_Symbol (N : Node_Id) is
1511 Par : constant Node_Id := Parent (N);
1513 begin
1514 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1515 or else Nkind (Par) = N_Function_Instantiation
1516 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1517 or else (Nkind (Par) = N_Pragma_Argument_Association
1518 and then not Is_Pragma_String_Literal (Par))
1519 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1520 or else (Nkind (Par) = N_Attribute_Reference
1521 and then Attribute_Name (Par) /= Name_Value)
1522 then
1523 Find_Direct_Name (N);
1525 else
1526 Change_Operator_Symbol_To_String_Literal (N);
1527 Analyze (N);
1528 end if;
1529 end Analyze_Operator_Symbol;
1531 -----------------------------------
1532 -- Analyze_Parameter_Association --
1533 -----------------------------------
1535 procedure Analyze_Parameter_Association (N : Node_Id) is
1536 begin
1537 Analyze (Explicit_Actual_Parameter (N));
1538 end Analyze_Parameter_Association;
1540 ----------------------------
1541 -- Analyze_Procedure_Call --
1542 ----------------------------
1544 procedure Analyze_Procedure_Call (N : Node_Id) is
1545 Loc : constant Source_Ptr := Sloc (N);
1546 P : constant Node_Id := Name (N);
1547 Actuals : constant List_Id := Parameter_Associations (N);
1548 Actual : Node_Id;
1549 New_N : Node_Id;
1551 procedure Analyze_Call_And_Resolve;
1552 -- Do Analyze and Resolve calls for procedure call
1553 -- At end, check illegal order dependence.
1555 ------------------------------
1556 -- Analyze_Call_And_Resolve --
1557 ------------------------------
1559 procedure Analyze_Call_And_Resolve is
1560 begin
1561 if Nkind (N) = N_Procedure_Call_Statement then
1562 Analyze_Call (N);
1563 Resolve (N, Standard_Void_Type);
1564 else
1565 Analyze (N);
1566 end if;
1567 end Analyze_Call_And_Resolve;
1569 -- Start of processing for Analyze_Procedure_Call
1571 begin
1572 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1573 -- a procedure call or an entry call. The prefix may denote an access
1574 -- to subprogram type, in which case an implicit dereference applies.
1575 -- If the prefix is an indexed component (without implicit dereference)
1576 -- then the construct denotes a call to a member of an entire family.
1577 -- If the prefix is a simple name, it may still denote a call to a
1578 -- parameterless member of an entry family. Resolution of these various
1579 -- interpretations is delicate.
1581 Analyze (P);
1583 -- If this is a call of the form Obj.Op, the call may have been
1584 -- analyzed and possibly rewritten into a block, in which case
1585 -- we are done.
1587 if Analyzed (N) then
1588 return;
1589 end if;
1591 -- If there is an error analyzing the name (which may have been
1592 -- rewritten if the original call was in prefix notation) then error
1593 -- has been emitted already, mark node and return.
1595 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1596 Set_Etype (N, Any_Type);
1597 return;
1598 end if;
1600 -- The name of the procedure call may reference an entity subject to
1601 -- pragma Ghost with policy Ignore. Set the mode now to ensure that any
1602 -- nodes generated during analysis and expansion are properly flagged as
1603 -- ignored Ghost.
1605 Set_Ghost_Mode (N);
1607 -- Otherwise analyze the parameters
1609 if Present (Actuals) then
1610 Actual := First (Actuals);
1612 while Present (Actual) loop
1613 Analyze (Actual);
1614 Check_Parameterless_Call (Actual);
1615 Next (Actual);
1616 end loop;
1617 end if;
1619 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1621 if Nkind (P) = N_Attribute_Reference
1622 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1623 Name_Elab_Body,
1624 Name_Elab_Subp_Body)
1625 then
1626 if Present (Actuals) then
1627 Error_Msg_N
1628 ("no parameters allowed for this call", First (Actuals));
1629 return;
1630 end if;
1632 Set_Etype (N, Standard_Void_Type);
1633 Set_Analyzed (N);
1635 elsif Is_Entity_Name (P)
1636 and then Is_Record_Type (Etype (Entity (P)))
1637 and then Remote_AST_I_Dereference (P)
1638 then
1639 return;
1641 elsif Is_Entity_Name (P)
1642 and then Ekind (Entity (P)) /= E_Entry_Family
1643 then
1644 if Is_Access_Type (Etype (P))
1645 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1646 and then No (Actuals)
1647 and then Comes_From_Source (N)
1648 then
1649 Error_Msg_N ("missing explicit dereference in call", N);
1650 end if;
1652 Analyze_Call_And_Resolve;
1654 -- If the prefix is the simple name of an entry family, this is
1655 -- a parameterless call from within the task body itself.
1657 elsif Is_Entity_Name (P)
1658 and then Nkind (P) = N_Identifier
1659 and then Ekind (Entity (P)) = E_Entry_Family
1660 and then Present (Actuals)
1661 and then No (Next (First (Actuals)))
1662 then
1663 -- Can be call to parameterless entry family. What appears to be the
1664 -- sole argument is in fact the entry index. Rewrite prefix of node
1665 -- accordingly. Source representation is unchanged by this
1666 -- transformation.
1668 New_N :=
1669 Make_Indexed_Component (Loc,
1670 Prefix =>
1671 Make_Selected_Component (Loc,
1672 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1673 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1674 Expressions => Actuals);
1675 Set_Name (N, New_N);
1676 Set_Etype (New_N, Standard_Void_Type);
1677 Set_Parameter_Associations (N, No_List);
1678 Analyze_Call_And_Resolve;
1680 elsif Nkind (P) = N_Explicit_Dereference then
1681 if Ekind (Etype (P)) = E_Subprogram_Type then
1682 Analyze_Call_And_Resolve;
1683 else
1684 Error_Msg_N ("expect access to procedure in call", P);
1685 end if;
1687 -- The name can be a selected component or an indexed component that
1688 -- yields an access to subprogram. Such a prefix is legal if the call
1689 -- has parameter associations.
1691 elsif Is_Access_Type (Etype (P))
1692 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1693 then
1694 if Present (Actuals) then
1695 Analyze_Call_And_Resolve;
1696 else
1697 Error_Msg_N ("missing explicit dereference in call ", N);
1698 end if;
1700 -- If not an access to subprogram, then the prefix must resolve to the
1701 -- name of an entry, entry family, or protected operation.
1703 -- For the case of a simple entry call, P is a selected component where
1704 -- the prefix is the task and the selector name is the entry. A call to
1705 -- a protected procedure will have the same syntax. If the protected
1706 -- object contains overloaded operations, the entity may appear as a
1707 -- function, the context will select the operation whose type is Void.
1709 elsif Nkind (P) = N_Selected_Component
1710 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1711 E_Procedure,
1712 E_Function)
1713 then
1714 Analyze_Call_And_Resolve;
1716 elsif Nkind (P) = N_Selected_Component
1717 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1718 and then Present (Actuals)
1719 and then No (Next (First (Actuals)))
1720 then
1721 -- Can be call to parameterless entry family. What appears to be the
1722 -- sole argument is in fact the entry index. Rewrite prefix of node
1723 -- accordingly. Source representation is unchanged by this
1724 -- transformation.
1726 New_N :=
1727 Make_Indexed_Component (Loc,
1728 Prefix => New_Copy (P),
1729 Expressions => Actuals);
1730 Set_Name (N, New_N);
1731 Set_Etype (New_N, Standard_Void_Type);
1732 Set_Parameter_Associations (N, No_List);
1733 Analyze_Call_And_Resolve;
1735 -- For the case of a reference to an element of an entry family, P is
1736 -- an indexed component whose prefix is a selected component (task and
1737 -- entry family), and whose index is the entry family index.
1739 elsif Nkind (P) = N_Indexed_Component
1740 and then Nkind (Prefix (P)) = N_Selected_Component
1741 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1742 then
1743 Analyze_Call_And_Resolve;
1745 -- If the prefix is the name of an entry family, it is a call from
1746 -- within the task body itself.
1748 elsif Nkind (P) = N_Indexed_Component
1749 and then Nkind (Prefix (P)) = N_Identifier
1750 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1751 then
1752 New_N :=
1753 Make_Selected_Component (Loc,
1754 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1755 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1756 Rewrite (Prefix (P), New_N);
1757 Analyze (P);
1758 Analyze_Call_And_Resolve;
1760 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1761 -- procedure name, so the construct can only be a qualified expression.
1763 elsif Nkind (P) = N_Qualified_Expression
1764 and then Ada_Version >= Ada_2012
1765 then
1766 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1767 Analyze (N);
1769 -- Anything else is an error
1771 else
1772 Error_Msg_N ("invalid procedure or entry call", N);
1773 end if;
1774 end Analyze_Procedure_Call;
1776 ------------------------------
1777 -- Analyze_Return_Statement --
1778 ------------------------------
1780 procedure Analyze_Return_Statement (N : Node_Id) is
1782 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1783 N_Extended_Return_Statement));
1785 Returns_Object : constant Boolean :=
1786 Nkind (N) = N_Extended_Return_Statement
1787 or else
1788 (Nkind (N) = N_Simple_Return_Statement
1789 and then Present (Expression (N)));
1790 -- True if we're returning something; that is, "return <expression>;"
1791 -- or "return Result : T [:= ...]". False for "return;". Used for error
1792 -- checking: If Returns_Object is True, N should apply to a function
1793 -- body; otherwise N should apply to a procedure body, entry body,
1794 -- accept statement, or extended return statement.
1796 function Find_What_It_Applies_To return Entity_Id;
1797 -- Find the entity representing the innermost enclosing body, accept
1798 -- statement, or extended return statement. If the result is a callable
1799 -- construct or extended return statement, then this will be the value
1800 -- of the Return_Applies_To attribute. Otherwise, the program is
1801 -- illegal. See RM-6.5(4/2).
1803 -----------------------------
1804 -- Find_What_It_Applies_To --
1805 -----------------------------
1807 function Find_What_It_Applies_To return Entity_Id is
1808 Result : Entity_Id := Empty;
1810 begin
1811 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1812 -- and postconditions.
1814 for J in reverse 0 .. Scope_Stack.Last loop
1815 Result := Scope_Stack.Table (J).Entity;
1816 exit when not Ekind_In (Result, E_Block, E_Loop)
1817 and then Chars (Result) /= Name_uPostconditions;
1818 end loop;
1820 pragma Assert (Present (Result));
1821 return Result;
1822 end Find_What_It_Applies_To;
1824 -- Local declarations
1826 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1827 Kind : constant Entity_Kind := Ekind (Scope_Id);
1828 Loc : constant Source_Ptr := Sloc (N);
1829 Stm_Entity : constant Entity_Id :=
1830 New_Internal_Entity
1831 (E_Return_Statement, Current_Scope, Loc, 'R');
1833 -- Start of processing for Analyze_Return_Statement
1835 begin
1836 Set_Return_Statement_Entity (N, Stm_Entity);
1838 Set_Etype (Stm_Entity, Standard_Void_Type);
1839 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1841 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1842 -- (4/2): an inner return statement will apply to this extended return.
1844 if Nkind (N) = N_Extended_Return_Statement then
1845 Push_Scope (Stm_Entity);
1846 end if;
1848 -- Check that pragma No_Return is obeyed. Don't complain about the
1849 -- implicitly-generated return that is placed at the end.
1851 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1852 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1853 end if;
1855 -- Warn on any unassigned OUT parameters if in procedure
1857 if Ekind (Scope_Id) = E_Procedure then
1858 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1859 end if;
1861 -- Check that functions return objects, and other things do not
1863 if Kind = E_Function or else Kind = E_Generic_Function then
1864 if not Returns_Object then
1865 Error_Msg_N ("missing expression in return from function", N);
1866 end if;
1868 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1869 if Returns_Object then
1870 Error_Msg_N ("procedure cannot return value (use function)", N);
1871 end if;
1873 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1874 if Returns_Object then
1875 if Is_Protected_Type (Scope (Scope_Id)) then
1876 Error_Msg_N ("entry body cannot return value", N);
1877 else
1878 Error_Msg_N ("accept statement cannot return value", N);
1879 end if;
1880 end if;
1882 elsif Kind = E_Return_Statement then
1884 -- We are nested within another return statement, which must be an
1885 -- extended_return_statement.
1887 if Returns_Object then
1888 if Nkind (N) = N_Extended_Return_Statement then
1889 Error_Msg_N
1890 ("extended return statement cannot be nested (use `RETURN;`)",
1893 -- Case of a simple return statement with a value inside extended
1894 -- return statement.
1896 else
1897 Error_Msg_N
1898 ("return nested in extended return statement cannot return "
1899 & "value (use `RETURN;`)", N);
1900 end if;
1901 end if;
1903 else
1904 Error_Msg_N ("illegal context for return statement", N);
1905 end if;
1907 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1908 Analyze_Function_Return (N);
1910 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1911 Set_Return_Present (Scope_Id);
1912 end if;
1914 if Nkind (N) = N_Extended_Return_Statement then
1915 End_Scope;
1916 end if;
1918 Kill_Current_Values (Last_Assignment_Only => True);
1919 Check_Unreachable_Code (N);
1921 Analyze_Dimension (N);
1922 end Analyze_Return_Statement;
1924 -------------------------------------
1925 -- Analyze_Simple_Return_Statement --
1926 -------------------------------------
1928 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1929 begin
1930 if Present (Expression (N)) then
1931 Mark_Coextensions (N, Expression (N));
1932 end if;
1934 Analyze_Return_Statement (N);
1935 end Analyze_Simple_Return_Statement;
1937 -------------------------
1938 -- Analyze_Return_Type --
1939 -------------------------
1941 procedure Analyze_Return_Type (N : Node_Id) is
1942 Designator : constant Entity_Id := Defining_Entity (N);
1943 Typ : Entity_Id := Empty;
1945 begin
1946 -- Normal case where result definition does not indicate an error
1948 if Result_Definition (N) /= Error then
1949 if Nkind (Result_Definition (N)) = N_Access_Definition then
1950 Check_SPARK_05_Restriction
1951 ("access result is not allowed", Result_Definition (N));
1953 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1955 declare
1956 AD : constant Node_Id :=
1957 Access_To_Subprogram_Definition (Result_Definition (N));
1958 begin
1959 if Present (AD) and then Protected_Present (AD) then
1960 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1961 else
1962 Typ := Access_Definition (N, Result_Definition (N));
1963 end if;
1964 end;
1966 Set_Parent (Typ, Result_Definition (N));
1967 Set_Is_Local_Anonymous_Access (Typ);
1968 Set_Etype (Designator, Typ);
1970 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1972 Null_Exclusion_Static_Checks (N);
1974 -- Subtype_Mark case
1976 else
1977 Find_Type (Result_Definition (N));
1978 Typ := Entity (Result_Definition (N));
1979 Set_Etype (Designator, Typ);
1981 -- Unconstrained array as result is not allowed in SPARK
1983 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1984 Check_SPARK_05_Restriction
1985 ("returning an unconstrained array is not allowed",
1986 Result_Definition (N));
1987 end if;
1989 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1991 Null_Exclusion_Static_Checks (N);
1993 -- If a null exclusion is imposed on the result type, then create
1994 -- a null-excluding itype (an access subtype) and use it as the
1995 -- function's Etype. Note that the null exclusion checks are done
1996 -- right before this, because they don't get applied to types that
1997 -- do not come from source.
1999 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2000 Set_Etype (Designator,
2001 Create_Null_Excluding_Itype
2002 (T => Typ,
2003 Related_Nod => N,
2004 Scope_Id => Scope (Current_Scope)));
2006 -- The new subtype must be elaborated before use because
2007 -- it is visible outside of the function. However its base
2008 -- type may not be frozen yet, so the reference that will
2009 -- force elaboration must be attached to the freezing of
2010 -- the base type.
2012 -- If the return specification appears on a proper body,
2013 -- the subtype will have been created already on the spec.
2015 if Is_Frozen (Typ) then
2016 if Nkind (Parent (N)) = N_Subprogram_Body
2017 and then Nkind (Parent (Parent (N))) = N_Subunit
2018 then
2019 null;
2020 else
2021 Build_Itype_Reference (Etype (Designator), Parent (N));
2022 end if;
2024 else
2025 Ensure_Freeze_Node (Typ);
2027 declare
2028 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2029 begin
2030 Set_Itype (IR, Etype (Designator));
2031 Append_Freeze_Actions (Typ, New_List (IR));
2032 end;
2033 end if;
2035 else
2036 Set_Etype (Designator, Typ);
2037 end if;
2039 if Ekind (Typ) = E_Incomplete_Type
2040 and then Is_Value_Type (Typ)
2041 then
2042 null;
2044 elsif Ekind (Typ) = E_Incomplete_Type
2045 or else (Is_Class_Wide_Type (Typ)
2046 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2047 then
2048 -- AI05-0151: Tagged incomplete types are allowed in all formal
2049 -- parts. Untagged incomplete types are not allowed in bodies.
2050 -- As a consequence, limited views cannot appear in a basic
2051 -- declaration that is itself within a body, because there is
2052 -- no point at which the non-limited view will become visible.
2054 if Ada_Version >= Ada_2012 then
2055 if From_Limited_With (Typ) and then In_Package_Body then
2056 Error_Msg_NE
2057 ("invalid use of incomplete type&",
2058 Result_Definition (N), Typ);
2060 -- The return type of a subprogram body cannot be of a
2061 -- formal incomplete type.
2063 elsif Is_Generic_Type (Typ)
2064 and then Nkind (Parent (N)) = N_Subprogram_Body
2065 then
2066 Error_Msg_N
2067 ("return type cannot be a formal incomplete type",
2068 Result_Definition (N));
2070 elsif Is_Class_Wide_Type (Typ)
2071 and then Is_Generic_Type (Root_Type (Typ))
2072 and then Nkind (Parent (N)) = N_Subprogram_Body
2073 then
2074 Error_Msg_N
2075 ("return type cannot be a formal incomplete type",
2076 Result_Definition (N));
2078 elsif Is_Tagged_Type (Typ) then
2079 null;
2081 -- Use is legal in a thunk generated for an operation
2082 -- inherited from a progenitor.
2084 elsif Is_Thunk (Designator)
2085 and then Present (Non_Limited_View (Typ))
2086 then
2087 null;
2089 elsif Nkind (Parent (N)) = N_Subprogram_Body
2090 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2091 N_Entry_Body)
2092 then
2093 Error_Msg_NE
2094 ("invalid use of untagged incomplete type&",
2095 Designator, Typ);
2096 end if;
2098 -- The type must be completed in the current package. This
2099 -- is checked at the end of the package declaration when
2100 -- Taft-amendment types are identified. If the return type
2101 -- is class-wide, there is no required check, the type can
2102 -- be a bona fide TAT.
2104 if Ekind (Scope (Current_Scope)) = E_Package
2105 and then In_Private_Part (Scope (Current_Scope))
2106 and then not Is_Class_Wide_Type (Typ)
2107 then
2108 Append_Elmt (Designator, Private_Dependents (Typ));
2109 end if;
2111 else
2112 Error_Msg_NE
2113 ("invalid use of incomplete type&", Designator, Typ);
2114 end if;
2115 end if;
2116 end if;
2118 -- Case where result definition does indicate an error
2120 else
2121 Set_Etype (Designator, Any_Type);
2122 end if;
2123 end Analyze_Return_Type;
2125 -----------------------------
2126 -- Analyze_Subprogram_Body --
2127 -----------------------------
2129 procedure Analyze_Subprogram_Body (N : Node_Id) is
2130 Loc : constant Source_Ptr := Sloc (N);
2131 Body_Spec : constant Node_Id := Specification (N);
2132 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2134 begin
2135 if Debug_Flag_C then
2136 Write_Str ("==> subprogram body ");
2137 Write_Name (Chars (Body_Id));
2138 Write_Str (" from ");
2139 Write_Location (Loc);
2140 Write_Eol;
2141 Indent;
2142 end if;
2144 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2146 -- The real work is split out into the helper, so it can do "return;"
2147 -- without skipping the debug output:
2149 Analyze_Subprogram_Body_Helper (N);
2151 if Debug_Flag_C then
2152 Outdent;
2153 Write_Str ("<== subprogram body ");
2154 Write_Name (Chars (Body_Id));
2155 Write_Str (" from ");
2156 Write_Location (Loc);
2157 Write_Eol;
2158 end if;
2159 end Analyze_Subprogram_Body;
2161 --------------------------------------
2162 -- Analyze_Subprogram_Body_Contract --
2163 --------------------------------------
2165 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2166 Items : constant Node_Id := Contract (Body_Id);
2167 Mode : SPARK_Mode_Type;
2168 Prag : Node_Id;
2169 Prag_Nam : Name_Id;
2170 Ref_Depends : Node_Id := Empty;
2171 Ref_Global : Node_Id := Empty;
2173 begin
2174 -- When a subprogram body declaration is illegal, its defining entity is
2175 -- left unanalyzed. There is nothing left to do in this case because the
2176 -- body lacks a contract, or even a proper Ekind.
2178 if Ekind (Body_Id) = E_Void then
2179 return;
2180 end if;
2182 -- Due to the timing of contract analysis, delayed pragmas may be
2183 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2184 -- context. To remedy this, restore the original SPARK_Mode of the
2185 -- related subprogram body.
2187 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2189 -- All subprograms carry a contract, but for some it is not significant
2190 -- and should not be processed.
2192 if not Has_Significant_Contract (Body_Id) then
2193 null;
2195 -- The subprogram body is a completion, analyze all delayed pragmas that
2196 -- apply. Note that when the body is stand alone, the pragmas are always
2197 -- analyzed on the spot.
2199 elsif Present (Items) then
2201 -- Locate and store pragmas Refined_Depends and Refined_Global since
2202 -- their order of analysis matters.
2204 Prag := Classifications (Items);
2205 while Present (Prag) loop
2206 Prag_Nam := Pragma_Name (Prag);
2208 if Prag_Nam = Name_Refined_Depends then
2209 Ref_Depends := Prag;
2211 elsif Prag_Nam = Name_Refined_Global then
2212 Ref_Global := Prag;
2213 end if;
2215 Prag := Next_Pragma (Prag);
2216 end loop;
2218 -- Analyze Refined_Global first as Refined_Depends may mention items
2219 -- classified in the global refinement.
2221 if Present (Ref_Global) then
2222 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2223 end if;
2225 -- Refined_Depends must be analyzed after Refined_Global in order to
2226 -- see the modes of all global refinements.
2228 if Present (Ref_Depends) then
2229 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2230 end if;
2231 end if;
2233 -- Ensure that the contract cases or postconditions mention 'Result or
2234 -- define a post-state.
2236 Check_Result_And_Post_State (Body_Id);
2238 -- Restore the SPARK_Mode of the enclosing context after all delayed
2239 -- pragmas have been analyzed.
2241 Restore_SPARK_Mode (Mode);
2242 end Analyze_Subprogram_Body_Contract;
2244 ------------------------------------
2245 -- Analyze_Subprogram_Body_Helper --
2246 ------------------------------------
2248 -- This procedure is called for regular subprogram bodies, generic bodies,
2249 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2250 -- specification matters, and is used to create a proper declaration for
2251 -- the subprogram, or to perform conformance checks.
2253 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2254 Loc : constant Source_Ptr := Sloc (N);
2255 Body_Spec : Node_Id := Specification (N);
2256 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2257 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2258 Conformant : Boolean;
2259 HSS : Node_Id;
2260 Prot_Typ : Entity_Id := Empty;
2261 Spec_Id : Entity_Id;
2262 Spec_Decl : Node_Id := Empty;
2264 Last_Real_Spec_Entity : Entity_Id := Empty;
2265 -- When we analyze a separate spec, the entity chain ends up containing
2266 -- the formals, as well as any itypes generated during analysis of the
2267 -- default expressions for parameters, or the arguments of associated
2268 -- precondition/postcondition pragmas (which are analyzed in the context
2269 -- of the spec since they have visibility on formals).
2271 -- These entities belong with the spec and not the body. However we do
2272 -- the analysis of the body in the context of the spec (again to obtain
2273 -- visibility to the formals), and all the entities generated during
2274 -- this analysis end up also chained to the entity chain of the spec.
2275 -- But they really belong to the body, and there is circuitry to move
2276 -- them from the spec to the body.
2278 -- However, when we do this move, we don't want to move the real spec
2279 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2280 -- variable points to the last real spec entity, so we only move those
2281 -- chained beyond that point. It is initialized to Empty to deal with
2282 -- the case where there is no separate spec.
2284 function Body_Has_Contract return Boolean;
2285 -- Check whether unanalyzed body has an aspect or pragma that may
2286 -- generate a SPARK contract.
2288 procedure Build_Subprogram_Declaration;
2289 -- Create a matching subprogram declaration for subprogram body N
2291 procedure Check_Anonymous_Return;
2292 -- Ada 2005: if a function returns an access type that denotes a task,
2293 -- or a type that contains tasks, we must create a master entity for
2294 -- the anonymous type, which typically will be used in an allocator
2295 -- in the body of the function.
2297 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2298 -- Look ahead to recognize a pragma that may appear after the body.
2299 -- If there is a previous spec, check that it appears in the same
2300 -- declarative part. If the pragma is Inline_Always, perform inlining
2301 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2302 -- If the body acts as a spec, and inlining is required, we create a
2303 -- subprogram declaration for it, in order to attach the body to inline.
2304 -- If pragma does not appear after the body, check whether there is
2305 -- an inline pragma before any local declarations.
2307 procedure Check_Missing_Return;
2308 -- Checks for a function with a no return statements, and also performs
2309 -- the warning checks implemented by Check_Returns. In formal mode, also
2310 -- verify that a function ends with a RETURN and that a procedure does
2311 -- not contain any RETURN.
2313 function Disambiguate_Spec return Entity_Id;
2314 -- When a primitive is declared between the private view and the full
2315 -- view of a concurrent type which implements an interface, a special
2316 -- mechanism is used to find the corresponding spec of the primitive
2317 -- body.
2319 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2320 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2321 -- incomplete types coming from a limited context and swap their limited
2322 -- views with the non-limited ones.
2324 function Is_Private_Concurrent_Primitive
2325 (Subp_Id : Entity_Id) return Boolean;
2326 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2327 -- type that implements an interface and has a private view.
2329 procedure Set_Trivial_Subprogram (N : Node_Id);
2330 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2331 -- subprogram whose body is being analyzed. N is the statement node
2332 -- causing the flag to be set, if the following statement is a return
2333 -- of an entity, we mark the entity as set in source to suppress any
2334 -- warning on the stylized use of function stubs with a dummy return.
2336 procedure Verify_Overriding_Indicator;
2337 -- If there was a previous spec, the entity has been entered in the
2338 -- current scope previously. If the body itself carries an overriding
2339 -- indicator, check that it is consistent with the known status of the
2340 -- entity.
2342 -----------------------
2343 -- Body_Has_Contract --
2344 -----------------------
2346 function Body_Has_Contract return Boolean is
2347 Decls : constant List_Id := Declarations (N);
2348 Item : Node_Id;
2350 begin
2351 -- Check for unanalyzed aspects in the body that will generate a
2352 -- contract.
2354 if Present (Aspect_Specifications (N)) then
2355 Item := First (Aspect_Specifications (N));
2356 while Present (Item) loop
2357 if Is_Contract_Annotation (Item) then
2358 return True;
2359 end if;
2361 Next (Item);
2362 end loop;
2363 end if;
2365 -- Check for pragmas that may generate a contract
2367 if Present (Decls) then
2368 Item := First (Decls);
2369 while Present (Item) loop
2370 if Nkind (Item) = N_Pragma
2371 and then Is_Contract_Annotation (Item)
2372 then
2373 return True;
2374 end if;
2376 Next (Item);
2377 end loop;
2378 end if;
2380 return False;
2381 end Body_Has_Contract;
2383 ----------------------------------
2384 -- Build_Subprogram_Declaration --
2385 ----------------------------------
2387 procedure Build_Subprogram_Declaration is
2388 Asp : Node_Id;
2389 Decl : Node_Id;
2390 Subp_Decl : Node_Id;
2392 begin
2393 -- Create a matching subprogram spec using the profile of the body.
2394 -- The structure of the tree is identical, but has new entities for
2395 -- the defining unit name and formal parameters.
2397 Subp_Decl :=
2398 Make_Subprogram_Declaration (Loc,
2399 Specification => Copy_Subprogram_Spec (Body_Spec));
2401 -- Relocate the aspects of the subprogram body to the new subprogram
2402 -- spec because it acts as the initial declaration.
2403 -- ??? what about pragmas
2405 Move_Aspects (N, To => Subp_Decl);
2406 Insert_Before_And_Analyze (N, Subp_Decl);
2408 -- The analysis of the subprogram spec aspects may introduce pragmas
2409 -- that need to be analyzed.
2411 Decl := Next (Subp_Decl);
2412 while Present (Decl) loop
2414 -- Stop the search for pragmas once the body has been reached as
2415 -- this terminates the region where pragmas may appear.
2417 if Decl = N then
2418 exit;
2420 elsif Nkind (Decl) = N_Pragma then
2421 Analyze (Decl);
2422 end if;
2424 Next (Decl);
2425 end loop;
2427 Spec_Id := Defining_Entity (Subp_Decl);
2428 Set_Corresponding_Spec (N, Spec_Id);
2430 -- Mark the generated spec as a source construct to ensure that all
2431 -- calls to it are properly registered in ALI files for GNATprove.
2433 Set_Comes_From_Source (Spec_Id, True);
2435 -- If aspect SPARK_Mode was specified on the body, it needs to be
2436 -- repeated both on the generated spec and the body.
2438 Asp := Find_Aspect (Spec_Id, Aspect_SPARK_Mode);
2440 if Present (Asp) then
2441 Asp := New_Copy_Tree (Asp);
2442 Set_Analyzed (Asp, False);
2443 Set_Aspect_Specifications (N, New_List (Asp));
2444 end if;
2446 -- Ensure that the specs of the subprogram declaration and its body
2447 -- are identical, otherwise they will appear non-conformant due to
2448 -- rewritings in the default values of formal parameters.
2450 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2451 Set_Specification (N, Body_Spec);
2452 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2453 end Build_Subprogram_Declaration;
2455 ----------------------------
2456 -- Check_Anonymous_Return --
2457 ----------------------------
2459 procedure Check_Anonymous_Return is
2460 Decl : Node_Id;
2461 Par : Node_Id;
2462 Scop : Entity_Id;
2464 begin
2465 if Present (Spec_Id) then
2466 Scop := Spec_Id;
2467 else
2468 Scop := Body_Id;
2469 end if;
2471 if Ekind (Scop) = E_Function
2472 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2473 and then not Is_Thunk (Scop)
2475 -- Skip internally built functions which handle the case of
2476 -- a null access (see Expand_Interface_Conversion)
2478 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2479 and then not Comes_From_Source (Parent (Scop)))
2481 and then (Has_Task (Designated_Type (Etype (Scop)))
2482 or else
2483 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2484 and then
2485 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2486 and then Expander_Active
2488 -- Avoid cases with no tasking support
2490 and then RTE_Available (RE_Current_Master)
2491 and then not Restriction_Active (No_Task_Hierarchy)
2492 then
2493 Decl :=
2494 Make_Object_Declaration (Loc,
2495 Defining_Identifier =>
2496 Make_Defining_Identifier (Loc, Name_uMaster),
2497 Constant_Present => True,
2498 Object_Definition =>
2499 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2500 Expression =>
2501 Make_Explicit_Dereference (Loc,
2502 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2504 if Present (Declarations (N)) then
2505 Prepend (Decl, Declarations (N));
2506 else
2507 Set_Declarations (N, New_List (Decl));
2508 end if;
2510 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2511 Set_Has_Master_Entity (Scop);
2513 -- Now mark the containing scope as a task master
2515 Par := N;
2516 while Nkind (Par) /= N_Compilation_Unit loop
2517 Par := Parent (Par);
2518 pragma Assert (Present (Par));
2520 -- If we fall off the top, we are at the outer level, and
2521 -- the environment task is our effective master, so nothing
2522 -- to mark.
2524 if Nkind_In
2525 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2526 then
2527 Set_Is_Task_Master (Par, True);
2528 exit;
2529 end if;
2530 end loop;
2531 end if;
2532 end Check_Anonymous_Return;
2534 -------------------------
2535 -- Check_Inline_Pragma --
2536 -------------------------
2538 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2539 Prag : Node_Id;
2540 Plist : List_Id;
2542 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2543 -- True when N is a pragma Inline or Inline_Always that applies
2544 -- to this subprogram.
2546 -----------------------
2547 -- Is_Inline_Pragma --
2548 -----------------------
2550 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2551 begin
2552 return
2553 Nkind (N) = N_Pragma
2554 and then
2555 (Pragma_Name (N) = Name_Inline_Always
2556 or else (Front_End_Inlining
2557 and then Pragma_Name (N) = Name_Inline))
2558 and then
2559 Chars
2560 (Expression (First (Pragma_Argument_Associations (N)))) =
2561 Chars (Body_Id);
2562 end Is_Inline_Pragma;
2564 -- Start of processing for Check_Inline_Pragma
2566 begin
2567 if not Expander_Active then
2568 return;
2569 end if;
2571 if Is_List_Member (N)
2572 and then Present (Next (N))
2573 and then Is_Inline_Pragma (Next (N))
2574 then
2575 Prag := Next (N);
2577 elsif Nkind (N) /= N_Subprogram_Body_Stub
2578 and then Present (Declarations (N))
2579 and then Is_Inline_Pragma (First (Declarations (N)))
2580 then
2581 Prag := First (Declarations (N));
2583 else
2584 Prag := Empty;
2585 end if;
2587 if Present (Prag) then
2588 if Present (Spec_Id) then
2589 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2590 Analyze (Prag);
2591 end if;
2593 else
2594 -- Create a subprogram declaration, to make treatment uniform
2596 declare
2597 Subp : constant Entity_Id :=
2598 Make_Defining_Identifier (Loc, Chars (Body_Id));
2599 Decl : constant Node_Id :=
2600 Make_Subprogram_Declaration (Loc,
2601 Specification =>
2602 New_Copy_Tree (Specification (N)));
2604 begin
2605 Set_Defining_Unit_Name (Specification (Decl), Subp);
2607 if Present (First_Formal (Body_Id)) then
2608 Plist := Copy_Parameter_List (Body_Id);
2609 Set_Parameter_Specifications
2610 (Specification (Decl), Plist);
2611 end if;
2613 Insert_Before (N, Decl);
2614 Analyze (Decl);
2615 Analyze (Prag);
2616 Set_Has_Pragma_Inline (Subp);
2618 if Pragma_Name (Prag) = Name_Inline_Always then
2619 Set_Is_Inlined (Subp);
2620 Set_Has_Pragma_Inline_Always (Subp);
2621 end if;
2623 -- Prior to copying the subprogram body to create a template
2624 -- for it for subsequent inlining, remove the pragma from
2625 -- the current body so that the copy that will produce the
2626 -- new body will start from a completely unanalyzed tree.
2628 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2629 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2630 end if;
2632 Spec := Subp;
2633 end;
2634 end if;
2635 end if;
2636 end Check_Inline_Pragma;
2638 --------------------------
2639 -- Check_Missing_Return --
2640 --------------------------
2642 procedure Check_Missing_Return is
2643 Id : Entity_Id;
2644 Missing_Ret : Boolean;
2646 begin
2647 if Nkind (Body_Spec) = N_Function_Specification then
2648 if Present (Spec_Id) then
2649 Id := Spec_Id;
2650 else
2651 Id := Body_Id;
2652 end if;
2654 if Return_Present (Id) then
2655 Check_Returns (HSS, 'F', Missing_Ret);
2657 if Missing_Ret then
2658 Set_Has_Missing_Return (Id);
2659 end if;
2661 elsif Is_Generic_Subprogram (Id)
2662 or else not Is_Machine_Code_Subprogram (Id)
2663 then
2664 Error_Msg_N ("missing RETURN statement in function body", N);
2665 end if;
2667 -- If procedure with No_Return, check returns
2669 elsif Nkind (Body_Spec) = N_Procedure_Specification
2670 and then Present (Spec_Id)
2671 and then No_Return (Spec_Id)
2672 then
2673 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2674 end if;
2676 -- Special checks in SPARK mode
2678 if Nkind (Body_Spec) = N_Function_Specification then
2680 -- In SPARK mode, last statement of a function should be a return
2682 declare
2683 Stat : constant Node_Id := Last_Source_Statement (HSS);
2684 begin
2685 if Present (Stat)
2686 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2687 N_Extended_Return_Statement)
2688 then
2689 Check_SPARK_05_Restriction
2690 ("last statement in function should be RETURN", Stat);
2691 end if;
2692 end;
2694 -- In SPARK mode, verify that a procedure has no return
2696 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2697 if Present (Spec_Id) then
2698 Id := Spec_Id;
2699 else
2700 Id := Body_Id;
2701 end if;
2703 -- Would be nice to point to return statement here, can we
2704 -- borrow the Check_Returns procedure here ???
2706 if Return_Present (Id) then
2707 Check_SPARK_05_Restriction
2708 ("procedure should not have RETURN", N);
2709 end if;
2710 end if;
2711 end Check_Missing_Return;
2713 -----------------------
2714 -- Disambiguate_Spec --
2715 -----------------------
2717 function Disambiguate_Spec return Entity_Id is
2718 Priv_Spec : Entity_Id;
2719 Spec_N : Entity_Id;
2721 procedure Replace_Types (To_Corresponding : Boolean);
2722 -- Depending on the flag, replace the type of formal parameters of
2723 -- Body_Id if it is a concurrent type implementing interfaces with
2724 -- the corresponding record type or the other way around.
2726 procedure Replace_Types (To_Corresponding : Boolean) is
2727 Formal : Entity_Id;
2728 Formal_Typ : Entity_Id;
2730 begin
2731 Formal := First_Formal (Body_Id);
2732 while Present (Formal) loop
2733 Formal_Typ := Etype (Formal);
2735 if Is_Class_Wide_Type (Formal_Typ) then
2736 Formal_Typ := Root_Type (Formal_Typ);
2737 end if;
2739 -- From concurrent type to corresponding record
2741 if To_Corresponding then
2742 if Is_Concurrent_Type (Formal_Typ)
2743 and then Present (Corresponding_Record_Type (Formal_Typ))
2744 and then
2745 Present (Interfaces
2746 (Corresponding_Record_Type (Formal_Typ)))
2747 then
2748 Set_Etype (Formal,
2749 Corresponding_Record_Type (Formal_Typ));
2750 end if;
2752 -- From corresponding record to concurrent type
2754 else
2755 if Is_Concurrent_Record_Type (Formal_Typ)
2756 and then Present (Interfaces (Formal_Typ))
2757 then
2758 Set_Etype (Formal,
2759 Corresponding_Concurrent_Type (Formal_Typ));
2760 end if;
2761 end if;
2763 Next_Formal (Formal);
2764 end loop;
2765 end Replace_Types;
2767 -- Start of processing for Disambiguate_Spec
2769 begin
2770 -- Try to retrieve the specification of the body as is. All error
2771 -- messages are suppressed because the body may not have a spec in
2772 -- its current state.
2774 Spec_N := Find_Corresponding_Spec (N, False);
2776 -- It is possible that this is the body of a primitive declared
2777 -- between a private and a full view of a concurrent type. The
2778 -- controlling parameter of the spec carries the concurrent type,
2779 -- not the corresponding record type as transformed by Analyze_
2780 -- Subprogram_Specification. In such cases, we undo the change
2781 -- made by the analysis of the specification and try to find the
2782 -- spec again.
2784 -- Note that wrappers already have their corresponding specs and
2785 -- bodies set during their creation, so if the candidate spec is
2786 -- a wrapper, then we definitely need to swap all types to their
2787 -- original concurrent status.
2789 if No (Spec_N)
2790 or else Is_Primitive_Wrapper (Spec_N)
2791 then
2792 -- Restore all references of corresponding record types to the
2793 -- original concurrent types.
2795 Replace_Types (To_Corresponding => False);
2796 Priv_Spec := Find_Corresponding_Spec (N, False);
2798 -- The current body truly belongs to a primitive declared between
2799 -- a private and a full view. We leave the modified body as is,
2800 -- and return the true spec.
2802 if Present (Priv_Spec)
2803 and then Is_Private_Primitive (Priv_Spec)
2804 then
2805 return Priv_Spec;
2806 end if;
2808 -- In case that this is some sort of error, restore the original
2809 -- state of the body.
2811 Replace_Types (To_Corresponding => True);
2812 end if;
2814 return Spec_N;
2815 end Disambiguate_Spec;
2817 ----------------------------
2818 -- Exchange_Limited_Views --
2819 ----------------------------
2821 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2822 procedure Detect_And_Exchange (Id : Entity_Id);
2823 -- Determine whether Id's type denotes an incomplete type associated
2824 -- with a limited with clause and exchange the limited view with the
2825 -- non-limited one.
2827 -------------------------
2828 -- Detect_And_Exchange --
2829 -------------------------
2831 procedure Detect_And_Exchange (Id : Entity_Id) is
2832 Typ : constant Entity_Id := Etype (Id);
2833 begin
2834 if From_Limited_With (Typ) and then Has_Non_Limited_View (Typ) then
2835 Set_Etype (Id, Non_Limited_View (Typ));
2836 end if;
2837 end Detect_And_Exchange;
2839 -- Local variables
2841 Formal : Entity_Id;
2843 -- Start of processing for Exchange_Limited_Views
2845 begin
2846 if No (Subp_Id) then
2847 return;
2849 -- Do not process subprogram bodies as they already use the non-
2850 -- limited view of types.
2852 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2853 return;
2854 end if;
2856 -- Examine all formals and swap views when applicable
2858 Formal := First_Formal (Subp_Id);
2859 while Present (Formal) loop
2860 Detect_And_Exchange (Formal);
2862 Next_Formal (Formal);
2863 end loop;
2865 -- Process the return type of a function
2867 if Ekind (Subp_Id) = E_Function then
2868 Detect_And_Exchange (Subp_Id);
2869 end if;
2870 end Exchange_Limited_Views;
2872 -------------------------------------
2873 -- Is_Private_Concurrent_Primitive --
2874 -------------------------------------
2876 function Is_Private_Concurrent_Primitive
2877 (Subp_Id : Entity_Id) return Boolean
2879 Formal_Typ : Entity_Id;
2881 begin
2882 if Present (First_Formal (Subp_Id)) then
2883 Formal_Typ := Etype (First_Formal (Subp_Id));
2885 if Is_Concurrent_Record_Type (Formal_Typ) then
2886 if Is_Class_Wide_Type (Formal_Typ) then
2887 Formal_Typ := Root_Type (Formal_Typ);
2888 end if;
2890 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2891 end if;
2893 -- The type of the first formal is a concurrent tagged type with
2894 -- a private view.
2896 return
2897 Is_Concurrent_Type (Formal_Typ)
2898 and then Is_Tagged_Type (Formal_Typ)
2899 and then Has_Private_Declaration (Formal_Typ);
2900 end if;
2902 return False;
2903 end Is_Private_Concurrent_Primitive;
2905 ----------------------------
2906 -- Set_Trivial_Subprogram --
2907 ----------------------------
2909 procedure Set_Trivial_Subprogram (N : Node_Id) is
2910 Nxt : constant Node_Id := Next (N);
2912 begin
2913 Set_Is_Trivial_Subprogram (Body_Id);
2915 if Present (Spec_Id) then
2916 Set_Is_Trivial_Subprogram (Spec_Id);
2917 end if;
2919 if Present (Nxt)
2920 and then Nkind (Nxt) = N_Simple_Return_Statement
2921 and then No (Next (Nxt))
2922 and then Present (Expression (Nxt))
2923 and then Is_Entity_Name (Expression (Nxt))
2924 then
2925 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2926 end if;
2927 end Set_Trivial_Subprogram;
2929 ---------------------------------
2930 -- Verify_Overriding_Indicator --
2931 ---------------------------------
2933 procedure Verify_Overriding_Indicator is
2934 begin
2935 if Must_Override (Body_Spec) then
2936 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2937 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2938 then
2939 null;
2941 elsif not Present (Overridden_Operation (Spec_Id)) then
2942 Error_Msg_NE
2943 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2945 -- Overriding indicators aren't allowed for protected subprogram
2946 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2947 -- this to a warning if -gnatd.E is enabled.
2949 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2950 Error_Msg_Warn := Error_To_Warning;
2951 Error_Msg_N
2952 ("<<overriding indicator not allowed for protected "
2953 & "subprogram body", Body_Spec);
2954 end if;
2956 elsif Must_Not_Override (Body_Spec) then
2957 if Present (Overridden_Operation (Spec_Id)) then
2958 Error_Msg_NE
2959 ("subprogram& overrides inherited operation",
2960 Body_Spec, Spec_Id);
2962 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2963 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2964 then
2965 Error_Msg_NE
2966 ("subprogram& overrides predefined operator ",
2967 Body_Spec, Spec_Id);
2969 -- Overriding indicators aren't allowed for protected subprogram
2970 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2971 -- this to a warning if -gnatd.E is enabled.
2973 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2974 Error_Msg_Warn := Error_To_Warning;
2976 Error_Msg_N
2977 ("<<overriding indicator not allowed "
2978 & "for protected subprogram body", Body_Spec);
2980 -- If this is not a primitive operation, then the overriding
2981 -- indicator is altogether illegal.
2983 elsif not Is_Primitive (Spec_Id) then
2984 Error_Msg_N
2985 ("overriding indicator only allowed "
2986 & "if subprogram is primitive", Body_Spec);
2987 end if;
2989 -- If checking the style rule and the operation overrides, then
2990 -- issue a warning about a missing overriding_indicator. Protected
2991 -- subprogram bodies are excluded from this style checking, since
2992 -- they aren't primitives (even though their declarations can
2993 -- override) and aren't allowed to have an overriding_indicator.
2995 elsif Style_Check
2996 and then Present (Overridden_Operation (Spec_Id))
2997 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2998 then
2999 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3000 Style.Missing_Overriding (N, Body_Id);
3002 elsif Style_Check
3003 and then Can_Override_Operator (Spec_Id)
3004 and then not Is_Predefined_File_Name
3005 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3006 then
3007 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3008 Style.Missing_Overriding (N, Body_Id);
3009 end if;
3010 end Verify_Overriding_Indicator;
3012 -- Start of processing for Analyze_Subprogram_Body_Helper
3014 begin
3015 -- Generic subprograms are handled separately. They always have a
3016 -- generic specification. Determine whether current scope has a
3017 -- previous declaration.
3019 -- If the subprogram body is defined within an instance of the same
3020 -- name, the instance appears as a package renaming, and will be hidden
3021 -- within the subprogram.
3023 if Present (Prev_Id)
3024 and then not Is_Overloadable (Prev_Id)
3025 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3026 or else Comes_From_Source (Prev_Id))
3027 then
3028 if Is_Generic_Subprogram (Prev_Id) then
3029 Spec_Id := Prev_Id;
3031 -- The corresponding spec may be subject to pragma Ghost with
3032 -- policy Ignore. Set the mode now to ensure that any nodes
3033 -- generated during analysis and expansion are properly flagged
3034 -- as ignored Ghost.
3036 Set_Ghost_Mode (N, Spec_Id);
3037 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3038 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3040 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3042 if Nkind (N) = N_Subprogram_Body then
3043 HSS := Handled_Statement_Sequence (N);
3044 Check_Missing_Return;
3045 end if;
3047 return;
3049 else
3050 -- Previous entity conflicts with subprogram name. Attempting to
3051 -- enter name will post error.
3053 Enter_Name (Body_Id);
3054 return;
3055 end if;
3057 -- Non-generic case, find the subprogram declaration, if one was seen,
3058 -- or enter new overloaded entity in the current scope. If the
3059 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3060 -- part of the context of one of its subunits. No need to redo the
3061 -- analysis.
3063 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3064 return;
3066 else
3067 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3069 if Nkind (N) = N_Subprogram_Body_Stub
3070 or else No (Corresponding_Spec (N))
3071 then
3072 if Is_Private_Concurrent_Primitive (Body_Id) then
3073 Spec_Id := Disambiguate_Spec;
3075 -- The corresponding spec may be subject to pragma Ghost with
3076 -- policy Ignore. Set the mode now to ensure that any nodes
3077 -- generated during analysis and expansion are properly flagged
3078 -- as ignored Ghost.
3080 Set_Ghost_Mode (N, Spec_Id);
3082 else
3083 Spec_Id := Find_Corresponding_Spec (N);
3085 -- The corresponding spec may be subject to pragma Ghost with
3086 -- policy Ignore. Set the mode now to ensure that any nodes
3087 -- generated during analysis and expansion are properly flagged
3088 -- as ignored Ghost.
3090 Set_Ghost_Mode (N, Spec_Id);
3092 -- In GNATprove mode, if the body has no previous spec, create
3093 -- one so that the inlining machinery can operate properly.
3094 -- Transfer aspects, if any, to the new spec, so that they
3095 -- are legal and can be processed ahead of the body.
3096 -- We make two copies of the given spec, one for the new
3097 -- declaration, and one for the body.
3099 if No (Spec_Id) and then GNATprove_Mode
3101 -- Inlining does not apply during pre-analysis of code
3103 and then Full_Analysis
3105 -- Inlining only applies to full bodies, not stubs
3107 and then Nkind (N) /= N_Subprogram_Body_Stub
3109 -- Inlining only applies to bodies in the source code, not to
3110 -- those generated by the compiler. In particular, expression
3111 -- functions, whose body is generated by the compiler, are
3112 -- treated specially by GNATprove.
3114 and then Comes_From_Source (Body_Id)
3116 -- This cannot be done for a compilation unit, which is not
3117 -- in a context where we can insert a new spec.
3119 and then Is_List_Member (N)
3121 -- Inlining only applies to subprograms without contracts,
3122 -- as a contract is a sign that GNATprove should perform a
3123 -- modular analysis of the subprogram instead of a contextual
3124 -- analysis at each call site. The same test is performed in
3125 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3126 -- here in another form (because the contract has not
3127 -- been attached to the body) to avoid frontend errors in
3128 -- case pragmas are used instead of aspects, because the
3129 -- corresponding pragmas in the body would not be transferred
3130 -- to the spec, leading to legality errors.
3132 and then not Body_Has_Contract
3133 and then not Inside_A_Generic
3134 then
3135 Build_Subprogram_Declaration;
3136 end if;
3137 end if;
3139 -- If this is a duplicate body, no point in analyzing it
3141 if Error_Posted (N) then
3142 return;
3143 end if;
3145 -- A subprogram body should cause freezing of its own declaration,
3146 -- but if there was no previous explicit declaration, then the
3147 -- subprogram will get frozen too late (there may be code within
3148 -- the body that depends on the subprogram having been frozen,
3149 -- such as uses of extra formals), so we force it to be frozen
3150 -- here. Same holds if the body and spec are compilation units.
3151 -- Finally, if the return type is an anonymous access to protected
3152 -- subprogram, it must be frozen before the body because its
3153 -- expansion has generated an equivalent type that is used when
3154 -- elaborating the body.
3156 -- An exception in the case of Ada 2012, AI05-177: The bodies
3157 -- created for expression functions do not freeze.
3159 if No (Spec_Id)
3160 and then Nkind (Original_Node (N)) /= N_Expression_Function
3161 then
3162 Freeze_Before (N, Body_Id);
3164 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3165 Freeze_Before (N, Spec_Id);
3167 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3168 Freeze_Before (N, Etype (Body_Id));
3169 end if;
3171 else
3172 Spec_Id := Corresponding_Spec (N);
3174 -- The corresponding spec may be subject to pragma Ghost with
3175 -- policy Ignore. Set the mode now to ensure that any nodes
3176 -- generated during analysis and expansion are properly flagged
3177 -- as ignored Ghost.
3179 Set_Ghost_Mode (N, Spec_Id);
3180 end if;
3181 end if;
3183 -- Previously we scanned the body to look for nested subprograms, and
3184 -- rejected an inline directive if nested subprograms were present,
3185 -- because the back-end would generate conflicting symbols for the
3186 -- nested bodies. This is now unnecessary.
3188 -- Look ahead to recognize a pragma Inline that appears after the body
3190 Check_Inline_Pragma (Spec_Id);
3192 -- Deal with special case of a fully private operation in the body of
3193 -- the protected type. We must create a declaration for the subprogram,
3194 -- in order to attach the protected subprogram that will be used in
3195 -- internal calls. We exclude compiler generated bodies from the
3196 -- expander since the issue does not arise for those cases.
3198 if No (Spec_Id)
3199 and then Comes_From_Source (N)
3200 and then Is_Protected_Type (Current_Scope)
3201 then
3202 Spec_Id := Build_Private_Protected_Declaration (N);
3203 end if;
3205 -- If a separate spec is present, then deal with freezing issues
3207 if Present (Spec_Id) then
3208 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3209 Verify_Overriding_Indicator;
3211 -- In general, the spec will be frozen when we start analyzing the
3212 -- body. However, for internally generated operations, such as
3213 -- wrapper functions for inherited operations with controlling
3214 -- results, the spec may not have been frozen by the time we expand
3215 -- the freeze actions that include the bodies. In particular, extra
3216 -- formals for accessibility or for return-in-place may need to be
3217 -- generated. Freeze nodes, if any, are inserted before the current
3218 -- body. These freeze actions are also needed in ASIS mode to enable
3219 -- the proper back-annotations.
3221 if not Is_Frozen (Spec_Id)
3222 and then (Expander_Active or ASIS_Mode)
3223 then
3224 -- Force the generation of its freezing node to ensure proper
3225 -- management of access types in the backend.
3227 -- This is definitely needed for some cases, but it is not clear
3228 -- why, to be investigated further???
3230 Set_Has_Delayed_Freeze (Spec_Id);
3231 Freeze_Before (N, Spec_Id);
3232 end if;
3233 end if;
3235 -- Place subprogram on scope stack, and make formals visible. If there
3236 -- is a spec, the visible entity remains that of the spec.
3238 if Present (Spec_Id) then
3239 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3241 if Is_Child_Unit (Spec_Id) then
3242 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3243 end if;
3245 if Style_Check then
3246 Style.Check_Identifier (Body_Id, Spec_Id);
3247 end if;
3249 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3250 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3252 if Is_Abstract_Subprogram (Spec_Id) then
3253 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3254 return;
3256 else
3257 Set_Convention (Body_Id, Convention (Spec_Id));
3258 Set_Has_Completion (Spec_Id);
3260 -- Inherit the "ghostness" of the subprogram spec. Note that this
3261 -- property is not directly inherited as the body may be subject
3262 -- to a different Ghost assertion policy.
3264 if Is_Ghost_Entity (Spec_Id) or else Ghost_Mode > None then
3265 Set_Is_Ghost_Entity (Body_Id);
3267 -- The Ghost policy in effect at the point of declaration and
3268 -- at the point of completion must match (SPARK RM 6.9(15)).
3270 Check_Ghost_Completion (Spec_Id, Body_Id);
3271 end if;
3273 if Is_Protected_Type (Scope (Spec_Id)) then
3274 Prot_Typ := Scope (Spec_Id);
3275 end if;
3277 -- If this is a body generated for a renaming, do not check for
3278 -- full conformance. The check is redundant, because the spec of
3279 -- the body is a copy of the spec in the renaming declaration,
3280 -- and the test can lead to spurious errors on nested defaults.
3282 if Present (Spec_Decl)
3283 and then not Comes_From_Source (N)
3284 and then
3285 (Nkind (Original_Node (Spec_Decl)) =
3286 N_Subprogram_Renaming_Declaration
3287 or else (Present (Corresponding_Body (Spec_Decl))
3288 and then
3289 Nkind (Unit_Declaration_Node
3290 (Corresponding_Body (Spec_Decl))) =
3291 N_Subprogram_Renaming_Declaration))
3292 then
3293 Conformant := True;
3295 -- Conversely, the spec may have been generated for specless body
3296 -- with an inline pragma.
3298 elsif Comes_From_Source (N)
3299 and then not Comes_From_Source (Spec_Id)
3300 and then Has_Pragma_Inline (Spec_Id)
3301 then
3302 Conformant := True;
3304 else
3305 Check_Conformance
3306 (Body_Id, Spec_Id,
3307 Fully_Conformant, True, Conformant, Body_Id);
3308 end if;
3310 -- If the body is not fully conformant, we have to decide if we
3311 -- should analyze it or not. If it has a really messed up profile
3312 -- then we probably should not analyze it, since we will get too
3313 -- many bogus messages.
3315 -- Our decision is to go ahead in the non-fully conformant case
3316 -- only if it is at least mode conformant with the spec. Note
3317 -- that the call to Check_Fully_Conformant has issued the proper
3318 -- error messages to complain about the lack of conformance.
3320 if not Conformant
3321 and then not Mode_Conformant (Body_Id, Spec_Id)
3322 then
3323 return;
3324 end if;
3325 end if;
3327 if Spec_Id /= Body_Id then
3328 Reference_Body_Formals (Spec_Id, Body_Id);
3329 end if;
3331 Set_Ekind (Body_Id, E_Subprogram_Body);
3333 if Nkind (N) = N_Subprogram_Body_Stub then
3334 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3336 -- Regular body
3338 else
3339 Set_Corresponding_Spec (N, Spec_Id);
3341 -- Ada 2005 (AI-345): If the operation is a primitive operation
3342 -- of a concurrent type, the type of the first parameter has been
3343 -- replaced with the corresponding record, which is the proper
3344 -- run-time structure to use. However, within the body there may
3345 -- be uses of the formals that depend on primitive operations
3346 -- of the type (in particular calls in prefixed form) for which
3347 -- we need the original concurrent type. The operation may have
3348 -- several controlling formals, so the replacement must be done
3349 -- for all of them.
3351 if Comes_From_Source (Spec_Id)
3352 and then Present (First_Entity (Spec_Id))
3353 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3354 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3355 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3356 and then Present (Corresponding_Concurrent_Type
3357 (Etype (First_Entity (Spec_Id))))
3358 then
3359 declare
3360 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3361 Form : Entity_Id;
3363 begin
3364 Form := First_Formal (Spec_Id);
3365 while Present (Form) loop
3366 if Etype (Form) = Typ then
3367 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3368 end if;
3370 Next_Formal (Form);
3371 end loop;
3372 end;
3373 end if;
3375 -- Make the formals visible, and place subprogram on scope stack.
3376 -- This is also the point at which we set Last_Real_Spec_Entity
3377 -- to mark the entities which will not be moved to the body.
3379 Install_Formals (Spec_Id);
3380 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3382 -- Within an instance, add local renaming declarations so that
3383 -- gdb can retrieve the values of actuals more easily. This is
3384 -- only relevant if generating code (and indeed we definitely
3385 -- do not want these definitions -gnatc mode, because that would
3386 -- confuse ASIS).
3388 if Is_Generic_Instance (Spec_Id)
3389 and then Is_Wrapper_Package (Current_Scope)
3390 and then Expander_Active
3391 then
3392 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3393 end if;
3395 Push_Scope (Spec_Id);
3397 -- Make sure that the subprogram is immediately visible. For
3398 -- child units that have no separate spec this is indispensable.
3399 -- Otherwise it is safe albeit redundant.
3401 Set_Is_Immediately_Visible (Spec_Id);
3402 end if;
3404 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3405 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3406 Set_Scope (Body_Id, Scope (Spec_Id));
3408 -- Case of subprogram body with no previous spec
3410 else
3411 -- Check for style warning required
3413 if Style_Check
3415 -- Only apply check for source level subprograms for which checks
3416 -- have not been suppressed.
3418 and then Comes_From_Source (Body_Id)
3419 and then not Suppress_Style_Checks (Body_Id)
3421 -- No warnings within an instance
3423 and then not In_Instance
3425 -- No warnings for expression functions
3427 and then Nkind (Original_Node (N)) /= N_Expression_Function
3428 then
3429 Style.Body_With_No_Spec (N);
3430 end if;
3432 New_Overloaded_Entity (Body_Id);
3434 if Nkind (N) /= N_Subprogram_Body_Stub then
3435 Set_Acts_As_Spec (N);
3436 Generate_Definition (Body_Id);
3437 Generate_Reference
3438 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3439 Install_Formals (Body_Id);
3441 Push_Scope (Body_Id);
3442 end if;
3444 -- For stubs and bodies with no previous spec, generate references to
3445 -- formals.
3447 Generate_Reference_To_Formals (Body_Id);
3448 end if;
3450 -- Set SPARK_Mode from context
3452 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3453 Set_SPARK_Pragma_Inherited (Body_Id, True);
3455 -- If the return type is an anonymous access type whose designated type
3456 -- is the limited view of a class-wide type and the non-limited view is
3457 -- available, update the return type accordingly.
3459 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3460 declare
3461 Etyp : Entity_Id;
3462 Rtyp : Entity_Id;
3464 begin
3465 Rtyp := Etype (Current_Scope);
3467 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3468 Etyp := Directly_Designated_Type (Rtyp);
3470 if Is_Class_Wide_Type (Etyp)
3471 and then From_Limited_With (Etyp)
3472 then
3473 Set_Directly_Designated_Type
3474 (Etype (Current_Scope), Available_View (Etyp));
3475 end if;
3476 end if;
3477 end;
3478 end if;
3480 -- If this is the proper body of a stub, we must verify that the stub
3481 -- conforms to the body, and to the previous spec if one was present.
3482 -- We know already that the body conforms to that spec. This test is
3483 -- only required for subprograms that come from source.
3485 if Nkind (Parent (N)) = N_Subunit
3486 and then Comes_From_Source (N)
3487 and then not Error_Posted (Body_Id)
3488 and then Nkind (Corresponding_Stub (Parent (N))) =
3489 N_Subprogram_Body_Stub
3490 then
3491 declare
3492 Old_Id : constant Entity_Id :=
3493 Defining_Entity
3494 (Specification (Corresponding_Stub (Parent (N))));
3496 Conformant : Boolean := False;
3498 begin
3499 if No (Spec_Id) then
3500 Check_Fully_Conformant (Body_Id, Old_Id);
3502 else
3503 Check_Conformance
3504 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3506 if not Conformant then
3508 -- The stub was taken to be a new declaration. Indicate that
3509 -- it lacks a body.
3511 Set_Has_Completion (Old_Id, False);
3512 end if;
3513 end if;
3514 end;
3515 end if;
3517 Set_Has_Completion (Body_Id);
3518 Check_Eliminated (Body_Id);
3520 -- Analyze any aspect specifications that appear on the subprogram body
3521 -- stub. Stop the analysis now as the stub does not have a declarative
3522 -- or a statement part, and it cannot be inlined.
3524 if Nkind (N) = N_Subprogram_Body_Stub then
3525 if Has_Aspects (N) then
3526 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3527 end if;
3529 return;
3530 end if;
3532 -- Handle frontend inlining
3534 -- Note: Normally we don't do any inlining if expansion is off, since
3535 -- we won't generate code in any case. An exception arises in GNATprove
3536 -- mode where we want to expand some calls in place, even with expansion
3537 -- disabled, since the inlining eases formal verification.
3539 if not GNATprove_Mode
3540 and then Expander_Active
3541 and then Serious_Errors_Detected = 0
3542 and then Present (Spec_Id)
3543 and then Has_Pragma_Inline (Spec_Id)
3544 then
3545 -- Legacy implementation (relying on frontend inlining)
3547 if not Back_End_Inlining then
3548 if (Has_Pragma_Inline_Always (Spec_Id)
3549 and then not Opt.Disable_FE_Inline_Always)
3550 or else
3551 (Has_Pragma_Inline (Spec_Id) and then Front_End_Inlining
3552 and then not Opt.Disable_FE_Inline)
3553 then
3554 Build_Body_To_Inline (N, Spec_Id);
3555 end if;
3557 -- New implementation (relying on backend inlining)
3559 else
3560 if Has_Pragma_Inline_Always (Spec_Id)
3561 or else Optimization_Level > 0
3562 then
3563 -- Handle function returning an unconstrained type
3565 if Comes_From_Source (Body_Id)
3566 and then Ekind (Spec_Id) = E_Function
3567 and then Returns_Unconstrained_Type (Spec_Id)
3569 -- If function builds in place, i.e. returns a limited type,
3570 -- inlining cannot be done.
3572 and then not Is_Limited_Type (Etype (Spec_Id))
3573 then
3574 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3576 else
3577 declare
3578 Subp_Body : constant Node_Id :=
3579 Unit_Declaration_Node (Body_Id);
3580 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3582 begin
3583 -- Do not pass inlining to the backend if the subprogram
3584 -- has declarations or statements which cannot be inlined
3585 -- by the backend. This check is done here to emit an
3586 -- error instead of the generic warning message reported
3587 -- by the GCC backend (ie. "function might not be
3588 -- inlinable").
3590 if Present (Subp_Decl)
3591 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3592 then
3593 null;
3595 elsif Has_Excluded_Statement
3596 (Spec_Id,
3597 Statements
3598 (Handled_Statement_Sequence (Subp_Body)))
3599 then
3600 null;
3602 -- If the backend inlining is available then at this
3603 -- stage we only have to mark the subprogram as inlined.
3604 -- The expander will take care of registering it in the
3605 -- table of subprograms inlined by the backend a part of
3606 -- processing calls to it (cf. Expand_Call)
3608 else
3609 Set_Is_Inlined (Spec_Id);
3610 end if;
3611 end;
3612 end if;
3613 end if;
3614 end if;
3616 -- In GNATprove mode, inline only when there is a separate subprogram
3617 -- declaration for now, as inlining of subprogram bodies acting as
3618 -- declarations, or subprogram stubs, are not supported by frontend
3619 -- inlining. This inlining should occur after analysis of the body, so
3620 -- that it is known whether the value of SPARK_Mode applicable to the
3621 -- body, which can be defined by a pragma inside the body.
3623 elsif GNATprove_Mode
3624 and then Full_Analysis
3625 and then not Inside_A_Generic
3626 and then Present (Spec_Id)
3627 and then
3628 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
3629 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3630 and then not Body_Has_Contract
3631 then
3632 Build_Body_To_Inline (N, Spec_Id);
3633 end if;
3635 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3636 -- of the specification we have to install the private withed units.
3637 -- This holds for child units as well.
3639 if Is_Compilation_Unit (Body_Id)
3640 or else Nkind (Parent (N)) = N_Compilation_Unit
3641 then
3642 Install_Private_With_Clauses (Body_Id);
3643 end if;
3645 Check_Anonymous_Return;
3647 -- Set the Protected_Formal field of each extra formal of the protected
3648 -- subprogram to reference the corresponding extra formal of the
3649 -- subprogram that implements it. For regular formals this occurs when
3650 -- the protected subprogram's declaration is expanded, but the extra
3651 -- formals don't get created until the subprogram is frozen. We need to
3652 -- do this before analyzing the protected subprogram's body so that any
3653 -- references to the original subprogram's extra formals will be changed
3654 -- refer to the implementing subprogram's formals (see Expand_Formal).
3656 if Present (Spec_Id)
3657 and then Is_Protected_Type (Scope (Spec_Id))
3658 and then Present (Protected_Body_Subprogram (Spec_Id))
3659 then
3660 declare
3661 Impl_Subp : constant Entity_Id :=
3662 Protected_Body_Subprogram (Spec_Id);
3663 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3664 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3665 begin
3666 while Present (Prot_Ext_Formal) loop
3667 pragma Assert (Present (Impl_Ext_Formal));
3668 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3669 Next_Formal_With_Extras (Prot_Ext_Formal);
3670 Next_Formal_With_Extras (Impl_Ext_Formal);
3671 end loop;
3672 end;
3673 end if;
3675 -- Now we can go on to analyze the body
3677 HSS := Handled_Statement_Sequence (N);
3678 Set_Actual_Subtypes (N, Current_Scope);
3680 -- Add a declaration for the Protection object, renaming declarations
3681 -- for discriminals and privals and finally a declaration for the entry
3682 -- family index (if applicable). This form of early expansion is done
3683 -- when the Expander is active because Install_Private_Data_Declarations
3684 -- references entities which were created during regular expansion. The
3685 -- subprogram entity must come from source, and not be an internally
3686 -- generated subprogram.
3688 if Expander_Active
3689 and then Present (Prot_Typ)
3690 and then Present (Spec_Id)
3691 and then Comes_From_Source (Spec_Id)
3692 and then not Is_Eliminated (Spec_Id)
3693 then
3694 Install_Private_Data_Declarations
3695 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3696 end if;
3698 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3699 -- may now appear in parameter and result profiles. Since the analysis
3700 -- of a subprogram body may use the parameter and result profile of the
3701 -- spec, swap any limited views with their non-limited counterpart.
3703 if Ada_Version >= Ada_2012 then
3704 Exchange_Limited_Views (Spec_Id);
3705 end if;
3707 -- Analyze any aspect specifications that appear on the subprogram body
3709 if Has_Aspects (N) then
3710 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3711 end if;
3713 Analyze_Declarations (Declarations (N));
3715 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3717 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3718 if Present (SPARK_Pragma (Spec_Id)) then
3719 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3720 and then
3721 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3722 then
3723 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3724 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3725 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3726 Error_Msg_NE
3727 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3728 end if;
3730 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3731 null;
3733 else
3734 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3735 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3736 Error_Msg_Sloc := Sloc (Spec_Id);
3737 Error_Msg_NE
3738 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3739 end if;
3740 end if;
3742 -- When a subprogram body appears inside a package, its contract is
3743 -- analyzed at the end of the package body declarations. This is due
3744 -- to the delay with respect of the package contract upon which the
3745 -- body contract may depend. When the subprogram body is stand alone
3746 -- and acts as a compilation unit, this delay is not necessary.
3748 if Nkind (Parent (N)) = N_Compilation_Unit then
3749 Analyze_Subprogram_Body_Contract (Body_Id);
3750 end if;
3752 -- Deal with preconditions, [refined] postconditions, Contract_Cases,
3753 -- invariants and predicates associated with body and its spec. Since
3754 -- there is no routine Expand_Declarations which would otherwise deal
3755 -- with the contract expansion, generate all necessary mechanisms to
3756 -- verify the contract assertions now.
3758 Expand_Subprogram_Contract (N);
3760 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3761 -- subprogram in GNATprove mode, as its body should not be analyzed.
3763 if SPARK_Mode /= On
3764 and then GNATprove_Mode
3765 and then Present (Spec_Id)
3766 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3767 then
3768 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3769 Set_Is_Inlined_Always (Spec_Id, False);
3770 end if;
3772 -- Check completion, and analyze the statements
3774 Check_Completion;
3775 Inspect_Deferred_Constant_Completion (Declarations (N));
3776 Analyze (HSS);
3778 -- Deal with end of scope processing for the body
3780 Process_End_Label (HSS, 't', Current_Scope);
3781 End_Scope;
3782 Check_Subprogram_Order (N);
3783 Set_Analyzed (Body_Id);
3785 -- If we have a separate spec, then the analysis of the declarations
3786 -- caused the entities in the body to be chained to the spec id, but
3787 -- we want them chained to the body id. Only the formal parameters
3788 -- end up chained to the spec id in this case.
3790 if Present (Spec_Id) then
3792 -- We must conform to the categorization of our spec
3794 Validate_Categorization_Dependency (N, Spec_Id);
3796 -- And if this is a child unit, the parent units must conform
3798 if Is_Child_Unit (Spec_Id) then
3799 Validate_Categorization_Dependency
3800 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3801 end if;
3803 -- Here is where we move entities from the spec to the body
3805 -- Case where there are entities that stay with the spec
3807 if Present (Last_Real_Spec_Entity) then
3809 -- No body entities (happens when the only real spec entities come
3810 -- from precondition and postcondition pragmas).
3812 if No (Last_Entity (Body_Id)) then
3813 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3815 -- Body entities present (formals), so chain stuff past them
3817 else
3818 Set_Next_Entity
3819 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3820 end if;
3822 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3823 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3824 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3826 -- Case where there are no spec entities, in this case there can be
3827 -- no body entities either, so just move everything.
3829 -- If the body is generated for an expression function, it may have
3830 -- been preanalyzed already, if 'access was applied to it.
3832 else
3833 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3834 N_Expression_Function
3835 then
3836 pragma Assert (No (Last_Entity (Body_Id)));
3837 null;
3838 end if;
3840 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3841 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3842 Set_First_Entity (Spec_Id, Empty);
3843 Set_Last_Entity (Spec_Id, Empty);
3844 end if;
3845 end if;
3847 Check_Missing_Return;
3849 -- Now we are going to check for variables that are never modified in
3850 -- the body of the procedure. But first we deal with a special case
3851 -- where we want to modify this check. If the body of the subprogram
3852 -- starts with a raise statement or its equivalent, or if the body
3853 -- consists entirely of a null statement, then it is pretty obvious that
3854 -- it is OK to not reference the parameters. For example, this might be
3855 -- the following common idiom for a stubbed function: statement of the
3856 -- procedure raises an exception. In particular this deals with the
3857 -- common idiom of a stubbed function, which appears something like:
3859 -- function F (A : Integer) return Some_Type;
3860 -- X : Some_Type;
3861 -- begin
3862 -- raise Program_Error;
3863 -- return X;
3864 -- end F;
3866 -- Here the purpose of X is simply to satisfy the annoying requirement
3867 -- in Ada that there be at least one return, and we certainly do not
3868 -- want to go posting warnings on X that it is not initialized. On
3869 -- the other hand, if X is entirely unreferenced that should still
3870 -- get a warning.
3872 -- What we do is to detect these cases, and if we find them, flag the
3873 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3874 -- suppress unwanted warnings. For the case of the function stub above
3875 -- we have a special test to set X as apparently assigned to suppress
3876 -- the warning.
3878 declare
3879 Stm : Node_Id;
3881 begin
3882 -- Skip initial labels (for one thing this occurs when we are in
3883 -- front end ZCX mode, but in any case it is irrelevant), and also
3884 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3886 Stm := First (Statements (HSS));
3887 while Nkind (Stm) = N_Label
3888 or else Nkind (Stm) in N_Push_xxx_Label
3889 loop
3890 Next (Stm);
3891 end loop;
3893 -- Do the test on the original statement before expansion
3895 declare
3896 Ostm : constant Node_Id := Original_Node (Stm);
3898 begin
3899 -- If explicit raise statement, turn on flag
3901 if Nkind (Ostm) = N_Raise_Statement then
3902 Set_Trivial_Subprogram (Stm);
3904 -- If null statement, and no following statements, turn on flag
3906 elsif Nkind (Stm) = N_Null_Statement
3907 and then Comes_From_Source (Stm)
3908 and then No (Next (Stm))
3909 then
3910 Set_Trivial_Subprogram (Stm);
3912 -- Check for explicit call cases which likely raise an exception
3914 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3915 if Is_Entity_Name (Name (Ostm)) then
3916 declare
3917 Ent : constant Entity_Id := Entity (Name (Ostm));
3919 begin
3920 -- If the procedure is marked No_Return, then likely it
3921 -- raises an exception, but in any case it is not coming
3922 -- back here, so turn on the flag.
3924 if Present (Ent)
3925 and then Ekind (Ent) = E_Procedure
3926 and then No_Return (Ent)
3927 then
3928 Set_Trivial_Subprogram (Stm);
3929 end if;
3930 end;
3931 end if;
3932 end if;
3933 end;
3934 end;
3936 -- Check for variables that are never modified
3938 declare
3939 E1, E2 : Entity_Id;
3941 begin
3942 -- If there is a separate spec, then transfer Never_Set_In_Source
3943 -- flags from out parameters to the corresponding entities in the
3944 -- body. The reason we do that is we want to post error flags on
3945 -- the body entities, not the spec entities.
3947 if Present (Spec_Id) then
3948 E1 := First_Entity (Spec_Id);
3949 while Present (E1) loop
3950 if Ekind (E1) = E_Out_Parameter then
3951 E2 := First_Entity (Body_Id);
3952 while Present (E2) loop
3953 exit when Chars (E1) = Chars (E2);
3954 Next_Entity (E2);
3955 end loop;
3957 if Present (E2) then
3958 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3959 end if;
3960 end if;
3962 Next_Entity (E1);
3963 end loop;
3964 end if;
3966 -- Check references in body
3968 Check_References (Body_Id);
3969 end;
3971 -- Check for nested subprogram, and mark outer level subprogram if so
3973 declare
3974 Ent : Entity_Id;
3976 begin
3977 if Present (Spec_Id) then
3978 Ent := Spec_Id;
3979 else
3980 Ent := Body_Id;
3981 end if;
3983 loop
3984 Ent := Enclosing_Subprogram (Ent);
3985 exit when No (Ent) or else Is_Subprogram (Ent);
3986 end loop;
3988 if Present (Ent) then
3989 Set_Has_Nested_Subprogram (Ent);
3990 end if;
3991 end;
3992 end Analyze_Subprogram_Body_Helper;
3994 ---------------------------------
3995 -- Analyze_Subprogram_Contract --
3996 ---------------------------------
3998 procedure Analyze_Subprogram_Contract (Subp_Id : Entity_Id) is
3999 Items : constant Node_Id := Contract (Subp_Id);
4000 Depends : Node_Id := Empty;
4001 Global : Node_Id := Empty;
4002 Mode : SPARK_Mode_Type;
4003 Prag : Node_Id;
4004 Prag_Nam : Name_Id;
4006 begin
4007 -- Due to the timing of contract analysis, delayed pragmas may be
4008 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4009 -- context. To remedy this, restore the original SPARK_Mode of the
4010 -- related subprogram body.
4012 Save_SPARK_Mode_And_Set (Subp_Id, Mode);
4014 -- All subprograms carry a contract, but for some it is not significant
4015 -- and should not be processed.
4017 if not Has_Significant_Contract (Subp_Id) then
4018 null;
4020 elsif Present (Items) then
4022 -- Analyze pre- and postconditions
4024 Prag := Pre_Post_Conditions (Items);
4025 while Present (Prag) loop
4026 Analyze_Pre_Post_Condition_In_Decl_Part (Prag);
4027 Prag := Next_Pragma (Prag);
4028 end loop;
4030 -- Analyze contract-cases and test-cases
4032 Prag := Contract_Test_Cases (Items);
4033 while Present (Prag) loop
4034 Prag_Nam := Pragma_Name (Prag);
4036 if Prag_Nam = Name_Contract_Cases then
4037 Analyze_Contract_Cases_In_Decl_Part (Prag);
4038 else
4039 pragma Assert (Prag_Nam = Name_Test_Case);
4040 Analyze_Test_Case_In_Decl_Part (Prag);
4041 end if;
4043 Prag := Next_Pragma (Prag);
4044 end loop;
4046 -- Analyze classification pragmas
4048 Prag := Classifications (Items);
4049 while Present (Prag) loop
4050 Prag_Nam := Pragma_Name (Prag);
4052 if Prag_Nam = Name_Depends then
4053 Depends := Prag;
4055 elsif Prag_Nam = Name_Global then
4056 Global := Prag;
4058 -- Note that pragma Extensions_Visible has already been analyzed
4060 end if;
4062 Prag := Next_Pragma (Prag);
4063 end loop;
4065 -- Analyze Global first as Depends may mention items classified in
4066 -- the global categorization.
4068 if Present (Global) then
4069 Analyze_Global_In_Decl_Part (Global);
4070 end if;
4072 -- Depends must be analyzed after Global in order to see the modes of
4073 -- all global items.
4075 if Present (Depends) then
4076 Analyze_Depends_In_Decl_Part (Depends);
4077 end if;
4079 -- Ensure that the contract cases or postconditions mention 'Result
4080 -- or define a post-state.
4082 Check_Result_And_Post_State (Subp_Id);
4083 end if;
4085 -- Restore the SPARK_Mode of the enclosing context after all delayed
4086 -- pragmas have been analyzed.
4088 Restore_SPARK_Mode (Mode);
4089 end Analyze_Subprogram_Contract;
4091 ------------------------------------
4092 -- Analyze_Subprogram_Declaration --
4093 ------------------------------------
4095 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4096 Scop : constant Entity_Id := Current_Scope;
4097 Designator : Entity_Id;
4099 Is_Completion : Boolean;
4100 -- Indicates whether a null procedure declaration is a completion
4102 begin
4103 -- The subprogram declaration may be subject to pragma Ghost with policy
4104 -- Ignore. Set the mode now to ensure that any nodes generated during
4105 -- analysis and expansion are properly flagged as ignored Ghost.
4107 Set_Ghost_Mode (N);
4109 -- Null procedures are not allowed in SPARK
4111 if Nkind (Specification (N)) = N_Procedure_Specification
4112 and then Null_Present (Specification (N))
4113 then
4114 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4116 -- Null procedures are allowed in protected types, following the
4117 -- recent AI12-0147.
4119 if Is_Protected_Type (Current_Scope)
4120 and then Ada_Version < Ada_2012
4121 then
4122 Error_Msg_N ("protected operation cannot be a null procedure", N);
4123 end if;
4125 Analyze_Null_Procedure (N, Is_Completion);
4127 if Is_Completion then
4129 -- The null procedure acts as a body, nothing further is needed
4131 return;
4132 end if;
4133 end if;
4135 Designator := Analyze_Subprogram_Specification (Specification (N));
4137 -- A reference may already have been generated for the unit name, in
4138 -- which case the following call is redundant. However it is needed for
4139 -- declarations that are the rewriting of an expression function.
4141 Generate_Definition (Designator);
4143 -- Set SPARK mode from current context (may be overwritten later with
4144 -- explicit pragma).
4146 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4147 Set_SPARK_Pragma_Inherited (Designator);
4149 -- A subprogram declared within a Ghost region is automatically Ghost
4150 -- (SPARK RM 6.9(2)).
4152 if Comes_From_Source (Designator) and then Ghost_Mode > None then
4153 Set_Is_Ghost_Entity (Designator);
4154 end if;
4156 if Debug_Flag_C then
4157 Write_Str ("==> subprogram spec ");
4158 Write_Name (Chars (Designator));
4159 Write_Str (" from ");
4160 Write_Location (Sloc (N));
4161 Write_Eol;
4162 Indent;
4163 end if;
4165 Validate_RCI_Subprogram_Declaration (N);
4166 New_Overloaded_Entity (Designator);
4167 Check_Delayed_Subprogram (Designator);
4169 -- If the type of the first formal of the current subprogram is a non-
4170 -- generic tagged private type, mark the subprogram as being a private
4171 -- primitive. Ditto if this is a function with controlling result, and
4172 -- the return type is currently private. In both cases, the type of the
4173 -- controlling argument or result must be in the current scope for the
4174 -- operation to be primitive.
4176 if Has_Controlling_Result (Designator)
4177 and then Is_Private_Type (Etype (Designator))
4178 and then Scope (Etype (Designator)) = Current_Scope
4179 and then not Is_Generic_Actual_Type (Etype (Designator))
4180 then
4181 Set_Is_Private_Primitive (Designator);
4183 elsif Present (First_Formal (Designator)) then
4184 declare
4185 Formal_Typ : constant Entity_Id :=
4186 Etype (First_Formal (Designator));
4187 begin
4188 Set_Is_Private_Primitive (Designator,
4189 Is_Tagged_Type (Formal_Typ)
4190 and then Scope (Formal_Typ) = Current_Scope
4191 and then Is_Private_Type (Formal_Typ)
4192 and then not Is_Generic_Actual_Type (Formal_Typ));
4193 end;
4194 end if;
4196 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4197 -- or null.
4199 if Ada_Version >= Ada_2005
4200 and then Comes_From_Source (N)
4201 and then Is_Dispatching_Operation (Designator)
4202 then
4203 declare
4204 E : Entity_Id;
4205 Etyp : Entity_Id;
4207 begin
4208 if Has_Controlling_Result (Designator) then
4209 Etyp := Etype (Designator);
4211 else
4212 E := First_Entity (Designator);
4213 while Present (E)
4214 and then Is_Formal (E)
4215 and then not Is_Controlling_Formal (E)
4216 loop
4217 Next_Entity (E);
4218 end loop;
4220 Etyp := Etype (E);
4221 end if;
4223 if Is_Access_Type (Etyp) then
4224 Etyp := Directly_Designated_Type (Etyp);
4225 end if;
4227 if Is_Interface (Etyp)
4228 and then not Is_Abstract_Subprogram (Designator)
4229 and then not (Ekind (Designator) = E_Procedure
4230 and then Null_Present (Specification (N)))
4231 then
4232 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4234 -- Specialize error message based on procedures vs. functions,
4235 -- since functions can't be null subprograms.
4237 if Ekind (Designator) = E_Procedure then
4238 Error_Msg_N
4239 ("interface procedure % must be abstract or null", N);
4240 else
4241 Error_Msg_N
4242 ("interface function % must be abstract", N);
4243 end if;
4244 end if;
4245 end;
4246 end if;
4248 -- What is the following code for, it used to be
4250 -- ??? Set_Suppress_Elaboration_Checks
4251 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4253 -- The following seems equivalent, but a bit dubious
4255 if Elaboration_Checks_Suppressed (Designator) then
4256 Set_Kill_Elaboration_Checks (Designator);
4257 end if;
4259 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4260 Set_Categorization_From_Scope (Designator, Scop);
4262 else
4263 -- For a compilation unit, check for library-unit pragmas
4265 Push_Scope (Designator);
4266 Set_Categorization_From_Pragmas (N);
4267 Validate_Categorization_Dependency (N, Designator);
4268 Pop_Scope;
4269 end if;
4271 -- For a compilation unit, set body required. This flag will only be
4272 -- reset if a valid Import or Interface pragma is processed later on.
4274 if Nkind (Parent (N)) = N_Compilation_Unit then
4275 Set_Body_Required (Parent (N), True);
4277 if Ada_Version >= Ada_2005
4278 and then Nkind (Specification (N)) = N_Procedure_Specification
4279 and then Null_Present (Specification (N))
4280 then
4281 Error_Msg_N
4282 ("null procedure cannot be declared at library level", N);
4283 end if;
4284 end if;
4286 Generate_Reference_To_Formals (Designator);
4287 Check_Eliminated (Designator);
4289 if Debug_Flag_C then
4290 Outdent;
4291 Write_Str ("<== subprogram spec ");
4292 Write_Name (Chars (Designator));
4293 Write_Str (" from ");
4294 Write_Location (Sloc (N));
4295 Write_Eol;
4296 end if;
4298 if Is_Protected_Type (Current_Scope) then
4300 -- Indicate that this is a protected operation, because it may be
4301 -- used in subsequent declarations within the protected type.
4303 Set_Convention (Designator, Convention_Protected);
4304 end if;
4306 List_Inherited_Pre_Post_Aspects (Designator);
4308 if Has_Aspects (N) then
4309 Analyze_Aspect_Specifications (N, Designator);
4310 end if;
4311 end Analyze_Subprogram_Declaration;
4313 --------------------------------------
4314 -- Analyze_Subprogram_Specification --
4315 --------------------------------------
4317 -- Reminder: N here really is a subprogram specification (not a subprogram
4318 -- declaration). This procedure is called to analyze the specification in
4319 -- both subprogram bodies and subprogram declarations (specs).
4321 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4322 Designator : constant Entity_Id := Defining_Entity (N);
4323 Formals : constant List_Id := Parameter_Specifications (N);
4325 -- Start of processing for Analyze_Subprogram_Specification
4327 begin
4328 -- User-defined operator is not allowed in SPARK, except as a renaming
4330 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4331 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4332 then
4333 Check_SPARK_05_Restriction
4334 ("user-defined operator is not allowed", N);
4335 end if;
4337 -- Proceed with analysis. Do not emit a cross-reference entry if the
4338 -- specification comes from an expression function, because it may be
4339 -- the completion of a previous declaration. It is is not, the cross-
4340 -- reference entry will be emitted for the new subprogram declaration.
4342 if Nkind (Parent (N)) /= N_Expression_Function then
4343 Generate_Definition (Designator);
4344 end if;
4346 if Nkind (N) = N_Function_Specification then
4347 Set_Ekind (Designator, E_Function);
4348 Set_Mechanism (Designator, Default_Mechanism);
4349 else
4350 Set_Ekind (Designator, E_Procedure);
4351 Set_Etype (Designator, Standard_Void_Type);
4352 end if;
4354 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4355 -- those subprograms which could be inlined in GNATprove mode (because
4356 -- Body_To_Inline is non-Empty) but cannot be inlined.
4358 if GNATprove_Mode then
4359 Set_Is_Inlined_Always (Designator);
4360 end if;
4362 -- Introduce new scope for analysis of the formals and the return type
4364 Set_Scope (Designator, Current_Scope);
4366 if Present (Formals) then
4367 Push_Scope (Designator);
4368 Process_Formals (Formals, N);
4370 -- Check dimensions in N for formals with default expression
4372 Analyze_Dimension_Formals (N, Formals);
4374 -- Ada 2005 (AI-345): If this is an overriding operation of an
4375 -- inherited interface operation, and the controlling type is
4376 -- a synchronized type, replace the type with its corresponding
4377 -- record, to match the proper signature of an overriding operation.
4378 -- Same processing for an access parameter whose designated type is
4379 -- derived from a synchronized interface.
4381 if Ada_Version >= Ada_2005 then
4382 declare
4383 Formal : Entity_Id;
4384 Formal_Typ : Entity_Id;
4385 Rec_Typ : Entity_Id;
4386 Desig_Typ : Entity_Id;
4388 begin
4389 Formal := First_Formal (Designator);
4390 while Present (Formal) loop
4391 Formal_Typ := Etype (Formal);
4393 if Is_Concurrent_Type (Formal_Typ)
4394 and then Present (Corresponding_Record_Type (Formal_Typ))
4395 then
4396 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4398 if Present (Interfaces (Rec_Typ)) then
4399 Set_Etype (Formal, Rec_Typ);
4400 end if;
4402 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4403 Desig_Typ := Designated_Type (Formal_Typ);
4405 if Is_Concurrent_Type (Desig_Typ)
4406 and then Present (Corresponding_Record_Type (Desig_Typ))
4407 then
4408 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4410 if Present (Interfaces (Rec_Typ)) then
4411 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4412 end if;
4413 end if;
4414 end if;
4416 Next_Formal (Formal);
4417 end loop;
4418 end;
4419 end if;
4421 End_Scope;
4423 -- The subprogram scope is pushed and popped around the processing of
4424 -- the return type for consistency with call above to Process_Formals
4425 -- (which itself can call Analyze_Return_Type), and to ensure that any
4426 -- itype created for the return type will be associated with the proper
4427 -- scope.
4429 elsif Nkind (N) = N_Function_Specification then
4430 Push_Scope (Designator);
4431 Analyze_Return_Type (N);
4432 End_Scope;
4433 end if;
4435 -- Function case
4437 if Nkind (N) = N_Function_Specification then
4439 -- Deal with operator symbol case
4441 if Nkind (Designator) = N_Defining_Operator_Symbol then
4442 Valid_Operator_Definition (Designator);
4443 end if;
4445 May_Need_Actuals (Designator);
4447 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4448 -- the subprogram is abstract also. This does not apply to renaming
4449 -- declarations, where abstractness is inherited, and to subprogram
4450 -- bodies generated for stream operations, which become renamings as
4451 -- bodies.
4453 -- In case of primitives associated with abstract interface types
4454 -- the check is applied later (see Analyze_Subprogram_Declaration).
4456 if not Nkind_In (Original_Node (Parent (N)),
4457 N_Subprogram_Renaming_Declaration,
4458 N_Abstract_Subprogram_Declaration,
4459 N_Formal_Abstract_Subprogram_Declaration)
4460 then
4461 if Is_Abstract_Type (Etype (Designator))
4462 and then not Is_Interface (Etype (Designator))
4463 then
4464 Error_Msg_N
4465 ("function that returns abstract type must be abstract", N);
4467 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4468 -- access result whose designated type is abstract.
4470 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4471 and then
4472 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4473 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4474 and then Ada_Version >= Ada_2012
4475 then
4476 Error_Msg_N ("function whose access result designates "
4477 & "abstract type must be abstract", N);
4478 end if;
4479 end if;
4480 end if;
4482 return Designator;
4483 end Analyze_Subprogram_Specification;
4485 -----------------------
4486 -- Check_Conformance --
4487 -----------------------
4489 procedure Check_Conformance
4490 (New_Id : Entity_Id;
4491 Old_Id : Entity_Id;
4492 Ctype : Conformance_Type;
4493 Errmsg : Boolean;
4494 Conforms : out Boolean;
4495 Err_Loc : Node_Id := Empty;
4496 Get_Inst : Boolean := False;
4497 Skip_Controlling_Formals : Boolean := False)
4499 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4500 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4501 -- If Errmsg is True, then processing continues to post an error message
4502 -- for conformance error on given node. Two messages are output. The
4503 -- first message points to the previous declaration with a general "no
4504 -- conformance" message. The second is the detailed reason, supplied as
4505 -- Msg. The parameter N provide information for a possible & insertion
4506 -- in the message, and also provides the location for posting the
4507 -- message in the absence of a specified Err_Loc location.
4509 -----------------------
4510 -- Conformance_Error --
4511 -----------------------
4513 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4514 Enode : Node_Id;
4516 begin
4517 Conforms := False;
4519 if Errmsg then
4520 if No (Err_Loc) then
4521 Enode := N;
4522 else
4523 Enode := Err_Loc;
4524 end if;
4526 Error_Msg_Sloc := Sloc (Old_Id);
4528 case Ctype is
4529 when Type_Conformant =>
4530 Error_Msg_N -- CODEFIX
4531 ("not type conformant with declaration#!", Enode);
4533 when Mode_Conformant =>
4534 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4535 Error_Msg_N
4536 ("not mode conformant with operation inherited#!",
4537 Enode);
4538 else
4539 Error_Msg_N
4540 ("not mode conformant with declaration#!", Enode);
4541 end if;
4543 when Subtype_Conformant =>
4544 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4545 Error_Msg_N
4546 ("not subtype conformant with operation inherited#!",
4547 Enode);
4548 else
4549 Error_Msg_N
4550 ("not subtype conformant with declaration#!", Enode);
4551 end if;
4553 when Fully_Conformant =>
4554 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4555 Error_Msg_N -- CODEFIX
4556 ("not fully conformant with operation inherited#!",
4557 Enode);
4558 else
4559 Error_Msg_N -- CODEFIX
4560 ("not fully conformant with declaration#!", Enode);
4561 end if;
4562 end case;
4564 Error_Msg_NE (Msg, Enode, N);
4565 end if;
4566 end Conformance_Error;
4568 -- Local Variables
4570 Old_Type : constant Entity_Id := Etype (Old_Id);
4571 New_Type : constant Entity_Id := Etype (New_Id);
4572 Old_Formal : Entity_Id;
4573 New_Formal : Entity_Id;
4574 Access_Types_Match : Boolean;
4575 Old_Formal_Base : Entity_Id;
4576 New_Formal_Base : Entity_Id;
4578 -- Start of processing for Check_Conformance
4580 begin
4581 Conforms := True;
4583 -- We need a special case for operators, since they don't appear
4584 -- explicitly.
4586 if Ctype = Type_Conformant then
4587 if Ekind (New_Id) = E_Operator
4588 and then Operator_Matches_Spec (New_Id, Old_Id)
4589 then
4590 return;
4591 end if;
4592 end if;
4594 -- If both are functions/operators, check return types conform
4596 if Old_Type /= Standard_Void_Type
4597 and then
4598 New_Type /= Standard_Void_Type
4599 then
4600 -- If we are checking interface conformance we omit controlling
4601 -- arguments and result, because we are only checking the conformance
4602 -- of the remaining parameters.
4604 if Has_Controlling_Result (Old_Id)
4605 and then Has_Controlling_Result (New_Id)
4606 and then Skip_Controlling_Formals
4607 then
4608 null;
4610 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4611 if Ctype >= Subtype_Conformant
4612 and then not Predicates_Match (Old_Type, New_Type)
4613 then
4614 Conformance_Error
4615 ("\predicate of return type does not match!", New_Id);
4616 else
4617 Conformance_Error
4618 ("\return type does not match!", New_Id);
4619 end if;
4621 return;
4622 end if;
4624 -- Ada 2005 (AI-231): In case of anonymous access types check the
4625 -- null-exclusion and access-to-constant attributes match.
4627 if Ada_Version >= Ada_2005
4628 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4629 and then
4630 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4631 or else Is_Access_Constant (Etype (Old_Type)) /=
4632 Is_Access_Constant (Etype (New_Type)))
4633 then
4634 Conformance_Error ("\return type does not match!", New_Id);
4635 return;
4636 end if;
4638 -- If either is a function/operator and the other isn't, error
4640 elsif Old_Type /= Standard_Void_Type
4641 or else New_Type /= Standard_Void_Type
4642 then
4643 Conformance_Error ("\functions can only match functions!", New_Id);
4644 return;
4645 end if;
4647 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4648 -- If this is a renaming as body, refine error message to indicate that
4649 -- the conflict is with the original declaration. If the entity is not
4650 -- frozen, the conventions don't have to match, the one of the renamed
4651 -- entity is inherited.
4653 if Ctype >= Subtype_Conformant then
4654 if Convention (Old_Id) /= Convention (New_Id) then
4655 if not Is_Frozen (New_Id) then
4656 null;
4658 elsif Present (Err_Loc)
4659 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4660 and then Present (Corresponding_Spec (Err_Loc))
4661 then
4662 Error_Msg_Name_1 := Chars (New_Id);
4663 Error_Msg_Name_2 :=
4664 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4665 Conformance_Error ("\prior declaration for% has convention %!");
4667 else
4668 Conformance_Error ("\calling conventions do not match!");
4669 end if;
4671 return;
4673 elsif Is_Formal_Subprogram (Old_Id)
4674 or else Is_Formal_Subprogram (New_Id)
4675 then
4676 Conformance_Error ("\formal subprograms not allowed!");
4677 return;
4679 -- Pragma Ghost behaves as a convention in the context of subtype
4680 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4681 -- subprograms as their spec may reside in a Ghost region and their
4682 -- body not, or vice versa.
4684 elsif Comes_From_Source (Old_Id)
4685 and then Comes_From_Source (New_Id)
4686 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4687 then
4688 Conformance_Error ("\ghost modes do not match!");
4689 return;
4690 end if;
4691 end if;
4693 -- Deal with parameters
4695 -- Note: we use the entity information, rather than going directly
4696 -- to the specification in the tree. This is not only simpler, but
4697 -- absolutely necessary for some cases of conformance tests between
4698 -- operators, where the declaration tree simply does not exist.
4700 Old_Formal := First_Formal (Old_Id);
4701 New_Formal := First_Formal (New_Id);
4702 while Present (Old_Formal) and then Present (New_Formal) loop
4703 if Is_Controlling_Formal (Old_Formal)
4704 and then Is_Controlling_Formal (New_Formal)
4705 and then Skip_Controlling_Formals
4706 then
4707 -- The controlling formals will have different types when
4708 -- comparing an interface operation with its match, but both
4709 -- or neither must be access parameters.
4711 if Is_Access_Type (Etype (Old_Formal))
4713 Is_Access_Type (Etype (New_Formal))
4714 then
4715 goto Skip_Controlling_Formal;
4716 else
4717 Conformance_Error
4718 ("\access parameter does not match!", New_Formal);
4719 end if;
4720 end if;
4722 -- Ada 2012: Mode conformance also requires that formal parameters
4723 -- be both aliased, or neither.
4725 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4726 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4727 Conformance_Error
4728 ("\aliased parameter mismatch!", New_Formal);
4729 end if;
4730 end if;
4732 if Ctype = Fully_Conformant then
4734 -- Names must match. Error message is more accurate if we do
4735 -- this before checking that the types of the formals match.
4737 if Chars (Old_Formal) /= Chars (New_Formal) then
4738 Conformance_Error ("\name& does not match!", New_Formal);
4740 -- Set error posted flag on new formal as well to stop
4741 -- junk cascaded messages in some cases.
4743 Set_Error_Posted (New_Formal);
4744 return;
4745 end if;
4747 -- Null exclusion must match
4749 if Null_Exclusion_Present (Parent (Old_Formal))
4751 Null_Exclusion_Present (Parent (New_Formal))
4752 then
4753 -- Only give error if both come from source. This should be
4754 -- investigated some time, since it should not be needed ???
4756 if Comes_From_Source (Old_Formal)
4757 and then
4758 Comes_From_Source (New_Formal)
4759 then
4760 Conformance_Error
4761 ("\null exclusion for& does not match", New_Formal);
4763 -- Mark error posted on the new formal to avoid duplicated
4764 -- complaint about types not matching.
4766 Set_Error_Posted (New_Formal);
4767 end if;
4768 end if;
4769 end if;
4771 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4772 -- case occurs whenever a subprogram is being renamed and one of its
4773 -- parameters imposes a null exclusion. For example:
4775 -- type T is null record;
4776 -- type Acc_T is access T;
4777 -- subtype Acc_T_Sub is Acc_T;
4779 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4780 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4781 -- renames P;
4783 Old_Formal_Base := Etype (Old_Formal);
4784 New_Formal_Base := Etype (New_Formal);
4786 if Get_Inst then
4787 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4788 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4789 end if;
4791 Access_Types_Match := Ada_Version >= Ada_2005
4793 -- Ensure that this rule is only applied when New_Id is a
4794 -- renaming of Old_Id.
4796 and then Nkind (Parent (Parent (New_Id))) =
4797 N_Subprogram_Renaming_Declaration
4798 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4799 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4800 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4802 -- Now handle the allowed access-type case
4804 and then Is_Access_Type (Old_Formal_Base)
4805 and then Is_Access_Type (New_Formal_Base)
4807 -- The type kinds must match. The only exception occurs with
4808 -- multiple generics of the form:
4810 -- generic generic
4811 -- type F is private; type A is private;
4812 -- type F_Ptr is access F; type A_Ptr is access A;
4813 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4814 -- package F_Pack is ... package A_Pack is
4815 -- package F_Inst is
4816 -- new F_Pack (A, A_Ptr, A_P);
4818 -- When checking for conformance between the parameters of A_P
4819 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4820 -- because the compiler has transformed A_Ptr into a subtype of
4821 -- F_Ptr. We catch this case in the code below.
4823 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4824 or else
4825 (Is_Generic_Type (Old_Formal_Base)
4826 and then Is_Generic_Type (New_Formal_Base)
4827 and then Is_Internal (New_Formal_Base)
4828 and then Etype (Etype (New_Formal_Base)) =
4829 Old_Formal_Base))
4830 and then Directly_Designated_Type (Old_Formal_Base) =
4831 Directly_Designated_Type (New_Formal_Base)
4832 and then ((Is_Itype (Old_Formal_Base)
4833 and then Can_Never_Be_Null (Old_Formal_Base))
4834 or else
4835 (Is_Itype (New_Formal_Base)
4836 and then Can_Never_Be_Null (New_Formal_Base)));
4838 -- Types must always match. In the visible part of an instance,
4839 -- usual overloading rules for dispatching operations apply, and
4840 -- we check base types (not the actual subtypes).
4842 if In_Instance_Visible_Part
4843 and then Is_Dispatching_Operation (New_Id)
4844 then
4845 if not Conforming_Types
4846 (T1 => Base_Type (Etype (Old_Formal)),
4847 T2 => Base_Type (Etype (New_Formal)),
4848 Ctype => Ctype,
4849 Get_Inst => Get_Inst)
4850 and then not Access_Types_Match
4851 then
4852 Conformance_Error ("\type of & does not match!", New_Formal);
4853 return;
4854 end if;
4856 elsif not Conforming_Types
4857 (T1 => Old_Formal_Base,
4858 T2 => New_Formal_Base,
4859 Ctype => Ctype,
4860 Get_Inst => Get_Inst)
4861 and then not Access_Types_Match
4862 then
4863 -- Don't give error message if old type is Any_Type. This test
4864 -- avoids some cascaded errors, e.g. in case of a bad spec.
4866 if Errmsg and then Old_Formal_Base = Any_Type then
4867 Conforms := False;
4868 else
4869 if Ctype >= Subtype_Conformant
4870 and then
4871 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4872 then
4873 Conformance_Error
4874 ("\predicate of & does not match!", New_Formal);
4875 else
4876 Conformance_Error
4877 ("\type of & does not match!", New_Formal);
4878 end if;
4879 end if;
4881 return;
4882 end if;
4884 -- For mode conformance, mode must match
4886 if Ctype >= Mode_Conformant then
4887 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4888 if not Ekind_In (New_Id, E_Function, E_Procedure)
4889 or else not Is_Primitive_Wrapper (New_Id)
4890 then
4891 Conformance_Error ("\mode of & does not match!", New_Formal);
4893 else
4894 declare
4895 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4896 begin
4897 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4898 then
4899 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
4900 else
4901 Conformance_Error
4902 ("\mode of & does not match!", New_Formal);
4903 end if;
4904 end;
4905 end if;
4907 return;
4909 -- Part of mode conformance for access types is having the same
4910 -- constant modifier.
4912 elsif Access_Types_Match
4913 and then Is_Access_Constant (Old_Formal_Base) /=
4914 Is_Access_Constant (New_Formal_Base)
4915 then
4916 Conformance_Error
4917 ("\constant modifier does not match!", New_Formal);
4918 return;
4919 end if;
4920 end if;
4922 if Ctype >= Subtype_Conformant then
4924 -- Ada 2005 (AI-231): In case of anonymous access types check
4925 -- the null-exclusion and access-to-constant attributes must
4926 -- match. For null exclusion, we test the types rather than the
4927 -- formals themselves, since the attribute is only set reliably
4928 -- on the formals in the Ada 95 case, and we exclude the case
4929 -- where Old_Formal is marked as controlling, to avoid errors
4930 -- when matching completing bodies with dispatching declarations
4931 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4933 if Ada_Version >= Ada_2005
4934 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4935 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4936 and then
4937 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4938 Can_Never_Be_Null (Etype (New_Formal))
4939 and then
4940 not Is_Controlling_Formal (Old_Formal))
4941 or else
4942 Is_Access_Constant (Etype (Old_Formal)) /=
4943 Is_Access_Constant (Etype (New_Formal)))
4945 -- Do not complain if error already posted on New_Formal. This
4946 -- avoids some redundant error messages.
4948 and then not Error_Posted (New_Formal)
4949 then
4950 -- It is allowed to omit the null-exclusion in case of stream
4951 -- attribute subprograms. We recognize stream subprograms
4952 -- through their TSS-generated suffix.
4954 declare
4955 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4957 begin
4958 if TSS_Name /= TSS_Stream_Read
4959 and then TSS_Name /= TSS_Stream_Write
4960 and then TSS_Name /= TSS_Stream_Input
4961 and then TSS_Name /= TSS_Stream_Output
4962 then
4963 -- Here we have a definite conformance error. It is worth
4964 -- special casing the error message for the case of a
4965 -- controlling formal (which excludes null).
4967 if Is_Controlling_Formal (New_Formal) then
4968 Error_Msg_Node_2 := Scope (New_Formal);
4969 Conformance_Error
4970 ("\controlling formal & of & excludes null, "
4971 & "declaration must exclude null as well",
4972 New_Formal);
4974 -- Normal case (couldn't we give more detail here???)
4976 else
4977 Conformance_Error
4978 ("\type of & does not match!", New_Formal);
4979 end if;
4981 return;
4982 end if;
4983 end;
4984 end if;
4985 end if;
4987 -- Full conformance checks
4989 if Ctype = Fully_Conformant then
4991 -- We have checked already that names match
4993 if Parameter_Mode (Old_Formal) = E_In_Parameter then
4995 -- Check default expressions for in parameters
4997 declare
4998 NewD : constant Boolean :=
4999 Present (Default_Value (New_Formal));
5000 OldD : constant Boolean :=
5001 Present (Default_Value (Old_Formal));
5002 begin
5003 if NewD or OldD then
5005 -- The old default value has been analyzed because the
5006 -- current full declaration will have frozen everything
5007 -- before. The new default value has not been analyzed,
5008 -- so analyze it now before we check for conformance.
5010 if NewD then
5011 Push_Scope (New_Id);
5012 Preanalyze_Spec_Expression
5013 (Default_Value (New_Formal), Etype (New_Formal));
5014 End_Scope;
5015 end if;
5017 if not (NewD and OldD)
5018 or else not Fully_Conformant_Expressions
5019 (Default_Value (Old_Formal),
5020 Default_Value (New_Formal))
5021 then
5022 Conformance_Error
5023 ("\default expression for & does not match!",
5024 New_Formal);
5025 return;
5026 end if;
5027 end if;
5028 end;
5029 end if;
5030 end if;
5032 -- A couple of special checks for Ada 83 mode. These checks are
5033 -- skipped if either entity is an operator in package Standard,
5034 -- or if either old or new instance is not from the source program.
5036 if Ada_Version = Ada_83
5037 and then Sloc (Old_Id) > Standard_Location
5038 and then Sloc (New_Id) > Standard_Location
5039 and then Comes_From_Source (Old_Id)
5040 and then Comes_From_Source (New_Id)
5041 then
5042 declare
5043 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5044 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5046 begin
5047 -- Explicit IN must be present or absent in both cases. This
5048 -- test is required only in the full conformance case.
5050 if In_Present (Old_Param) /= In_Present (New_Param)
5051 and then Ctype = Fully_Conformant
5052 then
5053 Conformance_Error
5054 ("\(Ada 83) IN must appear in both declarations",
5055 New_Formal);
5056 return;
5057 end if;
5059 -- Grouping (use of comma in param lists) must be the same
5060 -- This is where we catch a misconformance like:
5062 -- A, B : Integer
5063 -- A : Integer; B : Integer
5065 -- which are represented identically in the tree except
5066 -- for the setting of the flags More_Ids and Prev_Ids.
5068 if More_Ids (Old_Param) /= More_Ids (New_Param)
5069 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5070 then
5071 Conformance_Error
5072 ("\grouping of & does not match!", New_Formal);
5073 return;
5074 end if;
5075 end;
5076 end if;
5078 -- This label is required when skipping controlling formals
5080 <<Skip_Controlling_Formal>>
5082 Next_Formal (Old_Formal);
5083 Next_Formal (New_Formal);
5084 end loop;
5086 if Present (Old_Formal) then
5087 Conformance_Error ("\too few parameters!");
5088 return;
5090 elsif Present (New_Formal) then
5091 Conformance_Error ("\too many parameters!", New_Formal);
5092 return;
5093 end if;
5094 end Check_Conformance;
5096 -----------------------
5097 -- Check_Conventions --
5098 -----------------------
5100 procedure Check_Conventions (Typ : Entity_Id) is
5101 Ifaces_List : Elist_Id;
5103 procedure Check_Convention (Op : Entity_Id);
5104 -- Verify that the convention of inherited dispatching operation Op is
5105 -- consistent among all subprograms it overrides. In order to minimize
5106 -- the search, Search_From is utilized to designate a specific point in
5107 -- the list rather than iterating over the whole list once more.
5109 ----------------------
5110 -- Check_Convention --
5111 ----------------------
5113 procedure Check_Convention (Op : Entity_Id) is
5114 Op_Conv : constant Convention_Id := Convention (Op);
5115 Iface_Conv : Convention_Id;
5116 Iface_Elmt : Elmt_Id;
5117 Iface_Prim_Elmt : Elmt_Id;
5118 Iface_Prim : Entity_Id;
5120 begin
5121 Iface_Elmt := First_Elmt (Ifaces_List);
5122 while Present (Iface_Elmt) loop
5123 Iface_Prim_Elmt :=
5124 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5125 while Present (Iface_Prim_Elmt) loop
5126 Iface_Prim := Node (Iface_Prim_Elmt);
5127 Iface_Conv := Convention (Iface_Prim);
5129 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5130 and then Iface_Conv /= Op_Conv
5131 then
5132 Error_Msg_N
5133 ("inconsistent conventions in primitive operations", Typ);
5135 Error_Msg_Name_1 := Chars (Op);
5136 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5137 Error_Msg_Sloc := Sloc (Op);
5139 if Comes_From_Source (Op) or else No (Alias (Op)) then
5140 if not Present (Overridden_Operation (Op)) then
5141 Error_Msg_N ("\\primitive % defined #", Typ);
5142 else
5143 Error_Msg_N
5144 ("\\overriding operation % with "
5145 & "convention % defined #", Typ);
5146 end if;
5148 else pragma Assert (Present (Alias (Op)));
5149 Error_Msg_Sloc := Sloc (Alias (Op));
5150 Error_Msg_N ("\\inherited operation % with "
5151 & "convention % defined #", Typ);
5152 end if;
5154 Error_Msg_Name_1 := Chars (Op);
5155 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5156 Error_Msg_Sloc := Sloc (Iface_Prim);
5157 Error_Msg_N ("\\overridden operation % with "
5158 & "convention % defined #", Typ);
5160 -- Avoid cascading errors
5162 return;
5163 end if;
5165 Next_Elmt (Iface_Prim_Elmt);
5166 end loop;
5168 Next_Elmt (Iface_Elmt);
5169 end loop;
5170 end Check_Convention;
5172 -- Local variables
5174 Prim_Op : Entity_Id;
5175 Prim_Op_Elmt : Elmt_Id;
5177 -- Start of processing for Check_Conventions
5179 begin
5180 if not Has_Interfaces (Typ) then
5181 return;
5182 end if;
5184 Collect_Interfaces (Typ, Ifaces_List);
5186 -- The algorithm checks every overriding dispatching operation against
5187 -- all the corresponding overridden dispatching operations, detecting
5188 -- differences in conventions.
5190 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5191 while Present (Prim_Op_Elmt) loop
5192 Prim_Op := Node (Prim_Op_Elmt);
5194 -- A small optimization: skip the predefined dispatching operations
5195 -- since they always have the same convention.
5197 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5198 Check_Convention (Prim_Op);
5199 end if;
5201 Next_Elmt (Prim_Op_Elmt);
5202 end loop;
5203 end Check_Conventions;
5205 ------------------------------
5206 -- Check_Delayed_Subprogram --
5207 ------------------------------
5209 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5210 F : Entity_Id;
5212 procedure Possible_Freeze (T : Entity_Id);
5213 -- T is the type of either a formal parameter or of the return type.
5214 -- If T is not yet frozen and needs a delayed freeze, then the
5215 -- subprogram itself must be delayed. If T is the limited view of an
5216 -- incomplete type the subprogram must be frozen as well, because
5217 -- T may depend on local types that have not been frozen yet.
5219 ---------------------
5220 -- Possible_Freeze --
5221 ---------------------
5223 procedure Possible_Freeze (T : Entity_Id) is
5224 begin
5225 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5226 Set_Has_Delayed_Freeze (Designator);
5228 elsif Is_Access_Type (T)
5229 and then Has_Delayed_Freeze (Designated_Type (T))
5230 and then not Is_Frozen (Designated_Type (T))
5231 then
5232 Set_Has_Delayed_Freeze (Designator);
5234 elsif Ekind (T) = E_Incomplete_Type
5235 and then From_Limited_With (T)
5236 then
5237 Set_Has_Delayed_Freeze (Designator);
5239 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5240 -- of a subprogram or entry declaration.
5242 elsif Ekind (T) = E_Incomplete_Type
5243 and then Ada_Version >= Ada_2012
5244 then
5245 Set_Has_Delayed_Freeze (Designator);
5246 end if;
5248 end Possible_Freeze;
5250 -- Start of processing for Check_Delayed_Subprogram
5252 begin
5253 -- All subprograms, including abstract subprograms, may need a freeze
5254 -- node if some formal type or the return type needs one.
5256 Possible_Freeze (Etype (Designator));
5257 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5259 -- Need delayed freeze if any of the formal types themselves need
5260 -- a delayed freeze and are not yet frozen.
5262 F := First_Formal (Designator);
5263 while Present (F) loop
5264 Possible_Freeze (Etype (F));
5265 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5266 Next_Formal (F);
5267 end loop;
5269 -- Mark functions that return by reference. Note that it cannot be
5270 -- done for delayed_freeze subprograms because the underlying
5271 -- returned type may not be known yet (for private types)
5273 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5274 declare
5275 Typ : constant Entity_Id := Etype (Designator);
5276 Utyp : constant Entity_Id := Underlying_Type (Typ);
5277 begin
5278 if Is_Limited_View (Typ) then
5279 Set_Returns_By_Ref (Designator);
5280 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5281 Set_Returns_By_Ref (Designator);
5282 end if;
5283 end;
5284 end if;
5285 end Check_Delayed_Subprogram;
5287 ------------------------------------
5288 -- Check_Discriminant_Conformance --
5289 ------------------------------------
5291 procedure Check_Discriminant_Conformance
5292 (N : Node_Id;
5293 Prev : Entity_Id;
5294 Prev_Loc : Node_Id)
5296 Old_Discr : Entity_Id := First_Discriminant (Prev);
5297 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5298 New_Discr_Id : Entity_Id;
5299 New_Discr_Type : Entity_Id;
5301 procedure Conformance_Error (Msg : String; N : Node_Id);
5302 -- Post error message for conformance error on given node. Two messages
5303 -- are output. The first points to the previous declaration with a
5304 -- general "no conformance" message. The second is the detailed reason,
5305 -- supplied as Msg. The parameter N provide information for a possible
5306 -- & insertion in the message.
5308 -----------------------
5309 -- Conformance_Error --
5310 -----------------------
5312 procedure Conformance_Error (Msg : String; N : Node_Id) is
5313 begin
5314 Error_Msg_Sloc := Sloc (Prev_Loc);
5315 Error_Msg_N -- CODEFIX
5316 ("not fully conformant with declaration#!", N);
5317 Error_Msg_NE (Msg, N, N);
5318 end Conformance_Error;
5320 -- Start of processing for Check_Discriminant_Conformance
5322 begin
5323 while Present (Old_Discr) and then Present (New_Discr) loop
5324 New_Discr_Id := Defining_Identifier (New_Discr);
5326 -- The subtype mark of the discriminant on the full type has not
5327 -- been analyzed so we do it here. For an access discriminant a new
5328 -- type is created.
5330 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5331 New_Discr_Type :=
5332 Access_Definition (N, Discriminant_Type (New_Discr));
5334 else
5335 Analyze (Discriminant_Type (New_Discr));
5336 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5338 -- Ada 2005: if the discriminant definition carries a null
5339 -- exclusion, create an itype to check properly for consistency
5340 -- with partial declaration.
5342 if Is_Access_Type (New_Discr_Type)
5343 and then Null_Exclusion_Present (New_Discr)
5344 then
5345 New_Discr_Type :=
5346 Create_Null_Excluding_Itype
5347 (T => New_Discr_Type,
5348 Related_Nod => New_Discr,
5349 Scope_Id => Current_Scope);
5350 end if;
5351 end if;
5353 if not Conforming_Types
5354 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5355 then
5356 Conformance_Error ("type of & does not match!", New_Discr_Id);
5357 return;
5358 else
5359 -- Treat the new discriminant as an occurrence of the old one,
5360 -- for navigation purposes, and fill in some semantic
5361 -- information, for completeness.
5363 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5364 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5365 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5366 end if;
5368 -- Names must match
5370 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5371 Conformance_Error ("name & does not match!", New_Discr_Id);
5372 return;
5373 end if;
5375 -- Default expressions must match
5377 declare
5378 NewD : constant Boolean :=
5379 Present (Expression (New_Discr));
5380 OldD : constant Boolean :=
5381 Present (Expression (Parent (Old_Discr)));
5383 begin
5384 if NewD or OldD then
5386 -- The old default value has been analyzed and expanded,
5387 -- because the current full declaration will have frozen
5388 -- everything before. The new default values have not been
5389 -- expanded, so expand now to check conformance.
5391 if NewD then
5392 Preanalyze_Spec_Expression
5393 (Expression (New_Discr), New_Discr_Type);
5394 end if;
5396 if not (NewD and OldD)
5397 or else not Fully_Conformant_Expressions
5398 (Expression (Parent (Old_Discr)),
5399 Expression (New_Discr))
5401 then
5402 Conformance_Error
5403 ("default expression for & does not match!",
5404 New_Discr_Id);
5405 return;
5406 end if;
5407 end if;
5408 end;
5410 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5412 if Ada_Version = Ada_83 then
5413 declare
5414 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5416 begin
5417 -- Grouping (use of comma in param lists) must be the same
5418 -- This is where we catch a misconformance like:
5420 -- A, B : Integer
5421 -- A : Integer; B : Integer
5423 -- which are represented identically in the tree except
5424 -- for the setting of the flags More_Ids and Prev_Ids.
5426 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5427 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5428 then
5429 Conformance_Error
5430 ("grouping of & does not match!", New_Discr_Id);
5431 return;
5432 end if;
5433 end;
5434 end if;
5436 Next_Discriminant (Old_Discr);
5437 Next (New_Discr);
5438 end loop;
5440 if Present (Old_Discr) then
5441 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5442 return;
5444 elsif Present (New_Discr) then
5445 Conformance_Error
5446 ("too many discriminants!", Defining_Identifier (New_Discr));
5447 return;
5448 end if;
5449 end Check_Discriminant_Conformance;
5451 ----------------------------
5452 -- Check_Fully_Conformant --
5453 ----------------------------
5455 procedure Check_Fully_Conformant
5456 (New_Id : Entity_Id;
5457 Old_Id : Entity_Id;
5458 Err_Loc : Node_Id := Empty)
5460 Result : Boolean;
5461 pragma Warnings (Off, Result);
5462 begin
5463 Check_Conformance
5464 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5465 end Check_Fully_Conformant;
5467 ---------------------------
5468 -- Check_Mode_Conformant --
5469 ---------------------------
5471 procedure Check_Mode_Conformant
5472 (New_Id : Entity_Id;
5473 Old_Id : Entity_Id;
5474 Err_Loc : Node_Id := Empty;
5475 Get_Inst : Boolean := False)
5477 Result : Boolean;
5478 pragma Warnings (Off, Result);
5479 begin
5480 Check_Conformance
5481 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5482 end Check_Mode_Conformant;
5484 --------------------------------
5485 -- Check_Overriding_Indicator --
5486 --------------------------------
5488 procedure Check_Overriding_Indicator
5489 (Subp : Entity_Id;
5490 Overridden_Subp : Entity_Id;
5491 Is_Primitive : Boolean)
5493 Decl : Node_Id;
5494 Spec : Node_Id;
5496 begin
5497 -- No overriding indicator for literals
5499 if Ekind (Subp) = E_Enumeration_Literal then
5500 return;
5502 elsif Ekind (Subp) = E_Entry then
5503 Decl := Parent (Subp);
5505 -- No point in analyzing a malformed operator
5507 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5508 and then Error_Posted (Subp)
5509 then
5510 return;
5512 else
5513 Decl := Unit_Declaration_Node (Subp);
5514 end if;
5516 if Nkind_In (Decl, N_Subprogram_Body,
5517 N_Subprogram_Body_Stub,
5518 N_Subprogram_Declaration,
5519 N_Abstract_Subprogram_Declaration,
5520 N_Subprogram_Renaming_Declaration)
5521 then
5522 Spec := Specification (Decl);
5524 elsif Nkind (Decl) = N_Entry_Declaration then
5525 Spec := Decl;
5527 else
5528 return;
5529 end if;
5531 -- The overriding operation is type conformant with the overridden one,
5532 -- but the names of the formals are not required to match. If the names
5533 -- appear permuted in the overriding operation, this is a possible
5534 -- source of confusion that is worth diagnosing. Controlling formals
5535 -- often carry names that reflect the type, and it is not worthwhile
5536 -- requiring that their names match.
5538 if Present (Overridden_Subp)
5539 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5540 then
5541 declare
5542 Form1 : Entity_Id;
5543 Form2 : Entity_Id;
5545 begin
5546 Form1 := First_Formal (Subp);
5547 Form2 := First_Formal (Overridden_Subp);
5549 -- If the overriding operation is a synchronized operation, skip
5550 -- the first parameter of the overridden operation, which is
5551 -- implicit in the new one. If the operation is declared in the
5552 -- body it is not primitive and all formals must match.
5554 if Is_Concurrent_Type (Scope (Subp))
5555 and then Is_Tagged_Type (Scope (Subp))
5556 and then not Has_Completion (Scope (Subp))
5557 then
5558 Form2 := Next_Formal (Form2);
5559 end if;
5561 if Present (Form1) then
5562 Form1 := Next_Formal (Form1);
5563 Form2 := Next_Formal (Form2);
5564 end if;
5566 while Present (Form1) loop
5567 if not Is_Controlling_Formal (Form1)
5568 and then Present (Next_Formal (Form2))
5569 and then Chars (Form1) = Chars (Next_Formal (Form2))
5570 then
5571 Error_Msg_Node_2 := Alias (Overridden_Subp);
5572 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5573 Error_Msg_NE
5574 ("& does not match corresponding formal of&#",
5575 Form1, Form1);
5576 exit;
5577 end if;
5579 Next_Formal (Form1);
5580 Next_Formal (Form2);
5581 end loop;
5582 end;
5583 end if;
5585 -- If there is an overridden subprogram, then check that there is no
5586 -- "not overriding" indicator, and mark the subprogram as overriding.
5587 -- This is not done if the overridden subprogram is marked as hidden,
5588 -- which can occur for the case of inherited controlled operations
5589 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5590 -- subprogram is not itself hidden. (Note: This condition could probably
5591 -- be simplified, leaving out the testing for the specific controlled
5592 -- cases, but it seems safer and clearer this way, and echoes similar
5593 -- special-case tests of this kind in other places.)
5595 if Present (Overridden_Subp)
5596 and then (not Is_Hidden (Overridden_Subp)
5597 or else
5598 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5599 Name_Adjust,
5600 Name_Finalize)
5601 and then Present (Alias (Overridden_Subp))
5602 and then not Is_Hidden (Alias (Overridden_Subp))))
5603 then
5604 if Must_Not_Override (Spec) then
5605 Error_Msg_Sloc := Sloc (Overridden_Subp);
5607 if Ekind (Subp) = E_Entry then
5608 Error_Msg_NE
5609 ("entry & overrides inherited operation #", Spec, Subp);
5610 else
5611 Error_Msg_NE
5612 ("subprogram & overrides inherited operation #", Spec, Subp);
5613 end if;
5615 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5616 -- as an extension of Root_Controlled, and thus has a useless Adjust
5617 -- operation. This operation should not be inherited by other limited
5618 -- controlled types. An explicit Adjust for them is not overriding.
5620 elsif Must_Override (Spec)
5621 and then Chars (Overridden_Subp) = Name_Adjust
5622 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5623 and then Present (Alias (Overridden_Subp))
5624 and then
5625 Is_Predefined_File_Name
5626 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5627 then
5628 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5630 elsif Is_Subprogram (Subp) then
5631 if Is_Init_Proc (Subp) then
5632 null;
5634 elsif No (Overridden_Operation (Subp)) then
5636 -- For entities generated by Derive_Subprograms the overridden
5637 -- operation is the inherited primitive (which is available
5638 -- through the attribute alias)
5640 if (Is_Dispatching_Operation (Subp)
5641 or else Is_Dispatching_Operation (Overridden_Subp))
5642 and then not Comes_From_Source (Overridden_Subp)
5643 and then Find_Dispatching_Type (Overridden_Subp) =
5644 Find_Dispatching_Type (Subp)
5645 and then Present (Alias (Overridden_Subp))
5646 and then Comes_From_Source (Alias (Overridden_Subp))
5647 then
5648 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5649 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5651 else
5652 Set_Overridden_Operation (Subp, Overridden_Subp);
5653 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5654 end if;
5655 end if;
5656 end if;
5658 -- If primitive flag is set or this is a protected operation, then
5659 -- the operation is overriding at the point of its declaration, so
5660 -- warn if necessary. Otherwise it may have been declared before the
5661 -- operation it overrides and no check is required.
5663 if Style_Check
5664 and then not Must_Override (Spec)
5665 and then (Is_Primitive
5666 or else Ekind (Scope (Subp)) = E_Protected_Type)
5667 then
5668 Style.Missing_Overriding (Decl, Subp);
5669 end if;
5671 -- If Subp is an operator, it may override a predefined operation, if
5672 -- it is defined in the same scope as the type to which it applies.
5673 -- In that case Overridden_Subp is empty because of our implicit
5674 -- representation for predefined operators. We have to check whether the
5675 -- signature of Subp matches that of a predefined operator. Note that
5676 -- first argument provides the name of the operator, and the second
5677 -- argument the signature that may match that of a standard operation.
5678 -- If the indicator is overriding, then the operator must match a
5679 -- predefined signature, because we know already that there is no
5680 -- explicit overridden operation.
5682 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5683 if Must_Not_Override (Spec) then
5685 -- If this is not a primitive or a protected subprogram, then
5686 -- "not overriding" is illegal.
5688 if not Is_Primitive
5689 and then Ekind (Scope (Subp)) /= E_Protected_Type
5690 then
5691 Error_Msg_N ("overriding indicator only allowed "
5692 & "if subprogram is primitive", Subp);
5694 elsif Can_Override_Operator (Subp) then
5695 Error_Msg_NE
5696 ("subprogram& overrides predefined operator ", Spec, Subp);
5697 end if;
5699 elsif Must_Override (Spec) then
5700 if No (Overridden_Operation (Subp))
5701 and then not Can_Override_Operator (Subp)
5702 then
5703 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5704 end if;
5706 elsif not Error_Posted (Subp)
5707 and then Style_Check
5708 and then Can_Override_Operator (Subp)
5709 and then
5710 not Is_Predefined_File_Name
5711 (Unit_File_Name (Get_Source_Unit (Subp)))
5712 then
5713 -- If style checks are enabled, indicate that the indicator is
5714 -- missing. However, at the point of declaration, the type of
5715 -- which this is a primitive operation may be private, in which
5716 -- case the indicator would be premature.
5718 if Has_Private_Declaration (Etype (Subp))
5719 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5720 then
5721 null;
5722 else
5723 Style.Missing_Overriding (Decl, Subp);
5724 end if;
5725 end if;
5727 elsif Must_Override (Spec) then
5728 if Ekind (Subp) = E_Entry then
5729 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5730 else
5731 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5732 end if;
5734 -- If the operation is marked "not overriding" and it's not primitive
5735 -- then an error is issued, unless this is an operation of a task or
5736 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5737 -- has been specified have already been checked above.
5739 elsif Must_Not_Override (Spec)
5740 and then not Is_Primitive
5741 and then Ekind (Subp) /= E_Entry
5742 and then Ekind (Scope (Subp)) /= E_Protected_Type
5743 then
5744 Error_Msg_N
5745 ("overriding indicator only allowed if subprogram is primitive",
5746 Subp);
5747 return;
5748 end if;
5749 end Check_Overriding_Indicator;
5751 -------------------
5752 -- Check_Returns --
5753 -------------------
5755 -- Note: this procedure needs to know far too much about how the expander
5756 -- messes with exceptions. The use of the flag Exception_Junk and the
5757 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5758 -- works, but is not very clean. It would be better if the expansion
5759 -- routines would leave Original_Node working nicely, and we could use
5760 -- Original_Node here to ignore all the peculiar expander messing ???
5762 procedure Check_Returns
5763 (HSS : Node_Id;
5764 Mode : Character;
5765 Err : out Boolean;
5766 Proc : Entity_Id := Empty)
5768 Handler : Node_Id;
5770 procedure Check_Statement_Sequence (L : List_Id);
5771 -- Internal recursive procedure to check a list of statements for proper
5772 -- termination by a return statement (or a transfer of control or a
5773 -- compound statement that is itself internally properly terminated).
5775 ------------------------------
5776 -- Check_Statement_Sequence --
5777 ------------------------------
5779 procedure Check_Statement_Sequence (L : List_Id) is
5780 Last_Stm : Node_Id;
5781 Stm : Node_Id;
5782 Kind : Node_Kind;
5784 function Assert_False return Boolean;
5785 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5786 -- rewritten as a null statement when assertions are off. The assert
5787 -- is not active, but it is still enough to kill the warning.
5789 ------------------
5790 -- Assert_False --
5791 ------------------
5793 function Assert_False return Boolean is
5794 Orig : constant Node_Id := Original_Node (Last_Stm);
5796 begin
5797 if Nkind (Orig) = N_Pragma
5798 and then Pragma_Name (Orig) = Name_Assert
5799 and then not Error_Posted (Orig)
5800 then
5801 declare
5802 Arg : constant Node_Id :=
5803 First (Pragma_Argument_Associations (Orig));
5804 Exp : constant Node_Id := Expression (Arg);
5805 begin
5806 return Nkind (Exp) = N_Identifier
5807 and then Chars (Exp) = Name_False;
5808 end;
5810 else
5811 return False;
5812 end if;
5813 end Assert_False;
5815 -- Local variables
5817 Raise_Exception_Call : Boolean;
5818 -- Set True if statement sequence terminated by Raise_Exception call
5819 -- or a Reraise_Occurrence call.
5821 -- Start of processing for Check_Statement_Sequence
5823 begin
5824 Raise_Exception_Call := False;
5826 -- Get last real statement
5828 Last_Stm := Last (L);
5830 -- Deal with digging out exception handler statement sequences that
5831 -- have been transformed by the local raise to goto optimization.
5832 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5833 -- optimization has occurred, we are looking at something like:
5835 -- begin
5836 -- original stmts in block
5838 -- exception \
5839 -- when excep1 => |
5840 -- goto L1; | omitted if No_Exception_Propagation
5841 -- when excep2 => |
5842 -- goto L2; /
5843 -- end;
5845 -- goto L3; -- skip handler when exception not raised
5847 -- <<L1>> -- target label for local exception
5848 -- begin
5849 -- estmts1
5850 -- end;
5852 -- goto L3;
5854 -- <<L2>>
5855 -- begin
5856 -- estmts2
5857 -- end;
5859 -- <<L3>>
5861 -- and what we have to do is to dig out the estmts1 and estmts2
5862 -- sequences (which were the original sequences of statements in
5863 -- the exception handlers) and check them.
5865 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
5866 Stm := Last_Stm;
5867 loop
5868 Prev (Stm);
5869 exit when No (Stm);
5870 exit when Nkind (Stm) /= N_Block_Statement;
5871 exit when not Exception_Junk (Stm);
5872 Prev (Stm);
5873 exit when No (Stm);
5874 exit when Nkind (Stm) /= N_Label;
5875 exit when not Exception_Junk (Stm);
5876 Check_Statement_Sequence
5877 (Statements (Handled_Statement_Sequence (Next (Stm))));
5879 Prev (Stm);
5880 Last_Stm := Stm;
5881 exit when No (Stm);
5882 exit when Nkind (Stm) /= N_Goto_Statement;
5883 exit when not Exception_Junk (Stm);
5884 end loop;
5885 end if;
5887 -- Don't count pragmas
5889 while Nkind (Last_Stm) = N_Pragma
5891 -- Don't count call to SS_Release (can happen after Raise_Exception)
5893 or else
5894 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5895 and then
5896 Nkind (Name (Last_Stm)) = N_Identifier
5897 and then
5898 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5900 -- Don't count exception junk
5902 or else
5903 (Nkind_In (Last_Stm, N_Goto_Statement,
5904 N_Label,
5905 N_Object_Declaration)
5906 and then Exception_Junk (Last_Stm))
5907 or else Nkind (Last_Stm) in N_Push_xxx_Label
5908 or else Nkind (Last_Stm) in N_Pop_xxx_Label
5910 -- Inserted code, such as finalization calls, is irrelevant: we only
5911 -- need to check original source.
5913 or else Is_Rewrite_Insertion (Last_Stm)
5914 loop
5915 Prev (Last_Stm);
5916 end loop;
5918 -- Here we have the "real" last statement
5920 Kind := Nkind (Last_Stm);
5922 -- Transfer of control, OK. Note that in the No_Return procedure
5923 -- case, we already diagnosed any explicit return statements, so
5924 -- we can treat them as OK in this context.
5926 if Is_Transfer (Last_Stm) then
5927 return;
5929 -- Check cases of explicit non-indirect procedure calls
5931 elsif Kind = N_Procedure_Call_Statement
5932 and then Is_Entity_Name (Name (Last_Stm))
5933 then
5934 -- Check call to Raise_Exception procedure which is treated
5935 -- specially, as is a call to Reraise_Occurrence.
5937 -- We suppress the warning in these cases since it is likely that
5938 -- the programmer really does not expect to deal with the case
5939 -- of Null_Occurrence, and thus would find a warning about a
5940 -- missing return curious, and raising Program_Error does not
5941 -- seem such a bad behavior if this does occur.
5943 -- Note that in the Ada 2005 case for Raise_Exception, the actual
5944 -- behavior will be to raise Constraint_Error (see AI-329).
5946 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
5947 or else
5948 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
5949 then
5950 Raise_Exception_Call := True;
5952 -- For Raise_Exception call, test first argument, if it is
5953 -- an attribute reference for a 'Identity call, then we know
5954 -- that the call cannot possibly return.
5956 declare
5957 Arg : constant Node_Id :=
5958 Original_Node (First_Actual (Last_Stm));
5959 begin
5960 if Nkind (Arg) = N_Attribute_Reference
5961 and then Attribute_Name (Arg) = Name_Identity
5962 then
5963 return;
5964 end if;
5965 end;
5966 end if;
5968 -- If statement, need to look inside if there is an else and check
5969 -- each constituent statement sequence for proper termination.
5971 elsif Kind = N_If_Statement
5972 and then Present (Else_Statements (Last_Stm))
5973 then
5974 Check_Statement_Sequence (Then_Statements (Last_Stm));
5975 Check_Statement_Sequence (Else_Statements (Last_Stm));
5977 if Present (Elsif_Parts (Last_Stm)) then
5978 declare
5979 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
5981 begin
5982 while Present (Elsif_Part) loop
5983 Check_Statement_Sequence (Then_Statements (Elsif_Part));
5984 Next (Elsif_Part);
5985 end loop;
5986 end;
5987 end if;
5989 return;
5991 -- Case statement, check each case for proper termination
5993 elsif Kind = N_Case_Statement then
5994 declare
5995 Case_Alt : Node_Id;
5996 begin
5997 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5998 while Present (Case_Alt) loop
5999 Check_Statement_Sequence (Statements (Case_Alt));
6000 Next_Non_Pragma (Case_Alt);
6001 end loop;
6002 end;
6004 return;
6006 -- Block statement, check its handled sequence of statements
6008 elsif Kind = N_Block_Statement then
6009 declare
6010 Err1 : Boolean;
6012 begin
6013 Check_Returns
6014 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6016 if Err1 then
6017 Err := True;
6018 end if;
6020 return;
6021 end;
6023 -- Loop statement. If there is an iteration scheme, we can definitely
6024 -- fall out of the loop. Similarly if there is an exit statement, we
6025 -- can fall out. In either case we need a following return.
6027 elsif Kind = N_Loop_Statement then
6028 if Present (Iteration_Scheme (Last_Stm))
6029 or else Has_Exit (Entity (Identifier (Last_Stm)))
6030 then
6031 null;
6033 -- A loop with no exit statement or iteration scheme is either
6034 -- an infinite loop, or it has some other exit (raise/return).
6035 -- In either case, no warning is required.
6037 else
6038 return;
6039 end if;
6041 -- Timed entry call, check entry call and delay alternatives
6043 -- Note: in expanded code, the timed entry call has been converted
6044 -- to a set of expanded statements on which the check will work
6045 -- correctly in any case.
6047 elsif Kind = N_Timed_Entry_Call then
6048 declare
6049 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6050 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6052 begin
6053 -- If statement sequence of entry call alternative is missing,
6054 -- then we can definitely fall through, and we post the error
6055 -- message on the entry call alternative itself.
6057 if No (Statements (ECA)) then
6058 Last_Stm := ECA;
6060 -- If statement sequence of delay alternative is missing, then
6061 -- we can definitely fall through, and we post the error
6062 -- message on the delay alternative itself.
6064 -- Note: if both ECA and DCA are missing the return, then we
6065 -- post only one message, should be enough to fix the bugs.
6066 -- If not we will get a message next time on the DCA when the
6067 -- ECA is fixed.
6069 elsif No (Statements (DCA)) then
6070 Last_Stm := DCA;
6072 -- Else check both statement sequences
6074 else
6075 Check_Statement_Sequence (Statements (ECA));
6076 Check_Statement_Sequence (Statements (DCA));
6077 return;
6078 end if;
6079 end;
6081 -- Conditional entry call, check entry call and else part
6083 -- Note: in expanded code, the conditional entry call has been
6084 -- converted to a set of expanded statements on which the check
6085 -- will work correctly in any case.
6087 elsif Kind = N_Conditional_Entry_Call then
6088 declare
6089 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6091 begin
6092 -- If statement sequence of entry call alternative is missing,
6093 -- then we can definitely fall through, and we post the error
6094 -- message on the entry call alternative itself.
6096 if No (Statements (ECA)) then
6097 Last_Stm := ECA;
6099 -- Else check statement sequence and else part
6101 else
6102 Check_Statement_Sequence (Statements (ECA));
6103 Check_Statement_Sequence (Else_Statements (Last_Stm));
6104 return;
6105 end if;
6106 end;
6107 end if;
6109 -- If we fall through, issue appropriate message
6111 if Mode = 'F' then
6113 -- Kill warning if last statement is a raise exception call,
6114 -- or a pragma Assert (False). Note that with assertions enabled,
6115 -- such a pragma has been converted into a raise exception call
6116 -- already, so the Assert_False is for the assertions off case.
6118 if not Raise_Exception_Call and then not Assert_False then
6120 -- In GNATprove mode, it is an error to have a missing return
6122 Error_Msg_Warn := SPARK_Mode /= On;
6124 -- Issue error message or warning
6126 Error_Msg_N
6127 ("RETURN statement missing following this statement<<!",
6128 Last_Stm);
6129 Error_Msg_N
6130 ("\Program_Error ]<<!", Last_Stm);
6131 end if;
6133 -- Note: we set Err even though we have not issued a warning
6134 -- because we still have a case of a missing return. This is
6135 -- an extremely marginal case, probably will never be noticed
6136 -- but we might as well get it right.
6138 Err := True;
6140 -- Otherwise we have the case of a procedure marked No_Return
6142 else
6143 if not Raise_Exception_Call then
6144 if GNATprove_Mode then
6145 Error_Msg_N
6146 ("implied return after this statement "
6147 & "would have raised Program_Error", Last_Stm);
6148 else
6149 Error_Msg_N
6150 ("implied return after this statement "
6151 & "will raise Program_Error??", Last_Stm);
6152 end if;
6154 Error_Msg_Warn := SPARK_Mode /= On;
6155 Error_Msg_NE
6156 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6157 end if;
6159 declare
6160 RE : constant Node_Id :=
6161 Make_Raise_Program_Error (Sloc (Last_Stm),
6162 Reason => PE_Implicit_Return);
6163 begin
6164 Insert_After (Last_Stm, RE);
6165 Analyze (RE);
6166 end;
6167 end if;
6168 end Check_Statement_Sequence;
6170 -- Start of processing for Check_Returns
6172 begin
6173 Err := False;
6174 Check_Statement_Sequence (Statements (HSS));
6176 if Present (Exception_Handlers (HSS)) then
6177 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6178 while Present (Handler) loop
6179 Check_Statement_Sequence (Statements (Handler));
6180 Next_Non_Pragma (Handler);
6181 end loop;
6182 end if;
6183 end Check_Returns;
6185 ----------------------------
6186 -- Check_Subprogram_Order --
6187 ----------------------------
6189 procedure Check_Subprogram_Order (N : Node_Id) is
6191 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6192 -- This is used to check if S1 > S2 in the sense required by this test,
6193 -- for example nameab < namec, but name2 < name10.
6195 -----------------------------
6196 -- Subprogram_Name_Greater --
6197 -----------------------------
6199 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6200 L1, L2 : Positive;
6201 N1, N2 : Natural;
6203 begin
6204 -- Deal with special case where names are identical except for a
6205 -- numerical suffix. These are handled specially, taking the numeric
6206 -- ordering from the suffix into account.
6208 L1 := S1'Last;
6209 while S1 (L1) in '0' .. '9' loop
6210 L1 := L1 - 1;
6211 end loop;
6213 L2 := S2'Last;
6214 while S2 (L2) in '0' .. '9' loop
6215 L2 := L2 - 1;
6216 end loop;
6218 -- If non-numeric parts non-equal, do straight compare
6220 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6221 return S1 > S2;
6223 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6224 -- that a missing suffix is treated as numeric zero in this test.
6226 else
6227 N1 := 0;
6228 while L1 < S1'Last loop
6229 L1 := L1 + 1;
6230 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6231 end loop;
6233 N2 := 0;
6234 while L2 < S2'Last loop
6235 L2 := L2 + 1;
6236 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6237 end loop;
6239 return N1 > N2;
6240 end if;
6241 end Subprogram_Name_Greater;
6243 -- Start of processing for Check_Subprogram_Order
6245 begin
6246 -- Check body in alpha order if this is option
6248 if Style_Check
6249 and then Style_Check_Order_Subprograms
6250 and then Nkind (N) = N_Subprogram_Body
6251 and then Comes_From_Source (N)
6252 and then In_Extended_Main_Source_Unit (N)
6253 then
6254 declare
6255 LSN : String_Ptr
6256 renames Scope_Stack.Table
6257 (Scope_Stack.Last).Last_Subprogram_Name;
6259 Body_Id : constant Entity_Id :=
6260 Defining_Entity (Specification (N));
6262 begin
6263 Get_Decoded_Name_String (Chars (Body_Id));
6265 if LSN /= null then
6266 if Subprogram_Name_Greater
6267 (LSN.all, Name_Buffer (1 .. Name_Len))
6268 then
6269 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6270 end if;
6272 Free (LSN);
6273 end if;
6275 LSN := new String'(Name_Buffer (1 .. Name_Len));
6276 end;
6277 end if;
6278 end Check_Subprogram_Order;
6280 ------------------------------
6281 -- Check_Subtype_Conformant --
6282 ------------------------------
6284 procedure Check_Subtype_Conformant
6285 (New_Id : Entity_Id;
6286 Old_Id : Entity_Id;
6287 Err_Loc : Node_Id := Empty;
6288 Skip_Controlling_Formals : Boolean := False;
6289 Get_Inst : Boolean := False)
6291 Result : Boolean;
6292 pragma Warnings (Off, Result);
6293 begin
6294 Check_Conformance
6295 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6296 Skip_Controlling_Formals => Skip_Controlling_Formals,
6297 Get_Inst => Get_Inst);
6298 end Check_Subtype_Conformant;
6300 ---------------------------
6301 -- Check_Type_Conformant --
6302 ---------------------------
6304 procedure Check_Type_Conformant
6305 (New_Id : Entity_Id;
6306 Old_Id : Entity_Id;
6307 Err_Loc : Node_Id := Empty)
6309 Result : Boolean;
6310 pragma Warnings (Off, Result);
6311 begin
6312 Check_Conformance
6313 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6314 end Check_Type_Conformant;
6316 ---------------------------
6317 -- Can_Override_Operator --
6318 ---------------------------
6320 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6321 Typ : Entity_Id;
6323 begin
6324 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6325 return False;
6327 else
6328 Typ := Base_Type (Etype (First_Formal (Subp)));
6330 -- Check explicitly that the operation is a primitive of the type
6332 return Operator_Matches_Spec (Subp, Subp)
6333 and then not Is_Generic_Type (Typ)
6334 and then Scope (Subp) = Scope (Typ)
6335 and then not Is_Class_Wide_Type (Typ);
6336 end if;
6337 end Can_Override_Operator;
6339 ----------------------
6340 -- Conforming_Types --
6341 ----------------------
6343 function Conforming_Types
6344 (T1 : Entity_Id;
6345 T2 : Entity_Id;
6346 Ctype : Conformance_Type;
6347 Get_Inst : Boolean := False) return Boolean
6349 Type_1 : Entity_Id := T1;
6350 Type_2 : Entity_Id := T2;
6351 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6353 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6354 -- If neither T1 nor T2 are generic actual types, or if they are in
6355 -- different scopes (e.g. parent and child instances), then verify that
6356 -- the base types are equal. Otherwise T1 and T2 must be on the same
6357 -- subtype chain. The whole purpose of this procedure is to prevent
6358 -- spurious ambiguities in an instantiation that may arise if two
6359 -- distinct generic types are instantiated with the same actual.
6361 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6362 -- An access parameter can designate an incomplete type. If the
6363 -- incomplete type is the limited view of a type from a limited_
6364 -- with_clause, check whether the non-limited view is available. If
6365 -- it is a (non-limited) incomplete type, get the full view.
6367 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6368 -- Returns True if and only if either T1 denotes a limited view of T2
6369 -- or T2 denotes a limited view of T1. This can arise when the limited
6370 -- with view of a type is used in a subprogram declaration and the
6371 -- subprogram body is in the scope of a regular with clause for the
6372 -- same unit. In such a case, the two type entities can be considered
6373 -- identical for purposes of conformance checking.
6375 ----------------------
6376 -- Base_Types_Match --
6377 ----------------------
6379 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6380 BT1 : constant Entity_Id := Base_Type (T1);
6381 BT2 : constant Entity_Id := Base_Type (T2);
6383 begin
6384 if T1 = T2 then
6385 return True;
6387 elsif BT1 = BT2 then
6389 -- The following is too permissive. A more precise test should
6390 -- check that the generic actual is an ancestor subtype of the
6391 -- other ???.
6393 -- See code in Find_Corresponding_Spec that applies an additional
6394 -- filter to handle accidental amiguities in instances.
6396 return not Is_Generic_Actual_Type (T1)
6397 or else not Is_Generic_Actual_Type (T2)
6398 or else Scope (T1) /= Scope (T2);
6400 -- If T2 is a generic actual type it is declared as the subtype of
6401 -- the actual. If that actual is itself a subtype we need to use its
6402 -- own base type to check for compatibility.
6404 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6405 return True;
6407 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6408 return True;
6410 else
6411 return False;
6412 end if;
6413 end Base_Types_Match;
6415 --------------------------
6416 -- Find_Designated_Type --
6417 --------------------------
6419 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6420 Desig : Entity_Id;
6422 begin
6423 Desig := Directly_Designated_Type (T);
6425 if Ekind (Desig) = E_Incomplete_Type then
6427 -- If regular incomplete type, get full view if available
6429 if Present (Full_View (Desig)) then
6430 Desig := Full_View (Desig);
6432 -- If limited view of a type, get non-limited view if available,
6433 -- and check again for a regular incomplete type.
6435 elsif Present (Non_Limited_View (Desig)) then
6436 Desig := Get_Full_View (Non_Limited_View (Desig));
6437 end if;
6438 end if;
6440 return Desig;
6441 end Find_Designated_Type;
6443 -------------------------------
6444 -- Matches_Limited_With_View --
6445 -------------------------------
6447 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6448 begin
6449 -- In some cases a type imported through a limited_with clause, and
6450 -- its nonlimited view are both visible, for example in an anonymous
6451 -- access-to-class-wide type in a formal, or when building the body
6452 -- for a subprogram renaming after the subprogram has been frozen.
6453 -- In these cases Both entities designate the same type. In addition,
6454 -- if one of them is an actual in an instance, it may be a subtype of
6455 -- the non-limited view of the other.
6457 if From_Limited_With (T1)
6458 and then (T2 = Available_View (T1)
6459 or else Is_Subtype_Of (T2, Available_View (T1)))
6460 then
6461 return True;
6463 elsif From_Limited_With (T2)
6464 and then (T1 = Available_View (T2)
6465 or else Is_Subtype_Of (T1, Available_View (T2)))
6466 then
6467 return True;
6469 elsif From_Limited_With (T1)
6470 and then From_Limited_With (T2)
6471 and then Available_View (T1) = Available_View (T2)
6472 then
6473 return True;
6475 else
6476 return False;
6477 end if;
6478 end Matches_Limited_With_View;
6480 -- Start of processing for Conforming_Types
6482 begin
6483 -- The context is an instance association for a formal access-to-
6484 -- subprogram type; the formal parameter types require mapping because
6485 -- they may denote other formal parameters of the generic unit.
6487 if Get_Inst then
6488 Type_1 := Get_Instance_Of (T1);
6489 Type_2 := Get_Instance_Of (T2);
6490 end if;
6492 -- If one of the types is a view of the other introduced by a limited
6493 -- with clause, treat these as conforming for all purposes.
6495 if Matches_Limited_With_View (T1, T2) then
6496 return True;
6498 elsif Base_Types_Match (Type_1, Type_2) then
6499 return Ctype <= Mode_Conformant
6500 or else Subtypes_Statically_Match (Type_1, Type_2);
6502 elsif Is_Incomplete_Or_Private_Type (Type_1)
6503 and then Present (Full_View (Type_1))
6504 and then Base_Types_Match (Full_View (Type_1), Type_2)
6505 then
6506 return Ctype <= Mode_Conformant
6507 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6509 elsif Ekind (Type_2) = E_Incomplete_Type
6510 and then Present (Full_View (Type_2))
6511 and then Base_Types_Match (Type_1, Full_View (Type_2))
6512 then
6513 return Ctype <= Mode_Conformant
6514 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6516 elsif Is_Private_Type (Type_2)
6517 and then In_Instance
6518 and then Present (Full_View (Type_2))
6519 and then Base_Types_Match (Type_1, Full_View (Type_2))
6520 then
6521 return Ctype <= Mode_Conformant
6522 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6523 end if;
6525 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6526 -- treated recursively because they carry a signature. As far as
6527 -- conformance is concerned, convention plays no role, and either
6528 -- or both could be access to protected subprograms.
6530 Are_Anonymous_Access_To_Subprogram_Types :=
6531 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6532 E_Anonymous_Access_Protected_Subprogram_Type)
6533 and then
6534 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6535 E_Anonymous_Access_Protected_Subprogram_Type);
6537 -- Test anonymous access type case. For this case, static subtype
6538 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6539 -- the base types because we may have built internal subtype entities
6540 -- to handle null-excluding types (see Process_Formals).
6542 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6543 and then
6544 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6546 -- Ada 2005 (AI-254)
6548 or else Are_Anonymous_Access_To_Subprogram_Types
6549 then
6550 declare
6551 Desig_1 : Entity_Id;
6552 Desig_2 : Entity_Id;
6554 begin
6555 -- In Ada 2005, access constant indicators must match for
6556 -- subtype conformance.
6558 if Ada_Version >= Ada_2005
6559 and then Ctype >= Subtype_Conformant
6560 and then
6561 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6562 then
6563 return False;
6564 end if;
6566 Desig_1 := Find_Designated_Type (Type_1);
6567 Desig_2 := Find_Designated_Type (Type_2);
6569 -- If the context is an instance association for a formal
6570 -- access-to-subprogram type; formal access parameter designated
6571 -- types require mapping because they may denote other formal
6572 -- parameters of the generic unit.
6574 if Get_Inst then
6575 Desig_1 := Get_Instance_Of (Desig_1);
6576 Desig_2 := Get_Instance_Of (Desig_2);
6577 end if;
6579 -- It is possible for a Class_Wide_Type to be introduced for an
6580 -- incomplete type, in which case there is a separate class_ wide
6581 -- type for the full view. The types conform if their Etypes
6582 -- conform, i.e. one may be the full view of the other. This can
6583 -- only happen in the context of an access parameter, other uses
6584 -- of an incomplete Class_Wide_Type are illegal.
6586 if Is_Class_Wide_Type (Desig_1)
6587 and then
6588 Is_Class_Wide_Type (Desig_2)
6589 then
6590 return
6591 Conforming_Types
6592 (Etype (Base_Type (Desig_1)),
6593 Etype (Base_Type (Desig_2)), Ctype);
6595 elsif Are_Anonymous_Access_To_Subprogram_Types then
6596 if Ada_Version < Ada_2005 then
6597 return Ctype = Type_Conformant
6598 or else
6599 Subtypes_Statically_Match (Desig_1, Desig_2);
6601 -- We must check the conformance of the signatures themselves
6603 else
6604 declare
6605 Conformant : Boolean;
6606 begin
6607 Check_Conformance
6608 (Desig_1, Desig_2, Ctype, False, Conformant);
6609 return Conformant;
6610 end;
6611 end if;
6613 else
6614 return Base_Type (Desig_1) = Base_Type (Desig_2)
6615 and then (Ctype = Type_Conformant
6616 or else
6617 Subtypes_Statically_Match (Desig_1, Desig_2));
6618 end if;
6619 end;
6621 -- Otherwise definitely no match
6623 else
6624 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6625 and then Is_Access_Type (Type_2))
6626 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6627 and then Is_Access_Type (Type_1)))
6628 and then
6629 Conforming_Types
6630 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6631 then
6632 May_Hide_Profile := True;
6633 end if;
6635 return False;
6636 end if;
6637 end Conforming_Types;
6639 --------------------------
6640 -- Create_Extra_Formals --
6641 --------------------------
6643 procedure Create_Extra_Formals (E : Entity_Id) is
6644 Formal : Entity_Id;
6645 First_Extra : Entity_Id := Empty;
6646 Last_Extra : Entity_Id;
6647 Formal_Type : Entity_Id;
6648 P_Formal : Entity_Id := Empty;
6650 function Add_Extra_Formal
6651 (Assoc_Entity : Entity_Id;
6652 Typ : Entity_Id;
6653 Scope : Entity_Id;
6654 Suffix : String) return Entity_Id;
6655 -- Add an extra formal to the current list of formals and extra formals.
6656 -- The extra formal is added to the end of the list of extra formals,
6657 -- and also returned as the result. These formals are always of mode IN.
6658 -- The new formal has the type Typ, is declared in Scope, and its name
6659 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6660 -- The following suffixes are currently used. They should not be changed
6661 -- without coordinating with CodePeer, which makes use of these to
6662 -- provide better messages.
6664 -- O denotes the Constrained bit.
6665 -- L denotes the accessibility level.
6666 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6667 -- the full list in exp_ch6.BIP_Formal_Kind.
6669 ----------------------
6670 -- Add_Extra_Formal --
6671 ----------------------
6673 function Add_Extra_Formal
6674 (Assoc_Entity : Entity_Id;
6675 Typ : Entity_Id;
6676 Scope : Entity_Id;
6677 Suffix : String) return Entity_Id
6679 EF : constant Entity_Id :=
6680 Make_Defining_Identifier (Sloc (Assoc_Entity),
6681 Chars => New_External_Name (Chars (Assoc_Entity),
6682 Suffix => Suffix));
6684 begin
6685 -- A little optimization. Never generate an extra formal for the
6686 -- _init operand of an initialization procedure, since it could
6687 -- never be used.
6689 if Chars (Formal) = Name_uInit then
6690 return Empty;
6691 end if;
6693 Set_Ekind (EF, E_In_Parameter);
6694 Set_Actual_Subtype (EF, Typ);
6695 Set_Etype (EF, Typ);
6696 Set_Scope (EF, Scope);
6697 Set_Mechanism (EF, Default_Mechanism);
6698 Set_Formal_Validity (EF);
6700 if No (First_Extra) then
6701 First_Extra := EF;
6702 Set_Extra_Formals (Scope, First_Extra);
6703 end if;
6705 if Present (Last_Extra) then
6706 Set_Extra_Formal (Last_Extra, EF);
6707 end if;
6709 Last_Extra := EF;
6711 return EF;
6712 end Add_Extra_Formal;
6714 -- Start of processing for Create_Extra_Formals
6716 begin
6717 -- We never generate extra formals if expansion is not active because we
6718 -- don't need them unless we are generating code.
6720 if not Expander_Active then
6721 return;
6722 end if;
6724 -- No need to generate extra formals in interface thunks whose target
6725 -- primitive has no extra formals.
6727 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6728 return;
6729 end if;
6731 -- If this is a derived subprogram then the subtypes of the parent
6732 -- subprogram's formal parameters will be used to determine the need
6733 -- for extra formals.
6735 if Is_Overloadable (E) and then Present (Alias (E)) then
6736 P_Formal := First_Formal (Alias (E));
6737 end if;
6739 Last_Extra := Empty;
6740 Formal := First_Formal (E);
6741 while Present (Formal) loop
6742 Last_Extra := Formal;
6743 Next_Formal (Formal);
6744 end loop;
6746 -- If Extra_formals were already created, don't do it again. This
6747 -- situation may arise for subprogram types created as part of
6748 -- dispatching calls (see Expand_Dispatching_Call)
6750 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6751 return;
6752 end if;
6754 -- If the subprogram is a predefined dispatching subprogram then don't
6755 -- generate any extra constrained or accessibility level formals. In
6756 -- general we suppress these for internal subprograms (by not calling
6757 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6758 -- generated stream attributes do get passed through because extra
6759 -- build-in-place formals are needed in some cases (limited 'Input).
6761 if Is_Predefined_Internal_Operation (E) then
6762 goto Test_For_Func_Result_Extras;
6763 end if;
6765 Formal := First_Formal (E);
6766 while Present (Formal) loop
6768 -- Create extra formal for supporting the attribute 'Constrained.
6769 -- The case of a private type view without discriminants also
6770 -- requires the extra formal if the underlying type has defaulted
6771 -- discriminants.
6773 if Ekind (Formal) /= E_In_Parameter then
6774 if Present (P_Formal) then
6775 Formal_Type := Etype (P_Formal);
6776 else
6777 Formal_Type := Etype (Formal);
6778 end if;
6780 -- Do not produce extra formals for Unchecked_Union parameters.
6781 -- Jump directly to the end of the loop.
6783 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6784 goto Skip_Extra_Formal_Generation;
6785 end if;
6787 if not Has_Discriminants (Formal_Type)
6788 and then Ekind (Formal_Type) in Private_Kind
6789 and then Present (Underlying_Type (Formal_Type))
6790 then
6791 Formal_Type := Underlying_Type (Formal_Type);
6792 end if;
6794 -- Suppress the extra formal if formal's subtype is constrained or
6795 -- indefinite, or we're compiling for Ada 2012 and the underlying
6796 -- type is tagged and limited. In Ada 2012, a limited tagged type
6797 -- can have defaulted discriminants, but 'Constrained is required
6798 -- to return True, so the formal is never needed (see AI05-0214).
6799 -- Note that this ensures consistency of calling sequences for
6800 -- dispatching operations when some types in a class have defaults
6801 -- on discriminants and others do not (and requiring the extra
6802 -- formal would introduce distributed overhead).
6804 -- If the type does not have a completion yet, treat as prior to
6805 -- Ada 2012 for consistency.
6807 if Has_Discriminants (Formal_Type)
6808 and then not Is_Constrained (Formal_Type)
6809 and then not Is_Indefinite_Subtype (Formal_Type)
6810 and then (Ada_Version < Ada_2012
6811 or else No (Underlying_Type (Formal_Type))
6812 or else not
6813 (Is_Limited_Type (Formal_Type)
6814 and then
6815 (Is_Tagged_Type
6816 (Underlying_Type (Formal_Type)))))
6817 then
6818 Set_Extra_Constrained
6819 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6820 end if;
6821 end if;
6823 -- Create extra formal for supporting accessibility checking. This
6824 -- is done for both anonymous access formals and formals of named
6825 -- access types that are marked as controlling formals. The latter
6826 -- case can occur when Expand_Dispatching_Call creates a subprogram
6827 -- type and substitutes the types of access-to-class-wide actuals
6828 -- for the anonymous access-to-specific-type of controlling formals.
6829 -- Base_Type is applied because in cases where there is a null
6830 -- exclusion the formal may have an access subtype.
6832 -- This is suppressed if we specifically suppress accessibility
6833 -- checks at the package level for either the subprogram, or the
6834 -- package in which it resides. However, we do not suppress it
6835 -- simply if the scope has accessibility checks suppressed, since
6836 -- this could cause trouble when clients are compiled with a
6837 -- different suppression setting. The explicit checks at the
6838 -- package level are safe from this point of view.
6840 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6841 or else (Is_Controlling_Formal (Formal)
6842 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6843 and then not
6844 (Explicit_Suppress (E, Accessibility_Check)
6845 or else
6846 Explicit_Suppress (Scope (E), Accessibility_Check))
6847 and then
6848 (No (P_Formal)
6849 or else Present (Extra_Accessibility (P_Formal)))
6850 then
6851 Set_Extra_Accessibility
6852 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6853 end if;
6855 -- This label is required when skipping extra formal generation for
6856 -- Unchecked_Union parameters.
6858 <<Skip_Extra_Formal_Generation>>
6860 if Present (P_Formal) then
6861 Next_Formal (P_Formal);
6862 end if;
6864 Next_Formal (Formal);
6865 end loop;
6867 <<Test_For_Func_Result_Extras>>
6869 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6870 -- function call is ... determined by the point of call ...".
6872 if Needs_Result_Accessibility_Level (E) then
6873 Set_Extra_Accessibility_Of_Result
6874 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6875 end if;
6877 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6878 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6880 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6881 declare
6882 Result_Subt : constant Entity_Id := Etype (E);
6883 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
6884 Formal_Typ : Entity_Id;
6886 Discard : Entity_Id;
6887 pragma Warnings (Off, Discard);
6889 begin
6890 -- In the case of functions with unconstrained result subtypes,
6891 -- add a 4-state formal indicating whether the return object is
6892 -- allocated by the caller (1), or should be allocated by the
6893 -- callee on the secondary stack (2), in the global heap (3), or
6894 -- in a user-defined storage pool (4). For the moment we just use
6895 -- Natural for the type of this formal. Note that this formal
6896 -- isn't usually needed in the case where the result subtype is
6897 -- constrained, but it is needed when the function has a tagged
6898 -- result, because generally such functions can be called in a
6899 -- dispatching context and such calls must be handled like calls
6900 -- to a class-wide function.
6902 if Needs_BIP_Alloc_Form (E) then
6903 Discard :=
6904 Add_Extra_Formal
6905 (E, Standard_Natural,
6906 E, BIP_Formal_Suffix (BIP_Alloc_Form));
6908 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6909 -- use a user-defined pool. This formal is not added on
6910 -- .NET/JVM/ZFP as those targets do not support pools.
6912 if VM_Target = No_VM
6913 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
6914 then
6915 Discard :=
6916 Add_Extra_Formal
6917 (E, RTE (RE_Root_Storage_Pool_Ptr),
6918 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6919 end if;
6920 end if;
6922 -- In the case of functions whose result type needs finalization,
6923 -- add an extra formal which represents the finalization master.
6925 if Needs_BIP_Finalization_Master (E) then
6926 Discard :=
6927 Add_Extra_Formal
6928 (E, RTE (RE_Finalization_Master_Ptr),
6929 E, BIP_Formal_Suffix (BIP_Finalization_Master));
6930 end if;
6932 -- When the result type contains tasks, add two extra formals: the
6933 -- master of the tasks to be created, and the caller's activation
6934 -- chain.
6936 if Has_Task (Full_Subt) then
6937 Discard :=
6938 Add_Extra_Formal
6939 (E, RTE (RE_Master_Id),
6940 E, BIP_Formal_Suffix (BIP_Task_Master));
6941 Discard :=
6942 Add_Extra_Formal
6943 (E, RTE (RE_Activation_Chain_Access),
6944 E, BIP_Formal_Suffix (BIP_Activation_Chain));
6945 end if;
6947 -- All build-in-place functions get an extra formal that will be
6948 -- passed the address of the return object within the caller.
6950 Formal_Typ :=
6951 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
6953 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
6954 Set_Etype (Formal_Typ, Formal_Typ);
6955 Set_Depends_On_Private
6956 (Formal_Typ, Has_Private_Component (Formal_Typ));
6957 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
6958 Set_Is_Access_Constant (Formal_Typ, False);
6960 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
6961 -- the designated type comes from the limited view (for back-end
6962 -- purposes).
6964 Set_From_Limited_With
6965 (Formal_Typ, From_Limited_With (Result_Subt));
6967 Layout_Type (Formal_Typ);
6969 Discard :=
6970 Add_Extra_Formal
6971 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
6972 end;
6973 end if;
6974 end Create_Extra_Formals;
6976 -----------------------------
6977 -- Enter_Overloaded_Entity --
6978 -----------------------------
6980 procedure Enter_Overloaded_Entity (S : Entity_Id) is
6981 E : Entity_Id := Current_Entity_In_Scope (S);
6982 C_E : Entity_Id := Current_Entity (S);
6984 begin
6985 if Present (E) then
6986 Set_Has_Homonym (E);
6987 Set_Has_Homonym (S);
6988 end if;
6990 Set_Is_Immediately_Visible (S);
6991 Set_Scope (S, Current_Scope);
6993 -- Chain new entity if front of homonym in current scope, so that
6994 -- homonyms are contiguous.
6996 if Present (E) and then E /= C_E then
6997 while Homonym (C_E) /= E loop
6998 C_E := Homonym (C_E);
6999 end loop;
7001 Set_Homonym (C_E, S);
7003 else
7004 E := C_E;
7005 Set_Current_Entity (S);
7006 end if;
7008 Set_Homonym (S, E);
7010 if Is_Inherited_Operation (S) then
7011 Append_Inherited_Subprogram (S);
7012 else
7013 Append_Entity (S, Current_Scope);
7014 end if;
7016 Set_Public_Status (S);
7018 if Debug_Flag_E then
7019 Write_Str ("New overloaded entity chain: ");
7020 Write_Name (Chars (S));
7022 E := S;
7023 while Present (E) loop
7024 Write_Str (" "); Write_Int (Int (E));
7025 E := Homonym (E);
7026 end loop;
7028 Write_Eol;
7029 end if;
7031 -- Generate warning for hiding
7033 if Warn_On_Hiding
7034 and then Comes_From_Source (S)
7035 and then In_Extended_Main_Source_Unit (S)
7036 then
7037 E := S;
7038 loop
7039 E := Homonym (E);
7040 exit when No (E);
7042 -- Warn unless genuine overloading. Do not emit warning on
7043 -- hiding predefined operators in Standard (these are either an
7044 -- (artifact of our implicit declarations, or simple noise) but
7045 -- keep warning on a operator defined on a local subtype, because
7046 -- of the real danger that different operators may be applied in
7047 -- various parts of the program.
7049 -- Note that if E and S have the same scope, there is never any
7050 -- hiding. Either the two conflict, and the program is illegal,
7051 -- or S is overriding an implicit inherited subprogram.
7053 if Scope (E) /= Scope (S)
7054 and then (not Is_Overloadable (E)
7055 or else Subtype_Conformant (E, S))
7056 and then (Is_Immediately_Visible (E)
7057 or else
7058 Is_Potentially_Use_Visible (S))
7059 then
7060 if Scope (E) /= Standard_Standard then
7061 Error_Msg_Sloc := Sloc (E);
7062 Error_Msg_N ("declaration of & hides one #?h?", S);
7064 elsif Nkind (S) = N_Defining_Operator_Symbol
7065 and then
7066 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7067 then
7068 Error_Msg_N
7069 ("declaration of & hides predefined operator?h?", S);
7070 end if;
7071 end if;
7072 end loop;
7073 end if;
7074 end Enter_Overloaded_Entity;
7076 -----------------------------
7077 -- Check_Untagged_Equality --
7078 -----------------------------
7080 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7081 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7082 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7083 Obj_Decl : Node_Id;
7085 begin
7086 -- This check applies only if we have a subprogram declaration with an
7087 -- untagged record type.
7089 if Nkind (Decl) /= N_Subprogram_Declaration
7090 or else not Is_Record_Type (Typ)
7091 or else Is_Tagged_Type (Typ)
7092 then
7093 return;
7094 end if;
7096 -- In Ada 2012 case, we will output errors or warnings depending on
7097 -- the setting of debug flag -gnatd.E.
7099 if Ada_Version >= Ada_2012 then
7100 Error_Msg_Warn := Debug_Flag_Dot_EE;
7102 -- In earlier versions of Ada, nothing to do unless we are warning on
7103 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7105 else
7106 if not Warn_On_Ada_2012_Compatibility then
7107 return;
7108 end if;
7109 end if;
7111 -- Cases where the type has already been frozen
7113 if Is_Frozen (Typ) then
7115 -- If the type is not declared in a package, or if we are in the body
7116 -- of the package or in some other scope, the new operation is not
7117 -- primitive, and therefore legal, though suspicious. Should we
7118 -- generate a warning in this case ???
7120 if Ekind (Scope (Typ)) /= E_Package
7121 or else Scope (Typ) /= Current_Scope
7122 then
7123 return;
7125 -- If the type is a generic actual (sub)type, the operation is not
7126 -- primitive either because the base type is declared elsewhere.
7128 elsif Is_Generic_Actual_Type (Typ) then
7129 return;
7131 -- Here we have a definite error of declaration after freezing
7133 else
7134 if Ada_Version >= Ada_2012 then
7135 Error_Msg_NE
7136 ("equality operator must be declared before type & is "
7137 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7139 -- In Ada 2012 mode with error turned to warning, output one
7140 -- more warning to warn that the equality operation may not
7141 -- compose. This is the consequence of ignoring the error.
7143 if Error_Msg_Warn then
7144 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7145 end if;
7147 else
7148 Error_Msg_NE
7149 ("equality operator must be declared before type& is "
7150 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7151 end if;
7153 -- If we are in the package body, we could just move the
7154 -- declaration to the package spec, so add a message saying that.
7156 if In_Package_Body (Scope (Typ)) then
7157 if Ada_Version >= Ada_2012 then
7158 Error_Msg_N
7159 ("\move declaration to package spec<<", Eq_Op);
7160 else
7161 Error_Msg_N
7162 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7163 end if;
7165 -- Otherwise try to find the freezing point
7167 else
7168 Obj_Decl := Next (Parent (Typ));
7169 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7170 if Nkind (Obj_Decl) = N_Object_Declaration
7171 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7172 then
7173 -- Freezing point, output warnings
7175 if Ada_Version >= Ada_2012 then
7176 Error_Msg_NE
7177 ("type& is frozen by declaration??", Obj_Decl, Typ);
7178 Error_Msg_N
7179 ("\an equality operator cannot be declared after "
7180 & "this point??",
7181 Obj_Decl);
7182 else
7183 Error_Msg_NE
7184 ("type& is frozen by declaration (Ada 2012)?y?",
7185 Obj_Decl, Typ);
7186 Error_Msg_N
7187 ("\an equality operator cannot be declared after "
7188 & "this point (Ada 2012)?y?",
7189 Obj_Decl);
7190 end if;
7192 exit;
7193 end if;
7195 Next (Obj_Decl);
7196 end loop;
7197 end if;
7198 end if;
7200 -- Here if type is not frozen yet. It is illegal to have a primitive
7201 -- equality declared in the private part if the type is visible.
7203 elsif not In_Same_List (Parent (Typ), Decl)
7204 and then not Is_Limited_Type (Typ)
7205 then
7206 -- Shouldn't we give an RM reference here???
7208 if Ada_Version >= Ada_2012 then
7209 Error_Msg_N
7210 ("equality operator appears too late<<", Eq_Op);
7211 else
7212 Error_Msg_N
7213 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7214 end if;
7216 -- No error detected
7218 else
7219 return;
7220 end if;
7221 end Check_Untagged_Equality;
7223 -----------------------------
7224 -- Find_Corresponding_Spec --
7225 -----------------------------
7227 function Find_Corresponding_Spec
7228 (N : Node_Id;
7229 Post_Error : Boolean := True) return Entity_Id
7231 Spec : constant Node_Id := Specification (N);
7232 Designator : constant Entity_Id := Defining_Entity (Spec);
7234 E : Entity_Id;
7236 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7237 -- Even if fully conformant, a body may depend on a generic actual when
7238 -- the spec does not, or vice versa, in which case they were distinct
7239 -- entities in the generic.
7241 -------------------------------
7242 -- Different_Generic_Profile --
7243 -------------------------------
7245 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7246 F1, F2 : Entity_Id;
7248 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7249 -- Check that the types of corresponding formals have the same
7250 -- generic actual if any. We have to account for subtypes of a
7251 -- generic formal, declared between a spec and a body, which may
7252 -- appear distinct in an instance but matched in the generic, and
7253 -- the subtype may be used either in the spec or the body of the
7254 -- subprogram being checked.
7256 -------------------------
7257 -- Same_Generic_Actual --
7258 -------------------------
7260 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7262 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7263 -- Predicate to check whether S1 is a subtype of S2 in the source
7264 -- of the instance.
7266 -------------------------
7267 -- Is_Declared_Subtype --
7268 -------------------------
7270 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7271 begin
7272 return Comes_From_Source (Parent (S1))
7273 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7274 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7275 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7276 end Is_Declared_Subtype;
7278 -- Start of processing for Same_Generic_Actual
7280 begin
7281 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7282 or else Is_Declared_Subtype (T1, T2)
7283 or else Is_Declared_Subtype (T2, T1);
7284 end Same_Generic_Actual;
7286 -- Start of processing for Different_Generic_Profile
7288 begin
7289 if not In_Instance then
7290 return False;
7292 elsif Ekind (E) = E_Function
7293 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7294 then
7295 return True;
7296 end if;
7298 F1 := First_Formal (Designator);
7299 F2 := First_Formal (E);
7300 while Present (F1) loop
7301 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7302 return True;
7303 end if;
7305 Next_Formal (F1);
7306 Next_Formal (F2);
7307 end loop;
7309 return False;
7310 end Different_Generic_Profile;
7312 -- Start of processing for Find_Corresponding_Spec
7314 begin
7315 E := Current_Entity (Designator);
7316 while Present (E) loop
7318 -- We are looking for a matching spec. It must have the same scope,
7319 -- and the same name, and either be type conformant, or be the case
7320 -- of a library procedure spec and its body (which belong to one
7321 -- another regardless of whether they are type conformant or not).
7323 if Scope (E) = Current_Scope then
7324 if Current_Scope = Standard_Standard
7325 or else (Ekind (E) = Ekind (Designator)
7326 and then Type_Conformant (E, Designator))
7327 then
7328 -- Within an instantiation, we know that spec and body are
7329 -- subtype conformant, because they were subtype conformant in
7330 -- the generic. We choose the subtype-conformant entity here as
7331 -- well, to resolve spurious ambiguities in the instance that
7332 -- were not present in the generic (i.e. when two different
7333 -- types are given the same actual). If we are looking for a
7334 -- spec to match a body, full conformance is expected.
7336 if In_Instance then
7338 -- Inherit the convention and "ghostness" of the matching
7339 -- spec to ensure proper full and subtype conformance.
7341 Set_Convention (Designator, Convention (E));
7343 if Is_Ghost_Entity (E) then
7344 Set_Is_Ghost_Entity (Designator);
7345 end if;
7347 -- Skip past subprogram bodies and subprogram renamings that
7348 -- may appear to have a matching spec, but that aren't fully
7349 -- conformant with it. That can occur in cases where an
7350 -- actual type causes unrelated homographs in the instance.
7352 if Nkind_In (N, N_Subprogram_Body,
7353 N_Subprogram_Renaming_Declaration)
7354 and then Present (Homonym (E))
7355 and then not Fully_Conformant (Designator, E)
7356 then
7357 goto Next_Entity;
7359 elsif not Subtype_Conformant (Designator, E) then
7360 goto Next_Entity;
7362 elsif Different_Generic_Profile (E) then
7363 goto Next_Entity;
7364 end if;
7365 end if;
7367 -- Ada 2012 (AI05-0165): For internally generated bodies of
7368 -- null procedures locate the internally generated spec. We
7369 -- enforce mode conformance since a tagged type may inherit
7370 -- from interfaces several null primitives which differ only
7371 -- in the mode of the formals.
7373 if not (Comes_From_Source (E))
7374 and then Is_Null_Procedure (E)
7375 and then not Mode_Conformant (Designator, E)
7376 then
7377 null;
7379 -- For null procedures coming from source that are completions,
7380 -- analysis of the generated body will establish the link.
7382 elsif Comes_From_Source (E)
7383 and then Nkind (Spec) = N_Procedure_Specification
7384 and then Null_Present (Spec)
7385 then
7386 return E;
7388 elsif not Has_Completion (E) then
7389 if Nkind (N) /= N_Subprogram_Body_Stub then
7390 Set_Corresponding_Spec (N, E);
7391 end if;
7393 Set_Has_Completion (E);
7394 return E;
7396 elsif Nkind (Parent (N)) = N_Subunit then
7398 -- If this is the proper body of a subunit, the completion
7399 -- flag is set when analyzing the stub.
7401 return E;
7403 -- If E is an internal function with a controlling result that
7404 -- was created for an operation inherited by a null extension,
7405 -- it may be overridden by a body without a previous spec (one
7406 -- more reason why these should be shunned). In that case we
7407 -- remove the generated body if present, because the current
7408 -- one is the explicit overriding.
7410 elsif Ekind (E) = E_Function
7411 and then Ada_Version >= Ada_2005
7412 and then not Comes_From_Source (E)
7413 and then Has_Controlling_Result (E)
7414 and then Is_Null_Extension (Etype (E))
7415 and then Comes_From_Source (Spec)
7416 then
7417 Set_Has_Completion (E, False);
7419 if Expander_Active
7420 and then Nkind (Parent (E)) = N_Function_Specification
7421 then
7422 Remove
7423 (Unit_Declaration_Node
7424 (Corresponding_Body (Unit_Declaration_Node (E))));
7426 return E;
7428 -- If expansion is disabled, or if the wrapper function has
7429 -- not been generated yet, this a late body overriding an
7430 -- inherited operation, or it is an overriding by some other
7431 -- declaration before the controlling result is frozen. In
7432 -- either case this is a declaration of a new entity.
7434 else
7435 return Empty;
7436 end if;
7438 -- If the body already exists, then this is an error unless
7439 -- the previous declaration is the implicit declaration of a
7440 -- derived subprogram. It is also legal for an instance to
7441 -- contain type conformant overloadable declarations (but the
7442 -- generic declaration may not), per 8.3(26/2).
7444 elsif No (Alias (E))
7445 and then not Is_Intrinsic_Subprogram (E)
7446 and then not In_Instance
7447 and then Post_Error
7448 then
7449 Error_Msg_Sloc := Sloc (E);
7451 if Is_Imported (E) then
7452 Error_Msg_NE
7453 ("body not allowed for imported subprogram & declared#",
7454 N, E);
7455 else
7456 Error_Msg_NE ("duplicate body for & declared#", N, E);
7457 end if;
7458 end if;
7460 -- Child units cannot be overloaded, so a conformance mismatch
7461 -- between body and a previous spec is an error.
7463 elsif Is_Child_Unit (E)
7464 and then
7465 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7466 and then
7467 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7468 N_Compilation_Unit
7469 and then Post_Error
7470 then
7471 Error_Msg_N
7472 ("body of child unit does not match previous declaration", N);
7473 end if;
7474 end if;
7476 <<Next_Entity>>
7477 E := Homonym (E);
7478 end loop;
7480 -- On exit, we know that no previous declaration of subprogram exists
7482 return Empty;
7483 end Find_Corresponding_Spec;
7485 ----------------------
7486 -- Fully_Conformant --
7487 ----------------------
7489 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7490 Result : Boolean;
7491 begin
7492 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7493 return Result;
7494 end Fully_Conformant;
7496 ----------------------------------
7497 -- Fully_Conformant_Expressions --
7498 ----------------------------------
7500 function Fully_Conformant_Expressions
7501 (Given_E1 : Node_Id;
7502 Given_E2 : Node_Id) return Boolean
7504 E1 : constant Node_Id := Original_Node (Given_E1);
7505 E2 : constant Node_Id := Original_Node (Given_E2);
7506 -- We always test conformance on original nodes, since it is possible
7507 -- for analysis and/or expansion to make things look as though they
7508 -- conform when they do not, e.g. by converting 1+2 into 3.
7510 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7511 renames Fully_Conformant_Expressions;
7513 function FCL (L1, L2 : List_Id) return Boolean;
7514 -- Compare elements of two lists for conformance. Elements have to be
7515 -- conformant, and actuals inserted as default parameters do not match
7516 -- explicit actuals with the same value.
7518 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7519 -- Compare an operator node with a function call
7521 ---------
7522 -- FCL --
7523 ---------
7525 function FCL (L1, L2 : List_Id) return Boolean is
7526 N1, N2 : Node_Id;
7528 begin
7529 if L1 = No_List then
7530 N1 := Empty;
7531 else
7532 N1 := First (L1);
7533 end if;
7535 if L2 = No_List then
7536 N2 := Empty;
7537 else
7538 N2 := First (L2);
7539 end if;
7541 -- Compare two lists, skipping rewrite insertions (we want to compare
7542 -- the original trees, not the expanded versions).
7544 loop
7545 if Is_Rewrite_Insertion (N1) then
7546 Next (N1);
7547 elsif Is_Rewrite_Insertion (N2) then
7548 Next (N2);
7549 elsif No (N1) then
7550 return No (N2);
7551 elsif No (N2) then
7552 return False;
7553 elsif not FCE (N1, N2) then
7554 return False;
7555 else
7556 Next (N1);
7557 Next (N2);
7558 end if;
7559 end loop;
7560 end FCL;
7562 ---------
7563 -- FCO --
7564 ---------
7566 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7567 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7568 Act : Node_Id;
7570 begin
7571 if No (Actuals)
7572 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7573 then
7574 return False;
7576 else
7577 Act := First (Actuals);
7579 if Nkind (Op_Node) in N_Binary_Op then
7580 if not FCE (Left_Opnd (Op_Node), Act) then
7581 return False;
7582 end if;
7584 Next (Act);
7585 end if;
7587 return Present (Act)
7588 and then FCE (Right_Opnd (Op_Node), Act)
7589 and then No (Next (Act));
7590 end if;
7591 end FCO;
7593 -- Start of processing for Fully_Conformant_Expressions
7595 begin
7596 -- Non-conformant if paren count does not match. Note: if some idiot
7597 -- complains that we don't do this right for more than 3 levels of
7598 -- parentheses, they will be treated with the respect they deserve.
7600 if Paren_Count (E1) /= Paren_Count (E2) then
7601 return False;
7603 -- If same entities are referenced, then they are conformant even if
7604 -- they have different forms (RM 8.3.1(19-20)).
7606 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7607 if Present (Entity (E1)) then
7608 return Entity (E1) = Entity (E2)
7609 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7610 and then Ekind (Entity (E1)) = E_Discriminant
7611 and then Ekind (Entity (E2)) = E_In_Parameter);
7613 elsif Nkind (E1) = N_Expanded_Name
7614 and then Nkind (E2) = N_Expanded_Name
7615 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7616 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7617 then
7618 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7620 else
7621 -- Identifiers in component associations don't always have
7622 -- entities, but their names must conform.
7624 return Nkind (E1) = N_Identifier
7625 and then Nkind (E2) = N_Identifier
7626 and then Chars (E1) = Chars (E2);
7627 end if;
7629 elsif Nkind (E1) = N_Character_Literal
7630 and then Nkind (E2) = N_Expanded_Name
7631 then
7632 return Nkind (Selector_Name (E2)) = N_Character_Literal
7633 and then Chars (E1) = Chars (Selector_Name (E2));
7635 elsif Nkind (E2) = N_Character_Literal
7636 and then Nkind (E1) = N_Expanded_Name
7637 then
7638 return Nkind (Selector_Name (E1)) = N_Character_Literal
7639 and then Chars (E2) = Chars (Selector_Name (E1));
7641 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7642 return FCO (E1, E2);
7644 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7645 return FCO (E2, E1);
7647 -- Otherwise we must have the same syntactic entity
7649 elsif Nkind (E1) /= Nkind (E2) then
7650 return False;
7652 -- At this point, we specialize by node type
7654 else
7655 case Nkind (E1) is
7657 when N_Aggregate =>
7658 return
7659 FCL (Expressions (E1), Expressions (E2))
7660 and then
7661 FCL (Component_Associations (E1),
7662 Component_Associations (E2));
7664 when N_Allocator =>
7665 if Nkind (Expression (E1)) = N_Qualified_Expression
7666 or else
7667 Nkind (Expression (E2)) = N_Qualified_Expression
7668 then
7669 return FCE (Expression (E1), Expression (E2));
7671 -- Check that the subtype marks and any constraints
7672 -- are conformant
7674 else
7675 declare
7676 Indic1 : constant Node_Id := Expression (E1);
7677 Indic2 : constant Node_Id := Expression (E2);
7678 Elt1 : Node_Id;
7679 Elt2 : Node_Id;
7681 begin
7682 if Nkind (Indic1) /= N_Subtype_Indication then
7683 return
7684 Nkind (Indic2) /= N_Subtype_Indication
7685 and then Entity (Indic1) = Entity (Indic2);
7687 elsif Nkind (Indic2) /= N_Subtype_Indication then
7688 return
7689 Nkind (Indic1) /= N_Subtype_Indication
7690 and then Entity (Indic1) = Entity (Indic2);
7692 else
7693 if Entity (Subtype_Mark (Indic1)) /=
7694 Entity (Subtype_Mark (Indic2))
7695 then
7696 return False;
7697 end if;
7699 Elt1 := First (Constraints (Constraint (Indic1)));
7700 Elt2 := First (Constraints (Constraint (Indic2)));
7701 while Present (Elt1) and then Present (Elt2) loop
7702 if not FCE (Elt1, Elt2) then
7703 return False;
7704 end if;
7706 Next (Elt1);
7707 Next (Elt2);
7708 end loop;
7710 return True;
7711 end if;
7712 end;
7713 end if;
7715 when N_Attribute_Reference =>
7716 return
7717 Attribute_Name (E1) = Attribute_Name (E2)
7718 and then FCL (Expressions (E1), Expressions (E2));
7720 when N_Binary_Op =>
7721 return
7722 Entity (E1) = Entity (E2)
7723 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7724 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7726 when N_Short_Circuit | N_Membership_Test =>
7727 return
7728 FCE (Left_Opnd (E1), Left_Opnd (E2))
7729 and then
7730 FCE (Right_Opnd (E1), Right_Opnd (E2));
7732 when N_Case_Expression =>
7733 declare
7734 Alt1 : Node_Id;
7735 Alt2 : Node_Id;
7737 begin
7738 if not FCE (Expression (E1), Expression (E2)) then
7739 return False;
7741 else
7742 Alt1 := First (Alternatives (E1));
7743 Alt2 := First (Alternatives (E2));
7744 loop
7745 if Present (Alt1) /= Present (Alt2) then
7746 return False;
7747 elsif No (Alt1) then
7748 return True;
7749 end if;
7751 if not FCE (Expression (Alt1), Expression (Alt2))
7752 or else not FCL (Discrete_Choices (Alt1),
7753 Discrete_Choices (Alt2))
7754 then
7755 return False;
7756 end if;
7758 Next (Alt1);
7759 Next (Alt2);
7760 end loop;
7761 end if;
7762 end;
7764 when N_Character_Literal =>
7765 return
7766 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7768 when N_Component_Association =>
7769 return
7770 FCL (Choices (E1), Choices (E2))
7771 and then
7772 FCE (Expression (E1), Expression (E2));
7774 when N_Explicit_Dereference =>
7775 return
7776 FCE (Prefix (E1), Prefix (E2));
7778 when N_Extension_Aggregate =>
7779 return
7780 FCL (Expressions (E1), Expressions (E2))
7781 and then Null_Record_Present (E1) =
7782 Null_Record_Present (E2)
7783 and then FCL (Component_Associations (E1),
7784 Component_Associations (E2));
7786 when N_Function_Call =>
7787 return
7788 FCE (Name (E1), Name (E2))
7789 and then
7790 FCL (Parameter_Associations (E1),
7791 Parameter_Associations (E2));
7793 when N_If_Expression =>
7794 return
7795 FCL (Expressions (E1), Expressions (E2));
7797 when N_Indexed_Component =>
7798 return
7799 FCE (Prefix (E1), Prefix (E2))
7800 and then
7801 FCL (Expressions (E1), Expressions (E2));
7803 when N_Integer_Literal =>
7804 return (Intval (E1) = Intval (E2));
7806 when N_Null =>
7807 return True;
7809 when N_Operator_Symbol =>
7810 return
7811 Chars (E1) = Chars (E2);
7813 when N_Others_Choice =>
7814 return True;
7816 when N_Parameter_Association =>
7817 return
7818 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7819 and then FCE (Explicit_Actual_Parameter (E1),
7820 Explicit_Actual_Parameter (E2));
7822 when N_Qualified_Expression =>
7823 return
7824 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7825 and then
7826 FCE (Expression (E1), Expression (E2));
7828 when N_Quantified_Expression =>
7829 if not FCE (Condition (E1), Condition (E2)) then
7830 return False;
7831 end if;
7833 if Present (Loop_Parameter_Specification (E1))
7834 and then Present (Loop_Parameter_Specification (E2))
7835 then
7836 declare
7837 L1 : constant Node_Id :=
7838 Loop_Parameter_Specification (E1);
7839 L2 : constant Node_Id :=
7840 Loop_Parameter_Specification (E2);
7842 begin
7843 return
7844 Reverse_Present (L1) = Reverse_Present (L2)
7845 and then
7846 FCE (Defining_Identifier (L1),
7847 Defining_Identifier (L2))
7848 and then
7849 FCE (Discrete_Subtype_Definition (L1),
7850 Discrete_Subtype_Definition (L2));
7851 end;
7853 elsif Present (Iterator_Specification (E1))
7854 and then Present (Iterator_Specification (E2))
7855 then
7856 declare
7857 I1 : constant Node_Id := Iterator_Specification (E1);
7858 I2 : constant Node_Id := Iterator_Specification (E2);
7860 begin
7861 return
7862 FCE (Defining_Identifier (I1),
7863 Defining_Identifier (I2))
7864 and then
7865 Of_Present (I1) = Of_Present (I2)
7866 and then
7867 Reverse_Present (I1) = Reverse_Present (I2)
7868 and then FCE (Name (I1), Name (I2))
7869 and then FCE (Subtype_Indication (I1),
7870 Subtype_Indication (I2));
7871 end;
7873 -- The quantified expressions used different specifications to
7874 -- walk their respective ranges.
7876 else
7877 return False;
7878 end if;
7880 when N_Range =>
7881 return
7882 FCE (Low_Bound (E1), Low_Bound (E2))
7883 and then
7884 FCE (High_Bound (E1), High_Bound (E2));
7886 when N_Real_Literal =>
7887 return (Realval (E1) = Realval (E2));
7889 when N_Selected_Component =>
7890 return
7891 FCE (Prefix (E1), Prefix (E2))
7892 and then
7893 FCE (Selector_Name (E1), Selector_Name (E2));
7895 when N_Slice =>
7896 return
7897 FCE (Prefix (E1), Prefix (E2))
7898 and then
7899 FCE (Discrete_Range (E1), Discrete_Range (E2));
7901 when N_String_Literal =>
7902 declare
7903 S1 : constant String_Id := Strval (E1);
7904 S2 : constant String_Id := Strval (E2);
7905 L1 : constant Nat := String_Length (S1);
7906 L2 : constant Nat := String_Length (S2);
7908 begin
7909 if L1 /= L2 then
7910 return False;
7912 else
7913 for J in 1 .. L1 loop
7914 if Get_String_Char (S1, J) /=
7915 Get_String_Char (S2, J)
7916 then
7917 return False;
7918 end if;
7919 end loop;
7921 return True;
7922 end if;
7923 end;
7925 when N_Type_Conversion =>
7926 return
7927 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7928 and then
7929 FCE (Expression (E1), Expression (E2));
7931 when N_Unary_Op =>
7932 return
7933 Entity (E1) = Entity (E2)
7934 and then
7935 FCE (Right_Opnd (E1), Right_Opnd (E2));
7937 when N_Unchecked_Type_Conversion =>
7938 return
7939 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7940 and then
7941 FCE (Expression (E1), Expression (E2));
7943 -- All other node types cannot appear in this context. Strictly
7944 -- we should raise a fatal internal error. Instead we just ignore
7945 -- the nodes. This means that if anyone makes a mistake in the
7946 -- expander and mucks an expression tree irretrievably, the result
7947 -- will be a failure to detect a (probably very obscure) case
7948 -- of non-conformance, which is better than bombing on some
7949 -- case where two expressions do in fact conform.
7951 when others =>
7952 return True;
7954 end case;
7955 end if;
7956 end Fully_Conformant_Expressions;
7958 ----------------------------------------
7959 -- Fully_Conformant_Discrete_Subtypes --
7960 ----------------------------------------
7962 function Fully_Conformant_Discrete_Subtypes
7963 (Given_S1 : Node_Id;
7964 Given_S2 : Node_Id) return Boolean
7966 S1 : constant Node_Id := Original_Node (Given_S1);
7967 S2 : constant Node_Id := Original_Node (Given_S2);
7969 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
7970 -- Special-case for a bound given by a discriminant, which in the body
7971 -- is replaced with the discriminal of the enclosing type.
7973 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
7974 -- Check both bounds
7976 -----------------------
7977 -- Conforming_Bounds --
7978 -----------------------
7980 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
7981 begin
7982 if Is_Entity_Name (B1)
7983 and then Is_Entity_Name (B2)
7984 and then Ekind (Entity (B1)) = E_Discriminant
7985 then
7986 return Chars (B1) = Chars (B2);
7988 else
7989 return Fully_Conformant_Expressions (B1, B2);
7990 end if;
7991 end Conforming_Bounds;
7993 -----------------------
7994 -- Conforming_Ranges --
7995 -----------------------
7997 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
7998 begin
7999 return
8000 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8001 and then
8002 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8003 end Conforming_Ranges;
8005 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8007 begin
8008 if Nkind (S1) /= Nkind (S2) then
8009 return False;
8011 elsif Is_Entity_Name (S1) then
8012 return Entity (S1) = Entity (S2);
8014 elsif Nkind (S1) = N_Range then
8015 return Conforming_Ranges (S1, S2);
8017 elsif Nkind (S1) = N_Subtype_Indication then
8018 return
8019 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8020 and then
8021 Conforming_Ranges
8022 (Range_Expression (Constraint (S1)),
8023 Range_Expression (Constraint (S2)));
8024 else
8025 return True;
8026 end if;
8027 end Fully_Conformant_Discrete_Subtypes;
8029 --------------------
8030 -- Install_Entity --
8031 --------------------
8033 procedure Install_Entity (E : Entity_Id) is
8034 Prev : constant Entity_Id := Current_Entity (E);
8035 begin
8036 Set_Is_Immediately_Visible (E);
8037 Set_Current_Entity (E);
8038 Set_Homonym (E, Prev);
8039 end Install_Entity;
8041 ---------------------
8042 -- Install_Formals --
8043 ---------------------
8045 procedure Install_Formals (Id : Entity_Id) is
8046 F : Entity_Id;
8047 begin
8048 F := First_Formal (Id);
8049 while Present (F) loop
8050 Install_Entity (F);
8051 Next_Formal (F);
8052 end loop;
8053 end Install_Formals;
8055 -----------------------------
8056 -- Is_Interface_Conformant --
8057 -----------------------------
8059 function Is_Interface_Conformant
8060 (Tagged_Type : Entity_Id;
8061 Iface_Prim : Entity_Id;
8062 Prim : Entity_Id) return Boolean
8064 -- The operation may in fact be an inherited (implicit) operation
8065 -- rather than the original interface primitive, so retrieve the
8066 -- ultimate ancestor.
8068 Iface : constant Entity_Id :=
8069 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8070 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8072 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8073 -- Return the controlling formal of Prim
8075 ------------------------
8076 -- Controlling_Formal --
8077 ------------------------
8079 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8080 E : Entity_Id;
8082 begin
8083 E := First_Entity (Prim);
8084 while Present (E) loop
8085 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8086 return E;
8087 end if;
8089 Next_Entity (E);
8090 end loop;
8092 return Empty;
8093 end Controlling_Formal;
8095 -- Local variables
8097 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8098 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8100 -- Start of processing for Is_Interface_Conformant
8102 begin
8103 pragma Assert (Is_Subprogram (Iface_Prim)
8104 and then Is_Subprogram (Prim)
8105 and then Is_Dispatching_Operation (Iface_Prim)
8106 and then Is_Dispatching_Operation (Prim));
8108 pragma Assert (Is_Interface (Iface)
8109 or else (Present (Alias (Iface_Prim))
8110 and then
8111 Is_Interface
8112 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8114 if Prim = Iface_Prim
8115 or else not Is_Subprogram (Prim)
8116 or else Ekind (Prim) /= Ekind (Iface_Prim)
8117 or else not Is_Dispatching_Operation (Prim)
8118 or else Scope (Prim) /= Scope (Tagged_Type)
8119 or else No (Typ)
8120 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8121 or else not Primitive_Names_Match (Iface_Prim, Prim)
8122 then
8123 return False;
8125 -- The mode of the controlling formals must match
8127 elsif Present (Iface_Ctrl_F)
8128 and then Present (Prim_Ctrl_F)
8129 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8130 then
8131 return False;
8133 -- Case of a procedure, or a function whose result type matches the
8134 -- result type of the interface primitive, or a function that has no
8135 -- controlling result (I or access I).
8137 elsif Ekind (Iface_Prim) = E_Procedure
8138 or else Etype (Prim) = Etype (Iface_Prim)
8139 or else not Has_Controlling_Result (Prim)
8140 then
8141 return Type_Conformant
8142 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8144 -- Case of a function returning an interface, or an access to one. Check
8145 -- that the return types correspond.
8147 elsif Implements_Interface (Typ, Iface) then
8148 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8150 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8151 then
8152 return False;
8153 else
8154 return
8155 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8156 Skip_Controlling_Formals => True);
8157 end if;
8159 else
8160 return False;
8161 end if;
8162 end Is_Interface_Conformant;
8164 ---------------------------------
8165 -- Is_Non_Overriding_Operation --
8166 ---------------------------------
8168 function Is_Non_Overriding_Operation
8169 (Prev_E : Entity_Id;
8170 New_E : Entity_Id) return Boolean
8172 Formal : Entity_Id;
8173 F_Typ : Entity_Id;
8174 G_Typ : Entity_Id := Empty;
8176 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8177 -- If F_Type is a derived type associated with a generic actual subtype,
8178 -- then return its Generic_Parent_Type attribute, else return Empty.
8180 function Types_Correspond
8181 (P_Type : Entity_Id;
8182 N_Type : Entity_Id) return Boolean;
8183 -- Returns true if and only if the types (or designated types in the
8184 -- case of anonymous access types) are the same or N_Type is derived
8185 -- directly or indirectly from P_Type.
8187 -----------------------------
8188 -- Get_Generic_Parent_Type --
8189 -----------------------------
8191 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8192 G_Typ : Entity_Id;
8193 Defn : Node_Id;
8194 Indic : Node_Id;
8196 begin
8197 if Is_Derived_Type (F_Typ)
8198 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8199 then
8200 -- The tree must be traversed to determine the parent subtype in
8201 -- the generic unit, which unfortunately isn't always available
8202 -- via semantic attributes. ??? (Note: The use of Original_Node
8203 -- is needed for cases where a full derived type has been
8204 -- rewritten.)
8206 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8207 if Nkind (Defn) = N_Derived_Type_Definition then
8208 Indic := Subtype_Indication (Defn);
8210 if Nkind (Indic) = N_Subtype_Indication then
8211 G_Typ := Entity (Subtype_Mark (Indic));
8212 else
8213 G_Typ := Entity (Indic);
8214 end if;
8216 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8217 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8218 then
8219 return Generic_Parent_Type (Parent (G_Typ));
8220 end if;
8221 end if;
8222 end if;
8224 return Empty;
8225 end Get_Generic_Parent_Type;
8227 ----------------------
8228 -- Types_Correspond --
8229 ----------------------
8231 function Types_Correspond
8232 (P_Type : Entity_Id;
8233 N_Type : Entity_Id) return Boolean
8235 Prev_Type : Entity_Id := Base_Type (P_Type);
8236 New_Type : Entity_Id := Base_Type (N_Type);
8238 begin
8239 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8240 Prev_Type := Designated_Type (Prev_Type);
8241 end if;
8243 if Ekind (New_Type) = E_Anonymous_Access_Type then
8244 New_Type := Designated_Type (New_Type);
8245 end if;
8247 if Prev_Type = New_Type then
8248 return True;
8250 elsif not Is_Class_Wide_Type (New_Type) then
8251 while Etype (New_Type) /= New_Type loop
8252 New_Type := Etype (New_Type);
8253 if New_Type = Prev_Type then
8254 return True;
8255 end if;
8256 end loop;
8257 end if;
8258 return False;
8259 end Types_Correspond;
8261 -- Start of processing for Is_Non_Overriding_Operation
8263 begin
8264 -- In the case where both operations are implicit derived subprograms
8265 -- then neither overrides the other. This can only occur in certain
8266 -- obscure cases (e.g., derivation from homographs created in a generic
8267 -- instantiation).
8269 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8270 return True;
8272 elsif Ekind (Current_Scope) = E_Package
8273 and then Is_Generic_Instance (Current_Scope)
8274 and then In_Private_Part (Current_Scope)
8275 and then Comes_From_Source (New_E)
8276 then
8277 -- We examine the formals and result type of the inherited operation,
8278 -- to determine whether their type is derived from (the instance of)
8279 -- a generic type. The first such formal or result type is the one
8280 -- tested.
8282 Formal := First_Formal (Prev_E);
8283 while Present (Formal) loop
8284 F_Typ := Base_Type (Etype (Formal));
8286 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8287 F_Typ := Designated_Type (F_Typ);
8288 end if;
8290 G_Typ := Get_Generic_Parent_Type (F_Typ);
8291 exit when Present (G_Typ);
8293 Next_Formal (Formal);
8294 end loop;
8296 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8297 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8298 end if;
8300 if No (G_Typ) then
8301 return False;
8302 end if;
8304 -- If the generic type is a private type, then the original operation
8305 -- was not overriding in the generic, because there was no primitive
8306 -- operation to override.
8308 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8309 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8310 N_Formal_Private_Type_Definition
8311 then
8312 return True;
8314 -- The generic parent type is the ancestor of a formal derived
8315 -- type declaration. We need to check whether it has a primitive
8316 -- operation that should be overridden by New_E in the generic.
8318 else
8319 declare
8320 P_Formal : Entity_Id;
8321 N_Formal : Entity_Id;
8322 P_Typ : Entity_Id;
8323 N_Typ : Entity_Id;
8324 P_Prim : Entity_Id;
8325 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8327 begin
8328 while Present (Prim_Elt) loop
8329 P_Prim := Node (Prim_Elt);
8331 if Chars (P_Prim) = Chars (New_E)
8332 and then Ekind (P_Prim) = Ekind (New_E)
8333 then
8334 P_Formal := First_Formal (P_Prim);
8335 N_Formal := First_Formal (New_E);
8336 while Present (P_Formal) and then Present (N_Formal) loop
8337 P_Typ := Etype (P_Formal);
8338 N_Typ := Etype (N_Formal);
8340 if not Types_Correspond (P_Typ, N_Typ) then
8341 exit;
8342 end if;
8344 Next_Entity (P_Formal);
8345 Next_Entity (N_Formal);
8346 end loop;
8348 -- Found a matching primitive operation belonging to the
8349 -- formal ancestor type, so the new subprogram is
8350 -- overriding.
8352 if No (P_Formal)
8353 and then No (N_Formal)
8354 and then (Ekind (New_E) /= E_Function
8355 or else
8356 Types_Correspond
8357 (Etype (P_Prim), Etype (New_E)))
8358 then
8359 return False;
8360 end if;
8361 end if;
8363 Next_Elmt (Prim_Elt);
8364 end loop;
8366 -- If no match found, then the new subprogram does not override
8367 -- in the generic (nor in the instance).
8369 -- If the type in question is not abstract, and the subprogram
8370 -- is, this will be an error if the new operation is in the
8371 -- private part of the instance. Emit a warning now, which will
8372 -- make the subsequent error message easier to understand.
8374 if not Is_Abstract_Type (F_Typ)
8375 and then Is_Abstract_Subprogram (Prev_E)
8376 and then In_Private_Part (Current_Scope)
8377 then
8378 Error_Msg_Node_2 := F_Typ;
8379 Error_Msg_NE
8380 ("private operation& in generic unit does not override "
8381 & "any primitive operation of& (RM 12.3 (18))??",
8382 New_E, New_E);
8383 end if;
8385 return True;
8386 end;
8387 end if;
8388 else
8389 return False;
8390 end if;
8391 end Is_Non_Overriding_Operation;
8393 -------------------------------------
8394 -- List_Inherited_Pre_Post_Aspects --
8395 -------------------------------------
8397 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8398 begin
8399 if Opt.List_Inherited_Aspects
8400 and then Is_Subprogram_Or_Generic_Subprogram (E)
8401 then
8402 declare
8403 Subps : constant Subprogram_List := Inherited_Subprograms (E);
8404 Items : Node_Id;
8405 Prag : Node_Id;
8407 begin
8408 for Index in Subps'Range loop
8409 Items := Contract (Subps (Index));
8411 if Present (Items) then
8412 Prag := Pre_Post_Conditions (Items);
8413 while Present (Prag) loop
8414 Error_Msg_Sloc := Sloc (Prag);
8416 if Class_Present (Prag)
8417 and then not Split_PPC (Prag)
8418 then
8419 if Pragma_Name (Prag) = Name_Precondition then
8420 Error_Msg_N
8421 ("info: & inherits `Pre''Class` aspect from "
8422 & "#?L?", E);
8423 else
8424 Error_Msg_N
8425 ("info: & inherits `Post''Class` aspect from "
8426 & "#?L?", E);
8427 end if;
8428 end if;
8430 Prag := Next_Pragma (Prag);
8431 end loop;
8432 end if;
8433 end loop;
8434 end;
8435 end if;
8436 end List_Inherited_Pre_Post_Aspects;
8438 ------------------------------
8439 -- Make_Inequality_Operator --
8440 ------------------------------
8442 -- S is the defining identifier of an equality operator. We build a
8443 -- subprogram declaration with the right signature. This operation is
8444 -- intrinsic, because it is always expanded as the negation of the
8445 -- call to the equality function.
8447 procedure Make_Inequality_Operator (S : Entity_Id) is
8448 Loc : constant Source_Ptr := Sloc (S);
8449 Decl : Node_Id;
8450 Formals : List_Id;
8451 Op_Name : Entity_Id;
8453 FF : constant Entity_Id := First_Formal (S);
8454 NF : constant Entity_Id := Next_Formal (FF);
8456 begin
8457 -- Check that equality was properly defined, ignore call if not
8459 if No (NF) then
8460 return;
8461 end if;
8463 declare
8464 A : constant Entity_Id :=
8465 Make_Defining_Identifier (Sloc (FF),
8466 Chars => Chars (FF));
8468 B : constant Entity_Id :=
8469 Make_Defining_Identifier (Sloc (NF),
8470 Chars => Chars (NF));
8472 begin
8473 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8475 Formals := New_List (
8476 Make_Parameter_Specification (Loc,
8477 Defining_Identifier => A,
8478 Parameter_Type =>
8479 New_Occurrence_Of (Etype (First_Formal (S)),
8480 Sloc (Etype (First_Formal (S))))),
8482 Make_Parameter_Specification (Loc,
8483 Defining_Identifier => B,
8484 Parameter_Type =>
8485 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8486 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8488 Decl :=
8489 Make_Subprogram_Declaration (Loc,
8490 Specification =>
8491 Make_Function_Specification (Loc,
8492 Defining_Unit_Name => Op_Name,
8493 Parameter_Specifications => Formals,
8494 Result_Definition =>
8495 New_Occurrence_Of (Standard_Boolean, Loc)));
8497 -- Insert inequality right after equality if it is explicit or after
8498 -- the derived type when implicit. These entities are created only
8499 -- for visibility purposes, and eventually replaced in the course
8500 -- of expansion, so they do not need to be attached to the tree and
8501 -- seen by the back-end. Keeping them internal also avoids spurious
8502 -- freezing problems. The declaration is inserted in the tree for
8503 -- analysis, and removed afterwards. If the equality operator comes
8504 -- from an explicit declaration, attach the inequality immediately
8505 -- after. Else the equality is inherited from a derived type
8506 -- declaration, so insert inequality after that declaration.
8508 if No (Alias (S)) then
8509 Insert_After (Unit_Declaration_Node (S), Decl);
8510 elsif Is_List_Member (Parent (S)) then
8511 Insert_After (Parent (S), Decl);
8512 else
8513 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8514 end if;
8516 Mark_Rewrite_Insertion (Decl);
8517 Set_Is_Intrinsic_Subprogram (Op_Name);
8518 Analyze (Decl);
8519 Remove (Decl);
8520 Set_Has_Completion (Op_Name);
8521 Set_Corresponding_Equality (Op_Name, S);
8522 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8523 end;
8524 end Make_Inequality_Operator;
8526 ----------------------
8527 -- May_Need_Actuals --
8528 ----------------------
8530 procedure May_Need_Actuals (Fun : Entity_Id) is
8531 F : Entity_Id;
8532 B : Boolean;
8534 begin
8535 F := First_Formal (Fun);
8536 B := True;
8537 while Present (F) loop
8538 if No (Default_Value (F)) then
8539 B := False;
8540 exit;
8541 end if;
8543 Next_Formal (F);
8544 end loop;
8546 Set_Needs_No_Actuals (Fun, B);
8547 end May_Need_Actuals;
8549 ---------------------
8550 -- Mode_Conformant --
8551 ---------------------
8553 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8554 Result : Boolean;
8555 begin
8556 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8557 return Result;
8558 end Mode_Conformant;
8560 ---------------------------
8561 -- New_Overloaded_Entity --
8562 ---------------------------
8564 procedure New_Overloaded_Entity
8565 (S : Entity_Id;
8566 Derived_Type : Entity_Id := Empty)
8568 Overridden_Subp : Entity_Id := Empty;
8569 -- Set if the current scope has an operation that is type-conformant
8570 -- with S, and becomes hidden by S.
8572 Is_Primitive_Subp : Boolean;
8573 -- Set to True if the new subprogram is primitive
8575 E : Entity_Id;
8576 -- Entity that S overrides
8578 Prev_Vis : Entity_Id := Empty;
8579 -- Predecessor of E in Homonym chain
8581 procedure Check_For_Primitive_Subprogram
8582 (Is_Primitive : out Boolean;
8583 Is_Overriding : Boolean := False);
8584 -- If the subprogram being analyzed is a primitive operation of the type
8585 -- of a formal or result, set the Has_Primitive_Operations flag on the
8586 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8587 -- corresponding flag on the entity itself for later use.
8589 procedure Check_Synchronized_Overriding
8590 (Def_Id : Entity_Id;
8591 Overridden_Subp : out Entity_Id);
8592 -- First determine if Def_Id is an entry or a subprogram either defined
8593 -- in the scope of a task or protected type, or is a primitive of such
8594 -- a type. Check whether Def_Id overrides a subprogram of an interface
8595 -- implemented by the synchronized type, return the overridden entity
8596 -- or Empty.
8598 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8599 -- Check that E is declared in the private part of the current package,
8600 -- or in the package body, where it may hide a previous declaration.
8601 -- We can't use In_Private_Part by itself because this flag is also
8602 -- set when freezing entities, so we must examine the place of the
8603 -- declaration in the tree, and recognize wrapper packages as well.
8605 function Is_Overriding_Alias
8606 (Old_E : Entity_Id;
8607 New_E : Entity_Id) return Boolean;
8608 -- Check whether new subprogram and old subprogram are both inherited
8609 -- from subprograms that have distinct dispatch table entries. This can
8610 -- occur with derivations from instances with accidental homonyms. The
8611 -- function is conservative given that the converse is only true within
8612 -- instances that contain accidental overloadings.
8614 ------------------------------------
8615 -- Check_For_Primitive_Subprogram --
8616 ------------------------------------
8618 procedure Check_For_Primitive_Subprogram
8619 (Is_Primitive : out Boolean;
8620 Is_Overriding : Boolean := False)
8622 Formal : Entity_Id;
8623 F_Typ : Entity_Id;
8624 B_Typ : Entity_Id;
8626 function Visible_Part_Type (T : Entity_Id) return Boolean;
8627 -- Returns true if T is declared in the visible part of the current
8628 -- package scope; otherwise returns false. Assumes that T is declared
8629 -- in a package.
8631 procedure Check_Private_Overriding (T : Entity_Id);
8632 -- Checks that if a primitive abstract subprogram of a visible
8633 -- abstract type is declared in a private part, then it must override
8634 -- an abstract subprogram declared in the visible part. Also checks
8635 -- that if a primitive function with a controlling result is declared
8636 -- in a private part, then it must override a function declared in
8637 -- the visible part.
8639 ------------------------------
8640 -- Check_Private_Overriding --
8641 ------------------------------
8643 procedure Check_Private_Overriding (T : Entity_Id) is
8645 function Overrides_Visible_Function
8646 (Partial_View : Entity_Id) return Boolean;
8647 -- True if S overrides a function in the visible part. The
8648 -- overridden function could be explicitly or implicitly declared.
8650 function Overrides_Visible_Function
8651 (Partial_View : Entity_Id) return Boolean
8653 begin
8654 if not Is_Overriding or else not Has_Homonym (S) then
8655 return False;
8656 end if;
8658 if not Present (Partial_View) then
8659 return True;
8660 end if;
8662 -- Search through all the homonyms H of S in the current
8663 -- package spec, and return True if we find one that matches.
8664 -- Note that Parent (H) will be the declaration of the
8665 -- partial view of T for a match.
8667 declare
8668 H : Entity_Id := S;
8669 begin
8670 loop
8671 H := Homonym (H);
8672 exit when not Present (H) or else Scope (H) /= Scope (S);
8674 if Nkind_In
8675 (Parent (H),
8676 N_Private_Extension_Declaration,
8677 N_Private_Type_Declaration)
8678 and then Defining_Identifier (Parent (H)) = Partial_View
8679 then
8680 return True;
8681 end if;
8682 end loop;
8683 end;
8685 return False;
8686 end Overrides_Visible_Function;
8688 -- Start of processing for Check_Private_Overriding
8690 begin
8691 if Is_Package_Or_Generic_Package (Current_Scope)
8692 and then In_Private_Part (Current_Scope)
8693 and then Visible_Part_Type (T)
8694 and then not In_Instance
8695 then
8696 if Is_Abstract_Type (T)
8697 and then Is_Abstract_Subprogram (S)
8698 and then (not Is_Overriding
8699 or else not Is_Abstract_Subprogram (E))
8700 then
8701 Error_Msg_N ("abstract subprograms must be visible "
8702 & "(RM 3.9.3(10))!", S);
8704 elsif Ekind (S) = E_Function then
8705 declare
8706 Partial_View : constant Entity_Id :=
8707 Incomplete_Or_Partial_View (T);
8709 begin
8710 if not Overrides_Visible_Function (Partial_View) then
8712 -- Here, S is "function ... return T;" declared in
8713 -- the private part, not overriding some visible
8714 -- operation. That's illegal in the tagged case
8715 -- (but not if the private type is untagged).
8717 if ((Present (Partial_View)
8718 and then Is_Tagged_Type (Partial_View))
8719 or else (not Present (Partial_View)
8720 and then Is_Tagged_Type (T)))
8721 and then T = Base_Type (Etype (S))
8722 then
8723 Error_Msg_N
8724 ("private function with tagged result must"
8725 & " override visible-part function", S);
8726 Error_Msg_N
8727 ("\move subprogram to the visible part"
8728 & " (RM 3.9.3(10))", S);
8730 -- AI05-0073: extend this test to the case of a
8731 -- function with a controlling access result.
8733 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8734 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8735 and then
8736 not Is_Class_Wide_Type
8737 (Designated_Type (Etype (S)))
8738 and then Ada_Version >= Ada_2012
8739 then
8740 Error_Msg_N
8741 ("private function with controlling access "
8742 & "result must override visible-part function",
8744 Error_Msg_N
8745 ("\move subprogram to the visible part"
8746 & " (RM 3.9.3(10))", S);
8747 end if;
8748 end if;
8749 end;
8750 end if;
8751 end if;
8752 end Check_Private_Overriding;
8754 -----------------------
8755 -- Visible_Part_Type --
8756 -----------------------
8758 function Visible_Part_Type (T : Entity_Id) return Boolean is
8759 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8760 N : Node_Id;
8762 begin
8763 -- If the entity is a private type, then it must be declared in a
8764 -- visible part.
8766 if Ekind (T) in Private_Kind then
8767 return True;
8768 end if;
8770 -- Otherwise, we traverse the visible part looking for its
8771 -- corresponding declaration. We cannot use the declaration
8772 -- node directly because in the private part the entity of a
8773 -- private type is the one in the full view, which does not
8774 -- indicate that it is the completion of something visible.
8776 N := First (Visible_Declarations (Specification (P)));
8777 while Present (N) loop
8778 if Nkind (N) = N_Full_Type_Declaration
8779 and then Present (Defining_Identifier (N))
8780 and then T = Defining_Identifier (N)
8781 then
8782 return True;
8784 elsif Nkind_In (N, N_Private_Type_Declaration,
8785 N_Private_Extension_Declaration)
8786 and then Present (Defining_Identifier (N))
8787 and then T = Full_View (Defining_Identifier (N))
8788 then
8789 return True;
8790 end if;
8792 Next (N);
8793 end loop;
8795 return False;
8796 end Visible_Part_Type;
8798 -- Start of processing for Check_For_Primitive_Subprogram
8800 begin
8801 Is_Primitive := False;
8803 if not Comes_From_Source (S) then
8804 null;
8806 -- If subprogram is at library level, it is not primitive operation
8808 elsif Current_Scope = Standard_Standard then
8809 null;
8811 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8812 and then not In_Package_Body (Current_Scope))
8813 or else Is_Overriding
8814 then
8815 -- For function, check return type
8817 if Ekind (S) = E_Function then
8818 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8819 F_Typ := Designated_Type (Etype (S));
8820 else
8821 F_Typ := Etype (S);
8822 end if;
8824 B_Typ := Base_Type (F_Typ);
8826 if Scope (B_Typ) = Current_Scope
8827 and then not Is_Class_Wide_Type (B_Typ)
8828 and then not Is_Generic_Type (B_Typ)
8829 then
8830 Is_Primitive := True;
8831 Set_Has_Primitive_Operations (B_Typ);
8832 Set_Is_Primitive (S);
8833 Check_Private_Overriding (B_Typ);
8834 end if;
8835 end if;
8837 -- For all subprograms, check formals
8839 Formal := First_Formal (S);
8840 while Present (Formal) loop
8841 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8842 F_Typ := Designated_Type (Etype (Formal));
8843 else
8844 F_Typ := Etype (Formal);
8845 end if;
8847 B_Typ := Base_Type (F_Typ);
8849 if Ekind (B_Typ) = E_Access_Subtype then
8850 B_Typ := Base_Type (B_Typ);
8851 end if;
8853 if Scope (B_Typ) = Current_Scope
8854 and then not Is_Class_Wide_Type (B_Typ)
8855 and then not Is_Generic_Type (B_Typ)
8856 then
8857 Is_Primitive := True;
8858 Set_Is_Primitive (S);
8859 Set_Has_Primitive_Operations (B_Typ);
8860 Check_Private_Overriding (B_Typ);
8861 end if;
8863 Next_Formal (Formal);
8864 end loop;
8866 -- Special case: An equality function can be redefined for a type
8867 -- occurring in a declarative part, and won't otherwise be treated as
8868 -- a primitive because it doesn't occur in a package spec and doesn't
8869 -- override an inherited subprogram. It's important that we mark it
8870 -- primitive so it can be returned by Collect_Primitive_Operations
8871 -- and be used in composing the equality operation of later types
8872 -- that have a component of the type.
8874 elsif Chars (S) = Name_Op_Eq
8875 and then Etype (S) = Standard_Boolean
8876 then
8877 B_Typ := Base_Type (Etype (First_Formal (S)));
8879 if Scope (B_Typ) = Current_Scope
8880 and then
8881 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8882 and then not Is_Limited_Type (B_Typ)
8883 then
8884 Is_Primitive := True;
8885 Set_Is_Primitive (S);
8886 Set_Has_Primitive_Operations (B_Typ);
8887 Check_Private_Overriding (B_Typ);
8888 end if;
8889 end if;
8890 end Check_For_Primitive_Subprogram;
8892 -----------------------------------
8893 -- Check_Synchronized_Overriding --
8894 -----------------------------------
8896 procedure Check_Synchronized_Overriding
8897 (Def_Id : Entity_Id;
8898 Overridden_Subp : out Entity_Id)
8900 Ifaces_List : Elist_Id;
8901 In_Scope : Boolean;
8902 Typ : Entity_Id;
8904 function Matches_Prefixed_View_Profile
8905 (Prim_Params : List_Id;
8906 Iface_Params : List_Id) return Boolean;
8907 -- Determine whether a subprogram's parameter profile Prim_Params
8908 -- matches that of a potentially overridden interface subprogram
8909 -- Iface_Params. Also determine if the type of first parameter of
8910 -- Iface_Params is an implemented interface.
8912 -----------------------------------
8913 -- Matches_Prefixed_View_Profile --
8914 -----------------------------------
8916 function Matches_Prefixed_View_Profile
8917 (Prim_Params : List_Id;
8918 Iface_Params : List_Id) return Boolean
8920 Iface_Id : Entity_Id;
8921 Iface_Param : Node_Id;
8922 Iface_Typ : Entity_Id;
8923 Prim_Id : Entity_Id;
8924 Prim_Param : Node_Id;
8925 Prim_Typ : Entity_Id;
8927 function Is_Implemented
8928 (Ifaces_List : Elist_Id;
8929 Iface : Entity_Id) return Boolean;
8930 -- Determine if Iface is implemented by the current task or
8931 -- protected type.
8933 --------------------
8934 -- Is_Implemented --
8935 --------------------
8937 function Is_Implemented
8938 (Ifaces_List : Elist_Id;
8939 Iface : Entity_Id) return Boolean
8941 Iface_Elmt : Elmt_Id;
8943 begin
8944 Iface_Elmt := First_Elmt (Ifaces_List);
8945 while Present (Iface_Elmt) loop
8946 if Node (Iface_Elmt) = Iface then
8947 return True;
8948 end if;
8950 Next_Elmt (Iface_Elmt);
8951 end loop;
8953 return False;
8954 end Is_Implemented;
8956 -- Start of processing for Matches_Prefixed_View_Profile
8958 begin
8959 Iface_Param := First (Iface_Params);
8960 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8962 if Is_Access_Type (Iface_Typ) then
8963 Iface_Typ := Designated_Type (Iface_Typ);
8964 end if;
8966 Prim_Param := First (Prim_Params);
8968 -- The first parameter of the potentially overridden subprogram
8969 -- must be an interface implemented by Prim.
8971 if not Is_Interface (Iface_Typ)
8972 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8973 then
8974 return False;
8975 end if;
8977 -- The checks on the object parameters are done, move onto the
8978 -- rest of the parameters.
8980 if not In_Scope then
8981 Prim_Param := Next (Prim_Param);
8982 end if;
8984 Iface_Param := Next (Iface_Param);
8985 while Present (Iface_Param) and then Present (Prim_Param) loop
8986 Iface_Id := Defining_Identifier (Iface_Param);
8987 Iface_Typ := Find_Parameter_Type (Iface_Param);
8989 Prim_Id := Defining_Identifier (Prim_Param);
8990 Prim_Typ := Find_Parameter_Type (Prim_Param);
8992 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8993 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8994 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8995 then
8996 Iface_Typ := Designated_Type (Iface_Typ);
8997 Prim_Typ := Designated_Type (Prim_Typ);
8998 end if;
9000 -- Case of multiple interface types inside a parameter profile
9002 -- (Obj_Param : in out Iface; ...; Param : Iface)
9004 -- If the interface type is implemented, then the matching type
9005 -- in the primitive should be the implementing record type.
9007 if Ekind (Iface_Typ) = E_Record_Type
9008 and then Is_Interface (Iface_Typ)
9009 and then Is_Implemented (Ifaces_List, Iface_Typ)
9010 then
9011 if Prim_Typ /= Typ then
9012 return False;
9013 end if;
9015 -- The two parameters must be both mode and subtype conformant
9017 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9018 or else not
9019 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9020 then
9021 return False;
9022 end if;
9024 Next (Iface_Param);
9025 Next (Prim_Param);
9026 end loop;
9028 -- One of the two lists contains more parameters than the other
9030 if Present (Iface_Param) or else Present (Prim_Param) then
9031 return False;
9032 end if;
9034 return True;
9035 end Matches_Prefixed_View_Profile;
9037 -- Start of processing for Check_Synchronized_Overriding
9039 begin
9040 Overridden_Subp := Empty;
9042 -- Def_Id must be an entry or a subprogram. We should skip predefined
9043 -- primitives internally generated by the frontend; however at this
9044 -- stage predefined primitives are still not fully decorated. As a
9045 -- minor optimization we skip here internally generated subprograms.
9047 if (Ekind (Def_Id) /= E_Entry
9048 and then Ekind (Def_Id) /= E_Function
9049 and then Ekind (Def_Id) /= E_Procedure)
9050 or else not Comes_From_Source (Def_Id)
9051 then
9052 return;
9053 end if;
9055 -- Search for the concurrent declaration since it contains the list
9056 -- of all implemented interfaces. In this case, the subprogram is
9057 -- declared within the scope of a protected or a task type.
9059 if Present (Scope (Def_Id))
9060 and then Is_Concurrent_Type (Scope (Def_Id))
9061 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9062 then
9063 Typ := Scope (Def_Id);
9064 In_Scope := True;
9066 -- The enclosing scope is not a synchronized type and the subprogram
9067 -- has no formals.
9069 elsif No (First_Formal (Def_Id)) then
9070 return;
9072 -- The subprogram has formals and hence it may be a primitive of a
9073 -- concurrent type.
9075 else
9076 Typ := Etype (First_Formal (Def_Id));
9078 if Is_Access_Type (Typ) then
9079 Typ := Directly_Designated_Type (Typ);
9080 end if;
9082 if Is_Concurrent_Type (Typ)
9083 and then not Is_Generic_Actual_Type (Typ)
9084 then
9085 In_Scope := False;
9087 -- This case occurs when the concurrent type is declared within
9088 -- a generic unit. As a result the corresponding record has been
9089 -- built and used as the type of the first formal, we just have
9090 -- to retrieve the corresponding concurrent type.
9092 elsif Is_Concurrent_Record_Type (Typ)
9093 and then not Is_Class_Wide_Type (Typ)
9094 and then Present (Corresponding_Concurrent_Type (Typ))
9095 then
9096 Typ := Corresponding_Concurrent_Type (Typ);
9097 In_Scope := False;
9099 else
9100 return;
9101 end if;
9102 end if;
9104 -- There is no overriding to check if is an inherited operation in a
9105 -- type derivation on for a generic actual.
9107 Collect_Interfaces (Typ, Ifaces_List);
9109 if Is_Empty_Elmt_List (Ifaces_List) then
9110 return;
9111 end if;
9113 -- Determine whether entry or subprogram Def_Id overrides a primitive
9114 -- operation that belongs to one of the interfaces in Ifaces_List.
9116 declare
9117 Candidate : Entity_Id := Empty;
9118 Hom : Entity_Id := Empty;
9119 Subp : Entity_Id := Empty;
9121 begin
9122 -- Traverse the homonym chain, looking for a potentially
9123 -- overridden subprogram that belongs to an implemented
9124 -- interface.
9126 Hom := Current_Entity_In_Scope (Def_Id);
9127 while Present (Hom) loop
9128 Subp := Hom;
9130 if Subp = Def_Id
9131 or else not Is_Overloadable (Subp)
9132 or else not Is_Primitive (Subp)
9133 or else not Is_Dispatching_Operation (Subp)
9134 or else not Present (Find_Dispatching_Type (Subp))
9135 or else not Is_Interface (Find_Dispatching_Type (Subp))
9136 then
9137 null;
9139 -- Entries and procedures can override abstract or null
9140 -- interface procedures.
9142 elsif (Ekind (Def_Id) = E_Procedure
9143 or else Ekind (Def_Id) = E_Entry)
9144 and then Ekind (Subp) = E_Procedure
9145 and then Matches_Prefixed_View_Profile
9146 (Parameter_Specifications (Parent (Def_Id)),
9147 Parameter_Specifications (Parent (Subp)))
9148 then
9149 Candidate := Subp;
9151 -- For an overridden subprogram Subp, check whether the mode
9152 -- of its first parameter is correct depending on the kind
9153 -- of synchronized type.
9155 declare
9156 Formal : constant Node_Id := First_Formal (Candidate);
9158 begin
9159 -- In order for an entry or a protected procedure to
9160 -- override, the first parameter of the overridden
9161 -- routine must be of mode "out", "in out" or
9162 -- access-to-variable.
9164 if Ekind_In (Candidate, E_Entry, E_Procedure)
9165 and then Is_Protected_Type (Typ)
9166 and then Ekind (Formal) /= E_In_Out_Parameter
9167 and then Ekind (Formal) /= E_Out_Parameter
9168 and then Nkind (Parameter_Type (Parent (Formal))) /=
9169 N_Access_Definition
9170 then
9171 null;
9173 -- All other cases are OK since a task entry or routine
9174 -- does not have a restriction on the mode of the first
9175 -- parameter of the overridden interface routine.
9177 else
9178 Overridden_Subp := Candidate;
9179 return;
9180 end if;
9181 end;
9183 -- Functions can override abstract interface functions
9185 elsif Ekind (Def_Id) = E_Function
9186 and then Ekind (Subp) = E_Function
9187 and then Matches_Prefixed_View_Profile
9188 (Parameter_Specifications (Parent (Def_Id)),
9189 Parameter_Specifications (Parent (Subp)))
9190 and then Etype (Result_Definition (Parent (Def_Id))) =
9191 Etype (Result_Definition (Parent (Subp)))
9192 then
9193 Candidate := Subp;
9195 -- If an inherited subprogram is implemented by a protected
9196 -- function, then the first parameter of the inherited
9197 -- subprogram shall be of mode in, but not an
9198 -- access-to-variable parameter (RM 9.4(11/9)
9200 if Present (First_Formal (Subp))
9201 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9202 and then
9203 (not Is_Access_Type (Etype (First_Formal (Subp)))
9204 or else
9205 Is_Access_Constant (Etype (First_Formal (Subp))))
9206 then
9207 Overridden_Subp := Subp;
9208 return;
9209 end if;
9210 end if;
9212 Hom := Homonym (Hom);
9213 end loop;
9215 -- After examining all candidates for overriding, we are left with
9216 -- the best match which is a mode incompatible interface routine.
9218 if In_Scope and then Present (Candidate) then
9219 Error_Msg_PT (Def_Id, Candidate);
9220 end if;
9222 Overridden_Subp := Candidate;
9223 return;
9224 end;
9225 end Check_Synchronized_Overriding;
9227 ----------------------------
9228 -- Is_Private_Declaration --
9229 ----------------------------
9231 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9232 Priv_Decls : List_Id;
9233 Decl : constant Node_Id := Unit_Declaration_Node (E);
9235 begin
9236 if Is_Package_Or_Generic_Package (Current_Scope)
9237 and then In_Private_Part (Current_Scope)
9238 then
9239 Priv_Decls :=
9240 Private_Declarations (Package_Specification (Current_Scope));
9242 return In_Package_Body (Current_Scope)
9243 or else
9244 (Is_List_Member (Decl)
9245 and then List_Containing (Decl) = Priv_Decls)
9246 or else (Nkind (Parent (Decl)) = N_Package_Specification
9247 and then not
9248 Is_Compilation_Unit
9249 (Defining_Entity (Parent (Decl)))
9250 and then List_Containing (Parent (Parent (Decl))) =
9251 Priv_Decls);
9252 else
9253 return False;
9254 end if;
9255 end Is_Private_Declaration;
9257 --------------------------
9258 -- Is_Overriding_Alias --
9259 --------------------------
9261 function Is_Overriding_Alias
9262 (Old_E : Entity_Id;
9263 New_E : Entity_Id) return Boolean
9265 AO : constant Entity_Id := Alias (Old_E);
9266 AN : constant Entity_Id := Alias (New_E);
9267 begin
9268 return Scope (AO) /= Scope (AN)
9269 or else No (DTC_Entity (AO))
9270 or else No (DTC_Entity (AN))
9271 or else DT_Position (AO) = DT_Position (AN);
9272 end Is_Overriding_Alias;
9274 -- Start of processing for New_Overloaded_Entity
9276 begin
9277 -- We need to look for an entity that S may override. This must be a
9278 -- homonym in the current scope, so we look for the first homonym of
9279 -- S in the current scope as the starting point for the search.
9281 E := Current_Entity_In_Scope (S);
9283 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9284 -- They are directly added to the list of primitive operations of
9285 -- Derived_Type, unless this is a rederivation in the private part
9286 -- of an operation that was already derived in the visible part of
9287 -- the current package.
9289 if Ada_Version >= Ada_2005
9290 and then Present (Derived_Type)
9291 and then Present (Alias (S))
9292 and then Is_Dispatching_Operation (Alias (S))
9293 and then Present (Find_Dispatching_Type (Alias (S)))
9294 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9295 then
9296 -- For private types, when the full-view is processed we propagate to
9297 -- the full view the non-overridden entities whose attribute "alias"
9298 -- references an interface primitive. These entities were added by
9299 -- Derive_Subprograms to ensure that interface primitives are
9300 -- covered.
9302 -- Inside_Freeze_Actions is non zero when S corresponds with an
9303 -- internal entity that links an interface primitive with its
9304 -- covering primitive through attribute Interface_Alias (see
9305 -- Add_Internal_Interface_Entities).
9307 if Inside_Freezing_Actions = 0
9308 and then Is_Package_Or_Generic_Package (Current_Scope)
9309 and then In_Private_Part (Current_Scope)
9310 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9311 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9312 and then Full_View (Defining_Identifier (Parent (E)))
9313 = Defining_Identifier (Parent (S))
9314 and then Alias (E) = Alias (S)
9315 then
9316 Check_Operation_From_Private_View (S, E);
9317 Set_Is_Dispatching_Operation (S);
9319 -- Common case
9321 else
9322 Enter_Overloaded_Entity (S);
9323 Check_Dispatching_Operation (S, Empty);
9324 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9325 end if;
9327 return;
9328 end if;
9330 -- If there is no homonym then this is definitely not overriding
9332 if No (E) then
9333 Enter_Overloaded_Entity (S);
9334 Check_Dispatching_Operation (S, Empty);
9335 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9337 -- If subprogram has an explicit declaration, check whether it has an
9338 -- overriding indicator.
9340 if Comes_From_Source (S) then
9341 Check_Synchronized_Overriding (S, Overridden_Subp);
9343 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9344 -- it may have overridden some hidden inherited primitive. Update
9345 -- Overridden_Subp to avoid spurious errors when checking the
9346 -- overriding indicator.
9348 if Ada_Version >= Ada_2012
9349 and then No (Overridden_Subp)
9350 and then Is_Dispatching_Operation (S)
9351 and then Present (Overridden_Operation (S))
9352 then
9353 Overridden_Subp := Overridden_Operation (S);
9354 end if;
9356 Check_Overriding_Indicator
9357 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9358 end if;
9360 -- If there is a homonym that is not overloadable, then we have an
9361 -- error, except for the special cases checked explicitly below.
9363 elsif not Is_Overloadable (E) then
9365 -- Check for spurious conflict produced by a subprogram that has the
9366 -- same name as that of the enclosing generic package. The conflict
9367 -- occurs within an instance, between the subprogram and the renaming
9368 -- declaration for the package. After the subprogram, the package
9369 -- renaming declaration becomes hidden.
9371 if Ekind (E) = E_Package
9372 and then Present (Renamed_Object (E))
9373 and then Renamed_Object (E) = Current_Scope
9374 and then Nkind (Parent (Renamed_Object (E))) =
9375 N_Package_Specification
9376 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9377 then
9378 Set_Is_Hidden (E);
9379 Set_Is_Immediately_Visible (E, False);
9380 Enter_Overloaded_Entity (S);
9381 Set_Homonym (S, Homonym (E));
9382 Check_Dispatching_Operation (S, Empty);
9383 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9385 -- If the subprogram is implicit it is hidden by the previous
9386 -- declaration. However if it is dispatching, it must appear in the
9387 -- dispatch table anyway, because it can be dispatched to even if it
9388 -- cannot be called directly.
9390 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9391 Set_Scope (S, Current_Scope);
9393 if Is_Dispatching_Operation (Alias (S)) then
9394 Check_Dispatching_Operation (S, Empty);
9395 end if;
9397 return;
9399 else
9400 Error_Msg_Sloc := Sloc (E);
9402 -- Generate message, with useful additional warning if in generic
9404 if Is_Generic_Unit (E) then
9405 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9406 Error_Msg_N ("\& conflicts with declaration#", S);
9407 else
9408 Error_Msg_N ("& conflicts with declaration#", S);
9409 end if;
9411 return;
9412 end if;
9414 -- E exists and is overloadable
9416 else
9417 Check_Synchronized_Overriding (S, Overridden_Subp);
9419 -- Loop through E and its homonyms to determine if any of them is
9420 -- the candidate for overriding by S.
9422 while Present (E) loop
9424 -- Definitely not interesting if not in the current scope
9426 if Scope (E) /= Current_Scope then
9427 null;
9429 -- A function can overload the name of an abstract state. The
9430 -- state can be viewed as a function with a profile that cannot
9431 -- be matched by anything.
9433 elsif Ekind (S) = E_Function
9434 and then Ekind (E) = E_Abstract_State
9435 then
9436 Enter_Overloaded_Entity (S);
9437 return;
9439 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9440 -- procedures locate the internally generated spec. We enforce
9441 -- mode conformance since a tagged type may inherit from
9442 -- interfaces several null primitives which differ only in
9443 -- the mode of the formals.
9445 elsif not Comes_From_Source (S)
9446 and then Is_Null_Procedure (S)
9447 and then not Mode_Conformant (E, S)
9448 then
9449 null;
9451 -- Check if we have type conformance
9453 elsif Type_Conformant (E, S) then
9455 -- If the old and new entities have the same profile and one
9456 -- is not the body of the other, then this is an error, unless
9457 -- one of them is implicitly declared.
9459 -- There are some cases when both can be implicit, for example
9460 -- when both a literal and a function that overrides it are
9461 -- inherited in a derivation, or when an inherited operation
9462 -- of a tagged full type overrides the inherited operation of
9463 -- a private extension. Ada 83 had a special rule for the
9464 -- literal case. In Ada 95, the later implicit operation hides
9465 -- the former, and the literal is always the former. In the
9466 -- odd case where both are derived operations declared at the
9467 -- same point, both operations should be declared, and in that
9468 -- case we bypass the following test and proceed to the next
9469 -- part. This can only occur for certain obscure cases in
9470 -- instances, when an operation on a type derived from a formal
9471 -- private type does not override a homograph inherited from
9472 -- the actual. In subsequent derivations of such a type, the
9473 -- DT positions of these operations remain distinct, if they
9474 -- have been set.
9476 if Present (Alias (S))
9477 and then (No (Alias (E))
9478 or else Comes_From_Source (E)
9479 or else Is_Abstract_Subprogram (S)
9480 or else
9481 (Is_Dispatching_Operation (E)
9482 and then Is_Overriding_Alias (E, S)))
9483 and then Ekind (E) /= E_Enumeration_Literal
9484 then
9485 -- When an derived operation is overloaded it may be due to
9486 -- the fact that the full view of a private extension
9487 -- re-inherits. It has to be dealt with.
9489 if Is_Package_Or_Generic_Package (Current_Scope)
9490 and then In_Private_Part (Current_Scope)
9491 then
9492 Check_Operation_From_Private_View (S, E);
9493 end if;
9495 -- In any case the implicit operation remains hidden by the
9496 -- existing declaration, which is overriding. Indicate that
9497 -- E overrides the operation from which S is inherited.
9499 if Present (Alias (S)) then
9500 Set_Overridden_Operation (E, Alias (S));
9501 Inherit_Subprogram_Contract (E, Alias (S));
9503 else
9504 Set_Overridden_Operation (E, S);
9505 Inherit_Subprogram_Contract (E, S);
9506 end if;
9508 if Comes_From_Source (E) then
9509 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9510 end if;
9512 return;
9514 -- Within an instance, the renaming declarations for actual
9515 -- subprograms may become ambiguous, but they do not hide each
9516 -- other.
9518 elsif Ekind (E) /= E_Entry
9519 and then not Comes_From_Source (E)
9520 and then not Is_Generic_Instance (E)
9521 and then (Present (Alias (E))
9522 or else Is_Intrinsic_Subprogram (E))
9523 and then (not In_Instance
9524 or else No (Parent (E))
9525 or else Nkind (Unit_Declaration_Node (E)) /=
9526 N_Subprogram_Renaming_Declaration)
9527 then
9528 -- A subprogram child unit is not allowed to override an
9529 -- inherited subprogram (10.1.1(20)).
9531 if Is_Child_Unit (S) then
9532 Error_Msg_N
9533 ("child unit overrides inherited subprogram in parent",
9535 return;
9536 end if;
9538 if Is_Non_Overriding_Operation (E, S) then
9539 Enter_Overloaded_Entity (S);
9541 if No (Derived_Type)
9542 or else Is_Tagged_Type (Derived_Type)
9543 then
9544 Check_Dispatching_Operation (S, Empty);
9545 end if;
9547 return;
9548 end if;
9550 -- E is a derived operation or an internal operator which
9551 -- is being overridden. Remove E from further visibility.
9552 -- Furthermore, if E is a dispatching operation, it must be
9553 -- replaced in the list of primitive operations of its type
9554 -- (see Override_Dispatching_Operation).
9556 Overridden_Subp := E;
9558 declare
9559 Prev : Entity_Id;
9561 begin
9562 Prev := First_Entity (Current_Scope);
9563 while Present (Prev) and then Next_Entity (Prev) /= E loop
9564 Next_Entity (Prev);
9565 end loop;
9567 -- It is possible for E to be in the current scope and
9568 -- yet not in the entity chain. This can only occur in a
9569 -- generic context where E is an implicit concatenation
9570 -- in the formal part, because in a generic body the
9571 -- entity chain starts with the formals.
9573 -- In GNATprove mode, a wrapper for an operation with
9574 -- axiomatization may be a homonym of another declaration
9575 -- for an actual subprogram (needs refinement ???).
9577 if No (Prev) then
9578 if In_Instance
9579 and then GNATprove_Mode
9580 and then
9581 Nkind (Original_Node (Unit_Declaration_Node (S))) =
9582 N_Subprogram_Renaming_Declaration
9583 then
9584 return;
9585 else
9586 pragma Assert (Chars (E) = Name_Op_Concat);
9587 null;
9588 end if;
9589 end if;
9591 -- E must be removed both from the entity_list of the
9592 -- current scope, and from the visibility chain.
9594 if Debug_Flag_E then
9595 Write_Str ("Override implicit operation ");
9596 Write_Int (Int (E));
9597 Write_Eol;
9598 end if;
9600 -- If E is a predefined concatenation, it stands for four
9601 -- different operations. As a result, a single explicit
9602 -- declaration does not hide it. In a possible ambiguous
9603 -- situation, Disambiguate chooses the user-defined op,
9604 -- so it is correct to retain the previous internal one.
9606 if Chars (E) /= Name_Op_Concat
9607 or else Ekind (E) /= E_Operator
9608 then
9609 -- For nondispatching derived operations that are
9610 -- overridden by a subprogram declared in the private
9611 -- part of a package, we retain the derived subprogram
9612 -- but mark it as not immediately visible. If the
9613 -- derived operation was declared in the visible part
9614 -- then this ensures that it will still be visible
9615 -- outside the package with the proper signature
9616 -- (calls from outside must also be directed to this
9617 -- version rather than the overriding one, unlike the
9618 -- dispatching case). Calls from inside the package
9619 -- will still resolve to the overriding subprogram
9620 -- since the derived one is marked as not visible
9621 -- within the package.
9623 -- If the private operation is dispatching, we achieve
9624 -- the overriding by keeping the implicit operation
9625 -- but setting its alias to be the overriding one. In
9626 -- this fashion the proper body is executed in all
9627 -- cases, but the original signature is used outside
9628 -- of the package.
9630 -- If the overriding is not in the private part, we
9631 -- remove the implicit operation altogether.
9633 if Is_Private_Declaration (S) then
9634 if not Is_Dispatching_Operation (E) then
9635 Set_Is_Immediately_Visible (E, False);
9636 else
9637 -- Work done in Override_Dispatching_Operation,
9638 -- so nothing else needs to be done here.
9640 null;
9641 end if;
9643 else
9644 -- Find predecessor of E in Homonym chain
9646 if E = Current_Entity (E) then
9647 Prev_Vis := Empty;
9648 else
9649 Prev_Vis := Current_Entity (E);
9650 while Homonym (Prev_Vis) /= E loop
9651 Prev_Vis := Homonym (Prev_Vis);
9652 end loop;
9653 end if;
9655 if Prev_Vis /= Empty then
9657 -- Skip E in the visibility chain
9659 Set_Homonym (Prev_Vis, Homonym (E));
9661 else
9662 Set_Name_Entity_Id (Chars (E), Homonym (E));
9663 end if;
9665 Set_Next_Entity (Prev, Next_Entity (E));
9667 if No (Next_Entity (Prev)) then
9668 Set_Last_Entity (Current_Scope, Prev);
9669 end if;
9670 end if;
9671 end if;
9673 Enter_Overloaded_Entity (S);
9675 -- For entities generated by Derive_Subprograms the
9676 -- overridden operation is the inherited primitive
9677 -- (which is available through the attribute alias).
9679 if not (Comes_From_Source (E))
9680 and then Is_Dispatching_Operation (E)
9681 and then Find_Dispatching_Type (E) =
9682 Find_Dispatching_Type (S)
9683 and then Present (Alias (E))
9684 and then Comes_From_Source (Alias (E))
9685 then
9686 Set_Overridden_Operation (S, Alias (E));
9687 Inherit_Subprogram_Contract (S, Alias (E));
9689 -- Normal case of setting entity as overridden
9691 -- Note: Static_Initialization and Overridden_Operation
9692 -- attributes use the same field in subprogram entities.
9693 -- Static_Initialization is only defined for internal
9694 -- initialization procedures, where Overridden_Operation
9695 -- is irrelevant. Therefore the setting of this attribute
9696 -- must check whether the target is an init_proc.
9698 elsif not Is_Init_Proc (S) then
9699 Set_Overridden_Operation (S, E);
9700 Inherit_Subprogram_Contract (S, E);
9701 end if;
9703 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9705 -- If S is a user-defined subprogram or a null procedure
9706 -- expanded to override an inherited null procedure, or a
9707 -- predefined dispatching primitive then indicate that E
9708 -- overrides the operation from which S is inherited.
9710 if Comes_From_Source (S)
9711 or else
9712 (Present (Parent (S))
9713 and then
9714 Nkind (Parent (S)) = N_Procedure_Specification
9715 and then
9716 Null_Present (Parent (S)))
9717 or else
9718 (Present (Alias (E))
9719 and then
9720 Is_Predefined_Dispatching_Operation (Alias (E)))
9721 then
9722 if Present (Alias (E)) then
9723 Set_Overridden_Operation (S, Alias (E));
9724 Inherit_Subprogram_Contract (S, Alias (E));
9725 end if;
9726 end if;
9728 if Is_Dispatching_Operation (E) then
9730 -- An overriding dispatching subprogram inherits the
9731 -- convention of the overridden subprogram (AI-117).
9733 Set_Convention (S, Convention (E));
9734 Check_Dispatching_Operation (S, E);
9736 else
9737 Check_Dispatching_Operation (S, Empty);
9738 end if;
9740 Check_For_Primitive_Subprogram
9741 (Is_Primitive_Subp, Is_Overriding => True);
9742 goto Check_Inequality;
9743 end;
9745 -- Apparent redeclarations in instances can occur when two
9746 -- formal types get the same actual type. The subprograms in
9747 -- in the instance are legal, even if not callable from the
9748 -- outside. Calls from within are disambiguated elsewhere.
9749 -- For dispatching operations in the visible part, the usual
9750 -- rules apply, and operations with the same profile are not
9751 -- legal (B830001).
9753 elsif (In_Instance_Visible_Part
9754 and then not Is_Dispatching_Operation (E))
9755 or else In_Instance_Not_Visible
9756 then
9757 null;
9759 -- Here we have a real error (identical profile)
9761 else
9762 Error_Msg_Sloc := Sloc (E);
9764 -- Avoid cascaded errors if the entity appears in
9765 -- subsequent calls.
9767 Set_Scope (S, Current_Scope);
9769 -- Generate error, with extra useful warning for the case
9770 -- of a generic instance with no completion.
9772 if Is_Generic_Instance (S)
9773 and then not Has_Completion (E)
9774 then
9775 Error_Msg_N
9776 ("instantiation cannot provide body for&", S);
9777 Error_Msg_N ("\& conflicts with declaration#", S);
9778 else
9779 Error_Msg_N ("& conflicts with declaration#", S);
9780 end if;
9782 return;
9783 end if;
9785 else
9786 -- If one subprogram has an access parameter and the other
9787 -- a parameter of an access type, calls to either might be
9788 -- ambiguous. Verify that parameters match except for the
9789 -- access parameter.
9791 if May_Hide_Profile then
9792 declare
9793 F1 : Entity_Id;
9794 F2 : Entity_Id;
9796 begin
9797 F1 := First_Formal (S);
9798 F2 := First_Formal (E);
9799 while Present (F1) and then Present (F2) loop
9800 if Is_Access_Type (Etype (F1)) then
9801 if not Is_Access_Type (Etype (F2))
9802 or else not Conforming_Types
9803 (Designated_Type (Etype (F1)),
9804 Designated_Type (Etype (F2)),
9805 Type_Conformant)
9806 then
9807 May_Hide_Profile := False;
9808 end if;
9810 elsif
9811 not Conforming_Types
9812 (Etype (F1), Etype (F2), Type_Conformant)
9813 then
9814 May_Hide_Profile := False;
9815 end if;
9817 Next_Formal (F1);
9818 Next_Formal (F2);
9819 end loop;
9821 if May_Hide_Profile
9822 and then No (F1)
9823 and then No (F2)
9824 then
9825 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9826 end if;
9827 end;
9828 end if;
9829 end if;
9831 E := Homonym (E);
9832 end loop;
9834 -- On exit, we know that S is a new entity
9836 Enter_Overloaded_Entity (S);
9837 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9838 Check_Overriding_Indicator
9839 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9841 -- Overloading is not allowed in SPARK, except for operators
9843 if Nkind (S) /= N_Defining_Operator_Symbol then
9844 Error_Msg_Sloc := Sloc (Homonym (S));
9845 Check_SPARK_05_Restriction
9846 ("overloading not allowed with entity#", S);
9847 end if;
9849 -- If S is a derived operation for an untagged type then by
9850 -- definition it's not a dispatching operation (even if the parent
9851 -- operation was dispatching), so Check_Dispatching_Operation is not
9852 -- called in that case.
9854 if No (Derived_Type)
9855 or else Is_Tagged_Type (Derived_Type)
9856 then
9857 Check_Dispatching_Operation (S, Empty);
9858 end if;
9859 end if;
9861 -- If this is a user-defined equality operator that is not a derived
9862 -- subprogram, create the corresponding inequality. If the operation is
9863 -- dispatching, the expansion is done elsewhere, and we do not create
9864 -- an explicit inequality operation.
9866 <<Check_Inequality>>
9867 if Chars (S) = Name_Op_Eq
9868 and then Etype (S) = Standard_Boolean
9869 and then Present (Parent (S))
9870 and then not Is_Dispatching_Operation (S)
9871 then
9872 Make_Inequality_Operator (S);
9873 Check_Untagged_Equality (S);
9874 end if;
9875 end New_Overloaded_Entity;
9877 ---------------------
9878 -- Process_Formals --
9879 ---------------------
9881 procedure Process_Formals
9882 (T : List_Id;
9883 Related_Nod : Node_Id)
9885 Context : constant Node_Id := Parent (Parent (T));
9886 Param_Spec : Node_Id;
9887 Formal : Entity_Id;
9888 Formal_Type : Entity_Id;
9889 Default : Node_Id;
9890 Ptype : Entity_Id;
9892 Num_Out_Params : Nat := 0;
9893 First_Out_Param : Entity_Id := Empty;
9894 -- Used for setting Is_Only_Out_Parameter
9896 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
9897 -- Determine whether an access type designates a type coming from a
9898 -- limited view.
9900 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9901 -- Check whether the default has a class-wide type. After analysis the
9902 -- default has the type of the formal, so we must also check explicitly
9903 -- for an access attribute.
9905 ----------------------------------
9906 -- Designates_From_Limited_With --
9907 ----------------------------------
9909 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
9910 Desig : Entity_Id := Typ;
9912 begin
9913 if Is_Access_Type (Desig) then
9914 Desig := Directly_Designated_Type (Desig);
9915 end if;
9917 if Is_Class_Wide_Type (Desig) then
9918 Desig := Root_Type (Desig);
9919 end if;
9921 return
9922 Ekind (Desig) = E_Incomplete_Type
9923 and then From_Limited_With (Desig);
9924 end Designates_From_Limited_With;
9926 ---------------------------
9927 -- Is_Class_Wide_Default --
9928 ---------------------------
9930 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9931 begin
9932 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9933 or else (Nkind (D) = N_Attribute_Reference
9934 and then Attribute_Name (D) = Name_Access
9935 and then Is_Class_Wide_Type (Etype (Prefix (D))));
9936 end Is_Class_Wide_Default;
9938 -- Start of processing for Process_Formals
9940 begin
9941 -- In order to prevent premature use of the formals in the same formal
9942 -- part, the Ekind is left undefined until all default expressions are
9943 -- analyzed. The Ekind is established in a separate loop at the end.
9945 Param_Spec := First (T);
9946 while Present (Param_Spec) loop
9947 Formal := Defining_Identifier (Param_Spec);
9948 Set_Never_Set_In_Source (Formal, True);
9949 Enter_Name (Formal);
9951 -- Case of ordinary parameters
9953 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9954 Find_Type (Parameter_Type (Param_Spec));
9955 Ptype := Parameter_Type (Param_Spec);
9957 if Ptype = Error then
9958 goto Continue;
9959 end if;
9961 Formal_Type := Entity (Ptype);
9963 if Is_Incomplete_Type (Formal_Type)
9964 or else
9965 (Is_Class_Wide_Type (Formal_Type)
9966 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
9967 then
9968 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9969 -- primitive operations, as long as their completion is
9970 -- in the same declarative part. If in the private part
9971 -- this means that the type cannot be a Taft-amendment type.
9972 -- Check is done on package exit. For access to subprograms,
9973 -- the use is legal for Taft-amendment types.
9975 -- Ada 2012: tagged incomplete types are allowed as generic
9976 -- formal types. They do not introduce dependencies and the
9977 -- corresponding generic subprogram does not have a delayed
9978 -- freeze, because it does not need a freeze node. However,
9979 -- it is still the case that untagged incomplete types cannot
9980 -- be Taft-amendment types and must be completed in private
9981 -- part, so the subprogram must appear in the list of private
9982 -- dependents of the type. If the type is class-wide, it is
9983 -- not a primitive, but the freezing of the subprogram must
9984 -- also be delayed to force the creation of a freeze node.
9986 if Is_Tagged_Type (Formal_Type)
9987 or else (Ada_Version >= Ada_2012
9988 and then not From_Limited_With (Formal_Type)
9989 and then not Is_Generic_Type (Formal_Type))
9990 then
9991 if Ekind (Scope (Current_Scope)) = E_Package
9992 and then not Is_Generic_Type (Formal_Type)
9993 then
9994 if not Nkind_In
9995 (Parent (T), N_Access_Function_Definition,
9996 N_Access_Procedure_Definition)
9997 then
9998 if not Is_Class_Wide_Type (Formal_Type) then
9999 Append_Elmt (Current_Scope,
10000 Private_Dependents (Base_Type (Formal_Type)));
10001 end if;
10003 -- Freezing is delayed to ensure that Register_Prim
10004 -- will get called for this operation, which is needed
10005 -- in cases where static dispatch tables aren't built.
10006 -- (Note that the same is done for controlling access
10007 -- parameter cases in function Access_Definition.)
10009 if not Is_Thunk (Current_Scope) then
10010 Set_Has_Delayed_Freeze (Current_Scope);
10011 end if;
10012 end if;
10013 end if;
10015 -- Special handling of Value_Type for CIL case
10017 elsif Is_Value_Type (Formal_Type) then
10018 null;
10020 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10021 N_Access_Procedure_Definition)
10022 then
10023 -- AI05-0151: Tagged incomplete types are allowed in all
10024 -- formal parts. Untagged incomplete types are not allowed
10025 -- in bodies. Limited views of either kind are not allowed
10026 -- if there is no place at which the non-limited view can
10027 -- become available.
10029 -- Incomplete formal untagged types are not allowed in
10030 -- subprogram bodies (but are legal in their declarations).
10031 -- This excludes bodies created for null procedures, which
10032 -- are basic declarations.
10034 if Is_Generic_Type (Formal_Type)
10035 and then not Is_Tagged_Type (Formal_Type)
10036 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10037 then
10038 Error_Msg_N
10039 ("invalid use of formal incomplete type", Param_Spec);
10041 elsif Ada_Version >= Ada_2012 then
10042 if Is_Tagged_Type (Formal_Type)
10043 and then (not From_Limited_With (Formal_Type)
10044 or else not In_Package_Body)
10045 then
10046 null;
10048 elsif Nkind_In (Context, N_Accept_Statement,
10049 N_Accept_Alternative,
10050 N_Entry_Body)
10051 or else (Nkind (Context) = N_Subprogram_Body
10052 and then Comes_From_Source (Context))
10053 then
10054 Error_Msg_NE
10055 ("invalid use of untagged incomplete type &",
10056 Ptype, Formal_Type);
10057 end if;
10059 else
10060 Error_Msg_NE
10061 ("invalid use of incomplete type&",
10062 Param_Spec, Formal_Type);
10064 -- Further checks on the legality of incomplete types
10065 -- in formal parts are delayed until the freeze point
10066 -- of the enclosing subprogram or access to subprogram.
10067 end if;
10068 end if;
10070 elsif Ekind (Formal_Type) = E_Void then
10071 Error_Msg_NE
10072 ("premature use of&",
10073 Parameter_Type (Param_Spec), Formal_Type);
10074 end if;
10076 -- Ada 2012 (AI-142): Handle aliased parameters
10078 if Ada_Version >= Ada_2012
10079 and then Aliased_Present (Param_Spec)
10080 then
10081 Set_Is_Aliased (Formal);
10082 end if;
10084 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10085 -- declaration corresponding to the null-excluding type of the
10086 -- formal in the enclosing scope. Finally, replace the parameter
10087 -- type of the formal with the internal subtype.
10089 if Ada_Version >= Ada_2005
10090 and then Null_Exclusion_Present (Param_Spec)
10091 then
10092 if not Is_Access_Type (Formal_Type) then
10093 Error_Msg_N
10094 ("`NOT NULL` allowed only for an access type", Param_Spec);
10096 else
10097 if Can_Never_Be_Null (Formal_Type)
10098 and then Comes_From_Source (Related_Nod)
10099 then
10100 Error_Msg_NE
10101 ("`NOT NULL` not allowed (& already excludes null)",
10102 Param_Spec, Formal_Type);
10103 end if;
10105 Formal_Type :=
10106 Create_Null_Excluding_Itype
10107 (T => Formal_Type,
10108 Related_Nod => Related_Nod,
10109 Scope_Id => Scope (Current_Scope));
10111 -- If the designated type of the itype is an itype that is
10112 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10113 -- on the access subtype, to prevent order-of-elaboration
10114 -- issues in the backend.
10116 -- Example:
10117 -- type T is access procedure;
10118 -- procedure Op (O : not null T);
10120 if Is_Itype (Directly_Designated_Type (Formal_Type))
10121 and then
10122 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10123 then
10124 Set_Has_Delayed_Freeze (Formal_Type);
10125 end if;
10126 end if;
10127 end if;
10129 -- An access formal type
10131 else
10132 Formal_Type :=
10133 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10135 -- No need to continue if we already notified errors
10137 if not Present (Formal_Type) then
10138 return;
10139 end if;
10141 -- Ada 2005 (AI-254)
10143 declare
10144 AD : constant Node_Id :=
10145 Access_To_Subprogram_Definition
10146 (Parameter_Type (Param_Spec));
10147 begin
10148 if Present (AD) and then Protected_Present (AD) then
10149 Formal_Type :=
10150 Replace_Anonymous_Access_To_Protected_Subprogram
10151 (Param_Spec);
10152 end if;
10153 end;
10154 end if;
10156 Set_Etype (Formal, Formal_Type);
10158 -- Deal with default expression if present
10160 Default := Expression (Param_Spec);
10162 if Present (Default) then
10163 Check_SPARK_05_Restriction
10164 ("default expression is not allowed", Default);
10166 if Out_Present (Param_Spec) then
10167 Error_Msg_N
10168 ("default initialization only allowed for IN parameters",
10169 Param_Spec);
10170 end if;
10172 -- Do the special preanalysis of the expression (see section on
10173 -- "Handling of Default Expressions" in the spec of package Sem).
10175 Preanalyze_Spec_Expression (Default, Formal_Type);
10177 -- An access to constant cannot be the default for
10178 -- an access parameter that is an access to variable.
10180 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10181 and then not Is_Access_Constant (Formal_Type)
10182 and then Is_Access_Type (Etype (Default))
10183 and then Is_Access_Constant (Etype (Default))
10184 then
10185 Error_Msg_N
10186 ("formal that is access to variable cannot be initialized "
10187 & "with an access-to-constant expression", Default);
10188 end if;
10190 -- Check that the designated type of an access parameter's default
10191 -- is not a class-wide type unless the parameter's designated type
10192 -- is also class-wide.
10194 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10195 and then not Designates_From_Limited_With (Formal_Type)
10196 and then Is_Class_Wide_Default (Default)
10197 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10198 then
10199 Error_Msg_N
10200 ("access to class-wide expression not allowed here", Default);
10201 end if;
10203 -- Check incorrect use of dynamically tagged expressions
10205 if Is_Tagged_Type (Formal_Type) then
10206 Check_Dynamically_Tagged_Expression
10207 (Expr => Default,
10208 Typ => Formal_Type,
10209 Related_Nod => Default);
10210 end if;
10211 end if;
10213 -- Ada 2005 (AI-231): Static checks
10215 if Ada_Version >= Ada_2005
10216 and then Is_Access_Type (Etype (Formal))
10217 and then Can_Never_Be_Null (Etype (Formal))
10218 then
10219 Null_Exclusion_Static_Checks (Param_Spec);
10220 end if;
10222 -- The following checks are relevant when SPARK_Mode is on as these
10223 -- are not standard Ada legality rules.
10225 if SPARK_Mode = On then
10226 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10228 -- A function cannot have a parameter of mode IN OUT or OUT
10229 -- (SPARK RM 6.1).
10231 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10232 Error_Msg_N
10233 ("function cannot have parameter of mode `OUT` or "
10234 & "`IN OUT`", Formal);
10236 -- A function cannot have an effectively volatile formal
10237 -- parameter (SPARK RM 7.1.3(10)).
10239 elsif Is_Effectively_Volatile (Formal) then
10240 Error_Msg_N
10241 ("function cannot have a volatile formal parameter",
10242 Formal);
10243 end if;
10245 -- A procedure cannot have an effectively volatile formal
10246 -- parameter of mode IN because it behaves as a constant
10247 -- (SPARK RM 7.1.3(6)).
10249 elsif Ekind (Scope (Formal)) = E_Procedure
10250 and then Ekind (Formal) = E_In_Parameter
10251 and then Is_Effectively_Volatile (Formal)
10252 then
10253 Error_Msg_N
10254 ("formal parameter of mode `IN` cannot be volatile", Formal);
10255 end if;
10256 end if;
10258 <<Continue>>
10259 Next (Param_Spec);
10260 end loop;
10262 -- If this is the formal part of a function specification, analyze the
10263 -- subtype mark in the context where the formals are visible but not
10264 -- yet usable, and may hide outer homographs.
10266 if Nkind (Related_Nod) = N_Function_Specification then
10267 Analyze_Return_Type (Related_Nod);
10268 end if;
10270 -- Now set the kind (mode) of each formal
10272 Param_Spec := First (T);
10273 while Present (Param_Spec) loop
10274 Formal := Defining_Identifier (Param_Spec);
10275 Set_Formal_Mode (Formal);
10277 if Ekind (Formal) = E_In_Parameter then
10278 Set_Default_Value (Formal, Expression (Param_Spec));
10280 if Present (Expression (Param_Spec)) then
10281 Default := Expression (Param_Spec);
10283 if Is_Scalar_Type (Etype (Default)) then
10284 if Nkind (Parameter_Type (Param_Spec)) /=
10285 N_Access_Definition
10286 then
10287 Formal_Type := Entity (Parameter_Type (Param_Spec));
10288 else
10289 Formal_Type :=
10290 Access_Definition
10291 (Related_Nod, Parameter_Type (Param_Spec));
10292 end if;
10294 Apply_Scalar_Range_Check (Default, Formal_Type);
10295 end if;
10296 end if;
10298 elsif Ekind (Formal) = E_Out_Parameter then
10299 Num_Out_Params := Num_Out_Params + 1;
10301 if Num_Out_Params = 1 then
10302 First_Out_Param := Formal;
10303 end if;
10305 elsif Ekind (Formal) = E_In_Out_Parameter then
10306 Num_Out_Params := Num_Out_Params + 1;
10307 end if;
10309 -- Skip remaining processing if formal type was in error
10311 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10312 goto Next_Parameter;
10313 end if;
10315 -- Force call by reference if aliased
10317 if Is_Aliased (Formal) then
10318 Set_Mechanism (Formal, By_Reference);
10320 -- Warn if user asked this to be passed by copy
10322 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10323 Error_Msg_N
10324 ("cannot pass aliased parameter & by copy??", Formal);
10325 end if;
10327 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10329 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10330 Set_Mechanism (Formal, By_Copy);
10332 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10333 Set_Mechanism (Formal, By_Reference);
10334 end if;
10336 <<Next_Parameter>>
10337 Next (Param_Spec);
10338 end loop;
10340 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10341 Set_Is_Only_Out_Parameter (First_Out_Param);
10342 end if;
10343 end Process_Formals;
10345 ----------------------------
10346 -- Reference_Body_Formals --
10347 ----------------------------
10349 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10350 Fs : Entity_Id;
10351 Fb : Entity_Id;
10353 begin
10354 if Error_Posted (Spec) then
10355 return;
10356 end if;
10358 -- Iterate over both lists. They may be of different lengths if the two
10359 -- specs are not conformant.
10361 Fs := First_Formal (Spec);
10362 Fb := First_Formal (Bod);
10363 while Present (Fs) and then Present (Fb) loop
10364 Generate_Reference (Fs, Fb, 'b');
10366 if Style_Check then
10367 Style.Check_Identifier (Fb, Fs);
10368 end if;
10370 Set_Spec_Entity (Fb, Fs);
10371 Set_Referenced (Fs, False);
10372 Next_Formal (Fs);
10373 Next_Formal (Fb);
10374 end loop;
10375 end Reference_Body_Formals;
10377 -------------------------
10378 -- Set_Actual_Subtypes --
10379 -------------------------
10381 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10382 Decl : Node_Id;
10383 Formal : Entity_Id;
10384 T : Entity_Id;
10385 First_Stmt : Node_Id := Empty;
10386 AS_Needed : Boolean;
10388 begin
10389 -- If this is an empty initialization procedure, no need to create
10390 -- actual subtypes (small optimization).
10392 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10393 return;
10394 end if;
10396 Formal := First_Formal (Subp);
10397 while Present (Formal) loop
10398 T := Etype (Formal);
10400 -- We never need an actual subtype for a constrained formal
10402 if Is_Constrained (T) then
10403 AS_Needed := False;
10405 -- If we have unknown discriminants, then we do not need an actual
10406 -- subtype, or more accurately we cannot figure it out. Note that
10407 -- all class-wide types have unknown discriminants.
10409 elsif Has_Unknown_Discriminants (T) then
10410 AS_Needed := False;
10412 -- At this stage we have an unconstrained type that may need an
10413 -- actual subtype. For sure the actual subtype is needed if we have
10414 -- an unconstrained array type.
10416 elsif Is_Array_Type (T) then
10417 AS_Needed := True;
10419 -- The only other case needing an actual subtype is an unconstrained
10420 -- record type which is an IN parameter (we cannot generate actual
10421 -- subtypes for the OUT or IN OUT case, since an assignment can
10422 -- change the discriminant values. However we exclude the case of
10423 -- initialization procedures, since discriminants are handled very
10424 -- specially in this context, see the section entitled "Handling of
10425 -- Discriminants" in Einfo.
10427 -- We also exclude the case of Discrim_SO_Functions (functions used
10428 -- in front end layout mode for size/offset values), since in such
10429 -- functions only discriminants are referenced, and not only are such
10430 -- subtypes not needed, but they cannot always be generated, because
10431 -- of order of elaboration issues.
10433 elsif Is_Record_Type (T)
10434 and then Ekind (Formal) = E_In_Parameter
10435 and then Chars (Formal) /= Name_uInit
10436 and then not Is_Unchecked_Union (T)
10437 and then not Is_Discrim_SO_Function (Subp)
10438 then
10439 AS_Needed := True;
10441 -- All other cases do not need an actual subtype
10443 else
10444 AS_Needed := False;
10445 end if;
10447 -- Generate actual subtypes for unconstrained arrays and
10448 -- unconstrained discriminated records.
10450 if AS_Needed then
10451 if Nkind (N) = N_Accept_Statement then
10453 -- If expansion is active, the formal is replaced by a local
10454 -- variable that renames the corresponding entry of the
10455 -- parameter block, and it is this local variable that may
10456 -- require an actual subtype.
10458 if Expander_Active then
10459 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10460 else
10461 Decl := Build_Actual_Subtype (T, Formal);
10462 end if;
10464 if Present (Handled_Statement_Sequence (N)) then
10465 First_Stmt :=
10466 First (Statements (Handled_Statement_Sequence (N)));
10467 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10468 Mark_Rewrite_Insertion (Decl);
10469 else
10470 -- If the accept statement has no body, there will be no
10471 -- reference to the actuals, so no need to compute actual
10472 -- subtypes.
10474 return;
10475 end if;
10477 else
10478 Decl := Build_Actual_Subtype (T, Formal);
10479 Prepend (Decl, Declarations (N));
10480 Mark_Rewrite_Insertion (Decl);
10481 end if;
10483 -- The declaration uses the bounds of an existing object, and
10484 -- therefore needs no constraint checks.
10486 Analyze (Decl, Suppress => All_Checks);
10488 -- We need to freeze manually the generated type when it is
10489 -- inserted anywhere else than in a declarative part.
10491 if Present (First_Stmt) then
10492 Insert_List_Before_And_Analyze (First_Stmt,
10493 Freeze_Entity (Defining_Identifier (Decl), N));
10495 -- Ditto if the type has a dynamic predicate, because the
10496 -- generated function will mention the actual subtype.
10498 elsif Has_Dynamic_Predicate_Aspect (T) then
10499 Insert_List_Before_And_Analyze (Decl,
10500 Freeze_Entity (Defining_Identifier (Decl), N));
10501 end if;
10503 if Nkind (N) = N_Accept_Statement
10504 and then Expander_Active
10505 then
10506 Set_Actual_Subtype (Renamed_Object (Formal),
10507 Defining_Identifier (Decl));
10508 else
10509 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10510 end if;
10511 end if;
10513 Next_Formal (Formal);
10514 end loop;
10515 end Set_Actual_Subtypes;
10517 ---------------------
10518 -- Set_Formal_Mode --
10519 ---------------------
10521 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10522 Spec : constant Node_Id := Parent (Formal_Id);
10524 begin
10525 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10526 -- since we ensure that corresponding actuals are always valid at the
10527 -- point of the call.
10529 if Out_Present (Spec) then
10530 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10532 -- [IN] OUT parameters allowed for functions in Ada 2012
10534 if Ada_Version >= Ada_2012 then
10536 -- Even in Ada 2012 operators can only have IN parameters
10538 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10539 Error_Msg_N ("operators can only have IN parameters", Spec);
10540 end if;
10542 if In_Present (Spec) then
10543 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10544 else
10545 Set_Ekind (Formal_Id, E_Out_Parameter);
10546 end if;
10548 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10550 -- But not in earlier versions of Ada
10552 else
10553 Error_Msg_N ("functions can only have IN parameters", Spec);
10554 Set_Ekind (Formal_Id, E_In_Parameter);
10555 end if;
10557 elsif In_Present (Spec) then
10558 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10560 else
10561 Set_Ekind (Formal_Id, E_Out_Parameter);
10562 Set_Never_Set_In_Source (Formal_Id, True);
10563 Set_Is_True_Constant (Formal_Id, False);
10564 Set_Current_Value (Formal_Id, Empty);
10565 end if;
10567 else
10568 Set_Ekind (Formal_Id, E_In_Parameter);
10569 end if;
10571 -- Set Is_Known_Non_Null for access parameters since the language
10572 -- guarantees that access parameters are always non-null. We also set
10573 -- Can_Never_Be_Null, since there is no way to change the value.
10575 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10577 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10578 -- null; In Ada 2005, only if then null_exclusion is explicit.
10580 if Ada_Version < Ada_2005
10581 or else Can_Never_Be_Null (Etype (Formal_Id))
10582 then
10583 Set_Is_Known_Non_Null (Formal_Id);
10584 Set_Can_Never_Be_Null (Formal_Id);
10585 end if;
10587 -- Ada 2005 (AI-231): Null-exclusion access subtype
10589 elsif Is_Access_Type (Etype (Formal_Id))
10590 and then Can_Never_Be_Null (Etype (Formal_Id))
10591 then
10592 Set_Is_Known_Non_Null (Formal_Id);
10594 -- We can also set Can_Never_Be_Null (thus preventing some junk
10595 -- access checks) for the case of an IN parameter, which cannot
10596 -- be changed, or for an IN OUT parameter, which can be changed but
10597 -- not to a null value. But for an OUT parameter, the initial value
10598 -- passed in can be null, so we can't set this flag in that case.
10600 if Ekind (Formal_Id) /= E_Out_Parameter then
10601 Set_Can_Never_Be_Null (Formal_Id);
10602 end if;
10603 end if;
10605 Set_Mechanism (Formal_Id, Default_Mechanism);
10606 Set_Formal_Validity (Formal_Id);
10607 end Set_Formal_Mode;
10609 -------------------------
10610 -- Set_Formal_Validity --
10611 -------------------------
10613 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10614 begin
10615 -- If no validity checking, then we cannot assume anything about the
10616 -- validity of parameters, since we do not know there is any checking
10617 -- of the validity on the call side.
10619 if not Validity_Checks_On then
10620 return;
10622 -- If validity checking for parameters is enabled, this means we are
10623 -- not supposed to make any assumptions about argument values.
10625 elsif Validity_Check_Parameters then
10626 return;
10628 -- If we are checking in parameters, we will assume that the caller is
10629 -- also checking parameters, so we can assume the parameter is valid.
10631 elsif Ekind (Formal_Id) = E_In_Parameter
10632 and then Validity_Check_In_Params
10633 then
10634 Set_Is_Known_Valid (Formal_Id, True);
10636 -- Similar treatment for IN OUT parameters
10638 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10639 and then Validity_Check_In_Out_Params
10640 then
10641 Set_Is_Known_Valid (Formal_Id, True);
10642 end if;
10643 end Set_Formal_Validity;
10645 ------------------------
10646 -- Subtype_Conformant --
10647 ------------------------
10649 function Subtype_Conformant
10650 (New_Id : Entity_Id;
10651 Old_Id : Entity_Id;
10652 Skip_Controlling_Formals : Boolean := False) return Boolean
10654 Result : Boolean;
10655 begin
10656 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10657 Skip_Controlling_Formals => Skip_Controlling_Formals);
10658 return Result;
10659 end Subtype_Conformant;
10661 ---------------------
10662 -- Type_Conformant --
10663 ---------------------
10665 function Type_Conformant
10666 (New_Id : Entity_Id;
10667 Old_Id : Entity_Id;
10668 Skip_Controlling_Formals : Boolean := False) return Boolean
10670 Result : Boolean;
10671 begin
10672 May_Hide_Profile := False;
10673 Check_Conformance
10674 (New_Id, Old_Id, Type_Conformant, False, Result,
10675 Skip_Controlling_Formals => Skip_Controlling_Formals);
10676 return Result;
10677 end Type_Conformant;
10679 -------------------------------
10680 -- Valid_Operator_Definition --
10681 -------------------------------
10683 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10684 N : Integer := 0;
10685 F : Entity_Id;
10686 Id : constant Name_Id := Chars (Designator);
10687 N_OK : Boolean;
10689 begin
10690 F := First_Formal (Designator);
10691 while Present (F) loop
10692 N := N + 1;
10694 if Present (Default_Value (F)) then
10695 Error_Msg_N
10696 ("default values not allowed for operator parameters",
10697 Parent (F));
10699 -- For function instantiations that are operators, we must check
10700 -- separately that the corresponding generic only has in-parameters.
10701 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10702 -- an error could not arise in earlier versions of the language.
10704 elsif Ekind (F) /= E_In_Parameter then
10705 Error_Msg_N ("operators can only have IN parameters", F);
10706 end if;
10708 Next_Formal (F);
10709 end loop;
10711 -- Verify that user-defined operators have proper number of arguments
10712 -- First case of operators which can only be unary
10714 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10715 N_OK := (N = 1);
10717 -- Case of operators which can be unary or binary
10719 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10720 N_OK := (N in 1 .. 2);
10722 -- All other operators can only be binary
10724 else
10725 N_OK := (N = 2);
10726 end if;
10728 if not N_OK then
10729 Error_Msg_N
10730 ("incorrect number of arguments for operator", Designator);
10731 end if;
10733 if Id = Name_Op_Ne
10734 and then Base_Type (Etype (Designator)) = Standard_Boolean
10735 and then not Is_Intrinsic_Subprogram (Designator)
10736 then
10737 Error_Msg_N
10738 ("explicit definition of inequality not allowed", Designator);
10739 end if;
10740 end Valid_Operator_Definition;
10742 end Sem_Ch6;