Remove obsolete ECOFF support.
[official-gcc.git] / gcc / ada / sem_util.adb
blob102da89e9ca8333573445bba0a14b9e6232831e3
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Treepr; -- ???For debugging code below
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Casing; use Casing;
31 with Checks; use Checks;
32 with Debug; use Debug;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Erroutc; use Erroutc;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet.Sp; use Namet.Sp;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Attr; use Sem_Attr;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Elab; use Sem_Elab;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Warn; use Sem_Warn;
61 with Sem_Type; use Sem_Type;
62 with Sinfo; use Sinfo;
63 with Sinput; use Sinput;
64 with Stand; use Stand;
65 with Style;
66 with Stringt; use Stringt;
67 with Targparm; use Targparm;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uname; use Uname;
72 with GNAT.HTable; use GNAT.HTable;
74 package body Sem_Util is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 function Build_Component_Subtype
81 (C : List_Id;
82 Loc : Source_Ptr;
83 T : Entity_Id) return Node_Id;
84 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
85 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
86 -- Loc is the source location, T is the original subtype.
88 function Has_Enabled_Property
89 (Item_Id : Entity_Id;
90 Property : Name_Id) return Boolean;
91 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
92 -- Determine whether an abstract state or a variable denoted by entity
93 -- Item_Id has enabled property Property.
95 function Has_Null_Extension (T : Entity_Id) return Boolean;
96 -- T is a derived tagged type. Check whether the type extension is null.
97 -- If the parent type is fully initialized, T can be treated as such.
99 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
100 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
101 -- with discriminants whose default values are static, examine only the
102 -- components in the selected variant to determine whether all of them
103 -- have a default.
105 type Null_Status_Kind is
106 (Is_Null,
107 -- This value indicates that a subexpression is known to have a null
108 -- value at compile time.
110 Is_Non_Null,
111 -- This value indicates that a subexpression is known to have a non-null
112 -- value at compile time.
114 Unknown);
115 -- This value indicates that it cannot be determined at compile time
116 -- whether a subexpression yields a null or non-null value.
118 function Null_Status (N : Node_Id) return Null_Status_Kind;
119 -- Determine whether subexpression N of an access type yields a null value,
120 -- a non-null value, or the value cannot be determined at compile time. The
121 -- routine does not take simple flow diagnostics into account, it relies on
122 -- static facts such as the presence of null exclusions.
124 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
125 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
126 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
127 -- the time being. New_Requires_Transient_Scope is used by default; the
128 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
129 -- instead. The intent is to use this temporarily to measure before/after
130 -- efficiency. Note: when this temporary code is removed, the documentation
131 -- of dQ in debug.adb should be removed.
133 procedure Results_Differ
134 (Id : Entity_Id;
135 Old_Val : Boolean;
136 New_Val : Boolean);
137 -- ???Debugging code. Called when the Old_Val and New_Val differ. This
138 -- routine will be removed eventially when New_Requires_Transient_Scope
139 -- becomes Requires_Transient_Scope and Old_Requires_Transient_Scope is
140 -- eliminated.
142 function Subprogram_Name (N : Node_Id) return String;
143 -- Return the fully qualified name of the enclosing subprogram for the
144 -- given node N, with file:line:col information appended, e.g.
145 -- "subp:file:line:col", corresponding to the source location of the
146 -- body of the subprogram.
148 ------------------------------
149 -- Abstract_Interface_List --
150 ------------------------------
152 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
153 Nod : Node_Id;
155 begin
156 if Is_Concurrent_Type (Typ) then
158 -- If we are dealing with a synchronized subtype, go to the base
159 -- type, whose declaration has the interface list.
161 -- Shouldn't this be Declaration_Node???
163 Nod := Parent (Base_Type (Typ));
165 if Nkind (Nod) = N_Full_Type_Declaration then
166 return Empty_List;
167 end if;
169 elsif Ekind (Typ) = E_Record_Type_With_Private then
170 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
171 Nod := Type_Definition (Parent (Typ));
173 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
174 if Present (Full_View (Typ))
175 and then
176 Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
177 then
178 Nod := Type_Definition (Parent (Full_View (Typ)));
180 -- If the full-view is not available we cannot do anything else
181 -- here (the source has errors).
183 else
184 return Empty_List;
185 end if;
187 -- Support for generic formals with interfaces is still missing ???
189 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
190 return Empty_List;
192 else
193 pragma Assert
194 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
195 Nod := Parent (Typ);
196 end if;
198 elsif Ekind (Typ) = E_Record_Subtype then
199 Nod := Type_Definition (Parent (Etype (Typ)));
201 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
203 -- Recurse, because parent may still be a private extension. Also
204 -- note that the full view of the subtype or the full view of its
205 -- base type may (both) be unavailable.
207 return Abstract_Interface_List (Etype (Typ));
209 elsif Ekind (Typ) = E_Record_Type then
210 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
211 Nod := Formal_Type_Definition (Parent (Typ));
212 else
213 Nod := Type_Definition (Parent (Typ));
214 end if;
216 -- Otherwise the type is of a kind which does not implement interfaces
218 else
219 return Empty_List;
220 end if;
222 return Interface_List (Nod);
223 end Abstract_Interface_List;
225 --------------------------------
226 -- Add_Access_Type_To_Process --
227 --------------------------------
229 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
230 L : Elist_Id;
232 begin
233 Ensure_Freeze_Node (E);
234 L := Access_Types_To_Process (Freeze_Node (E));
236 if No (L) then
237 L := New_Elmt_List;
238 Set_Access_Types_To_Process (Freeze_Node (E), L);
239 end if;
241 Append_Elmt (A, L);
242 end Add_Access_Type_To_Process;
244 --------------------------
245 -- Add_Block_Identifier --
246 --------------------------
248 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
249 Loc : constant Source_Ptr := Sloc (N);
251 begin
252 pragma Assert (Nkind (N) = N_Block_Statement);
254 -- The block already has a label, return its entity
256 if Present (Identifier (N)) then
257 Id := Entity (Identifier (N));
259 -- Create a new block label and set its attributes
261 else
262 Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
263 Set_Etype (Id, Standard_Void_Type);
264 Set_Parent (Id, N);
266 Set_Identifier (N, New_Occurrence_Of (Id, Loc));
267 Set_Block_Node (Id, Identifier (N));
268 end if;
269 end Add_Block_Identifier;
271 ----------------------------
272 -- Add_Global_Declaration --
273 ----------------------------
275 procedure Add_Global_Declaration (N : Node_Id) is
276 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
278 begin
279 if No (Declarations (Aux_Node)) then
280 Set_Declarations (Aux_Node, New_List);
281 end if;
283 Append_To (Declarations (Aux_Node), N);
284 Analyze (N);
285 end Add_Global_Declaration;
287 --------------------------------
288 -- Address_Integer_Convert_OK --
289 --------------------------------
291 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
292 begin
293 if Allow_Integer_Address
294 and then ((Is_Descendant_Of_Address (T1)
295 and then Is_Private_Type (T1)
296 and then Is_Integer_Type (T2))
297 or else
298 (Is_Descendant_Of_Address (T2)
299 and then Is_Private_Type (T2)
300 and then Is_Integer_Type (T1)))
301 then
302 return True;
303 else
304 return False;
305 end if;
306 end Address_Integer_Convert_OK;
308 -------------------
309 -- Address_Value --
310 -------------------
312 function Address_Value (N : Node_Id) return Node_Id is
313 Expr : Node_Id := N;
315 begin
316 loop
317 -- For constant, get constant expression
319 if Is_Entity_Name (Expr)
320 and then Ekind (Entity (Expr)) = E_Constant
321 then
322 Expr := Constant_Value (Entity (Expr));
324 -- For unchecked conversion, get result to convert
326 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
327 Expr := Expression (Expr);
329 -- For (common case) of To_Address call, get argument
331 elsif Nkind (Expr) = N_Function_Call
332 and then Is_Entity_Name (Name (Expr))
333 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
334 then
335 Expr := First (Parameter_Associations (Expr));
337 if Nkind (Expr) = N_Parameter_Association then
338 Expr := Explicit_Actual_Parameter (Expr);
339 end if;
341 -- We finally have the real expression
343 else
344 exit;
345 end if;
346 end loop;
348 return Expr;
349 end Address_Value;
351 -----------------
352 -- Addressable --
353 -----------------
355 -- For now, just 8/16/32/64
357 function Addressable (V : Uint) return Boolean is
358 begin
359 return V = Uint_8 or else
360 V = Uint_16 or else
361 V = Uint_32 or else
362 V = Uint_64;
363 end Addressable;
365 function Addressable (V : Int) return Boolean is
366 begin
367 return V = 8 or else
368 V = 16 or else
369 V = 32 or else
370 V = 64;
371 end Addressable;
373 ---------------------------------
374 -- Aggregate_Constraint_Checks --
375 ---------------------------------
377 procedure Aggregate_Constraint_Checks
378 (Exp : Node_Id;
379 Check_Typ : Entity_Id)
381 Exp_Typ : constant Entity_Id := Etype (Exp);
383 begin
384 if Raises_Constraint_Error (Exp) then
385 return;
386 end if;
388 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
389 -- component's type to force the appropriate accessibility checks.
391 -- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
392 -- force the corresponding run-time check
394 if Is_Access_Type (Check_Typ)
395 and then Is_Local_Anonymous_Access (Check_Typ)
396 then
397 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
398 Analyze_And_Resolve (Exp, Check_Typ);
399 Check_Unset_Reference (Exp);
400 end if;
402 -- What follows is really expansion activity, so check that expansion
403 -- is on and is allowed. In GNATprove mode, we also want check flags to
404 -- be added in the tree, so that the formal verification can rely on
405 -- those to be present. In GNATprove mode for formal verification, some
406 -- treatment typically only done during expansion needs to be performed
407 -- on the tree, but it should not be applied inside generics. Otherwise,
408 -- this breaks the name resolution mechanism for generic instances.
410 if not Expander_Active
411 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
412 then
413 return;
414 end if;
416 if Is_Access_Type (Check_Typ)
417 and then Can_Never_Be_Null (Check_Typ)
418 and then not Can_Never_Be_Null (Exp_Typ)
419 then
420 Install_Null_Excluding_Check (Exp);
421 end if;
423 -- First check if we have to insert discriminant checks
425 if Has_Discriminants (Exp_Typ) then
426 Apply_Discriminant_Check (Exp, Check_Typ);
428 -- Next emit length checks for array aggregates
430 elsif Is_Array_Type (Exp_Typ) then
431 Apply_Length_Check (Exp, Check_Typ);
433 -- Finally emit scalar and string checks. If we are dealing with a
434 -- scalar literal we need to check by hand because the Etype of
435 -- literals is not necessarily correct.
437 elsif Is_Scalar_Type (Exp_Typ)
438 and then Compile_Time_Known_Value (Exp)
439 then
440 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
441 Apply_Compile_Time_Constraint_Error
442 (Exp, "value not in range of}??", CE_Range_Check_Failed,
443 Ent => Base_Type (Check_Typ),
444 Typ => Base_Type (Check_Typ));
446 elsif Is_Out_Of_Range (Exp, Check_Typ) then
447 Apply_Compile_Time_Constraint_Error
448 (Exp, "value not in range of}??", CE_Range_Check_Failed,
449 Ent => Check_Typ,
450 Typ => Check_Typ);
452 elsif not Range_Checks_Suppressed (Check_Typ) then
453 Apply_Scalar_Range_Check (Exp, Check_Typ);
454 end if;
456 -- Verify that target type is also scalar, to prevent view anomalies
457 -- in instantiations.
459 elsif (Is_Scalar_Type (Exp_Typ)
460 or else Nkind (Exp) = N_String_Literal)
461 and then Is_Scalar_Type (Check_Typ)
462 and then Exp_Typ /= Check_Typ
463 then
464 if Is_Entity_Name (Exp)
465 and then Ekind (Entity (Exp)) = E_Constant
466 then
467 -- If expression is a constant, it is worthwhile checking whether
468 -- it is a bound of the type.
470 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
471 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
472 or else
473 (Is_Entity_Name (Type_High_Bound (Check_Typ))
474 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
475 then
476 return;
478 else
479 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
480 Analyze_And_Resolve (Exp, Check_Typ);
481 Check_Unset_Reference (Exp);
482 end if;
484 -- Could use a comment on this case ???
486 else
487 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
488 Analyze_And_Resolve (Exp, Check_Typ);
489 Check_Unset_Reference (Exp);
490 end if;
492 end if;
493 end Aggregate_Constraint_Checks;
495 -----------------------
496 -- Alignment_In_Bits --
497 -----------------------
499 function Alignment_In_Bits (E : Entity_Id) return Uint is
500 begin
501 return Alignment (E) * System_Storage_Unit;
502 end Alignment_In_Bits;
504 --------------------------------------
505 -- All_Composite_Constraints_Static --
506 --------------------------------------
508 function All_Composite_Constraints_Static
509 (Constr : Node_Id) return Boolean
511 begin
512 if No (Constr) or else Error_Posted (Constr) then
513 return True;
514 end if;
516 case Nkind (Constr) is
517 when N_Subexpr =>
518 if Nkind (Constr) in N_Has_Entity
519 and then Present (Entity (Constr))
520 then
521 if Is_Type (Entity (Constr)) then
522 return
523 not Is_Discrete_Type (Entity (Constr))
524 or else Is_OK_Static_Subtype (Entity (Constr));
525 end if;
527 elsif Nkind (Constr) = N_Range then
528 return
529 Is_OK_Static_Expression (Low_Bound (Constr))
530 and then
531 Is_OK_Static_Expression (High_Bound (Constr));
533 elsif Nkind (Constr) = N_Attribute_Reference
534 and then Attribute_Name (Constr) = Name_Range
535 then
536 return
537 Is_OK_Static_Expression
538 (Type_Low_Bound (Etype (Prefix (Constr))))
539 and then
540 Is_OK_Static_Expression
541 (Type_High_Bound (Etype (Prefix (Constr))));
542 end if;
544 return
545 not Present (Etype (Constr)) -- previous error
546 or else not Is_Discrete_Type (Etype (Constr))
547 or else Is_OK_Static_Expression (Constr);
549 when N_Discriminant_Association =>
550 return All_Composite_Constraints_Static (Expression (Constr));
552 when N_Range_Constraint =>
553 return
554 All_Composite_Constraints_Static (Range_Expression (Constr));
556 when N_Index_Or_Discriminant_Constraint =>
557 declare
558 One_Cstr : Entity_Id;
559 begin
560 One_Cstr := First (Constraints (Constr));
561 while Present (One_Cstr) loop
562 if not All_Composite_Constraints_Static (One_Cstr) then
563 return False;
564 end if;
566 Next (One_Cstr);
567 end loop;
568 end;
570 return True;
572 when N_Subtype_Indication =>
573 return
574 All_Composite_Constraints_Static (Subtype_Mark (Constr))
575 and then
576 All_Composite_Constraints_Static (Constraint (Constr));
578 when others =>
579 raise Program_Error;
580 end case;
581 end All_Composite_Constraints_Static;
583 ------------------------
584 -- Append_Entity_Name --
585 ------------------------
587 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id) is
588 Temp : Bounded_String;
590 procedure Inner (E : Entity_Id);
591 -- Inner recursive routine, keep outer routine nonrecursive to ease
592 -- debugging when we get strange results from this routine.
594 -----------
595 -- Inner --
596 -----------
598 procedure Inner (E : Entity_Id) is
599 Scop : Node_Id;
601 begin
602 -- If entity has an internal name, skip by it, and print its scope.
603 -- Note that we strip a final R from the name before the test; this
604 -- is needed for some cases of instantiations.
606 declare
607 E_Name : Bounded_String;
609 begin
610 Append (E_Name, Chars (E));
612 if E_Name.Chars (E_Name.Length) = 'R' then
613 E_Name.Length := E_Name.Length - 1;
614 end if;
616 if Is_Internal_Name (E_Name) then
617 Inner (Scope (E));
618 return;
619 end if;
620 end;
622 Scop := Scope (E);
624 -- Just print entity name if its scope is at the outer level
626 if Scop = Standard_Standard then
627 null;
629 -- If scope comes from source, write scope and entity
631 elsif Comes_From_Source (Scop) then
632 Append_Entity_Name (Temp, Scop);
633 Append (Temp, '.');
635 -- If in wrapper package skip past it
637 elsif Present (Scop) and then Is_Wrapper_Package (Scop) then
638 Append_Entity_Name (Temp, Scope (Scop));
639 Append (Temp, '.');
641 -- Otherwise nothing to output (happens in unnamed block statements)
643 else
644 null;
645 end if;
647 -- Output the name
649 declare
650 E_Name : Bounded_String;
652 begin
653 Append_Unqualified_Decoded (E_Name, Chars (E));
655 -- Remove trailing upper-case letters from the name (useful for
656 -- dealing with some cases of internal names generated in the case
657 -- of references from within a generic).
659 while E_Name.Length > 1
660 and then E_Name.Chars (E_Name.Length) in 'A' .. 'Z'
661 loop
662 E_Name.Length := E_Name.Length - 1;
663 end loop;
665 -- Adjust casing appropriately (gets name from source if possible)
667 Adjust_Name_Case (E_Name, Sloc (E));
668 Append (Temp, E_Name);
669 end;
670 end Inner;
672 -- Start of processing for Append_Entity_Name
674 begin
675 Inner (E);
676 Append (Buf, Temp);
677 end Append_Entity_Name;
679 ---------------------------------
680 -- Append_Inherited_Subprogram --
681 ---------------------------------
683 procedure Append_Inherited_Subprogram (S : Entity_Id) is
684 Par : constant Entity_Id := Alias (S);
685 -- The parent subprogram
687 Scop : constant Entity_Id := Scope (Par);
688 -- The scope of definition of the parent subprogram
690 Typ : constant Entity_Id := Defining_Entity (Parent (S));
691 -- The derived type of which S is a primitive operation
693 Decl : Node_Id;
694 Next_E : Entity_Id;
696 begin
697 if Ekind (Current_Scope) = E_Package
698 and then In_Private_Part (Current_Scope)
699 and then Has_Private_Declaration (Typ)
700 and then Is_Tagged_Type (Typ)
701 and then Scop = Current_Scope
702 then
703 -- The inherited operation is available at the earliest place after
704 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
705 -- relevant for type extensions. If the parent operation appears
706 -- after the type extension, the operation is not visible.
708 Decl := First
709 (Visible_Declarations
710 (Package_Specification (Current_Scope)));
711 while Present (Decl) loop
712 if Nkind (Decl) = N_Private_Extension_Declaration
713 and then Defining_Entity (Decl) = Typ
714 then
715 if Sloc (Decl) > Sloc (Par) then
716 Next_E := Next_Entity (Par);
717 Set_Next_Entity (Par, S);
718 Set_Next_Entity (S, Next_E);
719 return;
721 else
722 exit;
723 end if;
724 end if;
726 Next (Decl);
727 end loop;
728 end if;
730 -- If partial view is not a type extension, or it appears before the
731 -- subprogram declaration, insert normally at end of entity list.
733 Append_Entity (S, Current_Scope);
734 end Append_Inherited_Subprogram;
736 -----------------------------------------
737 -- Apply_Compile_Time_Constraint_Error --
738 -----------------------------------------
740 procedure Apply_Compile_Time_Constraint_Error
741 (N : Node_Id;
742 Msg : String;
743 Reason : RT_Exception_Code;
744 Ent : Entity_Id := Empty;
745 Typ : Entity_Id := Empty;
746 Loc : Source_Ptr := No_Location;
747 Rep : Boolean := True;
748 Warn : Boolean := False)
750 Stat : constant Boolean := Is_Static_Expression (N);
751 R_Stat : constant Node_Id :=
752 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
753 Rtyp : Entity_Id;
755 begin
756 if No (Typ) then
757 Rtyp := Etype (N);
758 else
759 Rtyp := Typ;
760 end if;
762 Discard_Node
763 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
765 -- In GNATprove mode, do not replace the node with an exception raised.
766 -- In such a case, either the call to Compile_Time_Constraint_Error
767 -- issues an error which stops analysis, or it issues a warning in
768 -- a few cases where a suitable check flag is set for GNATprove to
769 -- generate a check message.
771 if not Rep or GNATprove_Mode then
772 return;
773 end if;
775 -- Now we replace the node by an N_Raise_Constraint_Error node
776 -- This does not need reanalyzing, so set it as analyzed now.
778 Rewrite (N, R_Stat);
779 Set_Analyzed (N, True);
781 Set_Etype (N, Rtyp);
782 Set_Raises_Constraint_Error (N);
784 -- Now deal with possible local raise handling
786 Possible_Local_Raise (N, Standard_Constraint_Error);
788 -- If the original expression was marked as static, the result is
789 -- still marked as static, but the Raises_Constraint_Error flag is
790 -- always set so that further static evaluation is not attempted.
792 if Stat then
793 Set_Is_Static_Expression (N);
794 end if;
795 end Apply_Compile_Time_Constraint_Error;
797 ---------------------------
798 -- Async_Readers_Enabled --
799 ---------------------------
801 function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
802 begin
803 return Has_Enabled_Property (Id, Name_Async_Readers);
804 end Async_Readers_Enabled;
806 ---------------------------
807 -- Async_Writers_Enabled --
808 ---------------------------
810 function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
811 begin
812 return Has_Enabled_Property (Id, Name_Async_Writers);
813 end Async_Writers_Enabled;
815 --------------------------------------
816 -- Available_Full_View_Of_Component --
817 --------------------------------------
819 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
820 ST : constant Entity_Id := Scope (T);
821 SCT : constant Entity_Id := Scope (Component_Type (T));
822 begin
823 return In_Open_Scopes (ST)
824 and then In_Open_Scopes (SCT)
825 and then Scope_Depth (ST) >= Scope_Depth (SCT);
826 end Available_Full_View_Of_Component;
828 -------------------
829 -- Bad_Attribute --
830 -------------------
832 procedure Bad_Attribute
833 (N : Node_Id;
834 Nam : Name_Id;
835 Warn : Boolean := False)
837 begin
838 Error_Msg_Warn := Warn;
839 Error_Msg_N ("unrecognized attribute&<<", N);
841 -- Check for possible misspelling
843 Error_Msg_Name_1 := First_Attribute_Name;
844 while Error_Msg_Name_1 <= Last_Attribute_Name loop
845 if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
846 Error_Msg_N -- CODEFIX
847 ("\possible misspelling of %<<", N);
848 exit;
849 end if;
851 Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
852 end loop;
853 end Bad_Attribute;
855 --------------------------------
856 -- Bad_Predicated_Subtype_Use --
857 --------------------------------
859 procedure Bad_Predicated_Subtype_Use
860 (Msg : String;
861 N : Node_Id;
862 Typ : Entity_Id;
863 Suggest_Static : Boolean := False)
865 Gen : Entity_Id;
867 begin
868 -- Avoid cascaded errors
870 if Error_Posted (N) then
871 return;
872 end if;
874 if Inside_A_Generic then
875 Gen := Current_Scope;
876 while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
877 Gen := Scope (Gen);
878 end loop;
880 if No (Gen) then
881 return;
882 end if;
884 if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
885 Set_No_Predicate_On_Actual (Typ);
886 end if;
888 elsif Has_Predicates (Typ) then
889 if Is_Generic_Actual_Type (Typ) then
891 -- The restriction on loop parameters is only that the type
892 -- should have no dynamic predicates.
894 if Nkind (Parent (N)) = N_Loop_Parameter_Specification
895 and then not Has_Dynamic_Predicate_Aspect (Typ)
896 and then Is_OK_Static_Subtype (Typ)
897 then
898 return;
899 end if;
901 Gen := Current_Scope;
902 while not Is_Generic_Instance (Gen) loop
903 Gen := Scope (Gen);
904 end loop;
906 pragma Assert (Present (Gen));
908 if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
909 Error_Msg_Warn := SPARK_Mode /= On;
910 Error_Msg_FE (Msg & "<<", N, Typ);
911 Error_Msg_F ("\Program_Error [<<", N);
913 Insert_Action (N,
914 Make_Raise_Program_Error (Sloc (N),
915 Reason => PE_Bad_Predicated_Generic_Type));
917 else
918 Error_Msg_FE (Msg & "<<", N, Typ);
919 end if;
921 else
922 Error_Msg_FE (Msg, N, Typ);
923 end if;
925 -- Emit an optional suggestion on how to remedy the error if the
926 -- context warrants it.
928 if Suggest_Static and then Has_Static_Predicate (Typ) then
929 Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
930 end if;
931 end if;
932 end Bad_Predicated_Subtype_Use;
934 -----------------------------------------
935 -- Bad_Unordered_Enumeration_Reference --
936 -----------------------------------------
938 function Bad_Unordered_Enumeration_Reference
939 (N : Node_Id;
940 T : Entity_Id) return Boolean
942 begin
943 return Is_Enumeration_Type (T)
944 and then Warn_On_Unordered_Enumeration_Type
945 and then not Is_Generic_Type (T)
946 and then Comes_From_Source (N)
947 and then not Has_Pragma_Ordered (T)
948 and then not In_Same_Extended_Unit (N, T);
949 end Bad_Unordered_Enumeration_Reference;
951 ----------------------------
952 -- Begin_Keyword_Location --
953 ----------------------------
955 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr is
956 HSS : Node_Id;
958 begin
959 pragma Assert (Nkind_In (N, N_Block_Statement,
960 N_Entry_Body,
961 N_Package_Body,
962 N_Subprogram_Body,
963 N_Task_Body));
965 HSS := Handled_Statement_Sequence (N);
967 -- When the handled sequence of statements comes from source, the
968 -- location of the "begin" keyword is that of the sequence itself.
969 -- Note that an internal construct may inherit a source sequence.
971 if Comes_From_Source (HSS) then
972 return Sloc (HSS);
974 -- The parser generates an internal handled sequence of statements to
975 -- capture the location of the "begin" keyword if present in the source.
976 -- Since there are no source statements, the location of the "begin"
977 -- keyword is effectively that of the "end" keyword.
979 elsif Comes_From_Source (N) then
980 return Sloc (HSS);
982 -- Otherwise the construct is internal and should carry the location of
983 -- the original construct which prompted its creation.
985 else
986 return Sloc (N);
987 end if;
988 end Begin_Keyword_Location;
990 --------------------------
991 -- Build_Actual_Subtype --
992 --------------------------
994 function Build_Actual_Subtype
995 (T : Entity_Id;
996 N : Node_Or_Entity_Id) return Node_Id
998 Loc : Source_Ptr;
999 -- Normally Sloc (N), but may point to corresponding body in some cases
1001 Constraints : List_Id;
1002 Decl : Node_Id;
1003 Discr : Entity_Id;
1004 Hi : Node_Id;
1005 Lo : Node_Id;
1006 Subt : Entity_Id;
1007 Disc_Type : Entity_Id;
1008 Obj : Node_Id;
1010 begin
1011 Loc := Sloc (N);
1013 if Nkind (N) = N_Defining_Identifier then
1014 Obj := New_Occurrence_Of (N, Loc);
1016 -- If this is a formal parameter of a subprogram declaration, and
1017 -- we are compiling the body, we want the declaration for the
1018 -- actual subtype to carry the source position of the body, to
1019 -- prevent anomalies in gdb when stepping through the code.
1021 if Is_Formal (N) then
1022 declare
1023 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
1024 begin
1025 if Nkind (Decl) = N_Subprogram_Declaration
1026 and then Present (Corresponding_Body (Decl))
1027 then
1028 Loc := Sloc (Corresponding_Body (Decl));
1029 end if;
1030 end;
1031 end if;
1033 else
1034 Obj := N;
1035 end if;
1037 if Is_Array_Type (T) then
1038 Constraints := New_List;
1039 for J in 1 .. Number_Dimensions (T) loop
1041 -- Build an array subtype declaration with the nominal subtype and
1042 -- the bounds of the actual. Add the declaration in front of the
1043 -- local declarations for the subprogram, for analysis before any
1044 -- reference to the formal in the body.
1046 Lo :=
1047 Make_Attribute_Reference (Loc,
1048 Prefix =>
1049 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
1050 Attribute_Name => Name_First,
1051 Expressions => New_List (
1052 Make_Integer_Literal (Loc, J)));
1054 Hi :=
1055 Make_Attribute_Reference (Loc,
1056 Prefix =>
1057 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
1058 Attribute_Name => Name_Last,
1059 Expressions => New_List (
1060 Make_Integer_Literal (Loc, J)));
1062 Append (Make_Range (Loc, Lo, Hi), Constraints);
1063 end loop;
1065 -- If the type has unknown discriminants there is no constrained
1066 -- subtype to build. This is never called for a formal or for a
1067 -- lhs, so returning the type is ok ???
1069 elsif Has_Unknown_Discriminants (T) then
1070 return T;
1072 else
1073 Constraints := New_List;
1075 -- Type T is a generic derived type, inherit the discriminants from
1076 -- the parent type.
1078 if Is_Private_Type (T)
1079 and then No (Full_View (T))
1081 -- T was flagged as an error if it was declared as a formal
1082 -- derived type with known discriminants. In this case there
1083 -- is no need to look at the parent type since T already carries
1084 -- its own discriminants.
1086 and then not Error_Posted (T)
1087 then
1088 Disc_Type := Etype (Base_Type (T));
1089 else
1090 Disc_Type := T;
1091 end if;
1093 Discr := First_Discriminant (Disc_Type);
1094 while Present (Discr) loop
1095 Append_To (Constraints,
1096 Make_Selected_Component (Loc,
1097 Prefix =>
1098 Duplicate_Subexpr_No_Checks (Obj),
1099 Selector_Name => New_Occurrence_Of (Discr, Loc)));
1100 Next_Discriminant (Discr);
1101 end loop;
1102 end if;
1104 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
1105 Set_Is_Internal (Subt);
1107 Decl :=
1108 Make_Subtype_Declaration (Loc,
1109 Defining_Identifier => Subt,
1110 Subtype_Indication =>
1111 Make_Subtype_Indication (Loc,
1112 Subtype_Mark => New_Occurrence_Of (T, Loc),
1113 Constraint =>
1114 Make_Index_Or_Discriminant_Constraint (Loc,
1115 Constraints => Constraints)));
1117 Mark_Rewrite_Insertion (Decl);
1118 return Decl;
1119 end Build_Actual_Subtype;
1121 ---------------------------------------
1122 -- Build_Actual_Subtype_Of_Component --
1123 ---------------------------------------
1125 function Build_Actual_Subtype_Of_Component
1126 (T : Entity_Id;
1127 N : Node_Id) return Node_Id
1129 Loc : constant Source_Ptr := Sloc (N);
1130 P : constant Node_Id := Prefix (N);
1131 D : Elmt_Id;
1132 Id : Node_Id;
1133 Index_Typ : Entity_Id;
1135 Desig_Typ : Entity_Id;
1136 -- This is either a copy of T, or if T is an access type, then it is
1137 -- the directly designated type of this access type.
1139 function Build_Actual_Array_Constraint return List_Id;
1140 -- If one or more of the bounds of the component depends on
1141 -- discriminants, build actual constraint using the discriminants
1142 -- of the prefix.
1144 function Build_Actual_Record_Constraint return List_Id;
1145 -- Similar to previous one, for discriminated components constrained
1146 -- by the discriminant of the enclosing object.
1148 -----------------------------------
1149 -- Build_Actual_Array_Constraint --
1150 -----------------------------------
1152 function Build_Actual_Array_Constraint return List_Id is
1153 Constraints : constant List_Id := New_List;
1154 Indx : Node_Id;
1155 Hi : Node_Id;
1156 Lo : Node_Id;
1157 Old_Hi : Node_Id;
1158 Old_Lo : Node_Id;
1160 begin
1161 Indx := First_Index (Desig_Typ);
1162 while Present (Indx) loop
1163 Old_Lo := Type_Low_Bound (Etype (Indx));
1164 Old_Hi := Type_High_Bound (Etype (Indx));
1166 if Denotes_Discriminant (Old_Lo) then
1167 Lo :=
1168 Make_Selected_Component (Loc,
1169 Prefix => New_Copy_Tree (P),
1170 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
1172 else
1173 Lo := New_Copy_Tree (Old_Lo);
1175 -- The new bound will be reanalyzed in the enclosing
1176 -- declaration. For literal bounds that come from a type
1177 -- declaration, the type of the context must be imposed, so
1178 -- insure that analysis will take place. For non-universal
1179 -- types this is not strictly necessary.
1181 Set_Analyzed (Lo, False);
1182 end if;
1184 if Denotes_Discriminant (Old_Hi) then
1185 Hi :=
1186 Make_Selected_Component (Loc,
1187 Prefix => New_Copy_Tree (P),
1188 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
1190 else
1191 Hi := New_Copy_Tree (Old_Hi);
1192 Set_Analyzed (Hi, False);
1193 end if;
1195 Append (Make_Range (Loc, Lo, Hi), Constraints);
1196 Next_Index (Indx);
1197 end loop;
1199 return Constraints;
1200 end Build_Actual_Array_Constraint;
1202 ------------------------------------
1203 -- Build_Actual_Record_Constraint --
1204 ------------------------------------
1206 function Build_Actual_Record_Constraint return List_Id is
1207 Constraints : constant List_Id := New_List;
1208 D : Elmt_Id;
1209 D_Val : Node_Id;
1211 begin
1212 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1213 while Present (D) loop
1214 if Denotes_Discriminant (Node (D)) then
1215 D_Val := Make_Selected_Component (Loc,
1216 Prefix => New_Copy_Tree (P),
1217 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
1219 else
1220 D_Val := New_Copy_Tree (Node (D));
1221 end if;
1223 Append (D_Val, Constraints);
1224 Next_Elmt (D);
1225 end loop;
1227 return Constraints;
1228 end Build_Actual_Record_Constraint;
1230 -- Start of processing for Build_Actual_Subtype_Of_Component
1232 begin
1233 -- Why the test for Spec_Expression mode here???
1235 if In_Spec_Expression then
1236 return Empty;
1238 -- More comments for the rest of this body would be good ???
1240 elsif Nkind (N) = N_Explicit_Dereference then
1241 if Is_Composite_Type (T)
1242 and then not Is_Constrained (T)
1243 and then not (Is_Class_Wide_Type (T)
1244 and then Is_Constrained (Root_Type (T)))
1245 and then not Has_Unknown_Discriminants (T)
1246 then
1247 -- If the type of the dereference is already constrained, it is an
1248 -- actual subtype.
1250 if Is_Array_Type (Etype (N))
1251 and then Is_Constrained (Etype (N))
1252 then
1253 return Empty;
1254 else
1255 Remove_Side_Effects (P);
1256 return Build_Actual_Subtype (T, N);
1257 end if;
1258 else
1259 return Empty;
1260 end if;
1261 end if;
1263 if Ekind (T) = E_Access_Subtype then
1264 Desig_Typ := Designated_Type (T);
1265 else
1266 Desig_Typ := T;
1267 end if;
1269 if Ekind (Desig_Typ) = E_Array_Subtype then
1270 Id := First_Index (Desig_Typ);
1271 while Present (Id) loop
1272 Index_Typ := Underlying_Type (Etype (Id));
1274 if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
1275 or else
1276 Denotes_Discriminant (Type_High_Bound (Index_Typ))
1277 then
1278 Remove_Side_Effects (P);
1279 return
1280 Build_Component_Subtype
1281 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
1282 end if;
1284 Next_Index (Id);
1285 end loop;
1287 elsif Is_Composite_Type (Desig_Typ)
1288 and then Has_Discriminants (Desig_Typ)
1289 and then not Has_Unknown_Discriminants (Desig_Typ)
1290 then
1291 if Is_Private_Type (Desig_Typ)
1292 and then No (Discriminant_Constraint (Desig_Typ))
1293 then
1294 Desig_Typ := Full_View (Desig_Typ);
1295 end if;
1297 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1298 while Present (D) loop
1299 if Denotes_Discriminant (Node (D)) then
1300 Remove_Side_Effects (P);
1301 return
1302 Build_Component_Subtype (
1303 Build_Actual_Record_Constraint, Loc, Base_Type (T));
1304 end if;
1306 Next_Elmt (D);
1307 end loop;
1308 end if;
1310 -- If none of the above, the actual and nominal subtypes are the same
1312 return Empty;
1313 end Build_Actual_Subtype_Of_Component;
1315 ---------------------------------
1316 -- Build_Class_Wide_Clone_Body --
1317 ---------------------------------
1319 procedure Build_Class_Wide_Clone_Body
1320 (Spec_Id : Entity_Id;
1321 Bod : Node_Id)
1323 Loc : constant Source_Ptr := Sloc (Bod);
1324 Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
1325 Clone_Body : Node_Id;
1327 begin
1328 -- The declaration of the class-wide clone was created when the
1329 -- corresponding class-wide condition was analyzed.
1331 Clone_Body :=
1332 Make_Subprogram_Body (Loc,
1333 Specification =>
1334 Copy_Subprogram_Spec (Parent (Clone_Id)),
1335 Declarations => Declarations (Bod),
1336 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
1338 -- The new operation is internal and overriding indicators do not apply
1339 -- (the original primitive may have carried one).
1341 Set_Must_Override (Specification (Clone_Body), False);
1342 Insert_Before (Bod, Clone_Body);
1343 Analyze (Clone_Body);
1344 end Build_Class_Wide_Clone_Body;
1346 ---------------------------------
1347 -- Build_Class_Wide_Clone_Call --
1348 ---------------------------------
1350 function Build_Class_Wide_Clone_Call
1351 (Loc : Source_Ptr;
1352 Decls : List_Id;
1353 Spec_Id : Entity_Id;
1354 Spec : Node_Id) return Node_Id
1356 Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
1357 Par_Type : constant Entity_Id := Find_Dispatching_Type (Spec_Id);
1359 Actuals : List_Id;
1360 Call : Node_Id;
1361 Formal : Entity_Id;
1362 New_Body : Node_Id;
1363 New_F_Spec : Entity_Id;
1364 New_Formal : Entity_Id;
1366 begin
1367 Actuals := Empty_List;
1368 Formal := First_Formal (Spec_Id);
1369 New_F_Spec := First (Parameter_Specifications (Spec));
1371 -- Build parameter association for call to class-wide clone.
1373 while Present (Formal) loop
1374 New_Formal := Defining_Identifier (New_F_Spec);
1376 -- If controlling argument and operation is inherited, add conversion
1377 -- to parent type for the call.
1379 if Etype (Formal) = Par_Type
1380 and then not Is_Empty_List (Decls)
1381 then
1382 Append_To (Actuals,
1383 Make_Type_Conversion (Loc,
1384 New_Occurrence_Of (Par_Type, Loc),
1385 New_Occurrence_Of (New_Formal, Loc)));
1387 else
1388 Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
1389 end if;
1391 Next_Formal (Formal);
1392 Next (New_F_Spec);
1393 end loop;
1395 if Ekind (Spec_Id) = E_Procedure then
1396 Call :=
1397 Make_Procedure_Call_Statement (Loc,
1398 Name => New_Occurrence_Of (Clone_Id, Loc),
1399 Parameter_Associations => Actuals);
1400 else
1401 Call :=
1402 Make_Simple_Return_Statement (Loc,
1403 Expression =>
1404 Make_Function_Call (Loc,
1405 Name => New_Occurrence_Of (Clone_Id, Loc),
1406 Parameter_Associations => Actuals));
1407 end if;
1409 New_Body :=
1410 Make_Subprogram_Body (Loc,
1411 Specification =>
1412 Copy_Subprogram_Spec (Spec),
1413 Declarations => Decls,
1414 Handled_Statement_Sequence =>
1415 Make_Handled_Sequence_Of_Statements (Loc,
1416 Statements => New_List (Call),
1417 End_Label => Make_Identifier (Loc, Chars (Spec_Id))));
1419 return New_Body;
1420 end Build_Class_Wide_Clone_Call;
1422 ---------------------------------
1423 -- Build_Class_Wide_Clone_Decl --
1424 ---------------------------------
1426 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id) is
1427 Loc : constant Source_Ptr := Sloc (Spec_Id);
1428 Clone_Id : constant Entity_Id :=
1429 Make_Defining_Identifier (Loc,
1430 New_External_Name (Chars (Spec_Id), Suffix => "CL"));
1432 Decl : Node_Id;
1433 Spec : Node_Id;
1435 begin
1436 Spec := Copy_Subprogram_Spec (Parent (Spec_Id));
1437 Set_Must_Override (Spec, False);
1438 Set_Must_Not_Override (Spec, False);
1439 Set_Defining_Unit_Name (Spec, Clone_Id);
1441 Decl := Make_Subprogram_Declaration (Loc, Spec);
1442 Append (Decl, List_Containing (Unit_Declaration_Node (Spec_Id)));
1444 -- Link clone to original subprogram, for use when building body and
1445 -- wrapper call to inherited operation.
1447 Set_Class_Wide_Clone (Spec_Id, Clone_Id);
1448 end Build_Class_Wide_Clone_Decl;
1450 -----------------------------
1451 -- Build_Component_Subtype --
1452 -----------------------------
1454 function Build_Component_Subtype
1455 (C : List_Id;
1456 Loc : Source_Ptr;
1457 T : Entity_Id) return Node_Id
1459 Subt : Entity_Id;
1460 Decl : Node_Id;
1462 begin
1463 -- Unchecked_Union components do not require component subtypes
1465 if Is_Unchecked_Union (T) then
1466 return Empty;
1467 end if;
1469 Subt := Make_Temporary (Loc, 'S');
1470 Set_Is_Internal (Subt);
1472 Decl :=
1473 Make_Subtype_Declaration (Loc,
1474 Defining_Identifier => Subt,
1475 Subtype_Indication =>
1476 Make_Subtype_Indication (Loc,
1477 Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
1478 Constraint =>
1479 Make_Index_Or_Discriminant_Constraint (Loc,
1480 Constraints => C)));
1482 Mark_Rewrite_Insertion (Decl);
1483 return Decl;
1484 end Build_Component_Subtype;
1486 ---------------------------
1487 -- Build_Default_Subtype --
1488 ---------------------------
1490 function Build_Default_Subtype
1491 (T : Entity_Id;
1492 N : Node_Id) return Entity_Id
1494 Loc : constant Source_Ptr := Sloc (N);
1495 Disc : Entity_Id;
1497 Bas : Entity_Id;
1498 -- The base type that is to be constrained by the defaults
1500 begin
1501 if not Has_Discriminants (T) or else Is_Constrained (T) then
1502 return T;
1503 end if;
1505 Bas := Base_Type (T);
1507 -- If T is non-private but its base type is private, this is the
1508 -- completion of a subtype declaration whose parent type is private
1509 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1510 -- are to be found in the full view of the base. Check that the private
1511 -- status of T and its base differ.
1513 if Is_Private_Type (Bas)
1514 and then not Is_Private_Type (T)
1515 and then Present (Full_View (Bas))
1516 then
1517 Bas := Full_View (Bas);
1518 end if;
1520 Disc := First_Discriminant (T);
1522 if No (Discriminant_Default_Value (Disc)) then
1523 return T;
1524 end if;
1526 declare
1527 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
1528 Constraints : constant List_Id := New_List;
1529 Decl : Node_Id;
1531 begin
1532 while Present (Disc) loop
1533 Append_To (Constraints,
1534 New_Copy_Tree (Discriminant_Default_Value (Disc)));
1535 Next_Discriminant (Disc);
1536 end loop;
1538 Decl :=
1539 Make_Subtype_Declaration (Loc,
1540 Defining_Identifier => Act,
1541 Subtype_Indication =>
1542 Make_Subtype_Indication (Loc,
1543 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
1544 Constraint =>
1545 Make_Index_Or_Discriminant_Constraint (Loc,
1546 Constraints => Constraints)));
1548 Insert_Action (N, Decl);
1550 -- If the context is a component declaration the subtype declaration
1551 -- will be analyzed when the enclosing type is frozen, otherwise do
1552 -- it now.
1554 if Ekind (Current_Scope) /= E_Record_Type then
1555 Analyze (Decl);
1556 end if;
1558 return Act;
1559 end;
1560 end Build_Default_Subtype;
1562 --------------------------------------------
1563 -- Build_Discriminal_Subtype_Of_Component --
1564 --------------------------------------------
1566 function Build_Discriminal_Subtype_Of_Component
1567 (T : Entity_Id) return Node_Id
1569 Loc : constant Source_Ptr := Sloc (T);
1570 D : Elmt_Id;
1571 Id : Node_Id;
1573 function Build_Discriminal_Array_Constraint return List_Id;
1574 -- If one or more of the bounds of the component depends on
1575 -- discriminants, build actual constraint using the discriminants
1576 -- of the prefix.
1578 function Build_Discriminal_Record_Constraint return List_Id;
1579 -- Similar to previous one, for discriminated components constrained by
1580 -- the discriminant of the enclosing object.
1582 ----------------------------------------
1583 -- Build_Discriminal_Array_Constraint --
1584 ----------------------------------------
1586 function Build_Discriminal_Array_Constraint return List_Id is
1587 Constraints : constant List_Id := New_List;
1588 Indx : Node_Id;
1589 Hi : Node_Id;
1590 Lo : Node_Id;
1591 Old_Hi : Node_Id;
1592 Old_Lo : Node_Id;
1594 begin
1595 Indx := First_Index (T);
1596 while Present (Indx) loop
1597 Old_Lo := Type_Low_Bound (Etype (Indx));
1598 Old_Hi := Type_High_Bound (Etype (Indx));
1600 if Denotes_Discriminant (Old_Lo) then
1601 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
1603 else
1604 Lo := New_Copy_Tree (Old_Lo);
1605 end if;
1607 if Denotes_Discriminant (Old_Hi) then
1608 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
1610 else
1611 Hi := New_Copy_Tree (Old_Hi);
1612 end if;
1614 Append (Make_Range (Loc, Lo, Hi), Constraints);
1615 Next_Index (Indx);
1616 end loop;
1618 return Constraints;
1619 end Build_Discriminal_Array_Constraint;
1621 -----------------------------------------
1622 -- Build_Discriminal_Record_Constraint --
1623 -----------------------------------------
1625 function Build_Discriminal_Record_Constraint return List_Id is
1626 Constraints : constant List_Id := New_List;
1627 D : Elmt_Id;
1628 D_Val : Node_Id;
1630 begin
1631 D := First_Elmt (Discriminant_Constraint (T));
1632 while Present (D) loop
1633 if Denotes_Discriminant (Node (D)) then
1634 D_Val :=
1635 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
1636 else
1637 D_Val := New_Copy_Tree (Node (D));
1638 end if;
1640 Append (D_Val, Constraints);
1641 Next_Elmt (D);
1642 end loop;
1644 return Constraints;
1645 end Build_Discriminal_Record_Constraint;
1647 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1649 begin
1650 if Ekind (T) = E_Array_Subtype then
1651 Id := First_Index (T);
1652 while Present (Id) loop
1653 if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
1654 or else
1655 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
1656 then
1657 return Build_Component_Subtype
1658 (Build_Discriminal_Array_Constraint, Loc, T);
1659 end if;
1661 Next_Index (Id);
1662 end loop;
1664 elsif Ekind (T) = E_Record_Subtype
1665 and then Has_Discriminants (T)
1666 and then not Has_Unknown_Discriminants (T)
1667 then
1668 D := First_Elmt (Discriminant_Constraint (T));
1669 while Present (D) loop
1670 if Denotes_Discriminant (Node (D)) then
1671 return Build_Component_Subtype
1672 (Build_Discriminal_Record_Constraint, Loc, T);
1673 end if;
1675 Next_Elmt (D);
1676 end loop;
1677 end if;
1679 -- If none of the above, the actual and nominal subtypes are the same
1681 return Empty;
1682 end Build_Discriminal_Subtype_Of_Component;
1684 ------------------------------
1685 -- Build_Elaboration_Entity --
1686 ------------------------------
1688 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
1689 Loc : constant Source_Ptr := Sloc (N);
1690 Decl : Node_Id;
1691 Elab_Ent : Entity_Id;
1693 procedure Set_Package_Name (Ent : Entity_Id);
1694 -- Given an entity, sets the fully qualified name of the entity in
1695 -- Name_Buffer, with components separated by double underscores. This
1696 -- is a recursive routine that climbs the scope chain to Standard.
1698 ----------------------
1699 -- Set_Package_Name --
1700 ----------------------
1702 procedure Set_Package_Name (Ent : Entity_Id) is
1703 begin
1704 if Scope (Ent) /= Standard_Standard then
1705 Set_Package_Name (Scope (Ent));
1707 declare
1708 Nam : constant String := Get_Name_String (Chars (Ent));
1709 begin
1710 Name_Buffer (Name_Len + 1) := '_';
1711 Name_Buffer (Name_Len + 2) := '_';
1712 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
1713 Name_Len := Name_Len + Nam'Length + 2;
1714 end;
1716 else
1717 Get_Name_String (Chars (Ent));
1718 end if;
1719 end Set_Package_Name;
1721 -- Start of processing for Build_Elaboration_Entity
1723 begin
1724 -- Ignore call if already constructed
1726 if Present (Elaboration_Entity (Spec_Id)) then
1727 return;
1729 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1730 -- no role in analysis.
1732 elsif ASIS_Mode then
1733 return;
1735 -- Do not generate an elaboration entity in GNATprove move because the
1736 -- elaboration counter is a form of expansion.
1738 elsif GNATprove_Mode then
1739 return;
1741 -- See if we need elaboration entity
1743 -- We always need an elaboration entity when preserving control flow, as
1744 -- we want to remain explicit about the unit's elaboration order.
1746 elsif Opt.Suppress_Control_Flow_Optimizations then
1747 null;
1749 -- We always need an elaboration entity for the dynamic elaboration
1750 -- model, since it is needed to properly generate the PE exception for
1751 -- access before elaboration.
1753 elsif Dynamic_Elaboration_Checks then
1754 null;
1756 -- For the static model, we don't need the elaboration counter if this
1757 -- unit is sure to have no elaboration code, since that means there
1758 -- is no elaboration unit to be called. Note that we can't just decide
1759 -- after the fact by looking to see whether there was elaboration code,
1760 -- because that's too late to make this decision.
1762 elsif Restriction_Active (No_Elaboration_Code) then
1763 return;
1765 -- Similarly, for the static model, we can skip the elaboration counter
1766 -- if we have the No_Multiple_Elaboration restriction, since for the
1767 -- static model, that's the only purpose of the counter (to avoid
1768 -- multiple elaboration).
1770 elsif Restriction_Active (No_Multiple_Elaboration) then
1771 return;
1772 end if;
1774 -- Here we need the elaboration entity
1776 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1777 -- name with dots replaced by double underscore. We have to manually
1778 -- construct this name, since it will be elaborated in the outer scope,
1779 -- and thus will not have the unit name automatically prepended.
1781 Set_Package_Name (Spec_Id);
1782 Add_Str_To_Name_Buffer ("_E");
1784 -- Create elaboration counter
1786 Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
1787 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
1789 Decl :=
1790 Make_Object_Declaration (Loc,
1791 Defining_Identifier => Elab_Ent,
1792 Object_Definition =>
1793 New_Occurrence_Of (Standard_Short_Integer, Loc),
1794 Expression => Make_Integer_Literal (Loc, Uint_0));
1796 Push_Scope (Standard_Standard);
1797 Add_Global_Declaration (Decl);
1798 Pop_Scope;
1800 -- Reset True_Constant indication, since we will indeed assign a value
1801 -- to the variable in the binder main. We also kill the Current_Value
1802 -- and Last_Assignment fields for the same reason.
1804 Set_Is_True_Constant (Elab_Ent, False);
1805 Set_Current_Value (Elab_Ent, Empty);
1806 Set_Last_Assignment (Elab_Ent, Empty);
1808 -- We do not want any further qualification of the name (if we did not
1809 -- do this, we would pick up the name of the generic package in the case
1810 -- of a library level generic instantiation).
1812 Set_Has_Qualified_Name (Elab_Ent);
1813 Set_Has_Fully_Qualified_Name (Elab_Ent);
1814 end Build_Elaboration_Entity;
1816 --------------------------------
1817 -- Build_Explicit_Dereference --
1818 --------------------------------
1820 procedure Build_Explicit_Dereference
1821 (Expr : Node_Id;
1822 Disc : Entity_Id)
1824 Loc : constant Source_Ptr := Sloc (Expr);
1825 I : Interp_Index;
1826 It : Interp;
1828 begin
1829 -- An entity of a type with a reference aspect is overloaded with
1830 -- both interpretations: with and without the dereference. Now that
1831 -- the dereference is made explicit, set the type of the node properly,
1832 -- to prevent anomalies in the backend. Same if the expression is an
1833 -- overloaded function call whose return type has a reference aspect.
1835 if Is_Entity_Name (Expr) then
1836 Set_Etype (Expr, Etype (Entity (Expr)));
1838 -- The designated entity will not be examined again when resolving
1839 -- the dereference, so generate a reference to it now.
1841 Generate_Reference (Entity (Expr), Expr);
1843 elsif Nkind (Expr) = N_Function_Call then
1845 -- If the name of the indexing function is overloaded, locate the one
1846 -- whose return type has an implicit dereference on the desired
1847 -- discriminant, and set entity and type of function call.
1849 if Is_Overloaded (Name (Expr)) then
1850 Get_First_Interp (Name (Expr), I, It);
1852 while Present (It.Nam) loop
1853 if Ekind ((It.Typ)) = E_Record_Type
1854 and then First_Entity ((It.Typ)) = Disc
1855 then
1856 Set_Entity (Name (Expr), It.Nam);
1857 Set_Etype (Name (Expr), Etype (It.Nam));
1858 exit;
1859 end if;
1861 Get_Next_Interp (I, It);
1862 end loop;
1863 end if;
1865 -- Set type of call from resolved function name.
1867 Set_Etype (Expr, Etype (Name (Expr)));
1868 end if;
1870 Set_Is_Overloaded (Expr, False);
1872 -- The expression will often be a generalized indexing that yields a
1873 -- container element that is then dereferenced, in which case the
1874 -- generalized indexing call is also non-overloaded.
1876 if Nkind (Expr) = N_Indexed_Component
1877 and then Present (Generalized_Indexing (Expr))
1878 then
1879 Set_Is_Overloaded (Generalized_Indexing (Expr), False);
1880 end if;
1882 Rewrite (Expr,
1883 Make_Explicit_Dereference (Loc,
1884 Prefix =>
1885 Make_Selected_Component (Loc,
1886 Prefix => Relocate_Node (Expr),
1887 Selector_Name => New_Occurrence_Of (Disc, Loc))));
1888 Set_Etype (Prefix (Expr), Etype (Disc));
1889 Set_Etype (Expr, Designated_Type (Etype (Disc)));
1890 end Build_Explicit_Dereference;
1892 ---------------------------
1893 -- Build_Overriding_Spec --
1894 ---------------------------
1896 function Build_Overriding_Spec
1897 (Op : Entity_Id;
1898 Typ : Entity_Id) return Node_Id
1900 Loc : constant Source_Ptr := Sloc (Typ);
1901 Par_Typ : constant Entity_Id := Find_Dispatching_Type (Op);
1902 Spec : constant Node_Id := Specification (Unit_Declaration_Node (Op));
1904 Formal_Spec : Node_Id;
1905 Formal_Type : Node_Id;
1906 New_Spec : Node_Id;
1908 begin
1909 New_Spec := Copy_Subprogram_Spec (Spec);
1911 Formal_Spec := First (Parameter_Specifications (New_Spec));
1912 while Present (Formal_Spec) loop
1913 Formal_Type := Parameter_Type (Formal_Spec);
1915 if Is_Entity_Name (Formal_Type)
1916 and then Entity (Formal_Type) = Par_Typ
1917 then
1918 Rewrite (Formal_Type, New_Occurrence_Of (Typ, Loc));
1919 end if;
1921 -- Nothing needs to be done for access parameters
1923 Next (Formal_Spec);
1924 end loop;
1926 return New_Spec;
1927 end Build_Overriding_Spec;
1929 -----------------------------------
1930 -- Cannot_Raise_Constraint_Error --
1931 -----------------------------------
1933 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
1934 begin
1935 if Compile_Time_Known_Value (Expr) then
1936 return True;
1938 elsif Do_Range_Check (Expr) then
1939 return False;
1941 elsif Raises_Constraint_Error (Expr) then
1942 return False;
1944 else
1945 case Nkind (Expr) is
1946 when N_Identifier =>
1947 return True;
1949 when N_Expanded_Name =>
1950 return True;
1952 when N_Selected_Component =>
1953 return not Do_Discriminant_Check (Expr);
1955 when N_Attribute_Reference =>
1956 if Do_Overflow_Check (Expr) then
1957 return False;
1959 elsif No (Expressions (Expr)) then
1960 return True;
1962 else
1963 declare
1964 N : Node_Id;
1966 begin
1967 N := First (Expressions (Expr));
1968 while Present (N) loop
1969 if Cannot_Raise_Constraint_Error (N) then
1970 Next (N);
1971 else
1972 return False;
1973 end if;
1974 end loop;
1976 return True;
1977 end;
1978 end if;
1980 when N_Type_Conversion =>
1981 if Do_Overflow_Check (Expr)
1982 or else Do_Length_Check (Expr)
1983 or else Do_Tag_Check (Expr)
1984 then
1985 return False;
1986 else
1987 return Cannot_Raise_Constraint_Error (Expression (Expr));
1988 end if;
1990 when N_Unchecked_Type_Conversion =>
1991 return Cannot_Raise_Constraint_Error (Expression (Expr));
1993 when N_Unary_Op =>
1994 if Do_Overflow_Check (Expr) then
1995 return False;
1996 else
1997 return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1998 end if;
2000 when N_Op_Divide
2001 | N_Op_Mod
2002 | N_Op_Rem
2004 if Do_Division_Check (Expr)
2005 or else
2006 Do_Overflow_Check (Expr)
2007 then
2008 return False;
2009 else
2010 return
2011 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
2012 and then
2013 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
2014 end if;
2016 when N_Op_Add
2017 | N_Op_And
2018 | N_Op_Concat
2019 | N_Op_Eq
2020 | N_Op_Expon
2021 | N_Op_Ge
2022 | N_Op_Gt
2023 | N_Op_Le
2024 | N_Op_Lt
2025 | N_Op_Multiply
2026 | N_Op_Ne
2027 | N_Op_Or
2028 | N_Op_Rotate_Left
2029 | N_Op_Rotate_Right
2030 | N_Op_Shift_Left
2031 | N_Op_Shift_Right
2032 | N_Op_Shift_Right_Arithmetic
2033 | N_Op_Subtract
2034 | N_Op_Xor
2036 if Do_Overflow_Check (Expr) then
2037 return False;
2038 else
2039 return
2040 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
2041 and then
2042 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
2043 end if;
2045 when others =>
2046 return False;
2047 end case;
2048 end if;
2049 end Cannot_Raise_Constraint_Error;
2051 -----------------------------------------
2052 -- Check_Dynamically_Tagged_Expression --
2053 -----------------------------------------
2055 procedure Check_Dynamically_Tagged_Expression
2056 (Expr : Node_Id;
2057 Typ : Entity_Id;
2058 Related_Nod : Node_Id)
2060 begin
2061 pragma Assert (Is_Tagged_Type (Typ));
2063 -- In order to avoid spurious errors when analyzing the expanded code,
2064 -- this check is done only for nodes that come from source and for
2065 -- actuals of generic instantiations.
2067 if (Comes_From_Source (Related_Nod)
2068 or else In_Generic_Actual (Expr))
2069 and then (Is_Class_Wide_Type (Etype (Expr))
2070 or else Is_Dynamically_Tagged (Expr))
2071 and then not Is_Class_Wide_Type (Typ)
2072 then
2073 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
2074 end if;
2075 end Check_Dynamically_Tagged_Expression;
2077 --------------------------
2078 -- Check_Fully_Declared --
2079 --------------------------
2081 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
2082 begin
2083 if Ekind (T) = E_Incomplete_Type then
2085 -- Ada 2005 (AI-50217): If the type is available through a limited
2086 -- with_clause, verify that its full view has been analyzed.
2088 if From_Limited_With (T)
2089 and then Present (Non_Limited_View (T))
2090 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
2091 then
2092 -- The non-limited view is fully declared
2094 null;
2096 else
2097 Error_Msg_NE
2098 ("premature usage of incomplete}", N, First_Subtype (T));
2099 end if;
2101 -- Need comments for these tests ???
2103 elsif Has_Private_Component (T)
2104 and then not Is_Generic_Type (Root_Type (T))
2105 and then not In_Spec_Expression
2106 then
2107 -- Special case: if T is the anonymous type created for a single
2108 -- task or protected object, use the name of the source object.
2110 if Is_Concurrent_Type (T)
2111 and then not Comes_From_Source (T)
2112 and then Nkind (N) = N_Object_Declaration
2113 then
2114 Error_Msg_NE
2115 ("type of& has incomplete component",
2116 N, Defining_Identifier (N));
2117 else
2118 Error_Msg_NE
2119 ("premature usage of incomplete}",
2120 N, First_Subtype (T));
2121 end if;
2122 end if;
2123 end Check_Fully_Declared;
2125 -------------------------------------------
2126 -- Check_Function_With_Address_Parameter --
2127 -------------------------------------------
2129 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
2130 F : Entity_Id;
2131 T : Entity_Id;
2133 begin
2134 F := First_Formal (Subp_Id);
2135 while Present (F) loop
2136 T := Etype (F);
2138 if Is_Private_Type (T) and then Present (Full_View (T)) then
2139 T := Full_View (T);
2140 end if;
2142 if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
2143 Set_Is_Pure (Subp_Id, False);
2144 exit;
2145 end if;
2147 Next_Formal (F);
2148 end loop;
2149 end Check_Function_With_Address_Parameter;
2151 -------------------------------------
2152 -- Check_Function_Writable_Actuals --
2153 -------------------------------------
2155 procedure Check_Function_Writable_Actuals (N : Node_Id) is
2156 Writable_Actuals_List : Elist_Id := No_Elist;
2157 Identifiers_List : Elist_Id := No_Elist;
2158 Aggr_Error_Node : Node_Id := Empty;
2159 Error_Node : Node_Id := Empty;
2161 procedure Collect_Identifiers (N : Node_Id);
2162 -- In a single traversal of subtree N collect in Writable_Actuals_List
2163 -- all the actuals of functions with writable actuals, and in the list
2164 -- Identifiers_List collect all the identifiers that are not actuals of
2165 -- functions with writable actuals. If a writable actual is referenced
2166 -- twice as writable actual then Error_Node is set to reference its
2167 -- second occurrence, the error is reported, and the tree traversal
2168 -- is abandoned.
2170 procedure Preanalyze_Without_Errors (N : Node_Id);
2171 -- Preanalyze N without reporting errors. Very dubious, you can't just
2172 -- go analyzing things more than once???
2174 -------------------------
2175 -- Collect_Identifiers --
2176 -------------------------
2178 procedure Collect_Identifiers (N : Node_Id) is
2180 function Check_Node (N : Node_Id) return Traverse_Result;
2181 -- Process a single node during the tree traversal to collect the
2182 -- writable actuals of functions and all the identifiers which are
2183 -- not writable actuals of functions.
2185 function Contains (List : Elist_Id; N : Node_Id) return Boolean;
2186 -- Returns True if List has a node whose Entity is Entity (N)
2188 ----------------
2189 -- Check_Node --
2190 ----------------
2192 function Check_Node (N : Node_Id) return Traverse_Result is
2193 Is_Writable_Actual : Boolean := False;
2194 Id : Entity_Id;
2196 begin
2197 if Nkind (N) = N_Identifier then
2199 -- No analysis possible if the entity is not decorated
2201 if No (Entity (N)) then
2202 return Skip;
2204 -- Don't collect identifiers of packages, called functions, etc
2206 elsif Ekind_In (Entity (N), E_Package,
2207 E_Function,
2208 E_Procedure,
2209 E_Entry)
2210 then
2211 return Skip;
2213 -- For rewritten nodes, continue the traversal in the original
2214 -- subtree. Needed to handle aggregates in original expressions
2215 -- extracted from the tree by Remove_Side_Effects.
2217 elsif Is_Rewrite_Substitution (N) then
2218 Collect_Identifiers (Original_Node (N));
2219 return Skip;
2221 -- For now we skip aggregate discriminants, since they require
2222 -- performing the analysis in two phases to identify conflicts:
2223 -- first one analyzing discriminants and second one analyzing
2224 -- the rest of components (since at run time, discriminants are
2225 -- evaluated prior to components): too much computation cost
2226 -- to identify a corner case???
2228 elsif Nkind (Parent (N)) = N_Component_Association
2229 and then Nkind_In (Parent (Parent (N)),
2230 N_Aggregate,
2231 N_Extension_Aggregate)
2232 then
2233 declare
2234 Choice : constant Node_Id := First (Choices (Parent (N)));
2236 begin
2237 if Ekind (Entity (N)) = E_Discriminant then
2238 return Skip;
2240 elsif Expression (Parent (N)) = N
2241 and then Nkind (Choice) = N_Identifier
2242 and then Ekind (Entity (Choice)) = E_Discriminant
2243 then
2244 return Skip;
2245 end if;
2246 end;
2248 -- Analyze if N is a writable actual of a function
2250 elsif Nkind (Parent (N)) = N_Function_Call then
2251 declare
2252 Call : constant Node_Id := Parent (N);
2253 Actual : Node_Id;
2254 Formal : Node_Id;
2256 begin
2257 Id := Get_Called_Entity (Call);
2259 -- In case of previous error, no check is possible
2261 if No (Id) then
2262 return Abandon;
2263 end if;
2265 if Ekind_In (Id, E_Function, E_Generic_Function)
2266 and then Has_Out_Or_In_Out_Parameter (Id)
2267 then
2268 Formal := First_Formal (Id);
2269 Actual := First_Actual (Call);
2270 while Present (Actual) and then Present (Formal) loop
2271 if Actual = N then
2272 if Ekind_In (Formal, E_Out_Parameter,
2273 E_In_Out_Parameter)
2274 then
2275 Is_Writable_Actual := True;
2276 end if;
2278 exit;
2279 end if;
2281 Next_Formal (Formal);
2282 Next_Actual (Actual);
2283 end loop;
2284 end if;
2285 end;
2286 end if;
2288 if Is_Writable_Actual then
2290 -- Skip checking the error in non-elementary types since
2291 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2292 -- store this actual in Writable_Actuals_List since it is
2293 -- needed to perform checks on other constructs that have
2294 -- arbitrary order of evaluation (for example, aggregates).
2296 if not Is_Elementary_Type (Etype (N)) then
2297 if not Contains (Writable_Actuals_List, N) then
2298 Append_New_Elmt (N, To => Writable_Actuals_List);
2299 end if;
2301 -- Second occurrence of an elementary type writable actual
2303 elsif Contains (Writable_Actuals_List, N) then
2305 -- Report the error on the second occurrence of the
2306 -- identifier. We cannot assume that N is the second
2307 -- occurrence (according to their location in the
2308 -- sources), since Traverse_Func walks through Field2
2309 -- last (see comment in the body of Traverse_Func).
2311 declare
2312 Elmt : Elmt_Id;
2314 begin
2315 Elmt := First_Elmt (Writable_Actuals_List);
2316 while Present (Elmt)
2317 and then Entity (Node (Elmt)) /= Entity (N)
2318 loop
2319 Next_Elmt (Elmt);
2320 end loop;
2322 if Sloc (N) > Sloc (Node (Elmt)) then
2323 Error_Node := N;
2324 else
2325 Error_Node := Node (Elmt);
2326 end if;
2328 Error_Msg_NE
2329 ("value may be affected by call to & "
2330 & "because order of evaluation is arbitrary",
2331 Error_Node, Id);
2332 return Abandon;
2333 end;
2335 -- First occurrence of a elementary type writable actual
2337 else
2338 Append_New_Elmt (N, To => Writable_Actuals_List);
2339 end if;
2341 else
2342 if Identifiers_List = No_Elist then
2343 Identifiers_List := New_Elmt_List;
2344 end if;
2346 Append_Unique_Elmt (N, Identifiers_List);
2347 end if;
2348 end if;
2350 return OK;
2351 end Check_Node;
2353 --------------
2354 -- Contains --
2355 --------------
2357 function Contains
2358 (List : Elist_Id;
2359 N : Node_Id) return Boolean
2361 pragma Assert (Nkind (N) in N_Has_Entity);
2363 Elmt : Elmt_Id;
2365 begin
2366 if List = No_Elist then
2367 return False;
2368 end if;
2370 Elmt := First_Elmt (List);
2371 while Present (Elmt) loop
2372 if Entity (Node (Elmt)) = Entity (N) then
2373 return True;
2374 else
2375 Next_Elmt (Elmt);
2376 end if;
2377 end loop;
2379 return False;
2380 end Contains;
2382 ------------------
2383 -- Do_Traversal --
2384 ------------------
2386 procedure Do_Traversal is new Traverse_Proc (Check_Node);
2387 -- The traversal procedure
2389 -- Start of processing for Collect_Identifiers
2391 begin
2392 if Present (Error_Node) then
2393 return;
2394 end if;
2396 if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
2397 return;
2398 end if;
2400 Do_Traversal (N);
2401 end Collect_Identifiers;
2403 -------------------------------
2404 -- Preanalyze_Without_Errors --
2405 -------------------------------
2407 procedure Preanalyze_Without_Errors (N : Node_Id) is
2408 Status : constant Boolean := Get_Ignore_Errors;
2409 begin
2410 Set_Ignore_Errors (True);
2411 Preanalyze (N);
2412 Set_Ignore_Errors (Status);
2413 end Preanalyze_Without_Errors;
2415 -- Start of processing for Check_Function_Writable_Actuals
2417 begin
2418 -- The check only applies to Ada 2012 code on which Check_Actuals has
2419 -- been set, and only to constructs that have multiple constituents
2420 -- whose order of evaluation is not specified by the language.
2422 if Ada_Version < Ada_2012
2423 or else not Check_Actuals (N)
2424 or else (not (Nkind (N) in N_Op)
2425 and then not (Nkind (N) in N_Membership_Test)
2426 and then not Nkind_In (N, N_Range,
2427 N_Aggregate,
2428 N_Extension_Aggregate,
2429 N_Full_Type_Declaration,
2430 N_Function_Call,
2431 N_Procedure_Call_Statement,
2432 N_Entry_Call_Statement))
2433 or else (Nkind (N) = N_Full_Type_Declaration
2434 and then not Is_Record_Type (Defining_Identifier (N)))
2436 -- In addition, this check only applies to source code, not to code
2437 -- generated by constraint checks.
2439 or else not Comes_From_Source (N)
2440 then
2441 return;
2442 end if;
2444 -- If a construct C has two or more direct constituents that are names
2445 -- or expressions whose evaluation may occur in an arbitrary order, at
2446 -- least one of which contains a function call with an in out or out
2447 -- parameter, then the construct is legal only if: for each name N that
2448 -- is passed as a parameter of mode in out or out to some inner function
2449 -- call C2 (not including the construct C itself), there is no other
2450 -- name anywhere within a direct constituent of the construct C other
2451 -- than the one containing C2, that is known to refer to the same
2452 -- object (RM 6.4.1(6.17/3)).
2454 case Nkind (N) is
2455 when N_Range =>
2456 Collect_Identifiers (Low_Bound (N));
2457 Collect_Identifiers (High_Bound (N));
2459 when N_Membership_Test
2460 | N_Op
2462 declare
2463 Expr : Node_Id;
2465 begin
2466 Collect_Identifiers (Left_Opnd (N));
2468 if Present (Right_Opnd (N)) then
2469 Collect_Identifiers (Right_Opnd (N));
2470 end if;
2472 if Nkind_In (N, N_In, N_Not_In)
2473 and then Present (Alternatives (N))
2474 then
2475 Expr := First (Alternatives (N));
2476 while Present (Expr) loop
2477 Collect_Identifiers (Expr);
2479 Next (Expr);
2480 end loop;
2481 end if;
2482 end;
2484 when N_Full_Type_Declaration =>
2485 declare
2486 function Get_Record_Part (N : Node_Id) return Node_Id;
2487 -- Return the record part of this record type definition
2489 function Get_Record_Part (N : Node_Id) return Node_Id is
2490 Type_Def : constant Node_Id := Type_Definition (N);
2491 begin
2492 if Nkind (Type_Def) = N_Derived_Type_Definition then
2493 return Record_Extension_Part (Type_Def);
2494 else
2495 return Type_Def;
2496 end if;
2497 end Get_Record_Part;
2499 Comp : Node_Id;
2500 Def_Id : Entity_Id := Defining_Identifier (N);
2501 Rec : Node_Id := Get_Record_Part (N);
2503 begin
2504 -- No need to perform any analysis if the record has no
2505 -- components
2507 if No (Rec) or else No (Component_List (Rec)) then
2508 return;
2509 end if;
2511 -- Collect the identifiers starting from the deepest
2512 -- derivation. Done to report the error in the deepest
2513 -- derivation.
2515 loop
2516 if Present (Component_List (Rec)) then
2517 Comp := First (Component_Items (Component_List (Rec)));
2518 while Present (Comp) loop
2519 if Nkind (Comp) = N_Component_Declaration
2520 and then Present (Expression (Comp))
2521 then
2522 Collect_Identifiers (Expression (Comp));
2523 end if;
2525 Next (Comp);
2526 end loop;
2527 end if;
2529 exit when No (Underlying_Type (Etype (Def_Id)))
2530 or else Base_Type (Underlying_Type (Etype (Def_Id)))
2531 = Def_Id;
2533 Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
2534 Rec := Get_Record_Part (Parent (Def_Id));
2535 end loop;
2536 end;
2538 when N_Entry_Call_Statement
2539 | N_Subprogram_Call
2541 declare
2542 Id : constant Entity_Id := Get_Called_Entity (N);
2543 Formal : Node_Id;
2544 Actual : Node_Id;
2546 begin
2547 Formal := First_Formal (Id);
2548 Actual := First_Actual (N);
2549 while Present (Actual) and then Present (Formal) loop
2550 if Ekind_In (Formal, E_Out_Parameter,
2551 E_In_Out_Parameter)
2552 then
2553 Collect_Identifiers (Actual);
2554 end if;
2556 Next_Formal (Formal);
2557 Next_Actual (Actual);
2558 end loop;
2559 end;
2561 when N_Aggregate
2562 | N_Extension_Aggregate
2564 declare
2565 Assoc : Node_Id;
2566 Choice : Node_Id;
2567 Comp_Expr : Node_Id;
2569 begin
2570 -- Handle the N_Others_Choice of array aggregates with static
2571 -- bounds. There is no need to perform this analysis in
2572 -- aggregates without static bounds since we cannot evaluate
2573 -- if the N_Others_Choice covers several elements. There is
2574 -- no need to handle the N_Others choice of record aggregates
2575 -- since at this stage it has been already expanded by
2576 -- Resolve_Record_Aggregate.
2578 if Is_Array_Type (Etype (N))
2579 and then Nkind (N) = N_Aggregate
2580 and then Present (Aggregate_Bounds (N))
2581 and then Compile_Time_Known_Bounds (Etype (N))
2582 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
2584 Expr_Value (Low_Bound (Aggregate_Bounds (N)))
2585 then
2586 declare
2587 Count_Components : Uint := Uint_0;
2588 Num_Components : Uint;
2589 Others_Assoc : Node_Id;
2590 Others_Choice : Node_Id := Empty;
2591 Others_Box_Present : Boolean := False;
2593 begin
2594 -- Count positional associations
2596 if Present (Expressions (N)) then
2597 Comp_Expr := First (Expressions (N));
2598 while Present (Comp_Expr) loop
2599 Count_Components := Count_Components + 1;
2600 Next (Comp_Expr);
2601 end loop;
2602 end if;
2604 -- Count the rest of elements and locate the N_Others
2605 -- choice (if any)
2607 Assoc := First (Component_Associations (N));
2608 while Present (Assoc) loop
2609 Choice := First (Choices (Assoc));
2610 while Present (Choice) loop
2611 if Nkind (Choice) = N_Others_Choice then
2612 Others_Assoc := Assoc;
2613 Others_Choice := Choice;
2614 Others_Box_Present := Box_Present (Assoc);
2616 -- Count several components
2618 elsif Nkind_In (Choice, N_Range,
2619 N_Subtype_Indication)
2620 or else (Is_Entity_Name (Choice)
2621 and then Is_Type (Entity (Choice)))
2622 then
2623 declare
2624 L, H : Node_Id;
2625 begin
2626 Get_Index_Bounds (Choice, L, H);
2627 pragma Assert
2628 (Compile_Time_Known_Value (L)
2629 and then Compile_Time_Known_Value (H));
2630 Count_Components :=
2631 Count_Components
2632 + Expr_Value (H) - Expr_Value (L) + 1;
2633 end;
2635 -- Count single component. No other case available
2636 -- since we are handling an aggregate with static
2637 -- bounds.
2639 else
2640 pragma Assert (Is_OK_Static_Expression (Choice)
2641 or else Nkind (Choice) = N_Identifier
2642 or else Nkind (Choice) = N_Integer_Literal);
2644 Count_Components := Count_Components + 1;
2645 end if;
2647 Next (Choice);
2648 end loop;
2650 Next (Assoc);
2651 end loop;
2653 Num_Components :=
2654 Expr_Value (High_Bound (Aggregate_Bounds (N))) -
2655 Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
2657 pragma Assert (Count_Components <= Num_Components);
2659 -- Handle the N_Others choice if it covers several
2660 -- components
2662 if Present (Others_Choice)
2663 and then (Num_Components - Count_Components) > 1
2664 then
2665 if not Others_Box_Present then
2667 -- At this stage, if expansion is active, the
2668 -- expression of the others choice has not been
2669 -- analyzed. Hence we generate a duplicate and
2670 -- we analyze it silently to have available the
2671 -- minimum decoration required to collect the
2672 -- identifiers.
2674 if not Expander_Active then
2675 Comp_Expr := Expression (Others_Assoc);
2676 else
2677 Comp_Expr :=
2678 New_Copy_Tree (Expression (Others_Assoc));
2679 Preanalyze_Without_Errors (Comp_Expr);
2680 end if;
2682 Collect_Identifiers (Comp_Expr);
2684 if Writable_Actuals_List /= No_Elist then
2686 -- As suggested by Robert, at current stage we
2687 -- report occurrences of this case as warnings.
2689 Error_Msg_N
2690 ("writable function parameter may affect "
2691 & "value in other component because order "
2692 & "of evaluation is unspecified??",
2693 Node (First_Elmt (Writable_Actuals_List)));
2694 end if;
2695 end if;
2696 end if;
2697 end;
2699 -- For an array aggregate, a discrete_choice_list that has
2700 -- a nonstatic range is considered as two or more separate
2701 -- occurrences of the expression (RM 6.4.1(20/3)).
2703 elsif Is_Array_Type (Etype (N))
2704 and then Nkind (N) = N_Aggregate
2705 and then Present (Aggregate_Bounds (N))
2706 and then not Compile_Time_Known_Bounds (Etype (N))
2707 then
2708 -- Collect identifiers found in the dynamic bounds
2710 declare
2711 Count_Components : Natural := 0;
2712 Low, High : Node_Id;
2714 begin
2715 Assoc := First (Component_Associations (N));
2716 while Present (Assoc) loop
2717 Choice := First (Choices (Assoc));
2718 while Present (Choice) loop
2719 if Nkind_In (Choice, N_Range,
2720 N_Subtype_Indication)
2721 or else (Is_Entity_Name (Choice)
2722 and then Is_Type (Entity (Choice)))
2723 then
2724 Get_Index_Bounds (Choice, Low, High);
2726 if not Compile_Time_Known_Value (Low) then
2727 Collect_Identifiers (Low);
2729 if No (Aggr_Error_Node) then
2730 Aggr_Error_Node := Low;
2731 end if;
2732 end if;
2734 if not Compile_Time_Known_Value (High) then
2735 Collect_Identifiers (High);
2737 if No (Aggr_Error_Node) then
2738 Aggr_Error_Node := High;
2739 end if;
2740 end if;
2742 -- The RM rule is violated if there is more than
2743 -- a single choice in a component association.
2745 else
2746 Count_Components := Count_Components + 1;
2748 if No (Aggr_Error_Node)
2749 and then Count_Components > 1
2750 then
2751 Aggr_Error_Node := Choice;
2752 end if;
2754 if not Compile_Time_Known_Value (Choice) then
2755 Collect_Identifiers (Choice);
2756 end if;
2757 end if;
2759 Next (Choice);
2760 end loop;
2762 Next (Assoc);
2763 end loop;
2764 end;
2765 end if;
2767 -- Handle ancestor part of extension aggregates
2769 if Nkind (N) = N_Extension_Aggregate then
2770 Collect_Identifiers (Ancestor_Part (N));
2771 end if;
2773 -- Handle positional associations
2775 if Present (Expressions (N)) then
2776 Comp_Expr := First (Expressions (N));
2777 while Present (Comp_Expr) loop
2778 if not Is_OK_Static_Expression (Comp_Expr) then
2779 Collect_Identifiers (Comp_Expr);
2780 end if;
2782 Next (Comp_Expr);
2783 end loop;
2784 end if;
2786 -- Handle discrete associations
2788 if Present (Component_Associations (N)) then
2789 Assoc := First (Component_Associations (N));
2790 while Present (Assoc) loop
2792 if not Box_Present (Assoc) then
2793 Choice := First (Choices (Assoc));
2794 while Present (Choice) loop
2796 -- For now we skip discriminants since it requires
2797 -- performing the analysis in two phases: first one
2798 -- analyzing discriminants and second one analyzing
2799 -- the rest of components since discriminants are
2800 -- evaluated prior to components: too much extra
2801 -- work to detect a corner case???
2803 if Nkind (Choice) in N_Has_Entity
2804 and then Present (Entity (Choice))
2805 and then Ekind (Entity (Choice)) = E_Discriminant
2806 then
2807 null;
2809 elsif Box_Present (Assoc) then
2810 null;
2812 else
2813 if not Analyzed (Expression (Assoc)) then
2814 Comp_Expr :=
2815 New_Copy_Tree (Expression (Assoc));
2816 Set_Parent (Comp_Expr, Parent (N));
2817 Preanalyze_Without_Errors (Comp_Expr);
2818 else
2819 Comp_Expr := Expression (Assoc);
2820 end if;
2822 Collect_Identifiers (Comp_Expr);
2823 end if;
2825 Next (Choice);
2826 end loop;
2827 end if;
2829 Next (Assoc);
2830 end loop;
2831 end if;
2832 end;
2834 when others =>
2835 return;
2836 end case;
2838 -- No further action needed if we already reported an error
2840 if Present (Error_Node) then
2841 return;
2842 end if;
2844 -- Check violation of RM 6.20/3 in aggregates
2846 if Present (Aggr_Error_Node)
2847 and then Writable_Actuals_List /= No_Elist
2848 then
2849 Error_Msg_N
2850 ("value may be affected by call in other component because they "
2851 & "are evaluated in unspecified order",
2852 Node (First_Elmt (Writable_Actuals_List)));
2853 return;
2854 end if;
2856 -- Check if some writable argument of a function is referenced
2858 if Writable_Actuals_List /= No_Elist
2859 and then Identifiers_List /= No_Elist
2860 then
2861 declare
2862 Elmt_1 : Elmt_Id;
2863 Elmt_2 : Elmt_Id;
2865 begin
2866 Elmt_1 := First_Elmt (Writable_Actuals_List);
2867 while Present (Elmt_1) loop
2868 Elmt_2 := First_Elmt (Identifiers_List);
2869 while Present (Elmt_2) loop
2870 if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
2871 case Nkind (Parent (Node (Elmt_2))) is
2872 when N_Aggregate
2873 | N_Component_Association
2874 | N_Component_Declaration
2876 Error_Msg_N
2877 ("value may be affected by call in other "
2878 & "component because they are evaluated "
2879 & "in unspecified order",
2880 Node (Elmt_2));
2882 when N_In
2883 | N_Not_In
2885 Error_Msg_N
2886 ("value may be affected by call in other "
2887 & "alternative because they are evaluated "
2888 & "in unspecified order",
2889 Node (Elmt_2));
2891 when others =>
2892 Error_Msg_N
2893 ("value of actual may be affected by call in "
2894 & "other actual because they are evaluated "
2895 & "in unspecified order",
2896 Node (Elmt_2));
2897 end case;
2898 end if;
2900 Next_Elmt (Elmt_2);
2901 end loop;
2903 Next_Elmt (Elmt_1);
2904 end loop;
2905 end;
2906 end if;
2907 end Check_Function_Writable_Actuals;
2909 --------------------------------
2910 -- Check_Implicit_Dereference --
2911 --------------------------------
2913 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
2914 Disc : Entity_Id;
2915 Desig : Entity_Id;
2916 Nam : Node_Id;
2918 begin
2919 if Nkind (N) = N_Indexed_Component
2920 and then Present (Generalized_Indexing (N))
2921 then
2922 Nam := Generalized_Indexing (N);
2923 else
2924 Nam := N;
2925 end if;
2927 if Ada_Version < Ada_2012
2928 or else not Has_Implicit_Dereference (Base_Type (Typ))
2929 then
2930 return;
2932 elsif not Comes_From_Source (N)
2933 and then Nkind (N) /= N_Indexed_Component
2934 then
2935 return;
2937 elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
2938 null;
2940 else
2941 Disc := First_Discriminant (Typ);
2942 while Present (Disc) loop
2943 if Has_Implicit_Dereference (Disc) then
2944 Desig := Designated_Type (Etype (Disc));
2945 Add_One_Interp (Nam, Disc, Desig);
2947 -- If the node is a generalized indexing, add interpretation
2948 -- to that node as well, for subsequent resolution.
2950 if Nkind (N) = N_Indexed_Component then
2951 Add_One_Interp (N, Disc, Desig);
2952 end if;
2954 -- If the operation comes from a generic unit and the context
2955 -- is a selected component, the selector name may be global
2956 -- and set in the instance already. Remove the entity to
2957 -- force resolution of the selected component, and the
2958 -- generation of an explicit dereference if needed.
2960 if In_Instance
2961 and then Nkind (Parent (Nam)) = N_Selected_Component
2962 then
2963 Set_Entity (Selector_Name (Parent (Nam)), Empty);
2964 end if;
2966 exit;
2967 end if;
2969 Next_Discriminant (Disc);
2970 end loop;
2971 end if;
2972 end Check_Implicit_Dereference;
2974 ----------------------------------
2975 -- Check_Internal_Protected_Use --
2976 ----------------------------------
2978 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
2979 S : Entity_Id;
2980 Prot : Entity_Id;
2982 begin
2983 Prot := Empty;
2985 S := Current_Scope;
2986 while Present (S) loop
2987 if S = Standard_Standard then
2988 exit;
2990 elsif Ekind (S) = E_Function
2991 and then Ekind (Scope (S)) = E_Protected_Type
2992 then
2993 Prot := Scope (S);
2994 exit;
2995 end if;
2997 S := Scope (S);
2998 end loop;
3000 if Present (Prot)
3001 and then Scope (Nam) = Prot
3002 and then Ekind (Nam) /= E_Function
3003 then
3004 -- An indirect function call (e.g. a callback within a protected
3005 -- function body) is not statically illegal. If the access type is
3006 -- anonymous and is the type of an access parameter, the scope of Nam
3007 -- will be the protected type, but it is not a protected operation.
3009 if Ekind (Nam) = E_Subprogram_Type
3010 and then Nkind (Associated_Node_For_Itype (Nam)) =
3011 N_Function_Specification
3012 then
3013 null;
3015 elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
3016 Error_Msg_N
3017 ("within protected function cannot use protected procedure in "
3018 & "renaming or as generic actual", N);
3020 elsif Nkind (N) = N_Attribute_Reference then
3021 Error_Msg_N
3022 ("within protected function cannot take access of protected "
3023 & "procedure", N);
3025 else
3026 Error_Msg_N
3027 ("within protected function, protected object is constant", N);
3028 Error_Msg_N
3029 ("\cannot call operation that may modify it", N);
3030 end if;
3031 end if;
3033 -- Verify that an internal call does not appear within a precondition
3034 -- of a protected operation. This implements AI12-0166.
3035 -- The precondition aspect has been rewritten as a pragma Precondition
3036 -- and we check whether the scope of the called subprogram is the same
3037 -- as that of the entity to which the aspect applies.
3039 if Convention (Nam) = Convention_Protected then
3040 declare
3041 P : Node_Id;
3043 begin
3044 P := Parent (N);
3045 while Present (P) loop
3046 if Nkind (P) = N_Pragma
3047 and then Chars (Pragma_Identifier (P)) = Name_Precondition
3048 and then From_Aspect_Specification (P)
3049 and then
3050 Scope (Entity (Corresponding_Aspect (P))) = Scope (Nam)
3051 then
3052 Error_Msg_N
3053 ("internal call cannot appear in precondition of "
3054 & "protected operation", N);
3055 return;
3057 elsif Nkind (P) = N_Pragma
3058 and then Chars (Pragma_Identifier (P)) = Name_Contract_Cases
3059 then
3060 -- Check whether call is in a case guard. It is legal in a
3061 -- consequence.
3063 P := N;
3064 while Present (P) loop
3065 if Nkind (Parent (P)) = N_Component_Association
3066 and then P /= Expression (Parent (P))
3067 then
3068 Error_Msg_N
3069 ("internal call cannot appear in case guard in a "
3070 & "contract case", N);
3071 end if;
3073 P := Parent (P);
3074 end loop;
3076 return;
3078 elsif Nkind (P) = N_Parameter_Specification
3079 and then Scope (Current_Scope) = Scope (Nam)
3080 and then Nkind_In (Parent (P), N_Entry_Declaration,
3081 N_Subprogram_Declaration)
3082 then
3083 Error_Msg_N
3084 ("internal call cannot appear in default for formal of "
3085 & "protected operation", N);
3086 return;
3087 end if;
3089 P := Parent (P);
3090 end loop;
3091 end;
3092 end if;
3093 end Check_Internal_Protected_Use;
3095 ---------------------------------------
3096 -- Check_Later_Vs_Basic_Declarations --
3097 ---------------------------------------
3099 procedure Check_Later_Vs_Basic_Declarations
3100 (Decls : List_Id;
3101 During_Parsing : Boolean)
3103 Body_Sloc : Source_Ptr;
3104 Decl : Node_Id;
3106 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
3107 -- Return whether Decl is considered as a declarative item.
3108 -- When During_Parsing is True, the semantics of Ada 83 is followed.
3109 -- When During_Parsing is False, the semantics of SPARK is followed.
3111 -------------------------------
3112 -- Is_Later_Declarative_Item --
3113 -------------------------------
3115 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
3116 begin
3117 if Nkind (Decl) in N_Later_Decl_Item then
3118 return True;
3120 elsif Nkind (Decl) = N_Pragma then
3121 return True;
3123 elsif During_Parsing then
3124 return False;
3126 -- In SPARK, a package declaration is not considered as a later
3127 -- declarative item.
3129 elsif Nkind (Decl) = N_Package_Declaration then
3130 return False;
3132 -- In SPARK, a renaming is considered as a later declarative item
3134 elsif Nkind (Decl) in N_Renaming_Declaration then
3135 return True;
3137 else
3138 return False;
3139 end if;
3140 end Is_Later_Declarative_Item;
3142 -- Start of processing for Check_Later_Vs_Basic_Declarations
3144 begin
3145 Decl := First (Decls);
3147 -- Loop through sequence of basic declarative items
3149 Outer : while Present (Decl) loop
3150 if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
3151 and then Nkind (Decl) not in N_Body_Stub
3152 then
3153 Next (Decl);
3155 -- Once a body is encountered, we only allow later declarative
3156 -- items. The inner loop checks the rest of the list.
3158 else
3159 Body_Sloc := Sloc (Decl);
3161 Inner : while Present (Decl) loop
3162 if not Is_Later_Declarative_Item (Decl) then
3163 if During_Parsing then
3164 if Ada_Version = Ada_83 then
3165 Error_Msg_Sloc := Body_Sloc;
3166 Error_Msg_N
3167 ("(Ada 83) decl cannot appear after body#", Decl);
3168 end if;
3169 else
3170 Error_Msg_Sloc := Body_Sloc;
3171 Check_SPARK_05_Restriction
3172 ("decl cannot appear after body#", Decl);
3173 end if;
3174 end if;
3176 Next (Decl);
3177 end loop Inner;
3178 end if;
3179 end loop Outer;
3180 end Check_Later_Vs_Basic_Declarations;
3182 ---------------------------
3183 -- Check_No_Hidden_State --
3184 ---------------------------
3186 procedure Check_No_Hidden_State (Id : Entity_Id) is
3187 Context : Entity_Id := Empty;
3188 Not_Visible : Boolean := False;
3189 Scop : Entity_Id;
3191 begin
3192 pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
3194 -- Find the proper context where the object or state appears
3196 Scop := Scope (Id);
3197 while Present (Scop) loop
3198 Context := Scop;
3200 -- Keep track of the context's visibility
3202 Not_Visible := Not_Visible or else In_Private_Part (Context);
3204 -- Prevent the search from going too far
3206 if Context = Standard_Standard then
3207 return;
3209 -- Objects and states that appear immediately within a subprogram or
3210 -- inside a construct nested within a subprogram do not introduce a
3211 -- hidden state. They behave as local variable declarations.
3213 elsif Is_Subprogram (Context) then
3214 return;
3216 -- When examining a package body, use the entity of the spec as it
3217 -- carries the abstract state declarations.
3219 elsif Ekind (Context) = E_Package_Body then
3220 Context := Spec_Entity (Context);
3221 end if;
3223 -- Stop the traversal when a package subject to a null abstract state
3224 -- has been found.
3226 if Ekind_In (Context, E_Generic_Package, E_Package)
3227 and then Has_Null_Abstract_State (Context)
3228 then
3229 exit;
3230 end if;
3232 Scop := Scope (Scop);
3233 end loop;
3235 -- At this point we know that there is at least one package with a null
3236 -- abstract state in visibility. Emit an error message unconditionally
3237 -- if the entity being processed is a state because the placement of the
3238 -- related package is irrelevant. This is not the case for objects as
3239 -- the intermediate context matters.
3241 if Present (Context)
3242 and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
3243 then
3244 Error_Msg_N ("cannot introduce hidden state &", Id);
3245 Error_Msg_NE ("\package & has null abstract state", Id, Context);
3246 end if;
3247 end Check_No_Hidden_State;
3249 ----------------------------------------
3250 -- Check_Nonvolatile_Function_Profile --
3251 ----------------------------------------
3253 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
3254 Formal : Entity_Id;
3256 begin
3257 -- Inspect all formal parameters
3259 Formal := First_Formal (Func_Id);
3260 while Present (Formal) loop
3261 if Is_Effectively_Volatile (Etype (Formal)) then
3262 Error_Msg_NE
3263 ("nonvolatile function & cannot have a volatile parameter",
3264 Formal, Func_Id);
3265 end if;
3267 Next_Formal (Formal);
3268 end loop;
3270 -- Inspect the return type
3272 if Is_Effectively_Volatile (Etype (Func_Id)) then
3273 Error_Msg_NE
3274 ("nonvolatile function & cannot have a volatile return type",
3275 Result_Definition (Parent (Func_Id)), Func_Id);
3276 end if;
3277 end Check_Nonvolatile_Function_Profile;
3279 -----------------------------
3280 -- Check_Part_Of_Reference --
3281 -----------------------------
3283 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
3284 Conc_Obj : constant Entity_Id := Encapsulating_State (Var_Id);
3285 Decl : Node_Id;
3286 OK_Use : Boolean := False;
3287 Par : Node_Id;
3288 Prag_Nam : Name_Id;
3289 Spec_Id : Entity_Id;
3291 begin
3292 -- Traverse the parent chain looking for a suitable context for the
3293 -- reference to the concurrent constituent.
3295 Par := Parent (Ref);
3296 while Present (Par) loop
3297 if Nkind (Par) = N_Pragma then
3298 Prag_Nam := Pragma_Name (Par);
3300 -- A concurrent constituent is allowed to appear in pragmas
3301 -- Initial_Condition and Initializes as this is part of the
3302 -- elaboration checks for the constituent (SPARK RM 9.3).
3304 if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
3305 OK_Use := True;
3306 exit;
3308 -- When the reference appears within pragma Depends or Global,
3309 -- check whether the pragma applies to a single task type. Note
3310 -- that the pragma is not encapsulated by the type definition,
3311 -- but this is still a valid context.
3313 elsif Nam_In (Prag_Nam, Name_Depends, Name_Global) then
3314 Decl := Find_Related_Declaration_Or_Body (Par);
3316 if Nkind (Decl) = N_Object_Declaration
3317 and then Defining_Entity (Decl) = Conc_Obj
3318 then
3319 OK_Use := True;
3320 exit;
3321 end if;
3322 end if;
3324 -- The reference appears somewhere in the definition of the single
3325 -- protected/task type (SPARK RM 9.3).
3327 elsif Nkind_In (Par, N_Single_Protected_Declaration,
3328 N_Single_Task_Declaration)
3329 and then Defining_Entity (Par) = Conc_Obj
3330 then
3331 OK_Use := True;
3332 exit;
3334 -- The reference appears within the expanded declaration or the body
3335 -- of the single protected/task type (SPARK RM 9.3).
3337 elsif Nkind_In (Par, N_Protected_Body,
3338 N_Protected_Type_Declaration,
3339 N_Task_Body,
3340 N_Task_Type_Declaration)
3341 then
3342 Spec_Id := Unique_Defining_Entity (Par);
3344 if Present (Anonymous_Object (Spec_Id))
3345 and then Anonymous_Object (Spec_Id) = Conc_Obj
3346 then
3347 OK_Use := True;
3348 exit;
3349 end if;
3351 -- The reference has been relocated within an internally generated
3352 -- package or subprogram. Assume that the reference is legal as the
3353 -- real check was already performed in the original context of the
3354 -- reference.
3356 elsif Nkind_In (Par, N_Package_Body,
3357 N_Package_Declaration,
3358 N_Subprogram_Body,
3359 N_Subprogram_Declaration)
3360 and then not Comes_From_Source (Par)
3361 then
3362 -- Continue to examine the context if the reference appears in a
3363 -- subprogram body which was previously an expression function,
3364 -- unless this is during preanalysis (when In_Spec_Expression is
3365 -- True), as the body may not yet be inserted in the tree.
3367 if Nkind (Par) = N_Subprogram_Body
3368 and then Was_Expression_Function (Par)
3369 and then not In_Spec_Expression
3370 then
3371 null;
3373 -- Otherwise the reference is legal
3375 else
3376 OK_Use := True;
3377 exit;
3378 end if;
3380 -- The reference has been relocated to an inlined body for GNATprove.
3381 -- Assume that the reference is legal as the real check was already
3382 -- performed in the original context of the reference.
3384 elsif GNATprove_Mode
3385 and then Nkind (Par) = N_Subprogram_Body
3386 and then Chars (Defining_Entity (Par)) = Name_uParent
3387 then
3388 OK_Use := True;
3389 exit;
3390 end if;
3392 Par := Parent (Par);
3393 end loop;
3395 -- The reference is illegal as it appears outside the definition or
3396 -- body of the single protected/task type.
3398 if not OK_Use then
3399 Error_Msg_NE
3400 ("reference to variable & cannot appear in this context",
3401 Ref, Var_Id);
3402 Error_Msg_Name_1 := Chars (Var_Id);
3404 if Is_Single_Protected_Object (Conc_Obj) then
3405 Error_Msg_NE
3406 ("\% is constituent of single protected type &", Ref, Conc_Obj);
3408 else
3409 Error_Msg_NE
3410 ("\% is constituent of single task type &", Ref, Conc_Obj);
3411 end if;
3412 end if;
3413 end Check_Part_Of_Reference;
3415 ------------------------------------------
3416 -- Check_Potentially_Blocking_Operation --
3417 ------------------------------------------
3419 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
3420 S : Entity_Id;
3422 begin
3423 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3424 -- When pragma Detect_Blocking is active, the run time will raise
3425 -- Program_Error. Here we only issue a warning, since we generally
3426 -- support the use of potentially blocking operations in the absence
3427 -- of the pragma.
3429 -- Indirect blocking through a subprogram call cannot be diagnosed
3430 -- statically without interprocedural analysis, so we do not attempt
3431 -- to do it here.
3433 S := Scope (Current_Scope);
3434 while Present (S) and then S /= Standard_Standard loop
3435 if Is_Protected_Type (S) then
3436 Error_Msg_N
3437 ("potentially blocking operation in protected operation??", N);
3438 return;
3439 end if;
3441 S := Scope (S);
3442 end loop;
3443 end Check_Potentially_Blocking_Operation;
3445 ------------------------------------
3446 -- Check_Previous_Null_Procedure --
3447 ------------------------------------
3449 procedure Check_Previous_Null_Procedure
3450 (Decl : Node_Id;
3451 Prev : Entity_Id)
3453 begin
3454 if Ekind (Prev) = E_Procedure
3455 and then Nkind (Parent (Prev)) = N_Procedure_Specification
3456 and then Null_Present (Parent (Prev))
3457 then
3458 Error_Msg_Sloc := Sloc (Prev);
3459 Error_Msg_N
3460 ("declaration cannot complete previous null procedure#", Decl);
3461 end if;
3462 end Check_Previous_Null_Procedure;
3464 ---------------------------------
3465 -- Check_Result_And_Post_State --
3466 ---------------------------------
3468 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
3469 procedure Check_Result_And_Post_State_In_Pragma
3470 (Prag : Node_Id;
3471 Result_Seen : in out Boolean);
3472 -- Determine whether pragma Prag mentions attribute 'Result and whether
3473 -- the pragma contains an expression that evaluates differently in pre-
3474 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3475 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3477 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
3478 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3479 -- formal parameter.
3481 -------------------------------------------
3482 -- Check_Result_And_Post_State_In_Pragma --
3483 -------------------------------------------
3485 procedure Check_Result_And_Post_State_In_Pragma
3486 (Prag : Node_Id;
3487 Result_Seen : in out Boolean)
3489 procedure Check_Conjunct (Expr : Node_Id);
3490 -- Check an individual conjunct in a conjunction of Boolean
3491 -- expressions, connected by "and" or "and then" operators.
3493 procedure Check_Conjuncts (Expr : Node_Id);
3494 -- Apply the post-state check to every conjunct in an expression, in
3495 -- case this is a conjunction of Boolean expressions. Otherwise apply
3496 -- it to the expression as a whole.
3498 procedure Check_Expression (Expr : Node_Id);
3499 -- Perform the 'Result and post-state checks on a given expression
3501 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3502 -- Attempt to find attribute 'Result in a subtree denoted by N
3504 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3505 -- Determine whether source node N denotes "True" or "False"
3507 function Mentions_Post_State (N : Node_Id) return Boolean;
3508 -- Determine whether a subtree denoted by N mentions any construct
3509 -- that denotes a post-state.
3511 procedure Check_Function_Result is
3512 new Traverse_Proc (Is_Function_Result);
3514 --------------------
3515 -- Check_Conjunct --
3516 --------------------
3518 procedure Check_Conjunct (Expr : Node_Id) is
3519 function Adjust_Message (Msg : String) return String;
3520 -- Prepend a prefix to the input message Msg denoting that the
3521 -- message applies to a conjunct in the expression, when this
3522 -- is the case.
3524 function Applied_On_Conjunct return Boolean;
3525 -- Returns True if the message applies to a conjunct in the
3526 -- expression, instead of the whole expression.
3528 function Has_Global_Output (Subp : Entity_Id) return Boolean;
3529 -- Returns True if Subp has an output in its Global contract
3531 function Has_No_Output (Subp : Entity_Id) return Boolean;
3532 -- Returns True if Subp has no declared output: no function
3533 -- result, no output parameter, and no output in its Global
3534 -- contract.
3536 --------------------
3537 -- Adjust_Message --
3538 --------------------
3540 function Adjust_Message (Msg : String) return String is
3541 begin
3542 if Applied_On_Conjunct then
3543 return "conjunct in " & Msg;
3544 else
3545 return Msg;
3546 end if;
3547 end Adjust_Message;
3549 -------------------------
3550 -- Applied_On_Conjunct --
3551 -------------------------
3553 function Applied_On_Conjunct return Boolean is
3554 begin
3555 -- Expr is the conjunct of an enclosing "and" expression
3557 return Nkind (Parent (Expr)) in N_Subexpr
3559 -- or Expr is a conjunct of an enclosing "and then"
3560 -- expression in a postcondition aspect that was split into
3561 -- multiple pragmas. The first conjunct has the "and then"
3562 -- expression as Original_Node, and other conjuncts have
3563 -- Split_PCC set to True.
3565 or else Nkind (Original_Node (Expr)) = N_And_Then
3566 or else Split_PPC (Prag);
3567 end Applied_On_Conjunct;
3569 -----------------------
3570 -- Has_Global_Output --
3571 -----------------------
3573 function Has_Global_Output (Subp : Entity_Id) return Boolean is
3574 Global : constant Node_Id := Get_Pragma (Subp, Pragma_Global);
3575 List : Node_Id;
3576 Assoc : Node_Id;
3578 begin
3579 if No (Global) then
3580 return False;
3581 end if;
3583 List := Expression (Get_Argument (Global, Subp));
3585 -- Empty list (no global items) or single global item
3586 -- declaration (only input items).
3588 if Nkind_In (List, N_Null,
3589 N_Expanded_Name,
3590 N_Identifier,
3591 N_Selected_Component)
3592 then
3593 return False;
3595 -- Simple global list (only input items) or moded global list
3596 -- declaration.
3598 elsif Nkind (List) = N_Aggregate then
3599 if Present (Expressions (List)) then
3600 return False;
3602 else
3603 Assoc := First (Component_Associations (List));
3604 while Present (Assoc) loop
3605 if Chars (First (Choices (Assoc))) /= Name_Input then
3606 return True;
3607 end if;
3609 Next (Assoc);
3610 end loop;
3612 return False;
3613 end if;
3615 -- To accommodate partial decoration of disabled SPARK
3616 -- features, this routine may be called with illegal input.
3617 -- If this is the case, do not raise Program_Error.
3619 else
3620 return False;
3621 end if;
3622 end Has_Global_Output;
3624 -------------------
3625 -- Has_No_Output --
3626 -------------------
3628 function Has_No_Output (Subp : Entity_Id) return Boolean is
3629 Param : Node_Id;
3631 begin
3632 -- A function has its result as output
3634 if Ekind (Subp) = E_Function then
3635 return False;
3636 end if;
3638 -- An OUT or IN OUT parameter is an output
3640 Param := First_Formal (Subp);
3641 while Present (Param) loop
3642 if Ekind_In (Param, E_Out_Parameter, E_In_Out_Parameter) then
3643 return False;
3644 end if;
3646 Next_Formal (Param);
3647 end loop;
3649 -- An item of mode Output or In_Out in the Global contract is
3650 -- an output.
3652 if Has_Global_Output (Subp) then
3653 return False;
3654 end if;
3656 return True;
3657 end Has_No_Output;
3659 -- Local variables
3661 Err_Node : Node_Id;
3662 -- Error node when reporting a warning on a (refined)
3663 -- postcondition.
3665 -- Start of processing for Check_Conjunct
3667 begin
3668 if Applied_On_Conjunct then
3669 Err_Node := Expr;
3670 else
3671 Err_Node := Prag;
3672 end if;
3674 -- Do not report missing reference to outcome in postcondition if
3675 -- either the postcondition is trivially True or False, or if the
3676 -- subprogram is ghost and has no declared output.
3678 if not Is_Trivial_Boolean (Expr)
3679 and then not Mentions_Post_State (Expr)
3680 and then not (Is_Ghost_Entity (Subp_Id)
3681 and then Has_No_Output (Subp_Id))
3682 then
3683 if Pragma_Name (Prag) = Name_Contract_Cases then
3684 Error_Msg_NE (Adjust_Message
3685 ("contract case does not check the outcome of calling "
3686 & "&?T?"), Expr, Subp_Id);
3688 elsif Pragma_Name (Prag) = Name_Refined_Post then
3689 Error_Msg_NE (Adjust_Message
3690 ("refined postcondition does not check the outcome of "
3691 & "calling &?T?"), Err_Node, Subp_Id);
3693 else
3694 Error_Msg_NE (Adjust_Message
3695 ("postcondition does not check the outcome of calling "
3696 & "&?T?"), Err_Node, Subp_Id);
3697 end if;
3698 end if;
3699 end Check_Conjunct;
3701 ---------------------
3702 -- Check_Conjuncts --
3703 ---------------------
3705 procedure Check_Conjuncts (Expr : Node_Id) is
3706 begin
3707 if Nkind_In (Expr, N_Op_And, N_And_Then) then
3708 Check_Conjuncts (Left_Opnd (Expr));
3709 Check_Conjuncts (Right_Opnd (Expr));
3710 else
3711 Check_Conjunct (Expr);
3712 end if;
3713 end Check_Conjuncts;
3715 ----------------------
3716 -- Check_Expression --
3717 ----------------------
3719 procedure Check_Expression (Expr : Node_Id) is
3720 begin
3721 if not Is_Trivial_Boolean (Expr) then
3722 Check_Function_Result (Expr);
3723 Check_Conjuncts (Expr);
3724 end if;
3725 end Check_Expression;
3727 ------------------------
3728 -- Is_Function_Result --
3729 ------------------------
3731 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3732 begin
3733 if Is_Attribute_Result (N) then
3734 Result_Seen := True;
3735 return Abandon;
3737 -- Continue the traversal
3739 else
3740 return OK;
3741 end if;
3742 end Is_Function_Result;
3744 ------------------------
3745 -- Is_Trivial_Boolean --
3746 ------------------------
3748 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3749 begin
3750 return
3751 Comes_From_Source (N)
3752 and then Is_Entity_Name (N)
3753 and then (Entity (N) = Standard_True
3754 or else
3755 Entity (N) = Standard_False);
3756 end Is_Trivial_Boolean;
3758 -------------------------
3759 -- Mentions_Post_State --
3760 -------------------------
3762 function Mentions_Post_State (N : Node_Id) return Boolean is
3763 Post_State_Seen : Boolean := False;
3765 function Is_Post_State (N : Node_Id) return Traverse_Result;
3766 -- Attempt to find a construct that denotes a post-state. If this
3767 -- is the case, set flag Post_State_Seen.
3769 -------------------
3770 -- Is_Post_State --
3771 -------------------
3773 function Is_Post_State (N : Node_Id) return Traverse_Result is
3774 Ent : Entity_Id;
3776 begin
3777 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3778 Post_State_Seen := True;
3779 return Abandon;
3781 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3782 Ent := Entity (N);
3784 -- Treat an undecorated reference as OK
3786 if No (Ent)
3788 -- A reference to an assignable entity is considered a
3789 -- change in the post-state of a subprogram.
3791 or else Ekind_In (Ent, E_Generic_In_Out_Parameter,
3792 E_In_Out_Parameter,
3793 E_Out_Parameter,
3794 E_Variable)
3796 -- The reference may be modified through a dereference
3798 or else (Is_Access_Type (Etype (Ent))
3799 and then Nkind (Parent (N)) =
3800 N_Selected_Component)
3801 then
3802 Post_State_Seen := True;
3803 return Abandon;
3804 end if;
3806 elsif Nkind (N) = N_Attribute_Reference then
3807 if Attribute_Name (N) = Name_Old then
3808 return Skip;
3810 elsif Attribute_Name (N) = Name_Result then
3811 Post_State_Seen := True;
3812 return Abandon;
3813 end if;
3814 end if;
3816 return OK;
3817 end Is_Post_State;
3819 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3821 -- Start of processing for Mentions_Post_State
3823 begin
3824 Find_Post_State (N);
3826 return Post_State_Seen;
3827 end Mentions_Post_State;
3829 -- Local variables
3831 Expr : constant Node_Id :=
3832 Get_Pragma_Arg
3833 (First (Pragma_Argument_Associations (Prag)));
3834 Nam : constant Name_Id := Pragma_Name (Prag);
3835 CCase : Node_Id;
3837 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3839 begin
3840 -- Examine all consequences
3842 if Nam = Name_Contract_Cases then
3843 CCase := First (Component_Associations (Expr));
3844 while Present (CCase) loop
3845 Check_Expression (Expression (CCase));
3847 Next (CCase);
3848 end loop;
3850 -- Examine the expression of a postcondition
3852 else pragma Assert (Nam_In (Nam, Name_Postcondition,
3853 Name_Refined_Post));
3854 Check_Expression (Expr);
3855 end if;
3856 end Check_Result_And_Post_State_In_Pragma;
3858 --------------------------
3859 -- Has_In_Out_Parameter --
3860 --------------------------
3862 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
3863 Formal : Entity_Id;
3865 begin
3866 -- Traverse the formals looking for an IN OUT parameter
3868 Formal := First_Formal (Subp_Id);
3869 while Present (Formal) loop
3870 if Ekind (Formal) = E_In_Out_Parameter then
3871 return True;
3872 end if;
3874 Next_Formal (Formal);
3875 end loop;
3877 return False;
3878 end Has_In_Out_Parameter;
3880 -- Local variables
3882 Items : constant Node_Id := Contract (Subp_Id);
3883 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
3884 Case_Prag : Node_Id := Empty;
3885 Post_Prag : Node_Id := Empty;
3886 Prag : Node_Id;
3887 Seen_In_Case : Boolean := False;
3888 Seen_In_Post : Boolean := False;
3889 Spec_Id : Entity_Id;
3891 -- Start of processing for Check_Result_And_Post_State
3893 begin
3894 -- The lack of attribute 'Result or a post-state is classified as a
3895 -- suspicious contract. Do not perform the check if the corresponding
3896 -- swich is not set.
3898 if not Warn_On_Suspicious_Contract then
3899 return;
3901 -- Nothing to do if there is no contract
3903 elsif No (Items) then
3904 return;
3905 end if;
3907 -- Retrieve the entity of the subprogram spec (if any)
3909 if Nkind (Subp_Decl) = N_Subprogram_Body
3910 and then Present (Corresponding_Spec (Subp_Decl))
3911 then
3912 Spec_Id := Corresponding_Spec (Subp_Decl);
3914 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
3915 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
3916 then
3917 Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
3919 else
3920 Spec_Id := Subp_Id;
3921 end if;
3923 -- Examine all postconditions for attribute 'Result and a post-state
3925 Prag := Pre_Post_Conditions (Items);
3926 while Present (Prag) loop
3927 if Nam_In (Pragma_Name_Unmapped (Prag),
3928 Name_Postcondition, Name_Refined_Post)
3929 and then not Error_Posted (Prag)
3930 then
3931 Post_Prag := Prag;
3932 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
3933 end if;
3935 Prag := Next_Pragma (Prag);
3936 end loop;
3938 -- Examine the contract cases of the subprogram for attribute 'Result
3939 -- and a post-state.
3941 Prag := Contract_Test_Cases (Items);
3942 while Present (Prag) loop
3943 if Pragma_Name (Prag) = Name_Contract_Cases
3944 and then not Error_Posted (Prag)
3945 then
3946 Case_Prag := Prag;
3947 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
3948 end if;
3950 Prag := Next_Pragma (Prag);
3951 end loop;
3953 -- Do not emit any errors if the subprogram is not a function
3955 if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
3956 null;
3958 -- Regardless of whether the function has postconditions or contract
3959 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3960 -- parameter is always treated as a result.
3962 elsif Has_In_Out_Parameter (Spec_Id) then
3963 null;
3965 -- The function has both a postcondition and contract cases and they do
3966 -- not mention attribute 'Result.
3968 elsif Present (Case_Prag)
3969 and then not Seen_In_Case
3970 and then Present (Post_Prag)
3971 and then not Seen_In_Post
3972 then
3973 Error_Msg_N
3974 ("neither postcondition nor contract cases mention function "
3975 & "result?T?", Post_Prag);
3977 -- The function has contract cases only and they do not mention
3978 -- attribute 'Result.
3980 elsif Present (Case_Prag) and then not Seen_In_Case then
3981 Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
3983 -- The function has postconditions only and they do not mention
3984 -- attribute 'Result.
3986 elsif Present (Post_Prag) and then not Seen_In_Post then
3987 Error_Msg_N
3988 ("postcondition does not mention function result?T?", Post_Prag);
3989 end if;
3990 end Check_Result_And_Post_State;
3992 -----------------------------
3993 -- Check_State_Refinements --
3994 -----------------------------
3996 procedure Check_State_Refinements
3997 (Context : Node_Id;
3998 Is_Main_Unit : Boolean := False)
4000 procedure Check_Package (Pack : Node_Id);
4001 -- Verify that all abstract states of a [generic] package denoted by its
4002 -- declarative node Pack have proper refinement. Recursively verify the
4003 -- visible and private declarations of the [generic] package for other
4004 -- nested packages.
4006 procedure Check_Packages_In (Decls : List_Id);
4007 -- Seek out [generic] package declarations within declarative list Decls
4008 -- and verify the status of their abstract state refinement.
4010 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
4011 -- Determine whether construct N is subject to pragma SPARK_Mode Off
4013 -------------------
4014 -- Check_Package --
4015 -------------------
4017 procedure Check_Package (Pack : Node_Id) is
4018 Body_Id : constant Entity_Id := Corresponding_Body (Pack);
4019 Spec : constant Node_Id := Specification (Pack);
4020 States : constant Elist_Id :=
4021 Abstract_States (Defining_Entity (Pack));
4023 State_Elmt : Elmt_Id;
4024 State_Id : Entity_Id;
4026 begin
4027 -- Do not verify proper state refinement when the package is subject
4028 -- to pragma SPARK_Mode Off because this disables the requirement for
4029 -- state refinement.
4031 if SPARK_Mode_Is_Off (Pack) then
4032 null;
4034 -- State refinement can only occur in a completing package body. Do
4035 -- not verify proper state refinement when the body is subject to
4036 -- pragma SPARK_Mode Off because this disables the requirement for
4037 -- state refinement.
4039 elsif Present (Body_Id)
4040 and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
4041 then
4042 null;
4044 -- Do not verify proper state refinement when the package is an
4045 -- instance as this check was already performed in the generic.
4047 elsif Present (Generic_Parent (Spec)) then
4048 null;
4050 -- Otherwise examine the contents of the package
4052 else
4053 if Present (States) then
4054 State_Elmt := First_Elmt (States);
4055 while Present (State_Elmt) loop
4056 State_Id := Node (State_Elmt);
4058 -- Emit an error when a non-null state lacks any form of
4059 -- refinement.
4061 if not Is_Null_State (State_Id)
4062 and then not Has_Null_Refinement (State_Id)
4063 and then not Has_Non_Null_Refinement (State_Id)
4064 then
4065 Error_Msg_N ("state & requires refinement", State_Id);
4066 end if;
4068 Next_Elmt (State_Elmt);
4069 end loop;
4070 end if;
4072 Check_Packages_In (Visible_Declarations (Spec));
4073 Check_Packages_In (Private_Declarations (Spec));
4074 end if;
4075 end Check_Package;
4077 -----------------------
4078 -- Check_Packages_In --
4079 -----------------------
4081 procedure Check_Packages_In (Decls : List_Id) is
4082 Decl : Node_Id;
4084 begin
4085 if Present (Decls) then
4086 Decl := First (Decls);
4087 while Present (Decl) loop
4088 if Nkind_In (Decl, N_Generic_Package_Declaration,
4089 N_Package_Declaration)
4090 then
4091 Check_Package (Decl);
4092 end if;
4094 Next (Decl);
4095 end loop;
4096 end if;
4097 end Check_Packages_In;
4099 -----------------------
4100 -- SPARK_Mode_Is_Off --
4101 -----------------------
4103 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
4104 Id : constant Entity_Id := Defining_Entity (N);
4105 Prag : constant Node_Id := SPARK_Pragma (Id);
4107 begin
4108 -- Default the mode to "off" when the context is an instance and all
4109 -- SPARK_Mode pragmas found within are to be ignored.
4111 if Ignore_SPARK_Mode_Pragmas (Id) then
4112 return True;
4114 else
4115 return
4116 Present (Prag)
4117 and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
4118 end if;
4119 end SPARK_Mode_Is_Off;
4121 -- Start of processing for Check_State_Refinements
4123 begin
4124 -- A block may declare a nested package
4126 if Nkind (Context) = N_Block_Statement then
4127 Check_Packages_In (Declarations (Context));
4129 -- An entry, protected, subprogram, or task body may declare a nested
4130 -- package.
4132 elsif Nkind_In (Context, N_Entry_Body,
4133 N_Protected_Body,
4134 N_Subprogram_Body,
4135 N_Task_Body)
4136 then
4137 -- Do not verify proper state refinement when the body is subject to
4138 -- pragma SPARK_Mode Off because this disables the requirement for
4139 -- state refinement.
4141 if not SPARK_Mode_Is_Off (Context) then
4142 Check_Packages_In (Declarations (Context));
4143 end if;
4145 -- A package body may declare a nested package
4147 elsif Nkind (Context) = N_Package_Body then
4148 Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));
4150 -- Do not verify proper state refinement when the body is subject to
4151 -- pragma SPARK_Mode Off because this disables the requirement for
4152 -- state refinement.
4154 if not SPARK_Mode_Is_Off (Context) then
4155 Check_Packages_In (Declarations (Context));
4156 end if;
4158 -- A library level [generic] package may declare a nested package
4160 elsif Nkind_In (Context, N_Generic_Package_Declaration,
4161 N_Package_Declaration)
4162 and then Is_Main_Unit
4163 then
4164 Check_Package (Context);
4165 end if;
4166 end Check_State_Refinements;
4168 ------------------------------
4169 -- Check_Unprotected_Access --
4170 ------------------------------
4172 procedure Check_Unprotected_Access
4173 (Context : Node_Id;
4174 Expr : Node_Id)
4176 Cont_Encl_Typ : Entity_Id;
4177 Pref_Encl_Typ : Entity_Id;
4179 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
4180 -- Check whether Obj is a private component of a protected object.
4181 -- Return the protected type where the component resides, Empty
4182 -- otherwise.
4184 function Is_Public_Operation return Boolean;
4185 -- Verify that the enclosing operation is callable from outside the
4186 -- protected object, to minimize false positives.
4188 ------------------------------
4189 -- Enclosing_Protected_Type --
4190 ------------------------------
4192 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
4193 begin
4194 if Is_Entity_Name (Obj) then
4195 declare
4196 Ent : Entity_Id := Entity (Obj);
4198 begin
4199 -- The object can be a renaming of a private component, use
4200 -- the original record component.
4202 if Is_Prival (Ent) then
4203 Ent := Prival_Link (Ent);
4204 end if;
4206 if Is_Protected_Type (Scope (Ent)) then
4207 return Scope (Ent);
4208 end if;
4209 end;
4210 end if;
4212 -- For indexed and selected components, recursively check the prefix
4214 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
4215 return Enclosing_Protected_Type (Prefix (Obj));
4217 -- The object does not denote a protected component
4219 else
4220 return Empty;
4221 end if;
4222 end Enclosing_Protected_Type;
4224 -------------------------
4225 -- Is_Public_Operation --
4226 -------------------------
4228 function Is_Public_Operation return Boolean is
4229 S : Entity_Id;
4230 E : Entity_Id;
4232 begin
4233 S := Current_Scope;
4234 while Present (S) and then S /= Pref_Encl_Typ loop
4235 if Scope (S) = Pref_Encl_Typ then
4236 E := First_Entity (Pref_Encl_Typ);
4237 while Present (E)
4238 and then E /= First_Private_Entity (Pref_Encl_Typ)
4239 loop
4240 if E = S then
4241 return True;
4242 end if;
4244 Next_Entity (E);
4245 end loop;
4246 end if;
4248 S := Scope (S);
4249 end loop;
4251 return False;
4252 end Is_Public_Operation;
4254 -- Start of processing for Check_Unprotected_Access
4256 begin
4257 if Nkind (Expr) = N_Attribute_Reference
4258 and then Attribute_Name (Expr) = Name_Unchecked_Access
4259 then
4260 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
4261 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
4263 -- Check whether we are trying to export a protected component to a
4264 -- context with an equal or lower access level.
4266 if Present (Pref_Encl_Typ)
4267 and then No (Cont_Encl_Typ)
4268 and then Is_Public_Operation
4269 and then Scope_Depth (Pref_Encl_Typ) >=
4270 Object_Access_Level (Context)
4271 then
4272 Error_Msg_N
4273 ("??possible unprotected access to protected data", Expr);
4274 end if;
4275 end if;
4276 end Check_Unprotected_Access;
4278 ------------------------------
4279 -- Check_Unused_Body_States --
4280 ------------------------------
4282 procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
4283 procedure Process_Refinement_Clause
4284 (Clause : Node_Id;
4285 States : Elist_Id);
4286 -- Inspect all constituents of refinement clause Clause and remove any
4287 -- matches from body state list States.
4289 procedure Report_Unused_Body_States (States : Elist_Id);
4290 -- Emit errors for each abstract state or object found in list States
4292 -------------------------------
4293 -- Process_Refinement_Clause --
4294 -------------------------------
4296 procedure Process_Refinement_Clause
4297 (Clause : Node_Id;
4298 States : Elist_Id)
4300 procedure Process_Constituent (Constit : Node_Id);
4301 -- Remove constituent Constit from body state list States
4303 -------------------------
4304 -- Process_Constituent --
4305 -------------------------
4307 procedure Process_Constituent (Constit : Node_Id) is
4308 Constit_Id : Entity_Id;
4310 begin
4311 -- Guard against illegal constituents. Only abstract states and
4312 -- objects can appear on the right hand side of a refinement.
4314 if Is_Entity_Name (Constit) then
4315 Constit_Id := Entity_Of (Constit);
4317 if Present (Constit_Id)
4318 and then Ekind_In (Constit_Id, E_Abstract_State,
4319 E_Constant,
4320 E_Variable)
4321 then
4322 Remove (States, Constit_Id);
4323 end if;
4324 end if;
4325 end Process_Constituent;
4327 -- Local variables
4329 Constit : Node_Id;
4331 -- Start of processing for Process_Refinement_Clause
4333 begin
4334 if Nkind (Clause) = N_Component_Association then
4335 Constit := Expression (Clause);
4337 -- Multiple constituents appear as an aggregate
4339 if Nkind (Constit) = N_Aggregate then
4340 Constit := First (Expressions (Constit));
4341 while Present (Constit) loop
4342 Process_Constituent (Constit);
4343 Next (Constit);
4344 end loop;
4346 -- Various forms of a single constituent
4348 else
4349 Process_Constituent (Constit);
4350 end if;
4351 end if;
4352 end Process_Refinement_Clause;
4354 -------------------------------
4355 -- Report_Unused_Body_States --
4356 -------------------------------
4358 procedure Report_Unused_Body_States (States : Elist_Id) is
4359 Posted : Boolean := False;
4360 State_Elmt : Elmt_Id;
4361 State_Id : Entity_Id;
4363 begin
4364 if Present (States) then
4365 State_Elmt := First_Elmt (States);
4366 while Present (State_Elmt) loop
4367 State_Id := Node (State_Elmt);
4369 -- Constants are part of the hidden state of a package, but the
4370 -- compiler cannot determine whether they have variable input
4371 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
4372 -- hidden state. Do not emit an error when a constant does not
4373 -- participate in a state refinement, even though it acts as a
4374 -- hidden state.
4376 if Ekind (State_Id) = E_Constant then
4377 null;
4379 -- Generate an error message of the form:
4381 -- body of package ... has unused hidden states
4382 -- abstract state ... defined at ...
4383 -- variable ... defined at ...
4385 else
4386 if not Posted then
4387 Posted := True;
4388 SPARK_Msg_N
4389 ("body of package & has unused hidden states", Body_Id);
4390 end if;
4392 Error_Msg_Sloc := Sloc (State_Id);
4394 if Ekind (State_Id) = E_Abstract_State then
4395 SPARK_Msg_NE
4396 ("\abstract state & defined #", Body_Id, State_Id);
4398 else
4399 SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
4400 end if;
4401 end if;
4403 Next_Elmt (State_Elmt);
4404 end loop;
4405 end if;
4406 end Report_Unused_Body_States;
4408 -- Local variables
4410 Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
4411 Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
4412 Clause : Node_Id;
4413 States : Elist_Id;
4415 -- Start of processing for Check_Unused_Body_States
4417 begin
4418 -- Inspect the clauses of pragma Refined_State and determine whether all
4419 -- visible states declared within the package body participate in the
4420 -- refinement.
4422 if Present (Prag) then
4423 Clause := Expression (Get_Argument (Prag, Spec_Id));
4424 States := Collect_Body_States (Body_Id);
4426 -- Multiple non-null state refinements appear as an aggregate
4428 if Nkind (Clause) = N_Aggregate then
4429 Clause := First (Component_Associations (Clause));
4430 while Present (Clause) loop
4431 Process_Refinement_Clause (Clause, States);
4432 Next (Clause);
4433 end loop;
4435 -- Various forms of a single state refinement
4437 else
4438 Process_Refinement_Clause (Clause, States);
4439 end if;
4441 -- Ensure that all abstract states and objects declared in the
4442 -- package body state space are utilized as constituents.
4444 Report_Unused_Body_States (States);
4445 end if;
4446 end Check_Unused_Body_States;
4448 -----------------
4449 -- Choice_List --
4450 -----------------
4452 function Choice_List (N : Node_Id) return List_Id is
4453 begin
4454 if Nkind (N) = N_Iterated_Component_Association then
4455 return Discrete_Choices (N);
4456 else
4457 return Choices (N);
4458 end if;
4459 end Choice_List;
4461 -------------------------
4462 -- Collect_Body_States --
4463 -------------------------
4465 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
4466 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
4467 -- Determine whether object Obj_Id is a suitable visible state of a
4468 -- package body.
4470 procedure Collect_Visible_States
4471 (Pack_Id : Entity_Id;
4472 States : in out Elist_Id);
4473 -- Gather the entities of all abstract states and objects declared in
4474 -- the visible state space of package Pack_Id.
4476 ----------------------------
4477 -- Collect_Visible_States --
4478 ----------------------------
4480 procedure Collect_Visible_States
4481 (Pack_Id : Entity_Id;
4482 States : in out Elist_Id)
4484 Item_Id : Entity_Id;
4486 begin
4487 -- Traverse the entity chain of the package and inspect all visible
4488 -- items.
4490 Item_Id := First_Entity (Pack_Id);
4491 while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
4493 -- Do not consider internally generated items as those cannot be
4494 -- named and participate in refinement.
4496 if not Comes_From_Source (Item_Id) then
4497 null;
4499 elsif Ekind (Item_Id) = E_Abstract_State then
4500 Append_New_Elmt (Item_Id, States);
4502 elsif Ekind_In (Item_Id, E_Constant, E_Variable)
4503 and then Is_Visible_Object (Item_Id)
4504 then
4505 Append_New_Elmt (Item_Id, States);
4507 -- Recursively gather the visible states of a nested package
4509 elsif Ekind (Item_Id) = E_Package then
4510 Collect_Visible_States (Item_Id, States);
4511 end if;
4513 Next_Entity (Item_Id);
4514 end loop;
4515 end Collect_Visible_States;
4517 -----------------------
4518 -- Is_Visible_Object --
4519 -----------------------
4521 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
4522 begin
4523 -- Objects that map generic formals to their actuals are not visible
4524 -- from outside the generic instantiation.
4526 if Present (Corresponding_Generic_Association
4527 (Declaration_Node (Obj_Id)))
4528 then
4529 return False;
4531 -- Constituents of a single protected/task type act as components of
4532 -- the type and are not visible from outside the type.
4534 elsif Ekind (Obj_Id) = E_Variable
4535 and then Present (Encapsulating_State (Obj_Id))
4536 and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
4537 then
4538 return False;
4540 else
4541 return True;
4542 end if;
4543 end Is_Visible_Object;
4545 -- Local variables
4547 Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
4548 Decl : Node_Id;
4549 Item_Id : Entity_Id;
4550 States : Elist_Id := No_Elist;
4552 -- Start of processing for Collect_Body_States
4554 begin
4555 -- Inspect the declarations of the body looking for source objects,
4556 -- packages and package instantiations. Note that even though this
4557 -- processing is very similar to Collect_Visible_States, a package
4558 -- body does not have a First/Next_Entity list.
4560 Decl := First (Declarations (Body_Decl));
4561 while Present (Decl) loop
4563 -- Capture source objects as internally generated temporaries cannot
4564 -- be named and participate in refinement.
4566 if Nkind (Decl) = N_Object_Declaration then
4567 Item_Id := Defining_Entity (Decl);
4569 if Comes_From_Source (Item_Id)
4570 and then Is_Visible_Object (Item_Id)
4571 then
4572 Append_New_Elmt (Item_Id, States);
4573 end if;
4575 -- Capture the visible abstract states and objects of a source
4576 -- package [instantiation].
4578 elsif Nkind (Decl) = N_Package_Declaration then
4579 Item_Id := Defining_Entity (Decl);
4581 if Comes_From_Source (Item_Id) then
4582 Collect_Visible_States (Item_Id, States);
4583 end if;
4584 end if;
4586 Next (Decl);
4587 end loop;
4589 return States;
4590 end Collect_Body_States;
4592 ------------------------
4593 -- Collect_Interfaces --
4594 ------------------------
4596 procedure Collect_Interfaces
4597 (T : Entity_Id;
4598 Ifaces_List : out Elist_Id;
4599 Exclude_Parents : Boolean := False;
4600 Use_Full_View : Boolean := True)
4602 procedure Collect (Typ : Entity_Id);
4603 -- Subsidiary subprogram used to traverse the whole list
4604 -- of directly and indirectly implemented interfaces
4606 -------------
4607 -- Collect --
4608 -------------
4610 procedure Collect (Typ : Entity_Id) is
4611 Ancestor : Entity_Id;
4612 Full_T : Entity_Id;
4613 Id : Node_Id;
4614 Iface : Entity_Id;
4616 begin
4617 Full_T := Typ;
4619 -- Handle private types and subtypes
4621 if Use_Full_View
4622 and then Is_Private_Type (Typ)
4623 and then Present (Full_View (Typ))
4624 then
4625 Full_T := Full_View (Typ);
4627 if Ekind (Full_T) = E_Record_Subtype then
4628 Full_T := Etype (Typ);
4630 if Present (Full_View (Full_T)) then
4631 Full_T := Full_View (Full_T);
4632 end if;
4633 end if;
4634 end if;
4636 -- Include the ancestor if we are generating the whole list of
4637 -- abstract interfaces.
4639 if Etype (Full_T) /= Typ
4641 -- Protect the frontend against wrong sources. For example:
4643 -- package P is
4644 -- type A is tagged null record;
4645 -- type B is new A with private;
4646 -- type C is new A with private;
4647 -- private
4648 -- type B is new C with null record;
4649 -- type C is new B with null record;
4650 -- end P;
4652 and then Etype (Full_T) /= T
4653 then
4654 Ancestor := Etype (Full_T);
4655 Collect (Ancestor);
4657 if Is_Interface (Ancestor) and then not Exclude_Parents then
4658 Append_Unique_Elmt (Ancestor, Ifaces_List);
4659 end if;
4660 end if;
4662 -- Traverse the graph of ancestor interfaces
4664 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
4665 Id := First (Abstract_Interface_List (Full_T));
4666 while Present (Id) loop
4667 Iface := Etype (Id);
4669 -- Protect against wrong uses. For example:
4670 -- type I is interface;
4671 -- type O is tagged null record;
4672 -- type Wrong is new I and O with null record; -- ERROR
4674 if Is_Interface (Iface) then
4675 if Exclude_Parents
4676 and then Etype (T) /= T
4677 and then Interface_Present_In_Ancestor (Etype (T), Iface)
4678 then
4679 null;
4680 else
4681 Collect (Iface);
4682 Append_Unique_Elmt (Iface, Ifaces_List);
4683 end if;
4684 end if;
4686 Next (Id);
4687 end loop;
4688 end if;
4689 end Collect;
4691 -- Start of processing for Collect_Interfaces
4693 begin
4694 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
4695 Ifaces_List := New_Elmt_List;
4696 Collect (T);
4697 end Collect_Interfaces;
4699 ----------------------------------
4700 -- Collect_Interface_Components --
4701 ----------------------------------
4703 procedure Collect_Interface_Components
4704 (Tagged_Type : Entity_Id;
4705 Components_List : out Elist_Id)
4707 procedure Collect (Typ : Entity_Id);
4708 -- Subsidiary subprogram used to climb to the parents
4710 -------------
4711 -- Collect --
4712 -------------
4714 procedure Collect (Typ : Entity_Id) is
4715 Tag_Comp : Entity_Id;
4716 Parent_Typ : Entity_Id;
4718 begin
4719 -- Handle private types
4721 if Present (Full_View (Etype (Typ))) then
4722 Parent_Typ := Full_View (Etype (Typ));
4723 else
4724 Parent_Typ := Etype (Typ);
4725 end if;
4727 if Parent_Typ /= Typ
4729 -- Protect the frontend against wrong sources. For example:
4731 -- package P is
4732 -- type A is tagged null record;
4733 -- type B is new A with private;
4734 -- type C is new A with private;
4735 -- private
4736 -- type B is new C with null record;
4737 -- type C is new B with null record;
4738 -- end P;
4740 and then Parent_Typ /= Tagged_Type
4741 then
4742 Collect (Parent_Typ);
4743 end if;
4745 -- Collect the components containing tags of secondary dispatch
4746 -- tables.
4748 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
4749 while Present (Tag_Comp) loop
4750 pragma Assert (Present (Related_Type (Tag_Comp)));
4751 Append_Elmt (Tag_Comp, Components_List);
4753 Tag_Comp := Next_Tag_Component (Tag_Comp);
4754 end loop;
4755 end Collect;
4757 -- Start of processing for Collect_Interface_Components
4759 begin
4760 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
4761 and then Is_Tagged_Type (Tagged_Type));
4763 Components_List := New_Elmt_List;
4764 Collect (Tagged_Type);
4765 end Collect_Interface_Components;
4767 -----------------------------
4768 -- Collect_Interfaces_Info --
4769 -----------------------------
4771 procedure Collect_Interfaces_Info
4772 (T : Entity_Id;
4773 Ifaces_List : out Elist_Id;
4774 Components_List : out Elist_Id;
4775 Tags_List : out Elist_Id)
4777 Comps_List : Elist_Id;
4778 Comp_Elmt : Elmt_Id;
4779 Comp_Iface : Entity_Id;
4780 Iface_Elmt : Elmt_Id;
4781 Iface : Entity_Id;
4783 function Search_Tag (Iface : Entity_Id) return Entity_Id;
4784 -- Search for the secondary tag associated with the interface type
4785 -- Iface that is implemented by T.
4787 ----------------
4788 -- Search_Tag --
4789 ----------------
4791 function Search_Tag (Iface : Entity_Id) return Entity_Id is
4792 ADT : Elmt_Id;
4793 begin
4794 if not Is_CPP_Class (T) then
4795 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
4796 else
4797 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
4798 end if;
4800 while Present (ADT)
4801 and then Is_Tag (Node (ADT))
4802 and then Related_Type (Node (ADT)) /= Iface
4803 loop
4804 -- Skip secondary dispatch table referencing thunks to user
4805 -- defined primitives covered by this interface.
4807 pragma Assert (Has_Suffix (Node (ADT), 'P'));
4808 Next_Elmt (ADT);
4810 -- Skip secondary dispatch tables of Ada types
4812 if not Is_CPP_Class (T) then
4814 -- Skip secondary dispatch table referencing thunks to
4815 -- predefined primitives.
4817 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
4818 Next_Elmt (ADT);
4820 -- Skip secondary dispatch table referencing user-defined
4821 -- primitives covered by this interface.
4823 pragma Assert (Has_Suffix (Node (ADT), 'D'));
4824 Next_Elmt (ADT);
4826 -- Skip secondary dispatch table referencing predefined
4827 -- primitives.
4829 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
4830 Next_Elmt (ADT);
4831 end if;
4832 end loop;
4834 pragma Assert (Is_Tag (Node (ADT)));
4835 return Node (ADT);
4836 end Search_Tag;
4838 -- Start of processing for Collect_Interfaces_Info
4840 begin
4841 Collect_Interfaces (T, Ifaces_List);
4842 Collect_Interface_Components (T, Comps_List);
4844 -- Search for the record component and tag associated with each
4845 -- interface type of T.
4847 Components_List := New_Elmt_List;
4848 Tags_List := New_Elmt_List;
4850 Iface_Elmt := First_Elmt (Ifaces_List);
4851 while Present (Iface_Elmt) loop
4852 Iface := Node (Iface_Elmt);
4854 -- Associate the primary tag component and the primary dispatch table
4855 -- with all the interfaces that are parents of T
4857 if Is_Ancestor (Iface, T, Use_Full_View => True) then
4858 Append_Elmt (First_Tag_Component (T), Components_List);
4859 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
4861 -- Otherwise search for the tag component and secondary dispatch
4862 -- table of Iface
4864 else
4865 Comp_Elmt := First_Elmt (Comps_List);
4866 while Present (Comp_Elmt) loop
4867 Comp_Iface := Related_Type (Node (Comp_Elmt));
4869 if Comp_Iface = Iface
4870 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
4871 then
4872 Append_Elmt (Node (Comp_Elmt), Components_List);
4873 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
4874 exit;
4875 end if;
4877 Next_Elmt (Comp_Elmt);
4878 end loop;
4879 pragma Assert (Present (Comp_Elmt));
4880 end if;
4882 Next_Elmt (Iface_Elmt);
4883 end loop;
4884 end Collect_Interfaces_Info;
4886 ---------------------
4887 -- Collect_Parents --
4888 ---------------------
4890 procedure Collect_Parents
4891 (T : Entity_Id;
4892 List : out Elist_Id;
4893 Use_Full_View : Boolean := True)
4895 Current_Typ : Entity_Id := T;
4896 Parent_Typ : Entity_Id;
4898 begin
4899 List := New_Elmt_List;
4901 -- No action if the if the type has no parents
4903 if T = Etype (T) then
4904 return;
4905 end if;
4907 loop
4908 Parent_Typ := Etype (Current_Typ);
4910 if Is_Private_Type (Parent_Typ)
4911 and then Present (Full_View (Parent_Typ))
4912 and then Use_Full_View
4913 then
4914 Parent_Typ := Full_View (Base_Type (Parent_Typ));
4915 end if;
4917 Append_Elmt (Parent_Typ, List);
4919 exit when Parent_Typ = Current_Typ;
4920 Current_Typ := Parent_Typ;
4921 end loop;
4922 end Collect_Parents;
4924 ----------------------------------
4925 -- Collect_Primitive_Operations --
4926 ----------------------------------
4928 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
4929 B_Type : constant Entity_Id := Base_Type (T);
4930 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
4931 B_Scope : Entity_Id := Scope (B_Type);
4932 Op_List : Elist_Id;
4933 Formal : Entity_Id;
4934 Is_Prim : Boolean;
4935 Is_Type_In_Pkg : Boolean;
4936 Formal_Derived : Boolean := False;
4937 Id : Entity_Id;
4939 function Match (E : Entity_Id) return Boolean;
4940 -- True if E's base type is B_Type, or E is of an anonymous access type
4941 -- and the base type of its designated type is B_Type.
4943 -----------
4944 -- Match --
4945 -----------
4947 function Match (E : Entity_Id) return Boolean is
4948 Etyp : Entity_Id := Etype (E);
4950 begin
4951 if Ekind (Etyp) = E_Anonymous_Access_Type then
4952 Etyp := Designated_Type (Etyp);
4953 end if;
4955 -- In Ada 2012 a primitive operation may have a formal of an
4956 -- incomplete view of the parent type.
4958 return Base_Type (Etyp) = B_Type
4959 or else
4960 (Ada_Version >= Ada_2012
4961 and then Ekind (Etyp) = E_Incomplete_Type
4962 and then Full_View (Etyp) = B_Type);
4963 end Match;
4965 -- Start of processing for Collect_Primitive_Operations
4967 begin
4968 -- For tagged types, the primitive operations are collected as they
4969 -- are declared, and held in an explicit list which is simply returned.
4971 if Is_Tagged_Type (B_Type) then
4972 return Primitive_Operations (B_Type);
4974 -- An untagged generic type that is a derived type inherits the
4975 -- primitive operations of its parent type. Other formal types only
4976 -- have predefined operators, which are not explicitly represented.
4978 elsif Is_Generic_Type (B_Type) then
4979 if Nkind (B_Decl) = N_Formal_Type_Declaration
4980 and then Nkind (Formal_Type_Definition (B_Decl)) =
4981 N_Formal_Derived_Type_Definition
4982 then
4983 Formal_Derived := True;
4984 else
4985 return New_Elmt_List;
4986 end if;
4987 end if;
4989 Op_List := New_Elmt_List;
4991 if B_Scope = Standard_Standard then
4992 if B_Type = Standard_String then
4993 Append_Elmt (Standard_Op_Concat, Op_List);
4995 elsif B_Type = Standard_Wide_String then
4996 Append_Elmt (Standard_Op_Concatw, Op_List);
4998 else
4999 null;
5000 end if;
5002 -- Locate the primitive subprograms of the type
5004 else
5005 -- The primitive operations appear after the base type, except
5006 -- if the derivation happens within the private part of B_Scope
5007 -- and the type is a private type, in which case both the type
5008 -- and some primitive operations may appear before the base
5009 -- type, and the list of candidates starts after the type.
5011 if In_Open_Scopes (B_Scope)
5012 and then Scope (T) = B_Scope
5013 and then In_Private_Part (B_Scope)
5014 then
5015 Id := Next_Entity (T);
5017 -- In Ada 2012, If the type has an incomplete partial view, there
5018 -- may be primitive operations declared before the full view, so
5019 -- we need to start scanning from the incomplete view, which is
5020 -- earlier on the entity chain.
5022 elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
5023 and then Present (Incomplete_View (Parent (B_Type)))
5024 then
5025 Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
5027 -- If T is a derived from a type with an incomplete view declared
5028 -- elsewhere, that incomplete view is irrelevant, we want the
5029 -- operations in the scope of T.
5031 if Scope (Id) /= Scope (B_Type) then
5032 Id := Next_Entity (B_Type);
5033 end if;
5035 else
5036 Id := Next_Entity (B_Type);
5037 end if;
5039 -- Set flag if this is a type in a package spec
5041 Is_Type_In_Pkg :=
5042 Is_Package_Or_Generic_Package (B_Scope)
5043 and then
5044 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
5045 N_Package_Body;
5047 while Present (Id) loop
5049 -- Test whether the result type or any of the parameter types of
5050 -- each subprogram following the type match that type when the
5051 -- type is declared in a package spec, is a derived type, or the
5052 -- subprogram is marked as primitive. (The Is_Primitive test is
5053 -- needed to find primitives of nonderived types in declarative
5054 -- parts that happen to override the predefined "=" operator.)
5056 -- Note that generic formal subprograms are not considered to be
5057 -- primitive operations and thus are never inherited.
5059 if Is_Overloadable (Id)
5060 and then (Is_Type_In_Pkg
5061 or else Is_Derived_Type (B_Type)
5062 or else Is_Primitive (Id))
5063 and then Nkind (Parent (Parent (Id)))
5064 not in N_Formal_Subprogram_Declaration
5065 then
5066 Is_Prim := False;
5068 if Match (Id) then
5069 Is_Prim := True;
5071 else
5072 Formal := First_Formal (Id);
5073 while Present (Formal) loop
5074 if Match (Formal) then
5075 Is_Prim := True;
5076 exit;
5077 end if;
5079 Next_Formal (Formal);
5080 end loop;
5081 end if;
5083 -- For a formal derived type, the only primitives are the ones
5084 -- inherited from the parent type. Operations appearing in the
5085 -- package declaration are not primitive for it.
5087 if Is_Prim
5088 and then (not Formal_Derived or else Present (Alias (Id)))
5089 then
5090 -- In the special case of an equality operator aliased to
5091 -- an overriding dispatching equality belonging to the same
5092 -- type, we don't include it in the list of primitives.
5093 -- This avoids inheriting multiple equality operators when
5094 -- deriving from untagged private types whose full type is
5095 -- tagged, which can otherwise cause ambiguities. Note that
5096 -- this should only happen for this kind of untagged parent
5097 -- type, since normally dispatching operations are inherited
5098 -- using the type's Primitive_Operations list.
5100 if Chars (Id) = Name_Op_Eq
5101 and then Is_Dispatching_Operation (Id)
5102 and then Present (Alias (Id))
5103 and then Present (Overridden_Operation (Alias (Id)))
5104 and then Base_Type (Etype (First_Entity (Id))) =
5105 Base_Type (Etype (First_Entity (Alias (Id))))
5106 then
5107 null;
5109 -- Include the subprogram in the list of primitives
5111 else
5112 Append_Elmt (Id, Op_List);
5113 end if;
5114 end if;
5115 end if;
5117 Next_Entity (Id);
5119 -- For a type declared in System, some of its operations may
5120 -- appear in the target-specific extension to System.
5122 if No (Id)
5123 and then B_Scope = RTU_Entity (System)
5124 and then Present_System_Aux
5125 then
5126 B_Scope := System_Aux_Id;
5127 Id := First_Entity (System_Aux_Id);
5128 end if;
5129 end loop;
5130 end if;
5132 return Op_List;
5133 end Collect_Primitive_Operations;
5135 -----------------------------------
5136 -- Compile_Time_Constraint_Error --
5137 -----------------------------------
5139 function Compile_Time_Constraint_Error
5140 (N : Node_Id;
5141 Msg : String;
5142 Ent : Entity_Id := Empty;
5143 Loc : Source_Ptr := No_Location;
5144 Warn : Boolean := False) return Node_Id
5146 Msgc : String (1 .. Msg'Length + 3);
5147 -- Copy of message, with room for possible ?? or << and ! at end
5149 Msgl : Natural;
5150 Wmsg : Boolean;
5151 Eloc : Source_Ptr;
5153 -- Start of processing for Compile_Time_Constraint_Error
5155 begin
5156 -- If this is a warning, convert it into an error if we are in code
5157 -- subject to SPARK_Mode being set On, unless Warn is True to force a
5158 -- warning. The rationale is that a compile-time constraint error should
5159 -- lead to an error instead of a warning when SPARK_Mode is On, but in
5160 -- a few cases we prefer to issue a warning and generate both a suitable
5161 -- run-time error in GNAT and a suitable check message in GNATprove.
5162 -- Those cases are those that likely correspond to deactivated SPARK
5163 -- code, so that this kind of code can be compiled and analyzed instead
5164 -- of being rejected.
5166 Error_Msg_Warn := Warn or SPARK_Mode /= On;
5168 -- A static constraint error in an instance body is not a fatal error.
5169 -- we choose to inhibit the message altogether, because there is no
5170 -- obvious node (for now) on which to post it. On the other hand the
5171 -- offending node must be replaced with a constraint_error in any case.
5173 -- No messages are generated if we already posted an error on this node
5175 if not Error_Posted (N) then
5176 if Loc /= No_Location then
5177 Eloc := Loc;
5178 else
5179 Eloc := Sloc (N);
5180 end if;
5182 -- Copy message to Msgc, converting any ? in the message into <
5183 -- instead, so that we have an error in GNATprove mode.
5185 Msgl := Msg'Length;
5187 for J in 1 .. Msgl loop
5188 if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
5189 Msgc (J) := '<';
5190 else
5191 Msgc (J) := Msg (J);
5192 end if;
5193 end loop;
5195 -- Message is a warning, even in Ada 95 case
5197 if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
5198 Wmsg := True;
5200 -- In Ada 83, all messages are warnings. In the private part and the
5201 -- body of an instance, constraint_checks are only warnings. We also
5202 -- make this a warning if the Warn parameter is set.
5204 elsif Warn
5205 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
5206 or else In_Instance_Not_Visible
5207 then
5208 Msgl := Msgl + 1;
5209 Msgc (Msgl) := '<';
5210 Msgl := Msgl + 1;
5211 Msgc (Msgl) := '<';
5212 Wmsg := True;
5214 -- Otherwise we have a real error message (Ada 95 static case) and we
5215 -- make this an unconditional message. Note that in the warning case
5216 -- we do not make the message unconditional, it seems reasonable to
5217 -- delete messages like this (about exceptions that will be raised)
5218 -- in dead code.
5220 else
5221 Wmsg := False;
5222 Msgl := Msgl + 1;
5223 Msgc (Msgl) := '!';
5224 end if;
5226 -- One more test, skip the warning if the related expression is
5227 -- statically unevaluated, since we don't want to warn about what
5228 -- will happen when something is evaluated if it never will be
5229 -- evaluated.
5231 if not Is_Statically_Unevaluated (N) then
5232 if Present (Ent) then
5233 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
5234 else
5235 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
5236 end if;
5238 if Wmsg then
5240 -- Check whether the context is an Init_Proc
5242 if Inside_Init_Proc then
5243 declare
5244 Conc_Typ : constant Entity_Id :=
5245 Corresponding_Concurrent_Type
5246 (Entity (Parameter_Type (First
5247 (Parameter_Specifications
5248 (Parent (Current_Scope))))));
5250 begin
5251 -- Don't complain if the corresponding concurrent type
5252 -- doesn't come from source (i.e. a single task/protected
5253 -- object).
5255 if Present (Conc_Typ)
5256 and then not Comes_From_Source (Conc_Typ)
5257 then
5258 Error_Msg_NEL
5259 ("\& [<<", N, Standard_Constraint_Error, Eloc);
5261 else
5262 if GNATprove_Mode then
5263 Error_Msg_NEL
5264 ("\& would have been raised for objects of this "
5265 & "type", N, Standard_Constraint_Error, Eloc);
5266 else
5267 Error_Msg_NEL
5268 ("\& will be raised for objects of this type??",
5269 N, Standard_Constraint_Error, Eloc);
5270 end if;
5271 end if;
5272 end;
5274 else
5275 Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
5276 end if;
5278 else
5279 Error_Msg ("\static expression fails Constraint_Check", Eloc);
5280 Set_Error_Posted (N);
5281 end if;
5282 end if;
5283 end if;
5285 return N;
5286 end Compile_Time_Constraint_Error;
5288 -----------------------
5289 -- Conditional_Delay --
5290 -----------------------
5292 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
5293 begin
5294 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
5295 Set_Has_Delayed_Freeze (New_Ent);
5296 end if;
5297 end Conditional_Delay;
5299 ----------------------------
5300 -- Contains_Refined_State --
5301 ----------------------------
5303 function Contains_Refined_State (Prag : Node_Id) return Boolean is
5304 function Has_State_In_Dependency (List : Node_Id) return Boolean;
5305 -- Determine whether a dependency list mentions a state with a visible
5306 -- refinement.
5308 function Has_State_In_Global (List : Node_Id) return Boolean;
5309 -- Determine whether a global list mentions a state with a visible
5310 -- refinement.
5312 function Is_Refined_State (Item : Node_Id) return Boolean;
5313 -- Determine whether Item is a reference to an abstract state with a
5314 -- visible refinement.
5316 -----------------------------
5317 -- Has_State_In_Dependency --
5318 -----------------------------
5320 function Has_State_In_Dependency (List : Node_Id) return Boolean is
5321 Clause : Node_Id;
5322 Output : Node_Id;
5324 begin
5325 -- A null dependency list does not mention any states
5327 if Nkind (List) = N_Null then
5328 return False;
5330 -- Dependency clauses appear as component associations of an
5331 -- aggregate.
5333 elsif Nkind (List) = N_Aggregate
5334 and then Present (Component_Associations (List))
5335 then
5336 Clause := First (Component_Associations (List));
5337 while Present (Clause) loop
5339 -- Inspect the outputs of a dependency clause
5341 Output := First (Choices (Clause));
5342 while Present (Output) loop
5343 if Is_Refined_State (Output) then
5344 return True;
5345 end if;
5347 Next (Output);
5348 end loop;
5350 -- Inspect the outputs of a dependency clause
5352 if Is_Refined_State (Expression (Clause)) then
5353 return True;
5354 end if;
5356 Next (Clause);
5357 end loop;
5359 -- If we get here, then none of the dependency clauses mention a
5360 -- state with visible refinement.
5362 return False;
5364 -- An illegal pragma managed to sneak in
5366 else
5367 raise Program_Error;
5368 end if;
5369 end Has_State_In_Dependency;
5371 -------------------------
5372 -- Has_State_In_Global --
5373 -------------------------
5375 function Has_State_In_Global (List : Node_Id) return Boolean is
5376 Item : Node_Id;
5378 begin
5379 -- A null global list does not mention any states
5381 if Nkind (List) = N_Null then
5382 return False;
5384 -- Simple global list or moded global list declaration
5386 elsif Nkind (List) = N_Aggregate then
5388 -- The declaration of a simple global list appear as a collection
5389 -- of expressions.
5391 if Present (Expressions (List)) then
5392 Item := First (Expressions (List));
5393 while Present (Item) loop
5394 if Is_Refined_State (Item) then
5395 return True;
5396 end if;
5398 Next (Item);
5399 end loop;
5401 -- The declaration of a moded global list appears as a collection
5402 -- of component associations where individual choices denote
5403 -- modes.
5405 else
5406 Item := First (Component_Associations (List));
5407 while Present (Item) loop
5408 if Has_State_In_Global (Expression (Item)) then
5409 return True;
5410 end if;
5412 Next (Item);
5413 end loop;
5414 end if;
5416 -- If we get here, then the simple/moded global list did not
5417 -- mention any states with a visible refinement.
5419 return False;
5421 -- Single global item declaration
5423 elsif Is_Entity_Name (List) then
5424 return Is_Refined_State (List);
5426 -- An illegal pragma managed to sneak in
5428 else
5429 raise Program_Error;
5430 end if;
5431 end Has_State_In_Global;
5433 ----------------------
5434 -- Is_Refined_State --
5435 ----------------------
5437 function Is_Refined_State (Item : Node_Id) return Boolean is
5438 Elmt : Node_Id;
5439 Item_Id : Entity_Id;
5441 begin
5442 if Nkind (Item) = N_Null then
5443 return False;
5445 -- States cannot be subject to attribute 'Result. This case arises
5446 -- in dependency relations.
5448 elsif Nkind (Item) = N_Attribute_Reference
5449 and then Attribute_Name (Item) = Name_Result
5450 then
5451 return False;
5453 -- Multiple items appear as an aggregate. This case arises in
5454 -- dependency relations.
5456 elsif Nkind (Item) = N_Aggregate
5457 and then Present (Expressions (Item))
5458 then
5459 Elmt := First (Expressions (Item));
5460 while Present (Elmt) loop
5461 if Is_Refined_State (Elmt) then
5462 return True;
5463 end if;
5465 Next (Elmt);
5466 end loop;
5468 -- If we get here, then none of the inputs or outputs reference a
5469 -- state with visible refinement.
5471 return False;
5473 -- Single item
5475 else
5476 Item_Id := Entity_Of (Item);
5478 return
5479 Present (Item_Id)
5480 and then Ekind (Item_Id) = E_Abstract_State
5481 and then Has_Visible_Refinement (Item_Id);
5482 end if;
5483 end Is_Refined_State;
5485 -- Local variables
5487 Arg : constant Node_Id :=
5488 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
5489 Nam : constant Name_Id := Pragma_Name (Prag);
5491 -- Start of processing for Contains_Refined_State
5493 begin
5494 if Nam = Name_Depends then
5495 return Has_State_In_Dependency (Arg);
5497 else pragma Assert (Nam = Name_Global);
5498 return Has_State_In_Global (Arg);
5499 end if;
5500 end Contains_Refined_State;
5502 -------------------------
5503 -- Copy_Component_List --
5504 -------------------------
5506 function Copy_Component_List
5507 (R_Typ : Entity_Id;
5508 Loc : Source_Ptr) return List_Id
5510 Comp : Node_Id;
5511 Comps : constant List_Id := New_List;
5513 begin
5514 Comp := First_Component (Underlying_Type (R_Typ));
5515 while Present (Comp) loop
5516 if Comes_From_Source (Comp) then
5517 declare
5518 Comp_Decl : constant Node_Id := Declaration_Node (Comp);
5519 begin
5520 Append_To (Comps,
5521 Make_Component_Declaration (Loc,
5522 Defining_Identifier =>
5523 Make_Defining_Identifier (Loc, Chars (Comp)),
5524 Component_Definition =>
5525 New_Copy_Tree
5526 (Component_Definition (Comp_Decl), New_Sloc => Loc)));
5527 end;
5528 end if;
5530 Next_Component (Comp);
5531 end loop;
5533 return Comps;
5534 end Copy_Component_List;
5536 -------------------------
5537 -- Copy_Parameter_List --
5538 -------------------------
5540 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
5541 Loc : constant Source_Ptr := Sloc (Subp_Id);
5542 Plist : List_Id;
5543 Formal : Entity_Id;
5545 begin
5546 if No (First_Formal (Subp_Id)) then
5547 return No_List;
5548 else
5549 Plist := New_List;
5550 Formal := First_Formal (Subp_Id);
5551 while Present (Formal) loop
5552 Append_To (Plist,
5553 Make_Parameter_Specification (Loc,
5554 Defining_Identifier =>
5555 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
5556 In_Present => In_Present (Parent (Formal)),
5557 Out_Present => Out_Present (Parent (Formal)),
5558 Parameter_Type =>
5559 New_Occurrence_Of (Etype (Formal), Loc),
5560 Expression =>
5561 New_Copy_Tree (Expression (Parent (Formal)))));
5563 Next_Formal (Formal);
5564 end loop;
5565 end if;
5567 return Plist;
5568 end Copy_Parameter_List;
5570 ----------------------------
5571 -- Copy_SPARK_Mode_Aspect --
5572 ----------------------------
5574 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id) is
5575 pragma Assert (not Has_Aspects (To));
5576 Asp : Node_Id;
5578 begin
5579 if Has_Aspects (From) then
5580 Asp := Find_Aspect (Defining_Entity (From), Aspect_SPARK_Mode);
5582 if Present (Asp) then
5583 Set_Aspect_Specifications (To, New_List (New_Copy_Tree (Asp)));
5584 Set_Has_Aspects (To, True);
5585 end if;
5586 end if;
5587 end Copy_SPARK_Mode_Aspect;
5589 --------------------------
5590 -- Copy_Subprogram_Spec --
5591 --------------------------
5593 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
5594 Def_Id : Node_Id;
5595 Formal_Spec : Node_Id;
5596 Result : Node_Id;
5598 begin
5599 -- The structure of the original tree must be replicated without any
5600 -- alterations. Use New_Copy_Tree for this purpose.
5602 Result := New_Copy_Tree (Spec);
5604 -- However, the spec of a null procedure carries the corresponding null
5605 -- statement of the body (created by the parser), and this cannot be
5606 -- shared with the new subprogram spec.
5608 if Nkind (Result) = N_Procedure_Specification then
5609 Set_Null_Statement (Result, Empty);
5610 end if;
5612 -- Create a new entity for the defining unit name
5614 Def_Id := Defining_Unit_Name (Result);
5615 Set_Defining_Unit_Name (Result,
5616 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5618 -- Create new entities for the formal parameters
5620 if Present (Parameter_Specifications (Result)) then
5621 Formal_Spec := First (Parameter_Specifications (Result));
5622 while Present (Formal_Spec) loop
5623 Def_Id := Defining_Identifier (Formal_Spec);
5624 Set_Defining_Identifier (Formal_Spec,
5625 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5627 Next (Formal_Spec);
5628 end loop;
5629 end if;
5631 return Result;
5632 end Copy_Subprogram_Spec;
5634 --------------------------------
5635 -- Corresponding_Generic_Type --
5636 --------------------------------
5638 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
5639 Inst : Entity_Id;
5640 Gen : Entity_Id;
5641 Typ : Entity_Id;
5643 begin
5644 if not Is_Generic_Actual_Type (T) then
5645 return Any_Type;
5647 -- If the actual is the actual of an enclosing instance, resolution
5648 -- was correct in the generic.
5650 elsif Nkind (Parent (T)) = N_Subtype_Declaration
5651 and then Is_Entity_Name (Subtype_Indication (Parent (T)))
5652 and then
5653 Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
5654 then
5655 return Any_Type;
5657 else
5658 Inst := Scope (T);
5660 if Is_Wrapper_Package (Inst) then
5661 Inst := Related_Instance (Inst);
5662 end if;
5664 Gen :=
5665 Generic_Parent
5666 (Specification (Unit_Declaration_Node (Inst)));
5668 -- Generic actual has the same name as the corresponding formal
5670 Typ := First_Entity (Gen);
5671 while Present (Typ) loop
5672 if Chars (Typ) = Chars (T) then
5673 return Typ;
5674 end if;
5676 Next_Entity (Typ);
5677 end loop;
5679 return Any_Type;
5680 end if;
5681 end Corresponding_Generic_Type;
5683 --------------------
5684 -- Current_Entity --
5685 --------------------
5687 -- The currently visible definition for a given identifier is the
5688 -- one most chained at the start of the visibility chain, i.e. the
5689 -- one that is referenced by the Node_Id value of the name of the
5690 -- given identifier.
5692 function Current_Entity (N : Node_Id) return Entity_Id is
5693 begin
5694 return Get_Name_Entity_Id (Chars (N));
5695 end Current_Entity;
5697 -----------------------------
5698 -- Current_Entity_In_Scope --
5699 -----------------------------
5701 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
5702 E : Entity_Id;
5703 CS : constant Entity_Id := Current_Scope;
5705 Transient_Case : constant Boolean := Scope_Is_Transient;
5707 begin
5708 E := Get_Name_Entity_Id (Chars (N));
5709 while Present (E)
5710 and then Scope (E) /= CS
5711 and then (not Transient_Case or else Scope (E) /= Scope (CS))
5712 loop
5713 E := Homonym (E);
5714 end loop;
5716 return E;
5717 end Current_Entity_In_Scope;
5719 -------------------
5720 -- Current_Scope --
5721 -------------------
5723 function Current_Scope return Entity_Id is
5724 begin
5725 if Scope_Stack.Last = -1 then
5726 return Standard_Standard;
5727 else
5728 declare
5729 C : constant Entity_Id :=
5730 Scope_Stack.Table (Scope_Stack.Last).Entity;
5731 begin
5732 if Present (C) then
5733 return C;
5734 else
5735 return Standard_Standard;
5736 end if;
5737 end;
5738 end if;
5739 end Current_Scope;
5741 ----------------------------
5742 -- Current_Scope_No_Loops --
5743 ----------------------------
5745 function Current_Scope_No_Loops return Entity_Id is
5746 S : Entity_Id;
5748 begin
5749 -- Examine the scope stack starting from the current scope and skip any
5750 -- internally generated loops.
5752 S := Current_Scope;
5753 while Present (S) and then S /= Standard_Standard loop
5754 if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
5755 S := Scope (S);
5756 else
5757 exit;
5758 end if;
5759 end loop;
5761 return S;
5762 end Current_Scope_No_Loops;
5764 ------------------------
5765 -- Current_Subprogram --
5766 ------------------------
5768 function Current_Subprogram return Entity_Id is
5769 Scop : constant Entity_Id := Current_Scope;
5770 begin
5771 if Is_Subprogram_Or_Generic_Subprogram (Scop) then
5772 return Scop;
5773 else
5774 return Enclosing_Subprogram (Scop);
5775 end if;
5776 end Current_Subprogram;
5778 ----------------------------------
5779 -- Deepest_Type_Access_Level --
5780 ----------------------------------
5782 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
5783 begin
5784 if Ekind (Typ) = E_Anonymous_Access_Type
5785 and then not Is_Local_Anonymous_Access (Typ)
5786 and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
5787 then
5788 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5789 -- access type.
5791 return
5792 Scope_Depth (Enclosing_Dynamic_Scope
5793 (Defining_Identifier
5794 (Associated_Node_For_Itype (Typ))));
5796 -- For generic formal type, return Int'Last (infinite).
5797 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5799 elsif Is_Generic_Type (Root_Type (Typ)) then
5800 return UI_From_Int (Int'Last);
5802 else
5803 return Type_Access_Level (Typ);
5804 end if;
5805 end Deepest_Type_Access_Level;
5807 ---------------------
5808 -- Defining_Entity --
5809 ---------------------
5811 function Defining_Entity
5812 (N : Node_Id;
5813 Empty_On_Errors : Boolean := False;
5814 Concurrent_Subunit : Boolean := False) return Entity_Id
5816 begin
5817 case Nkind (N) is
5818 when N_Abstract_Subprogram_Declaration
5819 | N_Expression_Function
5820 | N_Formal_Subprogram_Declaration
5821 | N_Generic_Package_Declaration
5822 | N_Generic_Subprogram_Declaration
5823 | N_Package_Declaration
5824 | N_Subprogram_Body
5825 | N_Subprogram_Body_Stub
5826 | N_Subprogram_Declaration
5827 | N_Subprogram_Renaming_Declaration
5829 return Defining_Entity (Specification (N));
5831 when N_Component_Declaration
5832 | N_Defining_Program_Unit_Name
5833 | N_Discriminant_Specification
5834 | N_Entry_Body
5835 | N_Entry_Declaration
5836 | N_Entry_Index_Specification
5837 | N_Exception_Declaration
5838 | N_Exception_Renaming_Declaration
5839 | N_Formal_Object_Declaration
5840 | N_Formal_Package_Declaration
5841 | N_Formal_Type_Declaration
5842 | N_Full_Type_Declaration
5843 | N_Implicit_Label_Declaration
5844 | N_Incomplete_Type_Declaration
5845 | N_Iterator_Specification
5846 | N_Loop_Parameter_Specification
5847 | N_Number_Declaration
5848 | N_Object_Declaration
5849 | N_Object_Renaming_Declaration
5850 | N_Package_Body_Stub
5851 | N_Parameter_Specification
5852 | N_Private_Extension_Declaration
5853 | N_Private_Type_Declaration
5854 | N_Protected_Body
5855 | N_Protected_Body_Stub
5856 | N_Protected_Type_Declaration
5857 | N_Single_Protected_Declaration
5858 | N_Single_Task_Declaration
5859 | N_Subtype_Declaration
5860 | N_Task_Body
5861 | N_Task_Body_Stub
5862 | N_Task_Type_Declaration
5864 return Defining_Identifier (N);
5866 when N_Subunit =>
5867 declare
5868 Bod : constant Node_Id := Proper_Body (N);
5869 Orig_Bod : constant Node_Id := Original_Node (Bod);
5871 begin
5872 -- Retrieve the entity of the original protected or task body
5873 -- if requested by the caller.
5875 if Concurrent_Subunit
5876 and then Nkind (Bod) = N_Null_Statement
5877 and then Nkind_In (Orig_Bod, N_Protected_Body, N_Task_Body)
5878 then
5879 return Defining_Entity (Orig_Bod);
5880 else
5881 return Defining_Entity (Bod);
5882 end if;
5883 end;
5885 when N_Function_Instantiation
5886 | N_Function_Specification
5887 | N_Generic_Function_Renaming_Declaration
5888 | N_Generic_Package_Renaming_Declaration
5889 | N_Generic_Procedure_Renaming_Declaration
5890 | N_Package_Body
5891 | N_Package_Instantiation
5892 | N_Package_Renaming_Declaration
5893 | N_Package_Specification
5894 | N_Procedure_Instantiation
5895 | N_Procedure_Specification
5897 declare
5898 Nam : constant Node_Id := Defining_Unit_Name (N);
5899 Err : Entity_Id := Empty;
5901 begin
5902 if Nkind (Nam) in N_Entity then
5903 return Nam;
5905 -- For Error, make up a name and attach to declaration so we
5906 -- can continue semantic analysis.
5908 elsif Nam = Error then
5909 if Empty_On_Errors then
5910 return Empty;
5911 else
5912 Err := Make_Temporary (Sloc (N), 'T');
5913 Set_Defining_Unit_Name (N, Err);
5915 return Err;
5916 end if;
5918 -- If not an entity, get defining identifier
5920 else
5921 return Defining_Identifier (Nam);
5922 end if;
5923 end;
5925 when N_Block_Statement
5926 | N_Loop_Statement
5928 return Entity (Identifier (N));
5930 when others =>
5931 if Empty_On_Errors then
5932 return Empty;
5933 else
5934 raise Program_Error;
5935 end if;
5936 end case;
5937 end Defining_Entity;
5939 --------------------------
5940 -- Denotes_Discriminant --
5941 --------------------------
5943 function Denotes_Discriminant
5944 (N : Node_Id;
5945 Check_Concurrent : Boolean := False) return Boolean
5947 E : Entity_Id;
5949 begin
5950 if not Is_Entity_Name (N) or else No (Entity (N)) then
5951 return False;
5952 else
5953 E := Entity (N);
5954 end if;
5956 -- If we are checking for a protected type, the discriminant may have
5957 -- been rewritten as the corresponding discriminal of the original type
5958 -- or of the corresponding concurrent record, depending on whether we
5959 -- are in the spec or body of the protected type.
5961 return Ekind (E) = E_Discriminant
5962 or else
5963 (Check_Concurrent
5964 and then Ekind (E) = E_In_Parameter
5965 and then Present (Discriminal_Link (E))
5966 and then
5967 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
5968 or else
5969 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
5970 end Denotes_Discriminant;
5972 -------------------------
5973 -- Denotes_Same_Object --
5974 -------------------------
5976 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
5977 Obj1 : Node_Id := A1;
5978 Obj2 : Node_Id := A2;
5980 function Has_Prefix (N : Node_Id) return Boolean;
5981 -- Return True if N has attribute Prefix
5983 function Is_Renaming (N : Node_Id) return Boolean;
5984 -- Return true if N names a renaming entity
5986 function Is_Valid_Renaming (N : Node_Id) return Boolean;
5987 -- For renamings, return False if the prefix of any dereference within
5988 -- the renamed object_name is a variable, or any expression within the
5989 -- renamed object_name contains references to variables or calls on
5990 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5992 ----------------
5993 -- Has_Prefix --
5994 ----------------
5996 function Has_Prefix (N : Node_Id) return Boolean is
5997 begin
5998 return
5999 Nkind_In (N,
6000 N_Attribute_Reference,
6001 N_Expanded_Name,
6002 N_Explicit_Dereference,
6003 N_Indexed_Component,
6004 N_Reference,
6005 N_Selected_Component,
6006 N_Slice);
6007 end Has_Prefix;
6009 -----------------
6010 -- Is_Renaming --
6011 -----------------
6013 function Is_Renaming (N : Node_Id) return Boolean is
6014 begin
6015 return Is_Entity_Name (N)
6016 and then Present (Renamed_Entity (Entity (N)));
6017 end Is_Renaming;
6019 -----------------------
6020 -- Is_Valid_Renaming --
6021 -----------------------
6023 function Is_Valid_Renaming (N : Node_Id) return Boolean is
6025 function Check_Renaming (N : Node_Id) return Boolean;
6026 -- Recursive function used to traverse all the prefixes of N
6028 function Check_Renaming (N : Node_Id) return Boolean is
6029 begin
6030 if Is_Renaming (N)
6031 and then not Check_Renaming (Renamed_Entity (Entity (N)))
6032 then
6033 return False;
6034 end if;
6036 if Nkind (N) = N_Indexed_Component then
6037 declare
6038 Indx : Node_Id;
6040 begin
6041 Indx := First (Expressions (N));
6042 while Present (Indx) loop
6043 if not Is_OK_Static_Expression (Indx) then
6044 return False;
6045 end if;
6047 Next_Index (Indx);
6048 end loop;
6049 end;
6050 end if;
6052 if Has_Prefix (N) then
6053 declare
6054 P : constant Node_Id := Prefix (N);
6056 begin
6057 if Nkind (N) = N_Explicit_Dereference
6058 and then Is_Variable (P)
6059 then
6060 return False;
6062 elsif Is_Entity_Name (P)
6063 and then Ekind (Entity (P)) = E_Function
6064 then
6065 return False;
6067 elsif Nkind (P) = N_Function_Call then
6068 return False;
6069 end if;
6071 -- Recursion to continue traversing the prefix of the
6072 -- renaming expression
6074 return Check_Renaming (P);
6075 end;
6076 end if;
6078 return True;
6079 end Check_Renaming;
6081 -- Start of processing for Is_Valid_Renaming
6083 begin
6084 return Check_Renaming (N);
6085 end Is_Valid_Renaming;
6087 -- Start of processing for Denotes_Same_Object
6089 begin
6090 -- Both names statically denote the same stand-alone object or parameter
6091 -- (RM 6.4.1(6.5/3))
6093 if Is_Entity_Name (Obj1)
6094 and then Is_Entity_Name (Obj2)
6095 and then Entity (Obj1) = Entity (Obj2)
6096 then
6097 return True;
6098 end if;
6100 -- For renamings, the prefix of any dereference within the renamed
6101 -- object_name is not a variable, and any expression within the
6102 -- renamed object_name contains no references to variables nor
6103 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
6105 if Is_Renaming (Obj1) then
6106 if Is_Valid_Renaming (Obj1) then
6107 Obj1 := Renamed_Entity (Entity (Obj1));
6108 else
6109 return False;
6110 end if;
6111 end if;
6113 if Is_Renaming (Obj2) then
6114 if Is_Valid_Renaming (Obj2) then
6115 Obj2 := Renamed_Entity (Entity (Obj2));
6116 else
6117 return False;
6118 end if;
6119 end if;
6121 -- No match if not same node kind (such cases are handled by
6122 -- Denotes_Same_Prefix)
6124 if Nkind (Obj1) /= Nkind (Obj2) then
6125 return False;
6127 -- After handling valid renamings, one of the two names statically
6128 -- denoted a renaming declaration whose renamed object_name is known
6129 -- to denote the same object as the other (RM 6.4.1(6.10/3))
6131 elsif Is_Entity_Name (Obj1) then
6132 if Is_Entity_Name (Obj2) then
6133 return Entity (Obj1) = Entity (Obj2);
6134 else
6135 return False;
6136 end if;
6138 -- Both names are selected_components, their prefixes are known to
6139 -- denote the same object, and their selector_names denote the same
6140 -- component (RM 6.4.1(6.6/3)).
6142 elsif Nkind (Obj1) = N_Selected_Component then
6143 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
6144 and then
6145 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
6147 -- Both names are dereferences and the dereferenced names are known to
6148 -- denote the same object (RM 6.4.1(6.7/3))
6150 elsif Nkind (Obj1) = N_Explicit_Dereference then
6151 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
6153 -- Both names are indexed_components, their prefixes are known to denote
6154 -- the same object, and each of the pairs of corresponding index values
6155 -- are either both static expressions with the same static value or both
6156 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
6158 elsif Nkind (Obj1) = N_Indexed_Component then
6159 if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
6160 return False;
6161 else
6162 declare
6163 Indx1 : Node_Id;
6164 Indx2 : Node_Id;
6166 begin
6167 Indx1 := First (Expressions (Obj1));
6168 Indx2 := First (Expressions (Obj2));
6169 while Present (Indx1) loop
6171 -- Indexes must denote the same static value or same object
6173 if Is_OK_Static_Expression (Indx1) then
6174 if not Is_OK_Static_Expression (Indx2) then
6175 return False;
6177 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
6178 return False;
6179 end if;
6181 elsif not Denotes_Same_Object (Indx1, Indx2) then
6182 return False;
6183 end if;
6185 Next (Indx1);
6186 Next (Indx2);
6187 end loop;
6189 return True;
6190 end;
6191 end if;
6193 -- Both names are slices, their prefixes are known to denote the same
6194 -- object, and the two slices have statically matching index constraints
6195 -- (RM 6.4.1(6.9/3))
6197 elsif Nkind (Obj1) = N_Slice
6198 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
6199 then
6200 declare
6201 Lo1, Lo2, Hi1, Hi2 : Node_Id;
6203 begin
6204 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
6205 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
6207 -- Check whether bounds are statically identical. There is no
6208 -- attempt to detect partial overlap of slices.
6210 return Denotes_Same_Object (Lo1, Lo2)
6211 and then
6212 Denotes_Same_Object (Hi1, Hi2);
6213 end;
6215 -- In the recursion, literals appear as indexes
6217 elsif Nkind (Obj1) = N_Integer_Literal
6218 and then
6219 Nkind (Obj2) = N_Integer_Literal
6220 then
6221 return Intval (Obj1) = Intval (Obj2);
6223 else
6224 return False;
6225 end if;
6226 end Denotes_Same_Object;
6228 -------------------------
6229 -- Denotes_Same_Prefix --
6230 -------------------------
6232 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
6233 begin
6234 if Is_Entity_Name (A1) then
6235 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
6236 and then not Is_Access_Type (Etype (A1))
6237 then
6238 return Denotes_Same_Object (A1, Prefix (A2))
6239 or else Denotes_Same_Prefix (A1, Prefix (A2));
6240 else
6241 return False;
6242 end if;
6244 elsif Is_Entity_Name (A2) then
6245 return Denotes_Same_Prefix (A1 => A2, A2 => A1);
6247 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
6248 and then
6249 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
6250 then
6251 declare
6252 Root1, Root2 : Node_Id;
6253 Depth1, Depth2 : Nat := 0;
6255 begin
6256 Root1 := Prefix (A1);
6257 while not Is_Entity_Name (Root1) loop
6258 if not Nkind_In
6259 (Root1, N_Selected_Component, N_Indexed_Component)
6260 then
6261 return False;
6262 else
6263 Root1 := Prefix (Root1);
6264 end if;
6266 Depth1 := Depth1 + 1;
6267 end loop;
6269 Root2 := Prefix (A2);
6270 while not Is_Entity_Name (Root2) loop
6271 if not Nkind_In (Root2, N_Selected_Component,
6272 N_Indexed_Component)
6273 then
6274 return False;
6275 else
6276 Root2 := Prefix (Root2);
6277 end if;
6279 Depth2 := Depth2 + 1;
6280 end loop;
6282 -- If both have the same depth and they do not denote the same
6283 -- object, they are disjoint and no warning is needed.
6285 if Depth1 = Depth2 then
6286 return False;
6288 elsif Depth1 > Depth2 then
6289 Root1 := Prefix (A1);
6290 for J in 1 .. Depth1 - Depth2 - 1 loop
6291 Root1 := Prefix (Root1);
6292 end loop;
6294 return Denotes_Same_Object (Root1, A2);
6296 else
6297 Root2 := Prefix (A2);
6298 for J in 1 .. Depth2 - Depth1 - 1 loop
6299 Root2 := Prefix (Root2);
6300 end loop;
6302 return Denotes_Same_Object (A1, Root2);
6303 end if;
6304 end;
6306 else
6307 return False;
6308 end if;
6309 end Denotes_Same_Prefix;
6311 ----------------------
6312 -- Denotes_Variable --
6313 ----------------------
6315 function Denotes_Variable (N : Node_Id) return Boolean is
6316 begin
6317 return Is_Variable (N) and then Paren_Count (N) = 0;
6318 end Denotes_Variable;
6320 -----------------------------
6321 -- Depends_On_Discriminant --
6322 -----------------------------
6324 function Depends_On_Discriminant (N : Node_Id) return Boolean is
6325 L : Node_Id;
6326 H : Node_Id;
6328 begin
6329 Get_Index_Bounds (N, L, H);
6330 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
6331 end Depends_On_Discriminant;
6333 -------------------------
6334 -- Designate_Same_Unit --
6335 -------------------------
6337 function Designate_Same_Unit
6338 (Name1 : Node_Id;
6339 Name2 : Node_Id) return Boolean
6341 K1 : constant Node_Kind := Nkind (Name1);
6342 K2 : constant Node_Kind := Nkind (Name2);
6344 function Prefix_Node (N : Node_Id) return Node_Id;
6345 -- Returns the parent unit name node of a defining program unit name
6346 -- or the prefix if N is a selected component or an expanded name.
6348 function Select_Node (N : Node_Id) return Node_Id;
6349 -- Returns the defining identifier node of a defining program unit
6350 -- name or the selector node if N is a selected component or an
6351 -- expanded name.
6353 -----------------
6354 -- Prefix_Node --
6355 -----------------
6357 function Prefix_Node (N : Node_Id) return Node_Id is
6358 begin
6359 if Nkind (N) = N_Defining_Program_Unit_Name then
6360 return Name (N);
6361 else
6362 return Prefix (N);
6363 end if;
6364 end Prefix_Node;
6366 -----------------
6367 -- Select_Node --
6368 -----------------
6370 function Select_Node (N : Node_Id) return Node_Id is
6371 begin
6372 if Nkind (N) = N_Defining_Program_Unit_Name then
6373 return Defining_Identifier (N);
6374 else
6375 return Selector_Name (N);
6376 end if;
6377 end Select_Node;
6379 -- Start of processing for Designate_Same_Unit
6381 begin
6382 if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
6383 and then
6384 Nkind_In (K2, N_Identifier, N_Defining_Identifier)
6385 then
6386 return Chars (Name1) = Chars (Name2);
6388 elsif Nkind_In (K1, N_Expanded_Name,
6389 N_Selected_Component,
6390 N_Defining_Program_Unit_Name)
6391 and then
6392 Nkind_In (K2, N_Expanded_Name,
6393 N_Selected_Component,
6394 N_Defining_Program_Unit_Name)
6395 then
6396 return
6397 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
6398 and then
6399 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
6401 else
6402 return False;
6403 end if;
6404 end Designate_Same_Unit;
6406 ---------------------------------------------
6407 -- Diagnose_Iterated_Component_Association --
6408 ---------------------------------------------
6410 procedure Diagnose_Iterated_Component_Association (N : Node_Id) is
6411 Def_Id : constant Entity_Id := Defining_Identifier (N);
6412 Aggr : Node_Id;
6414 begin
6415 -- Determine whether the iterated component association appears within
6416 -- an aggregate. If this is the case, raise Program_Error because the
6417 -- iterated component association cannot be left in the tree as is and
6418 -- must always be processed by the related aggregate.
6420 Aggr := N;
6421 while Present (Aggr) loop
6422 if Nkind (Aggr) = N_Aggregate then
6423 raise Program_Error;
6425 -- Prevent the search from going too far
6427 elsif Is_Body_Or_Package_Declaration (Aggr) then
6428 exit;
6429 end if;
6431 Aggr := Parent (Aggr);
6432 end loop;
6434 -- At this point it is known that the iterated component association is
6435 -- not within an aggregate. This is really a quantified expression with
6436 -- a missing "all" or "some" quantifier.
6438 Error_Msg_N ("missing quantifier", Def_Id);
6440 -- Rewrite the iterated component association as True to prevent any
6441 -- cascaded errors.
6443 Rewrite (N, New_Occurrence_Of (Standard_True, Sloc (N)));
6444 Analyze (N);
6445 end Diagnose_Iterated_Component_Association;
6447 ---------------------------------
6448 -- Dynamic_Accessibility_Level --
6449 ---------------------------------
6451 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
6452 Loc : constant Source_Ptr := Sloc (Expr);
6454 function Make_Level_Literal (Level : Uint) return Node_Id;
6455 -- Construct an integer literal representing an accessibility level
6456 -- with its type set to Natural.
6458 ------------------------
6459 -- Make_Level_Literal --
6460 ------------------------
6462 function Make_Level_Literal (Level : Uint) return Node_Id is
6463 Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
6465 begin
6466 Set_Etype (Result, Standard_Natural);
6467 return Result;
6468 end Make_Level_Literal;
6470 -- Local variables
6472 E : Entity_Id;
6474 -- Start of processing for Dynamic_Accessibility_Level
6476 begin
6477 if Is_Entity_Name (Expr) then
6478 E := Entity (Expr);
6480 if Present (Renamed_Object (E)) then
6481 return Dynamic_Accessibility_Level (Renamed_Object (E));
6482 end if;
6484 if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
6485 if Present (Extra_Accessibility (E)) then
6486 return New_Occurrence_Of (Extra_Accessibility (E), Loc);
6487 end if;
6488 end if;
6489 end if;
6491 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
6493 case Nkind (Expr) is
6495 -- For access discriminant, the level of the enclosing object
6497 when N_Selected_Component =>
6498 if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
6499 and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
6500 E_Anonymous_Access_Type
6501 then
6502 return Make_Level_Literal (Object_Access_Level (Expr));
6503 end if;
6505 when N_Attribute_Reference =>
6506 case Get_Attribute_Id (Attribute_Name (Expr)) is
6508 -- For X'Access, the level of the prefix X
6510 when Attribute_Access =>
6511 return Make_Level_Literal
6512 (Object_Access_Level (Prefix (Expr)));
6514 -- Treat the unchecked attributes as library-level
6516 when Attribute_Unchecked_Access
6517 | Attribute_Unrestricted_Access
6519 return Make_Level_Literal (Scope_Depth (Standard_Standard));
6521 -- No other access-valued attributes
6523 when others =>
6524 raise Program_Error;
6525 end case;
6527 when N_Allocator =>
6529 -- Unimplemented: depends on context. As an actual parameter where
6530 -- formal type is anonymous, use
6531 -- Scope_Depth (Current_Scope) + 1.
6532 -- For other cases, see 3.10.2(14/3) and following. ???
6534 null;
6536 when N_Type_Conversion =>
6537 if not Is_Local_Anonymous_Access (Etype (Expr)) then
6539 -- Handle type conversions introduced for a rename of an
6540 -- Ada 2012 stand-alone object of an anonymous access type.
6542 return Dynamic_Accessibility_Level (Expression (Expr));
6543 end if;
6545 when others =>
6546 null;
6547 end case;
6549 return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
6550 end Dynamic_Accessibility_Level;
6552 ------------------------
6553 -- Discriminated_Size --
6554 ------------------------
6556 function Discriminated_Size (Comp : Entity_Id) return Boolean is
6557 function Non_Static_Bound (Bound : Node_Id) return Boolean;
6558 -- Check whether the bound of an index is non-static and does denote
6559 -- a discriminant, in which case any object of the type (protected or
6560 -- otherwise) will have a non-static size.
6562 ----------------------
6563 -- Non_Static_Bound --
6564 ----------------------
6566 function Non_Static_Bound (Bound : Node_Id) return Boolean is
6567 begin
6568 if Is_OK_Static_Expression (Bound) then
6569 return False;
6571 -- If the bound is given by a discriminant it is non-static
6572 -- (A static constraint replaces the reference with the value).
6573 -- In an protected object the discriminant has been replaced by
6574 -- the corresponding discriminal within the protected operation.
6576 elsif Is_Entity_Name (Bound)
6577 and then
6578 (Ekind (Entity (Bound)) = E_Discriminant
6579 or else Present (Discriminal_Link (Entity (Bound))))
6580 then
6581 return False;
6583 else
6584 return True;
6585 end if;
6586 end Non_Static_Bound;
6588 -- Local variables
6590 Typ : constant Entity_Id := Etype (Comp);
6591 Index : Node_Id;
6593 -- Start of processing for Discriminated_Size
6595 begin
6596 if not Is_Array_Type (Typ) then
6597 return False;
6598 end if;
6600 if Ekind (Typ) = E_Array_Subtype then
6601 Index := First_Index (Typ);
6602 while Present (Index) loop
6603 if Non_Static_Bound (Low_Bound (Index))
6604 or else Non_Static_Bound (High_Bound (Index))
6605 then
6606 return False;
6607 end if;
6609 Next_Index (Index);
6610 end loop;
6612 return True;
6613 end if;
6615 return False;
6616 end Discriminated_Size;
6618 -----------------------------------
6619 -- Effective_Extra_Accessibility --
6620 -----------------------------------
6622 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
6623 begin
6624 if Present (Renamed_Object (Id))
6625 and then Is_Entity_Name (Renamed_Object (Id))
6626 then
6627 return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
6628 else
6629 return Extra_Accessibility (Id);
6630 end if;
6631 end Effective_Extra_Accessibility;
6633 -----------------------------
6634 -- Effective_Reads_Enabled --
6635 -----------------------------
6637 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
6638 begin
6639 return Has_Enabled_Property (Id, Name_Effective_Reads);
6640 end Effective_Reads_Enabled;
6642 ------------------------------
6643 -- Effective_Writes_Enabled --
6644 ------------------------------
6646 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
6647 begin
6648 return Has_Enabled_Property (Id, Name_Effective_Writes);
6649 end Effective_Writes_Enabled;
6651 ------------------------------
6652 -- Enclosing_Comp_Unit_Node --
6653 ------------------------------
6655 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
6656 Current_Node : Node_Id;
6658 begin
6659 Current_Node := N;
6660 while Present (Current_Node)
6661 and then Nkind (Current_Node) /= N_Compilation_Unit
6662 loop
6663 Current_Node := Parent (Current_Node);
6664 end loop;
6666 if Nkind (Current_Node) /= N_Compilation_Unit then
6667 return Empty;
6668 else
6669 return Current_Node;
6670 end if;
6671 end Enclosing_Comp_Unit_Node;
6673 --------------------------
6674 -- Enclosing_CPP_Parent --
6675 --------------------------
6677 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
6678 Parent_Typ : Entity_Id := Typ;
6680 begin
6681 while not Is_CPP_Class (Parent_Typ)
6682 and then Etype (Parent_Typ) /= Parent_Typ
6683 loop
6684 Parent_Typ := Etype (Parent_Typ);
6686 if Is_Private_Type (Parent_Typ) then
6687 Parent_Typ := Full_View (Base_Type (Parent_Typ));
6688 end if;
6689 end loop;
6691 pragma Assert (Is_CPP_Class (Parent_Typ));
6692 return Parent_Typ;
6693 end Enclosing_CPP_Parent;
6695 ---------------------------
6696 -- Enclosing_Declaration --
6697 ---------------------------
6699 function Enclosing_Declaration (N : Node_Id) return Node_Id is
6700 Decl : Node_Id := N;
6702 begin
6703 while Present (Decl)
6704 and then not (Nkind (Decl) in N_Declaration
6705 or else
6706 Nkind (Decl) in N_Later_Decl_Item)
6707 loop
6708 Decl := Parent (Decl);
6709 end loop;
6711 return Decl;
6712 end Enclosing_Declaration;
6714 ----------------------------
6715 -- Enclosing_Generic_Body --
6716 ----------------------------
6718 function Enclosing_Generic_Body
6719 (N : Node_Id) return Node_Id
6721 P : Node_Id;
6722 Decl : Node_Id;
6723 Spec : Node_Id;
6725 begin
6726 P := Parent (N);
6727 while Present (P) loop
6728 if Nkind (P) = N_Package_Body
6729 or else Nkind (P) = N_Subprogram_Body
6730 then
6731 Spec := Corresponding_Spec (P);
6733 if Present (Spec) then
6734 Decl := Unit_Declaration_Node (Spec);
6736 if Nkind (Decl) = N_Generic_Package_Declaration
6737 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6738 then
6739 return P;
6740 end if;
6741 end if;
6742 end if;
6744 P := Parent (P);
6745 end loop;
6747 return Empty;
6748 end Enclosing_Generic_Body;
6750 ----------------------------
6751 -- Enclosing_Generic_Unit --
6752 ----------------------------
6754 function Enclosing_Generic_Unit
6755 (N : Node_Id) return Node_Id
6757 P : Node_Id;
6758 Decl : Node_Id;
6759 Spec : Node_Id;
6761 begin
6762 P := Parent (N);
6763 while Present (P) loop
6764 if Nkind (P) = N_Generic_Package_Declaration
6765 or else Nkind (P) = N_Generic_Subprogram_Declaration
6766 then
6767 return P;
6769 elsif Nkind (P) = N_Package_Body
6770 or else Nkind (P) = N_Subprogram_Body
6771 then
6772 Spec := Corresponding_Spec (P);
6774 if Present (Spec) then
6775 Decl := Unit_Declaration_Node (Spec);
6777 if Nkind (Decl) = N_Generic_Package_Declaration
6778 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6779 then
6780 return Decl;
6781 end if;
6782 end if;
6783 end if;
6785 P := Parent (P);
6786 end loop;
6788 return Empty;
6789 end Enclosing_Generic_Unit;
6791 -------------------------------
6792 -- Enclosing_Lib_Unit_Entity --
6793 -------------------------------
6795 function Enclosing_Lib_Unit_Entity
6796 (E : Entity_Id := Current_Scope) return Entity_Id
6798 Unit_Entity : Entity_Id;
6800 begin
6801 -- Look for enclosing library unit entity by following scope links.
6802 -- Equivalent to, but faster than indexing through the scope stack.
6804 Unit_Entity := E;
6805 while (Present (Scope (Unit_Entity))
6806 and then Scope (Unit_Entity) /= Standard_Standard)
6807 and not Is_Child_Unit (Unit_Entity)
6808 loop
6809 Unit_Entity := Scope (Unit_Entity);
6810 end loop;
6812 return Unit_Entity;
6813 end Enclosing_Lib_Unit_Entity;
6815 -----------------------------
6816 -- Enclosing_Lib_Unit_Node --
6817 -----------------------------
6819 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
6820 Encl_Unit : Node_Id;
6822 begin
6823 Encl_Unit := Enclosing_Comp_Unit_Node (N);
6824 while Present (Encl_Unit)
6825 and then Nkind (Unit (Encl_Unit)) = N_Subunit
6826 loop
6827 Encl_Unit := Library_Unit (Encl_Unit);
6828 end loop;
6830 pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
6831 return Encl_Unit;
6832 end Enclosing_Lib_Unit_Node;
6834 -----------------------
6835 -- Enclosing_Package --
6836 -----------------------
6838 function Enclosing_Package (E : Entity_Id) return Entity_Id is
6839 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6841 begin
6842 if Dynamic_Scope = Standard_Standard then
6843 return Standard_Standard;
6845 elsif Dynamic_Scope = Empty then
6846 return Empty;
6848 elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
6849 E_Generic_Package)
6850 then
6851 return Dynamic_Scope;
6853 else
6854 return Enclosing_Package (Dynamic_Scope);
6855 end if;
6856 end Enclosing_Package;
6858 -------------------------------------
6859 -- Enclosing_Package_Or_Subprogram --
6860 -------------------------------------
6862 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
6863 S : Entity_Id;
6865 begin
6866 S := Scope (E);
6867 while Present (S) loop
6868 if Is_Package_Or_Generic_Package (S)
6869 or else Ekind (S) = E_Package_Body
6870 then
6871 return S;
6873 elsif Is_Subprogram_Or_Generic_Subprogram (S)
6874 or else Ekind (S) = E_Subprogram_Body
6875 then
6876 return S;
6878 else
6879 S := Scope (S);
6880 end if;
6881 end loop;
6883 return Empty;
6884 end Enclosing_Package_Or_Subprogram;
6886 --------------------------
6887 -- Enclosing_Subprogram --
6888 --------------------------
6890 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
6891 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6893 begin
6894 if Dynamic_Scope = Standard_Standard then
6895 return Empty;
6897 elsif Dynamic_Scope = Empty then
6898 return Empty;
6900 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
6901 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
6903 elsif Ekind (Dynamic_Scope) = E_Block
6904 or else Ekind (Dynamic_Scope) = E_Return_Statement
6905 then
6906 return Enclosing_Subprogram (Dynamic_Scope);
6908 elsif Ekind (Dynamic_Scope) = E_Task_Type then
6909 return Get_Task_Body_Procedure (Dynamic_Scope);
6911 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
6912 and then Present (Full_View (Dynamic_Scope))
6913 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
6914 then
6915 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
6917 -- No body is generated if the protected operation is eliminated
6919 elsif Convention (Dynamic_Scope) = Convention_Protected
6920 and then not Is_Eliminated (Dynamic_Scope)
6921 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
6922 then
6923 return Protected_Body_Subprogram (Dynamic_Scope);
6925 else
6926 return Dynamic_Scope;
6927 end if;
6928 end Enclosing_Subprogram;
6930 --------------------------
6931 -- End_Keyword_Location --
6932 --------------------------
6934 function End_Keyword_Location (N : Node_Id) return Source_Ptr is
6935 function End_Label_Loc (Nod : Node_Id) return Source_Ptr;
6936 -- Return the source location of Nod's end label according to the
6937 -- following precedence rules:
6939 -- 1) If the end label exists, return its location
6940 -- 2) If Nod exists, return its location
6941 -- 3) Return the location of N
6943 -------------------
6944 -- End_Label_Loc --
6945 -------------------
6947 function End_Label_Loc (Nod : Node_Id) return Source_Ptr is
6948 Label : Node_Id;
6950 begin
6951 if Present (Nod) then
6952 Label := End_Label (Nod);
6954 if Present (Label) then
6955 return Sloc (Label);
6956 else
6957 return Sloc (Nod);
6958 end if;
6960 else
6961 return Sloc (N);
6962 end if;
6963 end End_Label_Loc;
6965 -- Local variables
6967 Owner : Node_Id;
6969 -- Start of processing for End_Keyword_Location
6971 begin
6972 if Nkind_In (N, N_Block_Statement,
6973 N_Entry_Body,
6974 N_Package_Body,
6975 N_Subprogram_Body,
6976 N_Task_Body)
6977 then
6978 Owner := Handled_Statement_Sequence (N);
6980 elsif Nkind (N) = N_Package_Declaration then
6981 Owner := Specification (N);
6983 elsif Nkind (N) = N_Protected_Body then
6984 Owner := N;
6986 elsif Nkind_In (N, N_Protected_Type_Declaration,
6987 N_Single_Protected_Declaration)
6988 then
6989 Owner := Protected_Definition (N);
6991 elsif Nkind_In (N, N_Single_Task_Declaration,
6992 N_Task_Type_Declaration)
6993 then
6994 Owner := Task_Definition (N);
6996 -- This routine should not be called with other contexts
6998 else
6999 pragma Assert (False);
7000 null;
7001 end if;
7003 return End_Label_Loc (Owner);
7004 end End_Keyword_Location;
7006 ------------------------
7007 -- Ensure_Freeze_Node --
7008 ------------------------
7010 procedure Ensure_Freeze_Node (E : Entity_Id) is
7011 FN : Node_Id;
7012 begin
7013 if No (Freeze_Node (E)) then
7014 FN := Make_Freeze_Entity (Sloc (E));
7015 Set_Has_Delayed_Freeze (E);
7016 Set_Freeze_Node (E, FN);
7017 Set_Access_Types_To_Process (FN, No_Elist);
7018 Set_TSS_Elist (FN, No_Elist);
7019 Set_Entity (FN, E);
7020 end if;
7021 end Ensure_Freeze_Node;
7023 ----------------
7024 -- Enter_Name --
7025 ----------------
7027 procedure Enter_Name (Def_Id : Entity_Id) is
7028 C : constant Entity_Id := Current_Entity (Def_Id);
7029 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
7030 S : constant Entity_Id := Current_Scope;
7032 begin
7033 Generate_Definition (Def_Id);
7035 -- Add new name to current scope declarations. Check for duplicate
7036 -- declaration, which may or may not be a genuine error.
7038 if Present (E) then
7040 -- Case of previous entity entered because of a missing declaration
7041 -- or else a bad subtype indication. Best is to use the new entity,
7042 -- and make the previous one invisible.
7044 if Etype (E) = Any_Type then
7045 Set_Is_Immediately_Visible (E, False);
7047 -- Case of renaming declaration constructed for package instances.
7048 -- if there is an explicit declaration with the same identifier,
7049 -- the renaming is not immediately visible any longer, but remains
7050 -- visible through selected component notation.
7052 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
7053 and then not Comes_From_Source (E)
7054 then
7055 Set_Is_Immediately_Visible (E, False);
7057 -- The new entity may be the package renaming, which has the same
7058 -- same name as a generic formal which has been seen already.
7060 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
7061 and then not Comes_From_Source (Def_Id)
7062 then
7063 Set_Is_Immediately_Visible (E, False);
7065 -- For a fat pointer corresponding to a remote access to subprogram,
7066 -- we use the same identifier as the RAS type, so that the proper
7067 -- name appears in the stub. This type is only retrieved through
7068 -- the RAS type and never by visibility, and is not added to the
7069 -- visibility list (see below).
7071 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
7072 and then Ekind (Def_Id) = E_Record_Type
7073 and then Present (Corresponding_Remote_Type (Def_Id))
7074 then
7075 null;
7077 -- Case of an implicit operation or derived literal. The new entity
7078 -- hides the implicit one, which is removed from all visibility,
7079 -- i.e. the entity list of its scope, and homonym chain of its name.
7081 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
7082 or else Is_Internal (E)
7083 then
7084 declare
7085 Decl : constant Node_Id := Parent (E);
7086 Prev : Entity_Id;
7087 Prev_Vis : Entity_Id;
7089 begin
7090 -- If E is an implicit declaration, it cannot be the first
7091 -- entity in the scope.
7093 Prev := First_Entity (Current_Scope);
7094 while Present (Prev) and then Next_Entity (Prev) /= E loop
7095 Next_Entity (Prev);
7096 end loop;
7098 if No (Prev) then
7100 -- If E is not on the entity chain of the current scope,
7101 -- it is an implicit declaration in the generic formal
7102 -- part of a generic subprogram. When analyzing the body,
7103 -- the generic formals are visible but not on the entity
7104 -- chain of the subprogram. The new entity will become
7105 -- the visible one in the body.
7107 pragma Assert
7108 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
7109 null;
7111 else
7112 Set_Next_Entity (Prev, Next_Entity (E));
7114 if No (Next_Entity (Prev)) then
7115 Set_Last_Entity (Current_Scope, Prev);
7116 end if;
7118 if E = Current_Entity (E) then
7119 Prev_Vis := Empty;
7121 else
7122 Prev_Vis := Current_Entity (E);
7123 while Homonym (Prev_Vis) /= E loop
7124 Prev_Vis := Homonym (Prev_Vis);
7125 end loop;
7126 end if;
7128 if Present (Prev_Vis) then
7130 -- Skip E in the visibility chain
7132 Set_Homonym (Prev_Vis, Homonym (E));
7134 else
7135 Set_Name_Entity_Id (Chars (E), Homonym (E));
7136 end if;
7137 end if;
7138 end;
7140 -- This section of code could use a comment ???
7142 elsif Present (Etype (E))
7143 and then Is_Concurrent_Type (Etype (E))
7144 and then E = Def_Id
7145 then
7146 return;
7148 -- If the homograph is a protected component renaming, it should not
7149 -- be hiding the current entity. Such renamings are treated as weak
7150 -- declarations.
7152 elsif Is_Prival (E) then
7153 Set_Is_Immediately_Visible (E, False);
7155 -- In this case the current entity is a protected component renaming.
7156 -- Perform minimal decoration by setting the scope and return since
7157 -- the prival should not be hiding other visible entities.
7159 elsif Is_Prival (Def_Id) then
7160 Set_Scope (Def_Id, Current_Scope);
7161 return;
7163 -- Analogous to privals, the discriminal generated for an entry index
7164 -- parameter acts as a weak declaration. Perform minimal decoration
7165 -- to avoid bogus errors.
7167 elsif Is_Discriminal (Def_Id)
7168 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
7169 then
7170 Set_Scope (Def_Id, Current_Scope);
7171 return;
7173 -- In the body or private part of an instance, a type extension may
7174 -- introduce a component with the same name as that of an actual. The
7175 -- legality rule is not enforced, but the semantics of the full type
7176 -- with two components of same name are not clear at this point???
7178 elsif In_Instance_Not_Visible then
7179 null;
7181 -- When compiling a package body, some child units may have become
7182 -- visible. They cannot conflict with local entities that hide them.
7184 elsif Is_Child_Unit (E)
7185 and then In_Open_Scopes (Scope (E))
7186 and then not Is_Immediately_Visible (E)
7187 then
7188 null;
7190 -- Conversely, with front-end inlining we may compile the parent body
7191 -- first, and a child unit subsequently. The context is now the
7192 -- parent spec, and body entities are not visible.
7194 elsif Is_Child_Unit (Def_Id)
7195 and then Is_Package_Body_Entity (E)
7196 and then not In_Package_Body (Current_Scope)
7197 then
7198 null;
7200 -- Case of genuine duplicate declaration
7202 else
7203 Error_Msg_Sloc := Sloc (E);
7205 -- If the previous declaration is an incomplete type declaration
7206 -- this may be an attempt to complete it with a private type. The
7207 -- following avoids confusing cascaded errors.
7209 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
7210 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
7211 then
7212 Error_Msg_N
7213 ("incomplete type cannot be completed with a private " &
7214 "declaration", Parent (Def_Id));
7215 Set_Is_Immediately_Visible (E, False);
7216 Set_Full_View (E, Def_Id);
7218 -- An inherited component of a record conflicts with a new
7219 -- discriminant. The discriminant is inserted first in the scope,
7220 -- but the error should be posted on it, not on the component.
7222 elsif Ekind (E) = E_Discriminant
7223 and then Present (Scope (Def_Id))
7224 and then Scope (Def_Id) /= Current_Scope
7225 then
7226 Error_Msg_Sloc := Sloc (Def_Id);
7227 Error_Msg_N ("& conflicts with declaration#", E);
7228 return;
7230 -- If the name of the unit appears in its own context clause, a
7231 -- dummy package with the name has already been created, and the
7232 -- error emitted. Try to continue quietly.
7234 elsif Error_Posted (E)
7235 and then Sloc (E) = No_Location
7236 and then Nkind (Parent (E)) = N_Package_Specification
7237 and then Current_Scope = Standard_Standard
7238 then
7239 Set_Scope (Def_Id, Current_Scope);
7240 return;
7242 else
7243 Error_Msg_N ("& conflicts with declaration#", Def_Id);
7245 -- Avoid cascaded messages with duplicate components in
7246 -- derived types.
7248 if Ekind_In (E, E_Component, E_Discriminant) then
7249 return;
7250 end if;
7251 end if;
7253 if Nkind (Parent (Parent (Def_Id))) =
7254 N_Generic_Subprogram_Declaration
7255 and then Def_Id =
7256 Defining_Entity (Specification (Parent (Parent (Def_Id))))
7257 then
7258 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
7259 end if;
7261 -- If entity is in standard, then we are in trouble, because it
7262 -- means that we have a library package with a duplicated name.
7263 -- That's hard to recover from, so abort.
7265 if S = Standard_Standard then
7266 raise Unrecoverable_Error;
7268 -- Otherwise we continue with the declaration. Having two
7269 -- identical declarations should not cause us too much trouble.
7271 else
7272 null;
7273 end if;
7274 end if;
7275 end if;
7277 -- If we fall through, declaration is OK, at least OK enough to continue
7279 -- If Def_Id is a discriminant or a record component we are in the midst
7280 -- of inheriting components in a derived record definition. Preserve
7281 -- their Ekind and Etype.
7283 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
7284 null;
7286 -- If a type is already set, leave it alone (happens when a type
7287 -- declaration is reanalyzed following a call to the optimizer).
7289 elsif Present (Etype (Def_Id)) then
7290 null;
7292 -- Otherwise, the kind E_Void insures that premature uses of the entity
7293 -- will be detected. Any_Type insures that no cascaded errors will occur
7295 else
7296 Set_Ekind (Def_Id, E_Void);
7297 Set_Etype (Def_Id, Any_Type);
7298 end if;
7300 -- Inherited discriminants and components in derived record types are
7301 -- immediately visible. Itypes are not.
7303 -- Unless the Itype is for a record type with a corresponding remote
7304 -- type (what is that about, it was not commented ???)
7306 if Ekind_In (Def_Id, E_Discriminant, E_Component)
7307 or else
7308 ((not Is_Record_Type (Def_Id)
7309 or else No (Corresponding_Remote_Type (Def_Id)))
7310 and then not Is_Itype (Def_Id))
7311 then
7312 Set_Is_Immediately_Visible (Def_Id);
7313 Set_Current_Entity (Def_Id);
7314 end if;
7316 Set_Homonym (Def_Id, C);
7317 Append_Entity (Def_Id, S);
7318 Set_Public_Status (Def_Id);
7320 -- Declaring a homonym is not allowed in SPARK ...
7322 if Present (C) and then Restriction_Check_Required (SPARK_05) then
7323 declare
7324 Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
7325 Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
7326 Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
7328 begin
7329 -- ... unless the new declaration is in a subprogram, and the
7330 -- visible declaration is a variable declaration or a parameter
7331 -- specification outside that subprogram.
7333 if Present (Enclosing_Subp)
7334 and then Nkind_In (Parent (C), N_Object_Declaration,
7335 N_Parameter_Specification)
7336 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
7337 then
7338 null;
7340 -- ... or the new declaration is in a package, and the visible
7341 -- declaration occurs outside that package.
7343 elsif Present (Enclosing_Pack)
7344 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
7345 then
7346 null;
7348 -- ... or the new declaration is a component declaration in a
7349 -- record type definition.
7351 elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
7352 null;
7354 -- Don't issue error for non-source entities
7356 elsif Comes_From_Source (Def_Id)
7357 and then Comes_From_Source (C)
7358 then
7359 Error_Msg_Sloc := Sloc (C);
7360 Check_SPARK_05_Restriction
7361 ("redeclaration of identifier &#", Def_Id);
7362 end if;
7363 end;
7364 end if;
7366 -- Warn if new entity hides an old one
7368 if Warn_On_Hiding and then Present (C)
7370 -- Don't warn for record components since they always have a well
7371 -- defined scope which does not confuse other uses. Note that in
7372 -- some cases, Ekind has not been set yet.
7374 and then Ekind (C) /= E_Component
7375 and then Ekind (C) /= E_Discriminant
7376 and then Nkind (Parent (C)) /= N_Component_Declaration
7377 and then Ekind (Def_Id) /= E_Component
7378 and then Ekind (Def_Id) /= E_Discriminant
7379 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
7381 -- Don't warn for one character variables. It is too common to use
7382 -- such variables as locals and will just cause too many false hits.
7384 and then Length_Of_Name (Chars (C)) /= 1
7386 -- Don't warn for non-source entities
7388 and then Comes_From_Source (C)
7389 and then Comes_From_Source (Def_Id)
7391 -- Don't warn unless entity in question is in extended main source
7393 and then In_Extended_Main_Source_Unit (Def_Id)
7395 -- Finally, the hidden entity must be either immediately visible or
7396 -- use visible (i.e. from a used package).
7398 and then
7399 (Is_Immediately_Visible (C)
7400 or else
7401 Is_Potentially_Use_Visible (C))
7402 then
7403 Error_Msg_Sloc := Sloc (C);
7404 Error_Msg_N ("declaration hides &#?h?", Def_Id);
7405 end if;
7406 end Enter_Name;
7408 ---------------
7409 -- Entity_Of --
7410 ---------------
7412 function Entity_Of (N : Node_Id) return Entity_Id is
7413 Id : Entity_Id;
7414 Ren : Node_Id;
7416 begin
7417 -- Assume that the arbitrary node does not have an entity
7419 Id := Empty;
7421 if Is_Entity_Name (N) then
7422 Id := Entity (N);
7424 -- Follow a possible chain of renamings to reach the earliest renamed
7425 -- source object.
7427 while Present (Id)
7428 and then Is_Object (Id)
7429 and then Present (Renamed_Object (Id))
7430 loop
7431 Ren := Renamed_Object (Id);
7433 -- The reference renames an abstract state or a whole object
7435 -- Obj : ...;
7436 -- Ren : ... renames Obj;
7438 if Is_Entity_Name (Ren) then
7439 Id := Entity (Ren);
7441 -- The reference renames a function result. Check the original
7442 -- node in case expansion relocates the function call.
7444 -- Ren : ... renames Func_Call;
7446 elsif Nkind (Original_Node (Ren)) = N_Function_Call then
7447 exit;
7449 -- Otherwise the reference renames something which does not yield
7450 -- an abstract state or a whole object. Treat the reference as not
7451 -- having a proper entity for SPARK legality purposes.
7453 else
7454 Id := Empty;
7455 exit;
7456 end if;
7457 end loop;
7458 end if;
7460 return Id;
7461 end Entity_Of;
7463 --------------------------
7464 -- Explain_Limited_Type --
7465 --------------------------
7467 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
7468 C : Entity_Id;
7470 begin
7471 -- For array, component type must be limited
7473 if Is_Array_Type (T) then
7474 Error_Msg_Node_2 := T;
7475 Error_Msg_NE
7476 ("\component type& of type& is limited", N, Component_Type (T));
7477 Explain_Limited_Type (Component_Type (T), N);
7479 elsif Is_Record_Type (T) then
7481 -- No need for extra messages if explicit limited record
7483 if Is_Limited_Record (Base_Type (T)) then
7484 return;
7485 end if;
7487 -- Otherwise find a limited component. Check only components that
7488 -- come from source, or inherited components that appear in the
7489 -- source of the ancestor.
7491 C := First_Component (T);
7492 while Present (C) loop
7493 if Is_Limited_Type (Etype (C))
7494 and then
7495 (Comes_From_Source (C)
7496 or else
7497 (Present (Original_Record_Component (C))
7498 and then
7499 Comes_From_Source (Original_Record_Component (C))))
7500 then
7501 Error_Msg_Node_2 := T;
7502 Error_Msg_NE ("\component& of type& has limited type", N, C);
7503 Explain_Limited_Type (Etype (C), N);
7504 return;
7505 end if;
7507 Next_Component (C);
7508 end loop;
7510 -- The type may be declared explicitly limited, even if no component
7511 -- of it is limited, in which case we fall out of the loop.
7512 return;
7513 end if;
7514 end Explain_Limited_Type;
7516 ---------------------------------------
7517 -- Expression_Of_Expression_Function --
7518 ---------------------------------------
7520 function Expression_Of_Expression_Function
7521 (Subp : Entity_Id) return Node_Id
7523 Expr_Func : Node_Id;
7525 begin
7526 pragma Assert (Is_Expression_Function_Or_Completion (Subp));
7528 if Nkind (Original_Node (Subprogram_Spec (Subp))) =
7529 N_Expression_Function
7530 then
7531 Expr_Func := Original_Node (Subprogram_Spec (Subp));
7533 elsif Nkind (Original_Node (Subprogram_Body (Subp))) =
7534 N_Expression_Function
7535 then
7536 Expr_Func := Original_Node (Subprogram_Body (Subp));
7538 else
7539 pragma Assert (False);
7540 null;
7541 end if;
7543 return Original_Node (Expression (Expr_Func));
7544 end Expression_Of_Expression_Function;
7546 -------------------------------
7547 -- Extensions_Visible_Status --
7548 -------------------------------
7550 function Extensions_Visible_Status
7551 (Id : Entity_Id) return Extensions_Visible_Mode
7553 Arg : Node_Id;
7554 Decl : Node_Id;
7555 Expr : Node_Id;
7556 Prag : Node_Id;
7557 Subp : Entity_Id;
7559 begin
7560 -- When a formal parameter is subject to Extensions_Visible, the pragma
7561 -- is stored in the contract of related subprogram.
7563 if Is_Formal (Id) then
7564 Subp := Scope (Id);
7566 elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
7567 Subp := Id;
7569 -- No other construct carries this pragma
7571 else
7572 return Extensions_Visible_None;
7573 end if;
7575 Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
7577 -- In certain cases analysis may request the Extensions_Visible status
7578 -- of an expression function before the pragma has been analyzed yet.
7579 -- Inspect the declarative items after the expression function looking
7580 -- for the pragma (if any).
7582 if No (Prag) and then Is_Expression_Function (Subp) then
7583 Decl := Next (Unit_Declaration_Node (Subp));
7584 while Present (Decl) loop
7585 if Nkind (Decl) = N_Pragma
7586 and then Pragma_Name (Decl) = Name_Extensions_Visible
7587 then
7588 Prag := Decl;
7589 exit;
7591 -- A source construct ends the region where Extensions_Visible may
7592 -- appear, stop the traversal. An expanded expression function is
7593 -- no longer a source construct, but it must still be recognized.
7595 elsif Comes_From_Source (Decl)
7596 or else
7597 (Nkind_In (Decl, N_Subprogram_Body,
7598 N_Subprogram_Declaration)
7599 and then Is_Expression_Function (Defining_Entity (Decl)))
7600 then
7601 exit;
7602 end if;
7604 Next (Decl);
7605 end loop;
7606 end if;
7608 -- Extract the value from the Boolean expression (if any)
7610 if Present (Prag) then
7611 Arg := First (Pragma_Argument_Associations (Prag));
7613 if Present (Arg) then
7614 Expr := Get_Pragma_Arg (Arg);
7616 -- When the associated subprogram is an expression function, the
7617 -- argument of the pragma may not have been analyzed.
7619 if not Analyzed (Expr) then
7620 Preanalyze_And_Resolve (Expr, Standard_Boolean);
7621 end if;
7623 -- Guard against cascading errors when the argument of pragma
7624 -- Extensions_Visible is not a valid static Boolean expression.
7626 if Error_Posted (Expr) then
7627 return Extensions_Visible_None;
7629 elsif Is_True (Expr_Value (Expr)) then
7630 return Extensions_Visible_True;
7632 else
7633 return Extensions_Visible_False;
7634 end if;
7636 -- Otherwise the aspect or pragma defaults to True
7638 else
7639 return Extensions_Visible_True;
7640 end if;
7642 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
7643 -- directly specified. In SPARK code, its value defaults to "False".
7645 elsif SPARK_Mode = On then
7646 return Extensions_Visible_False;
7648 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
7649 -- "True".
7651 else
7652 return Extensions_Visible_True;
7653 end if;
7654 end Extensions_Visible_Status;
7656 -----------------
7657 -- Find_Actual --
7658 -----------------
7660 procedure Find_Actual
7661 (N : Node_Id;
7662 Formal : out Entity_Id;
7663 Call : out Node_Id)
7665 Context : constant Node_Id := Parent (N);
7666 Actual : Node_Id;
7667 Call_Nam : Node_Id;
7669 begin
7670 if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
7671 and then N = Prefix (Context)
7672 then
7673 Find_Actual (Context, Formal, Call);
7674 return;
7676 elsif Nkind (Context) = N_Parameter_Association
7677 and then N = Explicit_Actual_Parameter (Context)
7678 then
7679 Call := Parent (Context);
7681 elsif Nkind_In (Context, N_Entry_Call_Statement,
7682 N_Function_Call,
7683 N_Procedure_Call_Statement)
7684 then
7685 Call := Context;
7687 else
7688 Formal := Empty;
7689 Call := Empty;
7690 return;
7691 end if;
7693 -- If we have a call to a subprogram look for the parameter. Note that
7694 -- we exclude overloaded calls, since we don't know enough to be sure
7695 -- of giving the right answer in this case.
7697 if Nkind_In (Call, N_Entry_Call_Statement,
7698 N_Function_Call,
7699 N_Procedure_Call_Statement)
7700 then
7701 Call_Nam := Name (Call);
7703 -- A call to a protected or task entry appears as a selected
7704 -- component rather than an expanded name.
7706 if Nkind (Call_Nam) = N_Selected_Component then
7707 Call_Nam := Selector_Name (Call_Nam);
7708 end if;
7710 if Is_Entity_Name (Call_Nam)
7711 and then Present (Entity (Call_Nam))
7712 and then Is_Overloadable (Entity (Call_Nam))
7713 and then not Is_Overloaded (Call_Nam)
7714 then
7715 -- If node is name in call it is not an actual
7717 if N = Call_Nam then
7718 Formal := Empty;
7719 Call := Empty;
7720 return;
7721 end if;
7723 -- Fall here if we are definitely a parameter
7725 Actual := First_Actual (Call);
7726 Formal := First_Formal (Entity (Call_Nam));
7727 while Present (Formal) and then Present (Actual) loop
7728 if Actual = N then
7729 return;
7731 -- An actual that is the prefix in a prefixed call may have
7732 -- been rewritten in the call, after the deferred reference
7733 -- was collected. Check if sloc and kinds and names match.
7735 elsif Sloc (Actual) = Sloc (N)
7736 and then Nkind (Actual) = N_Identifier
7737 and then Nkind (Actual) = Nkind (N)
7738 and then Chars (Actual) = Chars (N)
7739 then
7740 return;
7742 else
7743 Actual := Next_Actual (Actual);
7744 Formal := Next_Formal (Formal);
7745 end if;
7746 end loop;
7747 end if;
7748 end if;
7750 -- Fall through here if we did not find matching actual
7752 Formal := Empty;
7753 Call := Empty;
7754 end Find_Actual;
7756 ---------------------------
7757 -- Find_Body_Discriminal --
7758 ---------------------------
7760 function Find_Body_Discriminal
7761 (Spec_Discriminant : Entity_Id) return Entity_Id
7763 Tsk : Entity_Id;
7764 Disc : Entity_Id;
7766 begin
7767 -- If expansion is suppressed, then the scope can be the concurrent type
7768 -- itself rather than a corresponding concurrent record type.
7770 if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
7771 Tsk := Scope (Spec_Discriminant);
7773 else
7774 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
7776 Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
7777 end if;
7779 -- Find discriminant of original concurrent type, and use its current
7780 -- discriminal, which is the renaming within the task/protected body.
7782 Disc := First_Discriminant (Tsk);
7783 while Present (Disc) loop
7784 if Chars (Disc) = Chars (Spec_Discriminant) then
7785 return Discriminal (Disc);
7786 end if;
7788 Next_Discriminant (Disc);
7789 end loop;
7791 -- That loop should always succeed in finding a matching entry and
7792 -- returning. Fatal error if not.
7794 raise Program_Error;
7795 end Find_Body_Discriminal;
7797 -------------------------------------
7798 -- Find_Corresponding_Discriminant --
7799 -------------------------------------
7801 function Find_Corresponding_Discriminant
7802 (Id : Node_Id;
7803 Typ : Entity_Id) return Entity_Id
7805 Par_Disc : Entity_Id;
7806 Old_Disc : Entity_Id;
7807 New_Disc : Entity_Id;
7809 begin
7810 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
7812 -- The original type may currently be private, and the discriminant
7813 -- only appear on its full view.
7815 if Is_Private_Type (Scope (Par_Disc))
7816 and then not Has_Discriminants (Scope (Par_Disc))
7817 and then Present (Full_View (Scope (Par_Disc)))
7818 then
7819 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
7820 else
7821 Old_Disc := First_Discriminant (Scope (Par_Disc));
7822 end if;
7824 if Is_Class_Wide_Type (Typ) then
7825 New_Disc := First_Discriminant (Root_Type (Typ));
7826 else
7827 New_Disc := First_Discriminant (Typ);
7828 end if;
7830 while Present (Old_Disc) and then Present (New_Disc) loop
7831 if Old_Disc = Par_Disc then
7832 return New_Disc;
7833 end if;
7835 Next_Discriminant (Old_Disc);
7836 Next_Discriminant (New_Disc);
7837 end loop;
7839 -- Should always find it
7841 raise Program_Error;
7842 end Find_Corresponding_Discriminant;
7844 -------------------
7845 -- Find_DIC_Type --
7846 -------------------
7848 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is
7849 Curr_Typ : Entity_Id;
7850 -- The current type being examined in the parent hierarchy traversal
7852 DIC_Typ : Entity_Id;
7853 -- The type which carries the DIC pragma. This variable denotes the
7854 -- partial view when private types are involved.
7856 Par_Typ : Entity_Id;
7857 -- The parent type of the current type. This variable denotes the full
7858 -- view when private types are involved.
7860 begin
7861 -- The input type defines its own DIC pragma, therefore it is the owner
7863 if Has_Own_DIC (Typ) then
7864 DIC_Typ := Typ;
7866 -- Otherwise the DIC pragma is inherited from a parent type
7868 else
7869 pragma Assert (Has_Inherited_DIC (Typ));
7871 -- Climb the parent chain
7873 Curr_Typ := Typ;
7874 loop
7875 -- Inspect the parent type. Do not consider subtypes as they
7876 -- inherit the DIC attributes from their base types.
7878 DIC_Typ := Base_Type (Etype (Curr_Typ));
7880 -- Look at the full view of a private type because the type may
7881 -- have a hidden parent introduced in the full view.
7883 Par_Typ := DIC_Typ;
7885 if Is_Private_Type (Par_Typ)
7886 and then Present (Full_View (Par_Typ))
7887 then
7888 Par_Typ := Full_View (Par_Typ);
7889 end if;
7891 -- Stop the climb once the nearest parent type which defines a DIC
7892 -- pragma of its own is encountered or when the root of the parent
7893 -- chain is reached.
7895 exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ;
7897 Curr_Typ := Par_Typ;
7898 end loop;
7899 end if;
7901 return DIC_Typ;
7902 end Find_DIC_Type;
7904 ----------------------------------
7905 -- Find_Enclosing_Iterator_Loop --
7906 ----------------------------------
7908 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
7909 Constr : Node_Id;
7910 S : Entity_Id;
7912 begin
7913 -- Traverse the scope chain looking for an iterator loop. Such loops are
7914 -- usually transformed into blocks, hence the use of Original_Node.
7916 S := Id;
7917 while Present (S) and then S /= Standard_Standard loop
7918 if Ekind (S) = E_Loop
7919 and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
7920 then
7921 Constr := Original_Node (Label_Construct (Parent (S)));
7923 if Nkind (Constr) = N_Loop_Statement
7924 and then Present (Iteration_Scheme (Constr))
7925 and then Nkind (Iterator_Specification
7926 (Iteration_Scheme (Constr))) =
7927 N_Iterator_Specification
7928 then
7929 return S;
7930 end if;
7931 end if;
7933 S := Scope (S);
7934 end loop;
7936 return Empty;
7937 end Find_Enclosing_Iterator_Loop;
7939 --------------------------
7940 -- Find_Enclosing_Scope --
7941 --------------------------
7943 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id is
7944 Par : Node_Id;
7945 Spec_Id : Entity_Id;
7947 begin
7948 -- Examine the parent chain looking for a construct which defines a
7949 -- scope.
7951 Par := Parent (N);
7952 while Present (Par) loop
7953 case Nkind (Par) is
7955 -- The construct denotes a declaration, the proper scope is its
7956 -- entity.
7958 when N_Entry_Declaration
7959 | N_Expression_Function
7960 | N_Full_Type_Declaration
7961 | N_Generic_Package_Declaration
7962 | N_Generic_Subprogram_Declaration
7963 | N_Package_Declaration
7964 | N_Private_Extension_Declaration
7965 | N_Protected_Type_Declaration
7966 | N_Single_Protected_Declaration
7967 | N_Single_Task_Declaration
7968 | N_Subprogram_Declaration
7969 | N_Task_Type_Declaration
7971 return Defining_Entity (Par);
7973 -- The construct denotes a body, the proper scope is the entity of
7974 -- the corresponding spec.
7976 when N_Entry_Body
7977 | N_Package_Body
7978 | N_Protected_Body
7979 | N_Subprogram_Body
7980 | N_Task_Body
7982 Spec_Id := Corresponding_Spec (Par);
7984 -- The defining entity of a stand-alone subprogram body defines
7985 -- a scope.
7987 if Nkind (Par) = N_Subprogram_Body and then No (Spec_Id) then
7988 return Defining_Entity (Par);
7990 -- Otherwise there should be corresponding spec which defines a
7991 -- scope.
7993 else
7994 pragma Assert (Present (Spec_Id));
7996 return Spec_Id;
7997 end if;
7999 -- Special cases
8001 -- Blocks carry either a source or an internally-generated scope,
8002 -- unless the block is a byproduct of exception handling.
8004 when N_Block_Statement =>
8005 if not Exception_Junk (Par) then
8006 return Entity (Identifier (Par));
8007 end if;
8009 -- Loops carry an internally-generated scope
8011 when N_Loop_Statement =>
8012 return Entity (Identifier (Par));
8014 -- Extended return statements carry an internally-generated scope
8016 when N_Extended_Return_Statement =>
8017 return Return_Statement_Entity (Par);
8019 -- A traversal from a subunit continues via the corresponding stub
8021 when N_Subunit =>
8022 Par := Corresponding_Stub (Par);
8024 when others =>
8025 null;
8026 end case;
8028 Par := Parent (Par);
8029 end loop;
8031 return Standard_Standard;
8032 end Find_Enclosing_Scope;
8034 ------------------------------------
8035 -- Find_Loop_In_Conditional_Block --
8036 ------------------------------------
8038 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
8039 Stmt : Node_Id;
8041 begin
8042 Stmt := N;
8044 if Nkind (Stmt) = N_If_Statement then
8045 Stmt := First (Then_Statements (Stmt));
8046 end if;
8048 pragma Assert (Nkind (Stmt) = N_Block_Statement);
8050 -- Inspect the statements of the conditional block. In general the loop
8051 -- should be the first statement in the statement sequence of the block,
8052 -- but the finalization machinery may have introduced extra object
8053 -- declarations.
8055 Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
8056 while Present (Stmt) loop
8057 if Nkind (Stmt) = N_Loop_Statement then
8058 return Stmt;
8059 end if;
8061 Next (Stmt);
8062 end loop;
8064 -- The expansion of attribute 'Loop_Entry produced a malformed block
8066 raise Program_Error;
8067 end Find_Loop_In_Conditional_Block;
8069 --------------------------
8070 -- Find_Overlaid_Entity --
8071 --------------------------
8073 procedure Find_Overlaid_Entity
8074 (N : Node_Id;
8075 Ent : out Entity_Id;
8076 Off : out Boolean)
8078 Expr : Node_Id;
8080 begin
8081 -- We are looking for one of the two following forms:
8083 -- for X'Address use Y'Address
8085 -- or
8087 -- Const : constant Address := expr;
8088 -- ...
8089 -- for X'Address use Const;
8091 -- In the second case, the expr is either Y'Address, or recursively a
8092 -- constant that eventually references Y'Address.
8094 Ent := Empty;
8095 Off := False;
8097 if Nkind (N) = N_Attribute_Definition_Clause
8098 and then Chars (N) = Name_Address
8099 then
8100 Expr := Expression (N);
8102 -- This loop checks the form of the expression for Y'Address,
8103 -- using recursion to deal with intermediate constants.
8105 loop
8106 -- Check for Y'Address
8108 if Nkind (Expr) = N_Attribute_Reference
8109 and then Attribute_Name (Expr) = Name_Address
8110 then
8111 Expr := Prefix (Expr);
8112 exit;
8114 -- Check for Const where Const is a constant entity
8116 elsif Is_Entity_Name (Expr)
8117 and then Ekind (Entity (Expr)) = E_Constant
8118 then
8119 Expr := Constant_Value (Entity (Expr));
8121 -- Anything else does not need checking
8123 else
8124 return;
8125 end if;
8126 end loop;
8128 -- This loop checks the form of the prefix for an entity, using
8129 -- recursion to deal with intermediate components.
8131 loop
8132 -- Check for Y where Y is an entity
8134 if Is_Entity_Name (Expr) then
8135 Ent := Entity (Expr);
8136 return;
8138 -- Check for components
8140 elsif
8141 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
8142 then
8143 Expr := Prefix (Expr);
8144 Off := True;
8146 -- Anything else does not need checking
8148 else
8149 return;
8150 end if;
8151 end loop;
8152 end if;
8153 end Find_Overlaid_Entity;
8155 -------------------------
8156 -- Find_Parameter_Type --
8157 -------------------------
8159 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
8160 begin
8161 if Nkind (Param) /= N_Parameter_Specification then
8162 return Empty;
8164 -- For an access parameter, obtain the type from the formal entity
8165 -- itself, because access to subprogram nodes do not carry a type.
8166 -- Shouldn't we always use the formal entity ???
8168 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
8169 return Etype (Defining_Identifier (Param));
8171 else
8172 return Etype (Parameter_Type (Param));
8173 end if;
8174 end Find_Parameter_Type;
8176 -----------------------------------
8177 -- Find_Placement_In_State_Space --
8178 -----------------------------------
8180 procedure Find_Placement_In_State_Space
8181 (Item_Id : Entity_Id;
8182 Placement : out State_Space_Kind;
8183 Pack_Id : out Entity_Id)
8185 Context : Entity_Id;
8187 begin
8188 -- Assume that the item does not appear in the state space of a package
8190 Placement := Not_In_Package;
8191 Pack_Id := Empty;
8193 -- Climb the scope stack and examine the enclosing context
8195 Context := Scope (Item_Id);
8196 while Present (Context) and then Context /= Standard_Standard loop
8197 if Is_Package_Or_Generic_Package (Context) then
8198 Pack_Id := Context;
8200 -- A package body is a cut off point for the traversal as the item
8201 -- cannot be visible to the outside from this point on. Note that
8202 -- this test must be done first as a body is also classified as a
8203 -- private part.
8205 if In_Package_Body (Context) then
8206 Placement := Body_State_Space;
8207 return;
8209 -- The private part of a package is a cut off point for the
8210 -- traversal as the item cannot be visible to the outside from
8211 -- this point on.
8213 elsif In_Private_Part (Context) then
8214 Placement := Private_State_Space;
8215 return;
8217 -- When the item appears in the visible state space of a package,
8218 -- continue to climb the scope stack as this may not be the final
8219 -- state space.
8221 else
8222 Placement := Visible_State_Space;
8224 -- The visible state space of a child unit acts as the proper
8225 -- placement of an item.
8227 if Is_Child_Unit (Context) then
8228 return;
8229 end if;
8230 end if;
8232 -- The item or its enclosing package appear in a construct that has
8233 -- no state space.
8235 else
8236 Placement := Not_In_Package;
8237 return;
8238 end if;
8240 Context := Scope (Context);
8241 end loop;
8242 end Find_Placement_In_State_Space;
8244 ------------------------
8245 -- Find_Specific_Type --
8246 ------------------------
8248 function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
8249 Typ : Entity_Id := Root_Type (CW);
8251 begin
8252 if Ekind (Typ) = E_Incomplete_Type then
8253 if From_Limited_With (Typ) then
8254 Typ := Non_Limited_View (Typ);
8255 else
8256 Typ := Full_View (Typ);
8257 end if;
8258 end if;
8260 if Is_Private_Type (Typ)
8261 and then not Is_Tagged_Type (Typ)
8262 and then Present (Full_View (Typ))
8263 then
8264 return Full_View (Typ);
8265 else
8266 return Typ;
8267 end if;
8268 end Find_Specific_Type;
8270 -----------------------------
8271 -- Find_Static_Alternative --
8272 -----------------------------
8274 function Find_Static_Alternative (N : Node_Id) return Node_Id is
8275 Expr : constant Node_Id := Expression (N);
8276 Val : constant Uint := Expr_Value (Expr);
8277 Alt : Node_Id;
8278 Choice : Node_Id;
8280 begin
8281 Alt := First (Alternatives (N));
8283 Search : loop
8284 if Nkind (Alt) /= N_Pragma then
8285 Choice := First (Discrete_Choices (Alt));
8286 while Present (Choice) loop
8288 -- Others choice, always matches
8290 if Nkind (Choice) = N_Others_Choice then
8291 exit Search;
8293 -- Range, check if value is in the range
8295 elsif Nkind (Choice) = N_Range then
8296 exit Search when
8297 Val >= Expr_Value (Low_Bound (Choice))
8298 and then
8299 Val <= Expr_Value (High_Bound (Choice));
8301 -- Choice is a subtype name. Note that we know it must
8302 -- be a static subtype, since otherwise it would have
8303 -- been diagnosed as illegal.
8305 elsif Is_Entity_Name (Choice)
8306 and then Is_Type (Entity (Choice))
8307 then
8308 exit Search when Is_In_Range (Expr, Etype (Choice),
8309 Assume_Valid => False);
8311 -- Choice is a subtype indication
8313 elsif Nkind (Choice) = N_Subtype_Indication then
8314 declare
8315 C : constant Node_Id := Constraint (Choice);
8316 R : constant Node_Id := Range_Expression (C);
8318 begin
8319 exit Search when
8320 Val >= Expr_Value (Low_Bound (R))
8321 and then
8322 Val <= Expr_Value (High_Bound (R));
8323 end;
8325 -- Choice is a simple expression
8327 else
8328 exit Search when Val = Expr_Value (Choice);
8329 end if;
8331 Next (Choice);
8332 end loop;
8333 end if;
8335 Next (Alt);
8336 pragma Assert (Present (Alt));
8337 end loop Search;
8339 -- The above loop *must* terminate by finding a match, since we know the
8340 -- case statement is valid, and the value of the expression is known at
8341 -- compile time. When we fall out of the loop, Alt points to the
8342 -- alternative that we know will be selected at run time.
8344 return Alt;
8345 end Find_Static_Alternative;
8347 ------------------
8348 -- First_Actual --
8349 ------------------
8351 function First_Actual (Node : Node_Id) return Node_Id is
8352 N : Node_Id;
8354 begin
8355 if No (Parameter_Associations (Node)) then
8356 return Empty;
8357 end if;
8359 N := First (Parameter_Associations (Node));
8361 if Nkind (N) = N_Parameter_Association then
8362 return First_Named_Actual (Node);
8363 else
8364 return N;
8365 end if;
8366 end First_Actual;
8368 ------------------
8369 -- First_Global --
8370 ------------------
8372 function First_Global
8373 (Subp : Entity_Id;
8374 Global_Mode : Name_Id;
8375 Refined : Boolean := False) return Node_Id
8377 function First_From_Global_List
8378 (List : Node_Id;
8379 Global_Mode : Name_Id := Name_Input) return Entity_Id;
8380 -- Get the first item with suitable mode from List
8382 ----------------------------
8383 -- First_From_Global_List --
8384 ----------------------------
8386 function First_From_Global_List
8387 (List : Node_Id;
8388 Global_Mode : Name_Id := Name_Input) return Entity_Id
8390 Assoc : Node_Id;
8392 begin
8393 -- Empty list (no global items)
8395 if Nkind (List) = N_Null then
8396 return Empty;
8398 -- Single global item declaration (only input items)
8400 elsif Nkind_In (List, N_Expanded_Name,
8401 N_Identifier,
8402 N_Selected_Component)
8403 then
8404 if Global_Mode = Name_Input then
8405 return List;
8406 else
8407 return Empty;
8408 end if;
8410 -- Simple global list (only input items) or moded global list
8411 -- declaration.
8413 elsif Nkind (List) = N_Aggregate then
8414 if Present (Expressions (List)) then
8415 if Global_Mode = Name_Input then
8416 return First (Expressions (List));
8417 else
8418 return Empty;
8419 end if;
8421 else
8422 Assoc := First (Component_Associations (List));
8423 while Present (Assoc) loop
8425 -- When we find the desired mode in an association, call
8426 -- recursively First_From_Global_List as if the mode was
8427 -- Name_Input, in order to reuse the existing machinery
8428 -- for the other cases.
8430 if Chars (First (Choices (Assoc))) = Global_Mode then
8431 return First_From_Global_List (Expression (Assoc));
8432 end if;
8434 Next (Assoc);
8435 end loop;
8437 return Empty;
8438 end if;
8440 -- To accommodate partial decoration of disabled SPARK features,
8441 -- this routine may be called with illegal input. If this is the
8442 -- case, do not raise Program_Error.
8444 else
8445 return Empty;
8446 end if;
8447 end First_From_Global_List;
8449 -- Local variables
8451 Global : Node_Id := Empty;
8452 Body_Id : Entity_Id;
8454 begin
8455 pragma Assert (Global_Mode = Name_Input
8456 or else Global_Mode = Name_Output
8457 or else Global_Mode = Name_In_Out
8458 or else Global_Mode = Name_Proof_In);
8460 -- Retrieve the suitable pragma Global or Refined_Global. In the second
8461 -- case, it can only be located on the body entity.
8463 if Refined then
8464 Body_Id := Subprogram_Body_Entity (Subp);
8465 if Present (Body_Id) then
8466 Global := Get_Pragma (Body_Id, Pragma_Refined_Global);
8467 end if;
8468 else
8469 Global := Get_Pragma (Subp, Pragma_Global);
8470 end if;
8472 -- No corresponding global if pragma is not present
8474 if No (Global) then
8475 return Empty;
8477 -- Otherwise retrieve the corresponding list of items depending on the
8478 -- Global_Mode.
8480 else
8481 return First_From_Global_List
8482 (Expression (Get_Argument (Global, Subp)), Global_Mode);
8483 end if;
8484 end First_Global;
8486 -------------
8487 -- Fix_Msg --
8488 -------------
8490 function Fix_Msg (Id : Entity_Id; Msg : String) return String is
8491 Is_Task : constant Boolean :=
8492 Ekind_In (Id, E_Task_Body, E_Task_Type)
8493 or else Is_Single_Task_Object (Id);
8494 Msg_Last : constant Natural := Msg'Last;
8495 Msg_Index : Natural;
8496 Res : String (Msg'Range) := (others => ' ');
8497 Res_Index : Natural;
8499 begin
8500 -- Copy all characters from the input message Msg to result Res with
8501 -- suitable replacements.
8503 Msg_Index := Msg'First;
8504 Res_Index := Res'First;
8505 while Msg_Index <= Msg_Last loop
8507 -- Replace "subprogram" with a different word
8509 if Msg_Index <= Msg_Last - 10
8510 and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
8511 then
8512 if Ekind_In (Id, E_Entry, E_Entry_Family) then
8513 Res (Res_Index .. Res_Index + 4) := "entry";
8514 Res_Index := Res_Index + 5;
8516 elsif Is_Task then
8517 Res (Res_Index .. Res_Index + 8) := "task type";
8518 Res_Index := Res_Index + 9;
8520 else
8521 Res (Res_Index .. Res_Index + 9) := "subprogram";
8522 Res_Index := Res_Index + 10;
8523 end if;
8525 Msg_Index := Msg_Index + 10;
8527 -- Replace "protected" with a different word
8529 elsif Msg_Index <= Msg_Last - 9
8530 and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
8531 and then Is_Task
8532 then
8533 Res (Res_Index .. Res_Index + 3) := "task";
8534 Res_Index := Res_Index + 4;
8535 Msg_Index := Msg_Index + 9;
8537 -- Otherwise copy the character
8539 else
8540 Res (Res_Index) := Msg (Msg_Index);
8541 Msg_Index := Msg_Index + 1;
8542 Res_Index := Res_Index + 1;
8543 end if;
8544 end loop;
8546 return Res (Res'First .. Res_Index - 1);
8547 end Fix_Msg;
8549 -------------------------
8550 -- From_Nested_Package --
8551 -------------------------
8553 function From_Nested_Package (T : Entity_Id) return Boolean is
8554 Pack : constant Entity_Id := Scope (T);
8556 begin
8557 return
8558 Ekind (Pack) = E_Package
8559 and then not Is_Frozen (Pack)
8560 and then not Scope_Within_Or_Same (Current_Scope, Pack)
8561 and then In_Open_Scopes (Scope (Pack));
8562 end From_Nested_Package;
8564 -----------------------
8565 -- Gather_Components --
8566 -----------------------
8568 procedure Gather_Components
8569 (Typ : Entity_Id;
8570 Comp_List : Node_Id;
8571 Governed_By : List_Id;
8572 Into : Elist_Id;
8573 Report_Errors : out Boolean)
8575 Assoc : Node_Id;
8576 Variant : Node_Id;
8577 Discrete_Choice : Node_Id;
8578 Comp_Item : Node_Id;
8580 Discrim : Entity_Id;
8581 Discrim_Name : Node_Id;
8582 Discrim_Value : Node_Id;
8584 begin
8585 Report_Errors := False;
8587 if No (Comp_List) or else Null_Present (Comp_List) then
8588 return;
8590 elsif Present (Component_Items (Comp_List)) then
8591 Comp_Item := First (Component_Items (Comp_List));
8593 else
8594 Comp_Item := Empty;
8595 end if;
8597 while Present (Comp_Item) loop
8599 -- Skip the tag of a tagged record, the interface tags, as well
8600 -- as all items that are not user components (anonymous types,
8601 -- rep clauses, Parent field, controller field).
8603 if Nkind (Comp_Item) = N_Component_Declaration then
8604 declare
8605 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
8606 begin
8607 if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
8608 Append_Elmt (Comp, Into);
8609 end if;
8610 end;
8611 end if;
8613 Next (Comp_Item);
8614 end loop;
8616 if No (Variant_Part (Comp_List)) then
8617 return;
8618 else
8619 Discrim_Name := Name (Variant_Part (Comp_List));
8620 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
8621 end if;
8623 -- Look for the discriminant that governs this variant part.
8624 -- The discriminant *must* be in the Governed_By List
8626 Assoc := First (Governed_By);
8627 Find_Constraint : loop
8628 Discrim := First (Choices (Assoc));
8629 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
8630 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
8631 and then
8632 Chars (Corresponding_Discriminant (Entity (Discrim))) =
8633 Chars (Discrim_Name))
8634 or else Chars (Original_Record_Component (Entity (Discrim)))
8635 = Chars (Discrim_Name);
8637 if No (Next (Assoc)) then
8638 if not Is_Constrained (Typ)
8639 and then Is_Derived_Type (Typ)
8640 and then Present (Stored_Constraint (Typ))
8641 then
8642 -- If the type is a tagged type with inherited discriminants,
8643 -- use the stored constraint on the parent in order to find
8644 -- the values of discriminants that are otherwise hidden by an
8645 -- explicit constraint. Renamed discriminants are handled in
8646 -- the code above.
8648 -- If several parent discriminants are renamed by a single
8649 -- discriminant of the derived type, the call to obtain the
8650 -- Corresponding_Discriminant field only retrieves the last
8651 -- of them. We recover the constraint on the others from the
8652 -- Stored_Constraint as well.
8654 declare
8655 D : Entity_Id;
8656 C : Elmt_Id;
8658 begin
8659 D := First_Discriminant (Etype (Typ));
8660 C := First_Elmt (Stored_Constraint (Typ));
8661 while Present (D) and then Present (C) loop
8662 if Chars (Discrim_Name) = Chars (D) then
8663 if Is_Entity_Name (Node (C))
8664 and then Entity (Node (C)) = Entity (Discrim)
8665 then
8666 -- D is renamed by Discrim, whose value is given in
8667 -- Assoc.
8669 null;
8671 else
8672 Assoc :=
8673 Make_Component_Association (Sloc (Typ),
8674 New_List
8675 (New_Occurrence_Of (D, Sloc (Typ))),
8676 Duplicate_Subexpr_No_Checks (Node (C)));
8677 end if;
8678 exit Find_Constraint;
8679 end if;
8681 Next_Discriminant (D);
8682 Next_Elmt (C);
8683 end loop;
8684 end;
8685 end if;
8686 end if;
8688 if No (Next (Assoc)) then
8689 Error_Msg_NE (" missing value for discriminant&",
8690 First (Governed_By), Discrim_Name);
8691 Report_Errors := True;
8692 return;
8693 end if;
8695 Next (Assoc);
8696 end loop Find_Constraint;
8698 Discrim_Value := Expression (Assoc);
8700 if not Is_OK_Static_Expression (Discrim_Value) then
8702 -- If the variant part is governed by a discriminant of the type
8703 -- this is an error. If the variant part and the discriminant are
8704 -- inherited from an ancestor this is legal (AI05-120) unless the
8705 -- components are being gathered for an aggregate, in which case
8706 -- the caller must check Report_Errors.
8708 if Scope (Original_Record_Component
8709 ((Entity (First (Choices (Assoc)))))) = Typ
8710 then
8711 Error_Msg_FE
8712 ("value for discriminant & must be static!",
8713 Discrim_Value, Discrim);
8714 Why_Not_Static (Discrim_Value);
8715 end if;
8717 Report_Errors := True;
8718 return;
8719 end if;
8721 Search_For_Discriminant_Value : declare
8722 Low : Node_Id;
8723 High : Node_Id;
8725 UI_High : Uint;
8726 UI_Low : Uint;
8727 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
8729 begin
8730 Find_Discrete_Value : while Present (Variant) loop
8731 Discrete_Choice := First (Discrete_Choices (Variant));
8732 while Present (Discrete_Choice) loop
8733 exit Find_Discrete_Value when
8734 Nkind (Discrete_Choice) = N_Others_Choice;
8736 Get_Index_Bounds (Discrete_Choice, Low, High);
8738 UI_Low := Expr_Value (Low);
8739 UI_High := Expr_Value (High);
8741 exit Find_Discrete_Value when
8742 UI_Low <= UI_Discrim_Value
8743 and then
8744 UI_High >= UI_Discrim_Value;
8746 Next (Discrete_Choice);
8747 end loop;
8749 Next_Non_Pragma (Variant);
8750 end loop Find_Discrete_Value;
8751 end Search_For_Discriminant_Value;
8753 -- The case statement must include a variant that corresponds to the
8754 -- value of the discriminant, unless the discriminant type has a
8755 -- static predicate. In that case the absence of an others_choice that
8756 -- would cover this value becomes a run-time error (3.8,1 (21.1/2)).
8758 if No (Variant)
8759 and then not Has_Static_Predicate (Etype (Discrim_Name))
8760 then
8761 Error_Msg_NE
8762 ("value of discriminant & is out of range", Discrim_Value, Discrim);
8763 Report_Errors := True;
8764 return;
8765 end if;
8767 -- If we have found the corresponding choice, recursively add its
8768 -- components to the Into list. The nested components are part of
8769 -- the same record type.
8771 if Present (Variant) then
8772 Gather_Components
8773 (Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
8774 end if;
8775 end Gather_Components;
8777 ------------------------
8778 -- Get_Actual_Subtype --
8779 ------------------------
8781 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
8782 Typ : constant Entity_Id := Etype (N);
8783 Utyp : Entity_Id := Underlying_Type (Typ);
8784 Decl : Node_Id;
8785 Atyp : Entity_Id;
8787 begin
8788 if No (Utyp) then
8789 Utyp := Typ;
8790 end if;
8792 -- If what we have is an identifier that references a subprogram
8793 -- formal, or a variable or constant object, then we get the actual
8794 -- subtype from the referenced entity if one has been built.
8796 if Nkind (N) = N_Identifier
8797 and then
8798 (Is_Formal (Entity (N))
8799 or else Ekind (Entity (N)) = E_Constant
8800 or else Ekind (Entity (N)) = E_Variable)
8801 and then Present (Actual_Subtype (Entity (N)))
8802 then
8803 return Actual_Subtype (Entity (N));
8805 -- Actual subtype of unchecked union is always itself. We never need
8806 -- the "real" actual subtype. If we did, we couldn't get it anyway
8807 -- because the discriminant is not available. The restrictions on
8808 -- Unchecked_Union are designed to make sure that this is OK.
8810 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
8811 return Typ;
8813 -- Here for the unconstrained case, we must find actual subtype
8814 -- No actual subtype is available, so we must build it on the fly.
8816 -- Checking the type, not the underlying type, for constrainedness
8817 -- seems to be necessary. Maybe all the tests should be on the type???
8819 elsif (not Is_Constrained (Typ))
8820 and then (Is_Array_Type (Utyp)
8821 or else (Is_Record_Type (Utyp)
8822 and then Has_Discriminants (Utyp)))
8823 and then not Has_Unknown_Discriminants (Utyp)
8824 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
8825 then
8826 -- Nothing to do if in spec expression (why not???)
8828 if In_Spec_Expression then
8829 return Typ;
8831 elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
8833 -- If the type has no discriminants, there is no subtype to
8834 -- build, even if the underlying type is discriminated.
8836 return Typ;
8838 -- Else build the actual subtype
8840 else
8841 Decl := Build_Actual_Subtype (Typ, N);
8842 Atyp := Defining_Identifier (Decl);
8844 -- If Build_Actual_Subtype generated a new declaration then use it
8846 if Atyp /= Typ then
8848 -- The actual subtype is an Itype, so analyze the declaration,
8849 -- but do not attach it to the tree, to get the type defined.
8851 Set_Parent (Decl, N);
8852 Set_Is_Itype (Atyp);
8853 Analyze (Decl, Suppress => All_Checks);
8854 Set_Associated_Node_For_Itype (Atyp, N);
8855 Set_Has_Delayed_Freeze (Atyp, False);
8857 -- We need to freeze the actual subtype immediately. This is
8858 -- needed, because otherwise this Itype will not get frozen
8859 -- at all, and it is always safe to freeze on creation because
8860 -- any associated types must be frozen at this point.
8862 Freeze_Itype (Atyp, N);
8863 return Atyp;
8865 -- Otherwise we did not build a declaration, so return original
8867 else
8868 return Typ;
8869 end if;
8870 end if;
8872 -- For all remaining cases, the actual subtype is the same as
8873 -- the nominal type.
8875 else
8876 return Typ;
8877 end if;
8878 end Get_Actual_Subtype;
8880 -------------------------------------
8881 -- Get_Actual_Subtype_If_Available --
8882 -------------------------------------
8884 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
8885 Typ : constant Entity_Id := Etype (N);
8887 begin
8888 -- If what we have is an identifier that references a subprogram
8889 -- formal, or a variable or constant object, then we get the actual
8890 -- subtype from the referenced entity if one has been built.
8892 if Nkind (N) = N_Identifier
8893 and then
8894 (Is_Formal (Entity (N))
8895 or else Ekind (Entity (N)) = E_Constant
8896 or else Ekind (Entity (N)) = E_Variable)
8897 and then Present (Actual_Subtype (Entity (N)))
8898 then
8899 return Actual_Subtype (Entity (N));
8901 -- Otherwise the Etype of N is returned unchanged
8903 else
8904 return Typ;
8905 end if;
8906 end Get_Actual_Subtype_If_Available;
8908 ------------------------
8909 -- Get_Body_From_Stub --
8910 ------------------------
8912 function Get_Body_From_Stub (N : Node_Id) return Node_Id is
8913 begin
8914 return Proper_Body (Unit (Library_Unit (N)));
8915 end Get_Body_From_Stub;
8917 ---------------------
8918 -- Get_Cursor_Type --
8919 ---------------------
8921 function Get_Cursor_Type
8922 (Aspect : Node_Id;
8923 Typ : Entity_Id) return Entity_Id
8925 Assoc : Node_Id;
8926 Func : Entity_Id;
8927 First_Op : Entity_Id;
8928 Cursor : Entity_Id;
8930 begin
8931 -- If error already detected, return
8933 if Error_Posted (Aspect) then
8934 return Any_Type;
8935 end if;
8937 -- The cursor type for an Iterable aspect is the return type of a
8938 -- non-overloaded First primitive operation. Locate association for
8939 -- First.
8941 Assoc := First (Component_Associations (Expression (Aspect)));
8942 First_Op := Any_Id;
8943 while Present (Assoc) loop
8944 if Chars (First (Choices (Assoc))) = Name_First then
8945 First_Op := Expression (Assoc);
8946 exit;
8947 end if;
8949 Next (Assoc);
8950 end loop;
8952 if First_Op = Any_Id then
8953 Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
8954 return Any_Type;
8955 end if;
8957 Cursor := Any_Type;
8959 -- Locate function with desired name and profile in scope of type
8960 -- In the rare case where the type is an integer type, a base type
8961 -- is created for it, check that the base type of the first formal
8962 -- of First matches the base type of the domain.
8964 Func := First_Entity (Scope (Typ));
8965 while Present (Func) loop
8966 if Chars (Func) = Chars (First_Op)
8967 and then Ekind (Func) = E_Function
8968 and then Present (First_Formal (Func))
8969 and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
8970 and then No (Next_Formal (First_Formal (Func)))
8971 then
8972 if Cursor /= Any_Type then
8973 Error_Msg_N
8974 ("Operation First for iterable type must be unique", Aspect);
8975 return Any_Type;
8976 else
8977 Cursor := Etype (Func);
8978 end if;
8979 end if;
8981 Next_Entity (Func);
8982 end loop;
8984 -- If not found, no way to resolve remaining primitives.
8986 if Cursor = Any_Type then
8987 Error_Msg_N
8988 ("No legal primitive operation First for Iterable type", Aspect);
8989 end if;
8991 return Cursor;
8992 end Get_Cursor_Type;
8994 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
8995 begin
8996 return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
8997 end Get_Cursor_Type;
8999 -------------------------------
9000 -- Get_Default_External_Name --
9001 -------------------------------
9003 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
9004 begin
9005 Get_Decoded_Name_String (Chars (E));
9007 if Opt.External_Name_Imp_Casing = Uppercase then
9008 Set_Casing (All_Upper_Case);
9009 else
9010 Set_Casing (All_Lower_Case);
9011 end if;
9013 return
9014 Make_String_Literal (Sloc (E),
9015 Strval => String_From_Name_Buffer);
9016 end Get_Default_External_Name;
9018 --------------------------
9019 -- Get_Enclosing_Object --
9020 --------------------------
9022 function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
9023 begin
9024 if Is_Entity_Name (N) then
9025 return Entity (N);
9026 else
9027 case Nkind (N) is
9028 when N_Indexed_Component
9029 | N_Selected_Component
9030 | N_Slice
9032 -- If not generating code, a dereference may be left implicit.
9033 -- In thoses cases, return Empty.
9035 if Is_Access_Type (Etype (Prefix (N))) then
9036 return Empty;
9037 else
9038 return Get_Enclosing_Object (Prefix (N));
9039 end if;
9041 when N_Type_Conversion =>
9042 return Get_Enclosing_Object (Expression (N));
9044 when others =>
9045 return Empty;
9046 end case;
9047 end if;
9048 end Get_Enclosing_Object;
9050 ---------------------------
9051 -- Get_Enum_Lit_From_Pos --
9052 ---------------------------
9054 function Get_Enum_Lit_From_Pos
9055 (T : Entity_Id;
9056 Pos : Uint;
9057 Loc : Source_Ptr) return Node_Id
9059 Btyp : Entity_Id := Base_Type (T);
9060 Lit : Node_Id;
9061 LLoc : Source_Ptr;
9063 begin
9064 -- In the case where the literal is of type Character, Wide_Character
9065 -- or Wide_Wide_Character or of a type derived from them, there needs
9066 -- to be some special handling since there is no explicit chain of
9067 -- literals to search. Instead, an N_Character_Literal node is created
9068 -- with the appropriate Char_Code and Chars fields.
9070 if Is_Standard_Character_Type (T) then
9071 Set_Character_Literal_Name (UI_To_CC (Pos));
9073 return
9074 Make_Character_Literal (Loc,
9075 Chars => Name_Find,
9076 Char_Literal_Value => Pos);
9078 -- For all other cases, we have a complete table of literals, and
9079 -- we simply iterate through the chain of literal until the one
9080 -- with the desired position value is found.
9082 else
9083 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
9084 Btyp := Full_View (Btyp);
9085 end if;
9087 Lit := First_Literal (Btyp);
9088 for J in 1 .. UI_To_Int (Pos) loop
9089 Next_Literal (Lit);
9091 -- If Lit is Empty, Pos is not in range, so raise Constraint_Error
9092 -- inside the loop to avoid calling Next_Literal on Empty.
9094 if No (Lit) then
9095 raise Constraint_Error;
9096 end if;
9097 end loop;
9099 -- Create a new node from Lit, with source location provided by Loc
9100 -- if not equal to No_Location, or by copying the source location of
9101 -- Lit otherwise.
9103 LLoc := Loc;
9105 if LLoc = No_Location then
9106 LLoc := Sloc (Lit);
9107 end if;
9109 return New_Occurrence_Of (Lit, LLoc);
9110 end if;
9111 end Get_Enum_Lit_From_Pos;
9113 ------------------------
9114 -- Get_Generic_Entity --
9115 ------------------------
9117 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
9118 Ent : constant Entity_Id := Entity (Name (N));
9119 begin
9120 if Present (Renamed_Object (Ent)) then
9121 return Renamed_Object (Ent);
9122 else
9123 return Ent;
9124 end if;
9125 end Get_Generic_Entity;
9127 -------------------------------------
9128 -- Get_Incomplete_View_Of_Ancestor --
9129 -------------------------------------
9131 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
9132 Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
9133 Par_Scope : Entity_Id;
9134 Par_Type : Entity_Id;
9136 begin
9137 -- The incomplete view of an ancestor is only relevant for private
9138 -- derived types in child units.
9140 if not Is_Derived_Type (E)
9141 or else not Is_Child_Unit (Cur_Unit)
9142 then
9143 return Empty;
9145 else
9146 Par_Scope := Scope (Cur_Unit);
9147 if No (Par_Scope) then
9148 return Empty;
9149 end if;
9151 Par_Type := Etype (Base_Type (E));
9153 -- Traverse list of ancestor types until we find one declared in
9154 -- a parent or grandparent unit (two levels seem sufficient).
9156 while Present (Par_Type) loop
9157 if Scope (Par_Type) = Par_Scope
9158 or else Scope (Par_Type) = Scope (Par_Scope)
9159 then
9160 return Par_Type;
9162 elsif not Is_Derived_Type (Par_Type) then
9163 return Empty;
9165 else
9166 Par_Type := Etype (Base_Type (Par_Type));
9167 end if;
9168 end loop;
9170 -- If none found, there is no relevant ancestor type.
9172 return Empty;
9173 end if;
9174 end Get_Incomplete_View_Of_Ancestor;
9176 ----------------------
9177 -- Get_Index_Bounds --
9178 ----------------------
9180 procedure Get_Index_Bounds
9181 (N : Node_Id;
9182 L : out Node_Id;
9183 H : out Node_Id;
9184 Use_Full_View : Boolean := False)
9186 function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id;
9187 -- Obtain the scalar range of type Typ. If flag Use_Full_View is set and
9188 -- Typ qualifies, the scalar range is obtained from the full view of the
9189 -- type.
9191 --------------------------
9192 -- Scalar_Range_Of_Type --
9193 --------------------------
9195 function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id is
9196 T : Entity_Id := Typ;
9198 begin
9199 if Use_Full_View and then Present (Full_View (T)) then
9200 T := Full_View (T);
9201 end if;
9203 return Scalar_Range (T);
9204 end Scalar_Range_Of_Type;
9206 -- Local variables
9208 Kind : constant Node_Kind := Nkind (N);
9209 Rng : Node_Id;
9211 -- Start of processing for Get_Index_Bounds
9213 begin
9214 if Kind = N_Range then
9215 L := Low_Bound (N);
9216 H := High_Bound (N);
9218 elsif Kind = N_Subtype_Indication then
9219 Rng := Range_Expression (Constraint (N));
9221 if Rng = Error then
9222 L := Error;
9223 H := Error;
9224 return;
9226 else
9227 L := Low_Bound (Range_Expression (Constraint (N)));
9228 H := High_Bound (Range_Expression (Constraint (N)));
9229 end if;
9231 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
9232 Rng := Scalar_Range_Of_Type (Entity (N));
9234 if Error_Posted (Rng) then
9235 L := Error;
9236 H := Error;
9238 elsif Nkind (Rng) = N_Subtype_Indication then
9239 Get_Index_Bounds (Rng, L, H);
9241 else
9242 L := Low_Bound (Rng);
9243 H := High_Bound (Rng);
9244 end if;
9246 else
9247 -- N is an expression, indicating a range with one value
9249 L := N;
9250 H := N;
9251 end if;
9252 end Get_Index_Bounds;
9254 -----------------------------
9255 -- Get_Interfacing_Aspects --
9256 -----------------------------
9258 procedure Get_Interfacing_Aspects
9259 (Iface_Asp : Node_Id;
9260 Conv_Asp : out Node_Id;
9261 EN_Asp : out Node_Id;
9262 Expo_Asp : out Node_Id;
9263 Imp_Asp : out Node_Id;
9264 LN_Asp : out Node_Id;
9265 Do_Checks : Boolean := False)
9267 procedure Save_Or_Duplication_Error
9268 (Asp : Node_Id;
9269 To : in out Node_Id);
9270 -- Save the value of aspect Asp in node To. If To already has a value,
9271 -- then this is considered a duplicate use of aspect. Emit an error if
9272 -- flag Do_Checks is set.
9274 -------------------------------
9275 -- Save_Or_Duplication_Error --
9276 -------------------------------
9278 procedure Save_Or_Duplication_Error
9279 (Asp : Node_Id;
9280 To : in out Node_Id)
9282 begin
9283 -- Detect an extra aspect and issue an error
9285 if Present (To) then
9286 if Do_Checks then
9287 Error_Msg_Name_1 := Chars (Identifier (Asp));
9288 Error_Msg_Sloc := Sloc (To);
9289 Error_Msg_N ("aspect % previously given #", Asp);
9290 end if;
9292 -- Otherwise capture the aspect
9294 else
9295 To := Asp;
9296 end if;
9297 end Save_Or_Duplication_Error;
9299 -- Local variables
9301 Asp : Node_Id;
9302 Asp_Id : Aspect_Id;
9304 -- The following variables capture each individual aspect
9306 Conv : Node_Id := Empty;
9307 EN : Node_Id := Empty;
9308 Expo : Node_Id := Empty;
9309 Imp : Node_Id := Empty;
9310 LN : Node_Id := Empty;
9312 -- Start of processing for Get_Interfacing_Aspects
9314 begin
9315 -- The input interfacing aspect should reside in an aspect specification
9316 -- list.
9318 pragma Assert (Is_List_Member (Iface_Asp));
9320 -- Examine the aspect specifications of the related entity. Find and
9321 -- capture all interfacing aspects. Detect duplicates and emit errors
9322 -- if applicable.
9324 Asp := First (List_Containing (Iface_Asp));
9325 while Present (Asp) loop
9326 Asp_Id := Get_Aspect_Id (Asp);
9328 if Asp_Id = Aspect_Convention then
9329 Save_Or_Duplication_Error (Asp, Conv);
9331 elsif Asp_Id = Aspect_External_Name then
9332 Save_Or_Duplication_Error (Asp, EN);
9334 elsif Asp_Id = Aspect_Export then
9335 Save_Or_Duplication_Error (Asp, Expo);
9337 elsif Asp_Id = Aspect_Import then
9338 Save_Or_Duplication_Error (Asp, Imp);
9340 elsif Asp_Id = Aspect_Link_Name then
9341 Save_Or_Duplication_Error (Asp, LN);
9342 end if;
9344 Next (Asp);
9345 end loop;
9347 Conv_Asp := Conv;
9348 EN_Asp := EN;
9349 Expo_Asp := Expo;
9350 Imp_Asp := Imp;
9351 LN_Asp := LN;
9352 end Get_Interfacing_Aspects;
9354 ---------------------------------
9355 -- Get_Iterable_Type_Primitive --
9356 ---------------------------------
9358 function Get_Iterable_Type_Primitive
9359 (Typ : Entity_Id;
9360 Nam : Name_Id) return Entity_Id
9362 Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
9363 Assoc : Node_Id;
9365 begin
9366 if No (Funcs) then
9367 return Empty;
9369 else
9370 Assoc := First (Component_Associations (Funcs));
9371 while Present (Assoc) loop
9372 if Chars (First (Choices (Assoc))) = Nam then
9373 return Entity (Expression (Assoc));
9374 end if;
9376 Assoc := Next (Assoc);
9377 end loop;
9379 return Empty;
9380 end if;
9381 end Get_Iterable_Type_Primitive;
9383 ----------------------------------
9384 -- Get_Library_Unit_Name_string --
9385 ----------------------------------
9387 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
9388 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
9390 begin
9391 Get_Unit_Name_String (Unit_Name_Id);
9393 -- Remove seven last character (" (spec)" or " (body)")
9395 Name_Len := Name_Len - 7;
9396 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
9397 end Get_Library_Unit_Name_String;
9399 --------------------------
9400 -- Get_Max_Queue_Length --
9401 --------------------------
9403 function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
9404 pragma Assert (Is_Entry (Id));
9405 Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
9407 begin
9408 -- A value of 0 represents no maximum specified, and entries and entry
9409 -- families with no Max_Queue_Length aspect or pragma default to it.
9411 if not Present (Prag) then
9412 return Uint_0;
9413 end if;
9415 return Intval (Expression (First (Pragma_Argument_Associations (Prag))));
9416 end Get_Max_Queue_Length;
9418 ------------------------
9419 -- Get_Name_Entity_Id --
9420 ------------------------
9422 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
9423 begin
9424 return Entity_Id (Get_Name_Table_Int (Id));
9425 end Get_Name_Entity_Id;
9427 ------------------------------
9428 -- Get_Name_From_CTC_Pragma --
9429 ------------------------------
9431 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
9432 Arg : constant Node_Id :=
9433 Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
9434 begin
9435 return Strval (Expr_Value_S (Arg));
9436 end Get_Name_From_CTC_Pragma;
9438 -----------------------
9439 -- Get_Parent_Entity --
9440 -----------------------
9442 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
9443 begin
9444 if Nkind (Unit) = N_Package_Body
9445 and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
9446 then
9447 return Defining_Entity
9448 (Specification (Instance_Spec (Original_Node (Unit))));
9449 elsif Nkind (Unit) = N_Package_Instantiation then
9450 return Defining_Entity (Specification (Instance_Spec (Unit)));
9451 else
9452 return Defining_Entity (Unit);
9453 end if;
9454 end Get_Parent_Entity;
9456 -------------------
9457 -- Get_Pragma_Id --
9458 -------------------
9460 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
9461 begin
9462 return Get_Pragma_Id (Pragma_Name_Unmapped (N));
9463 end Get_Pragma_Id;
9465 ------------------------
9466 -- Get_Qualified_Name --
9467 ------------------------
9469 function Get_Qualified_Name
9470 (Id : Entity_Id;
9471 Suffix : Entity_Id := Empty) return Name_Id
9473 Suffix_Nam : Name_Id := No_Name;
9475 begin
9476 if Present (Suffix) then
9477 Suffix_Nam := Chars (Suffix);
9478 end if;
9480 return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
9481 end Get_Qualified_Name;
9483 function Get_Qualified_Name
9484 (Nam : Name_Id;
9485 Suffix : Name_Id := No_Name;
9486 Scop : Entity_Id := Current_Scope) return Name_Id
9488 procedure Add_Scope (S : Entity_Id);
9489 -- Add the fully qualified form of scope S to the name buffer. The
9490 -- format is:
9491 -- s-1__s__
9493 ---------------
9494 -- Add_Scope --
9495 ---------------
9497 procedure Add_Scope (S : Entity_Id) is
9498 begin
9499 if S = Empty then
9500 null;
9502 elsif S = Standard_Standard then
9503 null;
9505 else
9506 Add_Scope (Scope (S));
9507 Get_Name_String_And_Append (Chars (S));
9508 Add_Str_To_Name_Buffer ("__");
9509 end if;
9510 end Add_Scope;
9512 -- Start of processing for Get_Qualified_Name
9514 begin
9515 Name_Len := 0;
9516 Add_Scope (Scop);
9518 -- Append the base name after all scopes have been chained
9520 Get_Name_String_And_Append (Nam);
9522 -- Append the suffix (if present)
9524 if Suffix /= No_Name then
9525 Add_Str_To_Name_Buffer ("__");
9526 Get_Name_String_And_Append (Suffix);
9527 end if;
9529 return Name_Find;
9530 end Get_Qualified_Name;
9532 -----------------------
9533 -- Get_Reason_String --
9534 -----------------------
9536 procedure Get_Reason_String (N : Node_Id) is
9537 begin
9538 if Nkind (N) = N_String_Literal then
9539 Store_String_Chars (Strval (N));
9541 elsif Nkind (N) = N_Op_Concat then
9542 Get_Reason_String (Left_Opnd (N));
9543 Get_Reason_String (Right_Opnd (N));
9545 -- If not of required form, error
9547 else
9548 Error_Msg_N
9549 ("Reason for pragma Warnings has wrong form", N);
9550 Error_Msg_N
9551 ("\must be string literal or concatenation of string literals", N);
9552 return;
9553 end if;
9554 end Get_Reason_String;
9556 --------------------------------
9557 -- Get_Reference_Discriminant --
9558 --------------------------------
9560 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
9561 D : Entity_Id;
9563 begin
9564 D := First_Discriminant (Typ);
9565 while Present (D) loop
9566 if Has_Implicit_Dereference (D) then
9567 return D;
9568 end if;
9569 Next_Discriminant (D);
9570 end loop;
9572 return Empty;
9573 end Get_Reference_Discriminant;
9575 ---------------------------
9576 -- Get_Referenced_Object --
9577 ---------------------------
9579 function Get_Referenced_Object (N : Node_Id) return Node_Id is
9580 R : Node_Id;
9582 begin
9583 R := N;
9584 while Is_Entity_Name (R)
9585 and then Present (Renamed_Object (Entity (R)))
9586 loop
9587 R := Renamed_Object (Entity (R));
9588 end loop;
9590 return R;
9591 end Get_Referenced_Object;
9593 ------------------------
9594 -- Get_Renamed_Entity --
9595 ------------------------
9597 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
9598 R : Entity_Id;
9600 begin
9601 R := E;
9602 while Present (Renamed_Entity (R)) loop
9603 R := Renamed_Entity (R);
9604 end loop;
9606 return R;
9607 end Get_Renamed_Entity;
9609 -----------------------
9610 -- Get_Return_Object --
9611 -----------------------
9613 function Get_Return_Object (N : Node_Id) return Entity_Id is
9614 Decl : Node_Id;
9616 begin
9617 Decl := First (Return_Object_Declarations (N));
9618 while Present (Decl) loop
9619 exit when Nkind (Decl) = N_Object_Declaration
9620 and then Is_Return_Object (Defining_Identifier (Decl));
9621 Next (Decl);
9622 end loop;
9624 pragma Assert (Present (Decl));
9625 return Defining_Identifier (Decl);
9626 end Get_Return_Object;
9628 ---------------------------
9629 -- Get_Subprogram_Entity --
9630 ---------------------------
9632 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
9633 Subp : Node_Id;
9634 Subp_Id : Entity_Id;
9636 begin
9637 if Nkind (Nod) = N_Accept_Statement then
9638 Subp := Entry_Direct_Name (Nod);
9640 elsif Nkind (Nod) = N_Slice then
9641 Subp := Prefix (Nod);
9643 else
9644 Subp := Name (Nod);
9645 end if;
9647 -- Strip the subprogram call
9649 loop
9650 if Nkind_In (Subp, N_Explicit_Dereference,
9651 N_Indexed_Component,
9652 N_Selected_Component)
9653 then
9654 Subp := Prefix (Subp);
9656 elsif Nkind_In (Subp, N_Type_Conversion,
9657 N_Unchecked_Type_Conversion)
9658 then
9659 Subp := Expression (Subp);
9661 else
9662 exit;
9663 end if;
9664 end loop;
9666 -- Extract the entity of the subprogram call
9668 if Is_Entity_Name (Subp) then
9669 Subp_Id := Entity (Subp);
9671 if Ekind (Subp_Id) = E_Access_Subprogram_Type then
9672 Subp_Id := Directly_Designated_Type (Subp_Id);
9673 end if;
9675 if Is_Subprogram (Subp_Id) then
9676 return Subp_Id;
9677 else
9678 return Empty;
9679 end if;
9681 -- The search did not find a construct that denotes a subprogram
9683 else
9684 return Empty;
9685 end if;
9686 end Get_Subprogram_Entity;
9688 -----------------------------
9689 -- Get_Task_Body_Procedure --
9690 -----------------------------
9692 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id is
9693 begin
9694 -- Note: A task type may be the completion of a private type with
9695 -- discriminants. When performing elaboration checks on a task
9696 -- declaration, the current view of the type may be the private one,
9697 -- and the procedure that holds the body of the task is held in its
9698 -- underlying type.
9700 -- This is an odd function, why not have Task_Body_Procedure do
9701 -- the following digging???
9703 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
9704 end Get_Task_Body_Procedure;
9706 -------------------------
9707 -- Get_User_Defined_Eq --
9708 -------------------------
9710 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
9711 Prim : Elmt_Id;
9712 Op : Entity_Id;
9714 begin
9715 Prim := First_Elmt (Collect_Primitive_Operations (E));
9716 while Present (Prim) loop
9717 Op := Node (Prim);
9719 if Chars (Op) = Name_Op_Eq
9720 and then Etype (Op) = Standard_Boolean
9721 and then Etype (First_Formal (Op)) = E
9722 and then Etype (Next_Formal (First_Formal (Op))) = E
9723 then
9724 return Op;
9725 end if;
9727 Next_Elmt (Prim);
9728 end loop;
9730 return Empty;
9731 end Get_User_Defined_Eq;
9733 ---------------
9734 -- Get_Views --
9735 ---------------
9737 procedure Get_Views
9738 (Typ : Entity_Id;
9739 Priv_Typ : out Entity_Id;
9740 Full_Typ : out Entity_Id;
9741 Full_Base : out Entity_Id;
9742 CRec_Typ : out Entity_Id)
9744 IP_View : Entity_Id;
9746 begin
9747 -- Assume that none of the views can be recovered
9749 Priv_Typ := Empty;
9750 Full_Typ := Empty;
9751 Full_Base := Empty;
9752 CRec_Typ := Empty;
9754 -- The input type is the corresponding record type of a protected or a
9755 -- task type.
9757 if Ekind (Typ) = E_Record_Type
9758 and then Is_Concurrent_Record_Type (Typ)
9759 then
9760 CRec_Typ := Typ;
9761 Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
9762 Full_Base := Base_Type (Full_Typ);
9763 Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
9765 -- Otherwise the input type denotes an arbitrary type
9767 else
9768 IP_View := Incomplete_Or_Partial_View (Typ);
9770 -- The input type denotes the full view of a private type
9772 if Present (IP_View) then
9773 Priv_Typ := IP_View;
9774 Full_Typ := Typ;
9776 -- The input type is a private type
9778 elsif Is_Private_Type (Typ) then
9779 Priv_Typ := Typ;
9780 Full_Typ := Full_View (Priv_Typ);
9782 -- Otherwise the input type does not have any views
9784 else
9785 Full_Typ := Typ;
9786 end if;
9788 if Present (Full_Typ) then
9789 Full_Base := Base_Type (Full_Typ);
9791 if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
9792 CRec_Typ := Corresponding_Record_Type (Full_Typ);
9793 end if;
9794 end if;
9795 end if;
9796 end Get_Views;
9798 -----------------------
9799 -- Has_Access_Values --
9800 -----------------------
9802 function Has_Access_Values (T : Entity_Id) return Boolean is
9803 Typ : constant Entity_Id := Underlying_Type (T);
9805 begin
9806 -- Case of a private type which is not completed yet. This can only
9807 -- happen in the case of a generic format type appearing directly, or
9808 -- as a component of the type to which this function is being applied
9809 -- at the top level. Return False in this case, since we certainly do
9810 -- not know that the type contains access types.
9812 if No (Typ) then
9813 return False;
9815 elsif Is_Access_Type (Typ) then
9816 return True;
9818 elsif Is_Array_Type (Typ) then
9819 return Has_Access_Values (Component_Type (Typ));
9821 elsif Is_Record_Type (Typ) then
9822 declare
9823 Comp : Entity_Id;
9825 begin
9826 -- Loop to Check components
9828 Comp := First_Component_Or_Discriminant (Typ);
9829 while Present (Comp) loop
9831 -- Check for access component, tag field does not count, even
9832 -- though it is implemented internally using an access type.
9834 if Has_Access_Values (Etype (Comp))
9835 and then Chars (Comp) /= Name_uTag
9836 then
9837 return True;
9838 end if;
9840 Next_Component_Or_Discriminant (Comp);
9841 end loop;
9842 end;
9844 return False;
9846 else
9847 return False;
9848 end if;
9849 end Has_Access_Values;
9851 ------------------------------
9852 -- Has_Compatible_Alignment --
9853 ------------------------------
9855 function Has_Compatible_Alignment
9856 (Obj : Entity_Id;
9857 Expr : Node_Id;
9858 Layout_Done : Boolean) return Alignment_Result
9860 function Has_Compatible_Alignment_Internal
9861 (Obj : Entity_Id;
9862 Expr : Node_Id;
9863 Layout_Done : Boolean;
9864 Default : Alignment_Result) return Alignment_Result;
9865 -- This is the internal recursive function that actually does the work.
9866 -- There is one additional parameter, which says what the result should
9867 -- be if no alignment information is found, and there is no definite
9868 -- indication of compatible alignments. At the outer level, this is set
9869 -- to Unknown, but for internal recursive calls in the case where types
9870 -- are known to be correct, it is set to Known_Compatible.
9872 ---------------------------------------
9873 -- Has_Compatible_Alignment_Internal --
9874 ---------------------------------------
9876 function Has_Compatible_Alignment_Internal
9877 (Obj : Entity_Id;
9878 Expr : Node_Id;
9879 Layout_Done : Boolean;
9880 Default : Alignment_Result) return Alignment_Result
9882 Result : Alignment_Result := Known_Compatible;
9883 -- Holds the current status of the result. Note that once a value of
9884 -- Known_Incompatible is set, it is sticky and does not get changed
9885 -- to Unknown (the value in Result only gets worse as we go along,
9886 -- never better).
9888 Offs : Uint := No_Uint;
9889 -- Set to a factor of the offset from the base object when Expr is a
9890 -- selected or indexed component, based on Component_Bit_Offset and
9891 -- Component_Size respectively. A negative value is used to represent
9892 -- a value which is not known at compile time.
9894 procedure Check_Prefix;
9895 -- Checks the prefix recursively in the case where the expression
9896 -- is an indexed or selected component.
9898 procedure Set_Result (R : Alignment_Result);
9899 -- If R represents a worse outcome (unknown instead of known
9900 -- compatible, or known incompatible), then set Result to R.
9902 ------------------
9903 -- Check_Prefix --
9904 ------------------
9906 procedure Check_Prefix is
9907 begin
9908 -- The subtlety here is that in doing a recursive call to check
9909 -- the prefix, we have to decide what to do in the case where we
9910 -- don't find any specific indication of an alignment problem.
9912 -- At the outer level, we normally set Unknown as the result in
9913 -- this case, since we can only set Known_Compatible if we really
9914 -- know that the alignment value is OK, but for the recursive
9915 -- call, in the case where the types match, and we have not
9916 -- specified a peculiar alignment for the object, we are only
9917 -- concerned about suspicious rep clauses, the default case does
9918 -- not affect us, since the compiler will, in the absence of such
9919 -- rep clauses, ensure that the alignment is correct.
9921 if Default = Known_Compatible
9922 or else
9923 (Etype (Obj) = Etype (Expr)
9924 and then (Unknown_Alignment (Obj)
9925 or else
9926 Alignment (Obj) = Alignment (Etype (Obj))))
9927 then
9928 Set_Result
9929 (Has_Compatible_Alignment_Internal
9930 (Obj, Prefix (Expr), Layout_Done, Known_Compatible));
9932 -- In all other cases, we need a full check on the prefix
9934 else
9935 Set_Result
9936 (Has_Compatible_Alignment_Internal
9937 (Obj, Prefix (Expr), Layout_Done, Unknown));
9938 end if;
9939 end Check_Prefix;
9941 ----------------
9942 -- Set_Result --
9943 ----------------
9945 procedure Set_Result (R : Alignment_Result) is
9946 begin
9947 if R > Result then
9948 Result := R;
9949 end if;
9950 end Set_Result;
9952 -- Start of processing for Has_Compatible_Alignment_Internal
9954 begin
9955 -- If Expr is a selected component, we must make sure there is no
9956 -- potentially troublesome component clause and that the record is
9957 -- not packed if the layout is not done.
9959 if Nkind (Expr) = N_Selected_Component then
9961 -- Packing generates unknown alignment if layout is not done
9963 if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
9964 Set_Result (Unknown);
9965 end if;
9967 -- Check prefix and component offset
9969 Check_Prefix;
9970 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
9972 -- If Expr is an indexed component, we must make sure there is no
9973 -- potentially troublesome Component_Size clause and that the array
9974 -- is not bit-packed if the layout is not done.
9976 elsif Nkind (Expr) = N_Indexed_Component then
9977 declare
9978 Typ : constant Entity_Id := Etype (Prefix (Expr));
9980 begin
9981 -- Packing generates unknown alignment if layout is not done
9983 if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
9984 Set_Result (Unknown);
9985 end if;
9987 -- Check prefix and component offset (or at least size)
9989 Check_Prefix;
9990 Offs := Indexed_Component_Bit_Offset (Expr);
9991 if Offs = No_Uint then
9992 Offs := Component_Size (Typ);
9993 end if;
9994 end;
9995 end if;
9997 -- If we have a null offset, the result is entirely determined by
9998 -- the base object and has already been computed recursively.
10000 if Offs = Uint_0 then
10001 null;
10003 -- Case where we know the alignment of the object
10005 elsif Known_Alignment (Obj) then
10006 declare
10007 ObjA : constant Uint := Alignment (Obj);
10008 ExpA : Uint := No_Uint;
10009 SizA : Uint := No_Uint;
10011 begin
10012 -- If alignment of Obj is 1, then we are always OK
10014 if ObjA = 1 then
10015 Set_Result (Known_Compatible);
10017 -- Alignment of Obj is greater than 1, so we need to check
10019 else
10020 -- If we have an offset, see if it is compatible
10022 if Offs /= No_Uint and Offs > Uint_0 then
10023 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
10024 Set_Result (Known_Incompatible);
10025 end if;
10027 -- See if Expr is an object with known alignment
10029 elsif Is_Entity_Name (Expr)
10030 and then Known_Alignment (Entity (Expr))
10031 then
10032 ExpA := Alignment (Entity (Expr));
10034 -- Otherwise, we can use the alignment of the type of
10035 -- Expr given that we already checked for
10036 -- discombobulating rep clauses for the cases of indexed
10037 -- and selected components above.
10039 elsif Known_Alignment (Etype (Expr)) then
10040 ExpA := Alignment (Etype (Expr));
10042 -- Otherwise the alignment is unknown
10044 else
10045 Set_Result (Default);
10046 end if;
10048 -- If we got an alignment, see if it is acceptable
10050 if ExpA /= No_Uint and then ExpA < ObjA then
10051 Set_Result (Known_Incompatible);
10052 end if;
10054 -- If Expr is not a piece of a larger object, see if size
10055 -- is given. If so, check that it is not too small for the
10056 -- required alignment.
10058 if Offs /= No_Uint then
10059 null;
10061 -- See if Expr is an object with known size
10063 elsif Is_Entity_Name (Expr)
10064 and then Known_Static_Esize (Entity (Expr))
10065 then
10066 SizA := Esize (Entity (Expr));
10068 -- Otherwise, we check the object size of the Expr type
10070 elsif Known_Static_Esize (Etype (Expr)) then
10071 SizA := Esize (Etype (Expr));
10072 end if;
10074 -- If we got a size, see if it is a multiple of the Obj
10075 -- alignment, if not, then the alignment cannot be
10076 -- acceptable, since the size is always a multiple of the
10077 -- alignment.
10079 if SizA /= No_Uint then
10080 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
10081 Set_Result (Known_Incompatible);
10082 end if;
10083 end if;
10084 end if;
10085 end;
10087 -- If we do not know required alignment, any non-zero offset is a
10088 -- potential problem (but certainly may be OK, so result is unknown).
10090 elsif Offs /= No_Uint then
10091 Set_Result (Unknown);
10093 -- If we can't find the result by direct comparison of alignment
10094 -- values, then there is still one case that we can determine known
10095 -- result, and that is when we can determine that the types are the
10096 -- same, and no alignments are specified. Then we known that the
10097 -- alignments are compatible, even if we don't know the alignment
10098 -- value in the front end.
10100 elsif Etype (Obj) = Etype (Expr) then
10102 -- Types are the same, but we have to check for possible size
10103 -- and alignments on the Expr object that may make the alignment
10104 -- different, even though the types are the same.
10106 if Is_Entity_Name (Expr) then
10108 -- First check alignment of the Expr object. Any alignment less
10109 -- than Maximum_Alignment is worrisome since this is the case
10110 -- where we do not know the alignment of Obj.
10112 if Known_Alignment (Entity (Expr))
10113 and then UI_To_Int (Alignment (Entity (Expr))) <
10114 Ttypes.Maximum_Alignment
10115 then
10116 Set_Result (Unknown);
10118 -- Now check size of Expr object. Any size that is not an
10119 -- even multiple of Maximum_Alignment is also worrisome
10120 -- since it may cause the alignment of the object to be less
10121 -- than the alignment of the type.
10123 elsif Known_Static_Esize (Entity (Expr))
10124 and then
10125 (UI_To_Int (Esize (Entity (Expr))) mod
10126 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
10127 /= 0
10128 then
10129 Set_Result (Unknown);
10131 -- Otherwise same type is decisive
10133 else
10134 Set_Result (Known_Compatible);
10135 end if;
10136 end if;
10138 -- Another case to deal with is when there is an explicit size or
10139 -- alignment clause when the types are not the same. If so, then the
10140 -- result is Unknown. We don't need to do this test if the Default is
10141 -- Unknown, since that result will be set in any case.
10143 elsif Default /= Unknown
10144 and then (Has_Size_Clause (Etype (Expr))
10145 or else
10146 Has_Alignment_Clause (Etype (Expr)))
10147 then
10148 Set_Result (Unknown);
10150 -- If no indication found, set default
10152 else
10153 Set_Result (Default);
10154 end if;
10156 -- Return worst result found
10158 return Result;
10159 end Has_Compatible_Alignment_Internal;
10161 -- Start of processing for Has_Compatible_Alignment
10163 begin
10164 -- If Obj has no specified alignment, then set alignment from the type
10165 -- alignment. Perhaps we should always do this, but for sure we should
10166 -- do it when there is an address clause since we can do more if the
10167 -- alignment is known.
10169 if Unknown_Alignment (Obj) then
10170 Set_Alignment (Obj, Alignment (Etype (Obj)));
10171 end if;
10173 -- Now do the internal call that does all the work
10175 return
10176 Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
10177 end Has_Compatible_Alignment;
10179 ----------------------
10180 -- Has_Declarations --
10181 ----------------------
10183 function Has_Declarations (N : Node_Id) return Boolean is
10184 begin
10185 return Nkind_In (Nkind (N), N_Accept_Statement,
10186 N_Block_Statement,
10187 N_Compilation_Unit_Aux,
10188 N_Entry_Body,
10189 N_Package_Body,
10190 N_Protected_Body,
10191 N_Subprogram_Body,
10192 N_Task_Body,
10193 N_Package_Specification);
10194 end Has_Declarations;
10196 ---------------------------------
10197 -- Has_Defaulted_Discriminants --
10198 ---------------------------------
10200 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
10201 begin
10202 return Has_Discriminants (Typ)
10203 and then Present (First_Discriminant (Typ))
10204 and then Present (Discriminant_Default_Value
10205 (First_Discriminant (Typ)));
10206 end Has_Defaulted_Discriminants;
10208 -------------------
10209 -- Has_Denormals --
10210 -------------------
10212 function Has_Denormals (E : Entity_Id) return Boolean is
10213 begin
10214 return Is_Floating_Point_Type (E) and then Denorm_On_Target;
10215 end Has_Denormals;
10217 -------------------------------------------
10218 -- Has_Discriminant_Dependent_Constraint --
10219 -------------------------------------------
10221 function Has_Discriminant_Dependent_Constraint
10222 (Comp : Entity_Id) return Boolean
10224 Comp_Decl : constant Node_Id := Parent (Comp);
10225 Subt_Indic : Node_Id;
10226 Constr : Node_Id;
10227 Assn : Node_Id;
10229 begin
10230 -- Discriminants can't depend on discriminants
10232 if Ekind (Comp) = E_Discriminant then
10233 return False;
10235 else
10236 Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
10238 if Nkind (Subt_Indic) = N_Subtype_Indication then
10239 Constr := Constraint (Subt_Indic);
10241 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
10242 Assn := First (Constraints (Constr));
10243 while Present (Assn) loop
10244 case Nkind (Assn) is
10245 when N_Identifier
10246 | N_Range
10247 | N_Subtype_Indication
10249 if Depends_On_Discriminant (Assn) then
10250 return True;
10251 end if;
10253 when N_Discriminant_Association =>
10254 if Depends_On_Discriminant (Expression (Assn)) then
10255 return True;
10256 end if;
10258 when others =>
10259 null;
10260 end case;
10262 Next (Assn);
10263 end loop;
10264 end if;
10265 end if;
10266 end if;
10268 return False;
10269 end Has_Discriminant_Dependent_Constraint;
10271 --------------------------------------
10272 -- Has_Effectively_Volatile_Profile --
10273 --------------------------------------
10275 function Has_Effectively_Volatile_Profile
10276 (Subp_Id : Entity_Id) return Boolean
10278 Formal : Entity_Id;
10280 begin
10281 -- Inspect the formal parameters looking for an effectively volatile
10282 -- type.
10284 Formal := First_Formal (Subp_Id);
10285 while Present (Formal) loop
10286 if Is_Effectively_Volatile (Etype (Formal)) then
10287 return True;
10288 end if;
10290 Next_Formal (Formal);
10291 end loop;
10293 -- Inspect the return type of functions
10295 if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
10296 and then Is_Effectively_Volatile (Etype (Subp_Id))
10297 then
10298 return True;
10299 end if;
10301 return False;
10302 end Has_Effectively_Volatile_Profile;
10304 --------------------------
10305 -- Has_Enabled_Property --
10306 --------------------------
10308 function Has_Enabled_Property
10309 (Item_Id : Entity_Id;
10310 Property : Name_Id) return Boolean
10312 function Protected_Object_Has_Enabled_Property return Boolean;
10313 -- Determine whether a protected object denoted by Item_Id has the
10314 -- property enabled.
10316 function State_Has_Enabled_Property return Boolean;
10317 -- Determine whether a state denoted by Item_Id has the property enabled
10319 function Variable_Has_Enabled_Property return Boolean;
10320 -- Determine whether a variable denoted by Item_Id has the property
10321 -- enabled.
10323 -------------------------------------------
10324 -- Protected_Object_Has_Enabled_Property --
10325 -------------------------------------------
10327 function Protected_Object_Has_Enabled_Property return Boolean is
10328 Constits : constant Elist_Id := Part_Of_Constituents (Item_Id);
10329 Constit_Elmt : Elmt_Id;
10330 Constit_Id : Entity_Id;
10332 begin
10333 -- Protected objects always have the properties Async_Readers and
10334 -- Async_Writers (SPARK RM 7.1.2(16)).
10336 if Property = Name_Async_Readers
10337 or else Property = Name_Async_Writers
10338 then
10339 return True;
10341 -- Protected objects that have Part_Of components also inherit their
10342 -- properties Effective_Reads and Effective_Writes
10343 -- (SPARK RM 7.1.2(16)).
10345 elsif Present (Constits) then
10346 Constit_Elmt := First_Elmt (Constits);
10347 while Present (Constit_Elmt) loop
10348 Constit_Id := Node (Constit_Elmt);
10350 if Has_Enabled_Property (Constit_Id, Property) then
10351 return True;
10352 end if;
10354 Next_Elmt (Constit_Elmt);
10355 end loop;
10356 end if;
10358 return False;
10359 end Protected_Object_Has_Enabled_Property;
10361 --------------------------------
10362 -- State_Has_Enabled_Property --
10363 --------------------------------
10365 function State_Has_Enabled_Property return Boolean is
10366 Decl : constant Node_Id := Parent (Item_Id);
10367 Opt : Node_Id;
10368 Opt_Nam : Node_Id;
10369 Prop : Node_Id;
10370 Prop_Nam : Node_Id;
10371 Props : Node_Id;
10373 begin
10374 -- The declaration of an external abstract state appears as an
10375 -- extension aggregate. If this is not the case, properties can never
10376 -- be set.
10378 if Nkind (Decl) /= N_Extension_Aggregate then
10379 return False;
10380 end if;
10382 -- When External appears as a simple option, it automatically enables
10383 -- all properties.
10385 Opt := First (Expressions (Decl));
10386 while Present (Opt) loop
10387 if Nkind (Opt) = N_Identifier
10388 and then Chars (Opt) = Name_External
10389 then
10390 return True;
10391 end if;
10393 Next (Opt);
10394 end loop;
10396 -- When External specifies particular properties, inspect those and
10397 -- find the desired one (if any).
10399 Opt := First (Component_Associations (Decl));
10400 while Present (Opt) loop
10401 Opt_Nam := First (Choices (Opt));
10403 if Nkind (Opt_Nam) = N_Identifier
10404 and then Chars (Opt_Nam) = Name_External
10405 then
10406 Props := Expression (Opt);
10408 -- Multiple properties appear as an aggregate
10410 if Nkind (Props) = N_Aggregate then
10412 -- Simple property form
10414 Prop := First (Expressions (Props));
10415 while Present (Prop) loop
10416 if Chars (Prop) = Property then
10417 return True;
10418 end if;
10420 Next (Prop);
10421 end loop;
10423 -- Property with expression form
10425 Prop := First (Component_Associations (Props));
10426 while Present (Prop) loop
10427 Prop_Nam := First (Choices (Prop));
10429 -- The property can be represented in two ways:
10430 -- others => <value>
10431 -- <property> => <value>
10433 if Nkind (Prop_Nam) = N_Others_Choice
10434 or else (Nkind (Prop_Nam) = N_Identifier
10435 and then Chars (Prop_Nam) = Property)
10436 then
10437 return Is_True (Expr_Value (Expression (Prop)));
10438 end if;
10440 Next (Prop);
10441 end loop;
10443 -- Single property
10445 else
10446 return Chars (Props) = Property;
10447 end if;
10448 end if;
10450 Next (Opt);
10451 end loop;
10453 return False;
10454 end State_Has_Enabled_Property;
10456 -----------------------------------
10457 -- Variable_Has_Enabled_Property --
10458 -----------------------------------
10460 function Variable_Has_Enabled_Property return Boolean is
10461 function Is_Enabled (Prag : Node_Id) return Boolean;
10462 -- Determine whether property pragma Prag (if present) denotes an
10463 -- enabled property.
10465 ----------------
10466 -- Is_Enabled --
10467 ----------------
10469 function Is_Enabled (Prag : Node_Id) return Boolean is
10470 Arg1 : Node_Id;
10472 begin
10473 if Present (Prag) then
10474 Arg1 := First (Pragma_Argument_Associations (Prag));
10476 -- The pragma has an optional Boolean expression, the related
10477 -- property is enabled only when the expression evaluates to
10478 -- True.
10480 if Present (Arg1) then
10481 return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
10483 -- Otherwise the lack of expression enables the property by
10484 -- default.
10486 else
10487 return True;
10488 end if;
10490 -- The property was never set in the first place
10492 else
10493 return False;
10494 end if;
10495 end Is_Enabled;
10497 -- Local variables
10499 AR : constant Node_Id :=
10500 Get_Pragma (Item_Id, Pragma_Async_Readers);
10501 AW : constant Node_Id :=
10502 Get_Pragma (Item_Id, Pragma_Async_Writers);
10503 ER : constant Node_Id :=
10504 Get_Pragma (Item_Id, Pragma_Effective_Reads);
10505 EW : constant Node_Id :=
10506 Get_Pragma (Item_Id, Pragma_Effective_Writes);
10508 -- Start of processing for Variable_Has_Enabled_Property
10510 begin
10511 -- A non-effectively volatile object can never possess external
10512 -- properties.
10514 if not Is_Effectively_Volatile (Item_Id) then
10515 return False;
10517 -- External properties related to variables come in two flavors -
10518 -- explicit and implicit. The explicit case is characterized by the
10519 -- presence of a property pragma with an optional Boolean flag. The
10520 -- property is enabled when the flag evaluates to True or the flag is
10521 -- missing altogether.
10523 elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
10524 return True;
10526 elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
10527 return True;
10529 elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
10530 return True;
10532 elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
10533 return True;
10535 -- The implicit case lacks all property pragmas
10537 elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
10538 if Is_Protected_Type (Etype (Item_Id)) then
10539 return Protected_Object_Has_Enabled_Property;
10540 else
10541 return True;
10542 end if;
10544 else
10545 return False;
10546 end if;
10547 end Variable_Has_Enabled_Property;
10549 -- Start of processing for Has_Enabled_Property
10551 begin
10552 -- Abstract states and variables have a flexible scheme of specifying
10553 -- external properties.
10555 if Ekind (Item_Id) = E_Abstract_State then
10556 return State_Has_Enabled_Property;
10558 elsif Ekind (Item_Id) = E_Variable then
10559 return Variable_Has_Enabled_Property;
10561 -- By default, protected objects only have the properties Async_Readers
10562 -- and Async_Writers. If they have Part_Of components, they also inherit
10563 -- their properties Effective_Reads and Effective_Writes
10564 -- (SPARK RM 7.1.2(16)).
10566 elsif Ekind (Item_Id) = E_Protected_Object then
10567 return Protected_Object_Has_Enabled_Property;
10569 -- Otherwise a property is enabled when the related item is effectively
10570 -- volatile.
10572 else
10573 return Is_Effectively_Volatile (Item_Id);
10574 end if;
10575 end Has_Enabled_Property;
10577 -------------------------------------
10578 -- Has_Full_Default_Initialization --
10579 -------------------------------------
10581 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
10582 Comp : Entity_Id;
10583 Prag : Node_Id;
10585 begin
10586 -- A type subject to pragma Default_Initial_Condition is fully default
10587 -- initialized when the pragma appears with a non-null argument. Since
10588 -- any type may act as the full view of a private type, this check must
10589 -- be performed prior to the specialized tests below.
10591 if Has_DIC (Typ) then
10592 Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
10593 pragma Assert (Present (Prag));
10595 return Is_Verifiable_DIC_Pragma (Prag);
10596 end if;
10598 -- A scalar type is fully default initialized if it is subject to aspect
10599 -- Default_Value.
10601 if Is_Scalar_Type (Typ) then
10602 return Has_Default_Aspect (Typ);
10604 -- An array type is fully default initialized if its element type is
10605 -- scalar and the array type carries aspect Default_Component_Value or
10606 -- the element type is fully default initialized.
10608 elsif Is_Array_Type (Typ) then
10609 return
10610 Has_Default_Aspect (Typ)
10611 or else Has_Full_Default_Initialization (Component_Type (Typ));
10613 -- A protected type, record type, or type extension is fully default
10614 -- initialized if all its components either carry an initialization
10615 -- expression or have a type that is fully default initialized. The
10616 -- parent type of a type extension must be fully default initialized.
10618 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
10620 -- Inspect all entities defined in the scope of the type, looking for
10621 -- uninitialized components.
10623 Comp := First_Entity (Typ);
10624 while Present (Comp) loop
10625 if Ekind (Comp) = E_Component
10626 and then Comes_From_Source (Comp)
10627 and then No (Expression (Parent (Comp)))
10628 and then not Has_Full_Default_Initialization (Etype (Comp))
10629 then
10630 return False;
10631 end if;
10633 Next_Entity (Comp);
10634 end loop;
10636 -- Ensure that the parent type of a type extension is fully default
10637 -- initialized.
10639 if Etype (Typ) /= Typ
10640 and then not Has_Full_Default_Initialization (Etype (Typ))
10641 then
10642 return False;
10643 end if;
10645 -- If we get here, then all components and parent portion are fully
10646 -- default initialized.
10648 return True;
10650 -- A task type is fully default initialized by default
10652 elsif Is_Task_Type (Typ) then
10653 return True;
10655 -- Otherwise the type is not fully default initialized
10657 else
10658 return False;
10659 end if;
10660 end Has_Full_Default_Initialization;
10662 --------------------
10663 -- Has_Infinities --
10664 --------------------
10666 function Has_Infinities (E : Entity_Id) return Boolean is
10667 begin
10668 return
10669 Is_Floating_Point_Type (E)
10670 and then Nkind (Scalar_Range (E)) = N_Range
10671 and then Includes_Infinities (Scalar_Range (E));
10672 end Has_Infinities;
10674 --------------------
10675 -- Has_Interfaces --
10676 --------------------
10678 function Has_Interfaces
10679 (T : Entity_Id;
10680 Use_Full_View : Boolean := True) return Boolean
10682 Typ : Entity_Id := Base_Type (T);
10684 begin
10685 -- Handle concurrent types
10687 if Is_Concurrent_Type (Typ) then
10688 Typ := Corresponding_Record_Type (Typ);
10689 end if;
10691 if not Present (Typ)
10692 or else not Is_Record_Type (Typ)
10693 or else not Is_Tagged_Type (Typ)
10694 then
10695 return False;
10696 end if;
10698 -- Handle private types
10700 if Use_Full_View and then Present (Full_View (Typ)) then
10701 Typ := Full_View (Typ);
10702 end if;
10704 -- Handle concurrent record types
10706 if Is_Concurrent_Record_Type (Typ)
10707 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
10708 then
10709 return True;
10710 end if;
10712 loop
10713 if Is_Interface (Typ)
10714 or else
10715 (Is_Record_Type (Typ)
10716 and then Present (Interfaces (Typ))
10717 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
10718 then
10719 return True;
10720 end if;
10722 exit when Etype (Typ) = Typ
10724 -- Handle private types
10726 or else (Present (Full_View (Etype (Typ)))
10727 and then Full_View (Etype (Typ)) = Typ)
10729 -- Protect frontend against wrong sources with cyclic derivations
10731 or else Etype (Typ) = T;
10733 -- Climb to the ancestor type handling private types
10735 if Present (Full_View (Etype (Typ))) then
10736 Typ := Full_View (Etype (Typ));
10737 else
10738 Typ := Etype (Typ);
10739 end if;
10740 end loop;
10742 return False;
10743 end Has_Interfaces;
10745 --------------------------
10746 -- Has_Max_Queue_Length --
10747 --------------------------
10749 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
10750 begin
10751 return
10752 Ekind (Id) = E_Entry
10753 and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
10754 end Has_Max_Queue_Length;
10756 ---------------------------------
10757 -- Has_No_Obvious_Side_Effects --
10758 ---------------------------------
10760 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
10761 begin
10762 -- For now handle literals, constants, and non-volatile variables and
10763 -- expressions combining these with operators or short circuit forms.
10765 if Nkind (N) in N_Numeric_Or_String_Literal then
10766 return True;
10768 elsif Nkind (N) = N_Character_Literal then
10769 return True;
10771 elsif Nkind (N) in N_Unary_Op then
10772 return Has_No_Obvious_Side_Effects (Right_Opnd (N));
10774 elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
10775 return Has_No_Obvious_Side_Effects (Left_Opnd (N))
10776 and then
10777 Has_No_Obvious_Side_Effects (Right_Opnd (N));
10779 elsif Nkind (N) = N_Expression_With_Actions
10780 and then Is_Empty_List (Actions (N))
10781 then
10782 return Has_No_Obvious_Side_Effects (Expression (N));
10784 elsif Nkind (N) in N_Has_Entity then
10785 return Present (Entity (N))
10786 and then Ekind_In (Entity (N), E_Variable,
10787 E_Constant,
10788 E_Enumeration_Literal,
10789 E_In_Parameter,
10790 E_Out_Parameter,
10791 E_In_Out_Parameter)
10792 and then not Is_Volatile (Entity (N));
10794 else
10795 return False;
10796 end if;
10797 end Has_No_Obvious_Side_Effects;
10799 -----------------------------
10800 -- Has_Non_Null_Refinement --
10801 -----------------------------
10803 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
10804 Constits : Elist_Id;
10806 begin
10807 pragma Assert (Ekind (Id) = E_Abstract_State);
10808 Constits := Refinement_Constituents (Id);
10810 -- For a refinement to be non-null, the first constituent must be
10811 -- anything other than null.
10813 return
10814 Present (Constits)
10815 and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
10816 end Has_Non_Null_Refinement;
10818 ----------------------------------
10819 -- Has_Non_Trivial_Precondition --
10820 ----------------------------------
10822 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean is
10823 Pre : constant Node_Id := Find_Aspect (Subp, Aspect_Pre);
10825 begin
10826 return
10827 Present (Pre)
10828 and then Class_Present (Pre)
10829 and then not Is_Entity_Name (Expression (Pre));
10830 end Has_Non_Trivial_Precondition;
10832 -------------------
10833 -- Has_Null_Body --
10834 -------------------
10836 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
10837 Body_Id : Entity_Id;
10838 Decl : Node_Id;
10839 Spec : Node_Id;
10840 Stmt1 : Node_Id;
10841 Stmt2 : Node_Id;
10843 begin
10844 Spec := Parent (Proc_Id);
10845 Decl := Parent (Spec);
10847 -- Retrieve the entity of the procedure body (e.g. invariant proc).
10849 if Nkind (Spec) = N_Procedure_Specification
10850 and then Nkind (Decl) = N_Subprogram_Declaration
10851 then
10852 Body_Id := Corresponding_Body (Decl);
10854 -- The body acts as a spec
10856 else
10857 Body_Id := Proc_Id;
10858 end if;
10860 -- The body will be generated later
10862 if No (Body_Id) then
10863 return False;
10864 end if;
10866 Spec := Parent (Body_Id);
10867 Decl := Parent (Spec);
10869 pragma Assert
10870 (Nkind (Spec) = N_Procedure_Specification
10871 and then Nkind (Decl) = N_Subprogram_Body);
10873 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
10875 -- Look for a null statement followed by an optional return
10876 -- statement.
10878 if Nkind (Stmt1) = N_Null_Statement then
10879 Stmt2 := Next (Stmt1);
10881 if Present (Stmt2) then
10882 return Nkind (Stmt2) = N_Simple_Return_Statement;
10883 else
10884 return True;
10885 end if;
10886 end if;
10888 return False;
10889 end Has_Null_Body;
10891 ------------------------
10892 -- Has_Null_Exclusion --
10893 ------------------------
10895 function Has_Null_Exclusion (N : Node_Id) return Boolean is
10896 begin
10897 case Nkind (N) is
10898 when N_Access_Definition
10899 | N_Access_Function_Definition
10900 | N_Access_Procedure_Definition
10901 | N_Access_To_Object_Definition
10902 | N_Allocator
10903 | N_Derived_Type_Definition
10904 | N_Function_Specification
10905 | N_Subtype_Declaration
10907 return Null_Exclusion_Present (N);
10909 when N_Component_Definition
10910 | N_Formal_Object_Declaration
10911 | N_Object_Renaming_Declaration
10913 if Present (Subtype_Mark (N)) then
10914 return Null_Exclusion_Present (N);
10915 else pragma Assert (Present (Access_Definition (N)));
10916 return Null_Exclusion_Present (Access_Definition (N));
10917 end if;
10919 when N_Discriminant_Specification =>
10920 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
10921 return Null_Exclusion_Present (Discriminant_Type (N));
10922 else
10923 return Null_Exclusion_Present (N);
10924 end if;
10926 when N_Object_Declaration =>
10927 if Nkind (Object_Definition (N)) = N_Access_Definition then
10928 return Null_Exclusion_Present (Object_Definition (N));
10929 else
10930 return Null_Exclusion_Present (N);
10931 end if;
10933 when N_Parameter_Specification =>
10934 if Nkind (Parameter_Type (N)) = N_Access_Definition then
10935 return Null_Exclusion_Present (Parameter_Type (N));
10936 else
10937 return Null_Exclusion_Present (N);
10938 end if;
10940 when others =>
10941 return False;
10942 end case;
10943 end Has_Null_Exclusion;
10945 ------------------------
10946 -- Has_Null_Extension --
10947 ------------------------
10949 function Has_Null_Extension (T : Entity_Id) return Boolean is
10950 B : constant Entity_Id := Base_Type (T);
10951 Comps : Node_Id;
10952 Ext : Node_Id;
10954 begin
10955 if Nkind (Parent (B)) = N_Full_Type_Declaration
10956 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
10957 then
10958 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
10960 if Present (Ext) then
10961 if Null_Present (Ext) then
10962 return True;
10963 else
10964 Comps := Component_List (Ext);
10966 -- The null component list is rewritten during analysis to
10967 -- include the parent component. Any other component indicates
10968 -- that the extension was not originally null.
10970 return Null_Present (Comps)
10971 or else No (Next (First (Component_Items (Comps))));
10972 end if;
10973 else
10974 return False;
10975 end if;
10977 else
10978 return False;
10979 end if;
10980 end Has_Null_Extension;
10982 -------------------------
10983 -- Has_Null_Refinement --
10984 -------------------------
10986 function Has_Null_Refinement (Id : Entity_Id) return Boolean is
10987 Constits : Elist_Id;
10989 begin
10990 pragma Assert (Ekind (Id) = E_Abstract_State);
10991 Constits := Refinement_Constituents (Id);
10993 -- For a refinement to be null, the state's sole constituent must be a
10994 -- null.
10996 return
10997 Present (Constits)
10998 and then Nkind (Node (First_Elmt (Constits))) = N_Null;
10999 end Has_Null_Refinement;
11001 -------------------------------
11002 -- Has_Overriding_Initialize --
11003 -------------------------------
11005 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
11006 BT : constant Entity_Id := Base_Type (T);
11007 P : Elmt_Id;
11009 begin
11010 if Is_Controlled (BT) then
11011 if Is_RTU (Scope (BT), Ada_Finalization) then
11012 return False;
11014 elsif Present (Primitive_Operations (BT)) then
11015 P := First_Elmt (Primitive_Operations (BT));
11016 while Present (P) loop
11017 declare
11018 Init : constant Entity_Id := Node (P);
11019 Formal : constant Entity_Id := First_Formal (Init);
11020 begin
11021 if Ekind (Init) = E_Procedure
11022 and then Chars (Init) = Name_Initialize
11023 and then Comes_From_Source (Init)
11024 and then Present (Formal)
11025 and then Etype (Formal) = BT
11026 and then No (Next_Formal (Formal))
11027 and then (Ada_Version < Ada_2012
11028 or else not Null_Present (Parent (Init)))
11029 then
11030 return True;
11031 end if;
11032 end;
11034 Next_Elmt (P);
11035 end loop;
11036 end if;
11038 -- Here if type itself does not have a non-null Initialize operation:
11039 -- check immediate ancestor.
11041 if Is_Derived_Type (BT)
11042 and then Has_Overriding_Initialize (Etype (BT))
11043 then
11044 return True;
11045 end if;
11046 end if;
11048 return False;
11049 end Has_Overriding_Initialize;
11051 --------------------------------------
11052 -- Has_Preelaborable_Initialization --
11053 --------------------------------------
11055 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
11056 Has_PE : Boolean;
11058 procedure Check_Components (E : Entity_Id);
11059 -- Check component/discriminant chain, sets Has_PE False if a component
11060 -- or discriminant does not meet the preelaborable initialization rules.
11062 ----------------------
11063 -- Check_Components --
11064 ----------------------
11066 procedure Check_Components (E : Entity_Id) is
11067 Ent : Entity_Id;
11068 Exp : Node_Id;
11070 begin
11071 -- Loop through entities of record or protected type
11073 Ent := E;
11074 while Present (Ent) loop
11076 -- We are interested only in components and discriminants
11078 Exp := Empty;
11080 case Ekind (Ent) is
11081 when E_Component =>
11083 -- Get default expression if any. If there is no declaration
11084 -- node, it means we have an internal entity. The parent and
11085 -- tag fields are examples of such entities. For such cases,
11086 -- we just test the type of the entity.
11088 if Present (Declaration_Node (Ent)) then
11089 Exp := Expression (Declaration_Node (Ent));
11090 end if;
11092 when E_Discriminant =>
11094 -- Note: for a renamed discriminant, the Declaration_Node
11095 -- may point to the one from the ancestor, and have a
11096 -- different expression, so use the proper attribute to
11097 -- retrieve the expression from the derived constraint.
11099 Exp := Discriminant_Default_Value (Ent);
11101 when others =>
11102 goto Check_Next_Entity;
11103 end case;
11105 -- A component has PI if it has no default expression and the
11106 -- component type has PI.
11108 if No (Exp) then
11109 if not Has_Preelaborable_Initialization (Etype (Ent)) then
11110 Has_PE := False;
11111 exit;
11112 end if;
11114 -- Require the default expression to be preelaborable
11116 elsif not Is_Preelaborable_Construct (Exp) then
11117 Has_PE := False;
11118 exit;
11119 end if;
11121 <<Check_Next_Entity>>
11122 Next_Entity (Ent);
11123 end loop;
11124 end Check_Components;
11126 -- Start of processing for Has_Preelaborable_Initialization
11128 begin
11129 -- Immediate return if already marked as known preelaborable init. This
11130 -- covers types for which this function has already been called once
11131 -- and returned True (in which case the result is cached), and also
11132 -- types to which a pragma Preelaborable_Initialization applies.
11134 if Known_To_Have_Preelab_Init (E) then
11135 return True;
11136 end if;
11138 -- If the type is a subtype representing a generic actual type, then
11139 -- test whether its base type has preelaborable initialization since
11140 -- the subtype representing the actual does not inherit this attribute
11141 -- from the actual or formal. (but maybe it should???)
11143 if Is_Generic_Actual_Type (E) then
11144 return Has_Preelaborable_Initialization (Base_Type (E));
11145 end if;
11147 -- All elementary types have preelaborable initialization
11149 if Is_Elementary_Type (E) then
11150 Has_PE := True;
11152 -- Array types have PI if the component type has PI
11154 elsif Is_Array_Type (E) then
11155 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
11157 -- A derived type has preelaborable initialization if its parent type
11158 -- has preelaborable initialization and (in the case of a derived record
11159 -- extension) if the non-inherited components all have preelaborable
11160 -- initialization. However, a user-defined controlled type with an
11161 -- overriding Initialize procedure does not have preelaborable
11162 -- initialization.
11164 elsif Is_Derived_Type (E) then
11166 -- If the derived type is a private extension then it doesn't have
11167 -- preelaborable initialization.
11169 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
11170 return False;
11171 end if;
11173 -- First check whether ancestor type has preelaborable initialization
11175 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
11177 -- If OK, check extension components (if any)
11179 if Has_PE and then Is_Record_Type (E) then
11180 Check_Components (First_Entity (E));
11181 end if;
11183 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
11184 -- with a user defined Initialize procedure does not have PI. If
11185 -- the type is untagged, the control primitives come from a component
11186 -- that has already been checked.
11188 if Has_PE
11189 and then Is_Controlled (E)
11190 and then Is_Tagged_Type (E)
11191 and then Has_Overriding_Initialize (E)
11192 then
11193 Has_PE := False;
11194 end if;
11196 -- Private types not derived from a type having preelaborable init and
11197 -- that are not marked with pragma Preelaborable_Initialization do not
11198 -- have preelaborable initialization.
11200 elsif Is_Private_Type (E) then
11201 return False;
11203 -- Record type has PI if it is non private and all components have PI
11205 elsif Is_Record_Type (E) then
11206 Has_PE := True;
11207 Check_Components (First_Entity (E));
11209 -- Protected types must not have entries, and components must meet
11210 -- same set of rules as for record components.
11212 elsif Is_Protected_Type (E) then
11213 if Has_Entries (E) then
11214 Has_PE := False;
11215 else
11216 Has_PE := True;
11217 Check_Components (First_Entity (E));
11218 Check_Components (First_Private_Entity (E));
11219 end if;
11221 -- Type System.Address always has preelaborable initialization
11223 elsif Is_RTE (E, RE_Address) then
11224 Has_PE := True;
11226 -- In all other cases, type does not have preelaborable initialization
11228 else
11229 return False;
11230 end if;
11232 -- If type has preelaborable initialization, cache result
11234 if Has_PE then
11235 Set_Known_To_Have_Preelab_Init (E);
11236 end if;
11238 return Has_PE;
11239 end Has_Preelaborable_Initialization;
11241 ---------------------------
11242 -- Has_Private_Component --
11243 ---------------------------
11245 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
11246 Btype : Entity_Id := Base_Type (Type_Id);
11247 Component : Entity_Id;
11249 begin
11250 if Error_Posted (Type_Id)
11251 or else Error_Posted (Btype)
11252 then
11253 return False;
11254 end if;
11256 if Is_Class_Wide_Type (Btype) then
11257 Btype := Root_Type (Btype);
11258 end if;
11260 if Is_Private_Type (Btype) then
11261 declare
11262 UT : constant Entity_Id := Underlying_Type (Btype);
11263 begin
11264 if No (UT) then
11265 if No (Full_View (Btype)) then
11266 return not Is_Generic_Type (Btype)
11267 and then
11268 not Is_Generic_Type (Root_Type (Btype));
11269 else
11270 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
11271 end if;
11272 else
11273 return not Is_Frozen (UT) and then Has_Private_Component (UT);
11274 end if;
11275 end;
11277 elsif Is_Array_Type (Btype) then
11278 return Has_Private_Component (Component_Type (Btype));
11280 elsif Is_Record_Type (Btype) then
11281 Component := First_Component (Btype);
11282 while Present (Component) loop
11283 if Has_Private_Component (Etype (Component)) then
11284 return True;
11285 end if;
11287 Next_Component (Component);
11288 end loop;
11290 return False;
11292 elsif Is_Protected_Type (Btype)
11293 and then Present (Corresponding_Record_Type (Btype))
11294 then
11295 return Has_Private_Component (Corresponding_Record_Type (Btype));
11297 else
11298 return False;
11299 end if;
11300 end Has_Private_Component;
11302 ----------------------
11303 -- Has_Signed_Zeros --
11304 ----------------------
11306 function Has_Signed_Zeros (E : Entity_Id) return Boolean is
11307 begin
11308 return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
11309 end Has_Signed_Zeros;
11311 ------------------------------
11312 -- Has_Significant_Contract --
11313 ------------------------------
11315 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
11316 Subp_Nam : constant Name_Id := Chars (Subp_Id);
11318 begin
11319 -- _Finalizer procedure
11321 if Subp_Nam = Name_uFinalizer then
11322 return False;
11324 -- _Postconditions procedure
11326 elsif Subp_Nam = Name_uPostconditions then
11327 return False;
11329 -- Predicate function
11331 elsif Ekind (Subp_Id) = E_Function
11332 and then Is_Predicate_Function (Subp_Id)
11333 then
11334 return False;
11336 -- TSS subprogram
11338 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
11339 return False;
11341 else
11342 return True;
11343 end if;
11344 end Has_Significant_Contract;
11346 -----------------------------
11347 -- Has_Static_Array_Bounds --
11348 -----------------------------
11350 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
11351 Ndims : constant Nat := Number_Dimensions (Typ);
11353 Index : Node_Id;
11354 Low : Node_Id;
11355 High : Node_Id;
11357 begin
11358 -- Unconstrained types do not have static bounds
11360 if not Is_Constrained (Typ) then
11361 return False;
11362 end if;
11364 -- First treat string literals specially, as the lower bound and length
11365 -- of string literals are not stored like those of arrays.
11367 -- A string literal always has static bounds
11369 if Ekind (Typ) = E_String_Literal_Subtype then
11370 return True;
11371 end if;
11373 -- Treat all dimensions in turn
11375 Index := First_Index (Typ);
11376 for Indx in 1 .. Ndims loop
11378 -- In case of an illegal index which is not a discrete type, return
11379 -- that the type is not static.
11381 if not Is_Discrete_Type (Etype (Index))
11382 or else Etype (Index) = Any_Type
11383 then
11384 return False;
11385 end if;
11387 Get_Index_Bounds (Index, Low, High);
11389 if Error_Posted (Low) or else Error_Posted (High) then
11390 return False;
11391 end if;
11393 if Is_OK_Static_Expression (Low)
11394 and then
11395 Is_OK_Static_Expression (High)
11396 then
11397 null;
11398 else
11399 return False;
11400 end if;
11402 Next (Index);
11403 end loop;
11405 -- If we fall through the loop, all indexes matched
11407 return True;
11408 end Has_Static_Array_Bounds;
11410 ----------------
11411 -- Has_Stream --
11412 ----------------
11414 function Has_Stream (T : Entity_Id) return Boolean is
11415 E : Entity_Id;
11417 begin
11418 if No (T) then
11419 return False;
11421 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
11422 return True;
11424 elsif Is_Array_Type (T) then
11425 return Has_Stream (Component_Type (T));
11427 elsif Is_Record_Type (T) then
11428 E := First_Component (T);
11429 while Present (E) loop
11430 if Has_Stream (Etype (E)) then
11431 return True;
11432 else
11433 Next_Component (E);
11434 end if;
11435 end loop;
11437 return False;
11439 elsif Is_Private_Type (T) then
11440 return Has_Stream (Underlying_Type (T));
11442 else
11443 return False;
11444 end if;
11445 end Has_Stream;
11447 ----------------
11448 -- Has_Suffix --
11449 ----------------
11451 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
11452 begin
11453 Get_Name_String (Chars (E));
11454 return Name_Buffer (Name_Len) = Suffix;
11455 end Has_Suffix;
11457 ----------------
11458 -- Add_Suffix --
11459 ----------------
11461 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
11462 begin
11463 Get_Name_String (Chars (E));
11464 Add_Char_To_Name_Buffer (Suffix);
11465 return Name_Find;
11466 end Add_Suffix;
11468 -------------------
11469 -- Remove_Suffix --
11470 -------------------
11472 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
11473 begin
11474 pragma Assert (Has_Suffix (E, Suffix));
11475 Get_Name_String (Chars (E));
11476 Name_Len := Name_Len - 1;
11477 return Name_Find;
11478 end Remove_Suffix;
11480 ----------------------------------
11481 -- Replace_Null_By_Null_Address --
11482 ----------------------------------
11484 procedure Replace_Null_By_Null_Address (N : Node_Id) is
11485 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
11486 -- Replace operand Op with a reference to Null_Address when the operand
11487 -- denotes a null Address. Other_Op denotes the other operand.
11489 --------------------------
11490 -- Replace_Null_Operand --
11491 --------------------------
11493 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
11494 begin
11495 -- Check the type of the complementary operand since the N_Null node
11496 -- has not been decorated yet.
11498 if Nkind (Op) = N_Null
11499 and then Is_Descendant_Of_Address (Etype (Other_Op))
11500 then
11501 Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
11502 end if;
11503 end Replace_Null_Operand;
11505 -- Start of processing for Replace_Null_By_Null_Address
11507 begin
11508 pragma Assert (Relaxed_RM_Semantics);
11509 pragma Assert (Nkind_In (N, N_Null,
11510 N_Op_Eq,
11511 N_Op_Ge,
11512 N_Op_Gt,
11513 N_Op_Le,
11514 N_Op_Lt,
11515 N_Op_Ne));
11517 if Nkind (N) = N_Null then
11518 Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
11520 else
11521 declare
11522 L : constant Node_Id := Left_Opnd (N);
11523 R : constant Node_Id := Right_Opnd (N);
11525 begin
11526 Replace_Null_Operand (L, Other_Op => R);
11527 Replace_Null_Operand (R, Other_Op => L);
11528 end;
11529 end if;
11530 end Replace_Null_By_Null_Address;
11532 --------------------------
11533 -- Has_Tagged_Component --
11534 --------------------------
11536 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
11537 Comp : Entity_Id;
11539 begin
11540 if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
11541 return Has_Tagged_Component (Underlying_Type (Typ));
11543 elsif Is_Array_Type (Typ) then
11544 return Has_Tagged_Component (Component_Type (Typ));
11546 elsif Is_Tagged_Type (Typ) then
11547 return True;
11549 elsif Is_Record_Type (Typ) then
11550 Comp := First_Component (Typ);
11551 while Present (Comp) loop
11552 if Has_Tagged_Component (Etype (Comp)) then
11553 return True;
11554 end if;
11556 Next_Component (Comp);
11557 end loop;
11559 return False;
11561 else
11562 return False;
11563 end if;
11564 end Has_Tagged_Component;
11566 -----------------------------
11567 -- Has_Undefined_Reference --
11568 -----------------------------
11570 function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
11571 Has_Undef_Ref : Boolean := False;
11572 -- Flag set when expression Expr contains at least one undefined
11573 -- reference.
11575 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
11576 -- Determine whether N denotes a reference and if it does, whether it is
11577 -- undefined.
11579 ----------------------------
11580 -- Is_Undefined_Reference --
11581 ----------------------------
11583 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
11584 begin
11585 if Is_Entity_Name (N)
11586 and then Present (Entity (N))
11587 and then Entity (N) = Any_Id
11588 then
11589 Has_Undef_Ref := True;
11590 return Abandon;
11591 end if;
11593 return OK;
11594 end Is_Undefined_Reference;
11596 procedure Find_Undefined_References is
11597 new Traverse_Proc (Is_Undefined_Reference);
11599 -- Start of processing for Has_Undefined_Reference
11601 begin
11602 Find_Undefined_References (Expr);
11604 return Has_Undef_Ref;
11605 end Has_Undefined_Reference;
11607 ----------------------------
11608 -- Has_Volatile_Component --
11609 ----------------------------
11611 function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
11612 Comp : Entity_Id;
11614 begin
11615 if Has_Volatile_Components (Typ) then
11616 return True;
11618 elsif Is_Array_Type (Typ) then
11619 return Is_Volatile (Component_Type (Typ));
11621 elsif Is_Record_Type (Typ) then
11622 Comp := First_Component (Typ);
11623 while Present (Comp) loop
11624 if Is_Volatile_Object (Comp) then
11625 return True;
11626 end if;
11628 Comp := Next_Component (Comp);
11629 end loop;
11630 end if;
11632 return False;
11633 end Has_Volatile_Component;
11635 -------------------------
11636 -- Implementation_Kind --
11637 -------------------------
11639 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
11640 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
11641 Arg : Node_Id;
11642 begin
11643 pragma Assert (Present (Impl_Prag));
11644 Arg := Last (Pragma_Argument_Associations (Impl_Prag));
11645 return Chars (Get_Pragma_Arg (Arg));
11646 end Implementation_Kind;
11648 --------------------------
11649 -- Implements_Interface --
11650 --------------------------
11652 function Implements_Interface
11653 (Typ_Ent : Entity_Id;
11654 Iface_Ent : Entity_Id;
11655 Exclude_Parents : Boolean := False) return Boolean
11657 Ifaces_List : Elist_Id;
11658 Elmt : Elmt_Id;
11659 Iface : Entity_Id := Base_Type (Iface_Ent);
11660 Typ : Entity_Id := Base_Type (Typ_Ent);
11662 begin
11663 if Is_Class_Wide_Type (Typ) then
11664 Typ := Root_Type (Typ);
11665 end if;
11667 if not Has_Interfaces (Typ) then
11668 return False;
11669 end if;
11671 if Is_Class_Wide_Type (Iface) then
11672 Iface := Root_Type (Iface);
11673 end if;
11675 Collect_Interfaces (Typ, Ifaces_List);
11677 Elmt := First_Elmt (Ifaces_List);
11678 while Present (Elmt) loop
11679 if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
11680 and then Exclude_Parents
11681 then
11682 null;
11684 elsif Node (Elmt) = Iface then
11685 return True;
11686 end if;
11688 Next_Elmt (Elmt);
11689 end loop;
11691 return False;
11692 end Implements_Interface;
11694 ------------------------------------
11695 -- In_Assertion_Expression_Pragma --
11696 ------------------------------------
11698 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
11699 Par : Node_Id;
11700 Prag : Node_Id := Empty;
11702 begin
11703 -- Climb the parent chain looking for an enclosing pragma
11705 Par := N;
11706 while Present (Par) loop
11707 if Nkind (Par) = N_Pragma then
11708 Prag := Par;
11709 exit;
11711 -- Precondition-like pragmas are expanded into if statements, check
11712 -- the original node instead.
11714 elsif Nkind (Original_Node (Par)) = N_Pragma then
11715 Prag := Original_Node (Par);
11716 exit;
11718 -- The expansion of attribute 'Old generates a constant to capture
11719 -- the result of the prefix. If the parent traversal reaches
11720 -- one of these constants, then the node technically came from a
11721 -- postcondition-like pragma. Note that the Ekind is not tested here
11722 -- because N may be the expression of an object declaration which is
11723 -- currently being analyzed. Such objects carry Ekind of E_Void.
11725 elsif Nkind (Par) = N_Object_Declaration
11726 and then Constant_Present (Par)
11727 and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
11728 then
11729 return True;
11731 -- Prevent the search from going too far
11733 elsif Is_Body_Or_Package_Declaration (Par) then
11734 return False;
11735 end if;
11737 Par := Parent (Par);
11738 end loop;
11740 return
11741 Present (Prag)
11742 and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
11743 end In_Assertion_Expression_Pragma;
11745 ----------------------
11746 -- In_Generic_Scope --
11747 ----------------------
11749 function In_Generic_Scope (E : Entity_Id) return Boolean is
11750 S : Entity_Id;
11752 begin
11753 S := Scope (E);
11754 while Present (S) and then S /= Standard_Standard loop
11755 if Is_Generic_Unit (S) then
11756 return True;
11757 end if;
11759 S := Scope (S);
11760 end loop;
11762 return False;
11763 end In_Generic_Scope;
11765 -----------------
11766 -- In_Instance --
11767 -----------------
11769 function In_Instance return Boolean is
11770 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
11771 S : Entity_Id;
11773 begin
11774 S := Current_Scope;
11775 while Present (S) and then S /= Standard_Standard loop
11776 if Is_Generic_Instance (S) then
11778 -- A child instance is always compiled in the context of a parent
11779 -- instance. Nevertheless, the actuals are not analyzed in an
11780 -- instance context. We detect this case by examining the current
11781 -- compilation unit, which must be a child instance, and checking
11782 -- that it is not currently on the scope stack.
11784 if Is_Child_Unit (Curr_Unit)
11785 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
11786 N_Package_Instantiation
11787 and then not In_Open_Scopes (Curr_Unit)
11788 then
11789 return False;
11790 else
11791 return True;
11792 end if;
11793 end if;
11795 S := Scope (S);
11796 end loop;
11798 return False;
11799 end In_Instance;
11801 ----------------------
11802 -- In_Instance_Body --
11803 ----------------------
11805 function In_Instance_Body return Boolean is
11806 S : Entity_Id;
11808 begin
11809 S := Current_Scope;
11810 while Present (S) and then S /= Standard_Standard loop
11811 if Ekind_In (S, E_Function, E_Procedure)
11812 and then Is_Generic_Instance (S)
11813 then
11814 return True;
11816 elsif Ekind (S) = E_Package
11817 and then In_Package_Body (S)
11818 and then Is_Generic_Instance (S)
11819 then
11820 return True;
11821 end if;
11823 S := Scope (S);
11824 end loop;
11826 return False;
11827 end In_Instance_Body;
11829 -----------------------------
11830 -- In_Instance_Not_Visible --
11831 -----------------------------
11833 function In_Instance_Not_Visible return Boolean is
11834 S : Entity_Id;
11836 begin
11837 S := Current_Scope;
11838 while Present (S) and then S /= Standard_Standard loop
11839 if Ekind_In (S, E_Function, E_Procedure)
11840 and then Is_Generic_Instance (S)
11841 then
11842 return True;
11844 elsif Ekind (S) = E_Package
11845 and then (In_Package_Body (S) or else In_Private_Part (S))
11846 and then Is_Generic_Instance (S)
11847 then
11848 return True;
11849 end if;
11851 S := Scope (S);
11852 end loop;
11854 return False;
11855 end In_Instance_Not_Visible;
11857 ------------------------------
11858 -- In_Instance_Visible_Part --
11859 ------------------------------
11861 function In_Instance_Visible_Part
11862 (Id : Entity_Id := Current_Scope) return Boolean
11864 Inst : Entity_Id;
11866 begin
11867 Inst := Id;
11868 while Present (Inst) and then Inst /= Standard_Standard loop
11869 if Ekind (Inst) = E_Package
11870 and then Is_Generic_Instance (Inst)
11871 and then not In_Package_Body (Inst)
11872 and then not In_Private_Part (Inst)
11873 then
11874 return True;
11875 end if;
11877 Inst := Scope (Inst);
11878 end loop;
11880 return False;
11881 end In_Instance_Visible_Part;
11883 ---------------------
11884 -- In_Package_Body --
11885 ---------------------
11887 function In_Package_Body return Boolean is
11888 S : Entity_Id;
11890 begin
11891 S := Current_Scope;
11892 while Present (S) and then S /= Standard_Standard loop
11893 if Ekind (S) = E_Package and then In_Package_Body (S) then
11894 return True;
11895 else
11896 S := Scope (S);
11897 end if;
11898 end loop;
11900 return False;
11901 end In_Package_Body;
11903 --------------------------
11904 -- In_Pragma_Expression --
11905 --------------------------
11907 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
11908 P : Node_Id;
11909 begin
11910 P := Parent (N);
11911 loop
11912 if No (P) then
11913 return False;
11914 elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
11915 return True;
11916 else
11917 P := Parent (P);
11918 end if;
11919 end loop;
11920 end In_Pragma_Expression;
11922 ---------------------------
11923 -- In_Pre_Post_Condition --
11924 ---------------------------
11926 function In_Pre_Post_Condition (N : Node_Id) return Boolean is
11927 Par : Node_Id;
11928 Prag : Node_Id := Empty;
11929 Prag_Id : Pragma_Id;
11931 begin
11932 -- Climb the parent chain looking for an enclosing pragma
11934 Par := N;
11935 while Present (Par) loop
11936 if Nkind (Par) = N_Pragma then
11937 Prag := Par;
11938 exit;
11940 -- Prevent the search from going too far
11942 elsif Is_Body_Or_Package_Declaration (Par) then
11943 exit;
11944 end if;
11946 Par := Parent (Par);
11947 end loop;
11949 if Present (Prag) then
11950 Prag_Id := Get_Pragma_Id (Prag);
11952 return
11953 Prag_Id = Pragma_Post
11954 or else Prag_Id = Pragma_Post_Class
11955 or else Prag_Id = Pragma_Postcondition
11956 or else Prag_Id = Pragma_Pre
11957 or else Prag_Id = Pragma_Pre_Class
11958 or else Prag_Id = Pragma_Precondition;
11960 -- Otherwise the node is not enclosed by a pre/postcondition pragma
11962 else
11963 return False;
11964 end if;
11965 end In_Pre_Post_Condition;
11967 -------------------------------------
11968 -- In_Reverse_Storage_Order_Object --
11969 -------------------------------------
11971 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
11972 Pref : Node_Id;
11973 Btyp : Entity_Id := Empty;
11975 begin
11976 -- Climb up indexed components
11978 Pref := N;
11979 loop
11980 case Nkind (Pref) is
11981 when N_Selected_Component =>
11982 Pref := Prefix (Pref);
11983 exit;
11985 when N_Indexed_Component =>
11986 Pref := Prefix (Pref);
11988 when others =>
11989 Pref := Empty;
11990 exit;
11991 end case;
11992 end loop;
11994 if Present (Pref) then
11995 Btyp := Base_Type (Etype (Pref));
11996 end if;
11998 return Present (Btyp)
11999 and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
12000 and then Reverse_Storage_Order (Btyp);
12001 end In_Reverse_Storage_Order_Object;
12003 --------------------------------------
12004 -- In_Subprogram_Or_Concurrent_Unit --
12005 --------------------------------------
12007 function In_Subprogram_Or_Concurrent_Unit return Boolean is
12008 E : Entity_Id;
12009 K : Entity_Kind;
12011 begin
12012 -- Use scope chain to check successively outer scopes
12014 E := Current_Scope;
12015 loop
12016 K := Ekind (E);
12018 if K in Subprogram_Kind
12019 or else K in Concurrent_Kind
12020 or else K in Generic_Subprogram_Kind
12021 then
12022 return True;
12024 elsif E = Standard_Standard then
12025 return False;
12026 end if;
12028 E := Scope (E);
12029 end loop;
12030 end In_Subprogram_Or_Concurrent_Unit;
12032 ----------------
12033 -- In_Subtree --
12034 ----------------
12036 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean is
12037 Curr : Node_Id;
12039 begin
12040 Curr := N;
12041 while Present (Curr) loop
12042 if Curr = Root then
12043 return True;
12044 end if;
12046 Curr := Parent (Curr);
12047 end loop;
12049 return False;
12050 end In_Subtree;
12052 ----------------
12053 -- In_Subtree --
12054 ----------------
12056 function In_Subtree
12057 (N : Node_Id;
12058 Root1 : Node_Id;
12059 Root2 : Node_Id) return Boolean
12061 Curr : Node_Id;
12063 begin
12064 Curr := N;
12065 while Present (Curr) loop
12066 if Curr = Root1 or else Curr = Root2 then
12067 return True;
12068 end if;
12070 Curr := Parent (Curr);
12071 end loop;
12073 return False;
12074 end In_Subtree;
12076 ---------------------
12077 -- In_Visible_Part --
12078 ---------------------
12080 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
12081 begin
12082 return Is_Package_Or_Generic_Package (Scope_Id)
12083 and then In_Open_Scopes (Scope_Id)
12084 and then not In_Package_Body (Scope_Id)
12085 and then not In_Private_Part (Scope_Id);
12086 end In_Visible_Part;
12088 --------------------------------
12089 -- Incomplete_Or_Partial_View --
12090 --------------------------------
12092 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
12093 function Inspect_Decls
12094 (Decls : List_Id;
12095 Taft : Boolean := False) return Entity_Id;
12096 -- Check whether a declarative region contains the incomplete or partial
12097 -- view of Id.
12099 -------------------
12100 -- Inspect_Decls --
12101 -------------------
12103 function Inspect_Decls
12104 (Decls : List_Id;
12105 Taft : Boolean := False) return Entity_Id
12107 Decl : Node_Id;
12108 Match : Node_Id;
12110 begin
12111 Decl := First (Decls);
12112 while Present (Decl) loop
12113 Match := Empty;
12115 -- The partial view of a Taft-amendment type is an incomplete
12116 -- type.
12118 if Taft then
12119 if Nkind (Decl) = N_Incomplete_Type_Declaration then
12120 Match := Defining_Identifier (Decl);
12121 end if;
12123 -- Otherwise look for a private type whose full view matches the
12124 -- input type. Note that this checks full_type_declaration nodes
12125 -- to account for derivations from a private type where the type
12126 -- declaration hold the partial view and the full view is an
12127 -- itype.
12129 elsif Nkind_In (Decl, N_Full_Type_Declaration,
12130 N_Private_Extension_Declaration,
12131 N_Private_Type_Declaration)
12132 then
12133 Match := Defining_Identifier (Decl);
12134 end if;
12136 -- Guard against unanalyzed entities
12138 if Present (Match)
12139 and then Is_Type (Match)
12140 and then Present (Full_View (Match))
12141 and then Full_View (Match) = Id
12142 then
12143 return Match;
12144 end if;
12146 Next (Decl);
12147 end loop;
12149 return Empty;
12150 end Inspect_Decls;
12152 -- Local variables
12154 Prev : Entity_Id;
12156 -- Start of processing for Incomplete_Or_Partial_View
12158 begin
12159 -- Deferred constant or incomplete type case
12161 Prev := Current_Entity_In_Scope (Id);
12163 if Present (Prev)
12164 and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
12165 and then Present (Full_View (Prev))
12166 and then Full_View (Prev) = Id
12167 then
12168 return Prev;
12169 end if;
12171 -- Private or Taft amendment type case
12173 declare
12174 Pkg : constant Entity_Id := Scope (Id);
12175 Pkg_Decl : Node_Id := Pkg;
12177 begin
12178 if Present (Pkg)
12179 and then Ekind_In (Pkg, E_Generic_Package, E_Package)
12180 then
12181 while Nkind (Pkg_Decl) /= N_Package_Specification loop
12182 Pkg_Decl := Parent (Pkg_Decl);
12183 end loop;
12185 -- It is knows that Typ has a private view, look for it in the
12186 -- visible declarations of the enclosing scope. A special case
12187 -- of this is when the two views have been exchanged - the full
12188 -- appears earlier than the private.
12190 if Has_Private_Declaration (Id) then
12191 Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
12193 -- Exchanged view case, look in the private declarations
12195 if No (Prev) then
12196 Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
12197 end if;
12199 return Prev;
12201 -- Otherwise if this is the package body, then Typ is a potential
12202 -- Taft amendment type. The incomplete view should be located in
12203 -- the private declarations of the enclosing scope.
12205 elsif In_Package_Body (Pkg) then
12206 return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
12207 end if;
12208 end if;
12209 end;
12211 -- The type has no incomplete or private view
12213 return Empty;
12214 end Incomplete_Or_Partial_View;
12216 ----------------------------------
12217 -- Indexed_Component_Bit_Offset --
12218 ----------------------------------
12220 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
12221 Exp : constant Node_Id := First (Expressions (N));
12222 Typ : constant Entity_Id := Etype (Prefix (N));
12223 Off : constant Uint := Component_Size (Typ);
12224 Ind : Node_Id;
12226 begin
12227 -- Return early if the component size is not known or variable
12229 if Off = No_Uint or else Off < Uint_0 then
12230 return No_Uint;
12231 end if;
12233 -- Deal with the degenerate case of an empty component
12235 if Off = Uint_0 then
12236 return Off;
12237 end if;
12239 -- Check that both the index value and the low bound are known
12241 if not Compile_Time_Known_Value (Exp) then
12242 return No_Uint;
12243 end if;
12245 Ind := First_Index (Typ);
12246 if No (Ind) then
12247 return No_Uint;
12248 end if;
12250 if Nkind (Ind) = N_Subtype_Indication then
12251 Ind := Constraint (Ind);
12253 if Nkind (Ind) = N_Range_Constraint then
12254 Ind := Range_Expression (Ind);
12255 end if;
12256 end if;
12258 if Nkind (Ind) /= N_Range
12259 or else not Compile_Time_Known_Value (Low_Bound (Ind))
12260 then
12261 return No_Uint;
12262 end if;
12264 -- Return the scaled offset
12266 return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
12267 end Indexed_Component_Bit_Offset;
12269 ----------------------------
12270 -- Inherit_Rep_Item_Chain --
12271 ----------------------------
12273 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
12274 Item : Node_Id;
12275 Next_Item : Node_Id;
12277 begin
12278 -- There are several inheritance scenarios to consider depending on
12279 -- whether both types have rep item chains and whether the destination
12280 -- type already inherits part of the source type's rep item chain.
12282 -- 1) The source type lacks a rep item chain
12283 -- From_Typ ---> Empty
12285 -- Typ --------> Item (or Empty)
12287 -- In this case inheritance cannot take place because there are no items
12288 -- to inherit.
12290 -- 2) The destination type lacks a rep item chain
12291 -- From_Typ ---> Item ---> ...
12293 -- Typ --------> Empty
12295 -- Inheritance takes place by setting the First_Rep_Item of the
12296 -- destination type to the First_Rep_Item of the source type.
12297 -- From_Typ ---> Item ---> ...
12298 -- ^
12299 -- Typ -----------+
12301 -- 3.1) Both source and destination types have at least one rep item.
12302 -- The destination type does NOT inherit a rep item from the source
12303 -- type.
12304 -- From_Typ ---> Item ---> Item
12306 -- Typ --------> Item ---> Item
12308 -- Inheritance takes place by setting the Next_Rep_Item of the last item
12309 -- of the destination type to the First_Rep_Item of the source type.
12310 -- From_Typ -------------------> Item ---> Item
12311 -- ^
12312 -- Typ --------> Item ---> Item --+
12314 -- 3.2) Both source and destination types have at least one rep item.
12315 -- The destination type DOES inherit part of the rep item chain of the
12316 -- source type.
12317 -- From_Typ ---> Item ---> Item ---> Item
12318 -- ^
12319 -- Typ --------> Item ------+
12321 -- This rare case arises when the full view of a private extension must
12322 -- inherit the rep item chain from the full view of its parent type and
12323 -- the full view of the parent type contains extra rep items. Currently
12324 -- only invariants may lead to such form of inheritance.
12326 -- type From_Typ is tagged private
12327 -- with Type_Invariant'Class => Item_2;
12329 -- type Typ is new From_Typ with private
12330 -- with Type_Invariant => Item_4;
12332 -- At this point the rep item chains contain the following items
12334 -- From_Typ -----------> Item_2 ---> Item_3
12335 -- ^
12336 -- Typ --------> Item_4 --+
12338 -- The full views of both types may introduce extra invariants
12340 -- type From_Typ is tagged null record
12341 -- with Type_Invariant => Item_1;
12343 -- type Typ is new From_Typ with null record;
12345 -- The full view of Typ would have to inherit any new rep items added to
12346 -- the full view of From_Typ.
12348 -- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
12349 -- ^
12350 -- Typ --------> Item_4 --+
12352 -- To achieve this form of inheritance, the destination type must first
12353 -- sever the link between its own rep chain and that of the source type,
12354 -- then inheritance 3.1 takes place.
12356 -- Case 1: The source type lacks a rep item chain
12358 if No (First_Rep_Item (From_Typ)) then
12359 return;
12361 -- Case 2: The destination type lacks a rep item chain
12363 elsif No (First_Rep_Item (Typ)) then
12364 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
12366 -- Case 3: Both the source and destination types have at least one rep
12367 -- item. Traverse the rep item chain of the destination type to find the
12368 -- last rep item.
12370 else
12371 Item := Empty;
12372 Next_Item := First_Rep_Item (Typ);
12373 while Present (Next_Item) loop
12375 -- Detect a link between the destination type's rep chain and that
12376 -- of the source type. There are two possibilities:
12378 -- Variant 1
12379 -- Next_Item
12380 -- V
12381 -- From_Typ ---> Item_1 --->
12382 -- ^
12383 -- Typ -----------+
12385 -- Item is Empty
12387 -- Variant 2
12388 -- Next_Item
12389 -- V
12390 -- From_Typ ---> Item_1 ---> Item_2 --->
12391 -- ^
12392 -- Typ --------> Item_3 ------+
12393 -- ^
12394 -- Item
12396 if Has_Rep_Item (From_Typ, Next_Item) then
12397 exit;
12398 end if;
12400 Item := Next_Item;
12401 Next_Item := Next_Rep_Item (Next_Item);
12402 end loop;
12404 -- Inherit the source type's rep item chain
12406 if Present (Item) then
12407 Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
12408 else
12409 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
12410 end if;
12411 end if;
12412 end Inherit_Rep_Item_Chain;
12414 ---------------------------------
12415 -- Insert_Explicit_Dereference --
12416 ---------------------------------
12418 procedure Insert_Explicit_Dereference (N : Node_Id) is
12419 New_Prefix : constant Node_Id := Relocate_Node (N);
12420 Ent : Entity_Id := Empty;
12421 Pref : Node_Id;
12422 I : Interp_Index;
12423 It : Interp;
12424 T : Entity_Id;
12426 begin
12427 Save_Interps (N, New_Prefix);
12429 Rewrite (N,
12430 Make_Explicit_Dereference (Sloc (Parent (N)),
12431 Prefix => New_Prefix));
12433 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
12435 if Is_Overloaded (New_Prefix) then
12437 -- The dereference is also overloaded, and its interpretations are
12438 -- the designated types of the interpretations of the original node.
12440 Set_Etype (N, Any_Type);
12442 Get_First_Interp (New_Prefix, I, It);
12443 while Present (It.Nam) loop
12444 T := It.Typ;
12446 if Is_Access_Type (T) then
12447 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
12448 end if;
12450 Get_Next_Interp (I, It);
12451 end loop;
12453 End_Interp_List;
12455 else
12456 -- Prefix is unambiguous: mark the original prefix (which might
12457 -- Come_From_Source) as a reference, since the new (relocated) one
12458 -- won't be taken into account.
12460 if Is_Entity_Name (New_Prefix) then
12461 Ent := Entity (New_Prefix);
12462 Pref := New_Prefix;
12464 -- For a retrieval of a subcomponent of some composite object,
12465 -- retrieve the ultimate entity if there is one.
12467 elsif Nkind_In (New_Prefix, N_Selected_Component,
12468 N_Indexed_Component)
12469 then
12470 Pref := Prefix (New_Prefix);
12471 while Present (Pref)
12472 and then Nkind_In (Pref, N_Selected_Component,
12473 N_Indexed_Component)
12474 loop
12475 Pref := Prefix (Pref);
12476 end loop;
12478 if Present (Pref) and then Is_Entity_Name (Pref) then
12479 Ent := Entity (Pref);
12480 end if;
12481 end if;
12483 -- Place the reference on the entity node
12485 if Present (Ent) then
12486 Generate_Reference (Ent, Pref);
12487 end if;
12488 end if;
12489 end Insert_Explicit_Dereference;
12491 ------------------------------------------
12492 -- Inspect_Deferred_Constant_Completion --
12493 ------------------------------------------
12495 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
12496 Decl : Node_Id;
12498 begin
12499 Decl := First (Decls);
12500 while Present (Decl) loop
12502 -- Deferred constant signature
12504 if Nkind (Decl) = N_Object_Declaration
12505 and then Constant_Present (Decl)
12506 and then No (Expression (Decl))
12508 -- No need to check internally generated constants
12510 and then Comes_From_Source (Decl)
12512 -- The constant is not completed. A full object declaration or a
12513 -- pragma Import complete a deferred constant.
12515 and then not Has_Completion (Defining_Identifier (Decl))
12516 then
12517 Error_Msg_N
12518 ("constant declaration requires initialization expression",
12519 Defining_Identifier (Decl));
12520 end if;
12522 Decl := Next (Decl);
12523 end loop;
12524 end Inspect_Deferred_Constant_Completion;
12526 -----------------------------
12527 -- Install_Generic_Formals --
12528 -----------------------------
12530 procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
12531 E : Entity_Id;
12533 begin
12534 pragma Assert (Is_Generic_Subprogram (Subp_Id));
12536 E := First_Entity (Subp_Id);
12537 while Present (E) loop
12538 Install_Entity (E);
12539 Next_Entity (E);
12540 end loop;
12541 end Install_Generic_Formals;
12543 ------------------------
12544 -- Install_SPARK_Mode --
12545 ------------------------
12547 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id) is
12548 begin
12549 SPARK_Mode := Mode;
12550 SPARK_Mode_Pragma := Prag;
12551 end Install_SPARK_Mode;
12553 -----------------------------
12554 -- Is_Actual_Out_Parameter --
12555 -----------------------------
12557 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
12558 Formal : Entity_Id;
12559 Call : Node_Id;
12560 begin
12561 Find_Actual (N, Formal, Call);
12562 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
12563 end Is_Actual_Out_Parameter;
12565 -------------------------
12566 -- Is_Actual_Parameter --
12567 -------------------------
12569 function Is_Actual_Parameter (N : Node_Id) return Boolean is
12570 PK : constant Node_Kind := Nkind (Parent (N));
12572 begin
12573 case PK is
12574 when N_Parameter_Association =>
12575 return N = Explicit_Actual_Parameter (Parent (N));
12577 when N_Subprogram_Call =>
12578 return Is_List_Member (N)
12579 and then
12580 List_Containing (N) = Parameter_Associations (Parent (N));
12582 when others =>
12583 return False;
12584 end case;
12585 end Is_Actual_Parameter;
12587 --------------------------------
12588 -- Is_Actual_Tagged_Parameter --
12589 --------------------------------
12591 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
12592 Formal : Entity_Id;
12593 Call : Node_Id;
12594 begin
12595 Find_Actual (N, Formal, Call);
12596 return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
12597 end Is_Actual_Tagged_Parameter;
12599 ---------------------
12600 -- Is_Aliased_View --
12601 ---------------------
12603 function Is_Aliased_View (Obj : Node_Id) return Boolean is
12604 E : Entity_Id;
12606 begin
12607 if Is_Entity_Name (Obj) then
12608 E := Entity (Obj);
12610 return
12611 (Is_Object (E)
12612 and then
12613 (Is_Aliased (E)
12614 or else (Present (Renamed_Object (E))
12615 and then Is_Aliased_View (Renamed_Object (E)))))
12617 or else ((Is_Formal (E) or else Is_Formal_Object (E))
12618 and then Is_Tagged_Type (Etype (E)))
12620 or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
12622 -- Current instance of type, either directly or as rewritten
12623 -- reference to the current object.
12625 or else (Is_Entity_Name (Original_Node (Obj))
12626 and then Present (Entity (Original_Node (Obj)))
12627 and then Is_Type (Entity (Original_Node (Obj))))
12629 or else (Is_Type (E) and then E = Current_Scope)
12631 or else (Is_Incomplete_Or_Private_Type (E)
12632 and then Full_View (E) = Current_Scope)
12634 -- Ada 2012 AI05-0053: the return object of an extended return
12635 -- statement is aliased if its type is immutably limited.
12637 or else (Is_Return_Object (E)
12638 and then Is_Limited_View (Etype (E)));
12640 elsif Nkind (Obj) = N_Selected_Component then
12641 return Is_Aliased (Entity (Selector_Name (Obj)));
12643 elsif Nkind (Obj) = N_Indexed_Component then
12644 return Has_Aliased_Components (Etype (Prefix (Obj)))
12645 or else
12646 (Is_Access_Type (Etype (Prefix (Obj)))
12647 and then Has_Aliased_Components
12648 (Designated_Type (Etype (Prefix (Obj)))));
12650 elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
12651 return Is_Tagged_Type (Etype (Obj))
12652 and then Is_Aliased_View (Expression (Obj));
12654 elsif Nkind (Obj) = N_Explicit_Dereference then
12655 return Nkind (Original_Node (Obj)) /= N_Function_Call;
12657 else
12658 return False;
12659 end if;
12660 end Is_Aliased_View;
12662 -------------------------
12663 -- Is_Ancestor_Package --
12664 -------------------------
12666 function Is_Ancestor_Package
12667 (E1 : Entity_Id;
12668 E2 : Entity_Id) return Boolean
12670 Par : Entity_Id;
12672 begin
12673 Par := E2;
12674 while Present (Par) and then Par /= Standard_Standard loop
12675 if Par = E1 then
12676 return True;
12677 end if;
12679 Par := Scope (Par);
12680 end loop;
12682 return False;
12683 end Is_Ancestor_Package;
12685 ----------------------
12686 -- Is_Atomic_Object --
12687 ----------------------
12689 function Is_Atomic_Object (N : Node_Id) return Boolean is
12691 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
12692 -- Determines if given object has atomic components
12694 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
12695 -- If prefix is an implicit dereference, examine designated type
12697 ----------------------
12698 -- Is_Atomic_Prefix --
12699 ----------------------
12701 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
12702 begin
12703 if Is_Access_Type (Etype (N)) then
12704 return
12705 Has_Atomic_Components (Designated_Type (Etype (N)));
12706 else
12707 return Object_Has_Atomic_Components (N);
12708 end if;
12709 end Is_Atomic_Prefix;
12711 ----------------------------------
12712 -- Object_Has_Atomic_Components --
12713 ----------------------------------
12715 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
12716 begin
12717 if Has_Atomic_Components (Etype (N))
12718 or else Is_Atomic (Etype (N))
12719 then
12720 return True;
12722 elsif Is_Entity_Name (N)
12723 and then (Has_Atomic_Components (Entity (N))
12724 or else Is_Atomic (Entity (N)))
12725 then
12726 return True;
12728 elsif Nkind (N) = N_Selected_Component
12729 and then Is_Atomic (Entity (Selector_Name (N)))
12730 then
12731 return True;
12733 elsif Nkind (N) = N_Indexed_Component
12734 or else Nkind (N) = N_Selected_Component
12735 then
12736 return Is_Atomic_Prefix (Prefix (N));
12738 else
12739 return False;
12740 end if;
12741 end Object_Has_Atomic_Components;
12743 -- Start of processing for Is_Atomic_Object
12745 begin
12746 -- Predicate is not relevant to subprograms
12748 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
12749 return False;
12751 elsif Is_Atomic (Etype (N))
12752 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
12753 then
12754 return True;
12756 elsif Nkind (N) = N_Selected_Component
12757 and then Is_Atomic (Entity (Selector_Name (N)))
12758 then
12759 return True;
12761 elsif Nkind (N) = N_Indexed_Component
12762 or else Nkind (N) = N_Selected_Component
12763 then
12764 return Is_Atomic_Prefix (Prefix (N));
12766 else
12767 return False;
12768 end if;
12769 end Is_Atomic_Object;
12771 -----------------------------
12772 -- Is_Atomic_Or_VFA_Object --
12773 -----------------------------
12775 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
12776 begin
12777 return Is_Atomic_Object (N)
12778 or else (Is_Object_Reference (N)
12779 and then Is_Entity_Name (N)
12780 and then (Is_Volatile_Full_Access (Entity (N))
12781 or else
12782 Is_Volatile_Full_Access (Etype (Entity (N)))));
12783 end Is_Atomic_Or_VFA_Object;
12785 -------------------------
12786 -- Is_Attribute_Result --
12787 -------------------------
12789 function Is_Attribute_Result (N : Node_Id) return Boolean is
12790 begin
12791 return Nkind (N) = N_Attribute_Reference
12792 and then Attribute_Name (N) = Name_Result;
12793 end Is_Attribute_Result;
12795 -------------------------
12796 -- Is_Attribute_Update --
12797 -------------------------
12799 function Is_Attribute_Update (N : Node_Id) return Boolean is
12800 begin
12801 return Nkind (N) = N_Attribute_Reference
12802 and then Attribute_Name (N) = Name_Update;
12803 end Is_Attribute_Update;
12805 ------------------------------------
12806 -- Is_Body_Or_Package_Declaration --
12807 ------------------------------------
12809 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
12810 begin
12811 return Nkind_In (N, N_Entry_Body,
12812 N_Package_Body,
12813 N_Package_Declaration,
12814 N_Protected_Body,
12815 N_Subprogram_Body,
12816 N_Task_Body);
12817 end Is_Body_Or_Package_Declaration;
12819 -----------------------
12820 -- Is_Bounded_String --
12821 -----------------------
12823 function Is_Bounded_String (T : Entity_Id) return Boolean is
12824 Under : constant Entity_Id := Underlying_Type (Root_Type (T));
12826 begin
12827 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
12828 -- Super_String, or one of the [Wide_]Wide_ versions. This will
12829 -- be True for all the Bounded_String types in instances of the
12830 -- Generic_Bounded_Length generics, and for types derived from those.
12832 return Present (Under)
12833 and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
12834 Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
12835 Is_RTE (Root_Type (Under), RO_WW_Super_String));
12836 end Is_Bounded_String;
12838 ---------------------
12839 -- Is_CCT_Instance --
12840 ---------------------
12842 function Is_CCT_Instance
12843 (Ref_Id : Entity_Id;
12844 Context_Id : Entity_Id) return Boolean
12846 begin
12847 pragma Assert (Ekind_In (Ref_Id, E_Protected_Type, E_Task_Type));
12849 if Is_Single_Task_Object (Context_Id) then
12850 return Scope_Within_Or_Same (Etype (Context_Id), Ref_Id);
12852 else
12853 pragma Assert (Ekind_In (Context_Id, E_Entry,
12854 E_Entry_Family,
12855 E_Function,
12856 E_Package,
12857 E_Procedure,
12858 E_Protected_Type,
12859 E_Task_Type));
12861 return Scope_Within_Or_Same (Context_Id, Ref_Id);
12862 end if;
12863 end Is_CCT_Instance;
12865 -------------------------
12866 -- Is_Child_Or_Sibling --
12867 -------------------------
12869 function Is_Child_Or_Sibling
12870 (Pack_1 : Entity_Id;
12871 Pack_2 : Entity_Id) return Boolean
12873 function Distance_From_Standard (Pack : Entity_Id) return Nat;
12874 -- Given an arbitrary package, return the number of "climbs" necessary
12875 -- to reach scope Standard_Standard.
12877 procedure Equalize_Depths
12878 (Pack : in out Entity_Id;
12879 Depth : in out Nat;
12880 Depth_To_Reach : Nat);
12881 -- Given an arbitrary package, its depth and a target depth to reach,
12882 -- climb the scope chain until the said depth is reached. The pointer
12883 -- to the package and its depth a modified during the climb.
12885 ----------------------------
12886 -- Distance_From_Standard --
12887 ----------------------------
12889 function Distance_From_Standard (Pack : Entity_Id) return Nat is
12890 Dist : Nat;
12891 Scop : Entity_Id;
12893 begin
12894 Dist := 0;
12895 Scop := Pack;
12896 while Present (Scop) and then Scop /= Standard_Standard loop
12897 Dist := Dist + 1;
12898 Scop := Scope (Scop);
12899 end loop;
12901 return Dist;
12902 end Distance_From_Standard;
12904 ---------------------
12905 -- Equalize_Depths --
12906 ---------------------
12908 procedure Equalize_Depths
12909 (Pack : in out Entity_Id;
12910 Depth : in out Nat;
12911 Depth_To_Reach : Nat)
12913 begin
12914 -- The package must be at a greater or equal depth
12916 if Depth < Depth_To_Reach then
12917 raise Program_Error;
12918 end if;
12920 -- Climb the scope chain until the desired depth is reached
12922 while Present (Pack) and then Depth /= Depth_To_Reach loop
12923 Pack := Scope (Pack);
12924 Depth := Depth - 1;
12925 end loop;
12926 end Equalize_Depths;
12928 -- Local variables
12930 P_1 : Entity_Id := Pack_1;
12931 P_1_Child : Boolean := False;
12932 P_1_Depth : Nat := Distance_From_Standard (P_1);
12933 P_2 : Entity_Id := Pack_2;
12934 P_2_Child : Boolean := False;
12935 P_2_Depth : Nat := Distance_From_Standard (P_2);
12937 -- Start of processing for Is_Child_Or_Sibling
12939 begin
12940 pragma Assert
12941 (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
12943 -- Both packages denote the same entity, therefore they cannot be
12944 -- children or siblings.
12946 if P_1 = P_2 then
12947 return False;
12949 -- One of the packages is at a deeper level than the other. Note that
12950 -- both may still come from different hierarchies.
12952 -- (root) P_2
12953 -- / \ :
12954 -- X P_2 or X
12955 -- : :
12956 -- P_1 P_1
12958 elsif P_1_Depth > P_2_Depth then
12959 Equalize_Depths
12960 (Pack => P_1,
12961 Depth => P_1_Depth,
12962 Depth_To_Reach => P_2_Depth);
12963 P_1_Child := True;
12965 -- (root) P_1
12966 -- / \ :
12967 -- P_1 X or X
12968 -- : :
12969 -- P_2 P_2
12971 elsif P_2_Depth > P_1_Depth then
12972 Equalize_Depths
12973 (Pack => P_2,
12974 Depth => P_2_Depth,
12975 Depth_To_Reach => P_1_Depth);
12976 P_2_Child := True;
12977 end if;
12979 -- At this stage the package pointers have been elevated to the same
12980 -- depth. If the related entities are the same, then one package is a
12981 -- potential child of the other:
12983 -- P_1
12984 -- :
12985 -- X became P_1 P_2 or vice versa
12986 -- :
12987 -- P_2
12989 if P_1 = P_2 then
12990 if P_1_Child then
12991 return Is_Child_Unit (Pack_1);
12993 else pragma Assert (P_2_Child);
12994 return Is_Child_Unit (Pack_2);
12995 end if;
12997 -- The packages may come from the same package chain or from entirely
12998 -- different hierarcies. To determine this, climb the scope stack until
12999 -- a common root is found.
13001 -- (root) (root 1) (root 2)
13002 -- / \ | |
13003 -- P_1 P_2 P_1 P_2
13005 else
13006 while Present (P_1) and then Present (P_2) loop
13008 -- The two packages may be siblings
13010 if P_1 = P_2 then
13011 return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
13012 end if;
13014 P_1 := Scope (P_1);
13015 P_2 := Scope (P_2);
13016 end loop;
13017 end if;
13019 return False;
13020 end Is_Child_Or_Sibling;
13022 -----------------------------
13023 -- Is_Concurrent_Interface --
13024 -----------------------------
13026 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
13027 begin
13028 return Is_Interface (T)
13029 and then
13030 (Is_Protected_Interface (T)
13031 or else Is_Synchronized_Interface (T)
13032 or else Is_Task_Interface (T));
13033 end Is_Concurrent_Interface;
13035 -----------------------
13036 -- Is_Constant_Bound --
13037 -----------------------
13039 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
13040 begin
13041 if Compile_Time_Known_Value (Exp) then
13042 return True;
13044 elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
13045 return Is_Constant_Object (Entity (Exp))
13046 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
13048 elsif Nkind (Exp) in N_Binary_Op then
13049 return Is_Constant_Bound (Left_Opnd (Exp))
13050 and then Is_Constant_Bound (Right_Opnd (Exp))
13051 and then Scope (Entity (Exp)) = Standard_Standard;
13053 else
13054 return False;
13055 end if;
13056 end Is_Constant_Bound;
13058 ---------------------------
13059 -- Is_Container_Element --
13060 ---------------------------
13062 function Is_Container_Element (Exp : Node_Id) return Boolean is
13063 Loc : constant Source_Ptr := Sloc (Exp);
13064 Pref : constant Node_Id := Prefix (Exp);
13066 Call : Node_Id;
13067 -- Call to an indexing aspect
13069 Cont_Typ : Entity_Id;
13070 -- The type of the container being accessed
13072 Elem_Typ : Entity_Id;
13073 -- Its element type
13075 Indexing : Entity_Id;
13076 Is_Const : Boolean;
13077 -- Indicates that constant indexing is used, and the element is thus
13078 -- a constant.
13080 Ref_Typ : Entity_Id;
13081 -- The reference type returned by the indexing operation
13083 begin
13084 -- If C is a container, in a context that imposes the element type of
13085 -- that container, the indexing notation C (X) is rewritten as:
13087 -- Indexing (C, X).Discr.all
13089 -- where Indexing is one of the indexing aspects of the container.
13090 -- If the context does not require a reference, the construct can be
13091 -- rewritten as
13093 -- Element (C, X)
13095 -- First, verify that the construct has the proper form
13097 if not Expander_Active then
13098 return False;
13100 elsif Nkind (Pref) /= N_Selected_Component then
13101 return False;
13103 elsif Nkind (Prefix (Pref)) /= N_Function_Call then
13104 return False;
13106 else
13107 Call := Prefix (Pref);
13108 Ref_Typ := Etype (Call);
13109 end if;
13111 if not Has_Implicit_Dereference (Ref_Typ)
13112 or else No (First (Parameter_Associations (Call)))
13113 or else not Is_Entity_Name (Name (Call))
13114 then
13115 return False;
13116 end if;
13118 -- Retrieve type of container object, and its iterator aspects
13120 Cont_Typ := Etype (First (Parameter_Associations (Call)));
13121 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
13122 Is_Const := False;
13124 if No (Indexing) then
13126 -- Container should have at least one indexing operation
13128 return False;
13130 elsif Entity (Name (Call)) /= Entity (Indexing) then
13132 -- This may be a variable indexing operation
13134 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
13136 if No (Indexing)
13137 or else Entity (Name (Call)) /= Entity (Indexing)
13138 then
13139 return False;
13140 end if;
13142 else
13143 Is_Const := True;
13144 end if;
13146 Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
13148 if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
13149 return False;
13150 end if;
13152 -- Check that the expression is not the target of an assignment, in
13153 -- which case the rewriting is not possible.
13155 if not Is_Const then
13156 declare
13157 Par : Node_Id;
13159 begin
13160 Par := Exp;
13161 while Present (Par)
13162 loop
13163 if Nkind (Parent (Par)) = N_Assignment_Statement
13164 and then Par = Name (Parent (Par))
13165 then
13166 return False;
13168 -- A renaming produces a reference, and the transformation
13169 -- does not apply.
13171 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
13172 return False;
13174 elsif Nkind_In
13175 (Nkind (Parent (Par)), N_Function_Call,
13176 N_Procedure_Call_Statement,
13177 N_Entry_Call_Statement)
13178 then
13179 -- Check that the element is not part of an actual for an
13180 -- in-out parameter.
13182 declare
13183 F : Entity_Id;
13184 A : Node_Id;
13186 begin
13187 F := First_Formal (Entity (Name (Parent (Par))));
13188 A := First (Parameter_Associations (Parent (Par)));
13189 while Present (F) loop
13190 if A = Par and then Ekind (F) /= E_In_Parameter then
13191 return False;
13192 end if;
13194 Next_Formal (F);
13195 Next (A);
13196 end loop;
13197 end;
13199 -- E_In_Parameter in a call: element is not modified.
13201 exit;
13202 end if;
13204 Par := Parent (Par);
13205 end loop;
13206 end;
13207 end if;
13209 -- The expression has the proper form and the context requires the
13210 -- element type. Retrieve the Element function of the container and
13211 -- rewrite the construct as a call to it.
13213 declare
13214 Op : Elmt_Id;
13216 begin
13217 Op := First_Elmt (Primitive_Operations (Cont_Typ));
13218 while Present (Op) loop
13219 exit when Chars (Node (Op)) = Name_Element;
13220 Next_Elmt (Op);
13221 end loop;
13223 if No (Op) then
13224 return False;
13226 else
13227 Rewrite (Exp,
13228 Make_Function_Call (Loc,
13229 Name => New_Occurrence_Of (Node (Op), Loc),
13230 Parameter_Associations => Parameter_Associations (Call)));
13231 Analyze_And_Resolve (Exp, Entity (Elem_Typ));
13232 return True;
13233 end if;
13234 end;
13235 end Is_Container_Element;
13237 ----------------------------
13238 -- Is_Contract_Annotation --
13239 ----------------------------
13241 function Is_Contract_Annotation (Item : Node_Id) return Boolean is
13242 begin
13243 return Is_Package_Contract_Annotation (Item)
13244 or else
13245 Is_Subprogram_Contract_Annotation (Item);
13246 end Is_Contract_Annotation;
13248 --------------------------------------
13249 -- Is_Controlling_Limited_Procedure --
13250 --------------------------------------
13252 function Is_Controlling_Limited_Procedure
13253 (Proc_Nam : Entity_Id) return Boolean
13255 Param : Node_Id;
13256 Param_Typ : Entity_Id := Empty;
13258 begin
13259 if Ekind (Proc_Nam) = E_Procedure
13260 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
13261 then
13262 Param :=
13263 Parameter_Type
13264 (First (Parameter_Specifications (Parent (Proc_Nam))));
13266 -- The formal may be an anonymous access type
13268 if Nkind (Param) = N_Access_Definition then
13269 Param_Typ := Entity (Subtype_Mark (Param));
13270 else
13271 Param_Typ := Etype (Param);
13272 end if;
13274 -- In the case where an Itype was created for a dispatchin call, the
13275 -- procedure call has been rewritten. The actual may be an access to
13276 -- interface type in which case it is the designated type that is the
13277 -- controlling type.
13279 elsif Present (Associated_Node_For_Itype (Proc_Nam))
13280 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
13281 and then
13282 Present (Parameter_Associations
13283 (Associated_Node_For_Itype (Proc_Nam)))
13284 then
13285 Param_Typ :=
13286 Etype (First (Parameter_Associations
13287 (Associated_Node_For_Itype (Proc_Nam))));
13289 if Ekind (Param_Typ) = E_Anonymous_Access_Type then
13290 Param_Typ := Directly_Designated_Type (Param_Typ);
13291 end if;
13292 end if;
13294 if Present (Param_Typ) then
13295 return
13296 Is_Interface (Param_Typ)
13297 and then Is_Limited_Record (Param_Typ);
13298 end if;
13300 return False;
13301 end Is_Controlling_Limited_Procedure;
13303 -----------------------------
13304 -- Is_CPP_Constructor_Call --
13305 -----------------------------
13307 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
13308 begin
13309 return Nkind (N) = N_Function_Call
13310 and then Is_CPP_Class (Etype (Etype (N)))
13311 and then Is_Constructor (Entity (Name (N)))
13312 and then Is_Imported (Entity (Name (N)));
13313 end Is_CPP_Constructor_Call;
13315 -------------------------
13316 -- Is_Current_Instance --
13317 -------------------------
13319 function Is_Current_Instance (N : Node_Id) return Boolean is
13320 Typ : constant Entity_Id := Entity (N);
13321 P : Node_Id;
13323 begin
13324 -- Simplest case: entity is a concurrent type and we are currently
13325 -- inside the body. This will eventually be expanded into a
13326 -- call to Self (for tasks) or _object (for protected objects).
13328 if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
13329 return True;
13331 else
13332 -- Check whether the context is a (sub)type declaration for the
13333 -- type entity.
13335 P := Parent (N);
13336 while Present (P) loop
13337 if Nkind_In (P, N_Full_Type_Declaration,
13338 N_Private_Type_Declaration,
13339 N_Subtype_Declaration)
13340 and then Comes_From_Source (P)
13341 and then Defining_Entity (P) = Typ
13342 then
13343 return True;
13345 -- A subtype name may appear in an aspect specification for a
13346 -- Predicate_Failure aspect, for which we do not construct a
13347 -- wrapper procedure. The subtype will be replaced by the
13348 -- expression being tested when the corresponding predicate
13349 -- check is expanded.
13351 elsif Nkind (P) = N_Aspect_Specification
13352 and then Nkind (Parent (P)) = N_Subtype_Declaration
13353 then
13354 return True;
13356 elsif Nkind (P) = N_Pragma
13357 and then
13358 Get_Pragma_Id (P) = Pragma_Predicate_Failure
13359 then
13360 return True;
13361 end if;
13363 P := Parent (P);
13364 end loop;
13365 end if;
13367 -- In any other context this is not a current occurrence
13369 return False;
13370 end Is_Current_Instance;
13372 --------------------
13373 -- Is_Declaration --
13374 --------------------
13376 function Is_Declaration (N : Node_Id) return Boolean is
13377 begin
13378 return
13379 Is_Declaration_Other_Than_Renaming (N)
13380 or else Is_Renaming_Declaration (N);
13381 end Is_Declaration;
13383 ----------------------------------------
13384 -- Is_Declaration_Other_Than_Renaming --
13385 ----------------------------------------
13387 function Is_Declaration_Other_Than_Renaming (N : Node_Id) return Boolean is
13388 begin
13389 case Nkind (N) is
13390 when N_Abstract_Subprogram_Declaration
13391 | N_Exception_Declaration
13392 | N_Expression_Function
13393 | N_Full_Type_Declaration
13394 | N_Generic_Package_Declaration
13395 | N_Generic_Subprogram_Declaration
13396 | N_Number_Declaration
13397 | N_Object_Declaration
13398 | N_Package_Declaration
13399 | N_Private_Extension_Declaration
13400 | N_Private_Type_Declaration
13401 | N_Subprogram_Declaration
13402 | N_Subtype_Declaration
13404 return True;
13406 when others =>
13407 return False;
13408 end case;
13409 end Is_Declaration_Other_Than_Renaming;
13411 --------------------------------
13412 -- Is_Declared_Within_Variant --
13413 --------------------------------
13415 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
13416 Comp_Decl : constant Node_Id := Parent (Comp);
13417 Comp_List : constant Node_Id := Parent (Comp_Decl);
13418 begin
13419 return Nkind (Parent (Comp_List)) = N_Variant;
13420 end Is_Declared_Within_Variant;
13422 ----------------------------------------------
13423 -- Is_Dependent_Component_Of_Mutable_Object --
13424 ----------------------------------------------
13426 function Is_Dependent_Component_Of_Mutable_Object
13427 (Object : Node_Id) return Boolean
13429 P : Node_Id;
13430 Prefix_Type : Entity_Id;
13431 P_Aliased : Boolean := False;
13432 Comp : Entity_Id;
13434 Deref : Node_Id := Object;
13435 -- Dereference node, in something like X.all.Y(2)
13437 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
13439 begin
13440 -- Find the dereference node if any
13442 while Nkind_In (Deref, N_Indexed_Component,
13443 N_Selected_Component,
13444 N_Slice)
13445 loop
13446 Deref := Prefix (Deref);
13447 end loop;
13449 -- Ada 2005: If we have a component or slice of a dereference,
13450 -- something like X.all.Y (2), and the type of X is access-to-constant,
13451 -- Is_Variable will return False, because it is indeed a constant
13452 -- view. But it might be a view of a variable object, so we want the
13453 -- following condition to be True in that case.
13455 if Is_Variable (Object)
13456 or else (Ada_Version >= Ada_2005
13457 and then Nkind (Deref) = N_Explicit_Dereference)
13458 then
13459 if Nkind (Object) = N_Selected_Component then
13460 P := Prefix (Object);
13461 Prefix_Type := Etype (P);
13463 if Is_Entity_Name (P) then
13464 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
13465 Prefix_Type := Base_Type (Prefix_Type);
13466 end if;
13468 if Is_Aliased (Entity (P)) then
13469 P_Aliased := True;
13470 end if;
13472 -- A discriminant check on a selected component may be expanded
13473 -- into a dereference when removing side effects. Recover the
13474 -- original node and its type, which may be unconstrained.
13476 elsif Nkind (P) = N_Explicit_Dereference
13477 and then not (Comes_From_Source (P))
13478 then
13479 P := Original_Node (P);
13480 Prefix_Type := Etype (P);
13482 else
13483 -- Check for prefix being an aliased component???
13485 null;
13487 end if;
13489 -- A heap object is constrained by its initial value
13491 -- Ada 2005 (AI-363): Always assume the object could be mutable in
13492 -- the dereferenced case, since the access value might denote an
13493 -- unconstrained aliased object, whereas in Ada 95 the designated
13494 -- object is guaranteed to be constrained. A worst-case assumption
13495 -- has to apply in Ada 2005 because we can't tell at compile
13496 -- time whether the object is "constrained by its initial value",
13497 -- despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
13498 -- rules (these rules are acknowledged to need fixing). We don't
13499 -- impose this more stringent checking for earlier Ada versions or
13500 -- when Relaxed_RM_Semantics applies (the latter for CodePeer's
13501 -- benefit, though it's unclear on why using -gnat95 would not be
13502 -- sufficient???).
13504 if Ada_Version < Ada_2005 or else Relaxed_RM_Semantics then
13505 if Is_Access_Type (Prefix_Type)
13506 or else Nkind (P) = N_Explicit_Dereference
13507 then
13508 return False;
13509 end if;
13511 else pragma Assert (Ada_Version >= Ada_2005);
13512 if Is_Access_Type (Prefix_Type) then
13514 -- If the access type is pool-specific, and there is no
13515 -- constrained partial view of the designated type, then the
13516 -- designated object is known to be constrained.
13518 if Ekind (Prefix_Type) = E_Access_Type
13519 and then not Object_Type_Has_Constrained_Partial_View
13520 (Typ => Designated_Type (Prefix_Type),
13521 Scop => Current_Scope)
13522 then
13523 return False;
13525 -- Otherwise (general access type, or there is a constrained
13526 -- partial view of the designated type), we need to check
13527 -- based on the designated type.
13529 else
13530 Prefix_Type := Designated_Type (Prefix_Type);
13531 end if;
13532 end if;
13533 end if;
13535 Comp :=
13536 Original_Record_Component (Entity (Selector_Name (Object)));
13538 -- As per AI-0017, the renaming is illegal in a generic body, even
13539 -- if the subtype is indefinite.
13541 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
13543 if not Is_Constrained (Prefix_Type)
13544 and then (Is_Definite_Subtype (Prefix_Type)
13545 or else
13546 (Is_Generic_Type (Prefix_Type)
13547 and then Ekind (Current_Scope) = E_Generic_Package
13548 and then In_Package_Body (Current_Scope)))
13550 and then (Is_Declared_Within_Variant (Comp)
13551 or else Has_Discriminant_Dependent_Constraint (Comp))
13552 and then (not P_Aliased or else Ada_Version >= Ada_2005)
13553 then
13554 return True;
13556 -- If the prefix is of an access type at this point, then we want
13557 -- to return False, rather than calling this function recursively
13558 -- on the access object (which itself might be a discriminant-
13559 -- dependent component of some other object, but that isn't
13560 -- relevant to checking the object passed to us). This avoids
13561 -- issuing wrong errors when compiling with -gnatc, where there
13562 -- can be implicit dereferences that have not been expanded.
13564 elsif Is_Access_Type (Etype (Prefix (Object))) then
13565 return False;
13567 else
13568 return
13569 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
13570 end if;
13572 elsif Nkind (Object) = N_Indexed_Component
13573 or else Nkind (Object) = N_Slice
13574 then
13575 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
13577 -- A type conversion that Is_Variable is a view conversion:
13578 -- go back to the denoted object.
13580 elsif Nkind (Object) = N_Type_Conversion then
13581 return
13582 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
13583 end if;
13584 end if;
13586 return False;
13587 end Is_Dependent_Component_Of_Mutable_Object;
13589 ---------------------
13590 -- Is_Dereferenced --
13591 ---------------------
13593 function Is_Dereferenced (N : Node_Id) return Boolean is
13594 P : constant Node_Id := Parent (N);
13595 begin
13596 return Nkind_In (P, N_Selected_Component,
13597 N_Explicit_Dereference,
13598 N_Indexed_Component,
13599 N_Slice)
13600 and then Prefix (P) = N;
13601 end Is_Dereferenced;
13603 ----------------------
13604 -- Is_Descendant_Of --
13605 ----------------------
13607 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
13608 T : Entity_Id;
13609 Etyp : Entity_Id;
13611 begin
13612 pragma Assert (Nkind (T1) in N_Entity);
13613 pragma Assert (Nkind (T2) in N_Entity);
13615 T := Base_Type (T1);
13617 -- Immediate return if the types match
13619 if T = T2 then
13620 return True;
13622 -- Comment needed here ???
13624 elsif Ekind (T) = E_Class_Wide_Type then
13625 return Etype (T) = T2;
13627 -- All other cases
13629 else
13630 loop
13631 Etyp := Etype (T);
13633 -- Done if we found the type we are looking for
13635 if Etyp = T2 then
13636 return True;
13638 -- Done if no more derivations to check
13640 elsif T = T1
13641 or else T = Etyp
13642 then
13643 return False;
13645 -- Following test catches error cases resulting from prev errors
13647 elsif No (Etyp) then
13648 return False;
13650 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
13651 return False;
13653 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
13654 return False;
13655 end if;
13657 T := Base_Type (Etyp);
13658 end loop;
13659 end if;
13660 end Is_Descendant_Of;
13662 ----------------------------------------
13663 -- Is_Descendant_Of_Suspension_Object --
13664 ----------------------------------------
13666 function Is_Descendant_Of_Suspension_Object
13667 (Typ : Entity_Id) return Boolean
13669 Cur_Typ : Entity_Id;
13670 Par_Typ : Entity_Id;
13672 begin
13673 -- Climb the type derivation chain checking each parent type against
13674 -- Suspension_Object.
13676 Cur_Typ := Base_Type (Typ);
13677 while Present (Cur_Typ) loop
13678 Par_Typ := Etype (Cur_Typ);
13680 -- The current type is a match
13682 if Is_Suspension_Object (Cur_Typ) then
13683 return True;
13685 -- Stop the traversal once the root of the derivation chain has been
13686 -- reached. In that case the current type is its own base type.
13688 elsif Cur_Typ = Par_Typ then
13689 exit;
13690 end if;
13692 Cur_Typ := Base_Type (Par_Typ);
13693 end loop;
13695 return False;
13696 end Is_Descendant_Of_Suspension_Object;
13698 ---------------------------------------------
13699 -- Is_Double_Precision_Floating_Point_Type --
13700 ---------------------------------------------
13702 function Is_Double_Precision_Floating_Point_Type
13703 (E : Entity_Id) return Boolean is
13704 begin
13705 return Is_Floating_Point_Type (E)
13706 and then Machine_Radix_Value (E) = Uint_2
13707 and then Machine_Mantissa_Value (E) = UI_From_Int (53)
13708 and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
13709 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
13710 end Is_Double_Precision_Floating_Point_Type;
13712 -----------------------------
13713 -- Is_Effectively_Volatile --
13714 -----------------------------
13716 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
13717 begin
13718 if Is_Type (Id) then
13720 -- An arbitrary type is effectively volatile when it is subject to
13721 -- pragma Atomic or Volatile.
13723 if Is_Volatile (Id) then
13724 return True;
13726 -- An array type is effectively volatile when it is subject to pragma
13727 -- Atomic_Components or Volatile_Components or its component type is
13728 -- effectively volatile.
13730 elsif Is_Array_Type (Id) then
13731 declare
13732 Anc : Entity_Id := Base_Type (Id);
13733 begin
13734 if Is_Private_Type (Anc) then
13735 Anc := Full_View (Anc);
13736 end if;
13738 -- Test for presence of ancestor, as the full view of a private
13739 -- type may be missing in case of error.
13741 return
13742 Has_Volatile_Components (Id)
13743 or else
13744 (Present (Anc)
13745 and then Is_Effectively_Volatile (Component_Type (Anc)));
13746 end;
13748 -- A protected type is always volatile
13750 elsif Is_Protected_Type (Id) then
13751 return True;
13753 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
13754 -- automatically volatile.
13756 elsif Is_Descendant_Of_Suspension_Object (Id) then
13757 return True;
13759 -- Otherwise the type is not effectively volatile
13761 else
13762 return False;
13763 end if;
13765 -- Otherwise Id denotes an object
13767 else
13768 return
13769 Is_Volatile (Id)
13770 or else Has_Volatile_Components (Id)
13771 or else Is_Effectively_Volatile (Etype (Id));
13772 end if;
13773 end Is_Effectively_Volatile;
13775 ------------------------------------
13776 -- Is_Effectively_Volatile_Object --
13777 ------------------------------------
13779 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
13780 begin
13781 if Is_Entity_Name (N) then
13782 return Is_Effectively_Volatile (Entity (N));
13784 elsif Nkind (N) = N_Indexed_Component then
13785 return Is_Effectively_Volatile_Object (Prefix (N));
13787 elsif Nkind (N) = N_Selected_Component then
13788 return
13789 Is_Effectively_Volatile_Object (Prefix (N))
13790 or else
13791 Is_Effectively_Volatile_Object (Selector_Name (N));
13793 else
13794 return False;
13795 end if;
13796 end Is_Effectively_Volatile_Object;
13798 -------------------
13799 -- Is_Entry_Body --
13800 -------------------
13802 function Is_Entry_Body (Id : Entity_Id) return Boolean is
13803 begin
13804 return
13805 Ekind_In (Id, E_Entry, E_Entry_Family)
13806 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
13807 end Is_Entry_Body;
13809 --------------------------
13810 -- Is_Entry_Declaration --
13811 --------------------------
13813 function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
13814 begin
13815 return
13816 Ekind_In (Id, E_Entry, E_Entry_Family)
13817 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
13818 end Is_Entry_Declaration;
13820 ------------------------------------
13821 -- Is_Expanded_Priority_Attribute --
13822 ------------------------------------
13824 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
13825 begin
13826 return
13827 Nkind (E) = N_Function_Call
13828 and then not Configurable_Run_Time_Mode
13829 and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
13830 or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
13831 end Is_Expanded_Priority_Attribute;
13833 ----------------------------
13834 -- Is_Expression_Function --
13835 ----------------------------
13837 function Is_Expression_Function (Subp : Entity_Id) return Boolean is
13838 begin
13839 if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
13840 return
13841 Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
13842 N_Expression_Function;
13843 else
13844 return False;
13845 end if;
13846 end Is_Expression_Function;
13848 ------------------------------------------
13849 -- Is_Expression_Function_Or_Completion --
13850 ------------------------------------------
13852 function Is_Expression_Function_Or_Completion
13853 (Subp : Entity_Id) return Boolean
13855 Subp_Decl : Node_Id;
13857 begin
13858 if Ekind (Subp) = E_Function then
13859 Subp_Decl := Unit_Declaration_Node (Subp);
13861 -- The function declaration is either an expression function or is
13862 -- completed by an expression function body.
13864 return
13865 Is_Expression_Function (Subp)
13866 or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
13867 and then Present (Corresponding_Body (Subp_Decl))
13868 and then Is_Expression_Function
13869 (Corresponding_Body (Subp_Decl)));
13871 elsif Ekind (Subp) = E_Subprogram_Body then
13872 return Is_Expression_Function (Subp);
13874 else
13875 return False;
13876 end if;
13877 end Is_Expression_Function_Or_Completion;
13879 -----------------------
13880 -- Is_EVF_Expression --
13881 -----------------------
13883 function Is_EVF_Expression (N : Node_Id) return Boolean is
13884 Orig_N : constant Node_Id := Original_Node (N);
13885 Alt : Node_Id;
13886 Expr : Node_Id;
13887 Id : Entity_Id;
13889 begin
13890 -- Detect a reference to a formal parameter of a specific tagged type
13891 -- whose related subprogram is subject to pragma Expresions_Visible with
13892 -- value "False".
13894 if Is_Entity_Name (N) and then Present (Entity (N)) then
13895 Id := Entity (N);
13897 return
13898 Is_Formal (Id)
13899 and then Is_Specific_Tagged_Type (Etype (Id))
13900 and then Extensions_Visible_Status (Id) =
13901 Extensions_Visible_False;
13903 -- A case expression is an EVF expression when it contains at least one
13904 -- EVF dependent_expression. Note that a case expression may have been
13905 -- expanded, hence the use of Original_Node.
13907 elsif Nkind (Orig_N) = N_Case_Expression then
13908 Alt := First (Alternatives (Orig_N));
13909 while Present (Alt) loop
13910 if Is_EVF_Expression (Expression (Alt)) then
13911 return True;
13912 end if;
13914 Next (Alt);
13915 end loop;
13917 -- An if expression is an EVF expression when it contains at least one
13918 -- EVF dependent_expression. Note that an if expression may have been
13919 -- expanded, hence the use of Original_Node.
13921 elsif Nkind (Orig_N) = N_If_Expression then
13922 Expr := Next (First (Expressions (Orig_N)));
13923 while Present (Expr) loop
13924 if Is_EVF_Expression (Expr) then
13925 return True;
13926 end if;
13928 Next (Expr);
13929 end loop;
13931 -- A qualified expression or a type conversion is an EVF expression when
13932 -- its operand is an EVF expression.
13934 elsif Nkind_In (N, N_Qualified_Expression,
13935 N_Unchecked_Type_Conversion,
13936 N_Type_Conversion)
13937 then
13938 return Is_EVF_Expression (Expression (N));
13940 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
13941 -- their prefix denotes an EVF expression.
13943 elsif Nkind (N) = N_Attribute_Reference
13944 and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
13945 Name_Old,
13946 Name_Update)
13947 then
13948 return Is_EVF_Expression (Prefix (N));
13949 end if;
13951 return False;
13952 end Is_EVF_Expression;
13954 --------------
13955 -- Is_False --
13956 --------------
13958 function Is_False (U : Uint) return Boolean is
13959 begin
13960 return (U = 0);
13961 end Is_False;
13963 ---------------------------
13964 -- Is_Fixed_Model_Number --
13965 ---------------------------
13967 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
13968 S : constant Ureal := Small_Value (T);
13969 M : Urealp.Save_Mark;
13970 R : Boolean;
13972 begin
13973 M := Urealp.Mark;
13974 R := (U = UR_Trunc (U / S) * S);
13975 Urealp.Release (M);
13976 return R;
13977 end Is_Fixed_Model_Number;
13979 -------------------------------
13980 -- Is_Fully_Initialized_Type --
13981 -------------------------------
13983 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
13984 begin
13985 -- Scalar types
13987 if Is_Scalar_Type (Typ) then
13989 -- A scalar type with an aspect Default_Value is fully initialized
13991 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
13992 -- of a scalar type, but we don't take that into account here, since
13993 -- we don't want these to affect warnings.
13995 return Has_Default_Aspect (Typ);
13997 elsif Is_Access_Type (Typ) then
13998 return True;
14000 elsif Is_Array_Type (Typ) then
14001 if Is_Fully_Initialized_Type (Component_Type (Typ))
14002 or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
14003 then
14004 return True;
14005 end if;
14007 -- An interesting case, if we have a constrained type one of whose
14008 -- bounds is known to be null, then there are no elements to be
14009 -- initialized, so all the elements are initialized.
14011 if Is_Constrained (Typ) then
14012 declare
14013 Indx : Node_Id;
14014 Indx_Typ : Entity_Id;
14015 Lbd, Hbd : Node_Id;
14017 begin
14018 Indx := First_Index (Typ);
14019 while Present (Indx) loop
14020 if Etype (Indx) = Any_Type then
14021 return False;
14023 -- If index is a range, use directly
14025 elsif Nkind (Indx) = N_Range then
14026 Lbd := Low_Bound (Indx);
14027 Hbd := High_Bound (Indx);
14029 else
14030 Indx_Typ := Etype (Indx);
14032 if Is_Private_Type (Indx_Typ) then
14033 Indx_Typ := Full_View (Indx_Typ);
14034 end if;
14036 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
14037 return False;
14038 else
14039 Lbd := Type_Low_Bound (Indx_Typ);
14040 Hbd := Type_High_Bound (Indx_Typ);
14041 end if;
14042 end if;
14044 if Compile_Time_Known_Value (Lbd)
14045 and then
14046 Compile_Time_Known_Value (Hbd)
14047 then
14048 if Expr_Value (Hbd) < Expr_Value (Lbd) then
14049 return True;
14050 end if;
14051 end if;
14053 Next_Index (Indx);
14054 end loop;
14055 end;
14056 end if;
14058 -- If no null indexes, then type is not fully initialized
14060 return False;
14062 -- Record types
14064 elsif Is_Record_Type (Typ) then
14065 if Has_Discriminants (Typ)
14066 and then
14067 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
14068 and then Is_Fully_Initialized_Variant (Typ)
14069 then
14070 return True;
14071 end if;
14073 -- We consider bounded string types to be fully initialized, because
14074 -- otherwise we get false alarms when the Data component is not
14075 -- default-initialized.
14077 if Is_Bounded_String (Typ) then
14078 return True;
14079 end if;
14081 -- Controlled records are considered to be fully initialized if
14082 -- there is a user defined Initialize routine. This may not be
14083 -- entirely correct, but as the spec notes, we are guessing here
14084 -- what is best from the point of view of issuing warnings.
14086 if Is_Controlled (Typ) then
14087 declare
14088 Utyp : constant Entity_Id := Underlying_Type (Typ);
14090 begin
14091 if Present (Utyp) then
14092 declare
14093 Init : constant Entity_Id :=
14094 (Find_Optional_Prim_Op
14095 (Underlying_Type (Typ), Name_Initialize));
14097 begin
14098 if Present (Init)
14099 and then Comes_From_Source (Init)
14100 and then not In_Predefined_Unit (Init)
14101 then
14102 return True;
14104 elsif Has_Null_Extension (Typ)
14105 and then
14106 Is_Fully_Initialized_Type
14107 (Etype (Base_Type (Typ)))
14108 then
14109 return True;
14110 end if;
14111 end;
14112 end if;
14113 end;
14114 end if;
14116 -- Otherwise see if all record components are initialized
14118 declare
14119 Ent : Entity_Id;
14121 begin
14122 Ent := First_Entity (Typ);
14123 while Present (Ent) loop
14124 if Ekind (Ent) = E_Component
14125 and then (No (Parent (Ent))
14126 or else No (Expression (Parent (Ent))))
14127 and then not Is_Fully_Initialized_Type (Etype (Ent))
14129 -- Special VM case for tag components, which need to be
14130 -- defined in this case, but are never initialized as VMs
14131 -- are using other dispatching mechanisms. Ignore this
14132 -- uninitialized case. Note that this applies both to the
14133 -- uTag entry and the main vtable pointer (CPP_Class case).
14135 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
14136 then
14137 return False;
14138 end if;
14140 Next_Entity (Ent);
14141 end loop;
14142 end;
14144 -- No uninitialized components, so type is fully initialized.
14145 -- Note that this catches the case of no components as well.
14147 return True;
14149 elsif Is_Concurrent_Type (Typ) then
14150 return True;
14152 elsif Is_Private_Type (Typ) then
14153 declare
14154 U : constant Entity_Id := Underlying_Type (Typ);
14156 begin
14157 if No (U) then
14158 return False;
14159 else
14160 return Is_Fully_Initialized_Type (U);
14161 end if;
14162 end;
14164 else
14165 return False;
14166 end if;
14167 end Is_Fully_Initialized_Type;
14169 ----------------------------------
14170 -- Is_Fully_Initialized_Variant --
14171 ----------------------------------
14173 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
14174 Loc : constant Source_Ptr := Sloc (Typ);
14175 Constraints : constant List_Id := New_List;
14176 Components : constant Elist_Id := New_Elmt_List;
14177 Comp_Elmt : Elmt_Id;
14178 Comp_Id : Node_Id;
14179 Comp_List : Node_Id;
14180 Discr : Entity_Id;
14181 Discr_Val : Node_Id;
14183 Report_Errors : Boolean;
14184 pragma Warnings (Off, Report_Errors);
14186 begin
14187 if Serious_Errors_Detected > 0 then
14188 return False;
14189 end if;
14191 if Is_Record_Type (Typ)
14192 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14193 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
14194 then
14195 Comp_List := Component_List (Type_Definition (Parent (Typ)));
14197 Discr := First_Discriminant (Typ);
14198 while Present (Discr) loop
14199 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
14200 Discr_Val := Expression (Parent (Discr));
14202 if Present (Discr_Val)
14203 and then Is_OK_Static_Expression (Discr_Val)
14204 then
14205 Append_To (Constraints,
14206 Make_Component_Association (Loc,
14207 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
14208 Expression => New_Copy (Discr_Val)));
14209 else
14210 return False;
14211 end if;
14212 else
14213 return False;
14214 end if;
14216 Next_Discriminant (Discr);
14217 end loop;
14219 Gather_Components
14220 (Typ => Typ,
14221 Comp_List => Comp_List,
14222 Governed_By => Constraints,
14223 Into => Components,
14224 Report_Errors => Report_Errors);
14226 -- Check that each component present is fully initialized
14228 Comp_Elmt := First_Elmt (Components);
14229 while Present (Comp_Elmt) loop
14230 Comp_Id := Node (Comp_Elmt);
14232 if Ekind (Comp_Id) = E_Component
14233 and then (No (Parent (Comp_Id))
14234 or else No (Expression (Parent (Comp_Id))))
14235 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
14236 then
14237 return False;
14238 end if;
14240 Next_Elmt (Comp_Elmt);
14241 end loop;
14243 return True;
14245 elsif Is_Private_Type (Typ) then
14246 declare
14247 U : constant Entity_Id := Underlying_Type (Typ);
14249 begin
14250 if No (U) then
14251 return False;
14252 else
14253 return Is_Fully_Initialized_Variant (U);
14254 end if;
14255 end;
14257 else
14258 return False;
14259 end if;
14260 end Is_Fully_Initialized_Variant;
14262 ------------------------------------
14263 -- Is_Generic_Declaration_Or_Body --
14264 ------------------------------------
14266 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
14267 Spec_Decl : Node_Id;
14269 begin
14270 -- Package/subprogram body
14272 if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
14273 and then Present (Corresponding_Spec (Decl))
14274 then
14275 Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
14277 -- Package/subprogram body stub
14279 elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
14280 and then Present (Corresponding_Spec_Of_Stub (Decl))
14281 then
14282 Spec_Decl :=
14283 Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
14285 -- All other cases
14287 else
14288 Spec_Decl := Decl;
14289 end if;
14291 -- Rather than inspecting the defining entity of the spec declaration,
14292 -- look at its Nkind. This takes care of the case where the analysis of
14293 -- a generic body modifies the Ekind of its spec to allow for recursive
14294 -- calls.
14296 return
14297 Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
14298 N_Generic_Subprogram_Declaration);
14299 end Is_Generic_Declaration_Or_Body;
14301 ----------------------------
14302 -- Is_Inherited_Operation --
14303 ----------------------------
14305 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
14306 pragma Assert (Is_Overloadable (E));
14307 Kind : constant Node_Kind := Nkind (Parent (E));
14308 begin
14309 return Kind = N_Full_Type_Declaration
14310 or else Kind = N_Private_Extension_Declaration
14311 or else Kind = N_Subtype_Declaration
14312 or else (Ekind (E) = E_Enumeration_Literal
14313 and then Is_Derived_Type (Etype (E)));
14314 end Is_Inherited_Operation;
14316 -------------------------------------
14317 -- Is_Inherited_Operation_For_Type --
14318 -------------------------------------
14320 function Is_Inherited_Operation_For_Type
14321 (E : Entity_Id;
14322 Typ : Entity_Id) return Boolean
14324 begin
14325 -- Check that the operation has been created by the type declaration
14327 return Is_Inherited_Operation (E)
14328 and then Defining_Identifier (Parent (E)) = Typ;
14329 end Is_Inherited_Operation_For_Type;
14331 --------------------------------------
14332 -- Is_Inlinable_Expression_Function --
14333 --------------------------------------
14335 function Is_Inlinable_Expression_Function
14336 (Subp : Entity_Id) return Boolean
14338 Return_Expr : Node_Id;
14340 begin
14341 if Is_Expression_Function_Or_Completion (Subp)
14342 and then Has_Pragma_Inline_Always (Subp)
14343 and then Needs_No_Actuals (Subp)
14344 and then No (Contract (Subp))
14345 and then not Is_Dispatching_Operation (Subp)
14346 and then Needs_Finalization (Etype (Subp))
14347 and then not Is_Class_Wide_Type (Etype (Subp))
14348 and then not (Has_Invariants (Etype (Subp)))
14349 and then Present (Subprogram_Body (Subp))
14350 and then Was_Expression_Function (Subprogram_Body (Subp))
14351 then
14352 Return_Expr := Expression_Of_Expression_Function (Subp);
14354 -- The returned object must not have a qualified expression and its
14355 -- nominal subtype must be statically compatible with the result
14356 -- subtype of the expression function.
14358 return
14359 Nkind (Return_Expr) = N_Identifier
14360 and then Etype (Return_Expr) = Etype (Subp);
14361 end if;
14363 return False;
14364 end Is_Inlinable_Expression_Function;
14366 -----------------
14367 -- Is_Iterator --
14368 -----------------
14370 function Is_Iterator (Typ : Entity_Id) return Boolean is
14371 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
14372 -- Determine whether type Iter_Typ is a predefined forward or reversible
14373 -- iterator.
14375 ----------------------
14376 -- Denotes_Iterator --
14377 ----------------------
14379 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
14380 begin
14381 -- Check that the name matches, and that the ultimate ancestor is in
14382 -- a predefined unit, i.e the one that declares iterator interfaces.
14384 return
14385 Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
14386 Name_Reversible_Iterator)
14387 and then In_Predefined_Unit (Root_Type (Iter_Typ));
14388 end Denotes_Iterator;
14390 -- Local variables
14392 Iface_Elmt : Elmt_Id;
14393 Ifaces : Elist_Id;
14395 -- Start of processing for Is_Iterator
14397 begin
14398 -- The type may be a subtype of a descendant of the proper instance of
14399 -- the predefined interface type, so we must use the root type of the
14400 -- given type. The same is done for Is_Reversible_Iterator.
14402 if Is_Class_Wide_Type (Typ)
14403 and then Denotes_Iterator (Root_Type (Typ))
14404 then
14405 return True;
14407 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
14408 return False;
14410 elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
14411 return True;
14413 else
14414 Collect_Interfaces (Typ, Ifaces);
14416 Iface_Elmt := First_Elmt (Ifaces);
14417 while Present (Iface_Elmt) loop
14418 if Denotes_Iterator (Node (Iface_Elmt)) then
14419 return True;
14420 end if;
14422 Next_Elmt (Iface_Elmt);
14423 end loop;
14425 return False;
14426 end if;
14427 end Is_Iterator;
14429 ----------------------------
14430 -- Is_Iterator_Over_Array --
14431 ----------------------------
14433 function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
14434 Container : constant Node_Id := Name (N);
14435 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
14436 begin
14437 return Is_Array_Type (Container_Typ);
14438 end Is_Iterator_Over_Array;
14440 ------------
14441 -- Is_LHS --
14442 ------------
14444 -- We seem to have a lot of overlapping functions that do similar things
14445 -- (testing for left hand sides or lvalues???).
14447 function Is_LHS (N : Node_Id) return Is_LHS_Result is
14448 P : constant Node_Id := Parent (N);
14450 begin
14451 -- Return True if we are the left hand side of an assignment statement
14453 if Nkind (P) = N_Assignment_Statement then
14454 if Name (P) = N then
14455 return Yes;
14456 else
14457 return No;
14458 end if;
14460 -- Case of prefix of indexed or selected component or slice
14462 elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
14463 and then N = Prefix (P)
14464 then
14465 -- Here we have the case where the parent P is N.Q or N(Q .. R).
14466 -- If P is an LHS, then N is also effectively an LHS, but there
14467 -- is an important exception. If N is of an access type, then
14468 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
14469 -- case this makes N.all a left hand side but not N itself.
14471 -- If we don't know the type yet, this is the case where we return
14472 -- Unknown, since the answer depends on the type which is unknown.
14474 if No (Etype (N)) then
14475 return Unknown;
14477 -- We have an Etype set, so we can check it
14479 elsif Is_Access_Type (Etype (N)) then
14480 return No;
14482 -- OK, not access type case, so just test whole expression
14484 else
14485 return Is_LHS (P);
14486 end if;
14488 -- All other cases are not left hand sides
14490 else
14491 return No;
14492 end if;
14493 end Is_LHS;
14495 -----------------------------
14496 -- Is_Library_Level_Entity --
14497 -----------------------------
14499 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
14500 begin
14501 -- The following is a small optimization, and it also properly handles
14502 -- discriminals, which in task bodies might appear in expressions before
14503 -- the corresponding procedure has been created, and which therefore do
14504 -- not have an assigned scope.
14506 if Is_Formal (E) then
14507 return False;
14508 end if;
14510 -- Normal test is simply that the enclosing dynamic scope is Standard
14512 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
14513 end Is_Library_Level_Entity;
14515 --------------------------------
14516 -- Is_Limited_Class_Wide_Type --
14517 --------------------------------
14519 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
14520 begin
14521 return
14522 Is_Class_Wide_Type (Typ)
14523 and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
14524 end Is_Limited_Class_Wide_Type;
14526 ---------------------------------
14527 -- Is_Local_Variable_Reference --
14528 ---------------------------------
14530 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
14531 begin
14532 if not Is_Entity_Name (Expr) then
14533 return False;
14535 else
14536 declare
14537 Ent : constant Entity_Id := Entity (Expr);
14538 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
14539 begin
14540 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
14541 return False;
14542 else
14543 return Present (Sub) and then Sub = Current_Subprogram;
14544 end if;
14545 end;
14546 end if;
14547 end Is_Local_Variable_Reference;
14549 -----------------------
14550 -- Is_Name_Reference --
14551 -----------------------
14553 function Is_Name_Reference (N : Node_Id) return Boolean is
14554 begin
14555 if Is_Entity_Name (N) then
14556 return Present (Entity (N)) and then Is_Object (Entity (N));
14557 end if;
14559 case Nkind (N) is
14560 when N_Indexed_Component
14561 | N_Slice
14563 return
14564 Is_Name_Reference (Prefix (N))
14565 or else Is_Access_Type (Etype (Prefix (N)));
14567 -- Attributes 'Input, 'Old and 'Result produce objects
14569 when N_Attribute_Reference =>
14570 return
14571 Nam_In (Attribute_Name (N), Name_Input, Name_Old, Name_Result);
14573 when N_Selected_Component =>
14574 return
14575 Is_Name_Reference (Selector_Name (N))
14576 and then
14577 (Is_Name_Reference (Prefix (N))
14578 or else Is_Access_Type (Etype (Prefix (N))));
14580 when N_Explicit_Dereference =>
14581 return True;
14583 -- A view conversion of a tagged name is a name reference
14585 when N_Type_Conversion =>
14586 return
14587 Is_Tagged_Type (Etype (Subtype_Mark (N)))
14588 and then Is_Tagged_Type (Etype (Expression (N)))
14589 and then Is_Name_Reference (Expression (N));
14591 -- An unchecked type conversion is considered to be a name if the
14592 -- operand is a name (this construction arises only as a result of
14593 -- expansion activities).
14595 when N_Unchecked_Type_Conversion =>
14596 return Is_Name_Reference (Expression (N));
14598 when others =>
14599 return False;
14600 end case;
14601 end Is_Name_Reference;
14603 ---------------------------------
14604 -- Is_Nontrivial_DIC_Procedure --
14605 ---------------------------------
14607 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean is
14608 Body_Decl : Node_Id;
14609 Stmt : Node_Id;
14611 begin
14612 if Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id) then
14613 Body_Decl :=
14614 Unit_Declaration_Node
14615 (Corresponding_Body (Unit_Declaration_Node (Id)));
14617 -- The body of the Default_Initial_Condition procedure must contain
14618 -- at least one statement, otherwise the generation of the subprogram
14619 -- body failed.
14621 pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
14623 -- To qualify as nontrivial, the first statement of the procedure
14624 -- must be a check in the form of an if statement. If the original
14625 -- Default_Initial_Condition expression was folded, then the first
14626 -- statement is not a check.
14628 Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
14630 return
14631 Nkind (Stmt) = N_If_Statement
14632 and then Nkind (Original_Node (Stmt)) = N_Pragma;
14633 end if;
14635 return False;
14636 end Is_Nontrivial_DIC_Procedure;
14638 -------------------------
14639 -- Is_Null_Record_Type --
14640 -------------------------
14642 function Is_Null_Record_Type (T : Entity_Id) return Boolean is
14643 Decl : constant Node_Id := Parent (T);
14644 begin
14645 return Nkind (Decl) = N_Full_Type_Declaration
14646 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
14647 and then
14648 (No (Component_List (Type_Definition (Decl)))
14649 or else Null_Present (Component_List (Type_Definition (Decl))));
14650 end Is_Null_Record_Type;
14652 ---------------------
14653 -- Is_Object_Image --
14654 ---------------------
14656 function Is_Object_Image (Prefix : Node_Id) return Boolean is
14657 begin
14658 -- When the type of the prefix is not scalar, then the prefix is not
14659 -- valid in any scenario.
14661 if not Is_Scalar_Type (Etype (Prefix)) then
14662 return False;
14663 end if;
14665 -- Here we test for the case that the prefix is not a type and assume
14666 -- if it is not then it must be a named value or an object reference.
14667 -- This is because the parser always checks that prefixes of attributes
14668 -- are named.
14670 return not (Is_Entity_Name (Prefix) and then Is_Type (Entity (Prefix)));
14671 end Is_Object_Image;
14673 -------------------------
14674 -- Is_Object_Reference --
14675 -------------------------
14677 function Is_Object_Reference (N : Node_Id) return Boolean is
14678 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
14679 -- Determine whether N is the name of an internally-generated renaming
14681 --------------------------------------
14682 -- Is_Internally_Generated_Renaming --
14683 --------------------------------------
14685 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
14686 P : Node_Id;
14688 begin
14689 P := N;
14690 while Present (P) loop
14691 if Nkind (P) = N_Object_Renaming_Declaration then
14692 return not Comes_From_Source (P);
14693 elsif Is_List_Member (P) then
14694 return False;
14695 end if;
14697 P := Parent (P);
14698 end loop;
14700 return False;
14701 end Is_Internally_Generated_Renaming;
14703 -- Start of processing for Is_Object_Reference
14705 begin
14706 if Is_Entity_Name (N) then
14707 return Present (Entity (N)) and then Is_Object (Entity (N));
14709 else
14710 case Nkind (N) is
14711 when N_Indexed_Component
14712 | N_Slice
14714 return
14715 Is_Object_Reference (Prefix (N))
14716 or else Is_Access_Type (Etype (Prefix (N)));
14718 -- In Ada 95, a function call is a constant object; a procedure
14719 -- call is not.
14721 -- Note that predefined operators are functions as well, and so
14722 -- are attributes that are (can be renamed as) functions.
14724 when N_Binary_Op
14725 | N_Function_Call
14726 | N_Unary_Op
14728 return Etype (N) /= Standard_Void_Type;
14730 -- Attributes references 'Loop_Entry, 'Old, and 'Result yield
14731 -- objects, even though they are not functions.
14733 when N_Attribute_Reference =>
14734 return
14735 Nam_In (Attribute_Name (N), Name_Loop_Entry,
14736 Name_Old,
14737 Name_Result)
14738 or else Is_Function_Attribute_Name (Attribute_Name (N));
14740 when N_Selected_Component =>
14741 return
14742 Is_Object_Reference (Selector_Name (N))
14743 and then
14744 (Is_Object_Reference (Prefix (N))
14745 or else Is_Access_Type (Etype (Prefix (N))));
14747 -- An explicit dereference denotes an object, except that a
14748 -- conditional expression gets turned into an explicit dereference
14749 -- in some cases, and conditional expressions are not object
14750 -- names.
14752 when N_Explicit_Dereference =>
14753 return not Nkind_In (Original_Node (N), N_Case_Expression,
14754 N_If_Expression);
14756 -- A view conversion of a tagged object is an object reference
14758 when N_Type_Conversion =>
14759 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
14760 and then Is_Tagged_Type (Etype (Expression (N)))
14761 and then Is_Object_Reference (Expression (N));
14763 -- An unchecked type conversion is considered to be an object if
14764 -- the operand is an object (this construction arises only as a
14765 -- result of expansion activities).
14767 when N_Unchecked_Type_Conversion =>
14768 return True;
14770 -- Allow string literals to act as objects as long as they appear
14771 -- in internally-generated renamings. The expansion of iterators
14772 -- may generate such renamings when the range involves a string
14773 -- literal.
14775 when N_String_Literal =>
14776 return Is_Internally_Generated_Renaming (Parent (N));
14778 -- AI05-0003: In Ada 2012 a qualified expression is a name.
14779 -- This allows disambiguation of function calls and the use
14780 -- of aggregates in more contexts.
14782 when N_Qualified_Expression =>
14783 if Ada_Version < Ada_2012 then
14784 return False;
14785 else
14786 return Is_Object_Reference (Expression (N))
14787 or else Nkind (Expression (N)) = N_Aggregate;
14788 end if;
14790 when others =>
14791 return False;
14792 end case;
14793 end if;
14794 end Is_Object_Reference;
14796 -----------------------------------
14797 -- Is_OK_Variable_For_Out_Formal --
14798 -----------------------------------
14800 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
14801 begin
14802 Note_Possible_Modification (AV, Sure => True);
14804 -- We must reject parenthesized variable names. Comes_From_Source is
14805 -- checked because there are currently cases where the compiler violates
14806 -- this rule (e.g. passing a task object to its controlled Initialize
14807 -- routine). This should be properly documented in sinfo???
14809 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
14810 return False;
14812 -- A variable is always allowed
14814 elsif Is_Variable (AV) then
14815 return True;
14817 -- Generalized indexing operations are rewritten as explicit
14818 -- dereferences, and it is only during resolution that we can
14819 -- check whether the context requires an access_to_variable type.
14821 elsif Nkind (AV) = N_Explicit_Dereference
14822 and then Ada_Version >= Ada_2012
14823 and then Nkind (Original_Node (AV)) = N_Indexed_Component
14824 and then Present (Etype (Original_Node (AV)))
14825 and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
14826 then
14827 return not Is_Access_Constant (Etype (Prefix (AV)));
14829 -- Unchecked conversions are allowed only if they come from the
14830 -- generated code, which sometimes uses unchecked conversions for out
14831 -- parameters in cases where code generation is unaffected. We tell
14832 -- source unchecked conversions by seeing if they are rewrites of
14833 -- an original Unchecked_Conversion function call, or of an explicit
14834 -- conversion of a function call or an aggregate (as may happen in the
14835 -- expansion of a packed array aggregate).
14837 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
14838 if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
14839 return False;
14841 elsif Comes_From_Source (AV)
14842 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
14843 then
14844 return False;
14846 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
14847 return Is_OK_Variable_For_Out_Formal (Expression (AV));
14849 else
14850 return True;
14851 end if;
14853 -- Normal type conversions are allowed if argument is a variable
14855 elsif Nkind (AV) = N_Type_Conversion then
14856 if Is_Variable (Expression (AV))
14857 and then Paren_Count (Expression (AV)) = 0
14858 then
14859 Note_Possible_Modification (Expression (AV), Sure => True);
14860 return True;
14862 -- We also allow a non-parenthesized expression that raises
14863 -- constraint error if it rewrites what used to be a variable
14865 elsif Raises_Constraint_Error (Expression (AV))
14866 and then Paren_Count (Expression (AV)) = 0
14867 and then Is_Variable (Original_Node (Expression (AV)))
14868 then
14869 return True;
14871 -- Type conversion of something other than a variable
14873 else
14874 return False;
14875 end if;
14877 -- If this node is rewritten, then test the original form, if that is
14878 -- OK, then we consider the rewritten node OK (for example, if the
14879 -- original node is a conversion, then Is_Variable will not be true
14880 -- but we still want to allow the conversion if it converts a variable).
14882 elsif Original_Node (AV) /= AV then
14884 -- In Ada 2012, the explicit dereference may be a rewritten call to a
14885 -- Reference function.
14887 if Ada_Version >= Ada_2012
14888 and then Nkind (Original_Node (AV)) = N_Function_Call
14889 and then
14890 Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
14891 then
14893 -- Check that this is not a constant reference.
14895 return not Is_Access_Constant (Etype (Prefix (AV)));
14897 elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
14898 return
14899 not Is_Access_Constant (Etype
14900 (Get_Reference_Discriminant (Etype (Original_Node (AV)))));
14902 else
14903 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
14904 end if;
14906 -- All other non-variables are rejected
14908 else
14909 return False;
14910 end if;
14911 end Is_OK_Variable_For_Out_Formal;
14913 ----------------------------
14914 -- Is_OK_Volatile_Context --
14915 ----------------------------
14917 function Is_OK_Volatile_Context
14918 (Context : Node_Id;
14919 Obj_Ref : Node_Id) return Boolean
14921 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
14922 -- Determine whether an arbitrary node denotes a call to a protected
14923 -- entry, function, or procedure in prefixed form where the prefix is
14924 -- Obj_Ref.
14926 function Within_Check (Nod : Node_Id) return Boolean;
14927 -- Determine whether an arbitrary node appears in a check node
14929 function Within_Volatile_Function (Id : Entity_Id) return Boolean;
14930 -- Determine whether an arbitrary entity appears in a volatile function
14932 ---------------------------------
14933 -- Is_Protected_Operation_Call --
14934 ---------------------------------
14936 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
14937 Pref : Node_Id;
14938 Subp : Node_Id;
14940 begin
14941 -- A call to a protected operations retains its selected component
14942 -- form as opposed to other prefixed calls that are transformed in
14943 -- expanded names.
14945 if Nkind (Nod) = N_Selected_Component then
14946 Pref := Prefix (Nod);
14947 Subp := Selector_Name (Nod);
14949 return
14950 Pref = Obj_Ref
14951 and then Present (Etype (Pref))
14952 and then Is_Protected_Type (Etype (Pref))
14953 and then Is_Entity_Name (Subp)
14954 and then Present (Entity (Subp))
14955 and then Ekind_In (Entity (Subp), E_Entry,
14956 E_Entry_Family,
14957 E_Function,
14958 E_Procedure);
14959 else
14960 return False;
14961 end if;
14962 end Is_Protected_Operation_Call;
14964 ------------------
14965 -- Within_Check --
14966 ------------------
14968 function Within_Check (Nod : Node_Id) return Boolean is
14969 Par : Node_Id;
14971 begin
14972 -- Climb the parent chain looking for a check node
14974 Par := Nod;
14975 while Present (Par) loop
14976 if Nkind (Par) in N_Raise_xxx_Error then
14977 return True;
14979 -- Prevent the search from going too far
14981 elsif Is_Body_Or_Package_Declaration (Par) then
14982 exit;
14983 end if;
14985 Par := Parent (Par);
14986 end loop;
14988 return False;
14989 end Within_Check;
14991 ------------------------------
14992 -- Within_Volatile_Function --
14993 ------------------------------
14995 function Within_Volatile_Function (Id : Entity_Id) return Boolean is
14996 Func_Id : Entity_Id;
14998 begin
14999 -- Traverse the scope stack looking for a [generic] function
15001 Func_Id := Id;
15002 while Present (Func_Id) and then Func_Id /= Standard_Standard loop
15003 if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
15004 return Is_Volatile_Function (Func_Id);
15005 end if;
15007 Func_Id := Scope (Func_Id);
15008 end loop;
15010 return False;
15011 end Within_Volatile_Function;
15013 -- Local variables
15015 Obj_Id : Entity_Id;
15017 -- Start of processing for Is_OK_Volatile_Context
15019 begin
15020 -- The volatile object appears on either side of an assignment
15022 if Nkind (Context) = N_Assignment_Statement then
15023 return True;
15025 -- The volatile object is part of the initialization expression of
15026 -- another object.
15028 elsif Nkind (Context) = N_Object_Declaration
15029 and then Present (Expression (Context))
15030 and then Expression (Context) = Obj_Ref
15031 then
15032 Obj_Id := Defining_Entity (Context);
15034 -- The volatile object acts as the initialization expression of an
15035 -- extended return statement. This is valid context as long as the
15036 -- function is volatile.
15038 if Is_Return_Object (Obj_Id) then
15039 return Within_Volatile_Function (Obj_Id);
15041 -- Otherwise this is a normal object initialization
15043 else
15044 return True;
15045 end if;
15047 -- The volatile object acts as the name of a renaming declaration
15049 elsif Nkind (Context) = N_Object_Renaming_Declaration
15050 and then Name (Context) = Obj_Ref
15051 then
15052 return True;
15054 -- The volatile object appears as an actual parameter in a call to an
15055 -- instance of Unchecked_Conversion whose result is renamed.
15057 elsif Nkind (Context) = N_Function_Call
15058 and then Is_Entity_Name (Name (Context))
15059 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
15060 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
15061 then
15062 return True;
15064 -- The volatile object is actually the prefix in a protected entry,
15065 -- function, or procedure call.
15067 elsif Is_Protected_Operation_Call (Context) then
15068 return True;
15070 -- The volatile object appears as the expression of a simple return
15071 -- statement that applies to a volatile function.
15073 elsif Nkind (Context) = N_Simple_Return_Statement
15074 and then Expression (Context) = Obj_Ref
15075 then
15076 return
15077 Within_Volatile_Function (Return_Statement_Entity (Context));
15079 -- The volatile object appears as the prefix of a name occurring in a
15080 -- non-interfering context.
15082 elsif Nkind_In (Context, N_Attribute_Reference,
15083 N_Explicit_Dereference,
15084 N_Indexed_Component,
15085 N_Selected_Component,
15086 N_Slice)
15087 and then Prefix (Context) = Obj_Ref
15088 and then Is_OK_Volatile_Context
15089 (Context => Parent (Context),
15090 Obj_Ref => Context)
15091 then
15092 return True;
15094 -- The volatile object appears as the prefix of attributes Address,
15095 -- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
15096 -- Storage_Size.
15098 elsif Nkind (Context) = N_Attribute_Reference
15099 and then Prefix (Context) = Obj_Ref
15100 and then Nam_In (Attribute_Name (Context), Name_Address,
15101 Name_Alignment,
15102 Name_Component_Size,
15103 Name_First_Bit,
15104 Name_Last_Bit,
15105 Name_Position,
15106 Name_Size,
15107 Name_Storage_Size)
15108 then
15109 return True;
15111 -- The volatile object appears as the expression of a type conversion
15112 -- occurring in a non-interfering context.
15114 elsif Nkind_In (Context, N_Type_Conversion,
15115 N_Unchecked_Type_Conversion)
15116 and then Expression (Context) = Obj_Ref
15117 and then Is_OK_Volatile_Context
15118 (Context => Parent (Context),
15119 Obj_Ref => Context)
15120 then
15121 return True;
15123 -- The volatile object appears as the expression in a delay statement
15125 elsif Nkind (Context) in N_Delay_Statement then
15126 return True;
15128 -- Allow references to volatile objects in various checks. This is not a
15129 -- direct SPARK 2014 requirement.
15131 elsif Within_Check (Context) then
15132 return True;
15134 -- Assume that references to effectively volatile objects that appear
15135 -- as actual parameters in a subprogram call are always legal. A full
15136 -- legality check is done when the actuals are resolved (see routine
15137 -- Resolve_Actuals).
15139 elsif Within_Subprogram_Call (Context) then
15140 return True;
15142 -- Otherwise the context is not suitable for an effectively volatile
15143 -- object.
15145 else
15146 return False;
15147 end if;
15148 end Is_OK_Volatile_Context;
15150 ------------------------------------
15151 -- Is_Package_Contract_Annotation --
15152 ------------------------------------
15154 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
15155 Nam : Name_Id;
15157 begin
15158 if Nkind (Item) = N_Aspect_Specification then
15159 Nam := Chars (Identifier (Item));
15161 else pragma Assert (Nkind (Item) = N_Pragma);
15162 Nam := Pragma_Name (Item);
15163 end if;
15165 return Nam = Name_Abstract_State
15166 or else Nam = Name_Initial_Condition
15167 or else Nam = Name_Initializes
15168 or else Nam = Name_Refined_State;
15169 end Is_Package_Contract_Annotation;
15171 -----------------------------------
15172 -- Is_Partially_Initialized_Type --
15173 -----------------------------------
15175 function Is_Partially_Initialized_Type
15176 (Typ : Entity_Id;
15177 Include_Implicit : Boolean := True) return Boolean
15179 begin
15180 if Is_Scalar_Type (Typ) then
15181 return False;
15183 elsif Is_Access_Type (Typ) then
15184 return Include_Implicit;
15186 elsif Is_Array_Type (Typ) then
15188 -- If component type is partially initialized, so is array type
15190 if Is_Partially_Initialized_Type
15191 (Component_Type (Typ), Include_Implicit)
15192 then
15193 return True;
15195 -- Otherwise we are only partially initialized if we are fully
15196 -- initialized (this is the empty array case, no point in us
15197 -- duplicating that code here).
15199 else
15200 return Is_Fully_Initialized_Type (Typ);
15201 end if;
15203 elsif Is_Record_Type (Typ) then
15205 -- A discriminated type is always partially initialized if in
15206 -- all mode
15208 if Has_Discriminants (Typ) and then Include_Implicit then
15209 return True;
15211 -- A tagged type is always partially initialized
15213 elsif Is_Tagged_Type (Typ) then
15214 return True;
15216 -- Case of non-discriminated record
15218 else
15219 declare
15220 Ent : Entity_Id;
15222 Component_Present : Boolean := False;
15223 -- Set True if at least one component is present. If no
15224 -- components are present, then record type is fully
15225 -- initialized (another odd case, like the null array).
15227 begin
15228 -- Loop through components
15230 Ent := First_Entity (Typ);
15231 while Present (Ent) loop
15232 if Ekind (Ent) = E_Component then
15233 Component_Present := True;
15235 -- If a component has an initialization expression then
15236 -- the enclosing record type is partially initialized
15238 if Present (Parent (Ent))
15239 and then Present (Expression (Parent (Ent)))
15240 then
15241 return True;
15243 -- If a component is of a type which is itself partially
15244 -- initialized, then the enclosing record type is also.
15246 elsif Is_Partially_Initialized_Type
15247 (Etype (Ent), Include_Implicit)
15248 then
15249 return True;
15250 end if;
15251 end if;
15253 Next_Entity (Ent);
15254 end loop;
15256 -- No initialized components found. If we found any components
15257 -- they were all uninitialized so the result is false.
15259 if Component_Present then
15260 return False;
15262 -- But if we found no components, then all the components are
15263 -- initialized so we consider the type to be initialized.
15265 else
15266 return True;
15267 end if;
15268 end;
15269 end if;
15271 -- Concurrent types are always fully initialized
15273 elsif Is_Concurrent_Type (Typ) then
15274 return True;
15276 -- For a private type, go to underlying type. If there is no underlying
15277 -- type then just assume this partially initialized. Not clear if this
15278 -- can happen in a non-error case, but no harm in testing for this.
15280 elsif Is_Private_Type (Typ) then
15281 declare
15282 U : constant Entity_Id := Underlying_Type (Typ);
15283 begin
15284 if No (U) then
15285 return True;
15286 else
15287 return Is_Partially_Initialized_Type (U, Include_Implicit);
15288 end if;
15289 end;
15291 -- For any other type (are there any?) assume partially initialized
15293 else
15294 return True;
15295 end if;
15296 end Is_Partially_Initialized_Type;
15298 ------------------------------------
15299 -- Is_Potentially_Persistent_Type --
15300 ------------------------------------
15302 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
15303 Comp : Entity_Id;
15304 Indx : Node_Id;
15306 begin
15307 -- For private type, test corresponding full type
15309 if Is_Private_Type (T) then
15310 return Is_Potentially_Persistent_Type (Full_View (T));
15312 -- Scalar types are potentially persistent
15314 elsif Is_Scalar_Type (T) then
15315 return True;
15317 -- Record type is potentially persistent if not tagged and the types of
15318 -- all it components are potentially persistent, and no component has
15319 -- an initialization expression.
15321 elsif Is_Record_Type (T)
15322 and then not Is_Tagged_Type (T)
15323 and then not Is_Partially_Initialized_Type (T)
15324 then
15325 Comp := First_Component (T);
15326 while Present (Comp) loop
15327 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
15328 return False;
15329 else
15330 Next_Entity (Comp);
15331 end if;
15332 end loop;
15334 return True;
15336 -- Array type is potentially persistent if its component type is
15337 -- potentially persistent and if all its constraints are static.
15339 elsif Is_Array_Type (T) then
15340 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
15341 return False;
15342 end if;
15344 Indx := First_Index (T);
15345 while Present (Indx) loop
15346 if not Is_OK_Static_Subtype (Etype (Indx)) then
15347 return False;
15348 else
15349 Next_Index (Indx);
15350 end if;
15351 end loop;
15353 return True;
15355 -- All other types are not potentially persistent
15357 else
15358 return False;
15359 end if;
15360 end Is_Potentially_Persistent_Type;
15362 --------------------------------
15363 -- Is_Potentially_Unevaluated --
15364 --------------------------------
15366 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
15367 Par : Node_Id;
15368 Expr : Node_Id;
15370 begin
15371 Expr := N;
15372 Par := Parent (N);
15374 -- A postcondition whose expression is a short-circuit is broken down
15375 -- into individual aspects for better exception reporting. The original
15376 -- short-circuit expression is rewritten as the second operand, and an
15377 -- occurrence of 'Old in that operand is potentially unevaluated.
15378 -- See Sem_ch13.adb for details of this transformation.
15380 if Nkind (Original_Node (Par)) = N_And_Then then
15381 return True;
15382 end if;
15384 while not Nkind_In (Par, N_If_Expression,
15385 N_Case_Expression,
15386 N_And_Then,
15387 N_Or_Else,
15388 N_In,
15389 N_Not_In,
15390 N_Quantified_Expression)
15391 loop
15392 Expr := Par;
15393 Par := Parent (Par);
15395 -- If the context is not an expression, or if is the result of
15396 -- expansion of an enclosing construct (such as another attribute)
15397 -- the predicate does not apply.
15399 if Nkind (Par) = N_Case_Expression_Alternative then
15400 null;
15402 elsif Nkind (Par) not in N_Subexpr
15403 or else not Comes_From_Source (Par)
15404 then
15405 return False;
15406 end if;
15407 end loop;
15409 if Nkind (Par) = N_If_Expression then
15410 return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
15412 elsif Nkind (Par) = N_Case_Expression then
15413 return Expr /= Expression (Par);
15415 elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
15416 return Expr = Right_Opnd (Par);
15418 elsif Nkind_In (Par, N_In, N_Not_In) then
15420 -- If the membership includes several alternatives, only the first is
15421 -- definitely evaluated.
15423 if Present (Alternatives (Par)) then
15424 return Expr /= First (Alternatives (Par));
15426 -- If this is a range membership both bounds are evaluated
15428 else
15429 return False;
15430 end if;
15432 elsif Nkind (Par) = N_Quantified_Expression then
15433 return Expr = Condition (Par);
15435 else
15436 return False;
15437 end if;
15438 end Is_Potentially_Unevaluated;
15440 --------------------------------
15441 -- Is_Preelaborable_Aggregate --
15442 --------------------------------
15444 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean is
15445 Aggr_Typ : constant Entity_Id := Etype (Aggr);
15446 Array_Aggr : constant Boolean := Is_Array_Type (Aggr_Typ);
15448 Anc_Part : Node_Id;
15449 Assoc : Node_Id;
15450 Choice : Node_Id;
15451 Comp_Typ : Entity_Id := Empty; -- init to avoid warning
15452 Expr : Node_Id;
15454 begin
15455 if Array_Aggr then
15456 Comp_Typ := Component_Type (Aggr_Typ);
15457 end if;
15459 -- Inspect the ancestor part
15461 if Nkind (Aggr) = N_Extension_Aggregate then
15462 Anc_Part := Ancestor_Part (Aggr);
15464 -- The ancestor denotes a subtype mark
15466 if Is_Entity_Name (Anc_Part)
15467 and then Is_Type (Entity (Anc_Part))
15468 then
15469 if not Has_Preelaborable_Initialization (Entity (Anc_Part)) then
15470 return False;
15471 end if;
15473 -- Otherwise the ancestor denotes an expression
15475 elsif not Is_Preelaborable_Construct (Anc_Part) then
15476 return False;
15477 end if;
15478 end if;
15480 -- Inspect the positional associations
15482 Expr := First (Expressions (Aggr));
15483 while Present (Expr) loop
15484 if not Is_Preelaborable_Construct (Expr) then
15485 return False;
15486 end if;
15488 Next (Expr);
15489 end loop;
15491 -- Inspect the named associations
15493 Assoc := First (Component_Associations (Aggr));
15494 while Present (Assoc) loop
15496 -- Inspect the choices of the current named association
15498 Choice := First (Choices (Assoc));
15499 while Present (Choice) loop
15500 if Array_Aggr then
15502 -- For a choice to be preelaborable, it must denote either a
15503 -- static range or a static expression.
15505 if Nkind (Choice) = N_Others_Choice then
15506 null;
15508 elsif Nkind (Choice) = N_Range then
15509 if not Is_OK_Static_Range (Choice) then
15510 return False;
15511 end if;
15513 elsif not Is_OK_Static_Expression (Choice) then
15514 return False;
15515 end if;
15517 else
15518 Comp_Typ := Etype (Choice);
15519 end if;
15521 Next (Choice);
15522 end loop;
15524 -- The type of the choice must have preelaborable initialization if
15525 -- the association carries a <>.
15527 pragma Assert (Present (Comp_Typ));
15528 if Box_Present (Assoc) then
15529 if not Has_Preelaborable_Initialization (Comp_Typ) then
15530 return False;
15531 end if;
15533 -- The type of the expression must have preelaborable initialization
15535 elsif not Is_Preelaborable_Construct (Expression (Assoc)) then
15536 return False;
15537 end if;
15539 Next (Assoc);
15540 end loop;
15542 -- At this point the aggregate is preelaborable
15544 return True;
15545 end Is_Preelaborable_Aggregate;
15547 --------------------------------
15548 -- Is_Preelaborable_Construct --
15549 --------------------------------
15551 function Is_Preelaborable_Construct (N : Node_Id) return Boolean is
15552 begin
15553 -- Aggregates
15555 if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
15556 return Is_Preelaborable_Aggregate (N);
15558 -- Attributes are allowed in general, even if their prefix is a formal
15559 -- type. It seems that certain attributes known not to be static might
15560 -- not be allowed, but there are no rules to prevent them.
15562 elsif Nkind (N) = N_Attribute_Reference then
15563 return True;
15565 -- Expressions
15567 elsif Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
15568 return True;
15570 elsif Nkind (N) = N_Qualified_Expression then
15571 return Is_Preelaborable_Construct (Expression (N));
15573 -- Names are preelaborable when they denote a discriminant of an
15574 -- enclosing type. Discriminals are also considered for this check.
15576 elsif Is_Entity_Name (N)
15577 and then Present (Entity (N))
15578 and then
15579 (Ekind (Entity (N)) = E_Discriminant
15580 or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
15581 and then Present (Discriminal_Link (Entity (N)))))
15582 then
15583 return True;
15585 -- Statements
15587 elsif Nkind (N) = N_Null then
15588 return True;
15590 -- Otherwise the construct is not preelaborable
15592 else
15593 return False;
15594 end if;
15595 end Is_Preelaborable_Construct;
15597 ---------------------------------
15598 -- Is_Protected_Self_Reference --
15599 ---------------------------------
15601 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
15603 function In_Access_Definition (N : Node_Id) return Boolean;
15604 -- Returns true if N belongs to an access definition
15606 --------------------------
15607 -- In_Access_Definition --
15608 --------------------------
15610 function In_Access_Definition (N : Node_Id) return Boolean is
15611 P : Node_Id;
15613 begin
15614 P := Parent (N);
15615 while Present (P) loop
15616 if Nkind (P) = N_Access_Definition then
15617 return True;
15618 end if;
15620 P := Parent (P);
15621 end loop;
15623 return False;
15624 end In_Access_Definition;
15626 -- Start of processing for Is_Protected_Self_Reference
15628 begin
15629 -- Verify that prefix is analyzed and has the proper form. Note that
15630 -- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
15631 -- produce the address of an entity, do not analyze their prefix
15632 -- because they denote entities that are not necessarily visible.
15633 -- Neither of them can apply to a protected type.
15635 return Ada_Version >= Ada_2005
15636 and then Is_Entity_Name (N)
15637 and then Present (Entity (N))
15638 and then Is_Protected_Type (Entity (N))
15639 and then In_Open_Scopes (Entity (N))
15640 and then not In_Access_Definition (N);
15641 end Is_Protected_Self_Reference;
15643 -----------------------------
15644 -- Is_RCI_Pkg_Spec_Or_Body --
15645 -----------------------------
15647 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
15649 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
15650 -- Return True if the unit of Cunit is an RCI package declaration
15652 ---------------------------
15653 -- Is_RCI_Pkg_Decl_Cunit --
15654 ---------------------------
15656 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
15657 The_Unit : constant Node_Id := Unit (Cunit);
15659 begin
15660 if Nkind (The_Unit) /= N_Package_Declaration then
15661 return False;
15662 end if;
15664 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
15665 end Is_RCI_Pkg_Decl_Cunit;
15667 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
15669 begin
15670 return Is_RCI_Pkg_Decl_Cunit (Cunit)
15671 or else
15672 (Nkind (Unit (Cunit)) = N_Package_Body
15673 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
15674 end Is_RCI_Pkg_Spec_Or_Body;
15676 -----------------------------------------
15677 -- Is_Remote_Access_To_Class_Wide_Type --
15678 -----------------------------------------
15680 function Is_Remote_Access_To_Class_Wide_Type
15681 (E : Entity_Id) return Boolean
15683 begin
15684 -- A remote access to class-wide type is a general access to object type
15685 -- declared in the visible part of a Remote_Types or Remote_Call_
15686 -- Interface unit.
15688 return Ekind (E) = E_General_Access_Type
15689 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
15690 end Is_Remote_Access_To_Class_Wide_Type;
15692 -----------------------------------------
15693 -- Is_Remote_Access_To_Subprogram_Type --
15694 -----------------------------------------
15696 function Is_Remote_Access_To_Subprogram_Type
15697 (E : Entity_Id) return Boolean
15699 begin
15700 return (Ekind (E) = E_Access_Subprogram_Type
15701 or else (Ekind (E) = E_Record_Type
15702 and then Present (Corresponding_Remote_Type (E))))
15703 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
15704 end Is_Remote_Access_To_Subprogram_Type;
15706 --------------------
15707 -- Is_Remote_Call --
15708 --------------------
15710 function Is_Remote_Call (N : Node_Id) return Boolean is
15711 begin
15712 if Nkind (N) not in N_Subprogram_Call then
15714 -- An entry call cannot be remote
15716 return False;
15718 elsif Nkind (Name (N)) in N_Has_Entity
15719 and then Is_Remote_Call_Interface (Entity (Name (N)))
15720 then
15721 -- A subprogram declared in the spec of a RCI package is remote
15723 return True;
15725 elsif Nkind (Name (N)) = N_Explicit_Dereference
15726 and then Is_Remote_Access_To_Subprogram_Type
15727 (Etype (Prefix (Name (N))))
15728 then
15729 -- The dereference of a RAS is a remote call
15731 return True;
15733 elsif Present (Controlling_Argument (N))
15734 and then Is_Remote_Access_To_Class_Wide_Type
15735 (Etype (Controlling_Argument (N)))
15736 then
15737 -- Any primitive operation call with a controlling argument of
15738 -- a RACW type is a remote call.
15740 return True;
15741 end if;
15743 -- All other calls are local calls
15745 return False;
15746 end Is_Remote_Call;
15748 ----------------------
15749 -- Is_Renamed_Entry --
15750 ----------------------
15752 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
15753 Orig_Node : Node_Id := Empty;
15754 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
15756 function Is_Entry (Nam : Node_Id) return Boolean;
15757 -- Determine whether Nam is an entry. Traverse selectors if there are
15758 -- nested selected components.
15760 --------------
15761 -- Is_Entry --
15762 --------------
15764 function Is_Entry (Nam : Node_Id) return Boolean is
15765 begin
15766 if Nkind (Nam) = N_Selected_Component then
15767 return Is_Entry (Selector_Name (Nam));
15768 end if;
15770 return Ekind (Entity (Nam)) = E_Entry;
15771 end Is_Entry;
15773 -- Start of processing for Is_Renamed_Entry
15775 begin
15776 if Present (Alias (Proc_Nam)) then
15777 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
15778 end if;
15780 -- Look for a rewritten subprogram renaming declaration
15782 if Nkind (Subp_Decl) = N_Subprogram_Declaration
15783 and then Present (Original_Node (Subp_Decl))
15784 then
15785 Orig_Node := Original_Node (Subp_Decl);
15786 end if;
15788 -- The rewritten subprogram is actually an entry
15790 if Present (Orig_Node)
15791 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
15792 and then Is_Entry (Name (Orig_Node))
15793 then
15794 return True;
15795 end if;
15797 return False;
15798 end Is_Renamed_Entry;
15800 -----------------------------
15801 -- Is_Renaming_Declaration --
15802 -----------------------------
15804 function Is_Renaming_Declaration (N : Node_Id) return Boolean is
15805 begin
15806 case Nkind (N) is
15807 when N_Exception_Renaming_Declaration
15808 | N_Generic_Function_Renaming_Declaration
15809 | N_Generic_Package_Renaming_Declaration
15810 | N_Generic_Procedure_Renaming_Declaration
15811 | N_Object_Renaming_Declaration
15812 | N_Package_Renaming_Declaration
15813 | N_Subprogram_Renaming_Declaration
15815 return True;
15817 when others =>
15818 return False;
15819 end case;
15820 end Is_Renaming_Declaration;
15822 ----------------------------
15823 -- Is_Reversible_Iterator --
15824 ----------------------------
15826 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
15827 Ifaces_List : Elist_Id;
15828 Iface_Elmt : Elmt_Id;
15829 Iface : Entity_Id;
15831 begin
15832 if Is_Class_Wide_Type (Typ)
15833 and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
15834 and then In_Predefined_Unit (Root_Type (Typ))
15835 then
15836 return True;
15838 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
15839 return False;
15841 else
15842 Collect_Interfaces (Typ, Ifaces_List);
15844 Iface_Elmt := First_Elmt (Ifaces_List);
15845 while Present (Iface_Elmt) loop
15846 Iface := Node (Iface_Elmt);
15847 if Chars (Iface) = Name_Reversible_Iterator
15848 and then In_Predefined_Unit (Iface)
15849 then
15850 return True;
15851 end if;
15853 Next_Elmt (Iface_Elmt);
15854 end loop;
15855 end if;
15857 return False;
15858 end Is_Reversible_Iterator;
15860 ----------------------
15861 -- Is_Selector_Name --
15862 ----------------------
15864 function Is_Selector_Name (N : Node_Id) return Boolean is
15865 begin
15866 if not Is_List_Member (N) then
15867 declare
15868 P : constant Node_Id := Parent (N);
15869 begin
15870 return Nkind_In (P, N_Expanded_Name,
15871 N_Generic_Association,
15872 N_Parameter_Association,
15873 N_Selected_Component)
15874 and then Selector_Name (P) = N;
15875 end;
15877 else
15878 declare
15879 L : constant List_Id := List_Containing (N);
15880 P : constant Node_Id := Parent (L);
15881 begin
15882 return (Nkind (P) = N_Discriminant_Association
15883 and then Selector_Names (P) = L)
15884 or else
15885 (Nkind (P) = N_Component_Association
15886 and then Choices (P) = L);
15887 end;
15888 end if;
15889 end Is_Selector_Name;
15891 ---------------------------------
15892 -- Is_Single_Concurrent_Object --
15893 ---------------------------------
15895 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
15896 begin
15897 return
15898 Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
15899 end Is_Single_Concurrent_Object;
15901 -------------------------------
15902 -- Is_Single_Concurrent_Type --
15903 -------------------------------
15905 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
15906 begin
15907 return
15908 Ekind_In (Id, E_Protected_Type, E_Task_Type)
15909 and then Is_Single_Concurrent_Type_Declaration
15910 (Declaration_Node (Id));
15911 end Is_Single_Concurrent_Type;
15913 -------------------------------------------
15914 -- Is_Single_Concurrent_Type_Declaration --
15915 -------------------------------------------
15917 function Is_Single_Concurrent_Type_Declaration
15918 (N : Node_Id) return Boolean
15920 begin
15921 return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
15922 N_Single_Task_Declaration);
15923 end Is_Single_Concurrent_Type_Declaration;
15925 ---------------------------------------------
15926 -- Is_Single_Precision_Floating_Point_Type --
15927 ---------------------------------------------
15929 function Is_Single_Precision_Floating_Point_Type
15930 (E : Entity_Id) return Boolean is
15931 begin
15932 return Is_Floating_Point_Type (E)
15933 and then Machine_Radix_Value (E) = Uint_2
15934 and then Machine_Mantissa_Value (E) = Uint_24
15935 and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
15936 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
15937 end Is_Single_Precision_Floating_Point_Type;
15939 --------------------------------
15940 -- Is_Single_Protected_Object --
15941 --------------------------------
15943 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
15944 begin
15945 return
15946 Ekind (Id) = E_Variable
15947 and then Ekind (Etype (Id)) = E_Protected_Type
15948 and then Is_Single_Concurrent_Type (Etype (Id));
15949 end Is_Single_Protected_Object;
15951 ---------------------------
15952 -- Is_Single_Task_Object --
15953 ---------------------------
15955 function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
15956 begin
15957 return
15958 Ekind (Id) = E_Variable
15959 and then Ekind (Etype (Id)) = E_Task_Type
15960 and then Is_Single_Concurrent_Type (Etype (Id));
15961 end Is_Single_Task_Object;
15963 -------------------------------------
15964 -- Is_SPARK_05_Initialization_Expr --
15965 -------------------------------------
15967 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
15968 Is_Ok : Boolean;
15969 Expr : Node_Id;
15970 Comp_Assn : Node_Id;
15971 Orig_N : constant Node_Id := Original_Node (N);
15973 begin
15974 Is_Ok := True;
15976 if not Comes_From_Source (Orig_N) then
15977 goto Done;
15978 end if;
15980 pragma Assert (Nkind (Orig_N) in N_Subexpr);
15982 case Nkind (Orig_N) is
15983 when N_Character_Literal
15984 | N_Integer_Literal
15985 | N_Real_Literal
15986 | N_String_Literal
15988 null;
15990 when N_Expanded_Name
15991 | N_Identifier
15993 if Is_Entity_Name (Orig_N)
15994 and then Present (Entity (Orig_N)) -- needed in some cases
15995 then
15996 case Ekind (Entity (Orig_N)) is
15997 when E_Constant
15998 | E_Enumeration_Literal
15999 | E_Named_Integer
16000 | E_Named_Real
16002 null;
16004 when others =>
16005 if Is_Type (Entity (Orig_N)) then
16006 null;
16007 else
16008 Is_Ok := False;
16009 end if;
16010 end case;
16011 end if;
16013 when N_Qualified_Expression
16014 | N_Type_Conversion
16016 Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
16018 when N_Unary_Op =>
16019 Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
16021 when N_Binary_Op
16022 | N_Membership_Test
16023 | N_Short_Circuit
16025 Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
16026 and then
16027 Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
16029 when N_Aggregate
16030 | N_Extension_Aggregate
16032 if Nkind (Orig_N) = N_Extension_Aggregate then
16033 Is_Ok :=
16034 Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
16035 end if;
16037 Expr := First (Expressions (Orig_N));
16038 while Present (Expr) loop
16039 if not Is_SPARK_05_Initialization_Expr (Expr) then
16040 Is_Ok := False;
16041 goto Done;
16042 end if;
16044 Next (Expr);
16045 end loop;
16047 Comp_Assn := First (Component_Associations (Orig_N));
16048 while Present (Comp_Assn) loop
16049 Expr := Expression (Comp_Assn);
16051 -- Note: test for Present here needed for box assocation
16053 if Present (Expr)
16054 and then not Is_SPARK_05_Initialization_Expr (Expr)
16055 then
16056 Is_Ok := False;
16057 goto Done;
16058 end if;
16060 Next (Comp_Assn);
16061 end loop;
16063 when N_Attribute_Reference =>
16064 if Nkind (Prefix (Orig_N)) in N_Subexpr then
16065 Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
16066 end if;
16068 Expr := First (Expressions (Orig_N));
16069 while Present (Expr) loop
16070 if not Is_SPARK_05_Initialization_Expr (Expr) then
16071 Is_Ok := False;
16072 goto Done;
16073 end if;
16075 Next (Expr);
16076 end loop;
16078 -- Selected components might be expanded named not yet resolved, so
16079 -- default on the safe side. (Eg on sparklex.ads)
16081 when N_Selected_Component =>
16082 null;
16084 when others =>
16085 Is_Ok := False;
16086 end case;
16088 <<Done>>
16089 return Is_Ok;
16090 end Is_SPARK_05_Initialization_Expr;
16092 ----------------------------------
16093 -- Is_SPARK_05_Object_Reference --
16094 ----------------------------------
16096 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
16097 begin
16098 if Is_Entity_Name (N) then
16099 return Present (Entity (N))
16100 and then
16101 (Ekind_In (Entity (N), E_Constant, E_Variable)
16102 or else Ekind (Entity (N)) in Formal_Kind);
16104 else
16105 case Nkind (N) is
16106 when N_Selected_Component =>
16107 return Is_SPARK_05_Object_Reference (Prefix (N));
16109 when others =>
16110 return False;
16111 end case;
16112 end if;
16113 end Is_SPARK_05_Object_Reference;
16115 -----------------------------
16116 -- Is_Specific_Tagged_Type --
16117 -----------------------------
16119 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
16120 Full_Typ : Entity_Id;
16122 begin
16123 -- Handle private types
16125 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
16126 Full_Typ := Full_View (Typ);
16127 else
16128 Full_Typ := Typ;
16129 end if;
16131 -- A specific tagged type is a non-class-wide tagged type
16133 return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
16134 end Is_Specific_Tagged_Type;
16136 ------------------
16137 -- Is_Statement --
16138 ------------------
16140 function Is_Statement (N : Node_Id) return Boolean is
16141 begin
16142 return
16143 Nkind (N) in N_Statement_Other_Than_Procedure_Call
16144 or else Nkind (N) = N_Procedure_Call_Statement;
16145 end Is_Statement;
16147 ---------------------------------------
16148 -- Is_Subprogram_Contract_Annotation --
16149 ---------------------------------------
16151 function Is_Subprogram_Contract_Annotation
16152 (Item : Node_Id) return Boolean
16154 Nam : Name_Id;
16156 begin
16157 if Nkind (Item) = N_Aspect_Specification then
16158 Nam := Chars (Identifier (Item));
16160 else pragma Assert (Nkind (Item) = N_Pragma);
16161 Nam := Pragma_Name (Item);
16162 end if;
16164 return Nam = Name_Contract_Cases
16165 or else Nam = Name_Depends
16166 or else Nam = Name_Extensions_Visible
16167 or else Nam = Name_Global
16168 or else Nam = Name_Post
16169 or else Nam = Name_Post_Class
16170 or else Nam = Name_Postcondition
16171 or else Nam = Name_Pre
16172 or else Nam = Name_Pre_Class
16173 or else Nam = Name_Precondition
16174 or else Nam = Name_Refined_Depends
16175 or else Nam = Name_Refined_Global
16176 or else Nam = Name_Refined_Post
16177 or else Nam = Name_Test_Case;
16178 end Is_Subprogram_Contract_Annotation;
16180 --------------------------------------------------
16181 -- Is_Subprogram_Stub_Without_Prior_Declaration --
16182 --------------------------------------------------
16184 function Is_Subprogram_Stub_Without_Prior_Declaration
16185 (N : Node_Id) return Boolean
16187 begin
16188 -- A subprogram stub without prior declaration serves as declaration for
16189 -- the actual subprogram body. As such, it has an attached defining
16190 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
16192 return Nkind (N) = N_Subprogram_Body_Stub
16193 and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
16194 end Is_Subprogram_Stub_Without_Prior_Declaration;
16196 --------------------------
16197 -- Is_Suspension_Object --
16198 --------------------------
16200 function Is_Suspension_Object (Id : Entity_Id) return Boolean is
16201 begin
16202 -- This approach does an exact name match rather than to rely on
16203 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
16204 -- front end at point where all auxiliary tables are locked and any
16205 -- modifications to them are treated as violations. Do not tamper with
16206 -- the tables, instead examine the Chars fields of all the scopes of Id.
16208 return
16209 Chars (Id) = Name_Suspension_Object
16210 and then Present (Scope (Id))
16211 and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
16212 and then Present (Scope (Scope (Id)))
16213 and then Chars (Scope (Scope (Id))) = Name_Ada
16214 and then Present (Scope (Scope (Scope (Id))))
16215 and then Scope (Scope (Scope (Id))) = Standard_Standard;
16216 end Is_Suspension_Object;
16218 ----------------------------
16219 -- Is_Synchronized_Object --
16220 ----------------------------
16222 function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
16223 Prag : Node_Id;
16225 begin
16226 if Is_Object (Id) then
16228 -- The object is synchronized if it is of a type that yields a
16229 -- synchronized object.
16231 if Yields_Synchronized_Object (Etype (Id)) then
16232 return True;
16234 -- The object is synchronized if it is atomic and Async_Writers is
16235 -- enabled.
16237 elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
16238 return True;
16240 -- A constant is a synchronized object by default
16242 elsif Ekind (Id) = E_Constant then
16243 return True;
16245 -- A variable is a synchronized object if it is subject to pragma
16246 -- Constant_After_Elaboration.
16248 elsif Ekind (Id) = E_Variable then
16249 Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
16251 return Present (Prag) and then Is_Enabled_Pragma (Prag);
16252 end if;
16253 end if;
16255 -- Otherwise the input is not an object or it does not qualify as a
16256 -- synchronized object.
16258 return False;
16259 end Is_Synchronized_Object;
16261 ---------------------------------
16262 -- Is_Synchronized_Tagged_Type --
16263 ---------------------------------
16265 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
16266 Kind : constant Entity_Kind := Ekind (Base_Type (E));
16268 begin
16269 -- A task or protected type derived from an interface is a tagged type.
16270 -- Such a tagged type is called a synchronized tagged type, as are
16271 -- synchronized interfaces and private extensions whose declaration
16272 -- includes the reserved word synchronized.
16274 return (Is_Tagged_Type (E)
16275 and then (Kind = E_Task_Type
16276 or else
16277 Kind = E_Protected_Type))
16278 or else
16279 (Is_Interface (E)
16280 and then Is_Synchronized_Interface (E))
16281 or else
16282 (Ekind (E) = E_Record_Type_With_Private
16283 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
16284 and then (Synchronized_Present (Parent (E))
16285 or else Is_Synchronized_Interface (Etype (E))));
16286 end Is_Synchronized_Tagged_Type;
16288 -----------------
16289 -- Is_Transfer --
16290 -----------------
16292 function Is_Transfer (N : Node_Id) return Boolean is
16293 Kind : constant Node_Kind := Nkind (N);
16295 begin
16296 if Kind = N_Simple_Return_Statement
16297 or else
16298 Kind = N_Extended_Return_Statement
16299 or else
16300 Kind = N_Goto_Statement
16301 or else
16302 Kind = N_Raise_Statement
16303 or else
16304 Kind = N_Requeue_Statement
16305 then
16306 return True;
16308 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
16309 and then No (Condition (N))
16310 then
16311 return True;
16313 elsif Kind = N_Procedure_Call_Statement
16314 and then Is_Entity_Name (Name (N))
16315 and then Present (Entity (Name (N)))
16316 and then No_Return (Entity (Name (N)))
16317 then
16318 return True;
16320 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
16321 return True;
16323 else
16324 return False;
16325 end if;
16326 end Is_Transfer;
16328 -------------
16329 -- Is_True --
16330 -------------
16332 function Is_True (U : Uint) return Boolean is
16333 begin
16334 return (U /= 0);
16335 end Is_True;
16337 --------------------------------------
16338 -- Is_Unchecked_Conversion_Instance --
16339 --------------------------------------
16341 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
16342 Par : Node_Id;
16344 begin
16345 -- Look for a function whose generic parent is the predefined intrinsic
16346 -- function Unchecked_Conversion, or for one that renames such an
16347 -- instance.
16349 if Ekind (Id) = E_Function then
16350 Par := Parent (Id);
16352 if Nkind (Par) = N_Function_Specification then
16353 Par := Generic_Parent (Par);
16355 if Present (Par) then
16356 return
16357 Chars (Par) = Name_Unchecked_Conversion
16358 and then Is_Intrinsic_Subprogram (Par)
16359 and then In_Predefined_Unit (Par);
16360 else
16361 return
16362 Present (Alias (Id))
16363 and then Is_Unchecked_Conversion_Instance (Alias (Id));
16364 end if;
16365 end if;
16366 end if;
16368 return False;
16369 end Is_Unchecked_Conversion_Instance;
16371 -------------------------------
16372 -- Is_Universal_Numeric_Type --
16373 -------------------------------
16375 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
16376 begin
16377 return T = Universal_Integer or else T = Universal_Real;
16378 end Is_Universal_Numeric_Type;
16380 ------------------------------
16381 -- Is_User_Defined_Equality --
16382 ------------------------------
16384 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
16385 begin
16386 return Ekind (Id) = E_Function
16387 and then Chars (Id) = Name_Op_Eq
16388 and then Comes_From_Source (Id)
16390 -- Internally generated equalities have a full type declaration
16391 -- as their parent.
16393 and then Nkind (Parent (Id)) = N_Function_Specification;
16394 end Is_User_Defined_Equality;
16396 --------------------------------------
16397 -- Is_Validation_Variable_Reference --
16398 --------------------------------------
16400 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean is
16401 Var : constant Node_Id := Unqual_Conv (N);
16402 Var_Id : Entity_Id;
16404 begin
16405 Var_Id := Empty;
16407 if Is_Entity_Name (Var) then
16408 Var_Id := Entity (Var);
16409 end if;
16411 return
16412 Present (Var_Id)
16413 and then Ekind (Var_Id) = E_Variable
16414 and then Present (Validated_Object (Var_Id));
16415 end Is_Validation_Variable_Reference;
16417 ----------------------------
16418 -- Is_Variable_Size_Array --
16419 ----------------------------
16421 function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
16422 Idx : Node_Id;
16424 begin
16425 pragma Assert (Is_Array_Type (E));
16427 -- Check if some index is initialized with a non-constant value
16429 Idx := First_Index (E);
16430 while Present (Idx) loop
16431 if Nkind (Idx) = N_Range then
16432 if not Is_Constant_Bound (Low_Bound (Idx))
16433 or else not Is_Constant_Bound (High_Bound (Idx))
16434 then
16435 return True;
16436 end if;
16437 end if;
16439 Idx := Next_Index (Idx);
16440 end loop;
16442 return False;
16443 end Is_Variable_Size_Array;
16445 -----------------------------
16446 -- Is_Variable_Size_Record --
16447 -----------------------------
16449 function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
16450 Comp : Entity_Id;
16451 Comp_Typ : Entity_Id;
16453 begin
16454 pragma Assert (Is_Record_Type (E));
16456 Comp := First_Entity (E);
16457 while Present (Comp) loop
16458 Comp_Typ := Etype (Comp);
16460 -- Recursive call if the record type has discriminants
16462 if Is_Record_Type (Comp_Typ)
16463 and then Has_Discriminants (Comp_Typ)
16464 and then Is_Variable_Size_Record (Comp_Typ)
16465 then
16466 return True;
16468 elsif Is_Array_Type (Comp_Typ)
16469 and then Is_Variable_Size_Array (Comp_Typ)
16470 then
16471 return True;
16472 end if;
16474 Next_Entity (Comp);
16475 end loop;
16477 return False;
16478 end Is_Variable_Size_Record;
16480 -----------------
16481 -- Is_Variable --
16482 -----------------
16484 function Is_Variable
16485 (N : Node_Id;
16486 Use_Original_Node : Boolean := True) return Boolean
16488 Orig_Node : Node_Id;
16490 function In_Protected_Function (E : Entity_Id) return Boolean;
16491 -- Within a protected function, the private components of the enclosing
16492 -- protected type are constants. A function nested within a (protected)
16493 -- procedure is not itself protected. Within the body of a protected
16494 -- function the current instance of the protected type is a constant.
16496 function Is_Variable_Prefix (P : Node_Id) return Boolean;
16497 -- Prefixes can involve implicit dereferences, in which case we must
16498 -- test for the case of a reference of a constant access type, which can
16499 -- can never be a variable.
16501 ---------------------------
16502 -- In_Protected_Function --
16503 ---------------------------
16505 function In_Protected_Function (E : Entity_Id) return Boolean is
16506 Prot : Entity_Id;
16507 S : Entity_Id;
16509 begin
16510 -- E is the current instance of a type
16512 if Is_Type (E) then
16513 Prot := E;
16515 -- E is an object
16517 else
16518 Prot := Scope (E);
16519 end if;
16521 if not Is_Protected_Type (Prot) then
16522 return False;
16524 else
16525 S := Current_Scope;
16526 while Present (S) and then S /= Prot loop
16527 if Ekind (S) = E_Function and then Scope (S) = Prot then
16528 return True;
16529 end if;
16531 S := Scope (S);
16532 end loop;
16534 return False;
16535 end if;
16536 end In_Protected_Function;
16538 ------------------------
16539 -- Is_Variable_Prefix --
16540 ------------------------
16542 function Is_Variable_Prefix (P : Node_Id) return Boolean is
16543 begin
16544 if Is_Access_Type (Etype (P)) then
16545 return not Is_Access_Constant (Root_Type (Etype (P)));
16547 -- For the case of an indexed component whose prefix has a packed
16548 -- array type, the prefix has been rewritten into a type conversion.
16549 -- Determine variable-ness from the converted expression.
16551 elsif Nkind (P) = N_Type_Conversion
16552 and then not Comes_From_Source (P)
16553 and then Is_Array_Type (Etype (P))
16554 and then Is_Packed (Etype (P))
16555 then
16556 return Is_Variable (Expression (P));
16558 else
16559 return Is_Variable (P);
16560 end if;
16561 end Is_Variable_Prefix;
16563 -- Start of processing for Is_Variable
16565 begin
16566 -- Special check, allow x'Deref(expr) as a variable
16568 if Nkind (N) = N_Attribute_Reference
16569 and then Attribute_Name (N) = Name_Deref
16570 then
16571 return True;
16572 end if;
16574 -- Check if we perform the test on the original node since this may be a
16575 -- test of syntactic categories which must not be disturbed by whatever
16576 -- rewriting might have occurred. For example, an aggregate, which is
16577 -- certainly NOT a variable, could be turned into a variable by
16578 -- expansion.
16580 if Use_Original_Node then
16581 Orig_Node := Original_Node (N);
16582 else
16583 Orig_Node := N;
16584 end if;
16586 -- Definitely OK if Assignment_OK is set. Since this is something that
16587 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
16589 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
16590 return True;
16592 -- Normally we go to the original node, but there is one exception where
16593 -- we use the rewritten node, namely when it is an explicit dereference.
16594 -- The generated code may rewrite a prefix which is an access type with
16595 -- an explicit dereference. The dereference is a variable, even though
16596 -- the original node may not be (since it could be a constant of the
16597 -- access type).
16599 -- In Ada 2005 we have a further case to consider: the prefix may be a
16600 -- function call given in prefix notation. The original node appears to
16601 -- be a selected component, but we need to examine the call.
16603 elsif Nkind (N) = N_Explicit_Dereference
16604 and then Nkind (Orig_Node) /= N_Explicit_Dereference
16605 and then Present (Etype (Orig_Node))
16606 and then Is_Access_Type (Etype (Orig_Node))
16607 then
16608 -- Note that if the prefix is an explicit dereference that does not
16609 -- come from source, we must check for a rewritten function call in
16610 -- prefixed notation before other forms of rewriting, to prevent a
16611 -- compiler crash.
16613 return
16614 (Nkind (Orig_Node) = N_Function_Call
16615 and then not Is_Access_Constant (Etype (Prefix (N))))
16616 or else
16617 Is_Variable_Prefix (Original_Node (Prefix (N)));
16619 -- in Ada 2012, the dereference may have been added for a type with
16620 -- a declared implicit dereference aspect. Check that it is not an
16621 -- access to constant.
16623 elsif Nkind (N) = N_Explicit_Dereference
16624 and then Present (Etype (Orig_Node))
16625 and then Ada_Version >= Ada_2012
16626 and then Has_Implicit_Dereference (Etype (Orig_Node))
16627 then
16628 return not Is_Access_Constant (Etype (Prefix (N)));
16630 -- A function call is never a variable
16632 elsif Nkind (N) = N_Function_Call then
16633 return False;
16635 -- All remaining checks use the original node
16637 elsif Is_Entity_Name (Orig_Node)
16638 and then Present (Entity (Orig_Node))
16639 then
16640 declare
16641 E : constant Entity_Id := Entity (Orig_Node);
16642 K : constant Entity_Kind := Ekind (E);
16644 begin
16645 return (K = E_Variable
16646 and then Nkind (Parent (E)) /= N_Exception_Handler)
16647 or else (K = E_Component
16648 and then not In_Protected_Function (E))
16649 or else K = E_Out_Parameter
16650 or else K = E_In_Out_Parameter
16651 or else K = E_Generic_In_Out_Parameter
16653 -- Current instance of type. If this is a protected type, check
16654 -- we are not within the body of one of its protected functions.
16656 or else (Is_Type (E)
16657 and then In_Open_Scopes (E)
16658 and then not In_Protected_Function (E))
16660 or else (Is_Incomplete_Or_Private_Type (E)
16661 and then In_Open_Scopes (Full_View (E)));
16662 end;
16664 else
16665 case Nkind (Orig_Node) is
16666 when N_Indexed_Component
16667 | N_Slice
16669 return Is_Variable_Prefix (Prefix (Orig_Node));
16671 when N_Selected_Component =>
16672 return (Is_Variable (Selector_Name (Orig_Node))
16673 and then Is_Variable_Prefix (Prefix (Orig_Node)))
16674 or else
16675 (Nkind (N) = N_Expanded_Name
16676 and then Scope (Entity (N)) = Entity (Prefix (N)));
16678 -- For an explicit dereference, the type of the prefix cannot
16679 -- be an access to constant or an access to subprogram.
16681 when N_Explicit_Dereference =>
16682 declare
16683 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
16684 begin
16685 return Is_Access_Type (Typ)
16686 and then not Is_Access_Constant (Root_Type (Typ))
16687 and then Ekind (Typ) /= E_Access_Subprogram_Type;
16688 end;
16690 -- The type conversion is the case where we do not deal with the
16691 -- context dependent special case of an actual parameter. Thus
16692 -- the type conversion is only considered a variable for the
16693 -- purposes of this routine if the target type is tagged. However,
16694 -- a type conversion is considered to be a variable if it does not
16695 -- come from source (this deals for example with the conversions
16696 -- of expressions to their actual subtypes).
16698 when N_Type_Conversion =>
16699 return Is_Variable (Expression (Orig_Node))
16700 and then
16701 (not Comes_From_Source (Orig_Node)
16702 or else
16703 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
16704 and then
16705 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
16707 -- GNAT allows an unchecked type conversion as a variable. This
16708 -- only affects the generation of internal expanded code, since
16709 -- calls to instantiations of Unchecked_Conversion are never
16710 -- considered variables (since they are function calls).
16712 when N_Unchecked_Type_Conversion =>
16713 return Is_Variable (Expression (Orig_Node));
16715 when others =>
16716 return False;
16717 end case;
16718 end if;
16719 end Is_Variable;
16721 ------------------------------
16722 -- Is_Verifiable_DIC_Pragma --
16723 ------------------------------
16725 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
16726 Args : constant List_Id := Pragma_Argument_Associations (Prag);
16728 begin
16729 -- To qualify as verifiable, a DIC pragma must have a non-null argument
16731 return
16732 Present (Args)
16733 and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
16734 end Is_Verifiable_DIC_Pragma;
16736 ---------------------------
16737 -- Is_Visibly_Controlled --
16738 ---------------------------
16740 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
16741 Root : constant Entity_Id := Root_Type (T);
16742 begin
16743 return Chars (Scope (Root)) = Name_Finalization
16744 and then Chars (Scope (Scope (Root))) = Name_Ada
16745 and then Scope (Scope (Scope (Root))) = Standard_Standard;
16746 end Is_Visibly_Controlled;
16748 --------------------------
16749 -- Is_Volatile_Function --
16750 --------------------------
16752 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
16753 begin
16754 pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
16756 -- A function declared within a protected type is volatile
16758 if Is_Protected_Type (Scope (Func_Id)) then
16759 return True;
16761 -- An instance of Ada.Unchecked_Conversion is a volatile function if
16762 -- either the source or the target are effectively volatile.
16764 elsif Is_Unchecked_Conversion_Instance (Func_Id)
16765 and then Has_Effectively_Volatile_Profile (Func_Id)
16766 then
16767 return True;
16769 -- Otherwise the function is treated as volatile if it is subject to
16770 -- enabled pragma Volatile_Function.
16772 else
16773 return
16774 Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
16775 end if;
16776 end Is_Volatile_Function;
16778 ------------------------
16779 -- Is_Volatile_Object --
16780 ------------------------
16782 function Is_Volatile_Object (N : Node_Id) return Boolean is
16783 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
16784 -- If prefix is an implicit dereference, examine designated type
16786 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
16787 -- Determines if given object has volatile components
16789 ------------------------
16790 -- Is_Volatile_Prefix --
16791 ------------------------
16793 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
16794 Typ : constant Entity_Id := Etype (N);
16796 begin
16797 if Is_Access_Type (Typ) then
16798 declare
16799 Dtyp : constant Entity_Id := Designated_Type (Typ);
16801 begin
16802 return Is_Volatile (Dtyp)
16803 or else Has_Volatile_Components (Dtyp);
16804 end;
16806 else
16807 return Object_Has_Volatile_Components (N);
16808 end if;
16809 end Is_Volatile_Prefix;
16811 ------------------------------------
16812 -- Object_Has_Volatile_Components --
16813 ------------------------------------
16815 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
16816 Typ : constant Entity_Id := Etype (N);
16818 begin
16819 if Is_Volatile (Typ)
16820 or else Has_Volatile_Components (Typ)
16821 then
16822 return True;
16824 elsif Is_Entity_Name (N)
16825 and then (Has_Volatile_Components (Entity (N))
16826 or else Is_Volatile (Entity (N)))
16827 then
16828 return True;
16830 elsif Nkind (N) = N_Indexed_Component
16831 or else Nkind (N) = N_Selected_Component
16832 then
16833 return Is_Volatile_Prefix (Prefix (N));
16835 else
16836 return False;
16837 end if;
16838 end Object_Has_Volatile_Components;
16840 -- Start of processing for Is_Volatile_Object
16842 begin
16843 if Nkind (N) = N_Defining_Identifier then
16844 return Is_Volatile (N) or else Is_Volatile (Etype (N));
16846 elsif Nkind (N) = N_Expanded_Name then
16847 return Is_Volatile_Object (Entity (N));
16849 elsif Is_Volatile (Etype (N))
16850 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
16851 then
16852 return True;
16854 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
16855 and then Is_Volatile_Prefix (Prefix (N))
16856 then
16857 return True;
16859 elsif Nkind (N) = N_Selected_Component
16860 and then Is_Volatile (Entity (Selector_Name (N)))
16861 then
16862 return True;
16864 else
16865 return False;
16866 end if;
16867 end Is_Volatile_Object;
16869 -----------------------------
16870 -- Iterate_Call_Parameters --
16871 -----------------------------
16873 procedure Iterate_Call_Parameters (Call : Node_Id) is
16874 Formal : Entity_Id := First_Formal (Get_Called_Entity (Call));
16875 Actual : Node_Id := First_Actual (Call);
16877 begin
16878 while Present (Formal) and then Present (Actual) loop
16879 Handle_Parameter (Formal, Actual);
16880 Formal := Next_Formal (Formal);
16881 Actual := Next_Actual (Actual);
16882 end loop;
16883 end Iterate_Call_Parameters;
16885 ---------------------------
16886 -- Itype_Has_Declaration --
16887 ---------------------------
16889 function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
16890 begin
16891 pragma Assert (Is_Itype (Id));
16892 return Present (Parent (Id))
16893 and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
16894 N_Subtype_Declaration)
16895 and then Defining_Entity (Parent (Id)) = Id;
16896 end Itype_Has_Declaration;
16898 -------------------------
16899 -- Kill_Current_Values --
16900 -------------------------
16902 procedure Kill_Current_Values
16903 (Ent : Entity_Id;
16904 Last_Assignment_Only : Boolean := False)
16906 begin
16907 if Is_Assignable (Ent) then
16908 Set_Last_Assignment (Ent, Empty);
16909 end if;
16911 if Is_Object (Ent) then
16912 if not Last_Assignment_Only then
16913 Kill_Checks (Ent);
16914 Set_Current_Value (Ent, Empty);
16916 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
16917 -- for a constant. Once the constant is elaborated, its value is
16918 -- not changed, therefore the associated flags that describe the
16919 -- value should not be modified either.
16921 if Ekind (Ent) = E_Constant then
16922 null;
16924 -- Non-constant entities
16926 else
16927 if not Can_Never_Be_Null (Ent) then
16928 Set_Is_Known_Non_Null (Ent, False);
16929 end if;
16931 Set_Is_Known_Null (Ent, False);
16933 -- Reset the Is_Known_Valid flag unless the type is always
16934 -- valid. This does not apply to a loop parameter because its
16935 -- bounds are defined by the loop header and therefore always
16936 -- valid.
16938 if not Is_Known_Valid (Etype (Ent))
16939 and then Ekind (Ent) /= E_Loop_Parameter
16940 then
16941 Set_Is_Known_Valid (Ent, False);
16942 end if;
16943 end if;
16944 end if;
16945 end if;
16946 end Kill_Current_Values;
16948 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
16949 S : Entity_Id;
16951 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
16952 -- Clear current value for entity E and all entities chained to E
16954 ------------------------------------------
16955 -- Kill_Current_Values_For_Entity_Chain --
16956 ------------------------------------------
16958 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
16959 Ent : Entity_Id;
16960 begin
16961 Ent := E;
16962 while Present (Ent) loop
16963 Kill_Current_Values (Ent, Last_Assignment_Only);
16964 Next_Entity (Ent);
16965 end loop;
16966 end Kill_Current_Values_For_Entity_Chain;
16968 -- Start of processing for Kill_Current_Values
16970 begin
16971 -- Kill all saved checks, a special case of killing saved values
16973 if not Last_Assignment_Only then
16974 Kill_All_Checks;
16975 end if;
16977 -- Loop through relevant scopes, which includes the current scope and
16978 -- any parent scopes if the current scope is a block or a package.
16980 S := Current_Scope;
16981 Scope_Loop : loop
16983 -- Clear current values of all entities in current scope
16985 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
16987 -- If scope is a package, also clear current values of all private
16988 -- entities in the scope.
16990 if Is_Package_Or_Generic_Package (S)
16991 or else Is_Concurrent_Type (S)
16992 then
16993 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
16994 end if;
16996 -- If this is a not a subprogram, deal with parents
16998 if not Is_Subprogram (S) then
16999 S := Scope (S);
17000 exit Scope_Loop when S = Standard_Standard;
17001 else
17002 exit Scope_Loop;
17003 end if;
17004 end loop Scope_Loop;
17005 end Kill_Current_Values;
17007 --------------------------
17008 -- Kill_Size_Check_Code --
17009 --------------------------
17011 procedure Kill_Size_Check_Code (E : Entity_Id) is
17012 begin
17013 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
17014 and then Present (Size_Check_Code (E))
17015 then
17016 Remove (Size_Check_Code (E));
17017 Set_Size_Check_Code (E, Empty);
17018 end if;
17019 end Kill_Size_Check_Code;
17021 --------------------
17022 -- Known_Non_Null --
17023 --------------------
17025 function Known_Non_Null (N : Node_Id) return Boolean is
17026 Status : constant Null_Status_Kind := Null_Status (N);
17028 Id : Entity_Id;
17029 Op : Node_Kind;
17030 Val : Node_Id;
17032 begin
17033 -- The expression yields a non-null value ignoring simple flow analysis
17035 if Status = Is_Non_Null then
17036 return True;
17038 -- Otherwise check whether N is a reference to an entity that appears
17039 -- within a conditional construct.
17041 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
17043 -- First check if we are in decisive conditional
17045 Get_Current_Value_Condition (N, Op, Val);
17047 if Known_Null (Val) then
17048 if Op = N_Op_Eq then
17049 return False;
17050 elsif Op = N_Op_Ne then
17051 return True;
17052 end if;
17053 end if;
17055 -- If OK to do replacement, test Is_Known_Non_Null flag
17057 Id := Entity (N);
17059 if OK_To_Do_Constant_Replacement (Id) then
17060 return Is_Known_Non_Null (Id);
17061 end if;
17062 end if;
17064 -- Otherwise it is not possible to determine whether N yields a non-null
17065 -- value.
17067 return False;
17068 end Known_Non_Null;
17070 ----------------
17071 -- Known_Null --
17072 ----------------
17074 function Known_Null (N : Node_Id) return Boolean is
17075 Status : constant Null_Status_Kind := Null_Status (N);
17077 Id : Entity_Id;
17078 Op : Node_Kind;
17079 Val : Node_Id;
17081 begin
17082 -- The expression yields a null value ignoring simple flow analysis
17084 if Status = Is_Null then
17085 return True;
17087 -- Otherwise check whether N is a reference to an entity that appears
17088 -- within a conditional construct.
17090 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
17092 -- First check if we are in decisive conditional
17094 Get_Current_Value_Condition (N, Op, Val);
17096 if Known_Null (Val) then
17097 if Op = N_Op_Eq then
17098 return True;
17099 elsif Op = N_Op_Ne then
17100 return False;
17101 end if;
17102 end if;
17104 -- If OK to do replacement, test Is_Known_Null flag
17106 Id := Entity (N);
17108 if OK_To_Do_Constant_Replacement (Id) then
17109 return Is_Known_Null (Id);
17110 end if;
17111 end if;
17113 -- Otherwise it is not possible to determine whether N yields a null
17114 -- value.
17116 return False;
17117 end Known_Null;
17119 --------------------------
17120 -- Known_To_Be_Assigned --
17121 --------------------------
17123 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
17124 P : constant Node_Id := Parent (N);
17126 begin
17127 case Nkind (P) is
17129 -- Test left side of assignment
17131 when N_Assignment_Statement =>
17132 return N = Name (P);
17134 -- Function call arguments are never lvalues
17136 when N_Function_Call =>
17137 return False;
17139 -- Positional parameter for procedure or accept call
17141 when N_Accept_Statement
17142 | N_Procedure_Call_Statement
17144 declare
17145 Proc : Entity_Id;
17146 Form : Entity_Id;
17147 Act : Node_Id;
17149 begin
17150 Proc := Get_Subprogram_Entity (P);
17152 if No (Proc) then
17153 return False;
17154 end if;
17156 -- If we are not a list member, something is strange, so
17157 -- be conservative and return False.
17159 if not Is_List_Member (N) then
17160 return False;
17161 end if;
17163 -- We are going to find the right formal by stepping forward
17164 -- through the formals, as we step backwards in the actuals.
17166 Form := First_Formal (Proc);
17167 Act := N;
17168 loop
17169 -- If no formal, something is weird, so be conservative
17170 -- and return False.
17172 if No (Form) then
17173 return False;
17174 end if;
17176 Prev (Act);
17177 exit when No (Act);
17178 Next_Formal (Form);
17179 end loop;
17181 return Ekind (Form) /= E_In_Parameter;
17182 end;
17184 -- Named parameter for procedure or accept call
17186 when N_Parameter_Association =>
17187 declare
17188 Proc : Entity_Id;
17189 Form : Entity_Id;
17191 begin
17192 Proc := Get_Subprogram_Entity (Parent (P));
17194 if No (Proc) then
17195 return False;
17196 end if;
17198 -- Loop through formals to find the one that matches
17200 Form := First_Formal (Proc);
17201 loop
17202 -- If no matching formal, that's peculiar, some kind of
17203 -- previous error, so return False to be conservative.
17204 -- Actually this also happens in legal code in the case
17205 -- where P is a parameter association for an Extra_Formal???
17207 if No (Form) then
17208 return False;
17209 end if;
17211 -- Else test for match
17213 if Chars (Form) = Chars (Selector_Name (P)) then
17214 return Ekind (Form) /= E_In_Parameter;
17215 end if;
17217 Next_Formal (Form);
17218 end loop;
17219 end;
17221 -- Test for appearing in a conversion that itself appears
17222 -- in an lvalue context, since this should be an lvalue.
17224 when N_Type_Conversion =>
17225 return Known_To_Be_Assigned (P);
17227 -- All other references are definitely not known to be modifications
17229 when others =>
17230 return False;
17231 end case;
17232 end Known_To_Be_Assigned;
17234 ---------------------------
17235 -- Last_Source_Statement --
17236 ---------------------------
17238 function Last_Source_Statement (HSS : Node_Id) return Node_Id is
17239 N : Node_Id;
17241 begin
17242 N := Last (Statements (HSS));
17243 while Present (N) loop
17244 exit when Comes_From_Source (N);
17245 Prev (N);
17246 end loop;
17248 return N;
17249 end Last_Source_Statement;
17251 -----------------------
17252 -- Mark_Coextensions --
17253 -----------------------
17255 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
17256 Is_Dynamic : Boolean;
17257 -- Indicates whether the context causes nested coextensions to be
17258 -- dynamic or static
17260 function Mark_Allocator (N : Node_Id) return Traverse_Result;
17261 -- Recognize an allocator node and label it as a dynamic coextension
17263 --------------------
17264 -- Mark_Allocator --
17265 --------------------
17267 function Mark_Allocator (N : Node_Id) return Traverse_Result is
17268 begin
17269 if Nkind (N) = N_Allocator then
17270 if Is_Dynamic then
17271 Set_Is_Dynamic_Coextension (N);
17273 -- If the allocator expression is potentially dynamic, it may
17274 -- be expanded out of order and require dynamic allocation
17275 -- anyway, so we treat the coextension itself as dynamic.
17276 -- Potential optimization ???
17278 elsif Nkind (Expression (N)) = N_Qualified_Expression
17279 and then Nkind (Expression (Expression (N))) = N_Op_Concat
17280 then
17281 Set_Is_Dynamic_Coextension (N);
17282 else
17283 Set_Is_Static_Coextension (N);
17284 end if;
17285 end if;
17287 return OK;
17288 end Mark_Allocator;
17290 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
17292 -- Start of processing for Mark_Coextensions
17294 begin
17295 -- An allocator that appears on the right-hand side of an assignment is
17296 -- treated as a potentially dynamic coextension when the right-hand side
17297 -- is an allocator or a qualified expression.
17299 -- Obj := new ...'(new Coextension ...);
17301 if Nkind (Context_Nod) = N_Assignment_Statement then
17302 Is_Dynamic :=
17303 Nkind_In (Expression (Context_Nod), N_Allocator,
17304 N_Qualified_Expression);
17306 -- An allocator that appears within the expression of a simple return
17307 -- statement is treated as a potentially dynamic coextension when the
17308 -- expression is either aggregate, allocator, or qualified expression.
17310 -- return (new Coextension ...);
17311 -- return new ...'(new Coextension ...);
17313 elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
17314 Is_Dynamic :=
17315 Nkind_In (Expression (Context_Nod), N_Aggregate,
17316 N_Allocator,
17317 N_Qualified_Expression);
17319 -- An alloctor that appears within the initialization expression of an
17320 -- object declaration is considered a potentially dynamic coextension
17321 -- when the initialization expression is an allocator or a qualified
17322 -- expression.
17324 -- Obj : ... := new ...'(new Coextension ...);
17326 -- A similar case arises when the object declaration is part of an
17327 -- extended return statement.
17329 -- return Obj : ... := new ...'(new Coextension ...);
17330 -- return Obj : ... := (new Coextension ...);
17332 elsif Nkind (Context_Nod) = N_Object_Declaration then
17333 Is_Dynamic :=
17334 Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
17335 or else
17336 Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
17338 -- This routine should not be called with constructs that cannot contain
17339 -- coextensions.
17341 else
17342 raise Program_Error;
17343 end if;
17345 Mark_Allocators (Root_Nod);
17346 end Mark_Coextensions;
17348 ---------------------------------
17349 -- Mark_Elaboration_Attributes --
17350 ---------------------------------
17352 procedure Mark_Elaboration_Attributes
17353 (N_Id : Node_Or_Entity_Id;
17354 Checks : Boolean := False;
17355 Level : Boolean := False;
17356 Modes : Boolean := False)
17358 function Elaboration_Checks_OK
17359 (Target_Id : Entity_Id;
17360 Context_Id : Entity_Id) return Boolean;
17361 -- Determine whether elaboration checks are enabled for target Target_Id
17362 -- which resides within context Context_Id.
17364 procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id);
17365 -- Preserve relevant attributes of the context in arbitrary entity Id
17367 procedure Mark_Elaboration_Attributes_Node (N : Node_Id);
17368 -- Preserve relevant attributes of the context in arbitrary node N
17370 ---------------------------
17371 -- Elaboration_Checks_OK --
17372 ---------------------------
17374 function Elaboration_Checks_OK
17375 (Target_Id : Entity_Id;
17376 Context_Id : Entity_Id) return Boolean
17378 Encl_Scop : Entity_Id;
17380 begin
17381 -- Elaboration checks are suppressed for the target
17383 if Elaboration_Checks_Suppressed (Target_Id) then
17384 return False;
17385 end if;
17387 -- Otherwise elaboration checks are OK for the target, but may be
17388 -- suppressed for the context where the target is declared.
17390 Encl_Scop := Context_Id;
17391 while Present (Encl_Scop) and then Encl_Scop /= Standard_Standard loop
17392 if Elaboration_Checks_Suppressed (Encl_Scop) then
17393 return False;
17394 end if;
17396 Encl_Scop := Scope (Encl_Scop);
17397 end loop;
17399 -- Neither the target nor its declarative context have elaboration
17400 -- checks suppressed.
17402 return True;
17403 end Elaboration_Checks_OK;
17405 ------------------------------------
17406 -- Mark_Elaboration_Attributes_Id --
17407 ------------------------------------
17409 procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id) is
17410 begin
17411 -- Mark the status of elaboration checks in effect. Do not reset the
17412 -- status in case the entity is reanalyzed with checks suppressed.
17414 if Checks and then not Is_Elaboration_Checks_OK_Id (Id) then
17415 Set_Is_Elaboration_Checks_OK_Id (Id,
17416 Elaboration_Checks_OK
17417 (Target_Id => Id,
17418 Context_Id => Scope (Id)));
17420 -- Entities do not need to capture their enclosing level. The Ghost
17421 -- and SPARK modes in effect are already marked during analysis.
17423 else
17424 null;
17425 end if;
17426 end Mark_Elaboration_Attributes_Id;
17428 --------------------------------------
17429 -- Mark_Elaboration_Attributes_Node --
17430 --------------------------------------
17432 procedure Mark_Elaboration_Attributes_Node (N : Node_Id) is
17433 function Extract_Name (N : Node_Id) return Node_Id;
17434 -- Obtain the Name attribute of call or instantiation N
17436 ------------------
17437 -- Extract_Name --
17438 ------------------
17440 function Extract_Name (N : Node_Id) return Node_Id is
17441 Nam : Node_Id;
17443 begin
17444 Nam := Name (N);
17446 -- A call to an entry family appears in indexed form
17448 if Nkind (Nam) = N_Indexed_Component then
17449 Nam := Prefix (Nam);
17450 end if;
17452 -- The name may also appear in qualified form
17454 if Nkind (Nam) = N_Selected_Component then
17455 Nam := Selector_Name (Nam);
17456 end if;
17458 return Nam;
17459 end Extract_Name;
17461 -- Local variables
17463 Context_Id : Entity_Id;
17464 Nam : Node_Id;
17466 -- Start of processing for Mark_Elaboration_Attributes_Node
17468 begin
17469 -- Mark the status of elaboration checks in effect. Do not reset the
17470 -- status in case the node is reanalyzed with checks suppressed.
17472 if Checks and then not Is_Elaboration_Checks_OK_Node (N) then
17474 -- Assignments, attribute references, and variable references do
17475 -- not have a "declarative" context.
17477 Context_Id := Empty;
17479 -- The status of elaboration checks for calls and instantiations
17480 -- depends on the most recent pragma Suppress/Unsuppress, as well
17481 -- as the suppression status of the context where the target is
17482 -- defined.
17484 -- package Pack is
17485 -- function Func ...;
17486 -- end Pack;
17488 -- with Pack;
17489 -- procedure Main is
17490 -- pragma Suppress (Elaboration_Checks, Pack);
17491 -- X : ... := Pack.Func;
17492 -- ...
17494 -- In the example above, the call to Func has elaboration checks
17495 -- enabled because there is no active general purpose suppression
17496 -- pragma, however the elaboration checks of Pack are explicitly
17497 -- suppressed. As a result the elaboration checks of the call must
17498 -- be disabled in order to preserve this dependency.
17500 if Nkind_In (N, N_Entry_Call_Statement,
17501 N_Function_Call,
17502 N_Function_Instantiation,
17503 N_Package_Instantiation,
17504 N_Procedure_Call_Statement,
17505 N_Procedure_Instantiation)
17506 then
17507 Nam := Extract_Name (N);
17509 if Is_Entity_Name (Nam) and then Present (Entity (Nam)) then
17510 Context_Id := Scope (Entity (Nam));
17511 end if;
17512 end if;
17514 Set_Is_Elaboration_Checks_OK_Node (N,
17515 Elaboration_Checks_OK
17516 (Target_Id => Empty,
17517 Context_Id => Context_Id));
17518 end if;
17520 -- Mark the enclosing level of the node. Do not reset the status in
17521 -- case the node is relocated and reanalyzed.
17523 if Level and then not Is_Declaration_Level_Node (N) then
17524 Set_Is_Declaration_Level_Node (N,
17525 Find_Enclosing_Level (N) = Declaration_Level);
17526 end if;
17528 -- Mark the Ghost and SPARK mode in effect
17530 if Modes then
17531 if Ghost_Mode = Ignore then
17532 Set_Is_Ignored_Ghost_Node (N);
17533 end if;
17535 if SPARK_Mode = On then
17536 Set_Is_SPARK_Mode_On_Node (N);
17537 end if;
17538 end if;
17539 end Mark_Elaboration_Attributes_Node;
17541 -- Start of processing for Mark_Elaboration_Attributes
17543 begin
17544 if Nkind (N_Id) in N_Entity then
17545 Mark_Elaboration_Attributes_Id (N_Id);
17546 else
17547 Mark_Elaboration_Attributes_Node (N_Id);
17548 end if;
17549 end Mark_Elaboration_Attributes;
17551 ----------------------------------
17552 -- Matching_Static_Array_Bounds --
17553 ----------------------------------
17555 function Matching_Static_Array_Bounds
17556 (L_Typ : Node_Id;
17557 R_Typ : Node_Id) return Boolean
17559 L_Ndims : constant Nat := Number_Dimensions (L_Typ);
17560 R_Ndims : constant Nat := Number_Dimensions (R_Typ);
17562 L_Index : Node_Id := Empty; -- init to ...
17563 R_Index : Node_Id := Empty; -- ...avoid warnings
17564 L_Low : Node_Id;
17565 L_High : Node_Id;
17566 L_Len : Uint;
17567 R_Low : Node_Id;
17568 R_High : Node_Id;
17569 R_Len : Uint;
17571 begin
17572 if L_Ndims /= R_Ndims then
17573 return False;
17574 end if;
17576 -- Unconstrained types do not have static bounds
17578 if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
17579 return False;
17580 end if;
17582 -- First treat specially the first dimension, as the lower bound and
17583 -- length of string literals are not stored like those of arrays.
17585 if Ekind (L_Typ) = E_String_Literal_Subtype then
17586 L_Low := String_Literal_Low_Bound (L_Typ);
17587 L_Len := String_Literal_Length (L_Typ);
17588 else
17589 L_Index := First_Index (L_Typ);
17590 Get_Index_Bounds (L_Index, L_Low, L_High);
17592 if Is_OK_Static_Expression (L_Low)
17593 and then
17594 Is_OK_Static_Expression (L_High)
17595 then
17596 if Expr_Value (L_High) < Expr_Value (L_Low) then
17597 L_Len := Uint_0;
17598 else
17599 L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
17600 end if;
17601 else
17602 return False;
17603 end if;
17604 end if;
17606 if Ekind (R_Typ) = E_String_Literal_Subtype then
17607 R_Low := String_Literal_Low_Bound (R_Typ);
17608 R_Len := String_Literal_Length (R_Typ);
17609 else
17610 R_Index := First_Index (R_Typ);
17611 Get_Index_Bounds (R_Index, R_Low, R_High);
17613 if Is_OK_Static_Expression (R_Low)
17614 and then
17615 Is_OK_Static_Expression (R_High)
17616 then
17617 if Expr_Value (R_High) < Expr_Value (R_Low) then
17618 R_Len := Uint_0;
17619 else
17620 R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
17621 end if;
17622 else
17623 return False;
17624 end if;
17625 end if;
17627 if (Is_OK_Static_Expression (L_Low)
17628 and then
17629 Is_OK_Static_Expression (R_Low))
17630 and then Expr_Value (L_Low) = Expr_Value (R_Low)
17631 and then L_Len = R_Len
17632 then
17633 null;
17634 else
17635 return False;
17636 end if;
17638 -- Then treat all other dimensions
17640 for Indx in 2 .. L_Ndims loop
17641 Next (L_Index);
17642 Next (R_Index);
17644 Get_Index_Bounds (L_Index, L_Low, L_High);
17645 Get_Index_Bounds (R_Index, R_Low, R_High);
17647 if (Is_OK_Static_Expression (L_Low) and then
17648 Is_OK_Static_Expression (L_High) and then
17649 Is_OK_Static_Expression (R_Low) and then
17650 Is_OK_Static_Expression (R_High))
17651 and then (Expr_Value (L_Low) = Expr_Value (R_Low)
17652 and then
17653 Expr_Value (L_High) = Expr_Value (R_High))
17654 then
17655 null;
17656 else
17657 return False;
17658 end if;
17659 end loop;
17661 -- If we fall through the loop, all indexes matched
17663 return True;
17664 end Matching_Static_Array_Bounds;
17666 -------------------
17667 -- May_Be_Lvalue --
17668 -------------------
17670 function May_Be_Lvalue (N : Node_Id) return Boolean is
17671 P : constant Node_Id := Parent (N);
17673 begin
17674 case Nkind (P) is
17676 -- Test left side of assignment
17678 when N_Assignment_Statement =>
17679 return N = Name (P);
17681 -- Test prefix of component or attribute. Note that the prefix of an
17682 -- explicit or implicit dereference cannot be an l-value. In the case
17683 -- of a 'Read attribute, the reference can be an actual in the
17684 -- argument list of the attribute.
17686 when N_Attribute_Reference =>
17687 return (N = Prefix (P)
17688 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)))
17689 or else
17690 Attribute_Name (P) = Name_Read;
17692 -- For an expanded name, the name is an lvalue if the expanded name
17693 -- is an lvalue, but the prefix is never an lvalue, since it is just
17694 -- the scope where the name is found.
17696 when N_Expanded_Name =>
17697 if N = Prefix (P) then
17698 return May_Be_Lvalue (P);
17699 else
17700 return False;
17701 end if;
17703 -- For a selected component A.B, A is certainly an lvalue if A.B is.
17704 -- B is a little interesting, if we have A.B := 3, there is some
17705 -- discussion as to whether B is an lvalue or not, we choose to say
17706 -- it is. Note however that A is not an lvalue if it is of an access
17707 -- type since this is an implicit dereference.
17709 when N_Selected_Component =>
17710 if N = Prefix (P)
17711 and then Present (Etype (N))
17712 and then Is_Access_Type (Etype (N))
17713 then
17714 return False;
17715 else
17716 return May_Be_Lvalue (P);
17717 end if;
17719 -- For an indexed component or slice, the index or slice bounds is
17720 -- never an lvalue. The prefix is an lvalue if the indexed component
17721 -- or slice is an lvalue, except if it is an access type, where we
17722 -- have an implicit dereference.
17724 when N_Indexed_Component
17725 | N_Slice
17727 if N /= Prefix (P)
17728 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
17729 then
17730 return False;
17731 else
17732 return May_Be_Lvalue (P);
17733 end if;
17735 -- Prefix of a reference is an lvalue if the reference is an lvalue
17737 when N_Reference =>
17738 return May_Be_Lvalue (P);
17740 -- Prefix of explicit dereference is never an lvalue
17742 when N_Explicit_Dereference =>
17743 return False;
17745 -- Positional parameter for subprogram, entry, or accept call.
17746 -- In older versions of Ada function call arguments are never
17747 -- lvalues. In Ada 2012 functions can have in-out parameters.
17749 when N_Accept_Statement
17750 | N_Entry_Call_Statement
17751 | N_Subprogram_Call
17753 if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
17754 return False;
17755 end if;
17757 -- The following mechanism is clumsy and fragile. A single flag
17758 -- set in Resolve_Actuals would be preferable ???
17760 declare
17761 Proc : Entity_Id;
17762 Form : Entity_Id;
17763 Act : Node_Id;
17765 begin
17766 Proc := Get_Subprogram_Entity (P);
17768 if No (Proc) then
17769 return True;
17770 end if;
17772 -- If we are not a list member, something is strange, so be
17773 -- conservative and return True.
17775 if not Is_List_Member (N) then
17776 return True;
17777 end if;
17779 -- We are going to find the right formal by stepping forward
17780 -- through the formals, as we step backwards in the actuals.
17782 Form := First_Formal (Proc);
17783 Act := N;
17784 loop
17785 -- If no formal, something is weird, so be conservative and
17786 -- return True.
17788 if No (Form) then
17789 return True;
17790 end if;
17792 Prev (Act);
17793 exit when No (Act);
17794 Next_Formal (Form);
17795 end loop;
17797 return Ekind (Form) /= E_In_Parameter;
17798 end;
17800 -- Named parameter for procedure or accept call
17802 when N_Parameter_Association =>
17803 declare
17804 Proc : Entity_Id;
17805 Form : Entity_Id;
17807 begin
17808 Proc := Get_Subprogram_Entity (Parent (P));
17810 if No (Proc) then
17811 return True;
17812 end if;
17814 -- Loop through formals to find the one that matches
17816 Form := First_Formal (Proc);
17817 loop
17818 -- If no matching formal, that's peculiar, some kind of
17819 -- previous error, so return True to be conservative.
17820 -- Actually happens with legal code for an unresolved call
17821 -- where we may get the wrong homonym???
17823 if No (Form) then
17824 return True;
17825 end if;
17827 -- Else test for match
17829 if Chars (Form) = Chars (Selector_Name (P)) then
17830 return Ekind (Form) /= E_In_Parameter;
17831 end if;
17833 Next_Formal (Form);
17834 end loop;
17835 end;
17837 -- Test for appearing in a conversion that itself appears in an
17838 -- lvalue context, since this should be an lvalue.
17840 when N_Type_Conversion =>
17841 return May_Be_Lvalue (P);
17843 -- Test for appearance in object renaming declaration
17845 when N_Object_Renaming_Declaration =>
17846 return True;
17848 -- All other references are definitely not lvalues
17850 when others =>
17851 return False;
17852 end case;
17853 end May_Be_Lvalue;
17855 -----------------
17856 -- Might_Raise --
17857 -----------------
17859 function Might_Raise (N : Node_Id) return Boolean is
17860 Result : Boolean := False;
17862 function Process (N : Node_Id) return Traverse_Result;
17863 -- Set Result to True if we find something that could raise an exception
17865 -------------
17866 -- Process --
17867 -------------
17869 function Process (N : Node_Id) return Traverse_Result is
17870 begin
17871 if Nkind_In (N, N_Procedure_Call_Statement,
17872 N_Function_Call,
17873 N_Raise_Statement,
17874 N_Raise_Constraint_Error,
17875 N_Raise_Program_Error,
17876 N_Raise_Storage_Error)
17877 then
17878 Result := True;
17879 return Abandon;
17880 else
17881 return OK;
17882 end if;
17883 end Process;
17885 procedure Set_Result is new Traverse_Proc (Process);
17887 -- Start of processing for Might_Raise
17889 begin
17890 -- False if exceptions can't be propagated
17892 if No_Exception_Handlers_Set then
17893 return False;
17894 end if;
17896 -- If the checks handled by the back end are not disabled, we cannot
17897 -- ensure that no exception will be raised.
17899 if not Access_Checks_Suppressed (Empty)
17900 or else not Discriminant_Checks_Suppressed (Empty)
17901 or else not Range_Checks_Suppressed (Empty)
17902 or else not Index_Checks_Suppressed (Empty)
17903 or else Opt.Stack_Checking_Enabled
17904 then
17905 return True;
17906 end if;
17908 Set_Result (N);
17909 return Result;
17910 end Might_Raise;
17912 --------------------------------
17913 -- Nearest_Enclosing_Instance --
17914 --------------------------------
17916 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id is
17917 Inst : Entity_Id;
17919 begin
17920 Inst := Scope (E);
17921 while Present (Inst) and then Inst /= Standard_Standard loop
17922 if Is_Generic_Instance (Inst) then
17923 return Inst;
17924 end if;
17926 Inst := Scope (Inst);
17927 end loop;
17929 return Empty;
17930 end Nearest_Enclosing_Instance;
17932 ----------------------
17933 -- Needs_One_Actual --
17934 ----------------------
17936 function Needs_One_Actual (E : Entity_Id) return Boolean is
17937 Formal : Entity_Id;
17939 begin
17940 -- Ada 2005 or later, and formals present. The first formal must be
17941 -- of a type that supports prefix notation: a controlling argument,
17942 -- a class-wide type, or an access to such.
17944 if Ada_Version >= Ada_2005
17945 and then Present (First_Formal (E))
17946 and then No (Default_Value (First_Formal (E)))
17947 and then
17948 (Is_Controlling_Formal (First_Formal (E))
17949 or else Is_Class_Wide_Type (Etype (First_Formal (E)))
17950 or else Is_Anonymous_Access_Type (Etype (First_Formal (E))))
17951 then
17952 Formal := Next_Formal (First_Formal (E));
17953 while Present (Formal) loop
17954 if No (Default_Value (Formal)) then
17955 return False;
17956 end if;
17958 Next_Formal (Formal);
17959 end loop;
17961 return True;
17963 -- Ada 83/95 or no formals
17965 else
17966 return False;
17967 end if;
17968 end Needs_One_Actual;
17970 ------------------------
17971 -- New_Copy_List_Tree --
17972 ------------------------
17974 function New_Copy_List_Tree (List : List_Id) return List_Id is
17975 NL : List_Id;
17976 E : Node_Id;
17978 begin
17979 if List = No_List then
17980 return No_List;
17982 else
17983 NL := New_List;
17984 E := First (List);
17986 while Present (E) loop
17987 Append (New_Copy_Tree (E), NL);
17988 E := Next (E);
17989 end loop;
17991 return NL;
17992 end if;
17993 end New_Copy_List_Tree;
17995 -------------------
17996 -- New_Copy_Tree --
17997 -------------------
17999 -- The following tables play a key role in replicating entities and Itypes.
18000 -- They are intentionally declared at the library level rather than within
18001 -- New_Copy_Tree to avoid elaborating them on each call. This performance
18002 -- optimization saves up to 2% of the entire compilation time spent in the
18003 -- front end. Care should be taken to reset the tables on each new call to
18004 -- New_Copy_Tree.
18006 NCT_Table_Max : constant := 511;
18008 subtype NCT_Table_Index is Nat range 0 .. NCT_Table_Max - 1;
18010 function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index;
18011 -- Obtain the hash value of node or entity Key
18013 --------------------
18014 -- NCT_Table_Hash --
18015 --------------------
18017 function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index is
18018 begin
18019 return NCT_Table_Index (Key mod NCT_Table_Max);
18020 end NCT_Table_Hash;
18022 ----------------------
18023 -- NCT_New_Entities --
18024 ----------------------
18026 -- The following table maps old entities and Itypes to their corresponding
18027 -- new entities and Itypes.
18029 -- Aaa -> Xxx
18031 package NCT_New_Entities is new Simple_HTable (
18032 Header_Num => NCT_Table_Index,
18033 Element => Entity_Id,
18034 No_Element => Empty,
18035 Key => Entity_Id,
18036 Hash => NCT_Table_Hash,
18037 Equal => "=");
18039 ------------------------
18040 -- NCT_Pending_Itypes --
18041 ------------------------
18043 -- The following table maps old Associated_Node_For_Itype nodes to a set of
18044 -- new itypes. Given a set of old Itypes Aaa, Bbb, and Ccc, where all three
18045 -- have the same Associated_Node_For_Itype Ppp, and their corresponding new
18046 -- Itypes Xxx, Yyy, Zzz, the table contains the following mapping:
18048 -- Ppp -> (Xxx, Yyy, Zzz)
18050 -- The set is expressed as an Elist
18052 package NCT_Pending_Itypes is new Simple_HTable (
18053 Header_Num => NCT_Table_Index,
18054 Element => Elist_Id,
18055 No_Element => No_Elist,
18056 Key => Node_Id,
18057 Hash => NCT_Table_Hash,
18058 Equal => "=");
18060 NCT_Tables_In_Use : Boolean := False;
18061 -- This flag keeps track of whether the two tables NCT_New_Entities and
18062 -- NCT_Pending_Itypes are in use. The flag is part of an optimization
18063 -- where certain operations are not performed if the tables are not in
18064 -- use. This saves up to 8% of the entire compilation time spent in the
18065 -- front end.
18067 -------------------
18068 -- New_Copy_Tree --
18069 -------------------
18071 function New_Copy_Tree
18072 (Source : Node_Id;
18073 Map : Elist_Id := No_Elist;
18074 New_Sloc : Source_Ptr := No_Location;
18075 New_Scope : Entity_Id := Empty) return Node_Id
18077 -- This routine performs low-level tree manipulations and needs access
18078 -- to the internals of the tree.
18080 use Atree.Unchecked_Access;
18081 use Atree_Private_Part;
18083 EWA_Level : Nat := 0;
18084 -- This counter keeps track of how many N_Expression_With_Actions nodes
18085 -- are encountered during a depth-first traversal of the subtree. These
18086 -- nodes may define new entities in their Actions lists and thus require
18087 -- special processing.
18089 EWA_Inner_Scope_Level : Nat := 0;
18090 -- This counter keeps track of how many scoping constructs appear within
18091 -- an N_Expression_With_Actions node.
18093 procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id);
18094 pragma Inline (Add_New_Entity);
18095 -- Add an entry in the NCT_New_Entities table which maps key Old_Id to
18096 -- value New_Id. Old_Id is an entity which appears within the Actions
18097 -- list of an N_Expression_With_Actions node, or within an entity map.
18098 -- New_Id is the corresponding new entity generated during Phase 1.
18100 procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id);
18101 pragma Inline (Add_New_Entity);
18102 -- Add an entry in the NCT_Pending_Itypes which maps key Assoc_Nod to
18103 -- value Itype. Assoc_Nod is the associated node of an itype. Itype is
18104 -- an itype.
18106 procedure Build_NCT_Tables (Entity_Map : Elist_Id);
18107 pragma Inline (Build_NCT_Tables);
18108 -- Populate tables NCT_New_Entities and NCT_Pending_Itypes with the
18109 -- information supplied in entity map Entity_Map. The format of the
18110 -- entity map must be as follows:
18112 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18114 function Copy_Any_Node_With_Replacement
18115 (N : Node_Or_Entity_Id) return Node_Or_Entity_Id;
18116 pragma Inline (Copy_Any_Node_With_Replacement);
18117 -- Replicate entity or node N by invoking one of the following routines:
18119 -- Copy_Node_With_Replacement
18120 -- Corresponding_Entity
18122 function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id;
18123 -- Replicate the elements of entity list List
18125 function Copy_Field_With_Replacement
18126 (Field : Union_Id;
18127 Old_Par : Node_Id := Empty;
18128 New_Par : Node_Id := Empty;
18129 Semantic : Boolean := False) return Union_Id;
18130 -- Replicate field Field by invoking one of the following routines:
18132 -- Copy_Elist_With_Replacement
18133 -- Copy_List_With_Replacement
18134 -- Copy_Node_With_Replacement
18135 -- Corresponding_Entity
18137 -- If the field is not an entity list, entity, itype, syntactic list,
18138 -- or node, then the field is returned unchanged. The routine always
18139 -- replicates entities, itypes, and valid syntactic fields. Old_Par is
18140 -- the expected parent of a syntactic field. New_Par is the new parent
18141 -- associated with a replicated syntactic field. Flag Semantic should
18142 -- be set when the input is a semantic field.
18144 function Copy_List_With_Replacement (List : List_Id) return List_Id;
18145 -- Replicate the elements of syntactic list List
18147 function Copy_Node_With_Replacement (N : Node_Id) return Node_Id;
18148 -- Replicate node N
18150 function Corresponding_Entity (Id : Entity_Id) return Entity_Id;
18151 pragma Inline (Corresponding_Entity);
18152 -- Return the corresponding new entity of Id generated during Phase 1.
18153 -- If there is no such entity, return Id.
18155 function In_Entity_Map
18156 (Id : Entity_Id;
18157 Entity_Map : Elist_Id) return Boolean;
18158 pragma Inline (In_Entity_Map);
18159 -- Determine whether entity Id is one of the old ids specified in entity
18160 -- map Entity_Map. The format of the entity map must be as follows:
18162 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18164 procedure Update_CFS_Sloc (N : Node_Or_Entity_Id);
18165 pragma Inline (Update_CFS_Sloc);
18166 -- Update the Comes_From_Source and Sloc attributes of node or entity N
18168 procedure Update_First_Real_Statement
18169 (Old_HSS : Node_Id;
18170 New_HSS : Node_Id);
18171 pragma Inline (Update_First_Real_Statement);
18172 -- Update semantic attribute First_Real_Statement of handled sequence of
18173 -- statements New_HSS based on handled sequence of statements Old_HSS.
18175 procedure Update_Named_Associations
18176 (Old_Call : Node_Id;
18177 New_Call : Node_Id);
18178 pragma Inline (Update_Named_Associations);
18179 -- Update semantic chain First/Next_Named_Association of call New_call
18180 -- based on call Old_Call.
18182 procedure Update_New_Entities (Entity_Map : Elist_Id);
18183 pragma Inline (Update_New_Entities);
18184 -- Update the semantic attributes of all new entities generated during
18185 -- Phase 1 that do not appear in entity map Entity_Map. The format of
18186 -- the entity map must be as follows:
18188 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18190 procedure Update_Pending_Itypes
18191 (Old_Assoc : Node_Id;
18192 New_Assoc : Node_Id);
18193 pragma Inline (Update_Pending_Itypes);
18194 -- Update semantic attribute Associated_Node_For_Itype to refer to node
18195 -- New_Assoc for all itypes whose associated node is Old_Assoc.
18197 procedure Update_Semantic_Fields (Id : Entity_Id);
18198 pragma Inline (Update_Semantic_Fields);
18199 -- Subsidiary to Update_New_Entities. Update semantic fields of entity
18200 -- or itype Id.
18202 procedure Visit_Any_Node (N : Node_Or_Entity_Id);
18203 pragma Inline (Visit_Any_Node);
18204 -- Visit entity of node N by invoking one of the following routines:
18206 -- Visit_Entity
18207 -- Visit_Itype
18208 -- Visit_Node
18210 procedure Visit_Elist (List : Elist_Id);
18211 -- Visit the elements of entity list List
18213 procedure Visit_Entity (Id : Entity_Id);
18214 -- Visit entity Id. This action may create a new entity of Id and save
18215 -- it in table NCT_New_Entities.
18217 procedure Visit_Field
18218 (Field : Union_Id;
18219 Par_Nod : Node_Id := Empty;
18220 Semantic : Boolean := False);
18221 -- Visit field Field by invoking one of the following routines:
18223 -- Visit_Elist
18224 -- Visit_Entity
18225 -- Visit_Itype
18226 -- Visit_List
18227 -- Visit_Node
18229 -- If the field is not an entity list, entity, itype, syntactic list,
18230 -- or node, then the field is not visited. The routine always visits
18231 -- valid syntactic fields. Par_Nod is the expected parent of the
18232 -- syntactic field. Flag Semantic should be set when the input is a
18233 -- semantic field.
18235 procedure Visit_Itype (Itype : Entity_Id);
18236 -- Visit itype Itype. This action may create a new entity for Itype and
18237 -- save it in table NCT_New_Entities. In addition, the routine may map
18238 -- the associated node of Itype to the new itype in NCT_Pending_Itypes.
18240 procedure Visit_List (List : List_Id);
18241 -- Visit the elements of syntactic list List
18243 procedure Visit_Node (N : Node_Id);
18244 -- Visit node N
18246 procedure Visit_Semantic_Fields (Id : Entity_Id);
18247 pragma Inline (Visit_Semantic_Fields);
18248 -- Subsidiary to Visit_Entity and Visit_Itype. Visit common semantic
18249 -- fields of entity or itype Id.
18251 --------------------
18252 -- Add_New_Entity --
18253 --------------------
18255 procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id) is
18256 begin
18257 pragma Assert (Present (Old_Id));
18258 pragma Assert (Present (New_Id));
18259 pragma Assert (Nkind (Old_Id) in N_Entity);
18260 pragma Assert (Nkind (New_Id) in N_Entity);
18262 NCT_Tables_In_Use := True;
18264 -- Sanity check the NCT_New_Entities table. No previous mapping with
18265 -- key Old_Id should exist.
18267 pragma Assert (No (NCT_New_Entities.Get (Old_Id)));
18269 -- Establish the mapping
18271 -- Old_Id -> New_Id
18273 NCT_New_Entities.Set (Old_Id, New_Id);
18274 end Add_New_Entity;
18276 -----------------------
18277 -- Add_Pending_Itype --
18278 -----------------------
18280 procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id) is
18281 Itypes : Elist_Id;
18283 begin
18284 pragma Assert (Present (Assoc_Nod));
18285 pragma Assert (Present (Itype));
18286 pragma Assert (Nkind (Itype) in N_Entity);
18287 pragma Assert (Is_Itype (Itype));
18289 NCT_Tables_In_Use := True;
18291 -- It is not possible to sanity check the NCT_Pendint_Itypes table
18292 -- directly because a single node may act as the associated node for
18293 -- multiple itypes.
18295 Itypes := NCT_Pending_Itypes.Get (Assoc_Nod);
18297 if No (Itypes) then
18298 Itypes := New_Elmt_List;
18299 NCT_Pending_Itypes.Set (Assoc_Nod, Itypes);
18300 end if;
18302 -- Establish the mapping
18304 -- Assoc_Nod -> (Itype, ...)
18306 -- Avoid inserting the same itype multiple times. This involves a
18307 -- linear search, however the set of itypes with the same associated
18308 -- node is very small.
18310 Append_Unique_Elmt (Itype, Itypes);
18311 end Add_Pending_Itype;
18313 ----------------------
18314 -- Build_NCT_Tables --
18315 ----------------------
18317 procedure Build_NCT_Tables (Entity_Map : Elist_Id) is
18318 Elmt : Elmt_Id;
18319 Old_Id : Entity_Id;
18320 New_Id : Entity_Id;
18322 begin
18323 -- Nothing to do when there is no entity map
18325 if No (Entity_Map) then
18326 return;
18327 end if;
18329 Elmt := First_Elmt (Entity_Map);
18330 while Present (Elmt) loop
18332 -- Extract the (Old_Id, New_Id) pair from the entity map
18334 Old_Id := Node (Elmt);
18335 Next_Elmt (Elmt);
18337 New_Id := Node (Elmt);
18338 Next_Elmt (Elmt);
18340 -- Establish the following mapping within table NCT_New_Entities
18342 -- Old_Id -> New_Id
18344 Add_New_Entity (Old_Id, New_Id);
18346 -- Establish the following mapping within table NCT_Pending_Itypes
18347 -- when the new entity is an itype.
18349 -- Assoc_Nod -> (New_Id, ...)
18351 -- IMPORTANT: the associated node is that of the old itype because
18352 -- the node will be replicated in Phase 2.
18354 if Is_Itype (Old_Id) then
18355 Add_Pending_Itype
18356 (Assoc_Nod => Associated_Node_For_Itype (Old_Id),
18357 Itype => New_Id);
18358 end if;
18359 end loop;
18360 end Build_NCT_Tables;
18362 ------------------------------------
18363 -- Copy_Any_Node_With_Replacement --
18364 ------------------------------------
18366 function Copy_Any_Node_With_Replacement
18367 (N : Node_Or_Entity_Id) return Node_Or_Entity_Id
18369 begin
18370 if Nkind (N) in N_Entity then
18371 return Corresponding_Entity (N);
18372 else
18373 return Copy_Node_With_Replacement (N);
18374 end if;
18375 end Copy_Any_Node_With_Replacement;
18377 ---------------------------------
18378 -- Copy_Elist_With_Replacement --
18379 ---------------------------------
18381 function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id is
18382 Elmt : Elmt_Id;
18383 Result : Elist_Id;
18385 begin
18386 -- Copy the contents of the old list. Note that the list itself may
18387 -- be empty, in which case the routine returns a new empty list. This
18388 -- avoids sharing lists between subtrees. The element of an entity
18389 -- list could be an entity or a node, hence the invocation of routine
18390 -- Copy_Any_Node_With_Replacement.
18392 if Present (List) then
18393 Result := New_Elmt_List;
18395 Elmt := First_Elmt (List);
18396 while Present (Elmt) loop
18397 Append_Elmt
18398 (Copy_Any_Node_With_Replacement (Node (Elmt)), Result);
18400 Next_Elmt (Elmt);
18401 end loop;
18403 -- Otherwise the list does not exist
18405 else
18406 Result := No_Elist;
18407 end if;
18409 return Result;
18410 end Copy_Elist_With_Replacement;
18412 ---------------------------------
18413 -- Copy_Field_With_Replacement --
18414 ---------------------------------
18416 function Copy_Field_With_Replacement
18417 (Field : Union_Id;
18418 Old_Par : Node_Id := Empty;
18419 New_Par : Node_Id := Empty;
18420 Semantic : Boolean := False) return Union_Id
18422 begin
18423 -- The field is empty
18425 if Field = Union_Id (Empty) then
18426 return Field;
18428 -- The field is an entity/itype/node
18430 elsif Field in Node_Range then
18431 declare
18432 Old_N : constant Node_Id := Node_Id (Field);
18433 Syntactic : constant Boolean := Parent (Old_N) = Old_Par;
18435 New_N : Node_Id;
18437 begin
18438 -- The field is an entity/itype
18440 if Nkind (Old_N) in N_Entity then
18442 -- An entity/itype is always replicated
18444 New_N := Corresponding_Entity (Old_N);
18446 -- Update the parent pointer when the entity is a syntactic
18447 -- field. Note that itypes do not have parent pointers.
18449 if Syntactic and then New_N /= Old_N then
18450 Set_Parent (New_N, New_Par);
18451 end if;
18453 -- The field is a node
18455 else
18456 -- A node is replicated when it is either a syntactic field
18457 -- or when the caller treats it as a semantic attribute.
18459 if Syntactic or else Semantic then
18460 New_N := Copy_Node_With_Replacement (Old_N);
18462 -- Update the parent pointer when the node is a syntactic
18463 -- field.
18465 if Syntactic and then New_N /= Old_N then
18466 Set_Parent (New_N, New_Par);
18467 end if;
18469 -- Otherwise the node is returned unchanged
18471 else
18472 New_N := Old_N;
18473 end if;
18474 end if;
18476 return Union_Id (New_N);
18477 end;
18479 -- The field is an entity list
18481 elsif Field in Elist_Range then
18482 return Union_Id (Copy_Elist_With_Replacement (Elist_Id (Field)));
18484 -- The field is a syntactic list
18486 elsif Field in List_Range then
18487 declare
18488 Old_List : constant List_Id := List_Id (Field);
18489 Syntactic : constant Boolean := Parent (Old_List) = Old_Par;
18491 New_List : List_Id;
18493 begin
18494 -- A list is replicated when it is either a syntactic field or
18495 -- when the caller treats it as a semantic attribute.
18497 if Syntactic or else Semantic then
18498 New_List := Copy_List_With_Replacement (Old_List);
18500 -- Update the parent pointer when the list is a syntactic
18501 -- field.
18503 if Syntactic and then New_List /= Old_List then
18504 Set_Parent (New_List, New_Par);
18505 end if;
18507 -- Otherwise the list is returned unchanged
18509 else
18510 New_List := Old_List;
18511 end if;
18513 return Union_Id (New_List);
18514 end;
18516 -- Otherwise the field denotes an attribute that does not need to be
18517 -- replicated (Chars, literals, etc).
18519 else
18520 return Field;
18521 end if;
18522 end Copy_Field_With_Replacement;
18524 --------------------------------
18525 -- Copy_List_With_Replacement --
18526 --------------------------------
18528 function Copy_List_With_Replacement (List : List_Id) return List_Id is
18529 Elmt : Node_Id;
18530 Result : List_Id;
18532 begin
18533 -- Copy the contents of the old list. Note that the list itself may
18534 -- be empty, in which case the routine returns a new empty list. This
18535 -- avoids sharing lists between subtrees. The element of a syntactic
18536 -- list is always a node, never an entity or itype, hence the call to
18537 -- routine Copy_Node_With_Replacement.
18539 if Present (List) then
18540 Result := New_List;
18542 Elmt := First (List);
18543 while Present (Elmt) loop
18544 Append (Copy_Node_With_Replacement (Elmt), Result);
18546 Next (Elmt);
18547 end loop;
18549 -- Otherwise the list does not exist
18551 else
18552 Result := No_List;
18553 end if;
18555 return Result;
18556 end Copy_List_With_Replacement;
18558 --------------------------------
18559 -- Copy_Node_With_Replacement --
18560 --------------------------------
18562 function Copy_Node_With_Replacement (N : Node_Id) return Node_Id is
18563 Result : Node_Id;
18565 begin
18566 -- Assume that the node must be returned unchanged
18568 Result := N;
18570 if N > Empty_Or_Error then
18571 pragma Assert (Nkind (N) not in N_Entity);
18573 Result := New_Copy (N);
18575 Set_Field1 (Result,
18576 Copy_Field_With_Replacement
18577 (Field => Field1 (Result),
18578 Old_Par => N,
18579 New_Par => Result));
18581 Set_Field2 (Result,
18582 Copy_Field_With_Replacement
18583 (Field => Field2 (Result),
18584 Old_Par => N,
18585 New_Par => Result));
18587 Set_Field3 (Result,
18588 Copy_Field_With_Replacement
18589 (Field => Field3 (Result),
18590 Old_Par => N,
18591 New_Par => Result));
18593 Set_Field4 (Result,
18594 Copy_Field_With_Replacement
18595 (Field => Field4 (Result),
18596 Old_Par => N,
18597 New_Par => Result));
18599 Set_Field5 (Result,
18600 Copy_Field_With_Replacement
18601 (Field => Field5 (Result),
18602 Old_Par => N,
18603 New_Par => Result));
18605 -- Update the Comes_From_Source and Sloc attributes of the node
18606 -- in case the caller has supplied new values.
18608 Update_CFS_Sloc (Result);
18610 -- Update the Associated_Node_For_Itype attribute of all itypes
18611 -- created during Phase 1 whose associated node is N. As a result
18612 -- the Associated_Node_For_Itype refers to the replicated node.
18613 -- No action needs to be taken when the Associated_Node_For_Itype
18614 -- refers to an entity because this was already handled during
18615 -- Phase 1, in Visit_Itype.
18617 Update_Pending_Itypes
18618 (Old_Assoc => N,
18619 New_Assoc => Result);
18621 -- Update the First/Next_Named_Association chain for a replicated
18622 -- call.
18624 if Nkind_In (N, N_Entry_Call_Statement,
18625 N_Function_Call,
18626 N_Procedure_Call_Statement)
18627 then
18628 Update_Named_Associations
18629 (Old_Call => N,
18630 New_Call => Result);
18632 -- Update the Renamed_Object attribute of a replicated object
18633 -- declaration.
18635 elsif Nkind (N) = N_Object_Renaming_Declaration then
18636 Set_Renamed_Object (Defining_Entity (Result), Name (Result));
18638 -- Update the First_Real_Statement attribute of a replicated
18639 -- handled sequence of statements.
18641 elsif Nkind (N) = N_Handled_Sequence_Of_Statements then
18642 Update_First_Real_Statement
18643 (Old_HSS => N,
18644 New_HSS => Result);
18645 end if;
18646 end if;
18648 return Result;
18649 end Copy_Node_With_Replacement;
18651 --------------------------
18652 -- Corresponding_Entity --
18653 --------------------------
18655 function Corresponding_Entity (Id : Entity_Id) return Entity_Id is
18656 New_Id : Entity_Id;
18657 Result : Entity_Id;
18659 begin
18660 -- Assume that the entity must be returned unchanged
18662 Result := Id;
18664 if Id > Empty_Or_Error then
18665 pragma Assert (Nkind (Id) in N_Entity);
18667 -- Determine whether the entity has a corresponding new entity
18668 -- generated during Phase 1 and if it does, use it.
18670 if NCT_Tables_In_Use then
18671 New_Id := NCT_New_Entities.Get (Id);
18673 if Present (New_Id) then
18674 Result := New_Id;
18675 end if;
18676 end if;
18677 end if;
18679 return Result;
18680 end Corresponding_Entity;
18682 -------------------
18683 -- In_Entity_Map --
18684 -------------------
18686 function In_Entity_Map
18687 (Id : Entity_Id;
18688 Entity_Map : Elist_Id) return Boolean
18690 Elmt : Elmt_Id;
18691 Old_Id : Entity_Id;
18693 begin
18694 -- The entity map contains pairs (Old_Id, New_Id). The advancement
18695 -- step always skips the New_Id portion of the pair.
18697 if Present (Entity_Map) then
18698 Elmt := First_Elmt (Entity_Map);
18699 while Present (Elmt) loop
18700 Old_Id := Node (Elmt);
18702 if Old_Id = Id then
18703 return True;
18704 end if;
18706 Next_Elmt (Elmt);
18707 Next_Elmt (Elmt);
18708 end loop;
18709 end if;
18711 return False;
18712 end In_Entity_Map;
18714 ---------------------
18715 -- Update_CFS_Sloc --
18716 ---------------------
18718 procedure Update_CFS_Sloc (N : Node_Or_Entity_Id) is
18719 begin
18720 -- A new source location defaults the Comes_From_Source attribute
18722 if New_Sloc /= No_Location then
18723 Set_Comes_From_Source (N, Default_Node.Comes_From_Source);
18724 Set_Sloc (N, New_Sloc);
18725 end if;
18726 end Update_CFS_Sloc;
18728 ---------------------------------
18729 -- Update_First_Real_Statement --
18730 ---------------------------------
18732 procedure Update_First_Real_Statement
18733 (Old_HSS : Node_Id;
18734 New_HSS : Node_Id)
18736 Old_First_Stmt : constant Node_Id := First_Real_Statement (Old_HSS);
18738 New_Stmt : Node_Id;
18739 Old_Stmt : Node_Id;
18741 begin
18742 -- Recreate the First_Real_Statement attribute of a handled sequence
18743 -- of statements by traversing the statement lists of both sequences
18744 -- in parallel.
18746 if Present (Old_First_Stmt) then
18747 New_Stmt := First (Statements (New_HSS));
18748 Old_Stmt := First (Statements (Old_HSS));
18749 while Present (Old_Stmt) and then Old_Stmt /= Old_First_Stmt loop
18750 Next (New_Stmt);
18751 Next (Old_Stmt);
18752 end loop;
18754 pragma Assert (Present (New_Stmt));
18755 pragma Assert (Present (Old_Stmt));
18757 Set_First_Real_Statement (New_HSS, New_Stmt);
18758 end if;
18759 end Update_First_Real_Statement;
18761 -------------------------------
18762 -- Update_Named_Associations --
18763 -------------------------------
18765 procedure Update_Named_Associations
18766 (Old_Call : Node_Id;
18767 New_Call : Node_Id)
18769 New_Act : Node_Id;
18770 New_Next : Node_Id;
18771 Old_Act : Node_Id;
18772 Old_Next : Node_Id;
18774 begin
18775 -- Recreate the First/Next_Named_Actual chain of a call by traversing
18776 -- the chains of both the old and new calls in parallel.
18778 New_Act := First (Parameter_Associations (New_Call));
18779 Old_Act := First (Parameter_Associations (Old_Call));
18780 while Present (Old_Act) loop
18781 if Nkind (Old_Act) = N_Parameter_Association
18782 and then Present (Next_Named_Actual (Old_Act))
18783 then
18784 if First_Named_Actual (Old_Call) =
18785 Explicit_Actual_Parameter (Old_Act)
18786 then
18787 Set_First_Named_Actual (New_Call,
18788 Explicit_Actual_Parameter (New_Act));
18789 end if;
18791 -- Scan the actual parameter list to find the next suitable
18792 -- named actual. Note that the list may be out of order.
18794 New_Next := First (Parameter_Associations (New_Call));
18795 Old_Next := First (Parameter_Associations (Old_Call));
18796 while Nkind (Old_Next) /= N_Parameter_Association
18797 or else Explicit_Actual_Parameter (Old_Next) /=
18798 Next_Named_Actual (Old_Act)
18799 loop
18800 Next (New_Next);
18801 Next (Old_Next);
18802 end loop;
18804 Set_Next_Named_Actual (New_Act,
18805 Explicit_Actual_Parameter (New_Next));
18806 end if;
18808 Next (New_Act);
18809 Next (Old_Act);
18810 end loop;
18811 end Update_Named_Associations;
18813 -------------------------
18814 -- Update_New_Entities --
18815 -------------------------
18817 procedure Update_New_Entities (Entity_Map : Elist_Id) is
18818 New_Id : Entity_Id := Empty;
18819 Old_Id : Entity_Id := Empty;
18821 begin
18822 if NCT_Tables_In_Use then
18823 NCT_New_Entities.Get_First (Old_Id, New_Id);
18825 -- Update the semantic fields of all new entities created during
18826 -- Phase 1 which were not supplied via an entity map.
18827 -- ??? Is there a better way of distinguishing those?
18829 while Present (Old_Id) and then Present (New_Id) loop
18830 if not (Present (Entity_Map)
18831 and then In_Entity_Map (Old_Id, Entity_Map))
18832 then
18833 Update_Semantic_Fields (New_Id);
18834 end if;
18836 NCT_New_Entities.Get_Next (Old_Id, New_Id);
18837 end loop;
18838 end if;
18839 end Update_New_Entities;
18841 ---------------------------
18842 -- Update_Pending_Itypes --
18843 ---------------------------
18845 procedure Update_Pending_Itypes
18846 (Old_Assoc : Node_Id;
18847 New_Assoc : Node_Id)
18849 Item : Elmt_Id;
18850 Itypes : Elist_Id;
18852 begin
18853 if NCT_Tables_In_Use then
18854 Itypes := NCT_Pending_Itypes.Get (Old_Assoc);
18856 -- Update the Associated_Node_For_Itype attribute for all itypes
18857 -- which originally refer to Old_Assoc to designate New_Assoc.
18859 if Present (Itypes) then
18860 Item := First_Elmt (Itypes);
18861 while Present (Item) loop
18862 Set_Associated_Node_For_Itype (Node (Item), New_Assoc);
18864 Next_Elmt (Item);
18865 end loop;
18866 end if;
18867 end if;
18868 end Update_Pending_Itypes;
18870 ----------------------------
18871 -- Update_Semantic_Fields --
18872 ----------------------------
18874 procedure Update_Semantic_Fields (Id : Entity_Id) is
18875 begin
18876 -- Discriminant_Constraint
18878 if Has_Discriminants (Base_Type (Id)) then
18879 Set_Discriminant_Constraint (Id, Elist_Id (
18880 Copy_Field_With_Replacement
18881 (Field => Union_Id (Discriminant_Constraint (Id)),
18882 Semantic => True)));
18883 end if;
18885 -- Etype
18887 Set_Etype (Id, Node_Id (
18888 Copy_Field_With_Replacement
18889 (Field => Union_Id (Etype (Id)),
18890 Semantic => True)));
18892 -- First_Index
18893 -- Packed_Array_Impl_Type
18895 if Is_Array_Type (Id) then
18896 if Present (First_Index (Id)) then
18897 Set_First_Index (Id, First (List_Id (
18898 Copy_Field_With_Replacement
18899 (Field => Union_Id (List_Containing (First_Index (Id))),
18900 Semantic => True))));
18901 end if;
18903 if Is_Packed (Id) then
18904 Set_Packed_Array_Impl_Type (Id, Node_Id (
18905 Copy_Field_With_Replacement
18906 (Field => Union_Id (Packed_Array_Impl_Type (Id)),
18907 Semantic => True)));
18908 end if;
18909 end if;
18911 -- Next_Entity
18913 Set_Next_Entity (Id, Node_Id (
18914 Copy_Field_With_Replacement
18915 (Field => Union_Id (Next_Entity (Id)),
18916 Semantic => True)));
18918 -- Scalar_Range
18920 if Is_Discrete_Type (Id) then
18921 Set_Scalar_Range (Id, Node_Id (
18922 Copy_Field_With_Replacement
18923 (Field => Union_Id (Scalar_Range (Id)),
18924 Semantic => True)));
18925 end if;
18927 -- Scope
18929 -- Update the scope when the caller specified an explicit one
18931 if Present (New_Scope) then
18932 Set_Scope (Id, New_Scope);
18933 else
18934 Set_Scope (Id, Node_Id (
18935 Copy_Field_With_Replacement
18936 (Field => Union_Id (Scope (Id)),
18937 Semantic => True)));
18938 end if;
18939 end Update_Semantic_Fields;
18941 --------------------
18942 -- Visit_Any_Node --
18943 --------------------
18945 procedure Visit_Any_Node (N : Node_Or_Entity_Id) is
18946 begin
18947 if Nkind (N) in N_Entity then
18948 if Is_Itype (N) then
18949 Visit_Itype (N);
18950 else
18951 Visit_Entity (N);
18952 end if;
18953 else
18954 Visit_Node (N);
18955 end if;
18956 end Visit_Any_Node;
18958 -----------------
18959 -- Visit_Elist --
18960 -----------------
18962 procedure Visit_Elist (List : Elist_Id) is
18963 Elmt : Elmt_Id;
18965 begin
18966 -- The element of an entity list could be an entity, itype, or a
18967 -- node, hence the call to Visit_Any_Node.
18969 if Present (List) then
18970 Elmt := First_Elmt (List);
18971 while Present (Elmt) loop
18972 Visit_Any_Node (Node (Elmt));
18974 Next_Elmt (Elmt);
18975 end loop;
18976 end if;
18977 end Visit_Elist;
18979 ------------------
18980 -- Visit_Entity --
18981 ------------------
18983 procedure Visit_Entity (Id : Entity_Id) is
18984 New_Id : Entity_Id;
18986 begin
18987 pragma Assert (Nkind (Id) in N_Entity);
18988 pragma Assert (not Is_Itype (Id));
18990 -- Nothing to do if the entity is not defined in the Actions list of
18991 -- an N_Expression_With_Actions node.
18993 if EWA_Level = 0 then
18994 return;
18996 -- Nothing to do if the entity is defined within a scoping construct
18997 -- of an N_Expression_With_Actions node.
18999 elsif EWA_Inner_Scope_Level > 0 then
19000 return;
19002 -- Nothing to do if the entity is not an object or a type. Relaxing
19003 -- this restriction leads to a performance penalty.
19005 elsif not Ekind_In (Id, E_Constant, E_Variable)
19006 and then not Is_Type (Id)
19007 then
19008 return;
19010 -- Nothing to do if the entity was already visited
19012 elsif NCT_Tables_In_Use
19013 and then Present (NCT_New_Entities.Get (Id))
19014 then
19015 return;
19017 -- Nothing to do if the declaration node of the entity is not within
19018 -- the subtree being replicated.
19020 elsif not In_Subtree
19021 (N => Declaration_Node (Id),
19022 Root => Source)
19023 then
19024 return;
19025 end if;
19027 -- Create a new entity by directly copying the old entity. This
19028 -- action causes all attributes of the old entity to be inherited.
19030 New_Id := New_Copy (Id);
19032 -- Create a new name for the new entity because the back end needs
19033 -- distinct names for debugging purposes.
19035 Set_Chars (New_Id, New_Internal_Name ('T'));
19037 -- Update the Comes_From_Source and Sloc attributes of the entity in
19038 -- case the caller has supplied new values.
19040 Update_CFS_Sloc (New_Id);
19042 -- Establish the following mapping within table NCT_New_Entities:
19044 -- Id -> New_Id
19046 Add_New_Entity (Id, New_Id);
19048 -- Deal with the semantic fields of entities. The fields are visited
19049 -- because they may mention entities which reside within the subtree
19050 -- being copied.
19052 Visit_Semantic_Fields (Id);
19053 end Visit_Entity;
19055 -----------------
19056 -- Visit_Field --
19057 -----------------
19059 procedure Visit_Field
19060 (Field : Union_Id;
19061 Par_Nod : Node_Id := Empty;
19062 Semantic : Boolean := False)
19064 begin
19065 -- The field is empty
19067 if Field = Union_Id (Empty) then
19068 return;
19070 -- The field is an entity/itype/node
19072 elsif Field in Node_Range then
19073 declare
19074 N : constant Node_Id := Node_Id (Field);
19076 begin
19077 -- The field is an entity/itype
19079 if Nkind (N) in N_Entity then
19081 -- Itypes are always visited
19083 if Is_Itype (N) then
19084 Visit_Itype (N);
19086 -- An entity is visited when it is either a syntactic field
19087 -- or when the caller treats it as a semantic attribute.
19089 elsif Parent (N) = Par_Nod or else Semantic then
19090 Visit_Entity (N);
19091 end if;
19093 -- The field is a node
19095 else
19096 -- A node is visited when it is either a syntactic field or
19097 -- when the caller treats it as a semantic attribute.
19099 if Parent (N) = Par_Nod or else Semantic then
19100 Visit_Node (N);
19101 end if;
19102 end if;
19103 end;
19105 -- The field is an entity list
19107 elsif Field in Elist_Range then
19108 Visit_Elist (Elist_Id (Field));
19110 -- The field is a syntax list
19112 elsif Field in List_Range then
19113 declare
19114 List : constant List_Id := List_Id (Field);
19116 begin
19117 -- A syntax list is visited when it is either a syntactic field
19118 -- or when the caller treats it as a semantic attribute.
19120 if Parent (List) = Par_Nod or else Semantic then
19121 Visit_List (List);
19122 end if;
19123 end;
19125 -- Otherwise the field denotes information which does not need to be
19126 -- visited (chars, literals, etc.).
19128 else
19129 null;
19130 end if;
19131 end Visit_Field;
19133 -----------------
19134 -- Visit_Itype --
19135 -----------------
19137 procedure Visit_Itype (Itype : Entity_Id) is
19138 New_Assoc : Node_Id;
19139 New_Itype : Entity_Id;
19140 Old_Assoc : Node_Id;
19142 begin
19143 pragma Assert (Nkind (Itype) in N_Entity);
19144 pragma Assert (Is_Itype (Itype));
19146 -- Itypes that describe the designated type of access to subprograms
19147 -- have the structure of subprogram declarations, with signatures,
19148 -- etc. Either we duplicate the signatures completely, or choose to
19149 -- share such itypes, which is fine because their elaboration will
19150 -- have no side effects.
19152 if Ekind (Itype) = E_Subprogram_Type then
19153 return;
19155 -- Nothing to do if the itype was already visited
19157 elsif NCT_Tables_In_Use
19158 and then Present (NCT_New_Entities.Get (Itype))
19159 then
19160 return;
19162 -- Nothing to do if the associated node of the itype is not within
19163 -- the subtree being replicated.
19165 elsif not In_Subtree
19166 (N => Associated_Node_For_Itype (Itype),
19167 Root => Source)
19168 then
19169 return;
19170 end if;
19172 -- Create a new itype by directly copying the old itype. This action
19173 -- causes all attributes of the old itype to be inherited.
19175 New_Itype := New_Copy (Itype);
19177 -- Create a new name for the new itype because the back end requires
19178 -- distinct names for debugging purposes.
19180 Set_Chars (New_Itype, New_Internal_Name ('T'));
19182 -- Update the Comes_From_Source and Sloc attributes of the itype in
19183 -- case the caller has supplied new values.
19185 Update_CFS_Sloc (New_Itype);
19187 -- Establish the following mapping within table NCT_New_Entities:
19189 -- Itype -> New_Itype
19191 Add_New_Entity (Itype, New_Itype);
19193 -- The new itype must be unfrozen because the resulting subtree may
19194 -- be inserted anywhere and cause an earlier or later freezing.
19196 if Present (Freeze_Node (New_Itype)) then
19197 Set_Freeze_Node (New_Itype, Empty);
19198 Set_Is_Frozen (New_Itype, False);
19199 end if;
19201 -- If a record subtype is simply copied, the entity list will be
19202 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
19203 -- ??? What does this do?
19205 if Ekind_In (Itype, E_Class_Wide_Subtype, E_Record_Subtype) then
19206 Set_Cloned_Subtype (New_Itype, Itype);
19207 end if;
19209 -- The associated node may denote an entity, in which case it may
19210 -- already have a new corresponding entity created during a prior
19211 -- call to Visit_Entity or Visit_Itype for the same subtree.
19213 -- Given
19214 -- Old_Assoc ---------> New_Assoc
19216 -- Created by Visit_Itype
19217 -- Itype -------------> New_Itype
19218 -- ANFI = Old_Assoc ANFI = Old_Assoc < must be updated
19220 -- In the example above, Old_Assoc is an arbitrary entity that was
19221 -- already visited for the same subtree and has a corresponding new
19222 -- entity New_Assoc. Old_Assoc was inherited by New_Itype by virtue
19223 -- of copying entities, however it must be updated to New_Assoc.
19225 Old_Assoc := Associated_Node_For_Itype (Itype);
19227 if Nkind (Old_Assoc) in N_Entity then
19228 if NCT_Tables_In_Use then
19229 New_Assoc := NCT_New_Entities.Get (Old_Assoc);
19231 if Present (New_Assoc) then
19232 Set_Associated_Node_For_Itype (New_Itype, New_Assoc);
19233 end if;
19234 end if;
19236 -- Otherwise the associated node denotes a node. Postpone the update
19237 -- until Phase 2 when the node is replicated. Establish the following
19238 -- mapping within table NCT_Pending_Itypes:
19240 -- Old_Assoc -> (New_Type, ...)
19242 else
19243 Add_Pending_Itype (Old_Assoc, New_Itype);
19244 end if;
19246 -- Deal with the semantic fields of itypes. The fields are visited
19247 -- because they may mention entities that reside within the subtree
19248 -- being copied.
19250 Visit_Semantic_Fields (Itype);
19251 end Visit_Itype;
19253 ----------------
19254 -- Visit_List --
19255 ----------------
19257 procedure Visit_List (List : List_Id) is
19258 Elmt : Node_Id;
19260 begin
19261 -- Note that the element of a syntactic list is always a node, never
19262 -- an entity or itype, hence the call to Visit_Node.
19264 if Present (List) then
19265 Elmt := First (List);
19266 while Present (Elmt) loop
19267 Visit_Node (Elmt);
19269 Next (Elmt);
19270 end loop;
19271 end if;
19272 end Visit_List;
19274 ----------------
19275 -- Visit_Node --
19276 ----------------
19278 procedure Visit_Node (N : Node_Or_Entity_Id) is
19279 begin
19280 pragma Assert (Nkind (N) not in N_Entity);
19282 if Nkind (N) = N_Expression_With_Actions then
19283 EWA_Level := EWA_Level + 1;
19285 elsif EWA_Level > 0
19286 and then Nkind_In (N, N_Block_Statement,
19287 N_Subprogram_Body,
19288 N_Subprogram_Declaration)
19289 then
19290 EWA_Inner_Scope_Level := EWA_Inner_Scope_Level + 1;
19291 end if;
19293 Visit_Field
19294 (Field => Field1 (N),
19295 Par_Nod => N);
19297 Visit_Field
19298 (Field => Field2 (N),
19299 Par_Nod => N);
19301 Visit_Field
19302 (Field => Field3 (N),
19303 Par_Nod => N);
19305 Visit_Field
19306 (Field => Field4 (N),
19307 Par_Nod => N);
19309 Visit_Field
19310 (Field => Field5 (N),
19311 Par_Nod => N);
19313 if EWA_Level > 0
19314 and then Nkind_In (N, N_Block_Statement,
19315 N_Subprogram_Body,
19316 N_Subprogram_Declaration)
19317 then
19318 EWA_Inner_Scope_Level := EWA_Inner_Scope_Level - 1;
19320 elsif Nkind (N) = N_Expression_With_Actions then
19321 EWA_Level := EWA_Level - 1;
19322 end if;
19323 end Visit_Node;
19325 ---------------------------
19326 -- Visit_Semantic_Fields --
19327 ---------------------------
19329 procedure Visit_Semantic_Fields (Id : Entity_Id) is
19330 begin
19331 pragma Assert (Nkind (Id) in N_Entity);
19333 -- Discriminant_Constraint
19335 if Has_Discriminants (Base_Type (Id)) then
19336 Visit_Field
19337 (Field => Union_Id (Discriminant_Constraint (Id)),
19338 Semantic => True);
19339 end if;
19341 -- Etype
19343 Visit_Field
19344 (Field => Union_Id (Etype (Id)),
19345 Semantic => True);
19347 -- First_Index
19348 -- Packed_Array_Impl_Type
19350 if Is_Array_Type (Id) then
19351 if Present (First_Index (Id)) then
19352 Visit_Field
19353 (Field => Union_Id (List_Containing (First_Index (Id))),
19354 Semantic => True);
19355 end if;
19357 if Is_Packed (Id) then
19358 Visit_Field
19359 (Field => Union_Id (Packed_Array_Impl_Type (Id)),
19360 Semantic => True);
19361 end if;
19362 end if;
19364 -- Scalar_Range
19366 if Is_Discrete_Type (Id) then
19367 Visit_Field
19368 (Field => Union_Id (Scalar_Range (Id)),
19369 Semantic => True);
19370 end if;
19371 end Visit_Semantic_Fields;
19373 -- Start of processing for New_Copy_Tree
19375 begin
19376 -- Routine New_Copy_Tree performs a deep copy of a subtree by creating
19377 -- shallow copies for each node within, and then updating the child and
19378 -- parent pointers accordingly. This process is straightforward, however
19379 -- the routine must deal with the following complications:
19381 -- * Entities defined within N_Expression_With_Actions nodes must be
19382 -- replicated rather than shared to avoid introducing two identical
19383 -- symbols within the same scope. Note that no other expression can
19384 -- currently define entities.
19386 -- do
19387 -- Source_Low : ...;
19388 -- Source_High : ...;
19390 -- <reference to Source_Low>
19391 -- <reference to Source_High>
19392 -- in ... end;
19394 -- New_Copy_Tree handles this case by first creating new entities
19395 -- and then updating all existing references to point to these new
19396 -- entities.
19398 -- do
19399 -- New_Low : ...;
19400 -- New_High : ...;
19402 -- <reference to New_Low>
19403 -- <reference to New_High>
19404 -- in ... end;
19406 -- * Itypes defined within the subtree must be replicated to avoid any
19407 -- dependencies on invalid or inaccessible data.
19409 -- subtype Source_Itype is ... range Source_Low .. Source_High;
19411 -- New_Copy_Tree handles this case by first creating a new itype in
19412 -- the same fashion as entities, and then updating various relevant
19413 -- constraints.
19415 -- subtype New_Itype is ... range New_Low .. New_High;
19417 -- * The Associated_Node_For_Itype field of itypes must be updated to
19418 -- reference the proper replicated entity or node.
19420 -- * Semantic fields of entities such as Etype and Scope must be
19421 -- updated to reference the proper replicated entities.
19423 -- * Semantic fields of nodes such as First_Real_Statement must be
19424 -- updated to reference the proper replicated nodes.
19426 -- To meet all these demands, routine New_Copy_Tree is split into two
19427 -- phases.
19429 -- Phase 1 traverses the tree in order to locate entities and itypes
19430 -- defined within the subtree. New entities are generated and saved in
19431 -- table NCT_New_Entities. The semantic fields of all new entities and
19432 -- itypes are then updated accordingly.
19434 -- Phase 2 traverses the tree in order to replicate each node. Various
19435 -- semantic fields of nodes and entities are updated accordingly.
19437 -- Preparatory phase. Clear the contents of tables NCT_New_Entities and
19438 -- NCT_Pending_Itypes in case a previous call to New_Copy_Tree left some
19439 -- data inside.
19441 if NCT_Tables_In_Use then
19442 NCT_Tables_In_Use := False;
19444 NCT_New_Entities.Reset;
19445 NCT_Pending_Itypes.Reset;
19446 end if;
19448 -- Populate tables NCT_New_Entities and NCT_Pending_Itypes with data
19449 -- supplied by a linear entity map. The tables offer faster access to
19450 -- the same data.
19452 Build_NCT_Tables (Map);
19454 -- Execute Phase 1. Traverse the subtree and generate new entities for
19455 -- the following cases:
19457 -- * An entity defined within an N_Expression_With_Actions node
19459 -- * An itype referenced within the subtree where the associated node
19460 -- is also in the subtree.
19462 -- All new entities are accessible via table NCT_New_Entities, which
19463 -- contains mappings of the form:
19465 -- Old_Entity -> New_Entity
19466 -- Old_Itype -> New_Itype
19468 -- In addition, the associated nodes of all new itypes are mapped in
19469 -- table NCT_Pending_Itypes:
19471 -- Assoc_Nod -> (New_Itype1, New_Itype2, .., New_ItypeN)
19473 Visit_Any_Node (Source);
19475 -- Update the semantic attributes of all new entities generated during
19476 -- Phase 1 before starting Phase 2. The updates could be performed in
19477 -- routine Corresponding_Entity, however this may cause the same entity
19478 -- to be updated multiple times, effectively generating useless nodes.
19479 -- Keeping the updates separates from Phase 2 ensures that only one set
19480 -- of attributes is generated for an entity at any one time.
19482 Update_New_Entities (Map);
19484 -- Execute Phase 2. Replicate the source subtree one node at a time.
19485 -- The following transformations take place:
19487 -- * References to entities and itypes are updated to refer to the
19488 -- new entities and itypes generated during Phase 1.
19490 -- * All Associated_Node_For_Itype attributes of itypes are updated
19491 -- to refer to the new replicated Associated_Node_For_Itype.
19493 return Copy_Node_With_Replacement (Source);
19494 end New_Copy_Tree;
19496 -------------------------
19497 -- New_External_Entity --
19498 -------------------------
19500 function New_External_Entity
19501 (Kind : Entity_Kind;
19502 Scope_Id : Entity_Id;
19503 Sloc_Value : Source_Ptr;
19504 Related_Id : Entity_Id;
19505 Suffix : Character;
19506 Suffix_Index : Nat := 0;
19507 Prefix : Character := ' ') return Entity_Id
19509 N : constant Entity_Id :=
19510 Make_Defining_Identifier (Sloc_Value,
19511 New_External_Name
19512 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
19514 begin
19515 Set_Ekind (N, Kind);
19516 Set_Is_Internal (N, True);
19517 Append_Entity (N, Scope_Id);
19518 Set_Public_Status (N);
19520 if Kind in Type_Kind then
19521 Init_Size_Align (N);
19522 end if;
19524 return N;
19525 end New_External_Entity;
19527 -------------------------
19528 -- New_Internal_Entity --
19529 -------------------------
19531 function New_Internal_Entity
19532 (Kind : Entity_Kind;
19533 Scope_Id : Entity_Id;
19534 Sloc_Value : Source_Ptr;
19535 Id_Char : Character) return Entity_Id
19537 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
19539 begin
19540 Set_Ekind (N, Kind);
19541 Set_Is_Internal (N, True);
19542 Append_Entity (N, Scope_Id);
19544 if Kind in Type_Kind then
19545 Init_Size_Align (N);
19546 end if;
19548 return N;
19549 end New_Internal_Entity;
19551 -----------------
19552 -- Next_Actual --
19553 -----------------
19555 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
19556 N : Node_Id;
19558 begin
19559 -- If we are pointing at a positional parameter, it is a member of a
19560 -- node list (the list of parameters), and the next parameter is the
19561 -- next node on the list, unless we hit a parameter association, then
19562 -- we shift to using the chain whose head is the First_Named_Actual in
19563 -- the parent, and then is threaded using the Next_Named_Actual of the
19564 -- Parameter_Association. All this fiddling is because the original node
19565 -- list is in the textual call order, and what we need is the
19566 -- declaration order.
19568 if Is_List_Member (Actual_Id) then
19569 N := Next (Actual_Id);
19571 if Nkind (N) = N_Parameter_Association then
19573 -- In case of a build-in-place call, the call will no longer be a
19574 -- call; it will have been rewritten.
19576 if Nkind_In (Parent (Actual_Id), N_Entry_Call_Statement,
19577 N_Function_Call,
19578 N_Procedure_Call_Statement)
19579 then
19580 return First_Named_Actual (Parent (Actual_Id));
19581 else
19582 return Empty;
19583 end if;
19584 else
19585 return N;
19586 end if;
19588 else
19589 return Next_Named_Actual (Parent (Actual_Id));
19590 end if;
19591 end Next_Actual;
19593 procedure Next_Actual (Actual_Id : in out Node_Id) is
19594 begin
19595 Actual_Id := Next_Actual (Actual_Id);
19596 end Next_Actual;
19598 -----------------
19599 -- Next_Global --
19600 -----------------
19602 function Next_Global (Node : Node_Id) return Node_Id is
19603 begin
19604 -- The global item may either be in a list, or by itself, in which case
19605 -- there is no next global item with the same mode.
19607 if Is_List_Member (Node) then
19608 return Next (Node);
19609 else
19610 return Empty;
19611 end if;
19612 end Next_Global;
19614 procedure Next_Global (Node : in out Node_Id) is
19615 begin
19616 Node := Next_Global (Node);
19617 end Next_Global;
19619 ----------------------------------
19620 -- New_Requires_Transient_Scope --
19621 ----------------------------------
19623 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
19624 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
19625 -- This is called for untagged records and protected types, with
19626 -- nondefaulted discriminants. Returns True if the size of function
19627 -- results is known at the call site, False otherwise. Returns False
19628 -- if there is a variant part that depends on the discriminants of
19629 -- this type, or if there is an array constrained by the discriminants
19630 -- of this type. ???Currently, this is overly conservative (the array
19631 -- could be nested inside some other record that is constrained by
19632 -- nondiscriminants). That is, the recursive calls are too conservative.
19634 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
19635 -- Returns True if Typ is a nonlimited record with defaulted
19636 -- discriminants whose max size makes it unsuitable for allocating on
19637 -- the primary stack.
19639 ------------------------------
19640 -- Caller_Known_Size_Record --
19641 ------------------------------
19643 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
19644 pragma Assert (Typ = Underlying_Type (Typ));
19646 begin
19647 if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
19648 return False;
19649 end if;
19651 declare
19652 Comp : Entity_Id;
19654 begin
19655 Comp := First_Entity (Typ);
19656 while Present (Comp) loop
19658 -- Only look at E_Component entities. No need to look at
19659 -- E_Discriminant entities, and we must ignore internal
19660 -- subtypes generated for constrained components.
19662 if Ekind (Comp) = E_Component then
19663 declare
19664 Comp_Type : constant Entity_Id :=
19665 Underlying_Type (Etype (Comp));
19667 begin
19668 if Is_Record_Type (Comp_Type)
19669 or else
19670 Is_Protected_Type (Comp_Type)
19671 then
19672 if not Caller_Known_Size_Record (Comp_Type) then
19673 return False;
19674 end if;
19676 elsif Is_Array_Type (Comp_Type) then
19677 if Size_Depends_On_Discriminant (Comp_Type) then
19678 return False;
19679 end if;
19680 end if;
19681 end;
19682 end if;
19684 Next_Entity (Comp);
19685 end loop;
19686 end;
19688 return True;
19689 end Caller_Known_Size_Record;
19691 ------------------------------
19692 -- Large_Max_Size_Mutable --
19693 ------------------------------
19695 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
19696 pragma Assert (Typ = Underlying_Type (Typ));
19698 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
19699 -- Returns true if the discrete type T has a large range
19701 ----------------------------
19702 -- Is_Large_Discrete_Type --
19703 ----------------------------
19705 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
19706 Threshold : constant Int := 16;
19707 -- Arbitrary threshold above which we consider it "large". We want
19708 -- a fairly large threshold, because these large types really
19709 -- shouldn't have default discriminants in the first place, in
19710 -- most cases.
19712 begin
19713 return UI_To_Int (RM_Size (T)) > Threshold;
19714 end Is_Large_Discrete_Type;
19716 -- Start of processing for Large_Max_Size_Mutable
19718 begin
19719 if Is_Record_Type (Typ)
19720 and then not Is_Limited_View (Typ)
19721 and then Has_Defaulted_Discriminants (Typ)
19722 then
19723 -- Loop through the components, looking for an array whose upper
19724 -- bound(s) depends on discriminants, where both the subtype of
19725 -- the discriminant and the index subtype are too large.
19727 declare
19728 Comp : Entity_Id;
19730 begin
19731 Comp := First_Entity (Typ);
19732 while Present (Comp) loop
19733 if Ekind (Comp) = E_Component then
19734 declare
19735 Comp_Type : constant Entity_Id :=
19736 Underlying_Type (Etype (Comp));
19738 Hi : Node_Id;
19739 Indx : Node_Id;
19740 Ityp : Entity_Id;
19742 begin
19743 if Is_Array_Type (Comp_Type) then
19744 Indx := First_Index (Comp_Type);
19746 while Present (Indx) loop
19747 Ityp := Etype (Indx);
19748 Hi := Type_High_Bound (Ityp);
19750 if Nkind (Hi) = N_Identifier
19751 and then Ekind (Entity (Hi)) = E_Discriminant
19752 and then Is_Large_Discrete_Type (Ityp)
19753 and then Is_Large_Discrete_Type
19754 (Etype (Entity (Hi)))
19755 then
19756 return True;
19757 end if;
19759 Next_Index (Indx);
19760 end loop;
19761 end if;
19762 end;
19763 end if;
19765 Next_Entity (Comp);
19766 end loop;
19767 end;
19768 end if;
19770 return False;
19771 end Large_Max_Size_Mutable;
19773 -- Local declarations
19775 Typ : constant Entity_Id := Underlying_Type (Id);
19777 -- Start of processing for New_Requires_Transient_Scope
19779 begin
19780 -- This is a private type which is not completed yet. This can only
19781 -- happen in a default expression (of a formal parameter or of a
19782 -- record component). Do not expand transient scope in this case.
19784 if No (Typ) then
19785 return False;
19787 -- Do not expand transient scope for non-existent procedure return or
19788 -- string literal types.
19790 elsif Typ = Standard_Void_Type
19791 or else Ekind (Typ) = E_String_Literal_Subtype
19792 then
19793 return False;
19795 -- If Typ is a generic formal incomplete type, then we want to look at
19796 -- the actual type.
19798 elsif Ekind (Typ) = E_Record_Subtype
19799 and then Present (Cloned_Subtype (Typ))
19800 then
19801 return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
19803 -- Functions returning specific tagged types may dispatch on result, so
19804 -- their returned value is allocated on the secondary stack, even in the
19805 -- definite case. We must treat nondispatching functions the same way,
19806 -- because access-to-function types can point at both, so the calling
19807 -- conventions must be compatible. Is_Tagged_Type includes controlled
19808 -- types and class-wide types. Controlled type temporaries need
19809 -- finalization.
19811 -- ???It's not clear why we need to return noncontrolled types with
19812 -- controlled components on the secondary stack.
19814 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
19815 return True;
19817 -- Untagged definite subtypes are known size. This includes all
19818 -- elementary [sub]types. Tasks are known size even if they have
19819 -- discriminants. So we return False here, with one exception:
19820 -- For a type like:
19821 -- type T (Last : Natural := 0) is
19822 -- X : String (1 .. Last);
19823 -- end record;
19824 -- we return True. That's because for "P(F(...));", where F returns T,
19825 -- we don't know the size of the result at the call site, so if we
19826 -- allocated it on the primary stack, we would have to allocate the
19827 -- maximum size, which is way too big.
19829 elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
19830 return Large_Max_Size_Mutable (Typ);
19832 -- Indefinite (discriminated) untagged record or protected type
19834 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
19835 return not Caller_Known_Size_Record (Typ);
19837 -- Unconstrained array
19839 else
19840 pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
19841 return True;
19842 end if;
19843 end New_Requires_Transient_Scope;
19845 --------------------------
19846 -- No_Heap_Finalization --
19847 --------------------------
19849 function No_Heap_Finalization (Typ : Entity_Id) return Boolean is
19850 begin
19851 if Ekind_In (Typ, E_Access_Type, E_General_Access_Type)
19852 and then Is_Library_Level_Entity (Typ)
19853 then
19854 -- A global No_Heap_Finalization pragma applies to all library-level
19855 -- named access-to-object types.
19857 if Present (No_Heap_Finalization_Pragma) then
19858 return True;
19860 -- The library-level named access-to-object type itself is subject to
19861 -- pragma No_Heap_Finalization.
19863 elsif Present (Get_Pragma (Typ, Pragma_No_Heap_Finalization)) then
19864 return True;
19865 end if;
19866 end if;
19868 return False;
19869 end No_Heap_Finalization;
19871 -----------------------
19872 -- Normalize_Actuals --
19873 -----------------------
19875 -- Chain actuals according to formals of subprogram. If there are no named
19876 -- associations, the chain is simply the list of Parameter Associations,
19877 -- since the order is the same as the declaration order. If there are named
19878 -- associations, then the First_Named_Actual field in the N_Function_Call
19879 -- or N_Procedure_Call_Statement node points to the Parameter_Association
19880 -- node for the parameter that comes first in declaration order. The
19881 -- remaining named parameters are then chained in declaration order using
19882 -- Next_Named_Actual.
19884 -- This routine also verifies that the number of actuals is compatible with
19885 -- the number and default values of formals, but performs no type checking
19886 -- (type checking is done by the caller).
19888 -- If the matching succeeds, Success is set to True and the caller proceeds
19889 -- with type-checking. If the match is unsuccessful, then Success is set to
19890 -- False, and the caller attempts a different interpretation, if there is
19891 -- one.
19893 -- If the flag Report is on, the call is not overloaded, and a failure to
19894 -- match can be reported here, rather than in the caller.
19896 procedure Normalize_Actuals
19897 (N : Node_Id;
19898 S : Entity_Id;
19899 Report : Boolean;
19900 Success : out Boolean)
19902 Actuals : constant List_Id := Parameter_Associations (N);
19903 Actual : Node_Id := Empty;
19904 Formal : Entity_Id;
19905 Last : Node_Id := Empty;
19906 First_Named : Node_Id := Empty;
19907 Found : Boolean;
19909 Formals_To_Match : Integer := 0;
19910 Actuals_To_Match : Integer := 0;
19912 procedure Chain (A : Node_Id);
19913 -- Add named actual at the proper place in the list, using the
19914 -- Next_Named_Actual link.
19916 function Reporting return Boolean;
19917 -- Determines if an error is to be reported. To report an error, we
19918 -- need Report to be True, and also we do not report errors caused
19919 -- by calls to init procs that occur within other init procs. Such
19920 -- errors must always be cascaded errors, since if all the types are
19921 -- declared correctly, the compiler will certainly build decent calls.
19923 -----------
19924 -- Chain --
19925 -----------
19927 procedure Chain (A : Node_Id) is
19928 begin
19929 if No (Last) then
19931 -- Call node points to first actual in list
19933 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
19935 else
19936 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
19937 end if;
19939 Last := A;
19940 Set_Next_Named_Actual (Last, Empty);
19941 end Chain;
19943 ---------------
19944 -- Reporting --
19945 ---------------
19947 function Reporting return Boolean is
19948 begin
19949 if not Report then
19950 return False;
19952 elsif not Within_Init_Proc then
19953 return True;
19955 elsif Is_Init_Proc (Entity (Name (N))) then
19956 return False;
19958 else
19959 return True;
19960 end if;
19961 end Reporting;
19963 -- Start of processing for Normalize_Actuals
19965 begin
19966 if Is_Access_Type (S) then
19968 -- The name in the call is a function call that returns an access
19969 -- to subprogram. The designated type has the list of formals.
19971 Formal := First_Formal (Designated_Type (S));
19972 else
19973 Formal := First_Formal (S);
19974 end if;
19976 while Present (Formal) loop
19977 Formals_To_Match := Formals_To_Match + 1;
19978 Next_Formal (Formal);
19979 end loop;
19981 -- Find if there is a named association, and verify that no positional
19982 -- associations appear after named ones.
19984 if Present (Actuals) then
19985 Actual := First (Actuals);
19986 end if;
19988 while Present (Actual)
19989 and then Nkind (Actual) /= N_Parameter_Association
19990 loop
19991 Actuals_To_Match := Actuals_To_Match + 1;
19992 Next (Actual);
19993 end loop;
19995 if No (Actual) and Actuals_To_Match = Formals_To_Match then
19997 -- Most common case: positional notation, no defaults
19999 Success := True;
20000 return;
20002 elsif Actuals_To_Match > Formals_To_Match then
20004 -- Too many actuals: will not work
20006 if Reporting then
20007 if Is_Entity_Name (Name (N)) then
20008 Error_Msg_N ("too many arguments in call to&", Name (N));
20009 else
20010 Error_Msg_N ("too many arguments in call", N);
20011 end if;
20012 end if;
20014 Success := False;
20015 return;
20016 end if;
20018 First_Named := Actual;
20020 while Present (Actual) loop
20021 if Nkind (Actual) /= N_Parameter_Association then
20022 Error_Msg_N
20023 ("positional parameters not allowed after named ones", Actual);
20024 Success := False;
20025 return;
20027 else
20028 Actuals_To_Match := Actuals_To_Match + 1;
20029 end if;
20031 Next (Actual);
20032 end loop;
20034 if Present (Actuals) then
20035 Actual := First (Actuals);
20036 end if;
20038 Formal := First_Formal (S);
20039 while Present (Formal) loop
20041 -- Match the formals in order. If the corresponding actual is
20042 -- positional, nothing to do. Else scan the list of named actuals
20043 -- to find the one with the right name.
20045 if Present (Actual)
20046 and then Nkind (Actual) /= N_Parameter_Association
20047 then
20048 Next (Actual);
20049 Actuals_To_Match := Actuals_To_Match - 1;
20050 Formals_To_Match := Formals_To_Match - 1;
20052 else
20053 -- For named parameters, search the list of actuals to find
20054 -- one that matches the next formal name.
20056 Actual := First_Named;
20057 Found := False;
20058 while Present (Actual) loop
20059 if Chars (Selector_Name (Actual)) = Chars (Formal) then
20060 Found := True;
20061 Chain (Actual);
20062 Actuals_To_Match := Actuals_To_Match - 1;
20063 Formals_To_Match := Formals_To_Match - 1;
20064 exit;
20065 end if;
20067 Next (Actual);
20068 end loop;
20070 if not Found then
20071 if Ekind (Formal) /= E_In_Parameter
20072 or else No (Default_Value (Formal))
20073 then
20074 if Reporting then
20075 if (Comes_From_Source (S)
20076 or else Sloc (S) = Standard_Location)
20077 and then Is_Overloadable (S)
20078 then
20079 if No (Actuals)
20080 and then
20081 Nkind_In (Parent (N), N_Procedure_Call_Statement,
20082 N_Function_Call,
20083 N_Parameter_Association)
20084 and then Ekind (S) /= E_Function
20085 then
20086 Set_Etype (N, Etype (S));
20088 else
20089 Error_Msg_Name_1 := Chars (S);
20090 Error_Msg_Sloc := Sloc (S);
20091 Error_Msg_NE
20092 ("missing argument for parameter & "
20093 & "in call to % declared #", N, Formal);
20094 end if;
20096 elsif Is_Overloadable (S) then
20097 Error_Msg_Name_1 := Chars (S);
20099 -- Point to type derivation that generated the
20100 -- operation.
20102 Error_Msg_Sloc := Sloc (Parent (S));
20104 Error_Msg_NE
20105 ("missing argument for parameter & "
20106 & "in call to % (inherited) #", N, Formal);
20108 else
20109 Error_Msg_NE
20110 ("missing argument for parameter &", N, Formal);
20111 end if;
20112 end if;
20114 Success := False;
20115 return;
20117 else
20118 Formals_To_Match := Formals_To_Match - 1;
20119 end if;
20120 end if;
20121 end if;
20123 Next_Formal (Formal);
20124 end loop;
20126 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
20127 Success := True;
20128 return;
20130 else
20131 if Reporting then
20133 -- Find some superfluous named actual that did not get
20134 -- attached to the list of associations.
20136 Actual := First (Actuals);
20137 while Present (Actual) loop
20138 if Nkind (Actual) = N_Parameter_Association
20139 and then Actual /= Last
20140 and then No (Next_Named_Actual (Actual))
20141 then
20142 -- A validity check may introduce a copy of a call that
20143 -- includes an extra actual (for example for an unrelated
20144 -- accessibility check). Check that the extra actual matches
20145 -- some extra formal, which must exist already because
20146 -- subprogram must be frozen at this point.
20148 if Present (Extra_Formals (S))
20149 and then not Comes_From_Source (Actual)
20150 and then Nkind (Actual) = N_Parameter_Association
20151 and then Chars (Extra_Formals (S)) =
20152 Chars (Selector_Name (Actual))
20153 then
20154 null;
20155 else
20156 Error_Msg_N
20157 ("unmatched actual & in call", Selector_Name (Actual));
20158 exit;
20159 end if;
20160 end if;
20162 Next (Actual);
20163 end loop;
20164 end if;
20166 Success := False;
20167 return;
20168 end if;
20169 end Normalize_Actuals;
20171 --------------------------------
20172 -- Note_Possible_Modification --
20173 --------------------------------
20175 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
20176 Modification_Comes_From_Source : constant Boolean :=
20177 Comes_From_Source (Parent (N));
20179 Ent : Entity_Id;
20180 Exp : Node_Id;
20182 begin
20183 -- Loop to find referenced entity, if there is one
20185 Exp := N;
20186 loop
20187 Ent := Empty;
20189 if Is_Entity_Name (Exp) then
20190 Ent := Entity (Exp);
20192 -- If the entity is missing, it is an undeclared identifier,
20193 -- and there is nothing to annotate.
20195 if No (Ent) then
20196 return;
20197 end if;
20199 elsif Nkind (Exp) = N_Explicit_Dereference then
20200 declare
20201 P : constant Node_Id := Prefix (Exp);
20203 begin
20204 -- In formal verification mode, keep track of all reads and
20205 -- writes through explicit dereferences.
20207 if GNATprove_Mode then
20208 SPARK_Specific.Generate_Dereference (N, 'm');
20209 end if;
20211 if Nkind (P) = N_Selected_Component
20212 and then Present (Entry_Formal (Entity (Selector_Name (P))))
20213 then
20214 -- Case of a reference to an entry formal
20216 Ent := Entry_Formal (Entity (Selector_Name (P)));
20218 elsif Nkind (P) = N_Identifier
20219 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
20220 and then Present (Expression (Parent (Entity (P))))
20221 and then Nkind (Expression (Parent (Entity (P)))) =
20222 N_Reference
20223 then
20224 -- Case of a reference to a value on which side effects have
20225 -- been removed.
20227 Exp := Prefix (Expression (Parent (Entity (P))));
20228 goto Continue;
20230 else
20231 return;
20232 end if;
20233 end;
20235 elsif Nkind_In (Exp, N_Type_Conversion,
20236 N_Unchecked_Type_Conversion)
20237 then
20238 Exp := Expression (Exp);
20239 goto Continue;
20241 elsif Nkind_In (Exp, N_Slice,
20242 N_Indexed_Component,
20243 N_Selected_Component)
20244 then
20245 -- Special check, if the prefix is an access type, then return
20246 -- since we are modifying the thing pointed to, not the prefix.
20247 -- When we are expanding, most usually the prefix is replaced
20248 -- by an explicit dereference, and this test is not needed, but
20249 -- in some cases (notably -gnatc mode and generics) when we do
20250 -- not do full expansion, we need this special test.
20252 if Is_Access_Type (Etype (Prefix (Exp))) then
20253 return;
20255 -- Otherwise go to prefix and keep going
20257 else
20258 Exp := Prefix (Exp);
20259 goto Continue;
20260 end if;
20262 -- All other cases, not a modification
20264 else
20265 return;
20266 end if;
20268 -- Now look for entity being referenced
20270 if Present (Ent) then
20271 if Is_Object (Ent) then
20272 if Comes_From_Source (Exp)
20273 or else Modification_Comes_From_Source
20274 then
20275 -- Give warning if pragma unmodified is given and we are
20276 -- sure this is a modification.
20278 if Has_Pragma_Unmodified (Ent) and then Sure then
20280 -- Note that the entity may be present only as a result
20281 -- of pragma Unused.
20283 if Has_Pragma_Unused (Ent) then
20284 Error_Msg_NE ("??pragma Unused given for &!", N, Ent);
20285 else
20286 Error_Msg_NE
20287 ("??pragma Unmodified given for &!", N, Ent);
20288 end if;
20289 end if;
20291 Set_Never_Set_In_Source (Ent, False);
20292 end if;
20294 Set_Is_True_Constant (Ent, False);
20295 Set_Current_Value (Ent, Empty);
20296 Set_Is_Known_Null (Ent, False);
20298 if not Can_Never_Be_Null (Ent) then
20299 Set_Is_Known_Non_Null (Ent, False);
20300 end if;
20302 -- Follow renaming chain
20304 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
20305 and then Present (Renamed_Object (Ent))
20306 then
20307 Exp := Renamed_Object (Ent);
20309 -- If the entity is the loop variable in an iteration over
20310 -- a container, retrieve container expression to indicate
20311 -- possible modification.
20313 if Present (Related_Expression (Ent))
20314 and then Nkind (Parent (Related_Expression (Ent))) =
20315 N_Iterator_Specification
20316 then
20317 Exp := Original_Node (Related_Expression (Ent));
20318 end if;
20320 goto Continue;
20322 -- The expression may be the renaming of a subcomponent of an
20323 -- array or container. The assignment to the subcomponent is
20324 -- a modification of the container.
20326 elsif Comes_From_Source (Original_Node (Exp))
20327 and then Nkind_In (Original_Node (Exp), N_Selected_Component,
20328 N_Indexed_Component)
20329 then
20330 Exp := Prefix (Original_Node (Exp));
20331 goto Continue;
20332 end if;
20334 -- Generate a reference only if the assignment comes from
20335 -- source. This excludes, for example, calls to a dispatching
20336 -- assignment operation when the left-hand side is tagged. In
20337 -- GNATprove mode, we need those references also on generated
20338 -- code, as these are used to compute the local effects of
20339 -- subprograms.
20341 if Modification_Comes_From_Source or GNATprove_Mode then
20342 Generate_Reference (Ent, Exp, 'm');
20344 -- If the target of the assignment is the bound variable
20345 -- in an iterator, indicate that the corresponding array
20346 -- or container is also modified.
20348 if Ada_Version >= Ada_2012
20349 and then Nkind (Parent (Ent)) = N_Iterator_Specification
20350 then
20351 declare
20352 Domain : constant Node_Id := Name (Parent (Ent));
20354 begin
20355 -- TBD : in the full version of the construct, the
20356 -- domain of iteration can be given by an expression.
20358 if Is_Entity_Name (Domain) then
20359 Generate_Reference (Entity (Domain), Exp, 'm');
20360 Set_Is_True_Constant (Entity (Domain), False);
20361 Set_Never_Set_In_Source (Entity (Domain), False);
20362 end if;
20363 end;
20364 end if;
20365 end if;
20366 end if;
20368 Kill_Checks (Ent);
20370 -- If we are sure this is a modification from source, and we know
20371 -- this modifies a constant, then give an appropriate warning.
20373 if Sure
20374 and then Modification_Comes_From_Source
20375 and then Overlays_Constant (Ent)
20376 and then Address_Clause_Overlay_Warnings
20377 then
20378 declare
20379 Addr : constant Node_Id := Address_Clause (Ent);
20380 O_Ent : Entity_Id;
20381 Off : Boolean;
20383 begin
20384 Find_Overlaid_Entity (Addr, O_Ent, Off);
20386 Error_Msg_Sloc := Sloc (Addr);
20387 Error_Msg_NE
20388 ("??constant& may be modified via address clause#",
20389 N, O_Ent);
20390 end;
20391 end if;
20393 return;
20394 end if;
20396 <<Continue>>
20397 null;
20398 end loop;
20399 end Note_Possible_Modification;
20401 -----------------
20402 -- Null_Status --
20403 -----------------
20405 function Null_Status (N : Node_Id) return Null_Status_Kind is
20406 function Is_Null_Excluding_Def (Def : Node_Id) return Boolean;
20407 -- Determine whether definition Def carries a null exclusion
20409 function Null_Status_Of_Entity (Id : Entity_Id) return Null_Status_Kind;
20410 -- Determine the null status of arbitrary entity Id
20412 function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind;
20413 -- Determine the null status of type Typ
20415 ---------------------------
20416 -- Is_Null_Excluding_Def --
20417 ---------------------------
20419 function Is_Null_Excluding_Def (Def : Node_Id) return Boolean is
20420 begin
20421 return
20422 Nkind_In (Def, N_Access_Definition,
20423 N_Access_Function_Definition,
20424 N_Access_Procedure_Definition,
20425 N_Access_To_Object_Definition,
20426 N_Component_Definition,
20427 N_Derived_Type_Definition)
20428 and then Null_Exclusion_Present (Def);
20429 end Is_Null_Excluding_Def;
20431 ---------------------------
20432 -- Null_Status_Of_Entity --
20433 ---------------------------
20435 function Null_Status_Of_Entity
20436 (Id : Entity_Id) return Null_Status_Kind
20438 Decl : constant Node_Id := Declaration_Node (Id);
20439 Def : Node_Id;
20441 begin
20442 -- The value of an imported or exported entity may be set externally
20443 -- regardless of a null exclusion. As a result, the value cannot be
20444 -- determined statically.
20446 if Is_Imported (Id) or else Is_Exported (Id) then
20447 return Unknown;
20449 elsif Nkind_In (Decl, N_Component_Declaration,
20450 N_Discriminant_Specification,
20451 N_Formal_Object_Declaration,
20452 N_Object_Declaration,
20453 N_Object_Renaming_Declaration,
20454 N_Parameter_Specification)
20455 then
20456 -- A component declaration yields a non-null value when either
20457 -- its component definition or access definition carries a null
20458 -- exclusion.
20460 if Nkind (Decl) = N_Component_Declaration then
20461 Def := Component_Definition (Decl);
20463 if Is_Null_Excluding_Def (Def) then
20464 return Is_Non_Null;
20465 end if;
20467 Def := Access_Definition (Def);
20469 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20470 return Is_Non_Null;
20471 end if;
20473 -- A formal object declaration yields a non-null value if its
20474 -- access definition carries a null exclusion. If the object is
20475 -- default initialized, then the value depends on the expression.
20477 elsif Nkind (Decl) = N_Formal_Object_Declaration then
20478 Def := Access_Definition (Decl);
20480 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20481 return Is_Non_Null;
20482 end if;
20484 -- A constant may yield a null or non-null value depending on its
20485 -- initialization expression.
20487 elsif Ekind (Id) = E_Constant then
20488 return Null_Status (Constant_Value (Id));
20490 -- The construct yields a non-null value when it has a null
20491 -- exclusion.
20493 elsif Null_Exclusion_Present (Decl) then
20494 return Is_Non_Null;
20496 -- An object renaming declaration yields a non-null value if its
20497 -- access definition carries a null exclusion. Otherwise the value
20498 -- depends on the renamed name.
20500 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
20501 Def := Access_Definition (Decl);
20503 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20504 return Is_Non_Null;
20506 else
20507 return Null_Status (Name (Decl));
20508 end if;
20509 end if;
20510 end if;
20512 -- At this point the declaration of the entity does not carry a null
20513 -- exclusion and lacks an initialization expression. Check the status
20514 -- of its type.
20516 return Null_Status_Of_Type (Etype (Id));
20517 end Null_Status_Of_Entity;
20519 -------------------------
20520 -- Null_Status_Of_Type --
20521 -------------------------
20523 function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind is
20524 Curr : Entity_Id;
20525 Decl : Node_Id;
20527 begin
20528 -- Traverse the type chain looking for types with null exclusion
20530 Curr := Typ;
20531 while Present (Curr) and then Etype (Curr) /= Curr loop
20532 Decl := Parent (Curr);
20534 -- Guard against itypes which do not always have declarations. A
20535 -- type yields a non-null value if it carries a null exclusion.
20537 if Present (Decl) then
20538 if Nkind (Decl) = N_Full_Type_Declaration
20539 and then Is_Null_Excluding_Def (Type_Definition (Decl))
20540 then
20541 return Is_Non_Null;
20543 elsif Nkind (Decl) = N_Subtype_Declaration
20544 and then Null_Exclusion_Present (Decl)
20545 then
20546 return Is_Non_Null;
20547 end if;
20548 end if;
20550 Curr := Etype (Curr);
20551 end loop;
20553 -- The type chain does not contain any null excluding types
20555 return Unknown;
20556 end Null_Status_Of_Type;
20558 -- Start of processing for Null_Status
20560 begin
20561 -- An allocator always creates a non-null value
20563 if Nkind (N) = N_Allocator then
20564 return Is_Non_Null;
20566 -- Taking the 'Access of something yields a non-null value
20568 elsif Nkind (N) = N_Attribute_Reference
20569 and then Nam_In (Attribute_Name (N), Name_Access,
20570 Name_Unchecked_Access,
20571 Name_Unrestricted_Access)
20572 then
20573 return Is_Non_Null;
20575 -- "null" yields null
20577 elsif Nkind (N) = N_Null then
20578 return Is_Null;
20580 -- Check the status of the operand of a type conversion
20582 elsif Nkind (N) = N_Type_Conversion then
20583 return Null_Status (Expression (N));
20585 -- The input denotes a reference to an entity. Determine whether the
20586 -- entity or its type yields a null or non-null value.
20588 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
20589 return Null_Status_Of_Entity (Entity (N));
20590 end if;
20592 -- Otherwise it is not possible to determine the null status of the
20593 -- subexpression at compile time without resorting to simple flow
20594 -- analysis.
20596 return Unknown;
20597 end Null_Status;
20599 --------------------------------------
20600 -- Null_To_Null_Address_Convert_OK --
20601 --------------------------------------
20603 function Null_To_Null_Address_Convert_OK
20604 (N : Node_Id;
20605 Typ : Entity_Id := Empty) return Boolean
20607 begin
20608 if not Relaxed_RM_Semantics then
20609 return False;
20610 end if;
20612 if Nkind (N) = N_Null then
20613 return Present (Typ) and then Is_Descendant_Of_Address (Typ);
20615 elsif Nkind_In (N, N_Op_Eq, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt, N_Op_Ne)
20616 then
20617 declare
20618 L : constant Node_Id := Left_Opnd (N);
20619 R : constant Node_Id := Right_Opnd (N);
20621 begin
20622 -- We check the Etype of the complementary operand since the
20623 -- N_Null node is not decorated at this stage.
20625 return
20626 ((Nkind (L) = N_Null
20627 and then Is_Descendant_Of_Address (Etype (R)))
20628 or else
20629 (Nkind (R) = N_Null
20630 and then Is_Descendant_Of_Address (Etype (L))));
20631 end;
20632 end if;
20634 return False;
20635 end Null_To_Null_Address_Convert_OK;
20637 ---------------------------------
20638 -- Number_Of_Elements_In_Array --
20639 ---------------------------------
20641 function Number_Of_Elements_In_Array (T : Entity_Id) return Int is
20642 Indx : Node_Id;
20643 Typ : Entity_Id;
20644 Low : Node_Id;
20645 High : Node_Id;
20646 Num : Int := 1;
20648 begin
20649 pragma Assert (Is_Array_Type (T));
20651 Indx := First_Index (T);
20652 while Present (Indx) loop
20653 Typ := Underlying_Type (Etype (Indx));
20655 -- Never look at junk bounds of a generic type
20657 if Is_Generic_Type (Typ) then
20658 return 0;
20659 end if;
20661 -- Check the array bounds are known at compile time and return zero
20662 -- if they are not.
20664 Low := Type_Low_Bound (Typ);
20665 High := Type_High_Bound (Typ);
20667 if not Compile_Time_Known_Value (Low) then
20668 return 0;
20669 elsif not Compile_Time_Known_Value (High) then
20670 return 0;
20671 else
20672 Num :=
20673 Num * UI_To_Int ((Expr_Value (High) - Expr_Value (Low) + 1));
20674 end if;
20676 Next_Index (Indx);
20677 end loop;
20679 return Num;
20680 end Number_Of_Elements_In_Array;
20682 -------------------------
20683 -- Object_Access_Level --
20684 -------------------------
20686 -- Returns the static accessibility level of the view denoted by Obj. Note
20687 -- that the value returned is the result of a call to Scope_Depth. Only
20688 -- scope depths associated with dynamic scopes can actually be returned.
20689 -- Since only relative levels matter for accessibility checking, the fact
20690 -- that the distance between successive levels of accessibility is not
20691 -- always one is immaterial (invariant: if level(E2) is deeper than
20692 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
20694 function Object_Access_Level (Obj : Node_Id) return Uint is
20695 function Is_Interface_Conversion (N : Node_Id) return Boolean;
20696 -- Determine whether N is a construct of the form
20697 -- Some_Type (Operand._tag'Address)
20698 -- This construct appears in the context of dispatching calls.
20700 function Reference_To (Obj : Node_Id) return Node_Id;
20701 -- An explicit dereference is created when removing side effects from
20702 -- expressions for constraint checking purposes. In this case a local
20703 -- access type is created for it. The correct access level is that of
20704 -- the original source node. We detect this case by noting that the
20705 -- prefix of the dereference is created by an object declaration whose
20706 -- initial expression is a reference.
20708 -----------------------------
20709 -- Is_Interface_Conversion --
20710 -----------------------------
20712 function Is_Interface_Conversion (N : Node_Id) return Boolean is
20713 begin
20714 return Nkind (N) = N_Unchecked_Type_Conversion
20715 and then Nkind (Expression (N)) = N_Attribute_Reference
20716 and then Attribute_Name (Expression (N)) = Name_Address;
20717 end Is_Interface_Conversion;
20719 ------------------
20720 -- Reference_To --
20721 ------------------
20723 function Reference_To (Obj : Node_Id) return Node_Id is
20724 Pref : constant Node_Id := Prefix (Obj);
20725 begin
20726 if Is_Entity_Name (Pref)
20727 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
20728 and then Present (Expression (Parent (Entity (Pref))))
20729 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
20730 then
20731 return (Prefix (Expression (Parent (Entity (Pref)))));
20732 else
20733 return Empty;
20734 end if;
20735 end Reference_To;
20737 -- Local variables
20739 E : Entity_Id;
20741 -- Start of processing for Object_Access_Level
20743 begin
20744 if Nkind (Obj) = N_Defining_Identifier
20745 or else Is_Entity_Name (Obj)
20746 then
20747 if Nkind (Obj) = N_Defining_Identifier then
20748 E := Obj;
20749 else
20750 E := Entity (Obj);
20751 end if;
20753 if Is_Prival (E) then
20754 E := Prival_Link (E);
20755 end if;
20757 -- If E is a type then it denotes a current instance. For this case
20758 -- we add one to the normal accessibility level of the type to ensure
20759 -- that current instances are treated as always being deeper than
20760 -- than the level of any visible named access type (see 3.10.2(21)).
20762 if Is_Type (E) then
20763 return Type_Access_Level (E) + 1;
20765 elsif Present (Renamed_Object (E)) then
20766 return Object_Access_Level (Renamed_Object (E));
20768 -- Similarly, if E is a component of the current instance of a
20769 -- protected type, any instance of it is assumed to be at a deeper
20770 -- level than the type. For a protected object (whose type is an
20771 -- anonymous protected type) its components are at the same level
20772 -- as the type itself.
20774 elsif not Is_Overloadable (E)
20775 and then Ekind (Scope (E)) = E_Protected_Type
20776 and then Comes_From_Source (Scope (E))
20777 then
20778 return Type_Access_Level (Scope (E)) + 1;
20780 else
20781 -- Aliased formals of functions take their access level from the
20782 -- point of call, i.e. require a dynamic check. For static check
20783 -- purposes, this is smaller than the level of the subprogram
20784 -- itself. For procedures the aliased makes no difference.
20786 if Is_Formal (E)
20787 and then Is_Aliased (E)
20788 and then Ekind (Scope (E)) = E_Function
20789 then
20790 return Type_Access_Level (Etype (E));
20792 else
20793 return Scope_Depth (Enclosing_Dynamic_Scope (E));
20794 end if;
20795 end if;
20797 elsif Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
20798 if Is_Access_Type (Etype (Prefix (Obj))) then
20799 return Type_Access_Level (Etype (Prefix (Obj)));
20800 else
20801 return Object_Access_Level (Prefix (Obj));
20802 end if;
20804 elsif Nkind (Obj) = N_Explicit_Dereference then
20806 -- If the prefix is a selected access discriminant then we make a
20807 -- recursive call on the prefix, which will in turn check the level
20808 -- of the prefix object of the selected discriminant.
20810 -- In Ada 2012, if the discriminant has implicit dereference and
20811 -- the context is a selected component, treat this as an object of
20812 -- unknown scope (see below). This is necessary in compile-only mode;
20813 -- otherwise expansion will already have transformed the prefix into
20814 -- a temporary.
20816 if Nkind (Prefix (Obj)) = N_Selected_Component
20817 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
20818 and then
20819 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
20820 and then
20821 (not Has_Implicit_Dereference
20822 (Entity (Selector_Name (Prefix (Obj))))
20823 or else Nkind (Parent (Obj)) /= N_Selected_Component)
20824 then
20825 return Object_Access_Level (Prefix (Obj));
20827 -- Detect an interface conversion in the context of a dispatching
20828 -- call. Use the original form of the conversion to find the access
20829 -- level of the operand.
20831 elsif Is_Interface (Etype (Obj))
20832 and then Is_Interface_Conversion (Prefix (Obj))
20833 and then Nkind (Original_Node (Obj)) = N_Type_Conversion
20834 then
20835 return Object_Access_Level (Original_Node (Obj));
20837 elsif not Comes_From_Source (Obj) then
20838 declare
20839 Ref : constant Node_Id := Reference_To (Obj);
20840 begin
20841 if Present (Ref) then
20842 return Object_Access_Level (Ref);
20843 else
20844 return Type_Access_Level (Etype (Prefix (Obj)));
20845 end if;
20846 end;
20848 else
20849 return Type_Access_Level (Etype (Prefix (Obj)));
20850 end if;
20852 elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
20853 return Object_Access_Level (Expression (Obj));
20855 elsif Nkind (Obj) = N_Function_Call then
20857 -- Function results are objects, so we get either the access level of
20858 -- the function or, in the case of an indirect call, the level of the
20859 -- access-to-subprogram type. (This code is used for Ada 95, but it
20860 -- looks wrong, because it seems that we should be checking the level
20861 -- of the call itself, even for Ada 95. However, using the Ada 2005
20862 -- version of the code causes regressions in several tests that are
20863 -- compiled with -gnat95. ???)
20865 if Ada_Version < Ada_2005 then
20866 if Is_Entity_Name (Name (Obj)) then
20867 return Subprogram_Access_Level (Entity (Name (Obj)));
20868 else
20869 return Type_Access_Level (Etype (Prefix (Name (Obj))));
20870 end if;
20872 -- For Ada 2005, the level of the result object of a function call is
20873 -- defined to be the level of the call's innermost enclosing master.
20874 -- We determine that by querying the depth of the innermost enclosing
20875 -- dynamic scope.
20877 else
20878 Return_Master_Scope_Depth_Of_Call : declare
20879 function Innermost_Master_Scope_Depth
20880 (N : Node_Id) return Uint;
20881 -- Returns the scope depth of the given node's innermost
20882 -- enclosing dynamic scope (effectively the accessibility
20883 -- level of the innermost enclosing master).
20885 ----------------------------------
20886 -- Innermost_Master_Scope_Depth --
20887 ----------------------------------
20889 function Innermost_Master_Scope_Depth
20890 (N : Node_Id) return Uint
20892 Node_Par : Node_Id := Parent (N);
20894 begin
20895 -- Locate the nearest enclosing node (by traversing Parents)
20896 -- that Defining_Entity can be applied to, and return the
20897 -- depth of that entity's nearest enclosing dynamic scope.
20899 while Present (Node_Par) loop
20900 case Nkind (Node_Par) is
20901 when N_Abstract_Subprogram_Declaration
20902 | N_Block_Statement
20903 | N_Body_Stub
20904 | N_Component_Declaration
20905 | N_Entry_Body
20906 | N_Entry_Declaration
20907 | N_Exception_Declaration
20908 | N_Formal_Object_Declaration
20909 | N_Formal_Package_Declaration
20910 | N_Formal_Subprogram_Declaration
20911 | N_Formal_Type_Declaration
20912 | N_Full_Type_Declaration
20913 | N_Function_Specification
20914 | N_Generic_Declaration
20915 | N_Generic_Instantiation
20916 | N_Implicit_Label_Declaration
20917 | N_Incomplete_Type_Declaration
20918 | N_Loop_Parameter_Specification
20919 | N_Number_Declaration
20920 | N_Object_Declaration
20921 | N_Package_Declaration
20922 | N_Package_Specification
20923 | N_Parameter_Specification
20924 | N_Private_Extension_Declaration
20925 | N_Private_Type_Declaration
20926 | N_Procedure_Specification
20927 | N_Proper_Body
20928 | N_Protected_Type_Declaration
20929 | N_Renaming_Declaration
20930 | N_Single_Protected_Declaration
20931 | N_Single_Task_Declaration
20932 | N_Subprogram_Declaration
20933 | N_Subtype_Declaration
20934 | N_Subunit
20935 | N_Task_Type_Declaration
20937 return Scope_Depth
20938 (Nearest_Dynamic_Scope
20939 (Defining_Entity (Node_Par)));
20941 -- For a return statement within a function, return
20942 -- the depth of the function itself. This is not just
20943 -- a small optimization, but matters when analyzing
20944 -- the expression in an expression function before
20945 -- the body is created.
20947 when N_Simple_Return_Statement =>
20948 if Ekind (Current_Scope) = E_Function then
20949 return Scope_Depth (Current_Scope);
20950 end if;
20952 when others =>
20953 null;
20954 end case;
20956 Node_Par := Parent (Node_Par);
20957 end loop;
20959 pragma Assert (False);
20961 -- Should never reach the following return
20963 return Scope_Depth (Current_Scope) + 1;
20964 end Innermost_Master_Scope_Depth;
20966 -- Start of processing for Return_Master_Scope_Depth_Of_Call
20968 begin
20969 return Innermost_Master_Scope_Depth (Obj);
20970 end Return_Master_Scope_Depth_Of_Call;
20971 end if;
20973 -- For convenience we handle qualified expressions, even though they
20974 -- aren't technically object names.
20976 elsif Nkind (Obj) = N_Qualified_Expression then
20977 return Object_Access_Level (Expression (Obj));
20979 -- Ditto for aggregates. They have the level of the temporary that
20980 -- will hold their value.
20982 elsif Nkind (Obj) = N_Aggregate then
20983 return Object_Access_Level (Current_Scope);
20985 -- Otherwise return the scope level of Standard. (If there are cases
20986 -- that fall through to this point they will be treated as having
20987 -- global accessibility for now. ???)
20989 else
20990 return Scope_Depth (Standard_Standard);
20991 end if;
20992 end Object_Access_Level;
20994 ----------------------------------
20995 -- Old_Requires_Transient_Scope --
20996 ----------------------------------
20998 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
20999 Typ : constant Entity_Id := Underlying_Type (Id);
21001 begin
21002 -- This is a private type which is not completed yet. This can only
21003 -- happen in a default expression (of a formal parameter or of a
21004 -- record component). Do not expand transient scope in this case.
21006 if No (Typ) then
21007 return False;
21009 -- Do not expand transient scope for non-existent procedure return
21011 elsif Typ = Standard_Void_Type then
21012 return False;
21014 -- Elementary types do not require a transient scope
21016 elsif Is_Elementary_Type (Typ) then
21017 return False;
21019 -- Generally, indefinite subtypes require a transient scope, since the
21020 -- back end cannot generate temporaries, since this is not a valid type
21021 -- for declaring an object. It might be possible to relax this in the
21022 -- future, e.g. by declaring the maximum possible space for the type.
21024 elsif not Is_Definite_Subtype (Typ) then
21025 return True;
21027 -- Functions returning tagged types may dispatch on result so their
21028 -- returned value is allocated on the secondary stack. Controlled
21029 -- type temporaries need finalization.
21031 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
21032 return True;
21034 -- Record type
21036 elsif Is_Record_Type (Typ) then
21037 declare
21038 Comp : Entity_Id;
21040 begin
21041 Comp := First_Entity (Typ);
21042 while Present (Comp) loop
21043 if Ekind (Comp) = E_Component then
21045 -- ???It's not clear we need a full recursive call to
21046 -- Old_Requires_Transient_Scope here. Note that the
21047 -- following can't happen.
21049 pragma Assert (Is_Definite_Subtype (Etype (Comp)));
21050 pragma Assert (not Has_Controlled_Component (Etype (Comp)));
21052 if Old_Requires_Transient_Scope (Etype (Comp)) then
21053 return True;
21054 end if;
21055 end if;
21057 Next_Entity (Comp);
21058 end loop;
21059 end;
21061 return False;
21063 -- String literal types never require transient scope
21065 elsif Ekind (Typ) = E_String_Literal_Subtype then
21066 return False;
21068 -- Array type. Note that we already know that this is a constrained
21069 -- array, since unconstrained arrays will fail the indefinite test.
21071 elsif Is_Array_Type (Typ) then
21073 -- If component type requires a transient scope, the array does too
21075 if Old_Requires_Transient_Scope (Component_Type (Typ)) then
21076 return True;
21078 -- Otherwise, we only need a transient scope if the size depends on
21079 -- the value of one or more discriminants.
21081 else
21082 return Size_Depends_On_Discriminant (Typ);
21083 end if;
21085 -- All other cases do not require a transient scope
21087 else
21088 pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
21089 return False;
21090 end if;
21091 end Old_Requires_Transient_Scope;
21093 ---------------------------------
21094 -- Original_Aspect_Pragma_Name --
21095 ---------------------------------
21097 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
21098 Item : Node_Id;
21099 Item_Nam : Name_Id;
21101 begin
21102 pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
21104 Item := N;
21106 -- The pragma was generated to emulate an aspect, use the original
21107 -- aspect specification.
21109 if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
21110 Item := Corresponding_Aspect (Item);
21111 end if;
21113 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
21114 -- Post and Post_Class rewrite their pragma identifier to preserve the
21115 -- original name.
21116 -- ??? this is kludgey
21118 if Nkind (Item) = N_Pragma then
21119 Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
21121 else
21122 pragma Assert (Nkind (Item) = N_Aspect_Specification);
21123 Item_Nam := Chars (Identifier (Item));
21124 end if;
21126 -- Deal with 'Class by converting the name to its _XXX form
21128 if Class_Present (Item) then
21129 if Item_Nam = Name_Invariant then
21130 Item_Nam := Name_uInvariant;
21132 elsif Item_Nam = Name_Post then
21133 Item_Nam := Name_uPost;
21135 elsif Item_Nam = Name_Pre then
21136 Item_Nam := Name_uPre;
21138 elsif Nam_In (Item_Nam, Name_Type_Invariant,
21139 Name_Type_Invariant_Class)
21140 then
21141 Item_Nam := Name_uType_Invariant;
21143 -- Nothing to do for other cases (e.g. a Check that derived from
21144 -- Pre_Class and has the flag set). Also we do nothing if the name
21145 -- is already in special _xxx form.
21147 end if;
21148 end if;
21150 return Item_Nam;
21151 end Original_Aspect_Pragma_Name;
21153 --------------------------------------
21154 -- Original_Corresponding_Operation --
21155 --------------------------------------
21157 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
21159 Typ : constant Entity_Id := Find_Dispatching_Type (S);
21161 begin
21162 -- If S is an inherited primitive S2 the original corresponding
21163 -- operation of S is the original corresponding operation of S2
21165 if Present (Alias (S))
21166 and then Find_Dispatching_Type (Alias (S)) /= Typ
21167 then
21168 return Original_Corresponding_Operation (Alias (S));
21170 -- If S overrides an inherited subprogram S2 the original corresponding
21171 -- operation of S is the original corresponding operation of S2
21173 elsif Present (Overridden_Operation (S)) then
21174 return Original_Corresponding_Operation (Overridden_Operation (S));
21176 -- otherwise it is S itself
21178 else
21179 return S;
21180 end if;
21181 end Original_Corresponding_Operation;
21183 -------------------
21184 -- Output_Entity --
21185 -------------------
21187 procedure Output_Entity (Id : Entity_Id) is
21188 Scop : Entity_Id;
21190 begin
21191 Scop := Scope (Id);
21193 -- The entity may lack a scope when it is in the process of being
21194 -- analyzed. Use the current scope as an approximation.
21196 if No (Scop) then
21197 Scop := Current_Scope;
21198 end if;
21200 Output_Name (Chars (Id), Scop);
21201 end Output_Entity;
21203 -----------------
21204 -- Output_Name --
21205 -----------------
21207 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope) is
21208 begin
21209 Write_Str
21210 (Get_Name_String
21211 (Get_Qualified_Name
21212 (Nam => Nam,
21213 Suffix => No_Name,
21214 Scop => Scop)));
21215 Write_Eol;
21216 end Output_Name;
21218 ----------------------
21219 -- Policy_In_Effect --
21220 ----------------------
21222 function Policy_In_Effect (Policy : Name_Id) return Name_Id is
21223 function Policy_In_List (List : Node_Id) return Name_Id;
21224 -- Determine the mode of a policy in a N_Pragma list
21226 --------------------
21227 -- Policy_In_List --
21228 --------------------
21230 function Policy_In_List (List : Node_Id) return Name_Id is
21231 Arg1 : Node_Id;
21232 Arg2 : Node_Id;
21233 Prag : Node_Id;
21235 begin
21236 Prag := List;
21237 while Present (Prag) loop
21238 Arg1 := First (Pragma_Argument_Associations (Prag));
21239 Arg2 := Next (Arg1);
21241 Arg1 := Get_Pragma_Arg (Arg1);
21242 Arg2 := Get_Pragma_Arg (Arg2);
21244 -- The current Check_Policy pragma matches the requested policy or
21245 -- appears in the single argument form (Assertion, policy_id).
21247 if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
21248 return Chars (Arg2);
21249 end if;
21251 Prag := Next_Pragma (Prag);
21252 end loop;
21254 return No_Name;
21255 end Policy_In_List;
21257 -- Local variables
21259 Kind : Name_Id;
21261 -- Start of processing for Policy_In_Effect
21263 begin
21264 if not Is_Valid_Assertion_Kind (Policy) then
21265 raise Program_Error;
21266 end if;
21268 -- Inspect all policy pragmas that appear within scopes (if any)
21270 Kind := Policy_In_List (Check_Policy_List);
21272 -- Inspect all configuration policy pragmas (if any)
21274 if Kind = No_Name then
21275 Kind := Policy_In_List (Check_Policy_List_Config);
21276 end if;
21278 -- The context lacks policy pragmas, determine the mode based on whether
21279 -- assertions are enabled at the configuration level. This ensures that
21280 -- the policy is preserved when analyzing generics.
21282 if Kind = No_Name then
21283 if Assertions_Enabled_Config then
21284 Kind := Name_Check;
21285 else
21286 Kind := Name_Ignore;
21287 end if;
21288 end if;
21290 return Kind;
21291 end Policy_In_Effect;
21293 ----------------------------------
21294 -- Predicate_Tests_On_Arguments --
21295 ----------------------------------
21297 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
21298 begin
21299 -- Always test predicates on indirect call
21301 if Ekind (Subp) = E_Subprogram_Type then
21302 return True;
21304 -- Do not test predicates on call to generated default Finalize, since
21305 -- we are not interested in whether something we are finalizing (and
21306 -- typically destroying) satisfies its predicates.
21308 elsif Chars (Subp) = Name_Finalize
21309 and then not Comes_From_Source (Subp)
21310 then
21311 return False;
21313 -- Do not test predicates on any internally generated routines
21315 elsif Is_Internal_Name (Chars (Subp)) then
21316 return False;
21318 -- Do not test predicates on call to Init_Proc, since if needed the
21319 -- predicate test will occur at some other point.
21321 elsif Is_Init_Proc (Subp) then
21322 return False;
21324 -- Do not test predicates on call to predicate function, since this
21325 -- would cause infinite recursion.
21327 elsif Ekind (Subp) = E_Function
21328 and then (Is_Predicate_Function (Subp)
21329 or else
21330 Is_Predicate_Function_M (Subp))
21331 then
21332 return False;
21334 -- For now, no other exceptions
21336 else
21337 return True;
21338 end if;
21339 end Predicate_Tests_On_Arguments;
21341 -----------------------
21342 -- Private_Component --
21343 -----------------------
21345 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
21346 Ancestor : constant Entity_Id := Base_Type (Type_Id);
21348 function Trace_Components
21349 (T : Entity_Id;
21350 Check : Boolean) return Entity_Id;
21351 -- Recursive function that does the work, and checks against circular
21352 -- definition for each subcomponent type.
21354 ----------------------
21355 -- Trace_Components --
21356 ----------------------
21358 function Trace_Components
21359 (T : Entity_Id;
21360 Check : Boolean) return Entity_Id
21362 Btype : constant Entity_Id := Base_Type (T);
21363 Component : Entity_Id;
21364 P : Entity_Id;
21365 Candidate : Entity_Id := Empty;
21367 begin
21368 if Check and then Btype = Ancestor then
21369 Error_Msg_N ("circular type definition", Type_Id);
21370 return Any_Type;
21371 end if;
21373 if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
21374 if Present (Full_View (Btype))
21375 and then Is_Record_Type (Full_View (Btype))
21376 and then not Is_Frozen (Btype)
21377 then
21378 -- To indicate that the ancestor depends on a private type, the
21379 -- current Btype is sufficient. However, to check for circular
21380 -- definition we must recurse on the full view.
21382 Candidate := Trace_Components (Full_View (Btype), True);
21384 if Candidate = Any_Type then
21385 return Any_Type;
21386 else
21387 return Btype;
21388 end if;
21390 else
21391 return Btype;
21392 end if;
21394 elsif Is_Array_Type (Btype) then
21395 return Trace_Components (Component_Type (Btype), True);
21397 elsif Is_Record_Type (Btype) then
21398 Component := First_Entity (Btype);
21399 while Present (Component)
21400 and then Comes_From_Source (Component)
21401 loop
21402 -- Skip anonymous types generated by constrained components
21404 if not Is_Type (Component) then
21405 P := Trace_Components (Etype (Component), True);
21407 if Present (P) then
21408 if P = Any_Type then
21409 return P;
21410 else
21411 Candidate := P;
21412 end if;
21413 end if;
21414 end if;
21416 Next_Entity (Component);
21417 end loop;
21419 return Candidate;
21421 else
21422 return Empty;
21423 end if;
21424 end Trace_Components;
21426 -- Start of processing for Private_Component
21428 begin
21429 return Trace_Components (Type_Id, False);
21430 end Private_Component;
21432 ---------------------------
21433 -- Primitive_Names_Match --
21434 ---------------------------
21436 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
21437 function Non_Internal_Name (E : Entity_Id) return Name_Id;
21438 -- Given an internal name, returns the corresponding non-internal name
21440 ------------------------
21441 -- Non_Internal_Name --
21442 ------------------------
21444 function Non_Internal_Name (E : Entity_Id) return Name_Id is
21445 begin
21446 Get_Name_String (Chars (E));
21447 Name_Len := Name_Len - 1;
21448 return Name_Find;
21449 end Non_Internal_Name;
21451 -- Start of processing for Primitive_Names_Match
21453 begin
21454 pragma Assert (Present (E1) and then Present (E2));
21456 return Chars (E1) = Chars (E2)
21457 or else
21458 (not Is_Internal_Name (Chars (E1))
21459 and then Is_Internal_Name (Chars (E2))
21460 and then Non_Internal_Name (E2) = Chars (E1))
21461 or else
21462 (not Is_Internal_Name (Chars (E2))
21463 and then Is_Internal_Name (Chars (E1))
21464 and then Non_Internal_Name (E1) = Chars (E2))
21465 or else
21466 (Is_Predefined_Dispatching_Operation (E1)
21467 and then Is_Predefined_Dispatching_Operation (E2)
21468 and then Same_TSS (E1, E2))
21469 or else
21470 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
21471 end Primitive_Names_Match;
21473 -----------------------
21474 -- Process_End_Label --
21475 -----------------------
21477 procedure Process_End_Label
21478 (N : Node_Id;
21479 Typ : Character;
21480 Ent : Entity_Id)
21482 Loc : Source_Ptr;
21483 Nam : Node_Id;
21484 Scop : Entity_Id;
21486 Label_Ref : Boolean;
21487 -- Set True if reference to end label itself is required
21489 Endl : Node_Id;
21490 -- Gets set to the operator symbol or identifier that references the
21491 -- entity Ent. For the child unit case, this is the identifier from the
21492 -- designator. For other cases, this is simply Endl.
21494 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
21495 -- N is an identifier node that appears as a parent unit reference in
21496 -- the case where Ent is a child unit. This procedure generates an
21497 -- appropriate cross-reference entry. E is the corresponding entity.
21499 -------------------------
21500 -- Generate_Parent_Ref --
21501 -------------------------
21503 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
21504 begin
21505 -- If names do not match, something weird, skip reference
21507 if Chars (E) = Chars (N) then
21509 -- Generate the reference. We do NOT consider this as a reference
21510 -- for unreferenced symbol purposes.
21512 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
21514 if Style_Check then
21515 Style.Check_Identifier (N, E);
21516 end if;
21517 end if;
21518 end Generate_Parent_Ref;
21520 -- Start of processing for Process_End_Label
21522 begin
21523 -- If no node, ignore. This happens in some error situations, and
21524 -- also for some internally generated structures where no end label
21525 -- references are required in any case.
21527 if No (N) then
21528 return;
21529 end if;
21531 -- Nothing to do if no End_Label, happens for internally generated
21532 -- constructs where we don't want an end label reference anyway. Also
21533 -- nothing to do if Endl is a string literal, which means there was
21534 -- some prior error (bad operator symbol)
21536 Endl := End_Label (N);
21538 if No (Endl) or else Nkind (Endl) = N_String_Literal then
21539 return;
21540 end if;
21542 -- Reference node is not in extended main source unit
21544 if not In_Extended_Main_Source_Unit (N) then
21546 -- Generally we do not collect references except for the extended
21547 -- main source unit. The one exception is the 'e' entry for a
21548 -- package spec, where it is useful for a client to have the
21549 -- ending information to define scopes.
21551 if Typ /= 'e' then
21552 return;
21554 else
21555 Label_Ref := False;
21557 -- For this case, we can ignore any parent references, but we
21558 -- need the package name itself for the 'e' entry.
21560 if Nkind (Endl) = N_Designator then
21561 Endl := Identifier (Endl);
21562 end if;
21563 end if;
21565 -- Reference is in extended main source unit
21567 else
21568 Label_Ref := True;
21570 -- For designator, generate references for the parent entries
21572 if Nkind (Endl) = N_Designator then
21574 -- Generate references for the prefix if the END line comes from
21575 -- source (otherwise we do not need these references) We climb the
21576 -- scope stack to find the expected entities.
21578 if Comes_From_Source (Endl) then
21579 Nam := Name (Endl);
21580 Scop := Current_Scope;
21581 while Nkind (Nam) = N_Selected_Component loop
21582 Scop := Scope (Scop);
21583 exit when No (Scop);
21584 Generate_Parent_Ref (Selector_Name (Nam), Scop);
21585 Nam := Prefix (Nam);
21586 end loop;
21588 if Present (Scop) then
21589 Generate_Parent_Ref (Nam, Scope (Scop));
21590 end if;
21591 end if;
21593 Endl := Identifier (Endl);
21594 end if;
21595 end if;
21597 -- If the end label is not for the given entity, then either we have
21598 -- some previous error, or this is a generic instantiation for which
21599 -- we do not need to make a cross-reference in this case anyway. In
21600 -- either case we simply ignore the call.
21602 if Chars (Ent) /= Chars (Endl) then
21603 return;
21604 end if;
21606 -- If label was really there, then generate a normal reference and then
21607 -- adjust the location in the end label to point past the name (which
21608 -- should almost always be the semicolon).
21610 Loc := Sloc (Endl);
21612 if Comes_From_Source (Endl) then
21614 -- If a label reference is required, then do the style check and
21615 -- generate an l-type cross-reference entry for the label
21617 if Label_Ref then
21618 if Style_Check then
21619 Style.Check_Identifier (Endl, Ent);
21620 end if;
21622 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
21623 end if;
21625 -- Set the location to point past the label (normally this will
21626 -- mean the semicolon immediately following the label). This is
21627 -- done for the sake of the 'e' or 't' entry generated below.
21629 Get_Decoded_Name_String (Chars (Endl));
21630 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
21632 else
21633 -- In SPARK mode, no missing label is allowed for packages and
21634 -- subprogram bodies. Detect those cases by testing whether
21635 -- Process_End_Label was called for a body (Typ = 't') or a package.
21637 if Restriction_Check_Required (SPARK_05)
21638 and then (Typ = 't' or else Ekind (Ent) = E_Package)
21639 then
21640 Error_Msg_Node_1 := Endl;
21641 Check_SPARK_05_Restriction
21642 ("`END &` required", Endl, Force => True);
21643 end if;
21644 end if;
21646 -- Now generate the e/t reference
21648 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
21650 -- Restore Sloc, in case modified above, since we have an identifier
21651 -- and the normal Sloc should be left set in the tree.
21653 Set_Sloc (Endl, Loc);
21654 end Process_End_Label;
21656 --------------------------------
21657 -- Propagate_Concurrent_Flags --
21658 --------------------------------
21660 procedure Propagate_Concurrent_Flags
21661 (Typ : Entity_Id;
21662 Comp_Typ : Entity_Id)
21664 begin
21665 if Has_Task (Comp_Typ) then
21666 Set_Has_Task (Typ);
21667 end if;
21669 if Has_Protected (Comp_Typ) then
21670 Set_Has_Protected (Typ);
21671 end if;
21673 if Has_Timing_Event (Comp_Typ) then
21674 Set_Has_Timing_Event (Typ);
21675 end if;
21676 end Propagate_Concurrent_Flags;
21678 ------------------------------
21679 -- Propagate_DIC_Attributes --
21680 ------------------------------
21682 procedure Propagate_DIC_Attributes
21683 (Typ : Entity_Id;
21684 From_Typ : Entity_Id)
21686 DIC_Proc : Entity_Id;
21688 begin
21689 if Present (Typ) and then Present (From_Typ) then
21690 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
21692 -- Nothing to do if both the source and the destination denote the
21693 -- same type.
21695 if From_Typ = Typ then
21696 return;
21697 end if;
21699 DIC_Proc := DIC_Procedure (From_Typ);
21701 -- The setting of the attributes is intentionally conservative. This
21702 -- prevents accidental clobbering of enabled attributes.
21704 if Has_Inherited_DIC (From_Typ)
21705 and then not Has_Inherited_DIC (Typ)
21706 then
21707 Set_Has_Inherited_DIC (Typ);
21708 end if;
21710 if Has_Own_DIC (From_Typ) and then not Has_Own_DIC (Typ) then
21711 Set_Has_Own_DIC (Typ);
21712 end if;
21714 if Present (DIC_Proc) and then No (DIC_Procedure (Typ)) then
21715 Set_DIC_Procedure (Typ, DIC_Proc);
21716 end if;
21717 end if;
21718 end Propagate_DIC_Attributes;
21720 ------------------------------------
21721 -- Propagate_Invariant_Attributes --
21722 ------------------------------------
21724 procedure Propagate_Invariant_Attributes
21725 (Typ : Entity_Id;
21726 From_Typ : Entity_Id)
21728 Full_IP : Entity_Id;
21729 Part_IP : Entity_Id;
21731 begin
21732 if Present (Typ) and then Present (From_Typ) then
21733 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
21735 -- Nothing to do if both the source and the destination denote the
21736 -- same type.
21738 if From_Typ = Typ then
21739 return;
21740 end if;
21742 Full_IP := Invariant_Procedure (From_Typ);
21743 Part_IP := Partial_Invariant_Procedure (From_Typ);
21745 -- The setting of the attributes is intentionally conservative. This
21746 -- prevents accidental clobbering of enabled attributes.
21748 if Has_Inheritable_Invariants (From_Typ)
21749 and then not Has_Inheritable_Invariants (Typ)
21750 then
21751 Set_Has_Inheritable_Invariants (Typ, True);
21752 end if;
21754 if Has_Inherited_Invariants (From_Typ)
21755 and then not Has_Inherited_Invariants (Typ)
21756 then
21757 Set_Has_Inherited_Invariants (Typ, True);
21758 end if;
21760 if Has_Own_Invariants (From_Typ)
21761 and then not Has_Own_Invariants (Typ)
21762 then
21763 Set_Has_Own_Invariants (Typ, True);
21764 end if;
21766 if Present (Full_IP) and then No (Invariant_Procedure (Typ)) then
21767 Set_Invariant_Procedure (Typ, Full_IP);
21768 end if;
21770 if Present (Part_IP) and then No (Partial_Invariant_Procedure (Typ))
21771 then
21772 Set_Partial_Invariant_Procedure (Typ, Part_IP);
21773 end if;
21774 end if;
21775 end Propagate_Invariant_Attributes;
21777 ---------------------------------------
21778 -- Record_Possible_Part_Of_Reference --
21779 ---------------------------------------
21781 procedure Record_Possible_Part_Of_Reference
21782 (Var_Id : Entity_Id;
21783 Ref : Node_Id)
21785 Encap : constant Entity_Id := Encapsulating_State (Var_Id);
21786 Refs : Elist_Id;
21788 begin
21789 -- The variable is a constituent of a single protected/task type. Such
21790 -- a variable acts as a component of the type and must appear within a
21791 -- specific region (SPARK RM 9.3). Instead of recording the reference,
21792 -- verify its legality now.
21794 if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
21795 Check_Part_Of_Reference (Var_Id, Ref);
21797 -- The variable is subject to pragma Part_Of and may eventually become a
21798 -- constituent of a single protected/task type. Record the reference to
21799 -- verify its placement when the contract of the variable is analyzed.
21801 elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
21802 Refs := Part_Of_References (Var_Id);
21804 if No (Refs) then
21805 Refs := New_Elmt_List;
21806 Set_Part_Of_References (Var_Id, Refs);
21807 end if;
21809 Append_Elmt (Ref, Refs);
21810 end if;
21811 end Record_Possible_Part_Of_Reference;
21813 ----------------
21814 -- Referenced --
21815 ----------------
21817 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
21818 Seen : Boolean := False;
21820 function Is_Reference (N : Node_Id) return Traverse_Result;
21821 -- Determine whether node N denotes a reference to Id. If this is the
21822 -- case, set global flag Seen to True and stop the traversal.
21824 ------------------
21825 -- Is_Reference --
21826 ------------------
21828 function Is_Reference (N : Node_Id) return Traverse_Result is
21829 begin
21830 if Is_Entity_Name (N)
21831 and then Present (Entity (N))
21832 and then Entity (N) = Id
21833 then
21834 Seen := True;
21835 return Abandon;
21836 else
21837 return OK;
21838 end if;
21839 end Is_Reference;
21841 procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
21843 -- Start of processing for Referenced
21845 begin
21846 Inspect_Expression (Expr);
21847 return Seen;
21848 end Referenced;
21850 ------------------------------------
21851 -- References_Generic_Formal_Type --
21852 ------------------------------------
21854 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
21856 function Process (N : Node_Id) return Traverse_Result;
21857 -- Process one node in search for generic formal type
21859 -------------
21860 -- Process --
21861 -------------
21863 function Process (N : Node_Id) return Traverse_Result is
21864 begin
21865 if Nkind (N) in N_Has_Entity then
21866 declare
21867 E : constant Entity_Id := Entity (N);
21868 begin
21869 if Present (E) then
21870 if Is_Generic_Type (E) then
21871 return Abandon;
21872 elsif Present (Etype (E))
21873 and then Is_Generic_Type (Etype (E))
21874 then
21875 return Abandon;
21876 end if;
21877 end if;
21878 end;
21879 end if;
21881 return Atree.OK;
21882 end Process;
21884 function Traverse is new Traverse_Func (Process);
21885 -- Traverse tree to look for generic type
21887 begin
21888 if Inside_A_Generic then
21889 return Traverse (N) = Abandon;
21890 else
21891 return False;
21892 end if;
21893 end References_Generic_Formal_Type;
21895 -------------------
21896 -- Remove_Entity --
21897 -------------------
21899 procedure Remove_Entity (Id : Entity_Id) is
21900 Scop : constant Entity_Id := Scope (Id);
21901 Prev_Id : Entity_Id;
21903 begin
21904 -- Remove the entity from the homonym chain. When the entity is the
21905 -- head of the chain, associate the entry in the name table with its
21906 -- homonym effectively making it the new head of the chain.
21908 if Current_Entity (Id) = Id then
21909 Set_Name_Entity_Id (Chars (Id), Homonym (Id));
21911 -- Otherwise link the previous and next homonyms
21913 else
21914 Prev_Id := Current_Entity (Id);
21915 while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
21916 Prev_Id := Homonym (Prev_Id);
21917 end loop;
21919 Set_Homonym (Prev_Id, Homonym (Id));
21920 end if;
21922 -- Remove the entity from the scope entity chain. When the entity is
21923 -- the head of the chain, set the next entity as the new head of the
21924 -- chain.
21926 if First_Entity (Scop) = Id then
21927 Prev_Id := Empty;
21928 Set_First_Entity (Scop, Next_Entity (Id));
21930 -- Otherwise the entity is either in the middle of the chain or it acts
21931 -- as its tail. Traverse and link the previous and next entities.
21933 else
21934 Prev_Id := First_Entity (Scop);
21935 while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
21936 Next_Entity (Prev_Id);
21937 end loop;
21939 Set_Next_Entity (Prev_Id, Next_Entity (Id));
21940 end if;
21942 -- Handle the case where the entity acts as the tail of the scope entity
21943 -- chain.
21945 if Last_Entity (Scop) = Id then
21946 Set_Last_Entity (Scop, Prev_Id);
21947 end if;
21948 end Remove_Entity;
21950 --------------------
21951 -- Remove_Homonym --
21952 --------------------
21954 procedure Remove_Homonym (E : Entity_Id) is
21955 Prev : Entity_Id := Empty;
21956 H : Entity_Id;
21958 begin
21959 if E = Current_Entity (E) then
21960 if Present (Homonym (E)) then
21961 Set_Current_Entity (Homonym (E));
21962 else
21963 Set_Name_Entity_Id (Chars (E), Empty);
21964 end if;
21966 else
21967 H := Current_Entity (E);
21968 while Present (H) and then H /= E loop
21969 Prev := H;
21970 H := Homonym (H);
21971 end loop;
21973 -- If E is not on the homonym chain, nothing to do
21975 if Present (H) then
21976 Set_Homonym (Prev, Homonym (E));
21977 end if;
21978 end if;
21979 end Remove_Homonym;
21981 ------------------------------
21982 -- Remove_Overloaded_Entity --
21983 ------------------------------
21985 procedure Remove_Overloaded_Entity (Id : Entity_Id) is
21986 procedure Remove_Primitive_Of (Typ : Entity_Id);
21987 -- Remove primitive subprogram Id from the list of primitives that
21988 -- belong to type Typ.
21990 -------------------------
21991 -- Remove_Primitive_Of --
21992 -------------------------
21994 procedure Remove_Primitive_Of (Typ : Entity_Id) is
21995 Prims : Elist_Id;
21997 begin
21998 if Is_Tagged_Type (Typ) then
21999 Prims := Direct_Primitive_Operations (Typ);
22001 if Present (Prims) then
22002 Remove (Prims, Id);
22003 end if;
22004 end if;
22005 end Remove_Primitive_Of;
22007 -- Local variables
22009 Formal : Entity_Id;
22011 -- Start of processing for Remove_Overloaded_Entity
22013 begin
22014 -- Remove the entity from both the homonym and scope chains
22016 Remove_Entity (Id);
22018 -- The entity denotes a primitive subprogram. Remove it from the list of
22019 -- primitives of the associated controlling type.
22021 if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
22022 Formal := First_Formal (Id);
22023 while Present (Formal) loop
22024 if Is_Controlling_Formal (Formal) then
22025 Remove_Primitive_Of (Etype (Formal));
22026 exit;
22027 end if;
22029 Next_Formal (Formal);
22030 end loop;
22032 if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
22033 Remove_Primitive_Of (Etype (Id));
22034 end if;
22035 end if;
22036 end Remove_Overloaded_Entity;
22038 ---------------------
22039 -- Rep_To_Pos_Flag --
22040 ---------------------
22042 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
22043 begin
22044 return New_Occurrence_Of
22045 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
22046 end Rep_To_Pos_Flag;
22048 --------------------
22049 -- Require_Entity --
22050 --------------------
22052 procedure Require_Entity (N : Node_Id) is
22053 begin
22054 if Is_Entity_Name (N) and then No (Entity (N)) then
22055 if Total_Errors_Detected /= 0 then
22056 Set_Entity (N, Any_Id);
22057 else
22058 raise Program_Error;
22059 end if;
22060 end if;
22061 end Require_Entity;
22063 ------------------------------
22064 -- Requires_Transient_Scope --
22065 ------------------------------
22067 -- A transient scope is required when variable-sized temporaries are
22068 -- allocated on the secondary stack, or when finalization actions must be
22069 -- generated before the next instruction.
22071 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
22072 Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
22074 begin
22075 if Debug_Flag_QQ then
22076 return Old_Result;
22077 end if;
22079 declare
22080 New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
22082 begin
22083 -- Assert that we're not putting things on the secondary stack if we
22084 -- didn't before; we are trying to AVOID secondary stack when
22085 -- possible.
22087 if not Old_Result then
22088 pragma Assert (not New_Result);
22089 null;
22090 end if;
22092 if New_Result /= Old_Result then
22093 Results_Differ (Id, Old_Result, New_Result);
22094 end if;
22096 return New_Result;
22097 end;
22098 end Requires_Transient_Scope;
22100 --------------------
22101 -- Results_Differ --
22102 --------------------
22104 procedure Results_Differ
22105 (Id : Entity_Id;
22106 Old_Val : Boolean;
22107 New_Val : Boolean)
22109 begin
22110 if False then -- False to disable; True for debugging
22111 Treepr.Print_Tree_Node (Id);
22113 if Old_Val = New_Val then
22114 raise Program_Error;
22115 end if;
22116 end if;
22117 end Results_Differ;
22119 --------------------------
22120 -- Reset_Analyzed_Flags --
22121 --------------------------
22123 procedure Reset_Analyzed_Flags (N : Node_Id) is
22124 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
22125 -- Function used to reset Analyzed flags in tree. Note that we do
22126 -- not reset Analyzed flags in entities, since there is no need to
22127 -- reanalyze entities, and indeed, it is wrong to do so, since it
22128 -- can result in generating auxiliary stuff more than once.
22130 --------------------
22131 -- Clear_Analyzed --
22132 --------------------
22134 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
22135 begin
22136 if Nkind (N) not in N_Entity then
22137 Set_Analyzed (N, False);
22138 end if;
22140 return OK;
22141 end Clear_Analyzed;
22143 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
22145 -- Start of processing for Reset_Analyzed_Flags
22147 begin
22148 Reset_Analyzed (N);
22149 end Reset_Analyzed_Flags;
22151 ------------------------
22152 -- Restore_SPARK_Mode --
22153 ------------------------
22155 procedure Restore_SPARK_Mode
22156 (Mode : SPARK_Mode_Type;
22157 Prag : Node_Id)
22159 begin
22160 SPARK_Mode := Mode;
22161 SPARK_Mode_Pragma := Prag;
22162 end Restore_SPARK_Mode;
22164 --------------------------------
22165 -- Returns_Unconstrained_Type --
22166 --------------------------------
22168 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
22169 begin
22170 return Ekind (Subp) = E_Function
22171 and then not Is_Scalar_Type (Etype (Subp))
22172 and then not Is_Access_Type (Etype (Subp))
22173 and then not Is_Constrained (Etype (Subp));
22174 end Returns_Unconstrained_Type;
22176 ----------------------------
22177 -- Root_Type_Of_Full_View --
22178 ----------------------------
22180 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
22181 Rtyp : constant Entity_Id := Root_Type (T);
22183 begin
22184 -- The root type of the full view may itself be a private type. Keep
22185 -- looking for the ultimate derivation parent.
22187 if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
22188 return Root_Type_Of_Full_View (Full_View (Rtyp));
22189 else
22190 return Rtyp;
22191 end if;
22192 end Root_Type_Of_Full_View;
22194 ---------------------------
22195 -- Safe_To_Capture_Value --
22196 ---------------------------
22198 function Safe_To_Capture_Value
22199 (N : Node_Id;
22200 Ent : Entity_Id;
22201 Cond : Boolean := False) return Boolean
22203 begin
22204 -- The only entities for which we track constant values are variables
22205 -- which are not renamings, constants, out parameters, and in out
22206 -- parameters, so check if we have this case.
22208 -- Note: it may seem odd to track constant values for constants, but in
22209 -- fact this routine is used for other purposes than simply capturing
22210 -- the value. In particular, the setting of Known[_Non]_Null.
22212 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
22213 or else
22214 Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
22215 then
22216 null;
22218 -- For conditionals, we also allow loop parameters and all formals,
22219 -- including in parameters.
22221 elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
22222 null;
22224 -- For all other cases, not just unsafe, but impossible to capture
22225 -- Current_Value, since the above are the only entities which have
22226 -- Current_Value fields.
22228 else
22229 return False;
22230 end if;
22232 -- Skip if volatile or aliased, since funny things might be going on in
22233 -- these cases which we cannot necessarily track. Also skip any variable
22234 -- for which an address clause is given, or whose address is taken. Also
22235 -- never capture value of library level variables (an attempt to do so
22236 -- can occur in the case of package elaboration code).
22238 if Treat_As_Volatile (Ent)
22239 or else Is_Aliased (Ent)
22240 or else Present (Address_Clause (Ent))
22241 or else Address_Taken (Ent)
22242 or else (Is_Library_Level_Entity (Ent)
22243 and then Ekind (Ent) = E_Variable)
22244 then
22245 return False;
22246 end if;
22248 -- OK, all above conditions are met. We also require that the scope of
22249 -- the reference be the same as the scope of the entity, not counting
22250 -- packages and blocks and loops.
22252 declare
22253 E_Scope : constant Entity_Id := Scope (Ent);
22254 R_Scope : Entity_Id;
22256 begin
22257 R_Scope := Current_Scope;
22258 while R_Scope /= Standard_Standard loop
22259 exit when R_Scope = E_Scope;
22261 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
22262 return False;
22263 else
22264 R_Scope := Scope (R_Scope);
22265 end if;
22266 end loop;
22267 end;
22269 -- We also require that the reference does not appear in a context
22270 -- where it is not sure to be executed (i.e. a conditional context
22271 -- or an exception handler). We skip this if Cond is True, since the
22272 -- capturing of values from conditional tests handles this ok.
22274 if Cond then
22275 return True;
22276 end if;
22278 declare
22279 Desc : Node_Id;
22280 P : Node_Id;
22282 begin
22283 Desc := N;
22285 -- Seems dubious that case expressions are not handled here ???
22287 P := Parent (N);
22288 while Present (P) loop
22289 if Nkind (P) = N_If_Statement
22290 or else Nkind (P) = N_Case_Statement
22291 or else (Nkind (P) in N_Short_Circuit
22292 and then Desc = Right_Opnd (P))
22293 or else (Nkind (P) = N_If_Expression
22294 and then Desc /= First (Expressions (P)))
22295 or else Nkind (P) = N_Exception_Handler
22296 or else Nkind (P) = N_Selective_Accept
22297 or else Nkind (P) = N_Conditional_Entry_Call
22298 or else Nkind (P) = N_Timed_Entry_Call
22299 or else Nkind (P) = N_Asynchronous_Select
22300 then
22301 return False;
22303 else
22304 Desc := P;
22305 P := Parent (P);
22307 -- A special Ada 2012 case: the original node may be part
22308 -- of the else_actions of a conditional expression, in which
22309 -- case it might not have been expanded yet, and appears in
22310 -- a non-syntactic list of actions. In that case it is clearly
22311 -- not safe to save a value.
22313 if No (P)
22314 and then Is_List_Member (Desc)
22315 and then No (Parent (List_Containing (Desc)))
22316 then
22317 return False;
22318 end if;
22319 end if;
22320 end loop;
22321 end;
22323 -- OK, looks safe to set value
22325 return True;
22326 end Safe_To_Capture_Value;
22328 ---------------
22329 -- Same_Name --
22330 ---------------
22332 function Same_Name (N1, N2 : Node_Id) return Boolean is
22333 K1 : constant Node_Kind := Nkind (N1);
22334 K2 : constant Node_Kind := Nkind (N2);
22336 begin
22337 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
22338 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
22339 then
22340 return Chars (N1) = Chars (N2);
22342 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
22343 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
22344 then
22345 return Same_Name (Selector_Name (N1), Selector_Name (N2))
22346 and then Same_Name (Prefix (N1), Prefix (N2));
22348 else
22349 return False;
22350 end if;
22351 end Same_Name;
22353 -----------------
22354 -- Same_Object --
22355 -----------------
22357 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
22358 N1 : constant Node_Id := Original_Node (Node1);
22359 N2 : constant Node_Id := Original_Node (Node2);
22360 -- We do the tests on original nodes, since we are most interested
22361 -- in the original source, not any expansion that got in the way.
22363 K1 : constant Node_Kind := Nkind (N1);
22364 K2 : constant Node_Kind := Nkind (N2);
22366 begin
22367 -- First case, both are entities with same entity
22369 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
22370 declare
22371 EN1 : constant Entity_Id := Entity (N1);
22372 EN2 : constant Entity_Id := Entity (N2);
22373 begin
22374 if Present (EN1) and then Present (EN2)
22375 and then (Ekind_In (EN1, E_Variable, E_Constant)
22376 or else Is_Formal (EN1))
22377 and then EN1 = EN2
22378 then
22379 return True;
22380 end if;
22381 end;
22382 end if;
22384 -- Second case, selected component with same selector, same record
22386 if K1 = N_Selected_Component
22387 and then K2 = N_Selected_Component
22388 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
22389 then
22390 return Same_Object (Prefix (N1), Prefix (N2));
22392 -- Third case, indexed component with same subscripts, same array
22394 elsif K1 = N_Indexed_Component
22395 and then K2 = N_Indexed_Component
22396 and then Same_Object (Prefix (N1), Prefix (N2))
22397 then
22398 declare
22399 E1, E2 : Node_Id;
22400 begin
22401 E1 := First (Expressions (N1));
22402 E2 := First (Expressions (N2));
22403 while Present (E1) loop
22404 if not Same_Value (E1, E2) then
22405 return False;
22406 else
22407 Next (E1);
22408 Next (E2);
22409 end if;
22410 end loop;
22412 return True;
22413 end;
22415 -- Fourth case, slice of same array with same bounds
22417 elsif K1 = N_Slice
22418 and then K2 = N_Slice
22419 and then Nkind (Discrete_Range (N1)) = N_Range
22420 and then Nkind (Discrete_Range (N2)) = N_Range
22421 and then Same_Value (Low_Bound (Discrete_Range (N1)),
22422 Low_Bound (Discrete_Range (N2)))
22423 and then Same_Value (High_Bound (Discrete_Range (N1)),
22424 High_Bound (Discrete_Range (N2)))
22425 then
22426 return Same_Name (Prefix (N1), Prefix (N2));
22428 -- All other cases, not clearly the same object
22430 else
22431 return False;
22432 end if;
22433 end Same_Object;
22435 ---------------
22436 -- Same_Type --
22437 ---------------
22439 function Same_Type (T1, T2 : Entity_Id) return Boolean is
22440 begin
22441 if T1 = T2 then
22442 return True;
22444 elsif not Is_Constrained (T1)
22445 and then not Is_Constrained (T2)
22446 and then Base_Type (T1) = Base_Type (T2)
22447 then
22448 return True;
22450 -- For now don't bother with case of identical constraints, to be
22451 -- fiddled with later on perhaps (this is only used for optimization
22452 -- purposes, so it is not critical to do a best possible job)
22454 else
22455 return False;
22456 end if;
22457 end Same_Type;
22459 ----------------
22460 -- Same_Value --
22461 ----------------
22463 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
22464 begin
22465 if Compile_Time_Known_Value (Node1)
22466 and then Compile_Time_Known_Value (Node2)
22467 then
22468 -- Handle properly compile-time expressions that are not
22469 -- scalar.
22471 if Is_String_Type (Etype (Node1)) then
22472 return Expr_Value_S (Node1) = Expr_Value_S (Node2);
22474 else
22475 return Expr_Value (Node1) = Expr_Value (Node2);
22476 end if;
22478 elsif Same_Object (Node1, Node2) then
22479 return True;
22480 else
22481 return False;
22482 end if;
22483 end Same_Value;
22485 --------------------
22486 -- Set_SPARK_Mode --
22487 --------------------
22489 procedure Set_SPARK_Mode (Context : Entity_Id) is
22490 begin
22491 -- Do not consider illegal or partially decorated constructs
22493 if Ekind (Context) = E_Void or else Error_Posted (Context) then
22494 null;
22496 elsif Present (SPARK_Pragma (Context)) then
22497 Install_SPARK_Mode
22498 (Mode => Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Context)),
22499 Prag => SPARK_Pragma (Context));
22500 end if;
22501 end Set_SPARK_Mode;
22503 -------------------------
22504 -- Scalar_Part_Present --
22505 -------------------------
22507 function Scalar_Part_Present (T : Entity_Id) return Boolean is
22508 C : Entity_Id;
22510 begin
22511 if Is_Scalar_Type (T) then
22512 return True;
22514 elsif Is_Array_Type (T) then
22515 return Scalar_Part_Present (Component_Type (T));
22517 elsif Is_Record_Type (T) or else Has_Discriminants (T) then
22518 C := First_Component_Or_Discriminant (T);
22519 while Present (C) loop
22520 if Scalar_Part_Present (Etype (C)) then
22521 return True;
22522 else
22523 Next_Component_Or_Discriminant (C);
22524 end if;
22525 end loop;
22526 end if;
22528 return False;
22529 end Scalar_Part_Present;
22531 ------------------------
22532 -- Scope_Is_Transient --
22533 ------------------------
22535 function Scope_Is_Transient return Boolean is
22536 begin
22537 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
22538 end Scope_Is_Transient;
22540 ------------------
22541 -- Scope_Within --
22542 ------------------
22544 function Scope_Within
22545 (Inner : Entity_Id;
22546 Outer : Entity_Id) return Boolean
22548 Curr : Entity_Id;
22550 begin
22551 Curr := Inner;
22552 while Present (Curr) and then Curr /= Standard_Standard loop
22553 Curr := Scope (Curr);
22555 if Curr = Outer then
22556 return True;
22557 end if;
22558 end loop;
22560 return False;
22561 end Scope_Within;
22563 --------------------------
22564 -- Scope_Within_Or_Same --
22565 --------------------------
22567 function Scope_Within_Or_Same
22568 (Inner : Entity_Id;
22569 Outer : Entity_Id) return Boolean
22571 Curr : Entity_Id;
22573 begin
22574 Curr := Inner;
22575 while Present (Curr) and then Curr /= Standard_Standard loop
22576 if Curr = Outer then
22577 return True;
22578 end if;
22580 Curr := Scope (Curr);
22581 end loop;
22583 return False;
22584 end Scope_Within_Or_Same;
22586 --------------------
22587 -- Set_Convention --
22588 --------------------
22590 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
22591 begin
22592 Basic_Set_Convention (E, Val);
22594 if Is_Type (E)
22595 and then Is_Access_Subprogram_Type (Base_Type (E))
22596 and then Has_Foreign_Convention (E)
22597 then
22599 -- A pragma Convention in an instance may apply to the subtype
22600 -- created for a formal, in which case we have already verified
22601 -- that conventions of actual and formal match and there is nothing
22602 -- to flag on the subtype.
22604 if In_Instance then
22605 null;
22606 else
22607 Set_Can_Use_Internal_Rep (E, False);
22608 end if;
22609 end if;
22611 -- If E is an object, including a component, and the type of E is an
22612 -- anonymous access type with no convention set, then also set the
22613 -- convention of the anonymous access type. We do not do this for
22614 -- anonymous protected types, since protected types always have the
22615 -- default convention.
22617 if Present (Etype (E))
22618 and then (Is_Object (E)
22620 -- Allow E_Void (happens for pragma Convention appearing
22621 -- in the middle of a record applying to a component)
22623 or else Ekind (E) = E_Void)
22624 then
22625 declare
22626 Typ : constant Entity_Id := Etype (E);
22628 begin
22629 if Ekind_In (Typ, E_Anonymous_Access_Type,
22630 E_Anonymous_Access_Subprogram_Type)
22631 and then not Has_Convention_Pragma (Typ)
22632 then
22633 Basic_Set_Convention (Typ, Val);
22634 Set_Has_Convention_Pragma (Typ);
22636 -- And for the access subprogram type, deal similarly with the
22637 -- designated E_Subprogram_Type, which is always internal.
22639 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
22640 declare
22641 Dtype : constant Entity_Id := Designated_Type (Typ);
22642 begin
22643 if Ekind (Dtype) = E_Subprogram_Type
22644 and then not Has_Convention_Pragma (Dtype)
22645 then
22646 Basic_Set_Convention (Dtype, Val);
22647 Set_Has_Convention_Pragma (Dtype);
22648 end if;
22649 end;
22650 end if;
22651 end if;
22652 end;
22653 end if;
22654 end Set_Convention;
22656 ------------------------
22657 -- Set_Current_Entity --
22658 ------------------------
22660 -- The given entity is to be set as the currently visible definition of its
22661 -- associated name (i.e. the Node_Id associated with its name). All we have
22662 -- to do is to get the name from the identifier, and then set the
22663 -- associated Node_Id to point to the given entity.
22665 procedure Set_Current_Entity (E : Entity_Id) is
22666 begin
22667 Set_Name_Entity_Id (Chars (E), E);
22668 end Set_Current_Entity;
22670 ---------------------------
22671 -- Set_Debug_Info_Needed --
22672 ---------------------------
22674 procedure Set_Debug_Info_Needed (T : Entity_Id) is
22676 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
22677 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
22678 -- Used to set debug info in a related node if not set already
22680 --------------------------------------
22681 -- Set_Debug_Info_Needed_If_Not_Set --
22682 --------------------------------------
22684 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
22685 begin
22686 if Present (E) and then not Needs_Debug_Info (E) then
22687 Set_Debug_Info_Needed (E);
22689 -- For a private type, indicate that the full view also needs
22690 -- debug information.
22692 if Is_Type (E)
22693 and then Is_Private_Type (E)
22694 and then Present (Full_View (E))
22695 then
22696 Set_Debug_Info_Needed (Full_View (E));
22697 end if;
22698 end if;
22699 end Set_Debug_Info_Needed_If_Not_Set;
22701 -- Start of processing for Set_Debug_Info_Needed
22703 begin
22704 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
22705 -- indicates that Debug_Info_Needed is never required for the entity.
22706 -- Nothing to do if entity comes from a predefined file. Library files
22707 -- are compiled without debug information, but inlined bodies of these
22708 -- routines may appear in user code, and debug information on them ends
22709 -- up complicating debugging the user code.
22711 if No (T)
22712 or else Debug_Info_Off (T)
22713 then
22714 return;
22716 elsif In_Inlined_Body and then In_Predefined_Unit (T) then
22717 Set_Needs_Debug_Info (T, False);
22718 end if;
22720 -- Set flag in entity itself. Note that we will go through the following
22721 -- circuitry even if the flag is already set on T. That's intentional,
22722 -- it makes sure that the flag will be set in subsidiary entities.
22724 Set_Needs_Debug_Info (T);
22726 -- Set flag on subsidiary entities if not set already
22728 if Is_Object (T) then
22729 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
22731 elsif Is_Type (T) then
22732 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
22734 if Is_Record_Type (T) then
22735 declare
22736 Ent : Entity_Id := First_Entity (T);
22737 begin
22738 while Present (Ent) loop
22739 Set_Debug_Info_Needed_If_Not_Set (Ent);
22740 Next_Entity (Ent);
22741 end loop;
22742 end;
22744 -- For a class wide subtype, we also need debug information
22745 -- for the equivalent type.
22747 if Ekind (T) = E_Class_Wide_Subtype then
22748 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
22749 end if;
22751 elsif Is_Array_Type (T) then
22752 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
22754 declare
22755 Indx : Node_Id := First_Index (T);
22756 begin
22757 while Present (Indx) loop
22758 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
22759 Indx := Next_Index (Indx);
22760 end loop;
22761 end;
22763 -- For a packed array type, we also need debug information for
22764 -- the type used to represent the packed array. Conversely, we
22765 -- also need it for the former if we need it for the latter.
22767 if Is_Packed (T) then
22768 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
22769 end if;
22771 if Is_Packed_Array_Impl_Type (T) then
22772 Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
22773 end if;
22775 elsif Is_Access_Type (T) then
22776 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
22778 elsif Is_Private_Type (T) then
22779 declare
22780 FV : constant Entity_Id := Full_View (T);
22782 begin
22783 Set_Debug_Info_Needed_If_Not_Set (FV);
22785 -- If the full view is itself a derived private type, we need
22786 -- debug information on its underlying type.
22788 if Present (FV)
22789 and then Is_Private_Type (FV)
22790 and then Present (Underlying_Full_View (FV))
22791 then
22792 Set_Needs_Debug_Info (Underlying_Full_View (FV));
22793 end if;
22794 end;
22796 elsif Is_Protected_Type (T) then
22797 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
22799 elsif Is_Scalar_Type (T) then
22801 -- If the subrange bounds are materialized by dedicated constant
22802 -- objects, also include them in the debug info to make sure the
22803 -- debugger can properly use them.
22805 if Present (Scalar_Range (T))
22806 and then Nkind (Scalar_Range (T)) = N_Range
22807 then
22808 declare
22809 Low_Bnd : constant Node_Id := Type_Low_Bound (T);
22810 High_Bnd : constant Node_Id := Type_High_Bound (T);
22812 begin
22813 if Is_Entity_Name (Low_Bnd) then
22814 Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
22815 end if;
22817 if Is_Entity_Name (High_Bnd) then
22818 Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
22819 end if;
22820 end;
22821 end if;
22822 end if;
22823 end if;
22824 end Set_Debug_Info_Needed;
22826 ----------------------------
22827 -- Set_Entity_With_Checks --
22828 ----------------------------
22830 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
22831 Val_Actual : Entity_Id;
22832 Nod : Node_Id;
22833 Post_Node : Node_Id;
22835 begin
22836 -- Unconditionally set the entity
22838 Set_Entity (N, Val);
22840 -- The node to post on is the selector in the case of an expanded name,
22841 -- and otherwise the node itself.
22843 if Nkind (N) = N_Expanded_Name then
22844 Post_Node := Selector_Name (N);
22845 else
22846 Post_Node := N;
22847 end if;
22849 -- Check for violation of No_Fixed_IO
22851 if Restriction_Check_Required (No_Fixed_IO)
22852 and then
22853 ((RTU_Loaded (Ada_Text_IO)
22854 and then (Is_RTE (Val, RE_Decimal_IO)
22855 or else
22856 Is_RTE (Val, RE_Fixed_IO)))
22858 or else
22859 (RTU_Loaded (Ada_Wide_Text_IO)
22860 and then (Is_RTE (Val, RO_WT_Decimal_IO)
22861 or else
22862 Is_RTE (Val, RO_WT_Fixed_IO)))
22864 or else
22865 (RTU_Loaded (Ada_Wide_Wide_Text_IO)
22866 and then (Is_RTE (Val, RO_WW_Decimal_IO)
22867 or else
22868 Is_RTE (Val, RO_WW_Fixed_IO))))
22870 -- A special extra check, don't complain about a reference from within
22871 -- the Ada.Interrupts package itself!
22873 and then not In_Same_Extended_Unit (N, Val)
22874 then
22875 Check_Restriction (No_Fixed_IO, Post_Node);
22876 end if;
22878 -- Remaining checks are only done on source nodes. Note that we test
22879 -- for violation of No_Fixed_IO even on non-source nodes, because the
22880 -- cases for checking violations of this restriction are instantiations
22881 -- where the reference in the instance has Comes_From_Source False.
22883 if not Comes_From_Source (N) then
22884 return;
22885 end if;
22887 -- Check for violation of No_Abort_Statements, which is triggered by
22888 -- call to Ada.Task_Identification.Abort_Task.
22890 if Restriction_Check_Required (No_Abort_Statements)
22891 and then (Is_RTE (Val, RE_Abort_Task))
22893 -- A special extra check, don't complain about a reference from within
22894 -- the Ada.Task_Identification package itself!
22896 and then not In_Same_Extended_Unit (N, Val)
22897 then
22898 Check_Restriction (No_Abort_Statements, Post_Node);
22899 end if;
22901 if Val = Standard_Long_Long_Integer then
22902 Check_Restriction (No_Long_Long_Integers, Post_Node);
22903 end if;
22905 -- Check for violation of No_Dynamic_Attachment
22907 if Restriction_Check_Required (No_Dynamic_Attachment)
22908 and then RTU_Loaded (Ada_Interrupts)
22909 and then (Is_RTE (Val, RE_Is_Reserved) or else
22910 Is_RTE (Val, RE_Is_Attached) or else
22911 Is_RTE (Val, RE_Current_Handler) or else
22912 Is_RTE (Val, RE_Attach_Handler) or else
22913 Is_RTE (Val, RE_Exchange_Handler) or else
22914 Is_RTE (Val, RE_Detach_Handler) or else
22915 Is_RTE (Val, RE_Reference))
22917 -- A special extra check, don't complain about a reference from within
22918 -- the Ada.Interrupts package itself!
22920 and then not In_Same_Extended_Unit (N, Val)
22921 then
22922 Check_Restriction (No_Dynamic_Attachment, Post_Node);
22923 end if;
22925 -- Check for No_Implementation_Identifiers
22927 if Restriction_Check_Required (No_Implementation_Identifiers) then
22929 -- We have an implementation defined entity if it is marked as
22930 -- implementation defined, or is defined in a package marked as
22931 -- implementation defined. However, library packages themselves
22932 -- are excluded (we don't want to flag Interfaces itself, just
22933 -- the entities within it).
22935 if (Is_Implementation_Defined (Val)
22936 or else
22937 (Present (Scope (Val))
22938 and then Is_Implementation_Defined (Scope (Val))))
22939 and then not (Ekind_In (Val, E_Package, E_Generic_Package)
22940 and then Is_Library_Level_Entity (Val))
22941 then
22942 Check_Restriction (No_Implementation_Identifiers, Post_Node);
22943 end if;
22944 end if;
22946 -- Do the style check
22948 if Style_Check
22949 and then not Suppress_Style_Checks (Val)
22950 and then not In_Instance
22951 then
22952 if Nkind (N) = N_Identifier then
22953 Nod := N;
22954 elsif Nkind (N) = N_Expanded_Name then
22955 Nod := Selector_Name (N);
22956 else
22957 return;
22958 end if;
22960 -- A special situation arises for derived operations, where we want
22961 -- to do the check against the parent (since the Sloc of the derived
22962 -- operation points to the derived type declaration itself).
22964 Val_Actual := Val;
22965 while not Comes_From_Source (Val_Actual)
22966 and then Nkind (Val_Actual) in N_Entity
22967 and then (Ekind (Val_Actual) = E_Enumeration_Literal
22968 or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
22969 and then Present (Alias (Val_Actual))
22970 loop
22971 Val_Actual := Alias (Val_Actual);
22972 end loop;
22974 -- Renaming declarations for generic actuals do not come from source,
22975 -- and have a different name from that of the entity they rename, so
22976 -- there is no style check to perform here.
22978 if Chars (Nod) = Chars (Val_Actual) then
22979 Style.Check_Identifier (Nod, Val_Actual);
22980 end if;
22981 end if;
22983 Set_Entity (N, Val);
22984 end Set_Entity_With_Checks;
22986 ------------------------
22987 -- Set_Name_Entity_Id --
22988 ------------------------
22990 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
22991 begin
22992 Set_Name_Table_Int (Id, Int (Val));
22993 end Set_Name_Entity_Id;
22995 ---------------------
22996 -- Set_Next_Actual --
22997 ---------------------
22999 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
23000 begin
23001 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
23002 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
23003 end if;
23004 end Set_Next_Actual;
23006 ----------------------------------
23007 -- Set_Optimize_Alignment_Flags --
23008 ----------------------------------
23010 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
23011 begin
23012 if Optimize_Alignment = 'S' then
23013 Set_Optimize_Alignment_Space (E);
23014 elsif Optimize_Alignment = 'T' then
23015 Set_Optimize_Alignment_Time (E);
23016 end if;
23017 end Set_Optimize_Alignment_Flags;
23019 -----------------------
23020 -- Set_Public_Status --
23021 -----------------------
23023 procedure Set_Public_Status (Id : Entity_Id) is
23024 S : constant Entity_Id := Current_Scope;
23026 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
23027 -- Determines if E is defined within handled statement sequence or
23028 -- an if statement, returns True if so, False otherwise.
23030 ----------------------
23031 -- Within_HSS_Or_If --
23032 ----------------------
23034 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
23035 N : Node_Id;
23036 begin
23037 N := Declaration_Node (E);
23038 loop
23039 N := Parent (N);
23041 if No (N) then
23042 return False;
23044 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
23045 N_If_Statement)
23046 then
23047 return True;
23048 end if;
23049 end loop;
23050 end Within_HSS_Or_If;
23052 -- Start of processing for Set_Public_Status
23054 begin
23055 -- Everything in the scope of Standard is public
23057 if S = Standard_Standard then
23058 Set_Is_Public (Id);
23060 -- Entity is definitely not public if enclosing scope is not public
23062 elsif not Is_Public (S) then
23063 return;
23065 -- An object or function declaration that occurs in a handled sequence
23066 -- of statements or within an if statement is the declaration for a
23067 -- temporary object or local subprogram generated by the expander. It
23068 -- never needs to be made public and furthermore, making it public can
23069 -- cause back end problems.
23071 elsif Nkind_In (Parent (Id), N_Object_Declaration,
23072 N_Function_Specification)
23073 and then Within_HSS_Or_If (Id)
23074 then
23075 return;
23077 -- Entities in public packages or records are public
23079 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
23080 Set_Is_Public (Id);
23082 -- The bounds of an entry family declaration can generate object
23083 -- declarations that are visible to the back-end, e.g. in the
23084 -- the declaration of a composite type that contains tasks.
23086 elsif Is_Concurrent_Type (S)
23087 and then not Has_Completion (S)
23088 and then Nkind (Parent (Id)) = N_Object_Declaration
23089 then
23090 Set_Is_Public (Id);
23091 end if;
23092 end Set_Public_Status;
23094 -----------------------------
23095 -- Set_Referenced_Modified --
23096 -----------------------------
23098 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
23099 Pref : Node_Id;
23101 begin
23102 -- Deal with indexed or selected component where prefix is modified
23104 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
23105 Pref := Prefix (N);
23107 -- If prefix is access type, then it is the designated object that is
23108 -- being modified, which means we have no entity to set the flag on.
23110 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
23111 return;
23113 -- Otherwise chase the prefix
23115 else
23116 Set_Referenced_Modified (Pref, Out_Param);
23117 end if;
23119 -- Otherwise see if we have an entity name (only other case to process)
23121 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
23122 Set_Referenced_As_LHS (Entity (N), not Out_Param);
23123 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
23124 end if;
23125 end Set_Referenced_Modified;
23127 ------------------
23128 -- Set_Rep_Info --
23129 ------------------
23131 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id) is
23132 begin
23133 Set_Is_Atomic (T1, Is_Atomic (T2));
23134 Set_Is_Independent (T1, Is_Independent (T2));
23135 Set_Is_Volatile_Full_Access (T1, Is_Volatile_Full_Access (T2));
23137 if Is_Base_Type (T1) then
23138 Set_Is_Volatile (T1, Is_Volatile (T2));
23139 end if;
23140 end Set_Rep_Info;
23142 ----------------------------
23143 -- Set_Scope_Is_Transient --
23144 ----------------------------
23146 procedure Set_Scope_Is_Transient (V : Boolean := True) is
23147 begin
23148 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
23149 end Set_Scope_Is_Transient;
23151 -------------------
23152 -- Set_Size_Info --
23153 -------------------
23155 procedure Set_Size_Info (T1, T2 : Entity_Id) is
23156 begin
23157 -- We copy Esize, but not RM_Size, since in general RM_Size is
23158 -- subtype specific and does not get inherited by all subtypes.
23160 Set_Esize (T1, Esize (T2));
23161 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
23163 if Is_Discrete_Or_Fixed_Point_Type (T1)
23164 and then
23165 Is_Discrete_Or_Fixed_Point_Type (T2)
23166 then
23167 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
23168 end if;
23170 Set_Alignment (T1, Alignment (T2));
23171 end Set_Size_Info;
23173 ------------------------------
23174 -- Should_Ignore_Pragma_Par --
23175 ------------------------------
23177 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean is
23178 pragma Assert (Compiler_State = Parsing);
23179 -- This one can't work during semantic analysis, because we don't have a
23180 -- correct Current_Source_File.
23182 Result : constant Boolean :=
23183 Get_Name_Table_Boolean3 (Prag_Name)
23184 and then not Is_Internal_File_Name
23185 (File_Name (Current_Source_File));
23186 begin
23187 return Result;
23188 end Should_Ignore_Pragma_Par;
23190 ------------------------------
23191 -- Should_Ignore_Pragma_Sem --
23192 ------------------------------
23194 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean is
23195 pragma Assert (Compiler_State = Analyzing);
23196 Prag_Name : constant Name_Id := Pragma_Name (N);
23197 Result : constant Boolean :=
23198 Get_Name_Table_Boolean3 (Prag_Name)
23199 and then not In_Internal_Unit (N);
23201 begin
23202 return Result;
23203 end Should_Ignore_Pragma_Sem;
23205 --------------------
23206 -- Static_Boolean --
23207 --------------------
23209 function Static_Boolean (N : Node_Id) return Uint is
23210 begin
23211 Analyze_And_Resolve (N, Standard_Boolean);
23213 if N = Error
23214 or else Error_Posted (N)
23215 or else Etype (N) = Any_Type
23216 then
23217 return No_Uint;
23218 end if;
23220 if Is_OK_Static_Expression (N) then
23221 if not Raises_Constraint_Error (N) then
23222 return Expr_Value (N);
23223 else
23224 return No_Uint;
23225 end if;
23227 elsif Etype (N) = Any_Type then
23228 return No_Uint;
23230 else
23231 Flag_Non_Static_Expr
23232 ("static boolean expression required here", N);
23233 return No_Uint;
23234 end if;
23235 end Static_Boolean;
23237 --------------------
23238 -- Static_Integer --
23239 --------------------
23241 function Static_Integer (N : Node_Id) return Uint is
23242 begin
23243 Analyze_And_Resolve (N, Any_Integer);
23245 if N = Error
23246 or else Error_Posted (N)
23247 or else Etype (N) = Any_Type
23248 then
23249 return No_Uint;
23250 end if;
23252 if Is_OK_Static_Expression (N) then
23253 if not Raises_Constraint_Error (N) then
23254 return Expr_Value (N);
23255 else
23256 return No_Uint;
23257 end if;
23259 elsif Etype (N) = Any_Type then
23260 return No_Uint;
23262 else
23263 Flag_Non_Static_Expr
23264 ("static integer expression required here", N);
23265 return No_Uint;
23266 end if;
23267 end Static_Integer;
23269 --------------------------
23270 -- Statically_Different --
23271 --------------------------
23273 function Statically_Different (E1, E2 : Node_Id) return Boolean is
23274 R1 : constant Node_Id := Get_Referenced_Object (E1);
23275 R2 : constant Node_Id := Get_Referenced_Object (E2);
23276 begin
23277 return Is_Entity_Name (R1)
23278 and then Is_Entity_Name (R2)
23279 and then Entity (R1) /= Entity (R2)
23280 and then not Is_Formal (Entity (R1))
23281 and then not Is_Formal (Entity (R2));
23282 end Statically_Different;
23284 --------------------------------------
23285 -- Subject_To_Loop_Entry_Attributes --
23286 --------------------------------------
23288 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
23289 Stmt : Node_Id;
23291 begin
23292 Stmt := N;
23294 -- The expansion mechanism transform a loop subject to at least one
23295 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
23296 -- the conditional part.
23298 if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
23299 and then Nkind (Original_Node (N)) = N_Loop_Statement
23300 then
23301 Stmt := Original_Node (N);
23302 end if;
23304 return
23305 Nkind (Stmt) = N_Loop_Statement
23306 and then Present (Identifier (Stmt))
23307 and then Present (Entity (Identifier (Stmt)))
23308 and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
23309 end Subject_To_Loop_Entry_Attributes;
23311 -----------------------------
23312 -- Subprogram_Access_Level --
23313 -----------------------------
23315 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
23316 begin
23317 if Present (Alias (Subp)) then
23318 return Subprogram_Access_Level (Alias (Subp));
23319 else
23320 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
23321 end if;
23322 end Subprogram_Access_Level;
23324 ---------------------
23325 -- Subprogram_Name --
23326 ---------------------
23328 function Subprogram_Name (N : Node_Id) return String is
23329 Buf : Bounded_String;
23330 Ent : Node_Id := N;
23331 Nod : Node_Id;
23333 begin
23334 while Present (Ent) loop
23335 case Nkind (Ent) is
23336 when N_Subprogram_Body =>
23337 Ent := Defining_Unit_Name (Specification (Ent));
23338 exit;
23340 when N_Subprogram_Declaration =>
23341 Nod := Corresponding_Body (Ent);
23343 if Present (Nod) then
23344 Ent := Nod;
23345 else
23346 Ent := Defining_Unit_Name (Specification (Ent));
23347 end if;
23349 exit;
23351 when N_Subprogram_Instantiation
23352 | N_Package_Body
23353 | N_Package_Specification
23355 Ent := Defining_Unit_Name (Ent);
23356 exit;
23358 when N_Protected_Type_Declaration =>
23359 Ent := Corresponding_Body (Ent);
23360 exit;
23362 when N_Protected_Body
23363 | N_Task_Body
23365 Ent := Defining_Identifier (Ent);
23366 exit;
23368 when others =>
23369 null;
23370 end case;
23372 Ent := Parent (Ent);
23373 end loop;
23375 if No (Ent) then
23376 return "unknown subprogram:unknown file:0:0";
23377 end if;
23379 -- If the subprogram is a child unit, use its simple name to start the
23380 -- construction of the fully qualified name.
23382 if Nkind (Ent) = N_Defining_Program_Unit_Name then
23383 Ent := Defining_Identifier (Ent);
23384 end if;
23386 Append_Entity_Name (Buf, Ent);
23388 -- Append homonym number if needed
23390 if Nkind (N) in N_Entity and then Has_Homonym (N) then
23391 declare
23392 H : Entity_Id := Homonym (N);
23393 Nr : Nat := 1;
23395 begin
23396 while Present (H) loop
23397 if Scope (H) = Scope (N) then
23398 Nr := Nr + 1;
23399 end if;
23401 H := Homonym (H);
23402 end loop;
23404 if Nr > 1 then
23405 Append (Buf, '#');
23406 Append (Buf, Nr);
23407 end if;
23408 end;
23409 end if;
23411 -- Append source location of Ent to Buf so that the string will
23412 -- look like "subp:file:line:col".
23414 declare
23415 Loc : constant Source_Ptr := Sloc (Ent);
23416 begin
23417 Append (Buf, ':');
23418 Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
23419 Append (Buf, ':');
23420 Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
23421 Append (Buf, ':');
23422 Append (Buf, Nat (Get_Column_Number (Loc)));
23423 end;
23425 return +Buf;
23426 end Subprogram_Name;
23428 -------------------------------
23429 -- Support_Atomic_Primitives --
23430 -------------------------------
23432 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
23433 Size : Int;
23435 begin
23436 -- Verify the alignment of Typ is known
23438 if not Known_Alignment (Typ) then
23439 return False;
23440 end if;
23442 if Known_Static_Esize (Typ) then
23443 Size := UI_To_Int (Esize (Typ));
23445 -- If the Esize (Object_Size) is unknown at compile time, look at the
23446 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
23448 elsif Known_Static_RM_Size (Typ) then
23449 Size := UI_To_Int (RM_Size (Typ));
23451 -- Otherwise, the size is considered to be unknown.
23453 else
23454 return False;
23455 end if;
23457 -- Check that the size of the component is 8, 16, 32, or 64 bits and
23458 -- that Typ is properly aligned.
23460 case Size is
23461 when 8 | 16 | 32 | 64 =>
23462 return Size = UI_To_Int (Alignment (Typ)) * 8;
23464 when others =>
23465 return False;
23466 end case;
23467 end Support_Atomic_Primitives;
23469 -----------------
23470 -- Trace_Scope --
23471 -----------------
23473 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
23474 begin
23475 if Debug_Flag_W then
23476 for J in 0 .. Scope_Stack.Last loop
23477 Write_Str (" ");
23478 end loop;
23480 Write_Str (Msg);
23481 Write_Name (Chars (E));
23482 Write_Str (" from ");
23483 Write_Location (Sloc (N));
23484 Write_Eol;
23485 end if;
23486 end Trace_Scope;
23488 -----------------------
23489 -- Transfer_Entities --
23490 -----------------------
23492 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
23493 procedure Set_Public_Status_Of (Id : Entity_Id);
23494 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
23495 -- Set_Public_Status. If successful and Id denotes a record type, set
23496 -- the Is_Public attribute of its fields.
23498 --------------------------
23499 -- Set_Public_Status_Of --
23500 --------------------------
23502 procedure Set_Public_Status_Of (Id : Entity_Id) is
23503 Field : Entity_Id;
23505 begin
23506 if not Is_Public (Id) then
23507 Set_Public_Status (Id);
23509 -- When the input entity is a public record type, ensure that all
23510 -- its internal fields are also exposed to the linker. The fields
23511 -- of a class-wide type are never made public.
23513 if Is_Public (Id)
23514 and then Is_Record_Type (Id)
23515 and then not Is_Class_Wide_Type (Id)
23516 then
23517 Field := First_Entity (Id);
23518 while Present (Field) loop
23519 Set_Is_Public (Field);
23520 Next_Entity (Field);
23521 end loop;
23522 end if;
23523 end if;
23524 end Set_Public_Status_Of;
23526 -- Local variables
23528 Full_Id : Entity_Id;
23529 Id : Entity_Id;
23531 -- Start of processing for Transfer_Entities
23533 begin
23534 Id := First_Entity (From);
23536 if Present (Id) then
23538 -- Merge the entity chain of the source scope with that of the
23539 -- destination scope.
23541 if Present (Last_Entity (To)) then
23542 Set_Next_Entity (Last_Entity (To), Id);
23543 else
23544 Set_First_Entity (To, Id);
23545 end if;
23547 Set_Last_Entity (To, Last_Entity (From));
23549 -- Inspect the entities of the source scope and update their Scope
23550 -- attribute.
23552 while Present (Id) loop
23553 Set_Scope (Id, To);
23554 Set_Public_Status_Of (Id);
23556 -- Handle an internally generated full view for a private type
23558 if Is_Private_Type (Id)
23559 and then Present (Full_View (Id))
23560 and then Is_Itype (Full_View (Id))
23561 then
23562 Full_Id := Full_View (Id);
23564 Set_Scope (Full_Id, To);
23565 Set_Public_Status_Of (Full_Id);
23566 end if;
23568 Next_Entity (Id);
23569 end loop;
23571 Set_First_Entity (From, Empty);
23572 Set_Last_Entity (From, Empty);
23573 end if;
23574 end Transfer_Entities;
23576 -----------------------
23577 -- Type_Access_Level --
23578 -----------------------
23580 function Type_Access_Level (Typ : Entity_Id) return Uint is
23581 Btyp : Entity_Id;
23583 begin
23584 Btyp := Base_Type (Typ);
23586 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
23587 -- simply use the level where the type is declared. This is true for
23588 -- stand-alone object declarations, and for anonymous access types
23589 -- associated with components the level is the same as that of the
23590 -- enclosing composite type. However, special treatment is needed for
23591 -- the cases of access parameters, return objects of an anonymous access
23592 -- type, and, in Ada 95, access discriminants of limited types.
23594 if Is_Access_Type (Btyp) then
23595 if Ekind (Btyp) = E_Anonymous_Access_Type then
23597 -- If the type is a nonlocal anonymous access type (such as for
23598 -- an access parameter) we treat it as being declared at the
23599 -- library level to ensure that names such as X.all'access don't
23600 -- fail static accessibility checks.
23602 if not Is_Local_Anonymous_Access (Typ) then
23603 return Scope_Depth (Standard_Standard);
23605 -- If this is a return object, the accessibility level is that of
23606 -- the result subtype of the enclosing function. The test here is
23607 -- little complicated, because we have to account for extended
23608 -- return statements that have been rewritten as blocks, in which
23609 -- case we have to find and the Is_Return_Object attribute of the
23610 -- itype's associated object. It would be nice to find a way to
23611 -- simplify this test, but it doesn't seem worthwhile to add a new
23612 -- flag just for purposes of this test. ???
23614 elsif Ekind (Scope (Btyp)) = E_Return_Statement
23615 or else
23616 (Is_Itype (Btyp)
23617 and then Nkind (Associated_Node_For_Itype (Btyp)) =
23618 N_Object_Declaration
23619 and then Is_Return_Object
23620 (Defining_Identifier
23621 (Associated_Node_For_Itype (Btyp))))
23622 then
23623 declare
23624 Scop : Entity_Id;
23626 begin
23627 Scop := Scope (Scope (Btyp));
23628 while Present (Scop) loop
23629 exit when Ekind (Scop) = E_Function;
23630 Scop := Scope (Scop);
23631 end loop;
23633 -- Treat the return object's type as having the level of the
23634 -- function's result subtype (as per RM05-6.5(5.3/2)).
23636 return Type_Access_Level (Etype (Scop));
23637 end;
23638 end if;
23639 end if;
23641 Btyp := Root_Type (Btyp);
23643 -- The accessibility level of anonymous access types associated with
23644 -- discriminants is that of the current instance of the type, and
23645 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
23647 -- AI-402: access discriminants have accessibility based on the
23648 -- object rather than the type in Ada 2005, so the above paragraph
23649 -- doesn't apply.
23651 -- ??? Needs completion with rules from AI-416
23653 if Ada_Version <= Ada_95
23654 and then Ekind (Typ) = E_Anonymous_Access_Type
23655 and then Present (Associated_Node_For_Itype (Typ))
23656 and then Nkind (Associated_Node_For_Itype (Typ)) =
23657 N_Discriminant_Specification
23658 then
23659 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
23660 end if;
23661 end if;
23663 -- Return library level for a generic formal type. This is done because
23664 -- RM(10.3.2) says that "The statically deeper relationship does not
23665 -- apply to ... a descendant of a generic formal type". Rather than
23666 -- checking at each point where a static accessibility check is
23667 -- performed to see if we are dealing with a formal type, this rule is
23668 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
23669 -- return extreme values for a formal type; Deepest_Type_Access_Level
23670 -- returns Int'Last. By calling the appropriate function from among the
23671 -- two, we ensure that the static accessibility check will pass if we
23672 -- happen to run into a formal type. More specifically, we should call
23673 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
23674 -- call occurs as part of a static accessibility check and the error
23675 -- case is the case where the type's level is too shallow (as opposed
23676 -- to too deep).
23678 if Is_Generic_Type (Root_Type (Btyp)) then
23679 return Scope_Depth (Standard_Standard);
23680 end if;
23682 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
23683 end Type_Access_Level;
23685 ------------------------------------
23686 -- Type_Without_Stream_Operation --
23687 ------------------------------------
23689 function Type_Without_Stream_Operation
23690 (T : Entity_Id;
23691 Op : TSS_Name_Type := TSS_Null) return Entity_Id
23693 BT : constant Entity_Id := Base_Type (T);
23694 Op_Missing : Boolean;
23696 begin
23697 if not Restriction_Active (No_Default_Stream_Attributes) then
23698 return Empty;
23699 end if;
23701 if Is_Elementary_Type (T) then
23702 if Op = TSS_Null then
23703 Op_Missing :=
23704 No (TSS (BT, TSS_Stream_Read))
23705 or else No (TSS (BT, TSS_Stream_Write));
23707 else
23708 Op_Missing := No (TSS (BT, Op));
23709 end if;
23711 if Op_Missing then
23712 return T;
23713 else
23714 return Empty;
23715 end if;
23717 elsif Is_Array_Type (T) then
23718 return Type_Without_Stream_Operation (Component_Type (T), Op);
23720 elsif Is_Record_Type (T) then
23721 declare
23722 Comp : Entity_Id;
23723 C_Typ : Entity_Id;
23725 begin
23726 Comp := First_Component (T);
23727 while Present (Comp) loop
23728 C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
23730 if Present (C_Typ) then
23731 return C_Typ;
23732 end if;
23734 Next_Component (Comp);
23735 end loop;
23737 return Empty;
23738 end;
23740 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
23741 return Type_Without_Stream_Operation (Full_View (T), Op);
23742 else
23743 return Empty;
23744 end if;
23745 end Type_Without_Stream_Operation;
23747 ----------------------------
23748 -- Unique_Defining_Entity --
23749 ----------------------------
23751 function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
23752 begin
23753 return Unique_Entity (Defining_Entity (N));
23754 end Unique_Defining_Entity;
23756 -------------------
23757 -- Unique_Entity --
23758 -------------------
23760 function Unique_Entity (E : Entity_Id) return Entity_Id is
23761 U : Entity_Id := E;
23762 P : Node_Id;
23764 begin
23765 case Ekind (E) is
23766 when E_Constant =>
23767 if Present (Full_View (E)) then
23768 U := Full_View (E);
23769 end if;
23771 when Entry_Kind =>
23772 if Nkind (Parent (E)) = N_Entry_Body then
23773 declare
23774 Prot_Item : Entity_Id;
23775 Prot_Type : Entity_Id;
23777 begin
23778 if Ekind (E) = E_Entry then
23779 Prot_Type := Scope (E);
23781 -- Bodies of entry families are nested within an extra scope
23782 -- that contains an entry index declaration.
23784 else
23785 Prot_Type := Scope (Scope (E));
23786 end if;
23788 -- A protected type may be declared as a private type, in
23789 -- which case we need to get its full view.
23791 if Is_Private_Type (Prot_Type) then
23792 Prot_Type := Full_View (Prot_Type);
23793 end if;
23795 -- Full view may not be present on error, in which case
23796 -- return E by default.
23798 if Present (Prot_Type) then
23799 pragma Assert (Ekind (Prot_Type) = E_Protected_Type);
23801 -- Traverse the entity list of the protected type and
23802 -- locate an entry declaration which matches the entry
23803 -- body.
23805 Prot_Item := First_Entity (Prot_Type);
23806 while Present (Prot_Item) loop
23807 if Ekind (Prot_Item) in Entry_Kind
23808 and then Corresponding_Body (Parent (Prot_Item)) = E
23809 then
23810 U := Prot_Item;
23811 exit;
23812 end if;
23814 Next_Entity (Prot_Item);
23815 end loop;
23816 end if;
23817 end;
23818 end if;
23820 when Formal_Kind =>
23821 if Present (Spec_Entity (E)) then
23822 U := Spec_Entity (E);
23823 end if;
23825 when E_Package_Body =>
23826 P := Parent (E);
23828 if Nkind (P) = N_Defining_Program_Unit_Name then
23829 P := Parent (P);
23830 end if;
23832 if Nkind (P) = N_Package_Body
23833 and then Present (Corresponding_Spec (P))
23834 then
23835 U := Corresponding_Spec (P);
23837 elsif Nkind (P) = N_Package_Body_Stub
23838 and then Present (Corresponding_Spec_Of_Stub (P))
23839 then
23840 U := Corresponding_Spec_Of_Stub (P);
23841 end if;
23843 when E_Protected_Body =>
23844 P := Parent (E);
23846 if Nkind (P) = N_Protected_Body
23847 and then Present (Corresponding_Spec (P))
23848 then
23849 U := Corresponding_Spec (P);
23851 elsif Nkind (P) = N_Protected_Body_Stub
23852 and then Present (Corresponding_Spec_Of_Stub (P))
23853 then
23854 U := Corresponding_Spec_Of_Stub (P);
23856 if Is_Single_Protected_Object (U) then
23857 U := Etype (U);
23858 end if;
23859 end if;
23861 if Is_Private_Type (U) then
23862 U := Full_View (U);
23863 end if;
23865 when E_Subprogram_Body =>
23866 P := Parent (E);
23868 if Nkind (P) = N_Defining_Program_Unit_Name then
23869 P := Parent (P);
23870 end if;
23872 P := Parent (P);
23874 if Nkind (P) = N_Subprogram_Body
23875 and then Present (Corresponding_Spec (P))
23876 then
23877 U := Corresponding_Spec (P);
23879 elsif Nkind (P) = N_Subprogram_Body_Stub
23880 and then Present (Corresponding_Spec_Of_Stub (P))
23881 then
23882 U := Corresponding_Spec_Of_Stub (P);
23884 elsif Nkind (P) = N_Subprogram_Renaming_Declaration then
23885 U := Corresponding_Spec (P);
23886 end if;
23888 when E_Task_Body =>
23889 P := Parent (E);
23891 if Nkind (P) = N_Task_Body
23892 and then Present (Corresponding_Spec (P))
23893 then
23894 U := Corresponding_Spec (P);
23896 elsif Nkind (P) = N_Task_Body_Stub
23897 and then Present (Corresponding_Spec_Of_Stub (P))
23898 then
23899 U := Corresponding_Spec_Of_Stub (P);
23901 if Is_Single_Task_Object (U) then
23902 U := Etype (U);
23903 end if;
23904 end if;
23906 if Is_Private_Type (U) then
23907 U := Full_View (U);
23908 end if;
23910 when Type_Kind =>
23911 if Present (Full_View (E)) then
23912 U := Full_View (E);
23913 end if;
23915 when others =>
23916 null;
23917 end case;
23919 return U;
23920 end Unique_Entity;
23922 -----------------
23923 -- Unique_Name --
23924 -----------------
23926 function Unique_Name (E : Entity_Id) return String is
23928 -- Names in E_Subprogram_Body or E_Package_Body entities are not
23929 -- reliable, as they may not include the overloading suffix. Instead,
23930 -- when looking for the name of E or one of its enclosing scope, we get
23931 -- the name of the corresponding Unique_Entity.
23933 U : constant Entity_Id := Unique_Entity (E);
23935 function This_Name return String;
23937 ---------------
23938 -- This_Name --
23939 ---------------
23941 function This_Name return String is
23942 begin
23943 return Get_Name_String (Chars (U));
23944 end This_Name;
23946 -- Start of processing for Unique_Name
23948 begin
23949 if E = Standard_Standard
23950 or else Has_Fully_Qualified_Name (E)
23951 then
23952 return This_Name;
23954 elsif Ekind (E) = E_Enumeration_Literal then
23955 return Unique_Name (Etype (E)) & "__" & This_Name;
23957 else
23958 declare
23959 S : constant Entity_Id := Scope (U);
23960 pragma Assert (Present (S));
23962 begin
23963 -- Prefix names of predefined types with standard__, but leave
23964 -- names of user-defined packages and subprograms without prefix
23965 -- (even if technically they are nested in the Standard package).
23967 if S = Standard_Standard then
23968 if Ekind (U) = E_Package or else Is_Subprogram (U) then
23969 return This_Name;
23970 else
23971 return Unique_Name (S) & "__" & This_Name;
23972 end if;
23974 -- For intances of generic subprograms use the name of the related
23975 -- instace and skip the scope of its wrapper package.
23977 elsif Is_Wrapper_Package (S) then
23978 pragma Assert (Scope (S) = Scope (Related_Instance (S)));
23979 -- Wrapper package and the instantiation are in the same scope
23981 declare
23982 Enclosing_Name : constant String :=
23983 Unique_Name (Scope (S)) & "__" &
23984 Get_Name_String (Chars (Related_Instance (S)));
23986 begin
23987 if Is_Subprogram (U)
23988 and then not Is_Generic_Actual_Subprogram (U)
23989 then
23990 return Enclosing_Name;
23991 else
23992 return Enclosing_Name & "__" & This_Name;
23993 end if;
23994 end;
23996 else
23997 return Unique_Name (S) & "__" & This_Name;
23998 end if;
23999 end;
24000 end if;
24001 end Unique_Name;
24003 ---------------------
24004 -- Unit_Is_Visible --
24005 ---------------------
24007 function Unit_Is_Visible (U : Entity_Id) return Boolean is
24008 Curr : constant Node_Id := Cunit (Current_Sem_Unit);
24009 Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
24011 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
24012 -- For a child unit, check whether unit appears in a with_clause
24013 -- of a parent.
24015 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
24016 -- Scan the context clause of one compilation unit looking for a
24017 -- with_clause for the unit in question.
24019 ----------------------------
24020 -- Unit_In_Parent_Context --
24021 ----------------------------
24023 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
24024 begin
24025 if Unit_In_Context (Par_Unit) then
24026 return True;
24028 elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
24029 return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
24031 else
24032 return False;
24033 end if;
24034 end Unit_In_Parent_Context;
24036 ---------------------
24037 -- Unit_In_Context --
24038 ---------------------
24040 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
24041 Clause : Node_Id;
24043 begin
24044 Clause := First (Context_Items (Comp_Unit));
24045 while Present (Clause) loop
24046 if Nkind (Clause) = N_With_Clause then
24047 if Library_Unit (Clause) = U then
24048 return True;
24050 -- The with_clause may denote a renaming of the unit we are
24051 -- looking for, eg. Text_IO which renames Ada.Text_IO.
24053 elsif
24054 Renamed_Entity (Entity (Name (Clause))) =
24055 Defining_Entity (Unit (U))
24056 then
24057 return True;
24058 end if;
24059 end if;
24061 Next (Clause);
24062 end loop;
24064 return False;
24065 end Unit_In_Context;
24067 -- Start of processing for Unit_Is_Visible
24069 begin
24070 -- The currrent unit is directly visible
24072 if Curr = U then
24073 return True;
24075 elsif Unit_In_Context (Curr) then
24076 return True;
24078 -- If the current unit is a body, check the context of the spec
24080 elsif Nkind (Unit (Curr)) = N_Package_Body
24081 or else
24082 (Nkind (Unit (Curr)) = N_Subprogram_Body
24083 and then not Acts_As_Spec (Unit (Curr)))
24084 then
24085 if Unit_In_Context (Library_Unit (Curr)) then
24086 return True;
24087 end if;
24088 end if;
24090 -- If the spec is a child unit, examine the parents
24092 if Is_Child_Unit (Curr_Entity) then
24093 if Nkind (Unit (Curr)) in N_Unit_Body then
24094 return
24095 Unit_In_Parent_Context
24096 (Parent_Spec (Unit (Library_Unit (Curr))));
24097 else
24098 return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
24099 end if;
24101 else
24102 return False;
24103 end if;
24104 end Unit_Is_Visible;
24106 ------------------------------
24107 -- Universal_Interpretation --
24108 ------------------------------
24110 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
24111 Index : Interp_Index;
24112 It : Interp;
24114 begin
24115 -- The argument may be a formal parameter of an operator or subprogram
24116 -- with multiple interpretations, or else an expression for an actual.
24118 if Nkind (Opnd) = N_Defining_Identifier
24119 or else not Is_Overloaded (Opnd)
24120 then
24121 if Etype (Opnd) = Universal_Integer
24122 or else Etype (Opnd) = Universal_Real
24123 then
24124 return Etype (Opnd);
24125 else
24126 return Empty;
24127 end if;
24129 else
24130 Get_First_Interp (Opnd, Index, It);
24131 while Present (It.Typ) loop
24132 if It.Typ = Universal_Integer
24133 or else It.Typ = Universal_Real
24134 then
24135 return It.Typ;
24136 end if;
24138 Get_Next_Interp (Index, It);
24139 end loop;
24141 return Empty;
24142 end if;
24143 end Universal_Interpretation;
24145 ---------------
24146 -- Unqualify --
24147 ---------------
24149 function Unqualify (Expr : Node_Id) return Node_Id is
24150 begin
24151 -- Recurse to handle unlikely case of multiple levels of qualification
24153 if Nkind (Expr) = N_Qualified_Expression then
24154 return Unqualify (Expression (Expr));
24156 -- Normal case, not a qualified expression
24158 else
24159 return Expr;
24160 end if;
24161 end Unqualify;
24163 -----------------
24164 -- Unqual_Conv --
24165 -----------------
24167 function Unqual_Conv (Expr : Node_Id) return Node_Id is
24168 begin
24169 -- Recurse to handle unlikely case of multiple levels of qualification
24170 -- and/or conversion.
24172 if Nkind_In (Expr, N_Qualified_Expression,
24173 N_Type_Conversion,
24174 N_Unchecked_Type_Conversion)
24175 then
24176 return Unqual_Conv (Expression (Expr));
24178 -- Normal case, not a qualified expression
24180 else
24181 return Expr;
24182 end if;
24183 end Unqual_Conv;
24185 -----------------------
24186 -- Visible_Ancestors --
24187 -----------------------
24189 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
24190 List_1 : Elist_Id;
24191 List_2 : Elist_Id;
24192 Elmt : Elmt_Id;
24194 begin
24195 pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
24197 -- Collect all the parents and progenitors of Typ. If the full-view of
24198 -- private parents and progenitors is available then it is used to
24199 -- generate the list of visible ancestors; otherwise their partial
24200 -- view is added to the resulting list.
24202 Collect_Parents
24203 (T => Typ,
24204 List => List_1,
24205 Use_Full_View => True);
24207 Collect_Interfaces
24208 (T => Typ,
24209 Ifaces_List => List_2,
24210 Exclude_Parents => True,
24211 Use_Full_View => True);
24213 -- Join the two lists. Avoid duplications because an interface may
24214 -- simultaneously be parent and progenitor of a type.
24216 Elmt := First_Elmt (List_2);
24217 while Present (Elmt) loop
24218 Append_Unique_Elmt (Node (Elmt), List_1);
24219 Next_Elmt (Elmt);
24220 end loop;
24222 return List_1;
24223 end Visible_Ancestors;
24225 ----------------------
24226 -- Within_Init_Proc --
24227 ----------------------
24229 function Within_Init_Proc return Boolean is
24230 S : Entity_Id;
24232 begin
24233 S := Current_Scope;
24234 while not Is_Overloadable (S) loop
24235 if S = Standard_Standard then
24236 return False;
24237 else
24238 S := Scope (S);
24239 end if;
24240 end loop;
24242 return Is_Init_Proc (S);
24243 end Within_Init_Proc;
24245 ---------------------------
24246 -- Within_Protected_Type --
24247 ---------------------------
24249 function Within_Protected_Type (E : Entity_Id) return Boolean is
24250 Scop : Entity_Id := Scope (E);
24252 begin
24253 while Present (Scop) loop
24254 if Ekind (Scop) = E_Protected_Type then
24255 return True;
24256 end if;
24258 Scop := Scope (Scop);
24259 end loop;
24261 return False;
24262 end Within_Protected_Type;
24264 ------------------
24265 -- Within_Scope --
24266 ------------------
24268 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
24269 begin
24270 return Scope_Within_Or_Same (Scope (E), S);
24271 end Within_Scope;
24273 ----------------------------
24274 -- Within_Subprogram_Call --
24275 ----------------------------
24277 function Within_Subprogram_Call (N : Node_Id) return Boolean is
24278 Par : Node_Id;
24280 begin
24281 -- Climb the parent chain looking for a function or procedure call
24283 Par := N;
24284 while Present (Par) loop
24285 if Nkind_In (Par, N_Entry_Call_Statement,
24286 N_Function_Call,
24287 N_Procedure_Call_Statement)
24288 then
24289 return True;
24291 -- Prevent the search from going too far
24293 elsif Is_Body_Or_Package_Declaration (Par) then
24294 exit;
24295 end if;
24297 Par := Parent (Par);
24298 end loop;
24300 return False;
24301 end Within_Subprogram_Call;
24303 ----------------
24304 -- Wrong_Type --
24305 ----------------
24307 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
24308 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
24309 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
24311 Matching_Field : Entity_Id;
24312 -- Entity to give a more precise suggestion on how to write a one-
24313 -- element positional aggregate.
24315 function Has_One_Matching_Field return Boolean;
24316 -- Determines if Expec_Type is a record type with a single component or
24317 -- discriminant whose type matches the found type or is one dimensional
24318 -- array whose component type matches the found type. In the case of
24319 -- one discriminant, we ignore the variant parts. That's not accurate,
24320 -- but good enough for the warning.
24322 ----------------------------
24323 -- Has_One_Matching_Field --
24324 ----------------------------
24326 function Has_One_Matching_Field return Boolean is
24327 E : Entity_Id;
24329 begin
24330 Matching_Field := Empty;
24332 if Is_Array_Type (Expec_Type)
24333 and then Number_Dimensions (Expec_Type) = 1
24334 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
24335 then
24336 -- Use type name if available. This excludes multidimensional
24337 -- arrays and anonymous arrays.
24339 if Comes_From_Source (Expec_Type) then
24340 Matching_Field := Expec_Type;
24342 -- For an assignment, use name of target
24344 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
24345 and then Is_Entity_Name (Name (Parent (Expr)))
24346 then
24347 Matching_Field := Entity (Name (Parent (Expr)));
24348 end if;
24350 return True;
24352 elsif not Is_Record_Type (Expec_Type) then
24353 return False;
24355 else
24356 E := First_Entity (Expec_Type);
24357 loop
24358 if No (E) then
24359 return False;
24361 elsif not Ekind_In (E, E_Discriminant, E_Component)
24362 or else Nam_In (Chars (E), Name_uTag, Name_uParent)
24363 then
24364 Next_Entity (E);
24366 else
24367 exit;
24368 end if;
24369 end loop;
24371 if not Covers (Etype (E), Found_Type) then
24372 return False;
24374 elsif Present (Next_Entity (E))
24375 and then (Ekind (E) = E_Component
24376 or else Ekind (Next_Entity (E)) = E_Discriminant)
24377 then
24378 return False;
24380 else
24381 Matching_Field := E;
24382 return True;
24383 end if;
24384 end if;
24385 end Has_One_Matching_Field;
24387 -- Start of processing for Wrong_Type
24389 begin
24390 -- Don't output message if either type is Any_Type, or if a message
24391 -- has already been posted for this node. We need to do the latter
24392 -- check explicitly (it is ordinarily done in Errout), because we
24393 -- are using ! to force the output of the error messages.
24395 if Expec_Type = Any_Type
24396 or else Found_Type = Any_Type
24397 or else Error_Posted (Expr)
24398 then
24399 return;
24401 -- If one of the types is a Taft-Amendment type and the other it its
24402 -- completion, it must be an illegal use of a TAT in the spec, for
24403 -- which an error was already emitted. Avoid cascaded errors.
24405 elsif Is_Incomplete_Type (Expec_Type)
24406 and then Has_Completion_In_Body (Expec_Type)
24407 and then Full_View (Expec_Type) = Etype (Expr)
24408 then
24409 return;
24411 elsif Is_Incomplete_Type (Etype (Expr))
24412 and then Has_Completion_In_Body (Etype (Expr))
24413 and then Full_View (Etype (Expr)) = Expec_Type
24414 then
24415 return;
24417 -- In an instance, there is an ongoing problem with completion of
24418 -- type derived from private types. Their structure is what Gigi
24419 -- expects, but the Etype is the parent type rather than the
24420 -- derived private type itself. Do not flag error in this case. The
24421 -- private completion is an entity without a parent, like an Itype.
24422 -- Similarly, full and partial views may be incorrect in the instance.
24423 -- There is no simple way to insure that it is consistent ???
24425 -- A similar view discrepancy can happen in an inlined body, for the
24426 -- same reason: inserted body may be outside of the original package
24427 -- and only partial views are visible at the point of insertion.
24429 elsif In_Instance or else In_Inlined_Body then
24430 if Etype (Etype (Expr)) = Etype (Expected_Type)
24431 and then
24432 (Has_Private_Declaration (Expected_Type)
24433 or else Has_Private_Declaration (Etype (Expr)))
24434 and then No (Parent (Expected_Type))
24435 then
24436 return;
24438 elsif Nkind (Parent (Expr)) = N_Qualified_Expression
24439 and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
24440 then
24441 return;
24443 elsif Is_Private_Type (Expected_Type)
24444 and then Present (Full_View (Expected_Type))
24445 and then Covers (Full_View (Expected_Type), Etype (Expr))
24446 then
24447 return;
24449 -- Conversely, type of expression may be the private one
24451 elsif Is_Private_Type (Base_Type (Etype (Expr)))
24452 and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
24453 then
24454 return;
24455 end if;
24456 end if;
24458 -- An interesting special check. If the expression is parenthesized
24459 -- and its type corresponds to the type of the sole component of the
24460 -- expected record type, or to the component type of the expected one
24461 -- dimensional array type, then assume we have a bad aggregate attempt.
24463 if Nkind (Expr) in N_Subexpr
24464 and then Paren_Count (Expr) /= 0
24465 and then Has_One_Matching_Field
24466 then
24467 Error_Msg_N ("positional aggregate cannot have one component", Expr);
24469 if Present (Matching_Field) then
24470 if Is_Array_Type (Expec_Type) then
24471 Error_Msg_NE
24472 ("\write instead `&''First ='> ...`", Expr, Matching_Field);
24473 else
24474 Error_Msg_NE
24475 ("\write instead `& ='> ...`", Expr, Matching_Field);
24476 end if;
24477 end if;
24479 -- Another special check, if we are looking for a pool-specific access
24480 -- type and we found an E_Access_Attribute_Type, then we have the case
24481 -- of an Access attribute being used in a context which needs a pool-
24482 -- specific type, which is never allowed. The one extra check we make
24483 -- is that the expected designated type covers the Found_Type.
24485 elsif Is_Access_Type (Expec_Type)
24486 and then Ekind (Found_Type) = E_Access_Attribute_Type
24487 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
24488 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
24489 and then Covers
24490 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
24491 then
24492 Error_Msg_N -- CODEFIX
24493 ("result must be general access type!", Expr);
24494 Error_Msg_NE -- CODEFIX
24495 ("add ALL to }!", Expr, Expec_Type);
24497 -- Another special check, if the expected type is an integer type,
24498 -- but the expression is of type System.Address, and the parent is
24499 -- an addition or subtraction operation whose left operand is the
24500 -- expression in question and whose right operand is of an integral
24501 -- type, then this is an attempt at address arithmetic, so give
24502 -- appropriate message.
24504 elsif Is_Integer_Type (Expec_Type)
24505 and then Is_RTE (Found_Type, RE_Address)
24506 and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
24507 and then Expr = Left_Opnd (Parent (Expr))
24508 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
24509 then
24510 Error_Msg_N
24511 ("address arithmetic not predefined in package System",
24512 Parent (Expr));
24513 Error_Msg_N
24514 ("\possible missing with/use of System.Storage_Elements",
24515 Parent (Expr));
24516 return;
24518 -- If the expected type is an anonymous access type, as for access
24519 -- parameters and discriminants, the error is on the designated types.
24521 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
24522 if Comes_From_Source (Expec_Type) then
24523 Error_Msg_NE ("expected}!", Expr, Expec_Type);
24524 else
24525 Error_Msg_NE
24526 ("expected an access type with designated}",
24527 Expr, Designated_Type (Expec_Type));
24528 end if;
24530 if Is_Access_Type (Found_Type)
24531 and then not Comes_From_Source (Found_Type)
24532 then
24533 Error_Msg_NE
24534 ("\\found an access type with designated}!",
24535 Expr, Designated_Type (Found_Type));
24536 else
24537 if From_Limited_With (Found_Type) then
24538 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
24539 Error_Msg_Qual_Level := 99;
24540 Error_Msg_NE -- CODEFIX
24541 ("\\missing `WITH &;", Expr, Scope (Found_Type));
24542 Error_Msg_Qual_Level := 0;
24543 else
24544 Error_Msg_NE ("found}!", Expr, Found_Type);
24545 end if;
24546 end if;
24548 -- Normal case of one type found, some other type expected
24550 else
24551 -- If the names of the two types are the same, see if some number
24552 -- of levels of qualification will help. Don't try more than three
24553 -- levels, and if we get to standard, it's no use (and probably
24554 -- represents an error in the compiler) Also do not bother with
24555 -- internal scope names.
24557 declare
24558 Expec_Scope : Entity_Id;
24559 Found_Scope : Entity_Id;
24561 begin
24562 Expec_Scope := Expec_Type;
24563 Found_Scope := Found_Type;
24565 for Levels in Nat range 0 .. 3 loop
24566 if Chars (Expec_Scope) /= Chars (Found_Scope) then
24567 Error_Msg_Qual_Level := Levels;
24568 exit;
24569 end if;
24571 Expec_Scope := Scope (Expec_Scope);
24572 Found_Scope := Scope (Found_Scope);
24574 exit when Expec_Scope = Standard_Standard
24575 or else Found_Scope = Standard_Standard
24576 or else not Comes_From_Source (Expec_Scope)
24577 or else not Comes_From_Source (Found_Scope);
24578 end loop;
24579 end;
24581 if Is_Record_Type (Expec_Type)
24582 and then Present (Corresponding_Remote_Type (Expec_Type))
24583 then
24584 Error_Msg_NE ("expected}!", Expr,
24585 Corresponding_Remote_Type (Expec_Type));
24586 else
24587 Error_Msg_NE ("expected}!", Expr, Expec_Type);
24588 end if;
24590 if Is_Entity_Name (Expr)
24591 and then Is_Package_Or_Generic_Package (Entity (Expr))
24592 then
24593 Error_Msg_N ("\\found package name!", Expr);
24595 elsif Is_Entity_Name (Expr)
24596 and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
24597 then
24598 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
24599 Error_Msg_N
24600 ("found procedure name, possibly missing Access attribute!",
24601 Expr);
24602 else
24603 Error_Msg_N
24604 ("\\found procedure name instead of function!", Expr);
24605 end if;
24607 elsif Nkind (Expr) = N_Function_Call
24608 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
24609 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
24610 and then No (Parameter_Associations (Expr))
24611 then
24612 Error_Msg_N
24613 ("found function name, possibly missing Access attribute!",
24614 Expr);
24616 -- Catch common error: a prefix or infix operator which is not
24617 -- directly visible because the type isn't.
24619 elsif Nkind (Expr) in N_Op
24620 and then Is_Overloaded (Expr)
24621 and then not Is_Immediately_Visible (Expec_Type)
24622 and then not Is_Potentially_Use_Visible (Expec_Type)
24623 and then not In_Use (Expec_Type)
24624 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
24625 then
24626 Error_Msg_N
24627 ("operator of the type is not directly visible!", Expr);
24629 elsif Ekind (Found_Type) = E_Void
24630 and then Present (Parent (Found_Type))
24631 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
24632 then
24633 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
24635 else
24636 Error_Msg_NE ("\\found}!", Expr, Found_Type);
24637 end if;
24639 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
24640 -- of the same modular type, and (M1 and M2) = 0 was intended.
24642 if Expec_Type = Standard_Boolean
24643 and then Is_Modular_Integer_Type (Found_Type)
24644 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
24645 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
24646 then
24647 declare
24648 Op : constant Node_Id := Right_Opnd (Parent (Expr));
24649 L : constant Node_Id := Left_Opnd (Op);
24650 R : constant Node_Id := Right_Opnd (Op);
24652 begin
24653 -- The case for the message is when the left operand of the
24654 -- comparison is the same modular type, or when it is an
24655 -- integer literal (or other universal integer expression),
24656 -- which would have been typed as the modular type if the
24657 -- parens had been there.
24659 if (Etype (L) = Found_Type
24660 or else
24661 Etype (L) = Universal_Integer)
24662 and then Is_Integer_Type (Etype (R))
24663 then
24664 Error_Msg_N
24665 ("\\possible missing parens for modular operation", Expr);
24666 end if;
24667 end;
24668 end if;
24670 -- Reset error message qualification indication
24672 Error_Msg_Qual_Level := 0;
24673 end if;
24674 end Wrong_Type;
24676 --------------------------------
24677 -- Yields_Synchronized_Object --
24678 --------------------------------
24680 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
24681 Has_Sync_Comp : Boolean := False;
24682 Id : Entity_Id;
24684 begin
24685 -- An array type yields a synchronized object if its component type
24686 -- yields a synchronized object.
24688 if Is_Array_Type (Typ) then
24689 return Yields_Synchronized_Object (Component_Type (Typ));
24691 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
24692 -- yields a synchronized object by default.
24694 elsif Is_Descendant_Of_Suspension_Object (Typ) then
24695 return True;
24697 -- A protected type yields a synchronized object by default
24699 elsif Is_Protected_Type (Typ) then
24700 return True;
24702 -- A record type or type extension yields a synchronized object when its
24703 -- discriminants (if any) lack default values and all components are of
24704 -- a type that yelds a synchronized object.
24706 elsif Is_Record_Type (Typ) then
24708 -- Inspect all entities defined in the scope of the type, looking for
24709 -- components of a type that does not yeld a synchronized object or
24710 -- for discriminants with default values.
24712 Id := First_Entity (Typ);
24713 while Present (Id) loop
24714 if Comes_From_Source (Id) then
24715 if Ekind (Id) = E_Component then
24716 if Yields_Synchronized_Object (Etype (Id)) then
24717 Has_Sync_Comp := True;
24719 -- The component does not yield a synchronized object
24721 else
24722 return False;
24723 end if;
24725 elsif Ekind (Id) = E_Discriminant
24726 and then Present (Expression (Parent (Id)))
24727 then
24728 return False;
24729 end if;
24730 end if;
24732 Next_Entity (Id);
24733 end loop;
24735 -- Ensure that the parent type of a type extension yields a
24736 -- synchronized object.
24738 if Etype (Typ) /= Typ
24739 and then not Yields_Synchronized_Object (Etype (Typ))
24740 then
24741 return False;
24742 end if;
24744 -- If we get here, then all discriminants lack default values and all
24745 -- components are of a type that yields a synchronized object.
24747 return Has_Sync_Comp;
24749 -- A synchronized interface type yields a synchronized object by default
24751 elsif Is_Synchronized_Interface (Typ) then
24752 return True;
24754 -- A task type yelds a synchronized object by default
24756 elsif Is_Task_Type (Typ) then
24757 return True;
24759 -- Otherwise the type does not yield a synchronized object
24761 else
24762 return False;
24763 end if;
24764 end Yields_Synchronized_Object;
24766 ---------------------------
24767 -- Yields_Universal_Type --
24768 ---------------------------
24770 function Yields_Universal_Type (N : Node_Id) return Boolean is
24771 begin
24772 -- Integer and real literals are of a universal type
24774 if Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
24775 return True;
24777 -- The values of certain attributes are of a universal type
24779 elsif Nkind (N) = N_Attribute_Reference then
24780 return
24781 Universal_Type_Attribute (Get_Attribute_Id (Attribute_Name (N)));
24783 -- ??? There are possibly other cases to consider
24785 else
24786 return False;
24787 end if;
24788 end Yields_Universal_Type;
24790 begin
24791 Erroutc.Subprogram_Name_Ptr := Subprogram_Name'Access;
24792 end Sem_Util;