Remove obsolete ECOFF support.
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobd8d5b7b5c04f651db5217b3c71a90e4f1777473a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style;
70 with Table;
71 with Tbuild; use Tbuild;
72 with Uintp; use Uintp;
74 package body Sem_Ch8 is
76 ------------------------------------
77 -- Visibility and Name Resolution --
78 ------------------------------------
80 -- This package handles name resolution and the collection of possible
81 -- interpretations for overloaded names, prior to overload resolution.
83 -- Name resolution is the process that establishes a mapping between source
84 -- identifiers and the entities they denote at each point in the program.
85 -- Each entity is represented by a defining occurrence. Each identifier
86 -- that denotes an entity points to the corresponding defining occurrence.
87 -- This is the entity of the applied occurrence. Each occurrence holds
88 -- an index into the names table, where source identifiers are stored.
90 -- Each entry in the names table for an identifier or designator uses the
91 -- Info pointer to hold a link to the currently visible entity that has
92 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
93 -- in package Sem_Util). The visibility is initialized at the beginning of
94 -- semantic processing to make entities in package Standard immediately
95 -- visible. The visibility table is used in a more subtle way when
96 -- compiling subunits (see below).
98 -- Entities that have the same name (i.e. homonyms) are chained. In the
99 -- case of overloaded entities, this chain holds all the possible meanings
100 -- of a given identifier. The process of overload resolution uses type
101 -- information to select from this chain the unique meaning of a given
102 -- identifier.
104 -- Entities are also chained in their scope, through the Next_Entity link.
105 -- As a consequence, the name space is organized as a sparse matrix, where
106 -- each row corresponds to a scope, and each column to a source identifier.
107 -- Open scopes, that is to say scopes currently being compiled, have their
108 -- corresponding rows of entities in order, innermost scope first.
110 -- The scopes of packages that are mentioned in context clauses appear in
111 -- no particular order, interspersed among open scopes. This is because
112 -- in the course of analyzing the context of a compilation, a package
113 -- declaration is first an open scope, and subsequently an element of the
114 -- context. If subunits or child units are present, a parent unit may
115 -- appear under various guises at various times in the compilation.
117 -- When the compilation of the innermost scope is complete, the entities
118 -- defined therein are no longer visible. If the scope is not a package
119 -- declaration, these entities are never visible subsequently, and can be
120 -- removed from visibility chains. If the scope is a package declaration,
121 -- its visible declarations may still be accessible. Therefore the entities
122 -- defined in such a scope are left on the visibility chains, and only
123 -- their visibility (immediately visibility or potential use-visibility)
124 -- is affected.
126 -- The ordering of homonyms on their chain does not necessarily follow
127 -- the order of their corresponding scopes on the scope stack. For
128 -- example, if package P and the enclosing scope both contain entities
129 -- named E, then when compiling the package body the chain for E will
130 -- hold the global entity first, and the local one (corresponding to
131 -- the current inner scope) next. As a result, name resolution routines
132 -- do not assume any relative ordering of the homonym chains, either
133 -- for scope nesting or to order of appearance of context clauses.
135 -- When compiling a child unit, entities in the parent scope are always
136 -- immediately visible. When compiling the body of a child unit, private
137 -- entities in the parent must also be made immediately visible. There
138 -- are separate routines to make the visible and private declarations
139 -- visible at various times (see package Sem_Ch7).
141 -- +--------+ +-----+
142 -- | In use |-------->| EU1 |-------------------------->
143 -- +--------+ +-----+
144 -- | |
145 -- +--------+ +-----+ +-----+
146 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
147 -- +--------+ +-----+ +-----+
148 -- | |
149 -- +---------+ | +-----+
150 -- | with'ed |------------------------------>| EW2 |--->
151 -- +---------+ | +-----+
152 -- | |
153 -- +--------+ +-----+ +-----+
154 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
155 -- +--------+ +-----+ +-----+
156 -- | |
157 -- +--------+ +-----+ +-----+
158 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
159 -- +--------+ +-----+ +-----+
160 -- ^ | |
161 -- | | |
162 -- | +---------+ | |
163 -- | | with'ed |----------------------------------------->
164 -- | +---------+ | |
165 -- | | |
166 -- Scope stack | |
167 -- (innermost first) | |
168 -- +----------------------------+
169 -- Names table => | Id1 | | | | Id2 |
170 -- +----------------------------+
172 -- Name resolution must deal with several syntactic forms: simple names,
173 -- qualified names, indexed names, and various forms of calls.
175 -- Each identifier points to an entry in the names table. The resolution
176 -- of a simple name consists in traversing the homonym chain, starting
177 -- from the names table. If an entry is immediately visible, it is the one
178 -- designated by the identifier. If only potentially use-visible entities
179 -- are on the chain, we must verify that they do not hide each other. If
180 -- the entity we find is overloadable, we collect all other overloadable
181 -- entities on the chain as long as they are not hidden.
183 -- To resolve expanded names, we must find the entity at the intersection
184 -- of the entity chain for the scope (the prefix) and the homonym chain
185 -- for the selector. In general, homonym chains will be much shorter than
186 -- entity chains, so it is preferable to start from the names table as
187 -- well. If the entity found is overloadable, we must collect all other
188 -- interpretations that are defined in the scope denoted by the prefix.
190 -- For records, protected types, and tasks, their local entities are
191 -- removed from visibility chains on exit from the corresponding scope.
192 -- From the outside, these entities are always accessed by selected
193 -- notation, and the entity chain for the record type, protected type,
194 -- etc. is traversed sequentially in order to find the designated entity.
196 -- The discriminants of a type and the operations of a protected type or
197 -- task are unchained on exit from the first view of the type, (such as
198 -- a private or incomplete type declaration, or a protected type speci-
199 -- fication) and re-chained when compiling the second view.
201 -- In the case of operators, we do not make operators on derived types
202 -- explicit. As a result, the notation P."+" may denote either a user-
203 -- defined function with name "+", or else an implicit declaration of the
204 -- operator "+" in package P. The resolution of expanded names always
205 -- tries to resolve an operator name as such an implicitly defined entity,
206 -- in addition to looking for explicit declarations.
208 -- All forms of names that denote entities (simple names, expanded names,
209 -- character literals in some cases) have a Entity attribute, which
210 -- identifies the entity denoted by the name.
212 ---------------------
213 -- The Scope Stack --
214 ---------------------
216 -- The Scope stack keeps track of the scopes currently been compiled.
217 -- Every entity that contains declarations (including records) is placed
218 -- on the scope stack while it is being processed, and removed at the end.
219 -- Whenever a non-package scope is exited, the entities defined therein
220 -- are removed from the visibility table, so that entities in outer scopes
221 -- become visible (see previous description). On entry to Sem, the scope
222 -- stack only contains the package Standard. As usual, subunits complicate
223 -- this picture ever so slightly.
225 -- The Rtsfind mechanism can force a call to Semantics while another
226 -- compilation is in progress. The unit retrieved by Rtsfind must be
227 -- compiled in its own context, and has no access to the visibility of
228 -- the unit currently being compiled. The procedures Save_Scope_Stack and
229 -- Restore_Scope_Stack make entities in current open scopes invisible
230 -- before compiling the retrieved unit, and restore the compilation
231 -- environment afterwards.
233 ------------------------
234 -- Compiling subunits --
235 ------------------------
237 -- Subunits must be compiled in the environment of the corresponding stub,
238 -- that is to say with the same visibility into the parent (and its
239 -- context) that is available at the point of the stub declaration, but
240 -- with the additional visibility provided by the context clause of the
241 -- subunit itself. As a result, compilation of a subunit forces compilation
242 -- of the parent (see description in lib-). At the point of the stub
243 -- declaration, Analyze is called recursively to compile the proper body of
244 -- the subunit, but without reinitializing the names table, nor the scope
245 -- stack (i.e. standard is not pushed on the stack). In this fashion the
246 -- context of the subunit is added to the context of the parent, and the
247 -- subunit is compiled in the correct environment. Note that in the course
248 -- of processing the context of a subunit, Standard will appear twice on
249 -- the scope stack: once for the parent of the subunit, and once for the
250 -- unit in the context clause being compiled. However, the two sets of
251 -- entities are not linked by homonym chains, so that the compilation of
252 -- any context unit happens in a fresh visibility environment.
254 -------------------------------
255 -- Processing of USE Clauses --
256 -------------------------------
258 -- Every defining occurrence has a flag indicating if it is potentially use
259 -- visible. Resolution of simple names examines this flag. The processing
260 -- of use clauses consists in setting this flag on all visible entities
261 -- defined in the corresponding package. On exit from the scope of the use
262 -- clause, the corresponding flag must be reset. However, a package may
263 -- appear in several nested use clauses (pathological but legal, alas)
264 -- which forces us to use a slightly more involved scheme:
266 -- a) The defining occurrence for a package holds a flag -In_Use- to
267 -- indicate that it is currently in the scope of a use clause. If a
268 -- redundant use clause is encountered, then the corresponding occurrence
269 -- of the package name is flagged -Redundant_Use-.
271 -- b) On exit from a scope, the use clauses in its declarative part are
272 -- scanned. The visibility flag is reset in all entities declared in
273 -- package named in a use clause, as long as the package is not flagged
274 -- as being in a redundant use clause (in which case the outer use
275 -- clause is still in effect, and the direct visibility of its entities
276 -- must be retained).
278 -- Note that entities are not removed from their homonym chains on exit
279 -- from the package specification. A subsequent use clause does not need
280 -- to rechain the visible entities, but only to establish their direct
281 -- visibility.
283 -----------------------------------
284 -- Handling private declarations --
285 -----------------------------------
287 -- The principle that each entity has a single defining occurrence clashes
288 -- with the presence of two separate definitions for private types: the
289 -- first is the private type declaration, and second is the full type
290 -- declaration. It is important that all references to the type point to
291 -- the same defining occurrence, namely the first one. To enforce the two
292 -- separate views of the entity, the corresponding information is swapped
293 -- between the two declarations. Outside of the package, the defining
294 -- occurrence only contains the private declaration information, while in
295 -- the private part and the body of the package the defining occurrence
296 -- contains the full declaration. To simplify the swap, the defining
297 -- occurrence that currently holds the private declaration points to the
298 -- full declaration. During semantic processing the defining occurrence
299 -- also points to a list of private dependents, that is to say access types
300 -- or composite types whose designated types or component types are
301 -- subtypes or derived types of the private type in question. After the
302 -- full declaration has been seen, the private dependents are updated to
303 -- indicate that they have full definitions.
305 ------------------------------------
306 -- Handling of Undefined Messages --
307 ------------------------------------
309 -- In normal mode, only the first use of an undefined identifier generates
310 -- a message. The table Urefs is used to record error messages that have
311 -- been issued so that second and subsequent ones do not generate further
312 -- messages. However, the second reference causes text to be added to the
313 -- original undefined message noting "(more references follow)". The
314 -- full error list option (-gnatf) forces messages to be generated for
315 -- every reference and disconnects the use of this table.
317 type Uref_Entry is record
318 Node : Node_Id;
319 -- Node for identifier for which original message was posted. The
320 -- Chars field of this identifier is used to detect later references
321 -- to the same identifier.
323 Err : Error_Msg_Id;
324 -- Records error message Id of original undefined message. Reset to
325 -- No_Error_Msg after the second occurrence, where it is used to add
326 -- text to the original message as described above.
328 Nvis : Boolean;
329 -- Set if the message is not visible rather than undefined
331 Loc : Source_Ptr;
332 -- Records location of error message. Used to make sure that we do
333 -- not consider a, b : undefined as two separate instances, which
334 -- would otherwise happen, since the parser converts this sequence
335 -- to a : undefined; b : undefined.
337 end record;
339 package Urefs is new Table.Table (
340 Table_Component_Type => Uref_Entry,
341 Table_Index_Type => Nat,
342 Table_Low_Bound => 1,
343 Table_Initial => 10,
344 Table_Increment => 100,
345 Table_Name => "Urefs");
347 Candidate_Renaming : Entity_Id;
348 -- Holds a candidate interpretation that appears in a subprogram renaming
349 -- declaration and does not match the given specification, but matches at
350 -- least on the first formal. Allows better error message when given
351 -- specification omits defaulted parameters, a common error.
353 -----------------------
354 -- Local Subprograms --
355 -----------------------
357 procedure Analyze_Generic_Renaming
358 (N : Node_Id;
359 K : Entity_Kind);
360 -- Common processing for all three kinds of generic renaming declarations.
361 -- Enter new name and indicate that it renames the generic unit.
363 procedure Analyze_Renamed_Character
364 (N : Node_Id;
365 New_S : Entity_Id;
366 Is_Body : Boolean);
367 -- Renamed entity is given by a character literal, which must belong
368 -- to the return type of the new entity. Is_Body indicates whether the
369 -- declaration is a renaming_as_body. If the original declaration has
370 -- already been frozen (because of an intervening body, e.g.) the body of
371 -- the function must be built now. The same applies to the following
372 -- various renaming procedures.
374 procedure Analyze_Renamed_Dereference
375 (N : Node_Id;
376 New_S : Entity_Id;
377 Is_Body : Boolean);
378 -- Renamed entity is given by an explicit dereference. Prefix must be a
379 -- conformant access_to_subprogram type.
381 procedure Analyze_Renamed_Entry
382 (N : Node_Id;
383 New_S : Entity_Id;
384 Is_Body : Boolean);
385 -- If the renamed entity in a subprogram renaming is an entry or protected
386 -- subprogram, build a body for the new entity whose only statement is a
387 -- call to the renamed entity.
389 procedure Analyze_Renamed_Family_Member
390 (N : Node_Id;
391 New_S : Entity_Id;
392 Is_Body : Boolean);
393 -- Used when the renamed entity is an indexed component. The prefix must
394 -- denote an entry family.
396 procedure Analyze_Renamed_Primitive_Operation
397 (N : Node_Id;
398 New_S : Entity_Id;
399 Is_Body : Boolean);
400 -- If the renamed entity in a subprogram renaming is a primitive operation
401 -- or a class-wide operation in prefix form, save the target object,
402 -- which must be added to the list of actuals in any subsequent call.
403 -- The renaming operation is intrinsic because the compiler must in
404 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406 procedure Attribute_Renaming (N : Node_Id);
407 -- Analyze renaming of attribute as subprogram. The renaming declaration N
408 -- is rewritten as a subprogram body that returns the attribute reference
409 -- applied to the formals of the function.
411 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
412 -- Set Entity, with style check if need be. For a discriminant reference,
413 -- replace by the corresponding discriminal, i.e. the parameter of the
414 -- initialization procedure that corresponds to the discriminant.
416 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
417 -- A renaming_as_body may occur after the entity of the original decla-
418 -- ration has been frozen. In that case, the body of the new entity must
419 -- be built now, because the usual mechanism of building the renamed
420 -- body at the point of freezing will not work. Subp is the subprogram
421 -- for which N provides the Renaming_As_Body.
423 procedure Check_In_Previous_With_Clause
424 (N : Node_Id;
425 Nam : Node_Id);
426 -- N is a use_package clause and Nam the package name, or N is a use_type
427 -- clause and Nam is the prefix of the type name. In either case, verify
428 -- that the package is visible at that point in the context: either it
429 -- appears in a previous with_clause, or because it is a fully qualified
430 -- name and the root ancestor appears in a previous with_clause.
432 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
433 -- Verify that the entity in a renaming declaration that is a library unit
434 -- is itself a library unit and not a nested unit or subunit. Also check
435 -- that if the renaming is a child unit of a generic parent, then the
436 -- renamed unit must also be a child unit of that parent. Finally, verify
437 -- that a renamed generic unit is not an implicit child declared within
438 -- an instance of the parent.
440 procedure Chain_Use_Clause (N : Node_Id);
441 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
442 -- the proper scope table entry. This is usually the current scope, but it
443 -- will be an inner scope when installing the use clauses of the private
444 -- declarations of a parent unit prior to compiling the private part of a
445 -- child unit. This chain is traversed when installing/removing use clauses
446 -- when compiling a subunit or instantiating a generic body on the fly,
447 -- when it is necessary to save and restore full environments.
449 function Enclosing_Instance return Entity_Id;
450 -- In an instance nested within another one, several semantic checks are
451 -- unnecessary because the legality of the nested instance has been checked
452 -- in the enclosing generic unit. This applies in particular to legality
453 -- checks on actuals for formal subprograms of the inner instance, which
454 -- are checked as subprogram renamings, and may be complicated by confusion
455 -- in private/full views. This function returns the instance enclosing the
456 -- current one if there is such, else it returns Empty.
458 -- If the renaming determines the entity for the default of a formal
459 -- subprogram nested within another instance, choose the innermost
460 -- candidate. This is because if the formal has a box, and we are within
461 -- an enclosing instance where some candidate interpretations are local
462 -- to this enclosing instance, we know that the default was properly
463 -- resolved when analyzing the generic, so we prefer the local
464 -- candidates to those that are external. This is not always the case
465 -- but is a reasonable heuristic on the use of nested generics. The
466 -- proper solution requires a full renaming model.
468 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
469 -- Return the appropriate entity for determining which unit has a deeper
470 -- scope: the defining entity for U, unless U is a package instance, in
471 -- which case we retrieve the entity of the instance spec.
473 procedure Find_Expanded_Name (N : Node_Id);
474 -- The input is a selected component known to be an expanded name. Verify
475 -- legality of selector given the scope denoted by prefix, and change node
476 -- N into a expanded name with a properly set Entity field.
478 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
479 -- Find the most previous use clause (that is, the first one to appear in
480 -- the source) by traversing the previous clause chain that exists in both
481 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
482 -- ??? a better subprogram name is in order
484 function Find_Renamed_Entity
485 (N : Node_Id;
486 Nam : Node_Id;
487 New_S : Entity_Id;
488 Is_Actual : Boolean := False) return Entity_Id;
489 -- Find the renamed entity that corresponds to the given parameter profile
490 -- in a subprogram renaming declaration. The renamed entity may be an
491 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
492 -- indicates that the renaming is the one generated for an actual subpro-
493 -- gram in an instance, for which special visibility checks apply.
495 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
496 -- Find a type derived from Character or Wide_Character in the prefix of N.
497 -- Used to resolved qualified names whose selector is a character literal.
499 function Has_Private_With (E : Entity_Id) return Boolean;
500 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
501 -- private with on E.
503 function Has_Implicit_Operator (N : Node_Id) return Boolean;
504 -- N is an expanded name whose selector is an operator name (e.g. P."+").
505 -- declarative part contains an implicit declaration of an operator if it
506 -- has a declaration of a type to which one of the predefined operators
507 -- apply. The existence of this routine is an implementation artifact. A
508 -- more straightforward but more space-consuming choice would be to make
509 -- all inherited operators explicit in the symbol table.
511 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
512 -- A subprogram defined by a renaming declaration inherits the parameter
513 -- profile of the renamed entity. The subtypes given in the subprogram
514 -- specification are discarded and replaced with those of the renamed
515 -- subprogram, which are then used to recheck the default values.
517 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
518 -- True if it is of a task type, a protected type, or else an access to one
519 -- of these types.
521 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
522 -- Prefix is appropriate for record if it is of a record type, or an access
523 -- to such.
525 function Most_Descendant_Use_Clause
526 (Clause1 : Entity_Id;
527 Clause2 : Entity_Id) return Entity_Id;
528 -- Determine which use clause parameter is the most descendant in terms of
529 -- scope.
530 -- ??? a better subprogram name is in order
532 procedure Premature_Usage (N : Node_Id);
533 -- Diagnose usage of an entity before it is visible
535 procedure Use_One_Package
536 (N : Node_Id;
537 Pack_Name : Entity_Id := Empty;
538 Force : Boolean := False);
539 -- Make visible entities declared in package P potentially use-visible
540 -- in the current context. Also used in the analysis of subunits, when
541 -- re-installing use clauses of parent units. N is the use_clause that
542 -- names P (and possibly other packages).
544 procedure Use_One_Type
545 (Id : Node_Id;
546 Installed : Boolean := False;
547 Force : Boolean := False);
548 -- Id is the subtype mark from a use_type_clause. This procedure makes
549 -- the primitive operators of the type potentially use-visible. The
550 -- boolean flag Installed indicates that the clause is being reinstalled
551 -- after previous analysis, and primitive operations are already chained
552 -- on the Used_Operations list of the clause.
554 procedure Write_Info;
555 -- Write debugging information on entities declared in current scope
557 --------------------------------
558 -- Analyze_Exception_Renaming --
559 --------------------------------
561 -- The language only allows a single identifier, but the tree holds an
562 -- identifier list. The parser has already issued an error message if
563 -- there is more than one element in the list.
565 procedure Analyze_Exception_Renaming (N : Node_Id) is
566 Id : constant Entity_Id := Defining_Entity (N);
567 Nam : constant Node_Id := Name (N);
569 begin
570 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
572 Enter_Name (Id);
573 Analyze (Nam);
575 Set_Ekind (Id, E_Exception);
576 Set_Etype (Id, Standard_Exception_Type);
577 Set_Is_Pure (Id, Is_Pure (Current_Scope));
579 if Is_Entity_Name (Nam)
580 and then Present (Entity (Nam))
581 and then Ekind (Entity (Nam)) = E_Exception
582 then
583 if Present (Renamed_Object (Entity (Nam))) then
584 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
585 else
586 Set_Renamed_Object (Id, Entity (Nam));
587 end if;
589 -- The exception renaming declaration may become Ghost if it renames
590 -- a Ghost entity.
592 Mark_Ghost_Renaming (N, Entity (Nam));
593 else
594 Error_Msg_N ("invalid exception name in renaming", Nam);
595 end if;
597 -- Implementation-defined aspect specifications can appear in a renaming
598 -- declaration, but not language-defined ones. The call to procedure
599 -- Analyze_Aspect_Specifications will take care of this error check.
601 if Has_Aspects (N) then
602 Analyze_Aspect_Specifications (N, Id);
603 end if;
604 end Analyze_Exception_Renaming;
606 ---------------------------
607 -- Analyze_Expanded_Name --
608 ---------------------------
610 procedure Analyze_Expanded_Name (N : Node_Id) is
611 begin
612 -- If the entity pointer is already set, this is an internal node, or a
613 -- node that is analyzed more than once, after a tree modification. In
614 -- such a case there is no resolution to perform, just set the type. In
615 -- either case, start by analyzing the prefix.
617 Analyze (Prefix (N));
619 if Present (Entity (N)) then
620 if Is_Type (Entity (N)) then
621 Set_Etype (N, Entity (N));
622 else
623 Set_Etype (N, Etype (Entity (N)));
624 end if;
626 else
627 Find_Expanded_Name (N);
628 end if;
630 -- In either case, propagate dimension of entity to expanded name
632 Analyze_Dimension (N);
633 end Analyze_Expanded_Name;
635 ---------------------------------------
636 -- Analyze_Generic_Function_Renaming --
637 ---------------------------------------
639 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
640 begin
641 Analyze_Generic_Renaming (N, E_Generic_Function);
642 end Analyze_Generic_Function_Renaming;
644 --------------------------------------
645 -- Analyze_Generic_Package_Renaming --
646 --------------------------------------
648 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
649 begin
650 -- Test for the Text_IO special unit case here, since we may be renaming
651 -- one of the subpackages of Text_IO, then join common routine.
653 Check_Text_IO_Special_Unit (Name (N));
655 Analyze_Generic_Renaming (N, E_Generic_Package);
656 end Analyze_Generic_Package_Renaming;
658 ----------------------------------------
659 -- Analyze_Generic_Procedure_Renaming --
660 ----------------------------------------
662 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
663 begin
664 Analyze_Generic_Renaming (N, E_Generic_Procedure);
665 end Analyze_Generic_Procedure_Renaming;
667 ------------------------------
668 -- Analyze_Generic_Renaming --
669 ------------------------------
671 procedure Analyze_Generic_Renaming
672 (N : Node_Id;
673 K : Entity_Kind)
675 New_P : constant Entity_Id := Defining_Entity (N);
676 Inst : Boolean := False;
677 Old_P : Entity_Id;
679 begin
680 if Name (N) = Error then
681 return;
682 end if;
684 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
686 Generate_Definition (New_P);
688 if Current_Scope /= Standard_Standard then
689 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
690 end if;
692 if Nkind (Name (N)) = N_Selected_Component then
693 Check_Generic_Child_Unit (Name (N), Inst);
694 else
695 Analyze (Name (N));
696 end if;
698 if not Is_Entity_Name (Name (N)) then
699 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
700 Old_P := Any_Id;
701 else
702 Old_P := Entity (Name (N));
703 end if;
705 Enter_Name (New_P);
706 Set_Ekind (New_P, K);
708 if Etype (Old_P) = Any_Type then
709 null;
711 elsif Ekind (Old_P) /= K then
712 Error_Msg_N ("invalid generic unit name", Name (N));
714 else
715 if Present (Renamed_Object (Old_P)) then
716 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
717 else
718 Set_Renamed_Object (New_P, Old_P);
719 end if;
721 -- The generic renaming declaration may become Ghost if it renames a
722 -- Ghost entity.
724 Mark_Ghost_Renaming (N, Old_P);
726 Set_Is_Pure (New_P, Is_Pure (Old_P));
727 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
729 Set_Etype (New_P, Etype (Old_P));
730 Set_Has_Completion (New_P);
732 if In_Open_Scopes (Old_P) then
733 Error_Msg_N ("within its scope, generic denotes its instance", N);
734 end if;
736 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
737 -- renamings and subsequent instantiations of Unchecked_Conversion.
739 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
740 Set_Is_Intrinsic_Subprogram
741 (New_P, Is_Intrinsic_Subprogram (Old_P));
742 end if;
744 Check_Library_Unit_Renaming (N, Old_P);
745 end if;
747 -- Implementation-defined aspect specifications can appear in a renaming
748 -- declaration, but not language-defined ones. The call to procedure
749 -- Analyze_Aspect_Specifications will take care of this error check.
751 if Has_Aspects (N) then
752 Analyze_Aspect_Specifications (N, New_P);
753 end if;
754 end Analyze_Generic_Renaming;
756 -----------------------------
757 -- Analyze_Object_Renaming --
758 -----------------------------
760 procedure Analyze_Object_Renaming (N : Node_Id) is
761 Id : constant Entity_Id := Defining_Identifier (N);
762 Loc : constant Source_Ptr := Sloc (N);
763 Nam : constant Node_Id := Name (N);
764 Dec : Node_Id;
765 T : Entity_Id;
766 T2 : Entity_Id;
768 procedure Check_Constrained_Object;
769 -- If the nominal type is unconstrained but the renamed object is
770 -- constrained, as can happen with renaming an explicit dereference or
771 -- a function return, build a constrained subtype from the object. If
772 -- the renaming is for a formal in an accept statement, the analysis
773 -- has already established its actual subtype. This is only relevant
774 -- if the renamed object is an explicit dereference.
776 ------------------------------
777 -- Check_Constrained_Object --
778 ------------------------------
780 procedure Check_Constrained_Object is
781 Typ : constant Entity_Id := Etype (Nam);
782 Subt : Entity_Id;
784 begin
785 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
786 and then Is_Composite_Type (Etype (Nam))
787 and then not Is_Constrained (Etype (Nam))
788 and then not Has_Unknown_Discriminants (Etype (Nam))
789 and then Expander_Active
790 then
791 -- If Actual_Subtype is already set, nothing to do
793 if Ekind_In (Id, E_Variable, E_Constant)
794 and then Present (Actual_Subtype (Id))
795 then
796 null;
798 -- A renaming of an unchecked union has no actual subtype
800 elsif Is_Unchecked_Union (Typ) then
801 null;
803 -- If a record is limited its size is invariant. This is the case
804 -- in particular with record types with an access discirminant
805 -- that are used in iterators. This is an optimization, but it
806 -- also prevents typing anomalies when the prefix is further
807 -- expanded. Limited types with discriminants are included.
809 elsif Is_Limited_Record (Typ)
810 or else
811 (Ekind (Typ) = E_Limited_Private_Type
812 and then Has_Discriminants (Typ)
813 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
814 then
815 null;
817 else
818 Subt := Make_Temporary (Loc, 'T');
819 Remove_Side_Effects (Nam);
820 Insert_Action (N,
821 Make_Subtype_Declaration (Loc,
822 Defining_Identifier => Subt,
823 Subtype_Indication =>
824 Make_Subtype_From_Expr (Nam, Typ)));
825 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
826 Set_Etype (Nam, Subt);
828 -- Freeze subtype at once, to prevent order of elaboration
829 -- issues in the backend. The renamed object exists, so its
830 -- type is already frozen in any case.
832 Freeze_Before (N, Subt);
833 end if;
834 end if;
835 end Check_Constrained_Object;
837 -- Start of processing for Analyze_Object_Renaming
839 begin
840 if Nam = Error then
841 return;
842 end if;
844 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
846 Set_Is_Pure (Id, Is_Pure (Current_Scope));
847 Enter_Name (Id);
849 -- The renaming of a component that depends on a discriminant requires
850 -- an actual subtype, because in subsequent use of the object Gigi will
851 -- be unable to locate the actual bounds. This explicit step is required
852 -- when the renaming is generated in removing side effects of an
853 -- already-analyzed expression.
855 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
857 -- The object renaming declaration may become Ghost if it renames a
858 -- Ghost entity.
860 if Is_Entity_Name (Nam) then
861 Mark_Ghost_Renaming (N, Entity (Nam));
862 end if;
864 T := Etype (Nam);
865 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
867 if Present (Dec) then
868 Insert_Action (N, Dec);
869 T := Defining_Identifier (Dec);
870 Set_Etype (Nam, T);
871 end if;
873 -- Complete analysis of the subtype mark in any case, for ASIS use
875 if Present (Subtype_Mark (N)) then
876 Find_Type (Subtype_Mark (N));
877 end if;
879 elsif Present (Subtype_Mark (N)) then
880 Find_Type (Subtype_Mark (N));
881 T := Entity (Subtype_Mark (N));
882 Analyze (Nam);
884 -- The object renaming declaration may become Ghost if it renames a
885 -- Ghost entity.
887 if Is_Entity_Name (Nam) then
888 Mark_Ghost_Renaming (N, Entity (Nam));
889 end if;
891 -- Reject renamings of conversions unless the type is tagged, or
892 -- the conversion is implicit (which can occur for cases of anonymous
893 -- access types in Ada 2012).
895 if Nkind (Nam) = N_Type_Conversion
896 and then Comes_From_Source (Nam)
897 and then not Is_Tagged_Type (T)
898 then
899 Error_Msg_N
900 ("renaming of conversion only allowed for tagged types", Nam);
901 end if;
903 Resolve (Nam, T);
905 -- If the renamed object is a function call of a limited type,
906 -- the expansion of the renaming is complicated by the presence
907 -- of various temporaries and subtypes that capture constraints
908 -- of the renamed object. Rewrite node as an object declaration,
909 -- whose expansion is simpler. Given that the object is limited
910 -- there is no copy involved and no performance hit.
912 if Nkind (Nam) = N_Function_Call
913 and then Is_Limited_View (Etype (Nam))
914 and then not Is_Constrained (Etype (Nam))
915 and then Comes_From_Source (N)
916 then
917 Set_Etype (Id, T);
918 Set_Ekind (Id, E_Constant);
919 Rewrite (N,
920 Make_Object_Declaration (Loc,
921 Defining_Identifier => Id,
922 Constant_Present => True,
923 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
924 Expression => Relocate_Node (Nam)));
925 return;
926 end if;
928 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
929 -- when renaming declaration has a named access type. The Ada 2012
930 -- coverage rules allow an anonymous access type in the context of
931 -- an expected named general access type, but the renaming rules
932 -- require the types to be the same. (An exception is when the type
933 -- of the renaming is also an anonymous access type, which can only
934 -- happen due to a renaming created by the expander.)
936 if Nkind (Nam) = N_Type_Conversion
937 and then not Comes_From_Source (Nam)
938 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
939 and then Ekind (T) /= E_Anonymous_Access_Type
940 then
941 Wrong_Type (Expression (Nam), T); -- Should we give better error???
942 end if;
944 -- Check that a class-wide object is not being renamed as an object
945 -- of a specific type. The test for access types is needed to exclude
946 -- cases where the renamed object is a dynamically tagged access
947 -- result, such as occurs in certain expansions.
949 if Is_Tagged_Type (T) then
950 Check_Dynamically_Tagged_Expression
951 (Expr => Nam,
952 Typ => T,
953 Related_Nod => N);
954 end if;
956 -- Ada 2005 (AI-230/AI-254): Access renaming
958 else pragma Assert (Present (Access_Definition (N)));
959 T :=
960 Access_Definition
961 (Related_Nod => N,
962 N => Access_Definition (N));
964 Analyze (Nam);
966 -- The object renaming declaration may become Ghost if it renames a
967 -- Ghost entity.
969 if Is_Entity_Name (Nam) then
970 Mark_Ghost_Renaming (N, Entity (Nam));
971 end if;
973 -- Ada 2005 AI05-105: if the declaration has an anonymous access
974 -- type, the renamed object must also have an anonymous type, and
975 -- this is a name resolution rule. This was implicit in the last part
976 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
977 -- recent AI.
979 if not Is_Overloaded (Nam) then
980 if Ekind (Etype (Nam)) /= Ekind (T) then
981 Error_Msg_N
982 ("expect anonymous access type in object renaming", N);
983 end if;
985 else
986 declare
987 I : Interp_Index;
988 It : Interp;
989 Typ : Entity_Id := Empty;
990 Seen : Boolean := False;
992 begin
993 Get_First_Interp (Nam, I, It);
994 while Present (It.Typ) loop
996 -- Renaming is ambiguous if more than one candidate
997 -- interpretation is type-conformant with the context.
999 if Ekind (It.Typ) = Ekind (T) then
1000 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1001 and then
1002 Type_Conformant
1003 (Designated_Type (T), Designated_Type (It.Typ))
1004 then
1005 if not Seen then
1006 Seen := True;
1007 else
1008 Error_Msg_N
1009 ("ambiguous expression in renaming", Nam);
1010 end if;
1012 elsif Ekind (T) = E_Anonymous_Access_Type
1013 and then
1014 Covers (Designated_Type (T), Designated_Type (It.Typ))
1015 then
1016 if not Seen then
1017 Seen := True;
1018 else
1019 Error_Msg_N
1020 ("ambiguous expression in renaming", Nam);
1021 end if;
1022 end if;
1024 if Covers (T, It.Typ) then
1025 Typ := It.Typ;
1026 Set_Etype (Nam, Typ);
1027 Set_Is_Overloaded (Nam, False);
1028 end if;
1029 end if;
1031 Get_Next_Interp (I, It);
1032 end loop;
1033 end;
1034 end if;
1036 Resolve (Nam, T);
1038 -- Do not perform the legality checks below when the resolution of
1039 -- the renaming name failed because the associated type is Any_Type.
1041 if Etype (Nam) = Any_Type then
1042 null;
1044 -- Ada 2005 (AI-231): In the case where the type is defined by an
1045 -- access_definition, the renamed entity shall be of an access-to-
1046 -- constant type if and only if the access_definition defines an
1047 -- access-to-constant type. ARM 8.5.1(4)
1049 elsif Constant_Present (Access_Definition (N))
1050 and then not Is_Access_Constant (Etype (Nam))
1051 then
1052 Error_Msg_N
1053 ("(Ada 2005): the renamed object is not access-to-constant "
1054 & "(RM 8.5.1(6))", N);
1056 elsif not Constant_Present (Access_Definition (N))
1057 and then Is_Access_Constant (Etype (Nam))
1058 then
1059 Error_Msg_N
1060 ("(Ada 2005): the renamed object is not access-to-variable "
1061 & "(RM 8.5.1(6))", N);
1062 end if;
1064 if Is_Access_Subprogram_Type (Etype (Nam)) then
1065 Check_Subtype_Conformant
1066 (Designated_Type (T), Designated_Type (Etype (Nam)));
1068 elsif not Subtypes_Statically_Match
1069 (Designated_Type (T),
1070 Available_View (Designated_Type (Etype (Nam))))
1071 then
1072 Error_Msg_N
1073 ("subtype of renamed object does not statically match", N);
1074 end if;
1075 end if;
1077 -- Special processing for renaming function return object. Some errors
1078 -- and warnings are produced only for calls that come from source.
1080 if Nkind (Nam) = N_Function_Call then
1081 case Ada_Version is
1083 -- Usage is illegal in Ada 83, but renamings are also introduced
1084 -- during expansion, and error does not apply to those.
1086 when Ada_83 =>
1087 if Comes_From_Source (N) then
1088 Error_Msg_N
1089 ("(Ada 83) cannot rename function return object", Nam);
1090 end if;
1092 -- In Ada 95, warn for odd case of renaming parameterless function
1093 -- call if this is not a limited type (where this is useful).
1095 when others =>
1096 if Warn_On_Object_Renames_Function
1097 and then No (Parameter_Associations (Nam))
1098 and then not Is_Limited_Type (Etype (Nam))
1099 and then Comes_From_Source (Nam)
1100 then
1101 Error_Msg_N
1102 ("renaming function result object is suspicious?R?", Nam);
1103 Error_Msg_NE
1104 ("\function & will be called only once?R?", Nam,
1105 Entity (Name (Nam)));
1106 Error_Msg_N -- CODEFIX
1107 ("\suggest using an initialized constant object "
1108 & "instead?R?", Nam);
1109 end if;
1110 end case;
1111 end if;
1113 Check_Constrained_Object;
1115 -- An object renaming requires an exact match of the type. Class-wide
1116 -- matching is not allowed.
1118 if Is_Class_Wide_Type (T)
1119 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1120 then
1121 Wrong_Type (Nam, T);
1122 end if;
1124 T2 := Etype (Nam);
1126 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1128 if Nkind (Nam) = N_Explicit_Dereference
1129 and then Ekind (Etype (T2)) = E_Incomplete_Type
1130 then
1131 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1132 return;
1134 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1135 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1136 return;
1137 end if;
1139 -- Ada 2005 (AI-327)
1141 if Ada_Version >= Ada_2005
1142 and then Nkind (Nam) = N_Attribute_Reference
1143 and then Attribute_Name (Nam) = Name_Priority
1144 then
1145 null;
1147 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1148 declare
1149 Nam_Decl : Node_Id;
1150 Nam_Ent : Entity_Id;
1152 begin
1153 if Nkind (Nam) = N_Attribute_Reference then
1154 Nam_Ent := Entity (Prefix (Nam));
1155 else
1156 Nam_Ent := Entity (Nam);
1157 end if;
1159 Nam_Decl := Parent (Nam_Ent);
1161 if Has_Null_Exclusion (N)
1162 and then not Has_Null_Exclusion (Nam_Decl)
1163 then
1164 -- Ada 2005 (AI-423): If the object name denotes a generic
1165 -- formal object of a generic unit G, and the object renaming
1166 -- declaration occurs within the body of G or within the body
1167 -- of a generic unit declared within the declarative region
1168 -- of G, then the declaration of the formal object of G must
1169 -- have a null exclusion or a null-excluding subtype.
1171 if Is_Formal_Object (Nam_Ent)
1172 and then In_Generic_Scope (Id)
1173 then
1174 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1175 Error_Msg_N
1176 ("renamed formal does not exclude `NULL` "
1177 & "(RM 8.5.1(4.6/2))", N);
1179 elsif In_Package_Body (Scope (Id)) then
1180 Error_Msg_N
1181 ("formal object does not have a null exclusion"
1182 & "(RM 8.5.1(4.6/2))", N);
1183 end if;
1185 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1186 -- shall exclude null.
1188 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1189 Error_Msg_N
1190 ("renamed object does not exclude `NULL` "
1191 & "(RM 8.5.1(4.6/2))", N);
1193 -- An instance is illegal if it contains a renaming that
1194 -- excludes null, and the actual does not. The renaming
1195 -- declaration has already indicated that the declaration
1196 -- of the renamed actual in the instance will raise
1197 -- constraint_error.
1199 elsif Nkind (Nam_Decl) = N_Object_Declaration
1200 and then In_Instance
1201 and then
1202 Present (Corresponding_Generic_Association (Nam_Decl))
1203 and then Nkind (Expression (Nam_Decl)) =
1204 N_Raise_Constraint_Error
1205 then
1206 Error_Msg_N
1207 ("renamed actual does not exclude `NULL` "
1208 & "(RM 8.5.1(4.6/2))", N);
1210 -- Finally, if there is a null exclusion, the subtype mark
1211 -- must not be null-excluding.
1213 elsif No (Access_Definition (N))
1214 and then Can_Never_Be_Null (T)
1215 then
1216 Error_Msg_NE
1217 ("`NOT NULL` not allowed (& already excludes null)",
1218 N, T);
1220 end if;
1222 elsif Can_Never_Be_Null (T)
1223 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1224 then
1225 Error_Msg_N
1226 ("renamed object does not exclude `NULL` "
1227 & "(RM 8.5.1(4.6/2))", N);
1229 elsif Has_Null_Exclusion (N)
1230 and then No (Access_Definition (N))
1231 and then Can_Never_Be_Null (T)
1232 then
1233 Error_Msg_NE
1234 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1235 end if;
1236 end;
1237 end if;
1239 -- Set the Ekind of the entity, unless it has been set already, as is
1240 -- the case for the iteration object over a container with no variable
1241 -- indexing. In that case it's been marked as a constant, and we do not
1242 -- want to change it to a variable.
1244 if Ekind (Id) /= E_Constant then
1245 Set_Ekind (Id, E_Variable);
1246 end if;
1248 -- Initialize the object size and alignment. Note that we used to call
1249 -- Init_Size_Align here, but that's wrong for objects which have only
1250 -- an Esize, not an RM_Size field.
1252 Init_Object_Size_Align (Id);
1254 if T = Any_Type or else Etype (Nam) = Any_Type then
1255 return;
1257 -- Verify that the renamed entity is an object or a function call. It
1258 -- may have been rewritten in several ways.
1260 elsif Is_Object_Reference (Nam) then
1261 if Comes_From_Source (N) then
1262 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1263 Error_Msg_N
1264 ("illegal renaming of discriminant-dependent component", Nam);
1265 end if;
1267 -- If the renaming comes from source and the renamed object is a
1268 -- dereference, then mark the prefix as needing debug information,
1269 -- since it might have been rewritten hence internally generated
1270 -- and Debug_Renaming_Declaration will link the renaming to it.
1272 if Nkind (Nam) = N_Explicit_Dereference
1273 and then Is_Entity_Name (Prefix (Nam))
1274 then
1275 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1276 end if;
1277 end if;
1279 -- A static function call may have been folded into a literal
1281 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1283 -- When expansion is disabled, attribute reference is not rewritten
1284 -- as function call. Otherwise it may be rewritten as a conversion,
1285 -- so check original node.
1287 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1288 and then Is_Function_Attribute_Name
1289 (Attribute_Name (Original_Node (Nam))))
1291 -- Weird but legal, equivalent to renaming a function call. Illegal
1292 -- if the literal is the result of constant-folding an attribute
1293 -- reference that is not a function.
1295 or else (Is_Entity_Name (Nam)
1296 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1297 and then
1298 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1300 or else (Nkind (Nam) = N_Type_Conversion
1301 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1302 then
1303 null;
1305 elsif Nkind (Nam) = N_Type_Conversion then
1306 Error_Msg_N
1307 ("renaming of conversion only allowed for tagged types", Nam);
1309 -- Ada 2005 (AI-327)
1311 elsif Ada_Version >= Ada_2005
1312 and then Nkind (Nam) = N_Attribute_Reference
1313 and then Attribute_Name (Nam) = Name_Priority
1314 then
1315 null;
1317 -- Allow internally generated x'Ref resulting in N_Reference node
1319 elsif Nkind (Nam) = N_Reference then
1320 null;
1322 else
1323 Error_Msg_N ("expect object name in renaming", Nam);
1324 end if;
1326 Set_Etype (Id, T2);
1328 if not Is_Variable (Nam) then
1329 Set_Ekind (Id, E_Constant);
1330 Set_Never_Set_In_Source (Id, True);
1331 Set_Is_True_Constant (Id, True);
1332 end if;
1334 -- The entity of the renaming declaration needs to reflect whether the
1335 -- renamed object is volatile. Is_Volatile is set if the renamed object
1336 -- is volatile in the RM legality sense.
1338 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1340 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1342 if Is_Entity_Name (Nam) then
1343 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1344 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1345 Set_Is_Volatile_Full_Access (Id,
1346 Is_Volatile_Full_Access (Entity (Nam)));
1347 end if;
1349 -- Treat as volatile if we just set the Volatile flag
1351 if Is_Volatile (Id)
1353 -- Or if we are renaming an entity which was marked this way
1355 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1357 or else (Is_Entity_Name (Nam)
1358 and then Treat_As_Volatile (Entity (Nam)))
1359 then
1360 Set_Treat_As_Volatile (Id, True);
1361 end if;
1363 -- Now make the link to the renamed object
1365 Set_Renamed_Object (Id, Nam);
1367 -- Implementation-defined aspect specifications can appear in a renaming
1368 -- declaration, but not language-defined ones. The call to procedure
1369 -- Analyze_Aspect_Specifications will take care of this error check.
1371 if Has_Aspects (N) then
1372 Analyze_Aspect_Specifications (N, Id);
1373 end if;
1375 -- Deal with dimensions
1377 Analyze_Dimension (N);
1378 end Analyze_Object_Renaming;
1380 ------------------------------
1381 -- Analyze_Package_Renaming --
1382 ------------------------------
1384 procedure Analyze_Package_Renaming (N : Node_Id) is
1385 New_P : constant Entity_Id := Defining_Entity (N);
1386 Old_P : Entity_Id;
1387 Spec : Node_Id;
1389 begin
1390 if Name (N) = Error then
1391 return;
1392 end if;
1394 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1396 Check_Text_IO_Special_Unit (Name (N));
1398 if Current_Scope /= Standard_Standard then
1399 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1400 end if;
1402 Enter_Name (New_P);
1403 Analyze (Name (N));
1405 if Is_Entity_Name (Name (N)) then
1406 Old_P := Entity (Name (N));
1407 else
1408 Old_P := Any_Id;
1409 end if;
1411 if Etype (Old_P) = Any_Type then
1412 Error_Msg_N ("expect package name in renaming", Name (N));
1414 elsif Ekind (Old_P) /= E_Package
1415 and then not (Ekind (Old_P) = E_Generic_Package
1416 and then In_Open_Scopes (Old_P))
1417 then
1418 if Ekind (Old_P) = E_Generic_Package then
1419 Error_Msg_N
1420 ("generic package cannot be renamed as a package", Name (N));
1421 else
1422 Error_Msg_Sloc := Sloc (Old_P);
1423 Error_Msg_NE
1424 ("expect package name in renaming, found& declared#",
1425 Name (N), Old_P);
1426 end if;
1428 -- Set basic attributes to minimize cascaded errors
1430 Set_Ekind (New_P, E_Package);
1431 Set_Etype (New_P, Standard_Void_Type);
1433 -- Here for OK package renaming
1435 else
1436 -- Entities in the old package are accessible through the renaming
1437 -- entity. The simplest implementation is to have both packages share
1438 -- the entity list.
1440 Set_Ekind (New_P, E_Package);
1441 Set_Etype (New_P, Standard_Void_Type);
1443 if Present (Renamed_Object (Old_P)) then
1444 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1445 else
1446 Set_Renamed_Object (New_P, Old_P);
1447 end if;
1449 -- The package renaming declaration may become Ghost if it renames a
1450 -- Ghost entity.
1452 Mark_Ghost_Renaming (N, Old_P);
1454 Set_Has_Completion (New_P);
1455 Set_First_Entity (New_P, First_Entity (Old_P));
1456 Set_Last_Entity (New_P, Last_Entity (Old_P));
1457 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1458 Check_Library_Unit_Renaming (N, Old_P);
1459 Generate_Reference (Old_P, Name (N));
1461 -- If the renaming is in the visible part of a package, then we set
1462 -- Renamed_In_Spec for the renamed package, to prevent giving
1463 -- warnings about no entities referenced. Such a warning would be
1464 -- overenthusiastic, since clients can see entities in the renamed
1465 -- package via the visible package renaming.
1467 declare
1468 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1469 begin
1470 if Ekind (Ent) = E_Package
1471 and then not In_Private_Part (Ent)
1472 and then In_Extended_Main_Source_Unit (N)
1473 and then Ekind (Old_P) = E_Package
1474 then
1475 Set_Renamed_In_Spec (Old_P);
1476 end if;
1477 end;
1479 -- If this is the renaming declaration of a package instantiation
1480 -- within itself, it is the declaration that ends the list of actuals
1481 -- for the instantiation. At this point, the subtypes that rename
1482 -- the actuals are flagged as generic, to avoid spurious ambiguities
1483 -- if the actuals for two distinct formals happen to coincide. If
1484 -- the actual is a private type, the subtype has a private completion
1485 -- that is flagged in the same fashion.
1487 -- Resolution is identical to what is was in the original generic.
1488 -- On exit from the generic instance, these are turned into regular
1489 -- subtypes again, so they are compatible with types in their class.
1491 if not Is_Generic_Instance (Old_P) then
1492 return;
1493 else
1494 Spec := Specification (Unit_Declaration_Node (Old_P));
1495 end if;
1497 if Nkind (Spec) = N_Package_Specification
1498 and then Present (Generic_Parent (Spec))
1499 and then Old_P = Current_Scope
1500 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1501 then
1502 declare
1503 E : Entity_Id;
1505 begin
1506 E := First_Entity (Old_P);
1507 while Present (E) and then E /= New_P loop
1508 if Is_Type (E)
1509 and then Nkind (Parent (E)) = N_Subtype_Declaration
1510 then
1511 Set_Is_Generic_Actual_Type (E);
1513 if Is_Private_Type (E)
1514 and then Present (Full_View (E))
1515 then
1516 Set_Is_Generic_Actual_Type (Full_View (E));
1517 end if;
1518 end if;
1520 Next_Entity (E);
1521 end loop;
1522 end;
1523 end if;
1524 end if;
1526 -- Implementation-defined aspect specifications can appear in a renaming
1527 -- declaration, but not language-defined ones. The call to procedure
1528 -- Analyze_Aspect_Specifications will take care of this error check.
1530 if Has_Aspects (N) then
1531 Analyze_Aspect_Specifications (N, New_P);
1532 end if;
1533 end Analyze_Package_Renaming;
1535 -------------------------------
1536 -- Analyze_Renamed_Character --
1537 -------------------------------
1539 procedure Analyze_Renamed_Character
1540 (N : Node_Id;
1541 New_S : Entity_Id;
1542 Is_Body : Boolean)
1544 C : constant Node_Id := Name (N);
1546 begin
1547 if Ekind (New_S) = E_Function then
1548 Resolve (C, Etype (New_S));
1550 if Is_Body then
1551 Check_Frozen_Renaming (N, New_S);
1552 end if;
1554 else
1555 Error_Msg_N ("character literal can only be renamed as function", N);
1556 end if;
1557 end Analyze_Renamed_Character;
1559 ---------------------------------
1560 -- Analyze_Renamed_Dereference --
1561 ---------------------------------
1563 procedure Analyze_Renamed_Dereference
1564 (N : Node_Id;
1565 New_S : Entity_Id;
1566 Is_Body : Boolean)
1568 Nam : constant Node_Id := Name (N);
1569 P : constant Node_Id := Prefix (Nam);
1570 Typ : Entity_Id;
1571 Ind : Interp_Index;
1572 It : Interp;
1574 begin
1575 if not Is_Overloaded (P) then
1576 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1577 or else not Type_Conformant (Etype (Nam), New_S)
1578 then
1579 Error_Msg_N ("designated type does not match specification", P);
1580 else
1581 Resolve (P);
1582 end if;
1584 return;
1586 else
1587 Typ := Any_Type;
1588 Get_First_Interp (Nam, Ind, It);
1590 while Present (It.Nam) loop
1592 if Ekind (It.Nam) = E_Subprogram_Type
1593 and then Type_Conformant (It.Nam, New_S)
1594 then
1595 if Typ /= Any_Id then
1596 Error_Msg_N ("ambiguous renaming", P);
1597 return;
1598 else
1599 Typ := It.Nam;
1600 end if;
1601 end if;
1603 Get_Next_Interp (Ind, It);
1604 end loop;
1606 if Typ = Any_Type then
1607 Error_Msg_N ("designated type does not match specification", P);
1608 else
1609 Resolve (N, Typ);
1611 if Is_Body then
1612 Check_Frozen_Renaming (N, New_S);
1613 end if;
1614 end if;
1615 end if;
1616 end Analyze_Renamed_Dereference;
1618 ---------------------------
1619 -- Analyze_Renamed_Entry --
1620 ---------------------------
1622 procedure Analyze_Renamed_Entry
1623 (N : Node_Id;
1624 New_S : Entity_Id;
1625 Is_Body : Boolean)
1627 Nam : constant Node_Id := Name (N);
1628 Sel : constant Node_Id := Selector_Name (Nam);
1629 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1630 Old_S : Entity_Id;
1632 begin
1633 if Entity (Sel) = Any_Id then
1635 -- Selector is undefined on prefix. Error emitted already
1637 Set_Has_Completion (New_S);
1638 return;
1639 end if;
1641 -- Otherwise find renamed entity and build body of New_S as a call to it
1643 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1645 if Old_S = Any_Id then
1646 Error_Msg_N (" no subprogram or entry matches specification", N);
1647 else
1648 if Is_Body then
1649 Check_Subtype_Conformant (New_S, Old_S, N);
1650 Generate_Reference (New_S, Defining_Entity (N), 'b');
1651 Style.Check_Identifier (Defining_Entity (N), New_S);
1653 else
1654 -- Only mode conformance required for a renaming_as_declaration
1656 Check_Mode_Conformant (New_S, Old_S, N);
1657 end if;
1659 Inherit_Renamed_Profile (New_S, Old_S);
1661 -- The prefix can be an arbitrary expression that yields a task or
1662 -- protected object, so it must be resolved.
1664 Resolve (Prefix (Nam), Scope (Old_S));
1665 end if;
1667 Set_Convention (New_S, Convention (Old_S));
1668 Set_Has_Completion (New_S, Inside_A_Generic);
1670 -- AI05-0225: If the renamed entity is a procedure or entry of a
1671 -- protected object, the target object must be a variable.
1673 if Ekind (Scope (Old_S)) in Protected_Kind
1674 and then Ekind (New_S) = E_Procedure
1675 and then not Is_Variable (Prefix (Nam))
1676 then
1677 if Is_Actual then
1678 Error_Msg_N
1679 ("target object of protected operation used as actual for "
1680 & "formal procedure must be a variable", Nam);
1681 else
1682 Error_Msg_N
1683 ("target object of protected operation renamed as procedure, "
1684 & "must be a variable", Nam);
1685 end if;
1686 end if;
1688 if Is_Body then
1689 Check_Frozen_Renaming (N, New_S);
1690 end if;
1691 end Analyze_Renamed_Entry;
1693 -----------------------------------
1694 -- Analyze_Renamed_Family_Member --
1695 -----------------------------------
1697 procedure Analyze_Renamed_Family_Member
1698 (N : Node_Id;
1699 New_S : Entity_Id;
1700 Is_Body : Boolean)
1702 Nam : constant Node_Id := Name (N);
1703 P : constant Node_Id := Prefix (Nam);
1704 Old_S : Entity_Id;
1706 begin
1707 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1708 or else (Nkind (P) = N_Selected_Component
1709 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1710 then
1711 if Is_Entity_Name (P) then
1712 Old_S := Entity (P);
1713 else
1714 Old_S := Entity (Selector_Name (P));
1715 end if;
1717 if not Entity_Matches_Spec (Old_S, New_S) then
1718 Error_Msg_N ("entry family does not match specification", N);
1720 elsif Is_Body then
1721 Check_Subtype_Conformant (New_S, Old_S, N);
1722 Generate_Reference (New_S, Defining_Entity (N), 'b');
1723 Style.Check_Identifier (Defining_Entity (N), New_S);
1724 end if;
1726 else
1727 Error_Msg_N ("no entry family matches specification", N);
1728 end if;
1730 Set_Has_Completion (New_S, Inside_A_Generic);
1732 if Is_Body then
1733 Check_Frozen_Renaming (N, New_S);
1734 end if;
1735 end Analyze_Renamed_Family_Member;
1737 -----------------------------------------
1738 -- Analyze_Renamed_Primitive_Operation --
1739 -----------------------------------------
1741 procedure Analyze_Renamed_Primitive_Operation
1742 (N : Node_Id;
1743 New_S : Entity_Id;
1744 Is_Body : Boolean)
1746 Old_S : Entity_Id;
1748 function Conforms
1749 (Subp : Entity_Id;
1750 Ctyp : Conformance_Type) return Boolean;
1751 -- Verify that the signatures of the renamed entity and the new entity
1752 -- match. The first formal of the renamed entity is skipped because it
1753 -- is the target object in any subsequent call.
1755 --------------
1756 -- Conforms --
1757 --------------
1759 function Conforms
1760 (Subp : Entity_Id;
1761 Ctyp : Conformance_Type) return Boolean
1763 Old_F : Entity_Id;
1764 New_F : Entity_Id;
1766 begin
1767 if Ekind (Subp) /= Ekind (New_S) then
1768 return False;
1769 end if;
1771 Old_F := Next_Formal (First_Formal (Subp));
1772 New_F := First_Formal (New_S);
1773 while Present (Old_F) and then Present (New_F) loop
1774 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1775 return False;
1776 end if;
1778 if Ctyp >= Mode_Conformant
1779 and then Ekind (Old_F) /= Ekind (New_F)
1780 then
1781 return False;
1782 end if;
1784 Next_Formal (New_F);
1785 Next_Formal (Old_F);
1786 end loop;
1788 return True;
1789 end Conforms;
1791 -- Start of processing for Analyze_Renamed_Primitive_Operation
1793 begin
1794 if not Is_Overloaded (Selector_Name (Name (N))) then
1795 Old_S := Entity (Selector_Name (Name (N)));
1797 if not Conforms (Old_S, Type_Conformant) then
1798 Old_S := Any_Id;
1799 end if;
1801 else
1802 -- Find the operation that matches the given signature
1804 declare
1805 It : Interp;
1806 Ind : Interp_Index;
1808 begin
1809 Old_S := Any_Id;
1810 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1812 while Present (It.Nam) loop
1813 if Conforms (It.Nam, Type_Conformant) then
1814 Old_S := It.Nam;
1815 end if;
1817 Get_Next_Interp (Ind, It);
1818 end loop;
1819 end;
1820 end if;
1822 if Old_S = Any_Id then
1823 Error_Msg_N (" no subprogram or entry matches specification", N);
1825 else
1826 if Is_Body then
1827 if not Conforms (Old_S, Subtype_Conformant) then
1828 Error_Msg_N ("subtype conformance error in renaming", N);
1829 end if;
1831 Generate_Reference (New_S, Defining_Entity (N), 'b');
1832 Style.Check_Identifier (Defining_Entity (N), New_S);
1834 else
1835 -- Only mode conformance required for a renaming_as_declaration
1837 if not Conforms (Old_S, Mode_Conformant) then
1838 Error_Msg_N ("mode conformance error in renaming", N);
1839 end if;
1841 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1842 -- view of a subprogram is intrinsic, because the compiler has
1843 -- to generate a wrapper for any call to it. If the name in a
1844 -- subprogram renaming is a prefixed view, the entity is thus
1845 -- intrinsic, and 'Access cannot be applied to it.
1847 Set_Convention (New_S, Convention_Intrinsic);
1848 end if;
1850 -- Inherit_Renamed_Profile (New_S, Old_S);
1852 -- The prefix can be an arbitrary expression that yields an
1853 -- object, so it must be resolved.
1855 Resolve (Prefix (Name (N)));
1856 end if;
1857 end Analyze_Renamed_Primitive_Operation;
1859 ---------------------------------
1860 -- Analyze_Subprogram_Renaming --
1861 ---------------------------------
1863 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1864 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1865 Is_Actual : constant Boolean := Present (Formal_Spec);
1866 Nam : constant Node_Id := Name (N);
1867 Save_AV : constant Ada_Version_Type := Ada_Version;
1868 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1869 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1870 Spec : constant Node_Id := Specification (N);
1872 Old_S : Entity_Id := Empty;
1873 Rename_Spec : Entity_Id;
1875 procedure Build_Class_Wide_Wrapper
1876 (Ren_Id : out Entity_Id;
1877 Wrap_Id : out Entity_Id);
1878 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1879 -- type with unknown discriminants and a generic primitive operation of
1880 -- the said type with a box require special processing when the actual
1881 -- is a class-wide type:
1883 -- generic
1884 -- type Formal_Typ (<>) is private;
1885 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1886 -- package Gen is ...
1888 -- package Inst is new Gen (Actual_Typ'Class);
1890 -- In this case the general renaming mechanism used in the prologue of
1891 -- an instance no longer applies:
1893 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1895 -- The above is replaced the following wrapper/renaming combination:
1897 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1898 -- begin
1899 -- Prim_Op (Param); -- primitive
1900 -- end Wrapper;
1902 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1904 -- This transformation applies only if there is no explicit visible
1905 -- class-wide operation at the point of the instantiation. Ren_Id is
1906 -- the entity of the renaming declaration. When the transformation
1907 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1908 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1909 -- operation.
1911 procedure Check_Null_Exclusion
1912 (Ren : Entity_Id;
1913 Sub : Entity_Id);
1914 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1915 -- following AI rules:
1917 -- If Ren is a renaming of a formal subprogram and one of its
1918 -- parameters has a null exclusion, then the corresponding formal
1919 -- in Sub must also have one. Otherwise the subtype of the Sub's
1920 -- formal parameter must exclude null.
1922 -- If Ren is a renaming of a formal function and its return
1923 -- profile has a null exclusion, then Sub's return profile must
1924 -- have one. Otherwise the subtype of Sub's return profile must
1925 -- exclude null.
1927 procedure Freeze_Actual_Profile;
1928 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1929 -- types: a callable entity freezes its profile, unless it has an
1930 -- incomplete untagged formal (RM 13.14(10.2/3)).
1932 function Has_Class_Wide_Actual return Boolean;
1933 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1934 -- defaulted formal subprogram where the actual for the controlling
1935 -- formal type is class-wide.
1937 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1938 -- Find renamed entity when the declaration is a renaming_as_body and
1939 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1940 -- rule that a renaming_as_body is illegal if the declaration occurs
1941 -- before the subprogram it completes is frozen, and renaming indirectly
1942 -- renames the subprogram itself.(Defect Report 8652/0027).
1944 ------------------------------
1945 -- Build_Class_Wide_Wrapper --
1946 ------------------------------
1948 procedure Build_Class_Wide_Wrapper
1949 (Ren_Id : out Entity_Id;
1950 Wrap_Id : out Entity_Id)
1952 Loc : constant Source_Ptr := Sloc (N);
1954 function Build_Call
1955 (Subp_Id : Entity_Id;
1956 Params : List_Id) return Node_Id;
1957 -- Create a dispatching call to invoke routine Subp_Id with actuals
1958 -- built from the parameter specifications of list Params.
1960 function Build_Expr_Fun_Call
1961 (Subp_Id : Entity_Id;
1962 Params : List_Id) return Node_Id;
1963 -- Create a dispatching call to invoke function Subp_Id with actuals
1964 -- built from the parameter specifications of list Params. Return
1965 -- directly the call, so that it can be used inside an expression
1966 -- function. This is a specificity of the GNATprove mode.
1968 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1969 -- Create a subprogram specification based on the subprogram profile
1970 -- of Subp_Id.
1972 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1973 -- Find a primitive subprogram of type Typ which matches the profile
1974 -- of the renaming declaration.
1976 procedure Interpretation_Error (Subp_Id : Entity_Id);
1977 -- Emit a continuation error message suggesting subprogram Subp_Id as
1978 -- a possible interpretation.
1980 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1981 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1982 -- operator.
1984 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1985 -- Determine whether subprogram Subp_Id is a suitable candidate for
1986 -- the role of a wrapped subprogram.
1988 ----------------
1989 -- Build_Call --
1990 ----------------
1992 function Build_Call
1993 (Subp_Id : Entity_Id;
1994 Params : List_Id) return Node_Id
1996 Actuals : constant List_Id := New_List;
1997 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1998 Formal : Node_Id;
2000 begin
2001 -- Build the actual parameters of the call
2003 Formal := First (Params);
2004 while Present (Formal) loop
2005 Append_To (Actuals,
2006 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2007 Next (Formal);
2008 end loop;
2010 -- Generate:
2011 -- return Subp_Id (Actuals);
2013 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2014 return
2015 Make_Simple_Return_Statement (Loc,
2016 Expression =>
2017 Make_Function_Call (Loc,
2018 Name => Call_Ref,
2019 Parameter_Associations => Actuals));
2021 -- Generate:
2022 -- Subp_Id (Actuals);
2024 else
2025 return
2026 Make_Procedure_Call_Statement (Loc,
2027 Name => Call_Ref,
2028 Parameter_Associations => Actuals);
2029 end if;
2030 end Build_Call;
2032 -------------------------
2033 -- Build_Expr_Fun_Call --
2034 -------------------------
2036 function Build_Expr_Fun_Call
2037 (Subp_Id : Entity_Id;
2038 Params : List_Id) return Node_Id
2040 Actuals : constant List_Id := New_List;
2041 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2042 Formal : Node_Id;
2044 begin
2045 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2047 -- Build the actual parameters of the call
2049 Formal := First (Params);
2050 while Present (Formal) loop
2051 Append_To (Actuals,
2052 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2053 Next (Formal);
2054 end loop;
2056 -- Generate:
2057 -- Subp_Id (Actuals);
2059 return
2060 Make_Function_Call (Loc,
2061 Name => Call_Ref,
2062 Parameter_Associations => Actuals);
2063 end Build_Expr_Fun_Call;
2065 ----------------
2066 -- Build_Spec --
2067 ----------------
2069 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2070 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2071 Spec_Id : constant Entity_Id :=
2072 Make_Defining_Identifier (Loc,
2073 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2075 begin
2076 if Ekind (Formal_Spec) = E_Procedure then
2077 return
2078 Make_Procedure_Specification (Loc,
2079 Defining_Unit_Name => Spec_Id,
2080 Parameter_Specifications => Params);
2081 else
2082 return
2083 Make_Function_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params,
2086 Result_Definition =>
2087 New_Copy_Tree (Result_Definition (Spec)));
2088 end if;
2089 end Build_Spec;
2091 --------------------
2092 -- Find_Primitive --
2093 --------------------
2095 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2096 procedure Replace_Parameter_Types (Spec : Node_Id);
2097 -- Given a specification Spec, replace all class-wide parameter
2098 -- types with reference to type Typ.
2100 -----------------------------
2101 -- Replace_Parameter_Types --
2102 -----------------------------
2104 procedure Replace_Parameter_Types (Spec : Node_Id) is
2105 Formal : Node_Id;
2106 Formal_Id : Entity_Id;
2107 Formal_Typ : Node_Id;
2109 begin
2110 Formal := First (Parameter_Specifications (Spec));
2111 while Present (Formal) loop
2112 Formal_Id := Defining_Identifier (Formal);
2113 Formal_Typ := Parameter_Type (Formal);
2115 -- Create a new entity for each class-wide formal to prevent
2116 -- aliasing with the original renaming. Replace the type of
2117 -- such a parameter with the candidate type.
2119 if Nkind (Formal_Typ) = N_Identifier
2120 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2121 then
2122 Set_Defining_Identifier (Formal,
2123 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2125 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2126 end if;
2128 Next (Formal);
2129 end loop;
2130 end Replace_Parameter_Types;
2132 -- Local variables
2134 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2135 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2136 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2137 Subp_Id : Entity_Id;
2139 -- Start of processing for Find_Primitive
2141 begin
2142 -- Each attempt to find a suitable primitive of a particular type
2143 -- operates on its own copy of the original renaming. As a result
2144 -- the original renaming is kept decoration and side-effect free.
2146 -- Inherit the overloaded status of the renamed subprogram name
2148 if Is_Overloaded (Nam) then
2149 Set_Is_Overloaded (Alt_Nam);
2150 Save_Interps (Nam, Alt_Nam);
2151 end if;
2153 -- The copied renaming is hidden from visibility to prevent the
2154 -- pollution of the enclosing context.
2156 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2158 -- The types of all class-wide parameters must be changed to the
2159 -- candidate type.
2161 Replace_Parameter_Types (Alt_Spec);
2163 -- Try to find a suitable primitive which matches the altered
2164 -- profile of the renaming specification.
2166 Subp_Id :=
2167 Find_Renamed_Entity
2168 (N => Alt_Ren,
2169 Nam => Name (Alt_Ren),
2170 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2171 Is_Actual => Is_Actual);
2173 -- Do not return Any_Id if the resolion of the altered profile
2174 -- failed as this complicates further checks on the caller side,
2175 -- return Empty instead.
2177 if Subp_Id = Any_Id then
2178 return Empty;
2179 else
2180 return Subp_Id;
2181 end if;
2182 end Find_Primitive;
2184 --------------------------
2185 -- Interpretation_Error --
2186 --------------------------
2188 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2189 begin
2190 Error_Msg_Sloc := Sloc (Subp_Id);
2192 if Is_Internal (Subp_Id) then
2193 Error_Msg_NE
2194 ("\\possible interpretation: predefined & #",
2195 Spec, Formal_Spec);
2196 else
2197 Error_Msg_NE
2198 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2199 end if;
2200 end Interpretation_Error;
2202 ---------------------------
2203 -- Is_Intrinsic_Equality --
2204 ---------------------------
2206 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2207 begin
2208 return
2209 Ekind (Subp_Id) = E_Operator
2210 and then Chars (Subp_Id) = Name_Op_Eq
2211 and then Is_Intrinsic_Subprogram (Subp_Id);
2212 end Is_Intrinsic_Equality;
2214 ---------------------------
2215 -- Is_Suitable_Candidate --
2216 ---------------------------
2218 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2219 begin
2220 if No (Subp_Id) then
2221 return False;
2223 -- An intrinsic subprogram is never a good candidate. This is an
2224 -- indication of a missing primitive, either defined directly or
2225 -- inherited from a parent tagged type.
2227 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2228 return False;
2230 else
2231 return True;
2232 end if;
2233 end Is_Suitable_Candidate;
2235 -- Local variables
2237 Actual_Typ : Entity_Id := Empty;
2238 -- The actual class-wide type for Formal_Typ
2240 CW_Prim_OK : Boolean;
2241 CW_Prim_Op : Entity_Id;
2242 -- The class-wide subprogram (if available) which corresponds to the
2243 -- renamed generic formal subprogram.
2245 Formal_Typ : Entity_Id := Empty;
2246 -- The generic formal type with unknown discriminants
2248 Root_Prim_OK : Boolean;
2249 Root_Prim_Op : Entity_Id;
2250 -- The root type primitive (if available) which corresponds to the
2251 -- renamed generic formal subprogram.
2253 Root_Typ : Entity_Id := Empty;
2254 -- The root type of Actual_Typ
2256 Body_Decl : Node_Id;
2257 Formal : Node_Id;
2258 Prim_Op : Entity_Id;
2259 Spec_Decl : Node_Id;
2260 New_Spec : Node_Id;
2262 -- Start of processing for Build_Class_Wide_Wrapper
2264 begin
2265 -- Analyze the specification of the renaming in case the generation
2266 -- of the class-wide wrapper fails.
2268 Ren_Id := Analyze_Subprogram_Specification (Spec);
2269 Wrap_Id := Any_Id;
2271 -- Do not attempt to build a wrapper if the renaming is in error
2273 if Error_Posted (Nam) then
2274 return;
2275 end if;
2277 -- Analyze the renamed name, but do not resolve it. The resolution is
2278 -- completed once a suitable subprogram is found.
2280 Analyze (Nam);
2282 -- When the renamed name denotes the intrinsic operator equals, the
2283 -- name must be treated as overloaded. This allows for a potential
2284 -- match against the root type's predefined equality function.
2286 if Is_Intrinsic_Equality (Entity (Nam)) then
2287 Set_Is_Overloaded (Nam);
2288 Collect_Interps (Nam);
2289 end if;
2291 -- Step 1: Find the generic formal type with unknown discriminants
2292 -- and its corresponding class-wide actual type from the renamed
2293 -- generic formal subprogram.
2295 Formal := First_Formal (Formal_Spec);
2296 while Present (Formal) loop
2297 if Has_Unknown_Discriminants (Etype (Formal))
2298 and then not Is_Class_Wide_Type (Etype (Formal))
2299 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2300 then
2301 Formal_Typ := Etype (Formal);
2302 Actual_Typ := Get_Instance_Of (Formal_Typ);
2303 Root_Typ := Etype (Actual_Typ);
2304 exit;
2305 end if;
2307 Next_Formal (Formal);
2308 end loop;
2310 -- The specification of the generic formal subprogram should always
2311 -- contain a formal type with unknown discriminants whose actual is
2312 -- a class-wide type, otherwise this indicates a failure in routine
2313 -- Has_Class_Wide_Actual.
2315 pragma Assert (Present (Formal_Typ));
2317 -- Step 2: Find the proper class-wide subprogram or primitive which
2318 -- corresponds to the renamed generic formal subprogram.
2320 CW_Prim_Op := Find_Primitive (Actual_Typ);
2321 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2322 Root_Prim_Op := Find_Primitive (Root_Typ);
2323 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2325 -- The class-wide actual type has two subprograms which correspond to
2326 -- the renamed generic formal subprogram:
2328 -- with procedure Prim_Op (Param : Formal_Typ);
2330 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2331 -- procedure Prim_Op (Param : Actual_Typ'Class);
2333 -- Even though the declaration of the two subprograms is legal, a
2334 -- call to either one is ambiguous and therefore illegal.
2336 if CW_Prim_OK and Root_Prim_OK then
2338 -- A user-defined primitive has precedence over a predefined one
2340 if Is_Internal (CW_Prim_Op)
2341 and then not Is_Internal (Root_Prim_Op)
2342 then
2343 Prim_Op := Root_Prim_Op;
2345 elsif Is_Internal (Root_Prim_Op)
2346 and then not Is_Internal (CW_Prim_Op)
2347 then
2348 Prim_Op := CW_Prim_Op;
2350 elsif CW_Prim_Op = Root_Prim_Op then
2351 Prim_Op := Root_Prim_Op;
2353 -- Otherwise both candidate subprograms are user-defined and
2354 -- ambiguous.
2356 else
2357 Error_Msg_NE
2358 ("ambiguous actual for generic subprogram &",
2359 Spec, Formal_Spec);
2360 Interpretation_Error (Root_Prim_Op);
2361 Interpretation_Error (CW_Prim_Op);
2362 return;
2363 end if;
2365 elsif CW_Prim_OK and not Root_Prim_OK then
2366 Prim_Op := CW_Prim_Op;
2368 elsif not CW_Prim_OK and Root_Prim_OK then
2369 Prim_Op := Root_Prim_Op;
2371 -- An intrinsic equality may act as a suitable candidate in the case
2372 -- of a null type extension where the parent's equality is hidden. A
2373 -- call to an intrinsic equality is expanded as dispatching.
2375 elsif Present (Root_Prim_Op)
2376 and then Is_Intrinsic_Equality (Root_Prim_Op)
2377 then
2378 Prim_Op := Root_Prim_Op;
2380 -- Otherwise there are no candidate subprograms. Let the caller
2381 -- diagnose the error.
2383 else
2384 return;
2385 end if;
2387 -- At this point resolution has taken place and the name is no longer
2388 -- overloaded. Mark the primitive as referenced.
2390 Set_Is_Overloaded (Name (N), False);
2391 Set_Referenced (Prim_Op);
2393 -- Do not generate a wrapper when the only candidate is a class-wide
2394 -- subprogram. Instead modify the renaming to directly map the actual
2395 -- to the generic formal.
2397 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2398 Wrap_Id := Prim_Op;
2399 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2400 return;
2401 end if;
2403 -- Step 3: Create the declaration and the body of the wrapper, insert
2404 -- all the pieces into the tree.
2406 -- In GNATprove mode, create a function wrapper in the form of an
2407 -- expression function, so that an implicit postcondition relating
2408 -- the result of calling the wrapper function and the result of the
2409 -- dispatching call to the wrapped function is known during proof.
2411 if GNATprove_Mode
2412 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2413 then
2414 New_Spec := Build_Spec (Ren_Id);
2415 Body_Decl :=
2416 Make_Expression_Function (Loc,
2417 Specification => New_Spec,
2418 Expression =>
2419 Build_Expr_Fun_Call
2420 (Subp_Id => Prim_Op,
2421 Params => Parameter_Specifications (New_Spec)));
2423 Wrap_Id := Defining_Entity (Body_Decl);
2425 -- Otherwise, create separate spec and body for the subprogram
2427 else
2428 Spec_Decl :=
2429 Make_Subprogram_Declaration (Loc,
2430 Specification => Build_Spec (Ren_Id));
2431 Insert_Before_And_Analyze (N, Spec_Decl);
2433 Wrap_Id := Defining_Entity (Spec_Decl);
2435 Body_Decl :=
2436 Make_Subprogram_Body (Loc,
2437 Specification => Build_Spec (Ren_Id),
2438 Declarations => New_List,
2439 Handled_Statement_Sequence =>
2440 Make_Handled_Sequence_Of_Statements (Loc,
2441 Statements => New_List (
2442 Build_Call
2443 (Subp_Id => Prim_Op,
2444 Params =>
2445 Parameter_Specifications
2446 (Specification (Spec_Decl))))));
2448 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2449 end if;
2451 -- If the operator carries an Eliminated pragma, indicate that the
2452 -- wrapper is also to be eliminated, to prevent spurious error when
2453 -- using gnatelim on programs that include box-initialization of
2454 -- equality operators.
2456 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2458 -- In GNATprove mode, insert the body in the tree for analysis
2460 if GNATprove_Mode then
2461 Insert_Before_And_Analyze (N, Body_Decl);
2462 end if;
2464 -- The generated body does not freeze and must be analyzed when the
2465 -- class-wide wrapper is frozen. The body is only needed if expansion
2466 -- is enabled.
2468 if Expander_Active then
2469 Append_Freeze_Action (Wrap_Id, Body_Decl);
2470 end if;
2472 -- Step 4: The subprogram renaming aliases the wrapper
2474 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2475 end Build_Class_Wide_Wrapper;
2477 --------------------------
2478 -- Check_Null_Exclusion --
2479 --------------------------
2481 procedure Check_Null_Exclusion
2482 (Ren : Entity_Id;
2483 Sub : Entity_Id)
2485 Ren_Formal : Entity_Id;
2486 Sub_Formal : Entity_Id;
2488 begin
2489 -- Parameter check
2491 Ren_Formal := First_Formal (Ren);
2492 Sub_Formal := First_Formal (Sub);
2493 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2494 if Has_Null_Exclusion (Parent (Ren_Formal))
2495 and then
2496 not (Has_Null_Exclusion (Parent (Sub_Formal))
2497 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2498 then
2499 Error_Msg_NE
2500 ("`NOT NULL` required for parameter &",
2501 Parent (Sub_Formal), Sub_Formal);
2502 end if;
2504 Next_Formal (Ren_Formal);
2505 Next_Formal (Sub_Formal);
2506 end loop;
2508 -- Return profile check
2510 if Nkind (Parent (Ren)) = N_Function_Specification
2511 and then Nkind (Parent (Sub)) = N_Function_Specification
2512 and then Has_Null_Exclusion (Parent (Ren))
2513 and then not (Has_Null_Exclusion (Parent (Sub))
2514 or else Can_Never_Be_Null (Etype (Sub)))
2515 then
2516 Error_Msg_N
2517 ("return must specify `NOT NULL`",
2518 Result_Definition (Parent (Sub)));
2519 end if;
2520 end Check_Null_Exclusion;
2522 ---------------------------
2523 -- Freeze_Actual_Profile --
2524 ---------------------------
2526 procedure Freeze_Actual_Profile is
2527 F : Entity_Id;
2528 Has_Untagged_Inc : Boolean;
2529 Instantiation_Node : constant Node_Id := Parent (N);
2531 begin
2532 if Ada_Version >= Ada_2012 then
2533 F := First_Formal (Formal_Spec);
2534 Has_Untagged_Inc := False;
2535 while Present (F) loop
2536 if Ekind (Etype (F)) = E_Incomplete_Type
2537 and then not Is_Tagged_Type (Etype (F))
2538 then
2539 Has_Untagged_Inc := True;
2540 exit;
2541 end if;
2543 F := Next_Formal (F);
2544 end loop;
2546 if Ekind (Formal_Spec) = E_Function
2547 and then not Is_Tagged_Type (Etype (Formal_Spec))
2548 then
2549 Has_Untagged_Inc := True;
2550 end if;
2552 if not Has_Untagged_Inc then
2553 F := First_Formal (Old_S);
2554 while Present (F) loop
2555 Freeze_Before (Instantiation_Node, Etype (F));
2557 if Is_Incomplete_Or_Private_Type (Etype (F))
2558 and then No (Underlying_Type (Etype (F)))
2559 then
2560 -- Exclude generic types, or types derived from them.
2561 -- They will be frozen in the enclosing instance.
2563 if Is_Generic_Type (Etype (F))
2564 or else Is_Generic_Type (Root_Type (Etype (F)))
2565 then
2566 null;
2568 -- A limited view of a type declared elsewhere needs no
2569 -- freezing actions.
2571 elsif From_Limited_With (Etype (F)) then
2572 null;
2574 else
2575 Error_Msg_NE
2576 ("type& must be frozen before this point",
2577 Instantiation_Node, Etype (F));
2578 end if;
2579 end if;
2581 F := Next_Formal (F);
2582 end loop;
2583 end if;
2584 end if;
2585 end Freeze_Actual_Profile;
2587 ---------------------------
2588 -- Has_Class_Wide_Actual --
2589 ---------------------------
2591 function Has_Class_Wide_Actual return Boolean is
2592 Formal : Entity_Id;
2593 Formal_Typ : Entity_Id;
2595 begin
2596 if Is_Actual then
2597 Formal := First_Formal (Formal_Spec);
2598 while Present (Formal) loop
2599 Formal_Typ := Etype (Formal);
2601 if Has_Unknown_Discriminants (Formal_Typ)
2602 and then not Is_Class_Wide_Type (Formal_Typ)
2603 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2604 then
2605 return True;
2606 end if;
2608 Next_Formal (Formal);
2609 end loop;
2610 end if;
2612 return False;
2613 end Has_Class_Wide_Actual;
2615 -------------------------
2616 -- Original_Subprogram --
2617 -------------------------
2619 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2620 Orig_Decl : Node_Id;
2621 Orig_Subp : Entity_Id;
2623 begin
2624 -- First case: renamed entity is itself a renaming
2626 if Present (Alias (Subp)) then
2627 return Alias (Subp);
2629 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2630 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2631 then
2632 -- Check if renamed entity is a renaming_as_body
2634 Orig_Decl :=
2635 Unit_Declaration_Node
2636 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2638 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2639 Orig_Subp := Entity (Name (Orig_Decl));
2641 if Orig_Subp = Rename_Spec then
2643 -- Circularity detected
2645 return Orig_Subp;
2647 else
2648 return (Original_Subprogram (Orig_Subp));
2649 end if;
2650 else
2651 return Subp;
2652 end if;
2653 else
2654 return Subp;
2655 end if;
2656 end Original_Subprogram;
2658 -- Local variables
2660 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2661 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2662 -- defaulted formal subprogram when the actual for a related formal
2663 -- type is class-wide.
2665 Inst_Node : Node_Id := Empty;
2666 New_S : Entity_Id;
2668 -- Start of processing for Analyze_Subprogram_Renaming
2670 begin
2671 -- We must test for the attribute renaming case before the Analyze
2672 -- call because otherwise Sem_Attr will complain that the attribute
2673 -- is missing an argument when it is analyzed.
2675 if Nkind (Nam) = N_Attribute_Reference then
2677 -- In the case of an abstract formal subprogram association, rewrite
2678 -- an actual given by a stream attribute as the name of the
2679 -- corresponding stream primitive of the type.
2681 -- In a generic context the stream operations are not generated, and
2682 -- this must be treated as a normal attribute reference, to be
2683 -- expanded in subsequent instantiations.
2685 if Is_Actual
2686 and then Is_Abstract_Subprogram (Formal_Spec)
2687 and then Expander_Active
2688 then
2689 declare
2690 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2691 Stream_Prim : Entity_Id;
2693 begin
2694 -- The class-wide forms of the stream attributes are not
2695 -- primitive dispatching operations (even though they
2696 -- internally dispatch to a stream attribute).
2698 if Is_Class_Wide_Type (Prefix_Type) then
2699 Error_Msg_N
2700 ("attribute must be a primitive dispatching operation",
2701 Nam);
2702 return;
2703 end if;
2705 -- Retrieve the primitive subprogram associated with the
2706 -- attribute. This can only be a stream attribute, since those
2707 -- are the only ones that are dispatching (and the actual for
2708 -- an abstract formal subprogram must be dispatching
2709 -- operation).
2711 case Attribute_Name (Nam) is
2712 when Name_Input =>
2713 Stream_Prim :=
2714 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2716 when Name_Output =>
2717 Stream_Prim :=
2718 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2720 when Name_Read =>
2721 Stream_Prim :=
2722 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2724 when Name_Write =>
2725 Stream_Prim :=
2726 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2728 when others =>
2729 Error_Msg_N
2730 ("attribute must be a primitive dispatching operation",
2731 Nam);
2732 return;
2733 end case;
2735 -- If no operation was found, and the type is limited, the user
2736 -- should have defined one.
2738 if No (Stream_Prim) then
2739 if Is_Limited_Type (Prefix_Type) then
2740 Error_Msg_NE
2741 ("stream operation not defined for type&",
2742 N, Prefix_Type);
2743 return;
2745 -- Otherwise, compiler should have generated default
2747 else
2748 raise Program_Error;
2749 end if;
2750 end if;
2752 -- Rewrite the attribute into the name of its corresponding
2753 -- primitive dispatching subprogram. We can then proceed with
2754 -- the usual processing for subprogram renamings.
2756 declare
2757 Prim_Name : constant Node_Id :=
2758 Make_Identifier (Sloc (Nam),
2759 Chars => Chars (Stream_Prim));
2760 begin
2761 Set_Entity (Prim_Name, Stream_Prim);
2762 Rewrite (Nam, Prim_Name);
2763 Analyze (Nam);
2764 end;
2765 end;
2767 -- Normal processing for a renaming of an attribute
2769 else
2770 Attribute_Renaming (N);
2771 return;
2772 end if;
2773 end if;
2775 -- Check whether this declaration corresponds to the instantiation of a
2776 -- formal subprogram.
2778 -- If this is an instantiation, the corresponding actual is frozen and
2779 -- error messages can be made more precise. If this is a default
2780 -- subprogram, the entity is already established in the generic, and is
2781 -- not retrieved by visibility. If it is a default with a box, the
2782 -- candidate interpretations, if any, have been collected when building
2783 -- the renaming declaration. If overloaded, the proper interpretation is
2784 -- determined in Find_Renamed_Entity. If the entity is an operator,
2785 -- Find_Renamed_Entity applies additional visibility checks.
2787 if Is_Actual then
2788 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2790 -- Check whether the renaming is for a defaulted actual subprogram
2791 -- with a class-wide actual.
2793 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2794 -- is an external axiomatization on the package.
2796 if CW_Actual
2797 and then Box_Present (Inst_Node)
2798 and then not
2799 (GNATprove_Mode
2800 and then
2801 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2802 then
2803 Build_Class_Wide_Wrapper (New_S, Old_S);
2805 elsif Is_Entity_Name (Nam)
2806 and then Present (Entity (Nam))
2807 and then not Comes_From_Source (Nam)
2808 and then not Is_Overloaded (Nam)
2809 then
2810 Old_S := Entity (Nam);
2812 -- The subprogram renaming declaration may become Ghost if it
2813 -- renames a Ghost entity.
2815 Mark_Ghost_Renaming (N, Old_S);
2817 New_S := Analyze_Subprogram_Specification (Spec);
2819 -- Operator case
2821 if Ekind (Old_S) = E_Operator then
2823 -- Box present
2825 if Box_Present (Inst_Node) then
2826 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2828 -- If there is an immediately visible homonym of the operator
2829 -- and the declaration has a default, this is worth a warning
2830 -- because the user probably did not intend to get the pre-
2831 -- defined operator, visible in the generic declaration. To
2832 -- find if there is an intended candidate, analyze the renaming
2833 -- again in the current context.
2835 elsif Scope (Old_S) = Standard_Standard
2836 and then Present (Default_Name (Inst_Node))
2837 then
2838 declare
2839 Decl : constant Node_Id := New_Copy_Tree (N);
2840 Hidden : Entity_Id;
2842 begin
2843 Set_Entity (Name (Decl), Empty);
2844 Analyze (Name (Decl));
2845 Hidden :=
2846 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2848 if Present (Hidden)
2849 and then In_Open_Scopes (Scope (Hidden))
2850 and then Is_Immediately_Visible (Hidden)
2851 and then Comes_From_Source (Hidden)
2852 and then Hidden /= Old_S
2853 then
2854 Error_Msg_Sloc := Sloc (Hidden);
2855 Error_Msg_N
2856 ("default subprogram is resolved in the generic "
2857 & "declaration (RM 12.6(17))??", N);
2858 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2859 end if;
2860 end;
2861 end if;
2862 end if;
2864 else
2865 Analyze (Nam);
2867 -- The subprogram renaming declaration may become Ghost if it
2868 -- renames a Ghost entity.
2870 if Is_Entity_Name (Nam) then
2871 Mark_Ghost_Renaming (N, Entity (Nam));
2872 end if;
2874 New_S := Analyze_Subprogram_Specification (Spec);
2875 end if;
2877 else
2878 -- Renamed entity must be analyzed first, to avoid being hidden by
2879 -- new name (which might be the same in a generic instance).
2881 Analyze (Nam);
2883 -- The subprogram renaming declaration may become Ghost if it renames
2884 -- a Ghost entity.
2886 if Is_Entity_Name (Nam) then
2887 Mark_Ghost_Renaming (N, Entity (Nam));
2888 end if;
2890 -- The renaming defines a new overloaded entity, which is analyzed
2891 -- like a subprogram declaration.
2893 New_S := Analyze_Subprogram_Specification (Spec);
2894 end if;
2896 if Current_Scope /= Standard_Standard then
2897 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2898 end if;
2900 -- Set SPARK mode from current context
2902 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2903 Set_SPARK_Pragma_Inherited (New_S);
2905 Rename_Spec := Find_Corresponding_Spec (N);
2907 -- Case of Renaming_As_Body
2909 if Present (Rename_Spec) then
2910 Check_Previous_Null_Procedure (N, Rename_Spec);
2912 -- Renaming declaration is the completion of the declaration of
2913 -- Rename_Spec. We build an actual body for it at the freezing point.
2915 Set_Corresponding_Spec (N, Rename_Spec);
2917 -- Deal with special case of stream functions of abstract types
2918 -- and interfaces.
2920 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2921 N_Abstract_Subprogram_Declaration
2922 then
2923 -- Input stream functions are abstract if the object type is
2924 -- abstract. Similarly, all default stream functions for an
2925 -- interface type are abstract. However, these subprograms may
2926 -- receive explicit declarations in representation clauses, making
2927 -- the attribute subprograms usable as defaults in subsequent
2928 -- type extensions.
2929 -- In this case we rewrite the declaration to make the subprogram
2930 -- non-abstract. We remove the previous declaration, and insert
2931 -- the new one at the point of the renaming, to prevent premature
2932 -- access to unfrozen types. The new declaration reuses the
2933 -- specification of the previous one, and must not be analyzed.
2935 pragma Assert
2936 (Is_Primitive (Entity (Nam))
2937 and then
2938 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2939 declare
2940 Old_Decl : constant Node_Id :=
2941 Unit_Declaration_Node (Rename_Spec);
2942 New_Decl : constant Node_Id :=
2943 Make_Subprogram_Declaration (Sloc (N),
2944 Specification =>
2945 Relocate_Node (Specification (Old_Decl)));
2946 begin
2947 Remove (Old_Decl);
2948 Insert_After (N, New_Decl);
2949 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2950 Set_Analyzed (New_Decl);
2951 end;
2952 end if;
2954 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2956 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2957 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2958 end if;
2960 Set_Convention (New_S, Convention (Rename_Spec));
2961 Check_Fully_Conformant (New_S, Rename_Spec);
2962 Set_Public_Status (New_S);
2964 if No_Return (Rename_Spec)
2965 and then not No_Return (Entity (Nam))
2966 then
2967 Error_Msg_N ("renaming completes a No_Return procedure", N);
2968 Error_Msg_N
2969 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
2970 end if;
2972 -- The specification does not introduce new formals, but only
2973 -- repeats the formals of the original subprogram declaration.
2974 -- For cross-reference purposes, and for refactoring tools, we
2975 -- treat the formals of the renaming declaration as body formals.
2977 Reference_Body_Formals (Rename_Spec, New_S);
2979 -- Indicate that the entity in the declaration functions like the
2980 -- corresponding body, and is not a new entity. The body will be
2981 -- constructed later at the freeze point, so indicate that the
2982 -- completion has not been seen yet.
2984 Set_Ekind (New_S, E_Subprogram_Body);
2985 New_S := Rename_Spec;
2986 Set_Has_Completion (Rename_Spec, False);
2988 -- Ada 2005: check overriding indicator
2990 if Present (Overridden_Operation (Rename_Spec)) then
2991 if Must_Not_Override (Specification (N)) then
2992 Error_Msg_NE
2993 ("subprogram& overrides inherited operation",
2994 N, Rename_Spec);
2996 elsif Style_Check
2997 and then not Must_Override (Specification (N))
2998 then
2999 Style.Missing_Overriding (N, Rename_Spec);
3000 end if;
3002 elsif Must_Override (Specification (N)) then
3003 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3004 end if;
3006 -- Normal subprogram renaming (not renaming as body)
3008 else
3009 Generate_Definition (New_S);
3010 New_Overloaded_Entity (New_S);
3012 if Is_Entity_Name (Nam)
3013 and then Is_Intrinsic_Subprogram (Entity (Nam))
3014 then
3015 null;
3016 else
3017 Check_Delayed_Subprogram (New_S);
3018 end if;
3019 end if;
3021 -- There is no need for elaboration checks on the new entity, which may
3022 -- be called before the next freezing point where the body will appear.
3023 -- Elaboration checks refer to the real entity, not the one created by
3024 -- the renaming declaration.
3026 Set_Kill_Elaboration_Checks (New_S, True);
3028 -- If we had a previous error, indicate a completely is present to stop
3029 -- junk cascaded messages, but don't take any further action.
3031 if Etype (Nam) = Any_Type then
3032 Set_Has_Completion (New_S);
3033 return;
3035 -- Case where name has the form of a selected component
3037 elsif Nkind (Nam) = N_Selected_Component then
3039 -- A name which has the form A.B can designate an entry of task A, a
3040 -- protected operation of protected object A, or finally a primitive
3041 -- operation of object A. In the later case, A is an object of some
3042 -- tagged type, or an access type that denotes one such. To further
3043 -- distinguish these cases, note that the scope of a task entry or
3044 -- protected operation is type of the prefix.
3046 -- The prefix could be an overloaded function call that returns both
3047 -- kinds of operations. This overloading pathology is left to the
3048 -- dedicated reader ???
3050 declare
3051 T : constant Entity_Id := Etype (Prefix (Nam));
3053 begin
3054 if Present (T)
3055 and then
3056 (Is_Tagged_Type (T)
3057 or else
3058 (Is_Access_Type (T)
3059 and then Is_Tagged_Type (Designated_Type (T))))
3060 and then Scope (Entity (Selector_Name (Nam))) /= T
3061 then
3062 Analyze_Renamed_Primitive_Operation
3063 (N, New_S, Present (Rename_Spec));
3064 return;
3066 else
3067 -- Renamed entity is an entry or protected operation. For those
3068 -- cases an explicit body is built (at the point of freezing of
3069 -- this entity) that contains a call to the renamed entity.
3071 -- This is not allowed for renaming as body if the renamed
3072 -- spec is already frozen (see RM 8.5.4(5) for details).
3074 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3075 Error_Msg_N
3076 ("renaming-as-body cannot rename entry as subprogram", N);
3077 Error_Msg_NE
3078 ("\since & is already frozen (RM 8.5.4(5))",
3079 N, Rename_Spec);
3080 else
3081 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3082 end if;
3084 return;
3085 end if;
3086 end;
3088 -- Case where name is an explicit dereference X.all
3090 elsif Nkind (Nam) = N_Explicit_Dereference then
3092 -- Renamed entity is designated by access_to_subprogram expression.
3093 -- Must build body to encapsulate call, as in the entry case.
3095 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3096 return;
3098 -- Indexed component
3100 elsif Nkind (Nam) = N_Indexed_Component then
3101 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3102 return;
3104 -- Character literal
3106 elsif Nkind (Nam) = N_Character_Literal then
3107 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3108 return;
3110 -- Only remaining case is where we have a non-entity name, or a renaming
3111 -- of some other non-overloadable entity.
3113 elsif not Is_Entity_Name (Nam)
3114 or else not Is_Overloadable (Entity (Nam))
3115 then
3116 -- Do not mention the renaming if it comes from an instance
3118 if not Is_Actual then
3119 Error_Msg_N ("expect valid subprogram name in renaming", N);
3120 else
3121 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3122 end if;
3124 return;
3125 end if;
3127 -- Find the renamed entity that matches the given specification. Disable
3128 -- Ada_83 because there is no requirement of full conformance between
3129 -- renamed entity and new entity, even though the same circuit is used.
3131 -- This is a bit of an odd case, which introduces a really irregular use
3132 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3133 -- this. ???
3135 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3136 Ada_Version_Pragma := Empty;
3137 Ada_Version_Explicit := Ada_Version;
3139 if No (Old_S) then
3140 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3142 -- The visible operation may be an inherited abstract operation that
3143 -- was overridden in the private part, in which case a call will
3144 -- dispatch to the overriding operation. Use the overriding one in
3145 -- the renaming declaration, to prevent spurious errors below.
3147 if Is_Overloadable (Old_S)
3148 and then Is_Abstract_Subprogram (Old_S)
3149 and then No (DTC_Entity (Old_S))
3150 and then Present (Alias (Old_S))
3151 and then not Is_Abstract_Subprogram (Alias (Old_S))
3152 and then Present (Overridden_Operation (Alias (Old_S)))
3153 then
3154 Old_S := Alias (Old_S);
3155 end if;
3157 -- When the renamed subprogram is overloaded and used as an actual
3158 -- of a generic, its entity is set to the first available homonym.
3159 -- We must first disambiguate the name, then set the proper entity.
3161 if Is_Actual and then Is_Overloaded (Nam) then
3162 Set_Entity (Nam, Old_S);
3163 end if;
3164 end if;
3166 -- Most common case: subprogram renames subprogram. No body is generated
3167 -- in this case, so we must indicate the declaration is complete as is.
3168 -- and inherit various attributes of the renamed subprogram.
3170 if No (Rename_Spec) then
3171 Set_Has_Completion (New_S);
3172 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3173 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3174 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3176 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3177 -- between a subprogram and its correct renaming.
3179 -- Note: the Any_Id check is a guard that prevents compiler crashes
3180 -- when performing a null exclusion check between a renaming and a
3181 -- renamed subprogram that has been found to be illegal.
3183 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3184 Check_Null_Exclusion
3185 (Ren => New_S,
3186 Sub => Entity (Nam));
3187 end if;
3189 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3190 -- overriding. The flag Requires_Overriding is set very selectively
3191 -- and misses some other illegal cases. The additional conditions
3192 -- checked below are sufficient but not necessary ???
3194 -- The rule does not apply to the renaming generated for an actual
3195 -- subprogram in an instance.
3197 if Is_Actual then
3198 null;
3200 -- Guard against previous errors, and omit renamings of predefined
3201 -- operators.
3203 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3204 null;
3206 elsif Requires_Overriding (Old_S)
3207 or else
3208 (Is_Abstract_Subprogram (Old_S)
3209 and then Present (Find_Dispatching_Type (Old_S))
3210 and then
3211 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3212 then
3213 Error_Msg_N
3214 ("renamed entity cannot be subprogram that requires overriding "
3215 & "(RM 8.5.4 (5.1))", N);
3216 end if;
3218 declare
3219 Prev : constant Entity_Id := Overridden_Operation (New_S);
3220 begin
3221 if Present (Prev)
3222 and then
3223 (Has_Non_Trivial_Precondition (Prev)
3224 or else Has_Non_Trivial_Precondition (Old_S))
3225 then
3226 Error_Msg_NE
3227 ("conflicting inherited classwide preconditions in renaming "
3228 & "of& (RM 6.1.1 (17)", N, Old_S);
3229 end if;
3230 end;
3231 end if;
3233 if Old_S /= Any_Id then
3234 if Is_Actual and then From_Default (N) then
3236 -- This is an implicit reference to the default actual
3238 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3240 else
3241 Generate_Reference (Old_S, Nam);
3242 end if;
3244 Check_Internal_Protected_Use (N, Old_S);
3246 -- For a renaming-as-body, require subtype conformance, but if the
3247 -- declaration being completed has not been frozen, then inherit the
3248 -- convention of the renamed subprogram prior to checking conformance
3249 -- (unless the renaming has an explicit convention established; the
3250 -- rule stated in the RM doesn't seem to address this ???).
3252 if Present (Rename_Spec) then
3253 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3254 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3256 if not Is_Frozen (Rename_Spec) then
3257 if not Has_Convention_Pragma (Rename_Spec) then
3258 Set_Convention (New_S, Convention (Old_S));
3259 end if;
3261 if Ekind (Old_S) /= E_Operator then
3262 Check_Mode_Conformant (New_S, Old_S, Spec);
3263 end if;
3265 if Original_Subprogram (Old_S) = Rename_Spec then
3266 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3267 end if;
3268 else
3269 Check_Subtype_Conformant (New_S, Old_S, Spec);
3270 end if;
3272 Check_Frozen_Renaming (N, Rename_Spec);
3274 -- Check explicitly that renamed entity is not intrinsic, because
3275 -- in a generic the renamed body is not built. In this case,
3276 -- the renaming_as_body is a completion.
3278 if Inside_A_Generic then
3279 if Is_Frozen (Rename_Spec)
3280 and then Is_Intrinsic_Subprogram (Old_S)
3281 then
3282 Error_Msg_N
3283 ("subprogram in renaming_as_body cannot be intrinsic",
3284 Name (N));
3285 end if;
3287 Set_Has_Completion (Rename_Spec);
3288 end if;
3290 elsif Ekind (Old_S) /= E_Operator then
3292 -- If this a defaulted subprogram for a class-wide actual there is
3293 -- no check for mode conformance, given that the signatures don't
3294 -- match (the source mentions T but the actual mentions T'Class).
3296 if CW_Actual then
3297 null;
3298 elsif not Is_Actual or else No (Enclosing_Instance) then
3299 Check_Mode_Conformant (New_S, Old_S);
3300 end if;
3302 if Is_Actual and then Error_Posted (New_S) then
3303 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3304 end if;
3305 end if;
3307 if No (Rename_Spec) then
3309 -- The parameter profile of the new entity is that of the renamed
3310 -- entity: the subtypes given in the specification are irrelevant.
3312 Inherit_Renamed_Profile (New_S, Old_S);
3314 -- A call to the subprogram is transformed into a call to the
3315 -- renamed entity. This is transitive if the renamed entity is
3316 -- itself a renaming.
3318 if Present (Alias (Old_S)) then
3319 Set_Alias (New_S, Alias (Old_S));
3320 else
3321 Set_Alias (New_S, Old_S);
3322 end if;
3324 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3325 -- renaming as body, since the entity in this case is not an
3326 -- intrinsic (it calls an intrinsic, but we have a real body for
3327 -- this call, and it is in this body that the required intrinsic
3328 -- processing will take place).
3330 -- Also, if this is a renaming of inequality, the renamed operator
3331 -- is intrinsic, but what matters is the corresponding equality
3332 -- operator, which may be user-defined.
3334 Set_Is_Intrinsic_Subprogram
3335 (New_S,
3336 Is_Intrinsic_Subprogram (Old_S)
3337 and then
3338 (Chars (Old_S) /= Name_Op_Ne
3339 or else Ekind (Old_S) = E_Operator
3340 or else Is_Intrinsic_Subprogram
3341 (Corresponding_Equality (Old_S))));
3343 if Ekind (Alias (New_S)) = E_Operator then
3344 Set_Has_Delayed_Freeze (New_S, False);
3345 end if;
3347 -- If the renaming corresponds to an association for an abstract
3348 -- formal subprogram, then various attributes must be set to
3349 -- indicate that the renaming is an abstract dispatching operation
3350 -- with a controlling type.
3352 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3354 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3355 -- see it as corresponding to a generic association for a
3356 -- formal abstract subprogram
3358 Set_Is_Abstract_Subprogram (New_S);
3360 declare
3361 New_S_Ctrl_Type : constant Entity_Id :=
3362 Find_Dispatching_Type (New_S);
3363 Old_S_Ctrl_Type : constant Entity_Id :=
3364 Find_Dispatching_Type (Old_S);
3366 begin
3368 -- The actual must match the (instance of the) formal,
3369 -- and must be a controlling type.
3371 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3372 or else No (New_S_Ctrl_Type)
3373 then
3374 Error_Msg_NE
3375 ("actual must be dispatching subprogram for type&",
3376 Nam, New_S_Ctrl_Type);
3378 else
3379 Set_Is_Dispatching_Operation (New_S);
3380 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3382 -- If the actual in the formal subprogram is itself a
3383 -- formal abstract subprogram association, there's no
3384 -- dispatch table component or position to inherit.
3386 if Present (DTC_Entity (Old_S)) then
3387 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3388 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3389 end if;
3390 end if;
3391 end;
3392 end if;
3393 end if;
3395 if Is_Actual then
3396 null;
3398 -- The following is illegal, because F hides whatever other F may
3399 -- be around:
3400 -- function F (...) renames F;
3402 elsif Old_S = New_S
3403 or else (Nkind (Nam) /= N_Expanded_Name
3404 and then Chars (Old_S) = Chars (New_S))
3405 then
3406 Error_Msg_N ("subprogram cannot rename itself", N);
3408 -- This is illegal even if we use a selector:
3409 -- function F (...) renames Pkg.F;
3410 -- because F is still hidden.
3412 elsif Nkind (Nam) = N_Expanded_Name
3413 and then Entity (Prefix (Nam)) = Current_Scope
3414 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3415 then
3416 -- This is an error, but we overlook the error and accept the
3417 -- renaming if the special Overriding_Renamings mode is in effect.
3419 if not Overriding_Renamings then
3420 Error_Msg_NE
3421 ("implicit operation& is not visible (RM 8.3 (15))",
3422 Nam, Old_S);
3423 end if;
3424 end if;
3426 Set_Convention (New_S, Convention (Old_S));
3428 if Is_Abstract_Subprogram (Old_S) then
3429 if Present (Rename_Spec) then
3430 Error_Msg_N
3431 ("a renaming-as-body cannot rename an abstract subprogram",
3433 Set_Has_Completion (Rename_Spec);
3434 else
3435 Set_Is_Abstract_Subprogram (New_S);
3436 end if;
3437 end if;
3439 Check_Library_Unit_Renaming (N, Old_S);
3441 -- Pathological case: procedure renames entry in the scope of its
3442 -- task. Entry is given by simple name, but body must be built for
3443 -- procedure. Of course if called it will deadlock.
3445 if Ekind (Old_S) = E_Entry then
3446 Set_Has_Completion (New_S, False);
3447 Set_Alias (New_S, Empty);
3448 end if;
3450 -- Do not freeze the renaming nor the renamed entity when the context
3451 -- is an enclosing generic. Freezing is an expansion activity, and in
3452 -- addition the renamed entity may depend on the generic formals of
3453 -- the enclosing generic.
3455 if Is_Actual and not Inside_A_Generic then
3456 Freeze_Before (N, Old_S);
3457 Freeze_Actual_Profile;
3458 Set_Has_Delayed_Freeze (New_S, False);
3459 Freeze_Before (N, New_S);
3461 -- An abstract subprogram is only allowed as an actual in the case
3462 -- where the formal subprogram is also abstract.
3464 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3465 and then Is_Abstract_Subprogram (Old_S)
3466 and then not Is_Abstract_Subprogram (Formal_Spec)
3467 then
3468 Error_Msg_N
3469 ("abstract subprogram not allowed as generic actual", Nam);
3470 end if;
3471 end if;
3473 else
3474 -- A common error is to assume that implicit operators for types are
3475 -- defined in Standard, or in the scope of a subtype. In those cases
3476 -- where the renamed entity is given with an expanded name, it is
3477 -- worth mentioning that operators for the type are not declared in
3478 -- the scope given by the prefix.
3480 if Nkind (Nam) = N_Expanded_Name
3481 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3482 and then Scope (Entity (Nam)) = Standard_Standard
3483 then
3484 declare
3485 T : constant Entity_Id :=
3486 Base_Type (Etype (First_Formal (New_S)));
3487 begin
3488 Error_Msg_Node_2 := Prefix (Nam);
3489 Error_Msg_NE
3490 ("operator for type& is not declared in&", Prefix (Nam), T);
3491 end;
3493 else
3494 Error_Msg_NE
3495 ("no visible subprogram matches the specification for&",
3496 Spec, New_S);
3497 end if;
3499 if Present (Candidate_Renaming) then
3500 declare
3501 F1 : Entity_Id;
3502 F2 : Entity_Id;
3503 T1 : Entity_Id;
3505 begin
3506 F1 := First_Formal (Candidate_Renaming);
3507 F2 := First_Formal (New_S);
3508 T1 := First_Subtype (Etype (F1));
3509 while Present (F1) and then Present (F2) loop
3510 Next_Formal (F1);
3511 Next_Formal (F2);
3512 end loop;
3514 if Present (F1) and then Present (Default_Value (F1)) then
3515 if Present (Next_Formal (F1)) then
3516 Error_Msg_NE
3517 ("\missing specification for & and other formals with "
3518 & "defaults", Spec, F1);
3519 else
3520 Error_Msg_NE ("\missing specification for &", Spec, F1);
3521 end if;
3522 end if;
3524 if Nkind (Nam) = N_Operator_Symbol
3525 and then From_Default (N)
3526 then
3527 Error_Msg_Node_2 := T1;
3528 Error_Msg_NE
3529 ("default & on & is not directly visible", Nam, Nam);
3530 end if;
3531 end;
3532 end if;
3533 end if;
3535 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3536 -- controlling access parameters are known non-null for the renamed
3537 -- subprogram. Test also applies to a subprogram instantiation that
3538 -- is dispatching. Test is skipped if some previous error was detected
3539 -- that set Old_S to Any_Id.
3541 if Ada_Version >= Ada_2005
3542 and then Old_S /= Any_Id
3543 and then not Is_Dispatching_Operation (Old_S)
3544 and then Is_Dispatching_Operation (New_S)
3545 then
3546 declare
3547 Old_F : Entity_Id;
3548 New_F : Entity_Id;
3550 begin
3551 Old_F := First_Formal (Old_S);
3552 New_F := First_Formal (New_S);
3553 while Present (Old_F) loop
3554 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3555 and then Is_Controlling_Formal (New_F)
3556 and then not Can_Never_Be_Null (Old_F)
3557 then
3558 Error_Msg_N ("access parameter is controlling,", New_F);
3559 Error_Msg_NE
3560 ("\corresponding parameter of& must be explicitly null "
3561 & "excluding", New_F, Old_S);
3562 end if;
3564 Next_Formal (Old_F);
3565 Next_Formal (New_F);
3566 end loop;
3567 end;
3568 end if;
3570 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3571 -- is to warn if an operator is being renamed as a different operator.
3572 -- If the operator is predefined, examine the kind of the entity, not
3573 -- the abbreviated declaration in Standard.
3575 if Comes_From_Source (N)
3576 and then Present (Old_S)
3577 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3578 or else Ekind (Old_S) = E_Operator)
3579 and then Nkind (New_S) = N_Defining_Operator_Symbol
3580 and then Chars (Old_S) /= Chars (New_S)
3581 then
3582 Error_Msg_NE
3583 ("& is being renamed as a different operator??", N, Old_S);
3584 end if;
3586 -- Check for renaming of obsolescent subprogram
3588 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3590 -- Another warning or some utility: if the new subprogram as the same
3591 -- name as the old one, the old one is not hidden by an outer homograph,
3592 -- the new one is not a public symbol, and the old one is otherwise
3593 -- directly visible, the renaming is superfluous.
3595 if Chars (Old_S) = Chars (New_S)
3596 and then Comes_From_Source (N)
3597 and then Scope (Old_S) /= Standard_Standard
3598 and then Warn_On_Redundant_Constructs
3599 and then (Is_Immediately_Visible (Old_S)
3600 or else Is_Potentially_Use_Visible (Old_S))
3601 and then Is_Overloadable (Current_Scope)
3602 and then Chars (Current_Scope) /= Chars (Old_S)
3603 then
3604 Error_Msg_N
3605 ("redundant renaming, entity is directly visible?r?", Name (N));
3606 end if;
3608 -- Implementation-defined aspect specifications can appear in a renaming
3609 -- declaration, but not language-defined ones. The call to procedure
3610 -- Analyze_Aspect_Specifications will take care of this error check.
3612 if Has_Aspects (N) then
3613 Analyze_Aspect_Specifications (N, New_S);
3614 end if;
3616 Ada_Version := Save_AV;
3617 Ada_Version_Pragma := Save_AVP;
3618 Ada_Version_Explicit := Save_AV_Exp;
3620 -- In GNATprove mode, the renamings of actual subprograms are replaced
3621 -- with wrapper functions that make it easier to propagate axioms to the
3622 -- points of call within an instance. Wrappers are generated if formal
3623 -- subprogram is subject to axiomatization.
3625 -- The types in the wrapper profiles are obtained from (instances of)
3626 -- the types of the formal subprogram.
3628 if Is_Actual
3629 and then GNATprove_Mode
3630 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3631 and then not Inside_A_Generic
3632 then
3633 if Ekind (Old_S) = E_Function then
3634 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3635 Analyze (N);
3637 elsif Ekind (Old_S) = E_Operator then
3638 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3639 Analyze (N);
3640 end if;
3641 end if;
3643 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3644 -- and mark any use_package_clauses that affect the visibility of the
3645 -- implicit generic actual.
3647 if Is_Generic_Actual_Subprogram (New_S)
3648 and then (Is_Intrinsic_Subprogram (New_S) or else From_Default (N))
3649 then
3650 Mark_Use_Clauses (New_S);
3652 -- Handle overloaded subprograms
3654 if Present (Alias (New_S)) then
3655 Mark_Use_Clauses (Alias (New_S));
3656 end if;
3657 end if;
3658 end Analyze_Subprogram_Renaming;
3660 -------------------------
3661 -- Analyze_Use_Package --
3662 -------------------------
3664 -- Resolve the package names in the use clause, and make all the visible
3665 -- entities defined in the package potentially use-visible. If the package
3666 -- is already in use from a previous use clause, its visible entities are
3667 -- already use-visible. In that case, mark the occurrence as a redundant
3668 -- use. If the package is an open scope, i.e. if the use clause occurs
3669 -- within the package itself, ignore it.
3671 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3672 procedure Analyze_Package_Name (Clause : Node_Id);
3673 -- Perform analysis on a package name from a use_package_clause
3675 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3676 -- Similar to Analyze_Package_Name but iterates over all the names
3677 -- in a use clause.
3679 --------------------------
3680 -- Analyze_Package_Name --
3681 --------------------------
3683 procedure Analyze_Package_Name (Clause : Node_Id) is
3684 Pack : constant Node_Id := Name (Clause);
3685 Pref : Node_Id;
3687 begin
3688 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3689 Analyze (Pack);
3691 -- Verify that the package standard is not directly named in a
3692 -- use_package_clause.
3694 if Nkind (Parent (Clause)) = N_Compilation_Unit
3695 and then Nkind (Pack) = N_Expanded_Name
3696 then
3697 Pref := Prefix (Pack);
3699 while Nkind (Pref) = N_Expanded_Name loop
3700 Pref := Prefix (Pref);
3701 end loop;
3703 if Entity (Pref) = Standard_Standard then
3704 Error_Msg_N
3705 ("predefined package Standard cannot appear in a context "
3706 & "clause", Pref);
3707 end if;
3708 end if;
3709 end Analyze_Package_Name;
3711 -------------------------------
3712 -- Analyze_Package_Name_List --
3713 -------------------------------
3715 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3716 Curr : Node_Id;
3718 begin
3719 -- Due to the way source use clauses are split during parsing we are
3720 -- forced to simply iterate through all entities in scope until the
3721 -- clause representing the last name in the list is found.
3723 Curr := Head_Clause;
3724 while Present (Curr) loop
3725 Analyze_Package_Name (Curr);
3727 -- Stop iterating over the names in the use clause when we are at
3728 -- the last one.
3730 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3731 Next (Curr);
3732 end loop;
3733 end Analyze_Package_Name_List;
3735 -- Local variables
3737 Ghost_Id : Entity_Id := Empty;
3738 Living_Id : Entity_Id := Empty;
3739 Pack : Entity_Id;
3741 -- Start of processing for Analyze_Use_Package
3743 begin
3744 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3746 Set_Hidden_By_Use_Clause (N, No_Elist);
3748 -- Use clause not allowed in a spec of a predefined package declaration
3749 -- except that packages whose file name starts a-n are OK (these are
3750 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3752 if Is_Predefined_Unit (Current_Sem_Unit)
3753 and then Get_Name_String
3754 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3755 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3756 N_Package_Declaration
3757 then
3758 Error_Msg_N ("use clause not allowed in predefined spec", N);
3759 end if;
3761 -- Loop through all package names from the original use clause in
3762 -- order to analyze referenced packages. A use_package_clause with only
3763 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3764 -- More_Ids only starts the chain produced by the parser.
3766 if not More_Ids (N) and then not Prev_Ids (N) then
3767 Analyze_Package_Name (N);
3769 elsif More_Ids (N) and then not Prev_Ids (N) then
3770 Analyze_Package_Name_List (N);
3771 end if;
3773 if not Is_Entity_Name (Name (N)) then
3774 Error_Msg_N ("& is not a package", Name (N));
3776 return;
3777 end if;
3779 if Chain then
3780 Chain_Use_Clause (N);
3781 end if;
3783 Pack := Entity (Name (N));
3785 -- There are many cases where scopes are manipulated during analysis, so
3786 -- check that Pack's current use clause has not already been chained
3787 -- before setting its previous use clause.
3789 if Ekind (Pack) = E_Package
3790 and then Present (Current_Use_Clause (Pack))
3791 and then Current_Use_Clause (Pack) /= N
3792 and then No (Prev_Use_Clause (N))
3793 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3794 then
3795 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3796 end if;
3798 -- Mark all entities as potentially use visible.
3800 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3801 if Ekind (Pack) = E_Generic_Package then
3802 Error_Msg_N -- CODEFIX
3803 ("a generic package is not allowed in a use clause", Name (N));
3805 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3806 then
3807 Error_Msg_N -- CODEFIX
3808 ("a generic subprogram is not allowed in a use clause",
3809 Name (N));
3811 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3812 Error_Msg_N -- CODEFIX
3813 ("a subprogram is not allowed in a use clause", Name (N));
3815 else
3816 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3817 end if;
3819 else
3820 if Nkind (Parent (N)) = N_Compilation_Unit then
3821 Check_In_Previous_With_Clause (N, Name (N));
3822 end if;
3824 Use_One_Package (N, Name (N));
3826 -- Capture the first Ghost package and the first living package
3828 if Is_Entity_Name (Name (N)) then
3829 Pack := Entity (Name (N));
3831 if Is_Ghost_Entity (Pack) then
3832 if No (Ghost_Id) then
3833 Ghost_Id := Pack;
3834 end if;
3836 elsif No (Living_Id) then
3837 Living_Id := Pack;
3838 end if;
3839 end if;
3840 end if;
3841 end Analyze_Use_Package;
3843 ----------------------
3844 -- Analyze_Use_Type --
3845 ----------------------
3847 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3848 E : Entity_Id;
3849 Id : Node_Id;
3851 begin
3852 Set_Hidden_By_Use_Clause (N, No_Elist);
3854 -- Chain clause to list of use clauses in current scope when flagged
3856 if Chain then
3857 Chain_Use_Clause (N);
3858 end if;
3860 -- Obtain the base type of the type denoted within the use_type_clause's
3861 -- subtype mark.
3863 Id := Subtype_Mark (N);
3864 Find_Type (Id);
3865 E := Base_Type (Entity (Id));
3867 -- There are many cases where a use_type_clause may be reanalyzed due to
3868 -- manipulation of the scope stack so we much guard against those cases
3869 -- here, otherwise, we must add the new use_type_clause to the previous
3870 -- use_type_clause chain in order to mark redundant use_type_clauses as
3871 -- used.
3873 if Present (Current_Use_Clause (E))
3874 and then Current_Use_Clause (E) /= N
3875 and then No (Prev_Use_Clause (N))
3876 then
3877 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3878 end if;
3880 -- If the Used_Operations list is already initialized, the clause has
3881 -- been analyzed previously, and it is being reinstalled, for example
3882 -- when the clause appears in a package spec and we are compiling the
3883 -- corresponding package body. In that case, make the entities on the
3884 -- existing list use_visible, and mark the corresponding types In_Use.
3886 if Present (Used_Operations (N)) then
3887 declare
3888 Elmt : Elmt_Id;
3890 begin
3891 Use_One_Type (Subtype_Mark (N), Installed => True);
3893 Elmt := First_Elmt (Used_Operations (N));
3894 while Present (Elmt) loop
3895 Set_Is_Potentially_Use_Visible (Node (Elmt));
3896 Next_Elmt (Elmt);
3897 end loop;
3898 end;
3900 return;
3901 end if;
3903 -- Otherwise, create new list and attach to it the operations that are
3904 -- made use-visible by the clause.
3906 Set_Used_Operations (N, New_Elmt_List);
3907 E := Entity (Id);
3909 if E /= Any_Type then
3910 Use_One_Type (Id);
3912 if Nkind (Parent (N)) = N_Compilation_Unit then
3913 if Nkind (Id) = N_Identifier then
3914 Error_Msg_N ("type is not directly visible", Id);
3916 elsif Is_Child_Unit (Scope (E))
3917 and then Scope (E) /= System_Aux_Id
3918 then
3919 Check_In_Previous_With_Clause (N, Prefix (Id));
3920 end if;
3921 end if;
3923 else
3924 -- If the use_type_clause appears in a compilation unit context,
3925 -- check whether it comes from a unit that may appear in a
3926 -- limited_with_clause, for a better error message.
3928 if Nkind (Parent (N)) = N_Compilation_Unit
3929 and then Nkind (Id) /= N_Identifier
3930 then
3931 declare
3932 Item : Node_Id;
3933 Pref : Node_Id;
3935 function Mentioned (Nam : Node_Id) return Boolean;
3936 -- Check whether the prefix of expanded name for the type
3937 -- appears in the prefix of some limited_with_clause.
3939 ---------------
3940 -- Mentioned --
3941 ---------------
3943 function Mentioned (Nam : Node_Id) return Boolean is
3944 begin
3945 return Nkind (Name (Item)) = N_Selected_Component
3946 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3947 end Mentioned;
3949 begin
3950 Pref := Prefix (Id);
3951 Item := First (Context_Items (Parent (N)));
3952 while Present (Item) and then Item /= N loop
3953 if Nkind (Item) = N_With_Clause
3954 and then Limited_Present (Item)
3955 and then Mentioned (Pref)
3956 then
3957 Change_Error_Text
3958 (Get_Msg_Id, "premature usage of incomplete type");
3959 end if;
3961 Next (Item);
3962 end loop;
3963 end;
3964 end if;
3965 end if;
3967 Mark_Ghost_Clause (N);
3968 end Analyze_Use_Type;
3970 ------------------------
3971 -- Attribute_Renaming --
3972 ------------------------
3974 procedure Attribute_Renaming (N : Node_Id) is
3975 Loc : constant Source_Ptr := Sloc (N);
3976 Nam : constant Node_Id := Name (N);
3977 Spec : constant Node_Id := Specification (N);
3978 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3979 Aname : constant Name_Id := Attribute_Name (Nam);
3981 Form_Num : Nat := 0;
3982 Expr_List : List_Id := No_List;
3984 Attr_Node : Node_Id;
3985 Body_Node : Node_Id;
3986 Param_Spec : Node_Id;
3988 begin
3989 Generate_Definition (New_S);
3991 -- This procedure is called in the context of subprogram renaming, and
3992 -- thus the attribute must be one that is a subprogram. All of those
3993 -- have at least one formal parameter, with the exceptions of the GNAT
3994 -- attribute 'Img, which GNAT treats as renameable.
3996 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3997 if Aname /= Name_Img then
3998 Error_Msg_N
3999 ("subprogram renaming an attribute must have formals", N);
4000 return;
4001 end if;
4003 else
4004 Param_Spec := First (Parameter_Specifications (Spec));
4005 while Present (Param_Spec) loop
4006 Form_Num := Form_Num + 1;
4008 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4009 Find_Type (Parameter_Type (Param_Spec));
4011 -- The profile of the new entity denotes the base type (s) of
4012 -- the types given in the specification. For access parameters
4013 -- there are no subtypes involved.
4015 Rewrite (Parameter_Type (Param_Spec),
4016 New_Occurrence_Of
4017 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4018 end if;
4020 if No (Expr_List) then
4021 Expr_List := New_List;
4022 end if;
4024 Append_To (Expr_List,
4025 Make_Identifier (Loc,
4026 Chars => Chars (Defining_Identifier (Param_Spec))));
4028 -- The expressions in the attribute reference are not freeze
4029 -- points. Neither is the attribute as a whole, see below.
4031 Set_Must_Not_Freeze (Last (Expr_List));
4032 Next (Param_Spec);
4033 end loop;
4034 end if;
4036 -- Immediate error if too many formals. Other mismatches in number or
4037 -- types of parameters are detected when we analyze the body of the
4038 -- subprogram that we construct.
4040 if Form_Num > 2 then
4041 Error_Msg_N ("too many formals for attribute", N);
4043 -- Error if the attribute reference has expressions that look like
4044 -- formal parameters.
4046 elsif Present (Expressions (Nam)) then
4047 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4049 elsif
4050 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4051 Name_Pos, Name_Round, Name_Scaling,
4052 Name_Val)
4053 then
4054 if Nkind (N) = N_Subprogram_Renaming_Declaration
4055 and then Present (Corresponding_Formal_Spec (N))
4056 then
4057 Error_Msg_N
4058 ("generic actual cannot be attribute involving universal type",
4059 Nam);
4060 else
4061 Error_Msg_N
4062 ("attribute involving a universal type cannot be renamed",
4063 Nam);
4064 end if;
4065 end if;
4067 -- Rewrite attribute node to have a list of expressions corresponding to
4068 -- the subprogram formals. A renaming declaration is not a freeze point,
4069 -- and the analysis of the attribute reference should not freeze the
4070 -- type of the prefix. We use the original node in the renaming so that
4071 -- its source location is preserved, and checks on stream attributes are
4072 -- properly applied.
4074 Attr_Node := Relocate_Node (Nam);
4075 Set_Expressions (Attr_Node, Expr_List);
4077 Set_Must_Not_Freeze (Attr_Node);
4078 Set_Must_Not_Freeze (Prefix (Nam));
4080 -- Case of renaming a function
4082 if Nkind (Spec) = N_Function_Specification then
4083 if Is_Procedure_Attribute_Name (Aname) then
4084 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4085 return;
4086 end if;
4088 Find_Type (Result_Definition (Spec));
4089 Rewrite (Result_Definition (Spec),
4090 New_Occurrence_Of
4091 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4093 Body_Node :=
4094 Make_Subprogram_Body (Loc,
4095 Specification => Spec,
4096 Declarations => New_List,
4097 Handled_Statement_Sequence =>
4098 Make_Handled_Sequence_Of_Statements (Loc,
4099 Statements => New_List (
4100 Make_Simple_Return_Statement (Loc,
4101 Expression => Attr_Node))));
4103 -- Case of renaming a procedure
4105 else
4106 if not Is_Procedure_Attribute_Name (Aname) then
4107 Error_Msg_N ("attribute can only be renamed as function", Nam);
4108 return;
4109 end if;
4111 Body_Node :=
4112 Make_Subprogram_Body (Loc,
4113 Specification => Spec,
4114 Declarations => New_List,
4115 Handled_Statement_Sequence =>
4116 Make_Handled_Sequence_Of_Statements (Loc,
4117 Statements => New_List (Attr_Node)));
4118 end if;
4120 -- Signal the ABE mechanism that the generated subprogram body has not
4121 -- ABE ramifications.
4123 Set_Was_Attribute_Reference (Body_Node);
4125 -- In case of tagged types we add the body of the generated function to
4126 -- the freezing actions of the type (because in the general case such
4127 -- type is still not frozen). We exclude from this processing generic
4128 -- formal subprograms found in instantiations.
4130 -- We must exclude restricted run-time libraries because
4131 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4132 -- available in those platforms. Note that we cannot use the function
4133 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4134 -- the ZFP run-time library is not defined as a profile, and we do not
4135 -- want to deal with AST_Handler in ZFP mode.
4137 if not Configurable_Run_Time_Mode
4138 and then not Present (Corresponding_Formal_Spec (N))
4139 and then Etype (Nam) /= RTE (RE_AST_Handler)
4140 then
4141 declare
4142 P : constant Node_Id := Prefix (Nam);
4144 begin
4145 -- The prefix of 'Img is an object that is evaluated for each call
4146 -- of the function that renames it.
4148 if Aname = Name_Img then
4149 Preanalyze_And_Resolve (P);
4151 -- For all other attribute renamings, the prefix is a subtype
4153 else
4154 Find_Type (P);
4155 end if;
4157 -- If the target type is not yet frozen, add the body to the
4158 -- actions to be elaborated at freeze time.
4160 if Is_Tagged_Type (Etype (P))
4161 and then In_Open_Scopes (Scope (Etype (P)))
4162 then
4163 Ensure_Freeze_Node (Etype (P));
4164 Append_Freeze_Action (Etype (P), Body_Node);
4165 else
4166 Rewrite (N, Body_Node);
4167 Analyze (N);
4168 Set_Etype (New_S, Base_Type (Etype (New_S)));
4169 end if;
4170 end;
4172 -- Generic formal subprograms or AST_Handler renaming
4174 else
4175 Rewrite (N, Body_Node);
4176 Analyze (N);
4177 Set_Etype (New_S, Base_Type (Etype (New_S)));
4178 end if;
4180 if Is_Compilation_Unit (New_S) then
4181 Error_Msg_N
4182 ("a library unit can only rename another library unit", N);
4183 end if;
4184 end Attribute_Renaming;
4186 ----------------------
4187 -- Chain_Use_Clause --
4188 ----------------------
4190 procedure Chain_Use_Clause (N : Node_Id) is
4191 Level : Int := Scope_Stack.Last;
4192 Pack : Entity_Id;
4194 begin
4195 -- Common case
4197 if not Is_Compilation_Unit (Current_Scope)
4198 or else not Is_Child_Unit (Current_Scope)
4199 then
4200 null;
4202 -- Common case for compilation unit
4204 elsif Defining_Entity (N => Parent (N),
4205 Empty_On_Errors => True) = Current_Scope
4206 then
4207 null;
4209 else
4210 -- If declaration appears in some other scope, it must be in some
4211 -- parent unit when compiling a child.
4213 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4215 if not In_Open_Scopes (Pack) then
4216 null;
4218 -- If the use clause appears in an ancestor and we are in the
4219 -- private part of the immediate parent, the use clauses are
4220 -- already installed.
4222 elsif Pack /= Scope (Current_Scope)
4223 and then In_Private_Part (Scope (Current_Scope))
4224 then
4225 null;
4227 else
4228 -- Find entry for parent unit in scope stack
4230 while Scope_Stack.Table (Level).Entity /= Pack loop
4231 Level := Level - 1;
4232 end loop;
4233 end if;
4234 end if;
4236 Set_Next_Use_Clause (N,
4237 Scope_Stack.Table (Level).First_Use_Clause);
4238 Scope_Stack.Table (Level).First_Use_Clause := N;
4239 end Chain_Use_Clause;
4241 ---------------------------
4242 -- Check_Frozen_Renaming --
4243 ---------------------------
4245 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4246 B_Node : Node_Id;
4247 Old_S : Entity_Id;
4249 begin
4250 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4251 B_Node :=
4252 Build_Renamed_Body
4253 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4255 if Is_Entity_Name (Name (N)) then
4256 Old_S := Entity (Name (N));
4258 if not Is_Frozen (Old_S)
4259 and then Operating_Mode /= Check_Semantics
4260 then
4261 Append_Freeze_Action (Old_S, B_Node);
4262 else
4263 Insert_After (N, B_Node);
4264 Analyze (B_Node);
4265 end if;
4267 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4268 Error_Msg_N
4269 ("subprogram used in renaming_as_body cannot be intrinsic",
4270 Name (N));
4271 end if;
4273 else
4274 Insert_After (N, B_Node);
4275 Analyze (B_Node);
4276 end if;
4277 end if;
4278 end Check_Frozen_Renaming;
4280 -------------------------------
4281 -- Set_Entity_Or_Discriminal --
4282 -------------------------------
4284 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4285 P : Node_Id;
4287 begin
4288 -- If the entity is not a discriminant, or else expansion is disabled,
4289 -- simply set the entity.
4291 if not In_Spec_Expression
4292 or else Ekind (E) /= E_Discriminant
4293 or else Inside_A_Generic
4294 then
4295 Set_Entity_With_Checks (N, E);
4297 -- The replacement of a discriminant by the corresponding discriminal
4298 -- is not done for a task discriminant that appears in a default
4299 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4300 -- for details on their handling.
4302 elsif Is_Concurrent_Type (Scope (E)) then
4303 P := Parent (N);
4304 while Present (P)
4305 and then not Nkind_In (P, N_Parameter_Specification,
4306 N_Component_Declaration)
4307 loop
4308 P := Parent (P);
4309 end loop;
4311 if Present (P)
4312 and then Nkind (P) = N_Parameter_Specification
4313 then
4314 null;
4316 else
4317 Set_Entity (N, Discriminal (E));
4318 end if;
4320 -- Otherwise, this is a discriminant in a context in which
4321 -- it is a reference to the corresponding parameter of the
4322 -- init proc for the enclosing type.
4324 else
4325 Set_Entity (N, Discriminal (E));
4326 end if;
4327 end Set_Entity_Or_Discriminal;
4329 -----------------------------------
4330 -- Check_In_Previous_With_Clause --
4331 -----------------------------------
4333 procedure Check_In_Previous_With_Clause
4334 (N : Node_Id;
4335 Nam : Entity_Id)
4337 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4338 Item : Node_Id;
4339 Par : Node_Id;
4341 begin
4342 Item := First (Context_Items (Parent (N)));
4343 while Present (Item) and then Item /= N loop
4344 if Nkind (Item) = N_With_Clause
4346 -- Protect the frontend against previous critical errors
4348 and then Nkind (Name (Item)) /= N_Selected_Component
4349 and then Entity (Name (Item)) = Pack
4350 then
4351 Par := Nam;
4353 -- Find root library unit in with_clause
4355 while Nkind (Par) = N_Expanded_Name loop
4356 Par := Prefix (Par);
4357 end loop;
4359 if Is_Child_Unit (Entity (Original_Node (Par))) then
4360 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4361 else
4362 return;
4363 end if;
4364 end if;
4366 Next (Item);
4367 end loop;
4369 -- On exit, package is not mentioned in a previous with_clause.
4370 -- Check if its prefix is.
4372 if Nkind (Nam) = N_Expanded_Name then
4373 Check_In_Previous_With_Clause (N, Prefix (Nam));
4375 elsif Pack /= Any_Id then
4376 Error_Msg_NE ("& is not visible", Nam, Pack);
4377 end if;
4378 end Check_In_Previous_With_Clause;
4380 ---------------------------------
4381 -- Check_Library_Unit_Renaming --
4382 ---------------------------------
4384 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4385 New_E : Entity_Id;
4387 begin
4388 if Nkind (Parent (N)) /= N_Compilation_Unit then
4389 return;
4391 -- Check for library unit. Note that we used to check for the scope
4392 -- being Standard here, but that was wrong for Standard itself.
4394 elsif not Is_Compilation_Unit (Old_E)
4395 and then not Is_Child_Unit (Old_E)
4396 then
4397 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4399 -- Entities defined in Standard (operators and boolean literals) cannot
4400 -- be renamed as library units.
4402 elsif Scope (Old_E) = Standard_Standard
4403 and then Sloc (Old_E) = Standard_Location
4404 then
4405 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4407 elsif Present (Parent_Spec (N))
4408 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4409 and then not Is_Child_Unit (Old_E)
4410 then
4411 Error_Msg_N
4412 ("renamed unit must be a child unit of generic parent", Name (N));
4414 elsif Nkind (N) in N_Generic_Renaming_Declaration
4415 and then Nkind (Name (N)) = N_Expanded_Name
4416 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4417 and then Is_Generic_Unit (Old_E)
4418 then
4419 Error_Msg_N
4420 ("renamed generic unit must be a library unit", Name (N));
4422 elsif Is_Package_Or_Generic_Package (Old_E) then
4424 -- Inherit categorization flags
4426 New_E := Defining_Entity (N);
4427 Set_Is_Pure (New_E, Is_Pure (Old_E));
4428 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4429 Set_Is_Remote_Call_Interface (New_E,
4430 Is_Remote_Call_Interface (Old_E));
4431 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4432 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4433 end if;
4434 end Check_Library_Unit_Renaming;
4436 ------------------------
4437 -- Enclosing_Instance --
4438 ------------------------
4440 function Enclosing_Instance return Entity_Id is
4441 S : Entity_Id;
4443 begin
4444 if not Is_Generic_Instance (Current_Scope) then
4445 return Empty;
4446 end if;
4448 S := Scope (Current_Scope);
4449 while S /= Standard_Standard loop
4450 if Is_Generic_Instance (S) then
4451 return S;
4452 end if;
4454 S := Scope (S);
4455 end loop;
4457 return Empty;
4458 end Enclosing_Instance;
4460 ---------------
4461 -- End_Scope --
4462 ---------------
4464 procedure End_Scope is
4465 Id : Entity_Id;
4466 Prev : Entity_Id;
4467 Outer : Entity_Id;
4469 begin
4470 Id := First_Entity (Current_Scope);
4471 while Present (Id) loop
4472 -- An entity in the current scope is not necessarily the first one
4473 -- on its homonym chain. Find its predecessor if any,
4474 -- If it is an internal entity, it will not be in the visibility
4475 -- chain altogether, and there is nothing to unchain.
4477 if Id /= Current_Entity (Id) then
4478 Prev := Current_Entity (Id);
4479 while Present (Prev)
4480 and then Present (Homonym (Prev))
4481 and then Homonym (Prev) /= Id
4482 loop
4483 Prev := Homonym (Prev);
4484 end loop;
4486 -- Skip to end of loop if Id is not in the visibility chain
4488 if No (Prev) or else Homonym (Prev) /= Id then
4489 goto Next_Ent;
4490 end if;
4492 else
4493 Prev := Empty;
4494 end if;
4496 Set_Is_Immediately_Visible (Id, False);
4498 Outer := Homonym (Id);
4499 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4500 Outer := Homonym (Outer);
4501 end loop;
4503 -- Reset homonym link of other entities, but do not modify link
4504 -- between entities in current scope, so that the back-end can have
4505 -- a proper count of local overloadings.
4507 if No (Prev) then
4508 Set_Name_Entity_Id (Chars (Id), Outer);
4510 elsif Scope (Prev) /= Scope (Id) then
4511 Set_Homonym (Prev, Outer);
4512 end if;
4514 <<Next_Ent>>
4515 Next_Entity (Id);
4516 end loop;
4518 -- If the scope generated freeze actions, place them before the
4519 -- current declaration and analyze them. Type declarations and
4520 -- the bodies of initialization procedures can generate such nodes.
4521 -- We follow the parent chain until we reach a list node, which is
4522 -- the enclosing list of declarations. If the list appears within
4523 -- a protected definition, move freeze nodes outside the protected
4524 -- type altogether.
4526 if Present
4527 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4528 then
4529 declare
4530 Decl : Node_Id;
4531 L : constant List_Id := Scope_Stack.Table
4532 (Scope_Stack.Last).Pending_Freeze_Actions;
4534 begin
4535 if Is_Itype (Current_Scope) then
4536 Decl := Associated_Node_For_Itype (Current_Scope);
4537 else
4538 Decl := Parent (Current_Scope);
4539 end if;
4541 Pop_Scope;
4543 while not (Is_List_Member (Decl))
4544 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4545 N_Task_Definition)
4546 loop
4547 Decl := Parent (Decl);
4548 end loop;
4550 Insert_List_Before_And_Analyze (Decl, L);
4551 end;
4553 else
4554 Pop_Scope;
4555 end if;
4556 end End_Scope;
4558 ---------------------
4559 -- End_Use_Clauses --
4560 ---------------------
4562 procedure End_Use_Clauses (Clause : Node_Id) is
4563 U : Node_Id;
4565 begin
4566 -- Remove use_type_clauses first, because they affect the visibility of
4567 -- operators in subsequent used packages.
4569 U := Clause;
4570 while Present (U) loop
4571 if Nkind (U) = N_Use_Type_Clause then
4572 End_Use_Type (U);
4573 end if;
4575 Next_Use_Clause (U);
4576 end loop;
4578 U := Clause;
4579 while Present (U) loop
4580 if Nkind (U) = N_Use_Package_Clause then
4581 End_Use_Package (U);
4582 end if;
4584 Next_Use_Clause (U);
4585 end loop;
4586 end End_Use_Clauses;
4588 ---------------------
4589 -- End_Use_Package --
4590 ---------------------
4592 procedure End_Use_Package (N : Node_Id) is
4593 Pack : Entity_Id;
4594 Pack_Name : Node_Id;
4595 Id : Entity_Id;
4596 Elmt : Elmt_Id;
4598 function Is_Primitive_Operator_In_Use
4599 (Op : Entity_Id;
4600 F : Entity_Id) return Boolean;
4601 -- Check whether Op is a primitive operator of a use-visible type
4603 ----------------------------------
4604 -- Is_Primitive_Operator_In_Use --
4605 ----------------------------------
4607 function Is_Primitive_Operator_In_Use
4608 (Op : Entity_Id;
4609 F : Entity_Id) return Boolean
4611 T : constant Entity_Id := Base_Type (Etype (F));
4612 begin
4613 return In_Use (T) and then Scope (T) = Scope (Op);
4614 end Is_Primitive_Operator_In_Use;
4616 -- Start of processing for End_Use_Package
4618 begin
4619 Pack_Name := Name (N);
4621 -- Test that Pack_Name actually denotes a package before processing
4623 if Is_Entity_Name (Pack_Name)
4624 and then Ekind (Entity (Pack_Name)) = E_Package
4625 then
4626 Pack := Entity (Pack_Name);
4628 if In_Open_Scopes (Pack) then
4629 null;
4631 elsif not Redundant_Use (Pack_Name) then
4632 Set_In_Use (Pack, False);
4633 Set_Current_Use_Clause (Pack, Empty);
4635 Id := First_Entity (Pack);
4636 while Present (Id) loop
4638 -- Preserve use-visibility of operators that are primitive
4639 -- operators of a type that is use-visible through an active
4640 -- use_type_clause.
4642 if Nkind (Id) = N_Defining_Operator_Symbol
4643 and then
4644 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4645 or else
4646 (Present (Next_Formal (First_Formal (Id)))
4647 and then
4648 Is_Primitive_Operator_In_Use
4649 (Id, Next_Formal (First_Formal (Id)))))
4650 then
4651 null;
4652 else
4653 Set_Is_Potentially_Use_Visible (Id, False);
4654 end if;
4656 if Is_Private_Type (Id)
4657 and then Present (Full_View (Id))
4658 then
4659 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4660 end if;
4662 Next_Entity (Id);
4663 end loop;
4665 if Present (Renamed_Object (Pack)) then
4666 Set_In_Use (Renamed_Object (Pack), False);
4667 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4668 end if;
4670 if Chars (Pack) = Name_System
4671 and then Scope (Pack) = Standard_Standard
4672 and then Present_System_Aux
4673 then
4674 Id := First_Entity (System_Aux_Id);
4675 while Present (Id) loop
4676 Set_Is_Potentially_Use_Visible (Id, False);
4678 if Is_Private_Type (Id)
4679 and then Present (Full_View (Id))
4680 then
4681 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4682 end if;
4684 Next_Entity (Id);
4685 end loop;
4687 Set_In_Use (System_Aux_Id, False);
4688 end if;
4689 else
4690 Set_Redundant_Use (Pack_Name, False);
4691 end if;
4692 end if;
4694 if Present (Hidden_By_Use_Clause (N)) then
4695 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4696 while Present (Elmt) loop
4697 declare
4698 E : constant Entity_Id := Node (Elmt);
4700 begin
4701 -- Reset either Use_Visibility or Direct_Visibility, depending
4702 -- on how the entity was hidden by the use clause.
4704 if In_Use (Scope (E))
4705 and then Used_As_Generic_Actual (Scope (E))
4706 then
4707 Set_Is_Potentially_Use_Visible (Node (Elmt));
4708 else
4709 Set_Is_Immediately_Visible (Node (Elmt));
4710 end if;
4712 Next_Elmt (Elmt);
4713 end;
4714 end loop;
4716 Set_Hidden_By_Use_Clause (N, No_Elist);
4717 end if;
4718 end End_Use_Package;
4720 ------------------
4721 -- End_Use_Type --
4722 ------------------
4724 procedure End_Use_Type (N : Node_Id) is
4725 Elmt : Elmt_Id;
4726 Id : Entity_Id;
4727 T : Entity_Id;
4729 -- Start of processing for End_Use_Type
4731 begin
4732 Id := Subtype_Mark (N);
4734 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4735 -- which case the type marks are not resolved yet, so guard against that
4736 -- here.
4738 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4739 T := Entity (Id);
4741 if T = Any_Type or else From_Limited_With (T) then
4742 null;
4744 -- Note that the use_type_clause may mention a subtype of the type
4745 -- whose primitive operations have been made visible. Here as
4746 -- elsewhere, it is the base type that matters for visibility.
4748 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4749 null;
4751 elsif not Redundant_Use (Id) then
4752 Set_In_Use (T, False);
4753 Set_In_Use (Base_Type (T), False);
4754 Set_Current_Use_Clause (T, Empty);
4755 Set_Current_Use_Clause (Base_Type (T), Empty);
4756 end if;
4757 end if;
4759 if Is_Empty_Elmt_List (Used_Operations (N)) then
4760 return;
4762 else
4763 Elmt := First_Elmt (Used_Operations (N));
4764 while Present (Elmt) loop
4765 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4766 Next_Elmt (Elmt);
4767 end loop;
4768 end if;
4769 end End_Use_Type;
4771 --------------------
4772 -- Entity_Of_Unit --
4773 --------------------
4775 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4776 begin
4777 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4778 return Defining_Entity (Instance_Spec (U));
4779 else
4780 return Defining_Entity (U);
4781 end if;
4782 end Entity_Of_Unit;
4784 ----------------------
4785 -- Find_Direct_Name --
4786 ----------------------
4788 procedure Find_Direct_Name (N : Node_Id) is
4789 E : Entity_Id;
4790 E2 : Entity_Id;
4791 Msg : Boolean;
4793 Homonyms : Entity_Id;
4794 -- Saves start of homonym chain
4796 Inst : Entity_Id := Empty;
4797 -- Enclosing instance, if any
4799 Nvis_Entity : Boolean;
4800 -- Set True to indicate that there is at least one entity on the homonym
4801 -- chain which, while not visible, is visible enough from the user point
4802 -- of view to warrant an error message of "not visible" rather than
4803 -- undefined.
4805 Nvis_Is_Private_Subprg : Boolean := False;
4806 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4807 -- effect concerning library subprograms has been detected. Used to
4808 -- generate the precise error message.
4810 function From_Actual_Package (E : Entity_Id) return Boolean;
4811 -- Returns true if the entity is an actual for a package that is itself
4812 -- an actual for a formal package of the current instance. Such an
4813 -- entity requires special handling because it may be use-visible but
4814 -- hides directly visible entities defined outside the instance, because
4815 -- the corresponding formal did so in the generic.
4817 function Is_Actual_Parameter return Boolean;
4818 -- This function checks if the node N is an identifier that is an actual
4819 -- parameter of a procedure call. If so it returns True, otherwise it
4820 -- return False. The reason for this check is that at this stage we do
4821 -- not know what procedure is being called if the procedure might be
4822 -- overloaded, so it is premature to go setting referenced flags or
4823 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4824 -- for that processing
4826 function Known_But_Invisible (E : Entity_Id) return Boolean;
4827 -- This function determines whether a reference to the entity E, which
4828 -- is not visible, can reasonably be considered to be known to the
4829 -- writer of the reference. This is a heuristic test, used only for
4830 -- the purposes of figuring out whether we prefer to complain that an
4831 -- entity is undefined or invisible (and identify the declaration of
4832 -- the invisible entity in the latter case). The point here is that we
4833 -- don't want to complain that something is invisible and then point to
4834 -- something entirely mysterious to the writer.
4836 procedure Nvis_Messages;
4837 -- Called if there are no visible entries for N, but there is at least
4838 -- one non-directly visible, or hidden declaration. This procedure
4839 -- outputs an appropriate set of error messages.
4841 procedure Undefined (Nvis : Boolean);
4842 -- This function is called if the current node has no corresponding
4843 -- visible entity or entities. The value set in Msg indicates whether
4844 -- an error message was generated (multiple error messages for the
4845 -- same variable are generally suppressed, see body for details).
4846 -- Msg is True if an error message was generated, False if not. This
4847 -- value is used by the caller to determine whether or not to output
4848 -- additional messages where appropriate. The parameter is set False
4849 -- to get the message "X is undefined", and True to get the message
4850 -- "X is not visible".
4852 -------------------------
4853 -- From_Actual_Package --
4854 -------------------------
4856 function From_Actual_Package (E : Entity_Id) return Boolean is
4857 Scop : constant Entity_Id := Scope (E);
4858 -- Declared scope of candidate entity
4860 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4861 -- Recursive function that does the work and examines actuals of
4862 -- actual packages of current instance.
4864 ------------------------
4865 -- Declared_In_Actual --
4866 ------------------------
4868 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4869 Act : Entity_Id;
4871 begin
4872 if No (Associated_Formal_Package (Pack)) then
4873 return False;
4875 else
4876 Act := First_Entity (Pack);
4877 while Present (Act) loop
4878 if Renamed_Object (Pack) = Scop then
4879 return True;
4881 -- Check for end of list of actuals
4883 elsif Ekind (Act) = E_Package
4884 and then Renamed_Object (Act) = Pack
4885 then
4886 return False;
4888 elsif Ekind (Act) = E_Package
4889 and then Declared_In_Actual (Act)
4890 then
4891 return True;
4892 end if;
4894 Next_Entity (Act);
4895 end loop;
4897 return False;
4898 end if;
4899 end Declared_In_Actual;
4901 -- Local variables
4903 Act : Entity_Id;
4905 -- Start of processing for From_Actual_Package
4907 begin
4908 if not In_Instance then
4909 return False;
4911 else
4912 Inst := Current_Scope;
4913 while Present (Inst)
4914 and then Ekind (Inst) /= E_Package
4915 and then not Is_Generic_Instance (Inst)
4916 loop
4917 Inst := Scope (Inst);
4918 end loop;
4920 if No (Inst) then
4921 return False;
4922 end if;
4924 Act := First_Entity (Inst);
4925 while Present (Act) loop
4926 if Ekind (Act) = E_Package
4927 and then Declared_In_Actual (Act)
4928 then
4929 return True;
4930 end if;
4932 Next_Entity (Act);
4933 end loop;
4935 return False;
4936 end if;
4937 end From_Actual_Package;
4939 -------------------------
4940 -- Is_Actual_Parameter --
4941 -------------------------
4943 function Is_Actual_Parameter return Boolean is
4944 begin
4945 return
4946 Nkind (N) = N_Identifier
4947 and then
4948 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4949 or else
4950 (Nkind (Parent (N)) = N_Parameter_Association
4951 and then N = Explicit_Actual_Parameter (Parent (N))
4952 and then Nkind (Parent (Parent (N))) =
4953 N_Procedure_Call_Statement));
4954 end Is_Actual_Parameter;
4956 -------------------------
4957 -- Known_But_Invisible --
4958 -------------------------
4960 function Known_But_Invisible (E : Entity_Id) return Boolean is
4961 Fname : File_Name_Type;
4963 begin
4964 -- Entities in Standard are always considered to be known
4966 if Sloc (E) <= Standard_Location then
4967 return True;
4969 -- An entity that does not come from source is always considered
4970 -- to be unknown, since it is an artifact of code expansion.
4972 elsif not Comes_From_Source (E) then
4973 return False;
4975 -- In gnat internal mode, we consider all entities known. The
4976 -- historical reason behind this discrepancy is not known??? But the
4977 -- only effect is to modify the error message given, so it is not
4978 -- critical. Since it only affects the exact wording of error
4979 -- messages in illegal programs, we do not mention this as an
4980 -- effect of -gnatg, since it is not a language modification.
4982 elsif GNAT_Mode then
4983 return True;
4984 end if;
4986 -- Here we have an entity that is not from package Standard, and
4987 -- which comes from Source. See if it comes from an internal file.
4989 Fname := Unit_File_Name (Get_Source_Unit (E));
4991 -- Case of from internal file
4993 if In_Internal_Unit (E) then
4995 -- Private part entities in internal files are never considered
4996 -- to be known to the writer of normal application code.
4998 if Is_Hidden (E) then
4999 return False;
5000 end if;
5002 -- Entities from System packages other than System and
5003 -- System.Storage_Elements are not considered to be known.
5004 -- System.Auxxxx files are also considered known to the user.
5006 -- Should refine this at some point to generally distinguish
5007 -- between known and unknown internal files ???
5009 Get_Name_String (Fname);
5011 return
5012 Name_Len < 2
5013 or else
5014 Name_Buffer (1 .. 2) /= "s-"
5015 or else
5016 Name_Buffer (3 .. 8) = "stoele"
5017 or else
5018 Name_Buffer (3 .. 5) = "aux";
5020 -- If not an internal file, then entity is definitely known, even if
5021 -- it is in a private part (the message generated will note that it
5022 -- is in a private part).
5024 else
5025 return True;
5026 end if;
5027 end Known_But_Invisible;
5029 -------------------
5030 -- Nvis_Messages --
5031 -------------------
5033 procedure Nvis_Messages is
5034 Comp_Unit : Node_Id;
5035 Ent : Entity_Id;
5036 Found : Boolean := False;
5037 Hidden : Boolean := False;
5038 Item : Node_Id;
5040 begin
5041 -- Ada 2005 (AI-262): Generate a precise error concerning the
5042 -- Beaujolais effect that was previously detected
5044 if Nvis_Is_Private_Subprg then
5046 pragma Assert (Nkind (E2) = N_Defining_Identifier
5047 and then Ekind (E2) = E_Function
5048 and then Scope (E2) = Standard_Standard
5049 and then Has_Private_With (E2));
5051 -- Find the sloc corresponding to the private with'ed unit
5053 Comp_Unit := Cunit (Current_Sem_Unit);
5054 Error_Msg_Sloc := No_Location;
5056 Item := First (Context_Items (Comp_Unit));
5057 while Present (Item) loop
5058 if Nkind (Item) = N_With_Clause
5059 and then Private_Present (Item)
5060 and then Entity (Name (Item)) = E2
5061 then
5062 Error_Msg_Sloc := Sloc (Item);
5063 exit;
5064 end if;
5066 Next (Item);
5067 end loop;
5069 pragma Assert (Error_Msg_Sloc /= No_Location);
5071 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5072 return;
5073 end if;
5075 Undefined (Nvis => True);
5077 if Msg then
5079 -- First loop does hidden declarations
5081 Ent := Homonyms;
5082 while Present (Ent) loop
5083 if Is_Potentially_Use_Visible (Ent) then
5084 if not Hidden then
5085 Error_Msg_N -- CODEFIX
5086 ("multiple use clauses cause hiding!", N);
5087 Hidden := True;
5088 end if;
5090 Error_Msg_Sloc := Sloc (Ent);
5091 Error_Msg_N -- CODEFIX
5092 ("hidden declaration#!", N);
5093 end if;
5095 Ent := Homonym (Ent);
5096 end loop;
5098 -- If we found hidden declarations, then that's enough, don't
5099 -- bother looking for non-visible declarations as well.
5101 if Hidden then
5102 return;
5103 end if;
5105 -- Second loop does non-directly visible declarations
5107 Ent := Homonyms;
5108 while Present (Ent) loop
5109 if not Is_Potentially_Use_Visible (Ent) then
5111 -- Do not bother the user with unknown entities
5113 if not Known_But_Invisible (Ent) then
5114 goto Continue;
5115 end if;
5117 Error_Msg_Sloc := Sloc (Ent);
5119 -- Output message noting that there is a non-visible
5120 -- declaration, distinguishing the private part case.
5122 if Is_Hidden (Ent) then
5123 Error_Msg_N ("non-visible (private) declaration#!", N);
5125 -- If the entity is declared in a generic package, it
5126 -- cannot be visible, so there is no point in adding it
5127 -- to the list of candidates if another homograph from a
5128 -- non-generic package has been seen.
5130 elsif Ekind (Scope (Ent)) = E_Generic_Package
5131 and then Found
5132 then
5133 null;
5135 else
5136 Error_Msg_N -- CODEFIX
5137 ("non-visible declaration#!", N);
5139 if Ekind (Scope (Ent)) /= E_Generic_Package then
5140 Found := True;
5141 end if;
5143 if Is_Compilation_Unit (Ent)
5144 and then
5145 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5146 then
5147 Error_Msg_Qual_Level := 99;
5148 Error_Msg_NE -- CODEFIX
5149 ("\\missing `WITH &;`", N, Ent);
5150 Error_Msg_Qual_Level := 0;
5151 end if;
5153 if Ekind (Ent) = E_Discriminant
5154 and then Present (Corresponding_Discriminant (Ent))
5155 and then Scope (Corresponding_Discriminant (Ent)) =
5156 Etype (Scope (Ent))
5157 then
5158 Error_Msg_N
5159 ("inherited discriminant not allowed here" &
5160 " (RM 3.8 (12), 3.8.1 (6))!", N);
5161 end if;
5162 end if;
5164 -- Set entity and its containing package as referenced. We
5165 -- can't be sure of this, but this seems a better choice
5166 -- to avoid unused entity messages.
5168 if Comes_From_Source (Ent) then
5169 Set_Referenced (Ent);
5170 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5171 end if;
5172 end if;
5174 <<Continue>>
5175 Ent := Homonym (Ent);
5176 end loop;
5177 end if;
5178 end Nvis_Messages;
5180 ---------------
5181 -- Undefined --
5182 ---------------
5184 procedure Undefined (Nvis : Boolean) is
5185 Emsg : Error_Msg_Id;
5187 begin
5188 -- We should never find an undefined internal name. If we do, then
5189 -- see if we have previous errors. If so, ignore on the grounds that
5190 -- it is probably a cascaded message (e.g. a block label from a badly
5191 -- formed block). If no previous errors, then we have a real internal
5192 -- error of some kind so raise an exception.
5194 if Is_Internal_Name (Chars (N)) then
5195 if Total_Errors_Detected /= 0 then
5196 return;
5197 else
5198 raise Program_Error;
5199 end if;
5200 end if;
5202 -- A very specialized error check, if the undefined variable is
5203 -- a case tag, and the case type is an enumeration type, check
5204 -- for a possible misspelling, and if so, modify the identifier
5206 -- Named aggregate should also be handled similarly ???
5208 if Nkind (N) = N_Identifier
5209 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5210 then
5211 declare
5212 Case_Stm : constant Node_Id := Parent (Parent (N));
5213 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5215 Lit : Node_Id;
5217 begin
5218 if Is_Enumeration_Type (Case_Typ)
5219 and then not Is_Standard_Character_Type (Case_Typ)
5220 then
5221 Lit := First_Literal (Case_Typ);
5222 Get_Name_String (Chars (Lit));
5224 if Chars (Lit) /= Chars (N)
5225 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5226 then
5227 Error_Msg_Node_2 := Lit;
5228 Error_Msg_N -- CODEFIX
5229 ("& is undefined, assume misspelling of &", N);
5230 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5231 return;
5232 end if;
5234 Lit := Next_Literal (Lit);
5235 end if;
5236 end;
5237 end if;
5239 -- Normal processing
5241 Set_Entity (N, Any_Id);
5242 Set_Etype (N, Any_Type);
5244 -- We use the table Urefs to keep track of entities for which we
5245 -- have issued errors for undefined references. Multiple errors
5246 -- for a single name are normally suppressed, however we modify
5247 -- the error message to alert the programmer to this effect.
5249 for J in Urefs.First .. Urefs.Last loop
5250 if Chars (N) = Chars (Urefs.Table (J).Node) then
5251 if Urefs.Table (J).Err /= No_Error_Msg
5252 and then Sloc (N) /= Urefs.Table (J).Loc
5253 then
5254 Error_Msg_Node_1 := Urefs.Table (J).Node;
5256 if Urefs.Table (J).Nvis then
5257 Change_Error_Text (Urefs.Table (J).Err,
5258 "& is not visible (more references follow)");
5259 else
5260 Change_Error_Text (Urefs.Table (J).Err,
5261 "& is undefined (more references follow)");
5262 end if;
5264 Urefs.Table (J).Err := No_Error_Msg;
5265 end if;
5267 -- Although we will set Msg False, and thus suppress the
5268 -- message, we also set Error_Posted True, to avoid any
5269 -- cascaded messages resulting from the undefined reference.
5271 Msg := False;
5272 Set_Error_Posted (N, True);
5273 return;
5274 end if;
5275 end loop;
5277 -- If entry not found, this is first undefined occurrence
5279 if Nvis then
5280 Error_Msg_N ("& is not visible!", N);
5281 Emsg := Get_Msg_Id;
5283 else
5284 Error_Msg_N ("& is undefined!", N);
5285 Emsg := Get_Msg_Id;
5287 -- A very bizarre special check, if the undefined identifier
5288 -- is put or put_line, then add a special error message (since
5289 -- this is a very common error for beginners to make).
5291 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5292 Error_Msg_N -- CODEFIX
5293 ("\\possible missing `WITH Ada.Text_'I'O; " &
5294 "USE Ada.Text_'I'O`!", N);
5296 -- Another special check if N is the prefix of a selected
5297 -- component which is a known unit, add message complaining
5298 -- about missing with for this unit.
5300 elsif Nkind (Parent (N)) = N_Selected_Component
5301 and then N = Prefix (Parent (N))
5302 and then Is_Known_Unit (Parent (N))
5303 then
5304 Error_Msg_Node_2 := Selector_Name (Parent (N));
5305 Error_Msg_N -- CODEFIX
5306 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5307 end if;
5309 -- Now check for possible misspellings
5311 declare
5312 E : Entity_Id;
5313 Ematch : Entity_Id := Empty;
5315 Last_Name_Id : constant Name_Id :=
5316 Name_Id (Nat (First_Name_Id) +
5317 Name_Entries_Count - 1);
5319 begin
5320 for Nam in First_Name_Id .. Last_Name_Id loop
5321 E := Get_Name_Entity_Id (Nam);
5323 if Present (E)
5324 and then (Is_Immediately_Visible (E)
5325 or else
5326 Is_Potentially_Use_Visible (E))
5327 then
5328 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5329 Ematch := E;
5330 exit;
5331 end if;
5332 end if;
5333 end loop;
5335 if Present (Ematch) then
5336 Error_Msg_NE -- CODEFIX
5337 ("\possible misspelling of&", N, Ematch);
5338 end if;
5339 end;
5340 end if;
5342 -- Make entry in undefined references table unless the full errors
5343 -- switch is set, in which case by refraining from generating the
5344 -- table entry, we guarantee that we get an error message for every
5345 -- undefined reference. The entry is not added if we are ignoring
5346 -- errors.
5348 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5349 Urefs.Append (
5350 (Node => N,
5351 Err => Emsg,
5352 Nvis => Nvis,
5353 Loc => Sloc (N)));
5354 end if;
5356 Msg := True;
5357 end Undefined;
5359 -- Local variables
5361 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5363 Nested_Inst : Entity_Id := Empty;
5364 -- The entity of a nested instance which appears within Inst (if any)
5366 -- Start of processing for Find_Direct_Name
5368 begin
5369 -- If the entity pointer is already set, this is an internal node, or
5370 -- a node that is analyzed more than once, after a tree modification.
5371 -- In such a case there is no resolution to perform, just set the type.
5373 if Present (Entity (N)) then
5374 if Is_Type (Entity (N)) then
5375 Set_Etype (N, Entity (N));
5377 else
5378 declare
5379 Entyp : constant Entity_Id := Etype (Entity (N));
5381 begin
5382 -- One special case here. If the Etype field is already set,
5383 -- and references the packed array type corresponding to the
5384 -- etype of the referenced entity, then leave it alone. This
5385 -- happens for trees generated from Exp_Pakd, where expressions
5386 -- can be deliberately "mis-typed" to the packed array type.
5388 if Is_Array_Type (Entyp)
5389 and then Is_Packed (Entyp)
5390 and then Present (Etype (N))
5391 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5392 then
5393 null;
5395 -- If not that special case, then just reset the Etype
5397 else
5398 Set_Etype (N, Etype (Entity (N)));
5399 end if;
5400 end;
5401 end if;
5403 -- Although the marking of use clauses happens at the end of
5404 -- Find_Direct_Name, a certain case where a generic actual satisfies
5405 -- a use clause must be checked here due to how the generic machinery
5406 -- handles the analysis of said actuals.
5408 if In_Instance
5409 and then Nkind (Parent (N)) = N_Generic_Association
5410 then
5411 Mark_Use_Clauses (Entity (N));
5412 end if;
5414 return;
5415 end if;
5417 -- Preserve relevant elaboration-related attributes of the context which
5418 -- are no longer available or very expensive to recompute once analysis,
5419 -- resolution, and expansion are over.
5421 if Nkind (N) = N_Identifier then
5422 Mark_Elaboration_Attributes
5423 (N_Id => N,
5424 Modes => True);
5425 end if;
5427 -- Here if Entity pointer was not set, we need full visibility analysis
5428 -- First we generate debugging output if the debug E flag is set.
5430 if Debug_Flag_E then
5431 Write_Str ("Looking for ");
5432 Write_Name (Chars (N));
5433 Write_Eol;
5434 end if;
5436 Homonyms := Current_Entity (N);
5437 Nvis_Entity := False;
5439 E := Homonyms;
5440 while Present (E) loop
5442 -- If entity is immediately visible or potentially use visible, then
5443 -- process the entity and we are done.
5445 if Is_Immediately_Visible (E) then
5446 goto Immediately_Visible_Entity;
5448 elsif Is_Potentially_Use_Visible (E) then
5449 goto Potentially_Use_Visible_Entity;
5451 -- Note if a known but invisible entity encountered
5453 elsif Known_But_Invisible (E) then
5454 Nvis_Entity := True;
5455 end if;
5457 -- Move to next entity in chain and continue search
5459 E := Homonym (E);
5460 end loop;
5462 -- If no entries on homonym chain that were potentially visible,
5463 -- and no entities reasonably considered as non-visible, then
5464 -- we have a plain undefined reference, with no additional
5465 -- explanation required.
5467 if not Nvis_Entity then
5468 Undefined (Nvis => False);
5470 -- Otherwise there is at least one entry on the homonym chain that
5471 -- is reasonably considered as being known and non-visible.
5473 else
5474 Nvis_Messages;
5475 end if;
5477 goto Done;
5479 -- Processing for a potentially use visible entry found. We must search
5480 -- the rest of the homonym chain for two reasons. First, if there is a
5481 -- directly visible entry, then none of the potentially use-visible
5482 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5483 -- for the case of multiple potentially use-visible entries hiding one
5484 -- another and as a result being non-directly visible (RM 8.4(11)).
5486 <<Potentially_Use_Visible_Entity>> declare
5487 Only_One_Visible : Boolean := True;
5488 All_Overloadable : Boolean := Is_Overloadable (E);
5490 begin
5491 E2 := Homonym (E);
5492 while Present (E2) loop
5493 if Is_Immediately_Visible (E2) then
5495 -- If the use-visible entity comes from the actual for a
5496 -- formal package, it hides a directly visible entity from
5497 -- outside the instance.
5499 if From_Actual_Package (E)
5500 and then Scope_Depth (E2) < Scope_Depth (Inst)
5501 then
5502 goto Found;
5503 else
5504 E := E2;
5505 goto Immediately_Visible_Entity;
5506 end if;
5508 elsif Is_Potentially_Use_Visible (E2) then
5509 Only_One_Visible := False;
5510 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5512 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5513 -- that can occur in private_with clauses. Example:
5515 -- with A;
5516 -- private with B; package A is
5517 -- package C is function B return Integer;
5518 -- use A; end A;
5519 -- V1 : Integer := B;
5520 -- private function B return Integer;
5521 -- V2 : Integer := B;
5522 -- end C;
5524 -- V1 resolves to A.B, but V2 resolves to library unit B
5526 elsif Ekind (E2) = E_Function
5527 and then Scope (E2) = Standard_Standard
5528 and then Has_Private_With (E2)
5529 then
5530 Only_One_Visible := False;
5531 All_Overloadable := False;
5532 Nvis_Is_Private_Subprg := True;
5533 exit;
5534 end if;
5536 E2 := Homonym (E2);
5537 end loop;
5539 -- On falling through this loop, we have checked that there are no
5540 -- immediately visible entities. Only_One_Visible is set if exactly
5541 -- one potentially use visible entity exists. All_Overloadable is
5542 -- set if all the potentially use visible entities are overloadable.
5543 -- The condition for legality is that either there is one potentially
5544 -- use visible entity, or if there is more than one, then all of them
5545 -- are overloadable.
5547 if Only_One_Visible or All_Overloadable then
5548 goto Found;
5550 -- If there is more than one potentially use-visible entity and at
5551 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5552 -- Note that E points to the first such entity on the homonym list.
5554 else
5555 -- If one of the entities is declared in an actual package, it
5556 -- was visible in the generic, and takes precedence over other
5557 -- entities that are potentially use-visible. The same applies
5558 -- if the entity is declared in a local instantiation of the
5559 -- current instance.
5561 if In_Instance then
5563 -- Find the current instance
5565 Inst := Current_Scope;
5566 while Present (Inst) and then Inst /= Standard_Standard loop
5567 if Is_Generic_Instance (Inst) then
5568 exit;
5569 end if;
5571 Inst := Scope (Inst);
5572 end loop;
5574 -- Reexamine the candidate entities, giving priority to those
5575 -- that were visible within the generic.
5577 E2 := E;
5578 while Present (E2) loop
5579 Nested_Inst := Nearest_Enclosing_Instance (E2);
5581 -- The entity is declared within an actual package, or in a
5582 -- nested instance. The ">=" accounts for the case where the
5583 -- current instance and the nested instance are the same.
5585 if From_Actual_Package (E2)
5586 or else (Present (Nested_Inst)
5587 and then Scope_Depth (Nested_Inst) >=
5588 Scope_Depth (Inst))
5589 then
5590 E := E2;
5591 goto Found;
5592 end if;
5594 E2 := Homonym (E2);
5595 end loop;
5597 Nvis_Messages;
5598 goto Done;
5600 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5601 -- A use clause in the body of a system file creates conflict
5602 -- with some entity in a user scope, while rtsfind is active.
5603 -- Keep only the entity coming from another predefined unit.
5605 E2 := E;
5606 while Present (E2) loop
5607 if In_Predefined_Unit (E2) then
5608 E := E2;
5609 goto Found;
5610 end if;
5612 E2 := Homonym (E2);
5613 end loop;
5615 -- Entity must exist because predefined unit is correct
5617 raise Program_Error;
5619 else
5620 Nvis_Messages;
5621 goto Done;
5622 end if;
5623 end if;
5624 end;
5626 -- Come here with E set to the first immediately visible entity on
5627 -- the homonym chain. This is the one we want unless there is another
5628 -- immediately visible entity further on in the chain for an inner
5629 -- scope (RM 8.3(8)).
5631 <<Immediately_Visible_Entity>> declare
5632 Level : Int;
5633 Scop : Entity_Id;
5635 begin
5636 -- Find scope level of initial entity. When compiling through
5637 -- Rtsfind, the previous context is not completely invisible, and
5638 -- an outer entity may appear on the chain, whose scope is below
5639 -- the entry for Standard that delimits the current scope stack.
5640 -- Indicate that the level for this spurious entry is outside of
5641 -- the current scope stack.
5643 Level := Scope_Stack.Last;
5644 loop
5645 Scop := Scope_Stack.Table (Level).Entity;
5646 exit when Scop = Scope (E);
5647 Level := Level - 1;
5648 exit when Scop = Standard_Standard;
5649 end loop;
5651 -- Now search remainder of homonym chain for more inner entry
5652 -- If the entity is Standard itself, it has no scope, and we
5653 -- compare it with the stack entry directly.
5655 E2 := Homonym (E);
5656 while Present (E2) loop
5657 if Is_Immediately_Visible (E2) then
5659 -- If a generic package contains a local declaration that
5660 -- has the same name as the generic, there may be a visibility
5661 -- conflict in an instance, where the local declaration must
5662 -- also hide the name of the corresponding package renaming.
5663 -- We check explicitly for a package declared by a renaming,
5664 -- whose renamed entity is an instance that is on the scope
5665 -- stack, and that contains a homonym in the same scope. Once
5666 -- we have found it, we know that the package renaming is not
5667 -- immediately visible, and that the identifier denotes the
5668 -- other entity (and its homonyms if overloaded).
5670 if Scope (E) = Scope (E2)
5671 and then Ekind (E) = E_Package
5672 and then Present (Renamed_Object (E))
5673 and then Is_Generic_Instance (Renamed_Object (E))
5674 and then In_Open_Scopes (Renamed_Object (E))
5675 and then Comes_From_Source (N)
5676 then
5677 Set_Is_Immediately_Visible (E, False);
5678 E := E2;
5680 else
5681 for J in Level + 1 .. Scope_Stack.Last loop
5682 if Scope_Stack.Table (J).Entity = Scope (E2)
5683 or else Scope_Stack.Table (J).Entity = E2
5684 then
5685 Level := J;
5686 E := E2;
5687 exit;
5688 end if;
5689 end loop;
5690 end if;
5691 end if;
5693 E2 := Homonym (E2);
5694 end loop;
5696 -- At the end of that loop, E is the innermost immediately
5697 -- visible entity, so we are all set.
5698 end;
5700 -- Come here with entity found, and stored in E
5702 <<Found>> begin
5704 -- Check violation of No_Wide_Characters restriction
5706 Check_Wide_Character_Restriction (E, N);
5708 -- When distribution features are available (Get_PCS_Name /=
5709 -- Name_No_DSA), a remote access-to-subprogram type is converted
5710 -- into a record type holding whatever information is needed to
5711 -- perform a remote call on an RCI subprogram. In that case we
5712 -- rewrite any occurrence of the RAS type into the equivalent record
5713 -- type here. 'Access attribute references and RAS dereferences are
5714 -- then implemented using specific TSSs. However when distribution is
5715 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5716 -- generation of these TSSs, and we must keep the RAS type in its
5717 -- original access-to-subprogram form (since all calls through a
5718 -- value of such type will be local anyway in the absence of a PCS).
5720 if Comes_From_Source (N)
5721 and then Is_Remote_Access_To_Subprogram_Type (E)
5722 and then Ekind (E) = E_Access_Subprogram_Type
5723 and then Expander_Active
5724 and then Get_PCS_Name /= Name_No_DSA
5725 then
5726 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5727 goto Done;
5728 end if;
5730 -- Set the entity. Note that the reason we call Set_Entity for the
5731 -- overloadable case, as opposed to Set_Entity_With_Checks is
5732 -- that in the overloaded case, the initial call can set the wrong
5733 -- homonym. The call that sets the right homonym is in Sem_Res and
5734 -- that call does use Set_Entity_With_Checks, so we don't miss
5735 -- a style check.
5737 if Is_Overloadable (E) then
5738 Set_Entity (N, E);
5739 else
5740 Set_Entity_With_Checks (N, E);
5741 end if;
5743 if Is_Type (E) then
5744 Set_Etype (N, E);
5745 else
5746 Set_Etype (N, Get_Full_View (Etype (E)));
5747 end if;
5749 if Debug_Flag_E then
5750 Write_Str (" found ");
5751 Write_Entity_Info (E, " ");
5752 end if;
5754 -- If the Ekind of the entity is Void, it means that all homonyms
5755 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5756 -- test is skipped if the current scope is a record and the name is
5757 -- a pragma argument expression (case of Atomic and Volatile pragmas
5758 -- and possibly other similar pragmas added later, which are allowed
5759 -- to reference components in the current record).
5761 if Ekind (E) = E_Void
5762 and then
5763 (not Is_Record_Type (Current_Scope)
5764 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5765 then
5766 Premature_Usage (N);
5768 -- If the entity is overloadable, collect all interpretations of the
5769 -- name for subsequent overload resolution. We optimize a bit here to
5770 -- do this only if we have an overloadable entity that is not on its
5771 -- own on the homonym chain.
5773 elsif Is_Overloadable (E)
5774 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5775 then
5776 Collect_Interps (N);
5778 -- If no homonyms were visible, the entity is unambiguous
5780 if not Is_Overloaded (N) then
5781 if not Is_Actual_Parameter then
5782 Generate_Reference (E, N);
5783 end if;
5784 end if;
5786 -- Case of non-overloadable entity, set the entity providing that
5787 -- we do not have the case of a discriminant reference within a
5788 -- default expression. Such references are replaced with the
5789 -- corresponding discriminal, which is the formal corresponding to
5790 -- to the discriminant in the initialization procedure.
5792 else
5793 -- Entity is unambiguous, indicate that it is referenced here
5795 -- For a renaming of an object, always generate simple reference,
5796 -- we don't try to keep track of assignments in this case, except
5797 -- in SPARK mode where renamings are traversed for generating
5798 -- local effects of subprograms.
5800 if Is_Object (E)
5801 and then Present (Renamed_Object (E))
5802 and then not GNATprove_Mode
5803 then
5804 Generate_Reference (E, N);
5806 -- If the renamed entity is a private protected component,
5807 -- reference the original component as well. This needs to be
5808 -- done because the private renamings are installed before any
5809 -- analysis has occurred. Reference to a private component will
5810 -- resolve to the renaming and the original component will be
5811 -- left unreferenced, hence the following.
5813 if Is_Prival (E) then
5814 Generate_Reference (Prival_Link (E), N);
5815 end if;
5817 -- One odd case is that we do not want to set the Referenced flag
5818 -- if the entity is a label, and the identifier is the label in
5819 -- the source, since this is not a reference from the point of
5820 -- view of the user.
5822 elsif Nkind (Parent (N)) = N_Label then
5823 declare
5824 R : constant Boolean := Referenced (E);
5826 begin
5827 -- Generate reference unless this is an actual parameter
5828 -- (see comment below)
5830 if Is_Actual_Parameter then
5831 Generate_Reference (E, N);
5832 Set_Referenced (E, R);
5833 end if;
5834 end;
5836 -- Normal case, not a label: generate reference
5838 else
5839 if not Is_Actual_Parameter then
5841 -- Package or generic package is always a simple reference
5843 if Ekind_In (E, E_Package, E_Generic_Package) then
5844 Generate_Reference (E, N, 'r');
5846 -- Else see if we have a left hand side
5848 else
5849 case Is_LHS (N) is
5850 when Yes =>
5851 Generate_Reference (E, N, 'm');
5853 when No =>
5854 Generate_Reference (E, N, 'r');
5856 -- If we don't know now, generate reference later
5858 when Unknown =>
5859 Deferred_References.Append ((E, N));
5860 end case;
5861 end if;
5862 end if;
5863 end if;
5865 Set_Entity_Or_Discriminal (N, E);
5867 -- The name may designate a generalized reference, in which case
5868 -- the dereference interpretation will be included. Context is
5869 -- one in which a name is legal.
5871 if Ada_Version >= Ada_2012
5872 and then
5873 (Nkind (Parent (N)) in N_Subexpr
5874 or else Nkind_In (Parent (N), N_Assignment_Statement,
5875 N_Object_Declaration,
5876 N_Parameter_Association))
5877 then
5878 Check_Implicit_Dereference (N, Etype (E));
5879 end if;
5880 end if;
5881 end;
5883 -- Mark relevant use-type and use-package clauses as effective if the
5884 -- node in question is not overloaded and therefore does not require
5885 -- resolution.
5887 -- Note: Generic actual subprograms do not follow the normal resolution
5888 -- path, so ignore the fact that they are overloaded and mark them
5889 -- anyway.
5891 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5892 Mark_Use_Clauses (N);
5893 end if;
5895 -- Come here with entity set
5897 <<Done>>
5898 Check_Restriction_No_Use_Of_Entity (N);
5900 -- Annotate the tree by creating a variable reference marker in case the
5901 -- original variable reference is folded or optimized away. The variable
5902 -- reference marker is automatically saved for later examination by the
5903 -- ABE Processing phase. Variable references which act as actuals in a
5904 -- call require special processing and are left to Resolve_Actuals. The
5905 -- reference is a write when it appears on the left hand side of an
5906 -- assignment.
5908 if not Within_Subprogram_Call (N) then
5909 Build_Variable_Reference_Marker
5910 (N => N,
5911 Read => not Is_Assignment_LHS,
5912 Write => Is_Assignment_LHS);
5913 end if;
5914 end Find_Direct_Name;
5916 ------------------------
5917 -- Find_Expanded_Name --
5918 ------------------------
5920 -- This routine searches the homonym chain of the entity until it finds
5921 -- an entity declared in the scope denoted by the prefix. If the entity
5922 -- is private, it may nevertheless be immediately visible, if we are in
5923 -- the scope of its declaration.
5925 procedure Find_Expanded_Name (N : Node_Id) is
5926 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5927 -- Determine whether expanded name Nod appears within a pragma which is
5928 -- a suitable context for an abstract view of a state or variable. The
5929 -- following pragmas fall in this category:
5930 -- Depends
5931 -- Global
5932 -- Initializes
5933 -- Refined_Depends
5934 -- Refined_Global
5936 -- In addition, pragma Abstract_State is also considered suitable even
5937 -- though it is an illegal context for an abstract view as this allows
5938 -- for proper resolution of abstract views of variables. This illegal
5939 -- context is later flagged in the analysis of indicator Part_Of.
5941 -----------------------------
5942 -- In_Abstract_View_Pragma --
5943 -----------------------------
5945 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
5946 Par : Node_Id;
5948 begin
5949 -- Climb the parent chain looking for a pragma
5951 Par := Nod;
5952 while Present (Par) loop
5953 if Nkind (Par) = N_Pragma then
5954 if Nam_In (Pragma_Name_Unmapped (Par),
5955 Name_Abstract_State,
5956 Name_Depends,
5957 Name_Global,
5958 Name_Initializes,
5959 Name_Refined_Depends,
5960 Name_Refined_Global)
5961 then
5962 return True;
5964 -- Otherwise the pragma is not a legal context for an abstract
5965 -- view.
5967 else
5968 exit;
5969 end if;
5971 -- Prevent the search from going too far
5973 elsif Is_Body_Or_Package_Declaration (Par) then
5974 exit;
5975 end if;
5977 Par := Parent (Par);
5978 end loop;
5980 return False;
5981 end In_Abstract_View_Pragma;
5983 -- Local variables
5985 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5986 Selector : constant Node_Id := Selector_Name (N);
5988 Candidate : Entity_Id := Empty;
5989 P_Name : Entity_Id;
5990 Id : Entity_Id;
5992 -- Start of processing for Find_Expanded_Name
5994 begin
5995 P_Name := Entity (Prefix (N));
5997 -- If the prefix is a renamed package, look for the entity in the
5998 -- original package.
6000 if Ekind (P_Name) = E_Package
6001 and then Present (Renamed_Object (P_Name))
6002 then
6003 P_Name := Renamed_Object (P_Name);
6005 -- Rewrite node with entity field pointing to renamed object
6007 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6008 Set_Entity (Prefix (N), P_Name);
6010 -- If the prefix is an object of a concurrent type, look for
6011 -- the entity in the associated task or protected type.
6013 elsif Is_Concurrent_Type (Etype (P_Name)) then
6014 P_Name := Etype (P_Name);
6015 end if;
6017 Id := Current_Entity (Selector);
6019 declare
6020 Is_New_Candidate : Boolean;
6022 begin
6023 while Present (Id) loop
6024 if Scope (Id) = P_Name then
6025 Candidate := Id;
6026 Is_New_Candidate := True;
6028 -- Handle abstract views of states and variables. These are
6029 -- acceptable candidates only when the reference to the view
6030 -- appears in certain pragmas.
6032 if Ekind (Id) = E_Abstract_State
6033 and then From_Limited_With (Id)
6034 and then Present (Non_Limited_View (Id))
6035 then
6036 if In_Abstract_View_Pragma (N) then
6037 Candidate := Non_Limited_View (Id);
6038 Is_New_Candidate := True;
6040 -- Hide the candidate because it is not used in a proper
6041 -- context.
6043 else
6044 Candidate := Empty;
6045 Is_New_Candidate := False;
6046 end if;
6047 end if;
6049 -- Ada 2005 (AI-217): Handle shadow entities associated with
6050 -- types declared in limited-withed nested packages. We don't need
6051 -- to handle E_Incomplete_Subtype entities because the entities
6052 -- in the limited view are always E_Incomplete_Type and
6053 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6055 -- Regarding the expression used to evaluate the scope, it
6056 -- is important to note that the limited view also has shadow
6057 -- entities associated nested packages. For this reason the
6058 -- correct scope of the entity is the scope of the real entity.
6059 -- The non-limited view may itself be incomplete, in which case
6060 -- get the full view if available.
6062 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6063 and then From_Limited_With (Id)
6064 and then Present (Non_Limited_View (Id))
6065 and then Scope (Non_Limited_View (Id)) = P_Name
6066 then
6067 Candidate := Get_Full_View (Non_Limited_View (Id));
6068 Is_New_Candidate := True;
6070 -- An unusual case arises with a fully qualified name for an
6071 -- entity local to a generic child unit package, within an
6072 -- instantiation of that package. The name of the unit now
6073 -- denotes the renaming created within the instance. This is
6074 -- only relevant in an instance body, see below.
6076 elsif Is_Generic_Instance (Scope (Id))
6077 and then In_Open_Scopes (Scope (Id))
6078 and then In_Instance_Body
6079 and then Ekind (Scope (Id)) = E_Package
6080 and then Ekind (Id) = E_Package
6081 and then Renamed_Entity (Id) = Scope (Id)
6082 and then Is_Immediately_Visible (P_Name)
6083 then
6084 Is_New_Candidate := True;
6086 else
6087 Is_New_Candidate := False;
6088 end if;
6090 if Is_New_Candidate then
6092 -- If entity is a child unit, either it is a visible child of
6093 -- the prefix, or we are in the body of a generic prefix, as
6094 -- will happen when a child unit is instantiated in the body
6095 -- of a generic parent. This is because the instance body does
6096 -- not restore the full compilation context, given that all
6097 -- non-local references have been captured.
6099 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6100 exit when Is_Visible_Lib_Unit (Id)
6101 or else (Is_Child_Unit (Id)
6102 and then In_Open_Scopes (Scope (Id))
6103 and then In_Instance_Body);
6104 else
6105 exit when not Is_Hidden (Id);
6106 end if;
6108 exit when Is_Immediately_Visible (Id);
6109 end if;
6111 Id := Homonym (Id);
6112 end loop;
6113 end;
6115 if No (Id)
6116 and then Ekind_In (P_Name, E_Procedure, E_Function)
6117 and then Is_Generic_Instance (P_Name)
6118 then
6119 -- Expanded name denotes entity in (instance of) generic subprogram.
6120 -- The entity may be in the subprogram instance, or may denote one of
6121 -- the formals, which is declared in the enclosing wrapper package.
6123 P_Name := Scope (P_Name);
6125 Id := Current_Entity (Selector);
6126 while Present (Id) loop
6127 exit when Scope (Id) = P_Name;
6128 Id := Homonym (Id);
6129 end loop;
6130 end if;
6132 if No (Id) or else Chars (Id) /= Chars (Selector) then
6133 Set_Etype (N, Any_Type);
6135 -- If we are looking for an entity defined in System, try to find it
6136 -- in the child package that may have been provided as an extension
6137 -- to System. The Extend_System pragma will have supplied the name of
6138 -- the extension, which may have to be loaded.
6140 if Chars (P_Name) = Name_System
6141 and then Scope (P_Name) = Standard_Standard
6142 and then Present (System_Extend_Unit)
6143 and then Present_System_Aux (N)
6144 then
6145 Set_Entity (Prefix (N), System_Aux_Id);
6146 Find_Expanded_Name (N);
6147 return;
6149 -- There is an implicit instance of the predefined operator in
6150 -- the given scope. The operator entity is defined in Standard.
6151 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6153 elsif Nkind (Selector) = N_Operator_Symbol
6154 and then Has_Implicit_Operator (N)
6155 then
6156 return;
6158 -- If there is no literal defined in the scope denoted by the
6159 -- prefix, the literal may belong to (a type derived from)
6160 -- Standard_Character, for which we have no explicit literals.
6162 elsif Nkind (Selector) = N_Character_Literal
6163 and then Has_Implicit_Character_Literal (N)
6164 then
6165 return;
6167 else
6168 -- If the prefix is a single concurrent object, use its name in
6169 -- the error message, rather than that of the anonymous type.
6171 if Is_Concurrent_Type (P_Name)
6172 and then Is_Internal_Name (Chars (P_Name))
6173 then
6174 Error_Msg_Node_2 := Entity (Prefix (N));
6175 else
6176 Error_Msg_Node_2 := P_Name;
6177 end if;
6179 if P_Name = System_Aux_Id then
6180 P_Name := Scope (P_Name);
6181 Set_Entity (Prefix (N), P_Name);
6182 end if;
6184 if Present (Candidate) then
6186 -- If we know that the unit is a child unit we can give a more
6187 -- accurate error message.
6189 if Is_Child_Unit (Candidate) then
6191 -- If the candidate is a private child unit and we are in
6192 -- the visible part of a public unit, specialize the error
6193 -- message. There might be a private with_clause for it,
6194 -- but it is not currently active.
6196 if Is_Private_Descendant (Candidate)
6197 and then Ekind (Current_Scope) = E_Package
6198 and then not In_Private_Part (Current_Scope)
6199 and then not Is_Private_Descendant (Current_Scope)
6200 then
6201 Error_Msg_N
6202 ("private child unit& is not visible here", Selector);
6204 -- Normal case where we have a missing with for a child unit
6206 else
6207 Error_Msg_Qual_Level := 99;
6208 Error_Msg_NE -- CODEFIX
6209 ("missing `WITH &;`", Selector, Candidate);
6210 Error_Msg_Qual_Level := 0;
6211 end if;
6213 -- Here we don't know that this is a child unit
6215 else
6216 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6217 end if;
6219 else
6220 -- Within the instantiation of a child unit, the prefix may
6221 -- denote the parent instance, but the selector has the name
6222 -- of the original child. That is to say, when A.B appears
6223 -- within an instantiation of generic child unit B, the scope
6224 -- stack includes an instance of A (P_Name) and an instance
6225 -- of B under some other name. We scan the scope to find this
6226 -- child instance, which is the desired entity.
6227 -- Note that the parent may itself be a child instance, if
6228 -- the reference is of the form A.B.C, in which case A.B has
6229 -- already been rewritten with the proper entity.
6231 if In_Open_Scopes (P_Name)
6232 and then Is_Generic_Instance (P_Name)
6233 then
6234 declare
6235 Gen_Par : constant Entity_Id :=
6236 Generic_Parent (Specification
6237 (Unit_Declaration_Node (P_Name)));
6238 S : Entity_Id := Current_Scope;
6239 P : Entity_Id;
6241 begin
6242 for J in reverse 0 .. Scope_Stack.Last loop
6243 S := Scope_Stack.Table (J).Entity;
6245 exit when S = Standard_Standard;
6247 if Ekind_In (S, E_Function,
6248 E_Package,
6249 E_Procedure)
6250 then
6251 P :=
6252 Generic_Parent (Specification
6253 (Unit_Declaration_Node (S)));
6255 -- Check that P is a generic child of the generic
6256 -- parent of the prefix.
6258 if Present (P)
6259 and then Chars (P) = Chars (Selector)
6260 and then Scope (P) = Gen_Par
6261 then
6262 Id := S;
6263 goto Found;
6264 end if;
6265 end if;
6267 end loop;
6268 end;
6269 end if;
6271 -- If this is a selection from Ada, System or Interfaces, then
6272 -- we assume a missing with for the corresponding package.
6274 if Is_Known_Unit (N) then
6275 if not Error_Posted (N) then
6276 Error_Msg_Node_2 := Selector;
6277 Error_Msg_N -- CODEFIX
6278 ("missing `WITH &.&;`", Prefix (N));
6279 end if;
6281 -- If this is a selection from a dummy package, then suppress
6282 -- the error message, of course the entity is missing if the
6283 -- package is missing.
6285 elsif Sloc (Error_Msg_Node_2) = No_Location then
6286 null;
6288 -- Here we have the case of an undefined component
6290 else
6291 -- The prefix may hide a homonym in the context that
6292 -- declares the desired entity. This error can use a
6293 -- specialized message.
6295 if In_Open_Scopes (P_Name) then
6296 declare
6297 H : constant Entity_Id := Homonym (P_Name);
6299 begin
6300 if Present (H)
6301 and then Is_Compilation_Unit (H)
6302 and then
6303 (Is_Immediately_Visible (H)
6304 or else Is_Visible_Lib_Unit (H))
6305 then
6306 Id := First_Entity (H);
6307 while Present (Id) loop
6308 if Chars (Id) = Chars (Selector) then
6309 Error_Msg_Qual_Level := 99;
6310 Error_Msg_Name_1 := Chars (Selector);
6311 Error_Msg_NE
6312 ("% not declared in&", N, P_Name);
6313 Error_Msg_NE
6314 ("\use fully qualified name starting with "
6315 & "Standard to make& visible", N, H);
6316 Error_Msg_Qual_Level := 0;
6317 goto Done;
6318 end if;
6320 Next_Entity (Id);
6321 end loop;
6322 end if;
6324 -- If not found, standard error message
6326 Error_Msg_NE ("& not declared in&", N, Selector);
6328 <<Done>> null;
6329 end;
6331 else
6332 -- Might be worth specializing the case when the prefix
6333 -- is a limited view.
6334 -- ... not declared in limited view of...
6336 Error_Msg_NE ("& not declared in&", N, Selector);
6337 end if;
6339 -- Check for misspelling of some entity in prefix
6341 Id := First_Entity (P_Name);
6342 while Present (Id) loop
6343 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6344 and then not Is_Internal_Name (Chars (Id))
6345 then
6346 Error_Msg_NE -- CODEFIX
6347 ("possible misspelling of&", Selector, Id);
6348 exit;
6349 end if;
6351 Next_Entity (Id);
6352 end loop;
6354 -- Specialize the message if this may be an instantiation
6355 -- of a child unit that was not mentioned in the context.
6357 if Nkind (Parent (N)) = N_Package_Instantiation
6358 and then Is_Generic_Instance (Entity (Prefix (N)))
6359 and then Is_Compilation_Unit
6360 (Generic_Parent (Parent (Entity (Prefix (N)))))
6361 then
6362 Error_Msg_Node_2 := Selector;
6363 Error_Msg_N -- CODEFIX
6364 ("\missing `WITH &.&;`", Prefix (N));
6365 end if;
6366 end if;
6367 end if;
6369 Id := Any_Id;
6370 end if;
6371 end if;
6373 <<Found>>
6374 if Comes_From_Source (N)
6375 and then Is_Remote_Access_To_Subprogram_Type (Id)
6376 and then Ekind (Id) = E_Access_Subprogram_Type
6377 and then Present (Equivalent_Type (Id))
6378 then
6379 -- If we are not actually generating distribution code (i.e. the
6380 -- current PCS is the dummy non-distributed version), then the
6381 -- Equivalent_Type will be missing, and Id should be treated as
6382 -- a regular access-to-subprogram type.
6384 Id := Equivalent_Type (Id);
6385 Set_Chars (Selector, Chars (Id));
6386 end if;
6388 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6390 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6391 if From_Limited_With (Id)
6392 or else Is_Type (Id)
6393 or else Ekind (Id) = E_Package
6394 then
6395 null;
6396 else
6397 Error_Msg_N
6398 ("limited withed package can only be used to access incomplete "
6399 & "types", N);
6400 end if;
6401 end if;
6403 if Is_Task_Type (P_Name)
6404 and then ((Ekind (Id) = E_Entry
6405 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6406 or else
6407 (Ekind (Id) = E_Entry_Family
6408 and then
6409 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6410 then
6411 -- If both the task type and the entry are in scope, this may still
6412 -- be the expanded name of an entry formal.
6414 if In_Open_Scopes (Id)
6415 and then Nkind (Parent (N)) = N_Selected_Component
6416 then
6417 null;
6419 else
6420 -- It is an entry call after all, either to the current task
6421 -- (which will deadlock) or to an enclosing task.
6423 Analyze_Selected_Component (N);
6424 return;
6425 end if;
6426 end if;
6428 Change_Selected_Component_To_Expanded_Name (N);
6430 -- Preserve relevant elaboration-related attributes of the context which
6431 -- are no longer available or very expensive to recompute once analysis,
6432 -- resolution, and expansion are over.
6434 Mark_Elaboration_Attributes
6435 (N_Id => N,
6436 Modes => True);
6438 -- Set appropriate type
6440 if Is_Type (Id) then
6441 Set_Etype (N, Id);
6442 else
6443 Set_Etype (N, Get_Full_View (Etype (Id)));
6444 end if;
6446 -- Do style check and generate reference, but skip both steps if this
6447 -- entity has homonyms, since we may not have the right homonym set yet.
6448 -- The proper homonym will be set during the resolve phase.
6450 if Has_Homonym (Id) then
6451 Set_Entity (N, Id);
6453 else
6454 Set_Entity_Or_Discriminal (N, Id);
6456 case Is_LHS (N) is
6457 when Yes =>
6458 Generate_Reference (Id, N, 'm');
6460 when No =>
6461 Generate_Reference (Id, N, 'r');
6463 when Unknown =>
6464 Deferred_References.Append ((Id, N));
6465 end case;
6466 end if;
6468 -- Check for violation of No_Wide_Characters
6470 Check_Wide_Character_Restriction (Id, N);
6472 -- If the Ekind of the entity is Void, it means that all homonyms are
6473 -- hidden from all visibility (RM 8.3(5,14-20)).
6475 if Ekind (Id) = E_Void then
6476 Premature_Usage (N);
6478 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6479 declare
6480 H : Entity_Id := Homonym (Id);
6482 begin
6483 while Present (H) loop
6484 if Scope (H) = Scope (Id)
6485 and then (not Is_Hidden (H)
6486 or else Is_Immediately_Visible (H))
6487 then
6488 Collect_Interps (N);
6489 exit;
6490 end if;
6492 H := Homonym (H);
6493 end loop;
6495 -- If an extension of System is present, collect possible explicit
6496 -- overloadings declared in the extension.
6498 if Chars (P_Name) = Name_System
6499 and then Scope (P_Name) = Standard_Standard
6500 and then Present (System_Extend_Unit)
6501 and then Present_System_Aux (N)
6502 then
6503 H := Current_Entity (Id);
6505 while Present (H) loop
6506 if Scope (H) = System_Aux_Id then
6507 Add_One_Interp (N, H, Etype (H));
6508 end if;
6510 H := Homonym (H);
6511 end loop;
6512 end if;
6513 end;
6514 end if;
6516 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6517 and then Scope (Id) /= Standard_Standard
6518 then
6519 -- In addition to user-defined operators in the given scope, there
6520 -- may be an implicit instance of the predefined operator. The
6521 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6522 -- and added to the interpretations. Procedure Add_One_Interp will
6523 -- determine which hides which.
6525 if Has_Implicit_Operator (N) then
6526 null;
6527 end if;
6528 end if;
6530 -- If there is a single interpretation for N we can generate a
6531 -- reference to the unique entity found.
6533 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6534 Generate_Reference (Id, N);
6535 end if;
6537 -- Mark relevant use-type and use-package clauses as effective if the
6538 -- node in question is not overloaded and therefore does not require
6539 -- resolution.
6541 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6542 Mark_Use_Clauses (N);
6543 end if;
6545 Check_Restriction_No_Use_Of_Entity (N);
6547 -- Annotate the tree by creating a variable reference marker in case the
6548 -- original variable reference is folded or optimized away. The variable
6549 -- reference marker is automatically saved for later examination by the
6550 -- ABE Processing phase. Variable references which act as actuals in a
6551 -- call require special processing and are left to Resolve_Actuals. The
6552 -- reference is a write when it appears on the left hand side of an
6553 -- assignment.
6555 if not Within_Subprogram_Call (N) then
6556 Build_Variable_Reference_Marker
6557 (N => N,
6558 Read => not Is_Assignment_LHS,
6559 Write => Is_Assignment_LHS);
6560 end if;
6561 end Find_Expanded_Name;
6563 --------------------
6564 -- Find_Most_Prev --
6565 --------------------
6567 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6568 Curr : Node_Id;
6570 begin
6571 -- Loop through the Prev_Use_Clause chain
6573 Curr := Use_Clause;
6574 while Present (Prev_Use_Clause (Curr)) loop
6575 Curr := Prev_Use_Clause (Curr);
6576 end loop;
6578 return Curr;
6579 end Find_Most_Prev;
6581 -------------------------
6582 -- Find_Renamed_Entity --
6583 -------------------------
6585 function Find_Renamed_Entity
6586 (N : Node_Id;
6587 Nam : Node_Id;
6588 New_S : Entity_Id;
6589 Is_Actual : Boolean := False) return Entity_Id
6591 Ind : Interp_Index;
6592 I1 : Interp_Index := 0; -- Suppress junk warnings
6593 It : Interp;
6594 It1 : Interp;
6595 Old_S : Entity_Id;
6596 Inst : Entity_Id;
6598 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6599 -- If the renamed entity is an implicit operator, check whether it is
6600 -- visible because its operand type is properly visible. This check
6601 -- applies to explicit renamed entities that appear in the source in a
6602 -- renaming declaration or a formal subprogram instance, but not to
6603 -- default generic actuals with a name.
6605 function Report_Overload return Entity_Id;
6606 -- List possible interpretations, and specialize message in the
6607 -- case of a generic actual.
6609 function Within (Inner, Outer : Entity_Id) return Boolean;
6610 -- Determine whether a candidate subprogram is defined within the
6611 -- enclosing instance. If yes, it has precedence over outer candidates.
6613 --------------------------
6614 -- Is_Visible_Operation --
6615 --------------------------
6617 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6618 Scop : Entity_Id;
6619 Typ : Entity_Id;
6620 Btyp : Entity_Id;
6622 begin
6623 if Ekind (Op) /= E_Operator
6624 or else Scope (Op) /= Standard_Standard
6625 or else (In_Instance
6626 and then (not Is_Actual
6627 or else Present (Enclosing_Instance)))
6628 then
6629 return True;
6631 else
6632 -- For a fixed point type operator, check the resulting type,
6633 -- because it may be a mixed mode integer * fixed operation.
6635 if Present (Next_Formal (First_Formal (New_S)))
6636 and then Is_Fixed_Point_Type (Etype (New_S))
6637 then
6638 Typ := Etype (New_S);
6639 else
6640 Typ := Etype (First_Formal (New_S));
6641 end if;
6643 Btyp := Base_Type (Typ);
6645 if Nkind (Nam) /= N_Expanded_Name then
6646 return (In_Open_Scopes (Scope (Btyp))
6647 or else Is_Potentially_Use_Visible (Btyp)
6648 or else In_Use (Btyp)
6649 or else In_Use (Scope (Btyp)));
6651 else
6652 Scop := Entity (Prefix (Nam));
6654 if Ekind (Scop) = E_Package
6655 and then Present (Renamed_Object (Scop))
6656 then
6657 Scop := Renamed_Object (Scop);
6658 end if;
6660 -- Operator is visible if prefix of expanded name denotes
6661 -- scope of type, or else type is defined in System_Aux
6662 -- and the prefix denotes System.
6664 return Scope (Btyp) = Scop
6665 or else (Scope (Btyp) = System_Aux_Id
6666 and then Scope (Scope (Btyp)) = Scop);
6667 end if;
6668 end if;
6669 end Is_Visible_Operation;
6671 ------------
6672 -- Within --
6673 ------------
6675 function Within (Inner, Outer : Entity_Id) return Boolean is
6676 Sc : Entity_Id;
6678 begin
6679 Sc := Scope (Inner);
6680 while Sc /= Standard_Standard loop
6681 if Sc = Outer then
6682 return True;
6683 else
6684 Sc := Scope (Sc);
6685 end if;
6686 end loop;
6688 return False;
6689 end Within;
6691 ---------------------
6692 -- Report_Overload --
6693 ---------------------
6695 function Report_Overload return Entity_Id is
6696 begin
6697 if Is_Actual then
6698 Error_Msg_NE -- CODEFIX
6699 ("ambiguous actual subprogram&, " &
6700 "possible interpretations:", N, Nam);
6701 else
6702 Error_Msg_N -- CODEFIX
6703 ("ambiguous subprogram, " &
6704 "possible interpretations:", N);
6705 end if;
6707 List_Interps (Nam, N);
6708 return Old_S;
6709 end Report_Overload;
6711 -- Start of processing for Find_Renamed_Entity
6713 begin
6714 Old_S := Any_Id;
6715 Candidate_Renaming := Empty;
6717 if Is_Overloaded (Nam) then
6718 Get_First_Interp (Nam, Ind, It);
6719 while Present (It.Nam) loop
6720 if Entity_Matches_Spec (It.Nam, New_S)
6721 and then Is_Visible_Operation (It.Nam)
6722 then
6723 if Old_S /= Any_Id then
6725 -- Note: The call to Disambiguate only happens if a
6726 -- previous interpretation was found, in which case I1
6727 -- has received a value.
6729 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6731 if It1 = No_Interp then
6732 Inst := Enclosing_Instance;
6734 if Present (Inst) then
6735 if Within (It.Nam, Inst) then
6736 if Within (Old_S, Inst) then
6738 -- Choose the innermost subprogram, which would
6739 -- have hidden the outer one in the generic.
6741 if Scope_Depth (It.Nam) <
6742 Scope_Depth (Old_S)
6743 then
6744 return Old_S;
6745 else
6746 return It.Nam;
6747 end if;
6748 end if;
6750 elsif Within (Old_S, Inst) then
6751 return (Old_S);
6753 else
6754 return Report_Overload;
6755 end if;
6757 -- If not within an instance, ambiguity is real
6759 else
6760 return Report_Overload;
6761 end if;
6763 else
6764 Old_S := It1.Nam;
6765 exit;
6766 end if;
6768 else
6769 I1 := Ind;
6770 Old_S := It.Nam;
6771 end if;
6773 elsif
6774 Present (First_Formal (It.Nam))
6775 and then Present (First_Formal (New_S))
6776 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6777 Base_Type (Etype (First_Formal (New_S))))
6778 then
6779 Candidate_Renaming := It.Nam;
6780 end if;
6782 Get_Next_Interp (Ind, It);
6783 end loop;
6785 Set_Entity (Nam, Old_S);
6787 if Old_S /= Any_Id then
6788 Set_Is_Overloaded (Nam, False);
6789 end if;
6791 -- Non-overloaded case
6793 else
6794 if Is_Actual
6795 and then Present (Enclosing_Instance)
6796 and then Entity_Matches_Spec (Entity (Nam), New_S)
6797 then
6798 Old_S := Entity (Nam);
6800 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6801 Candidate_Renaming := New_S;
6803 if Is_Visible_Operation (Entity (Nam)) then
6804 Old_S := Entity (Nam);
6805 end if;
6807 elsif Present (First_Formal (Entity (Nam)))
6808 and then Present (First_Formal (New_S))
6809 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6810 Base_Type (Etype (First_Formal (New_S))))
6811 then
6812 Candidate_Renaming := Entity (Nam);
6813 end if;
6814 end if;
6816 return Old_S;
6817 end Find_Renamed_Entity;
6819 -----------------------------
6820 -- Find_Selected_Component --
6821 -----------------------------
6823 procedure Find_Selected_Component (N : Node_Id) is
6824 P : constant Node_Id := Prefix (N);
6826 P_Name : Entity_Id;
6827 -- Entity denoted by prefix
6829 P_Type : Entity_Id;
6830 -- and its type
6832 Nam : Node_Id;
6834 function Available_Subtype return Boolean;
6835 -- A small optimization: if the prefix is constrained and the component
6836 -- is an array type we may already have a usable subtype for it, so we
6837 -- can use it rather than generating a new one, because the bounds
6838 -- will be the values of the discriminants and not discriminant refs.
6839 -- This simplifies value tracing in GNATProve. For consistency, both
6840 -- the entity name and the subtype come from the constrained component.
6842 -- This is only used in GNATProve mode: when generating code it may be
6843 -- necessary to create an itype in the scope of use of the selected
6844 -- component, e.g. in the context of a expanded record equality.
6846 function Is_Reference_In_Subunit return Boolean;
6847 -- In a subunit, the scope depth is not a proper measure of hiding,
6848 -- because the context of the proper body may itself hide entities in
6849 -- parent units. This rare case requires inspecting the tree directly
6850 -- because the proper body is inserted in the main unit and its context
6851 -- is simply added to that of the parent.
6853 -----------------------
6854 -- Available_Subtype --
6855 -----------------------
6857 function Available_Subtype return Boolean is
6858 Comp : Entity_Id;
6860 begin
6861 if GNATprove_Mode then
6862 Comp := First_Entity (Etype (P));
6863 while Present (Comp) loop
6864 if Chars (Comp) = Chars (Selector_Name (N)) then
6865 Set_Etype (N, Etype (Comp));
6866 Set_Entity (Selector_Name (N), Comp);
6867 Set_Etype (Selector_Name (N), Etype (Comp));
6868 return True;
6869 end if;
6871 Next_Component (Comp);
6872 end loop;
6873 end if;
6875 return False;
6876 end Available_Subtype;
6878 -----------------------------
6879 -- Is_Reference_In_Subunit --
6880 -----------------------------
6882 function Is_Reference_In_Subunit return Boolean is
6883 Clause : Node_Id;
6884 Comp_Unit : Node_Id;
6886 begin
6887 Comp_Unit := N;
6888 while Present (Comp_Unit)
6889 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6890 loop
6891 Comp_Unit := Parent (Comp_Unit);
6892 end loop;
6894 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6895 return False;
6896 end if;
6898 -- Now check whether the package is in the context of the subunit
6900 Clause := First (Context_Items (Comp_Unit));
6901 while Present (Clause) loop
6902 if Nkind (Clause) = N_With_Clause
6903 and then Entity (Name (Clause)) = P_Name
6904 then
6905 return True;
6906 end if;
6908 Clause := Next (Clause);
6909 end loop;
6911 return False;
6912 end Is_Reference_In_Subunit;
6914 -- Start of processing for Find_Selected_Component
6916 begin
6917 Analyze (P);
6919 if Nkind (P) = N_Error then
6920 return;
6921 end if;
6923 -- Selector name cannot be a character literal or an operator symbol in
6924 -- SPARK, except for the operator symbol in a renaming.
6926 if Restriction_Check_Required (SPARK_05) then
6927 if Nkind (Selector_Name (N)) = N_Character_Literal then
6928 Check_SPARK_05_Restriction
6929 ("character literal cannot be prefixed", N);
6930 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6931 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6932 then
6933 Check_SPARK_05_Restriction
6934 ("operator symbol cannot be prefixed", N);
6935 end if;
6936 end if;
6938 -- If the selector already has an entity, the node has been constructed
6939 -- in the course of expansion, and is known to be valid. Do not verify
6940 -- that it is defined for the type (it may be a private component used
6941 -- in the expansion of record equality).
6943 if Present (Entity (Selector_Name (N))) then
6944 if No (Etype (N)) or else Etype (N) = Any_Type then
6945 declare
6946 Sel_Name : constant Node_Id := Selector_Name (N);
6947 Selector : constant Entity_Id := Entity (Sel_Name);
6948 C_Etype : Node_Id;
6950 begin
6951 Set_Etype (Sel_Name, Etype (Selector));
6953 if not Is_Entity_Name (P) then
6954 Resolve (P);
6955 end if;
6957 -- Build an actual subtype except for the first parameter
6958 -- of an init proc, where this actual subtype is by
6959 -- definition incorrect, since the object is uninitialized
6960 -- (and does not even have defined discriminants etc.)
6962 if Is_Entity_Name (P)
6963 and then Ekind (Entity (P)) = E_Function
6964 then
6965 Nam := New_Copy (P);
6967 if Is_Overloaded (P) then
6968 Save_Interps (P, Nam);
6969 end if;
6971 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6972 Analyze_Call (P);
6973 Analyze_Selected_Component (N);
6974 return;
6976 elsif Ekind (Selector) = E_Component
6977 and then (not Is_Entity_Name (P)
6978 or else Chars (Entity (P)) /= Name_uInit)
6979 then
6980 -- Check if we already have an available subtype we can use
6982 if Ekind (Etype (P)) = E_Record_Subtype
6983 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6984 and then Is_Array_Type (Etype (Selector))
6985 and then not Is_Packed (Etype (Selector))
6986 and then Available_Subtype
6987 then
6988 return;
6990 -- Do not build the subtype when referencing components of
6991 -- dispatch table wrappers. Required to avoid generating
6992 -- elaboration code with HI runtimes.
6994 elsif RTU_Loaded (Ada_Tags)
6995 and then
6996 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6997 and then Scope (Selector) =
6998 RTE (RE_Dispatch_Table_Wrapper))
6999 or else
7000 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7001 and then Scope (Selector) =
7002 RTE (RE_No_Dispatch_Table_Wrapper)))
7003 then
7004 C_Etype := Empty;
7005 else
7006 C_Etype :=
7007 Build_Actual_Subtype_Of_Component
7008 (Etype (Selector), N);
7009 end if;
7011 else
7012 C_Etype := Empty;
7013 end if;
7015 if No (C_Etype) then
7016 C_Etype := Etype (Selector);
7017 else
7018 Insert_Action (N, C_Etype);
7019 C_Etype := Defining_Identifier (C_Etype);
7020 end if;
7022 Set_Etype (N, C_Etype);
7023 end;
7025 -- If this is the name of an entry or protected operation, and
7026 -- the prefix is an access type, insert an explicit dereference,
7027 -- so that entry calls are treated uniformly.
7029 if Is_Access_Type (Etype (P))
7030 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7031 then
7032 declare
7033 New_P : constant Node_Id :=
7034 Make_Explicit_Dereference (Sloc (P),
7035 Prefix => Relocate_Node (P));
7036 begin
7037 Rewrite (P, New_P);
7038 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7039 end;
7040 end if;
7042 -- If the selected component appears within a default expression
7043 -- and it has an actual subtype, the pre-analysis has not yet
7044 -- completed its analysis, because Insert_Actions is disabled in
7045 -- that context. Within the init proc of the enclosing type we
7046 -- must complete this analysis, if an actual subtype was created.
7048 elsif Inside_Init_Proc then
7049 declare
7050 Typ : constant Entity_Id := Etype (N);
7051 Decl : constant Node_Id := Declaration_Node (Typ);
7052 begin
7053 if Nkind (Decl) = N_Subtype_Declaration
7054 and then not Analyzed (Decl)
7055 and then Is_List_Member (Decl)
7056 and then No (Parent (Decl))
7057 then
7058 Remove (Decl);
7059 Insert_Action (N, Decl);
7060 end if;
7061 end;
7062 end if;
7064 return;
7066 elsif Is_Entity_Name (P) then
7067 P_Name := Entity (P);
7069 -- The prefix may denote an enclosing type which is the completion
7070 -- of an incomplete type declaration.
7072 if Is_Type (P_Name) then
7073 Set_Entity (P, Get_Full_View (P_Name));
7074 Set_Etype (P, Entity (P));
7075 P_Name := Entity (P);
7076 end if;
7078 P_Type := Base_Type (Etype (P));
7080 if Debug_Flag_E then
7081 Write_Str ("Found prefix type to be ");
7082 Write_Entity_Info (P_Type, " "); Write_Eol;
7083 end if;
7085 -- The designated type may be a limited view with no components.
7086 -- Check whether the non-limited view is available, because in some
7087 -- cases this will not be set when installing the context. Rewrite
7088 -- the node by introducing an explicit dereference at once, and
7089 -- setting the type of the rewritten prefix to the non-limited view
7090 -- of the original designated type.
7092 if Is_Access_Type (P_Type) then
7093 declare
7094 Desig_Typ : constant Entity_Id :=
7095 Directly_Designated_Type (P_Type);
7097 begin
7098 if Is_Incomplete_Type (Desig_Typ)
7099 and then From_Limited_With (Desig_Typ)
7100 and then Present (Non_Limited_View (Desig_Typ))
7101 then
7102 Rewrite (P,
7103 Make_Explicit_Dereference (Sloc (P),
7104 Prefix => Relocate_Node (P)));
7106 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7107 P_Type := Etype (P);
7108 end if;
7109 end;
7110 end if;
7112 -- First check for components of a record object (not the
7113 -- result of a call, which is handled below).
7115 if Is_Appropriate_For_Record (P_Type)
7116 and then not Is_Overloadable (P_Name)
7117 and then not Is_Type (P_Name)
7118 then
7119 -- Selected component of record. Type checking will validate
7120 -- name of selector.
7122 -- ??? Could we rewrite an implicit dereference into an explicit
7123 -- one here?
7125 Analyze_Selected_Component (N);
7127 -- Reference to type name in predicate/invariant expression
7129 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7130 and then not In_Open_Scopes (P_Name)
7131 and then (not Is_Concurrent_Type (Etype (P_Name))
7132 or else not In_Open_Scopes (Etype (P_Name)))
7133 then
7134 -- Call to protected operation or entry. Type checking is
7135 -- needed on the prefix.
7137 Analyze_Selected_Component (N);
7139 elsif (In_Open_Scopes (P_Name)
7140 and then Ekind (P_Name) /= E_Void
7141 and then not Is_Overloadable (P_Name))
7142 or else (Is_Concurrent_Type (Etype (P_Name))
7143 and then In_Open_Scopes (Etype (P_Name)))
7144 then
7145 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7146 -- enclosing construct that is not a subprogram or accept.
7148 -- A special case: a protected body may call an operation
7149 -- on an external object of the same type, in which case it
7150 -- is not an expanded name. If the prefix is the type itself,
7151 -- or the context is a single synchronized object it can only
7152 -- be interpreted as an expanded name.
7154 if Is_Concurrent_Type (Etype (P_Name)) then
7155 if Is_Type (P_Name)
7156 or else Present (Anonymous_Object (Etype (P_Name)))
7157 then
7158 Find_Expanded_Name (N);
7160 else
7161 Analyze_Selected_Component (N);
7162 return;
7163 end if;
7165 else
7166 Find_Expanded_Name (N);
7167 end if;
7169 elsif Ekind (P_Name) = E_Package then
7170 Find_Expanded_Name (N);
7172 elsif Is_Overloadable (P_Name) then
7174 -- The subprogram may be a renaming (of an enclosing scope) as
7175 -- in the case of the name of the generic within an instantiation.
7177 if Ekind_In (P_Name, E_Procedure, E_Function)
7178 and then Present (Alias (P_Name))
7179 and then Is_Generic_Instance (Alias (P_Name))
7180 then
7181 P_Name := Alias (P_Name);
7182 end if;
7184 if Is_Overloaded (P) then
7186 -- The prefix must resolve to a unique enclosing construct
7188 declare
7189 Found : Boolean := False;
7190 Ind : Interp_Index;
7191 It : Interp;
7193 begin
7194 Get_First_Interp (P, Ind, It);
7195 while Present (It.Nam) loop
7196 if In_Open_Scopes (It.Nam) then
7197 if Found then
7198 Error_Msg_N (
7199 "prefix must be unique enclosing scope", N);
7200 Set_Entity (N, Any_Id);
7201 Set_Etype (N, Any_Type);
7202 return;
7204 else
7205 Found := True;
7206 P_Name := It.Nam;
7207 end if;
7208 end if;
7210 Get_Next_Interp (Ind, It);
7211 end loop;
7212 end;
7213 end if;
7215 if In_Open_Scopes (P_Name) then
7216 Set_Entity (P, P_Name);
7217 Set_Is_Overloaded (P, False);
7218 Find_Expanded_Name (N);
7220 else
7221 -- If no interpretation as an expanded name is possible, it
7222 -- must be a selected component of a record returned by a
7223 -- function call. Reformat prefix as a function call, the rest
7224 -- is done by type resolution.
7226 -- Error if the prefix is procedure or entry, as is P.X
7228 if Ekind (P_Name) /= E_Function
7229 and then
7230 (not Is_Overloaded (P)
7231 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7232 then
7233 -- Prefix may mention a package that is hidden by a local
7234 -- declaration: let the user know. Scan the full homonym
7235 -- chain, the candidate package may be anywhere on it.
7237 if Present (Homonym (Current_Entity (P_Name))) then
7238 P_Name := Current_Entity (P_Name);
7240 while Present (P_Name) loop
7241 exit when Ekind (P_Name) = E_Package;
7242 P_Name := Homonym (P_Name);
7243 end loop;
7245 if Present (P_Name) then
7246 if not Is_Reference_In_Subunit then
7247 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7248 Error_Msg_NE
7249 ("package& is hidden by declaration#", N, P_Name);
7250 end if;
7252 Set_Entity (Prefix (N), P_Name);
7253 Find_Expanded_Name (N);
7254 return;
7256 else
7257 P_Name := Entity (Prefix (N));
7258 end if;
7259 end if;
7261 Error_Msg_NE
7262 ("invalid prefix in selected component&", N, P_Name);
7263 Change_Selected_Component_To_Expanded_Name (N);
7264 Set_Entity (N, Any_Id);
7265 Set_Etype (N, Any_Type);
7267 -- Here we have a function call, so do the reformatting
7269 else
7270 Nam := New_Copy (P);
7271 Save_Interps (P, Nam);
7273 -- We use Replace here because this is one of those cases
7274 -- where the parser has missclassified the node, and we fix
7275 -- things up and then do the semantic analysis on the fixed
7276 -- up node. Normally we do this using one of the Sinfo.CN
7277 -- routines, but this is too tricky for that.
7279 -- Note that using Rewrite would be wrong, because we would
7280 -- have a tree where the original node is unanalyzed, and
7281 -- this violates the required interface for ASIS.
7283 Replace (P,
7284 Make_Function_Call (Sloc (P), Name => Nam));
7286 -- Now analyze the reformatted node
7288 Analyze_Call (P);
7290 -- If the prefix is illegal after this transformation, there
7291 -- may be visibility errors on the prefix. The safest is to
7292 -- treat the selected component as an error.
7294 if Error_Posted (P) then
7295 Set_Etype (N, Any_Type);
7296 return;
7298 else
7299 Analyze_Selected_Component (N);
7300 end if;
7301 end if;
7302 end if;
7304 -- Remaining cases generate various error messages
7306 else
7307 -- Format node as expanded name, to avoid cascaded errors
7309 -- If the limited_with transformation was applied earlier, restore
7310 -- source for proper error reporting.
7312 if not Comes_From_Source (P)
7313 and then Nkind (P) = N_Explicit_Dereference
7314 then
7315 Rewrite (P, Prefix (P));
7316 P_Type := Etype (P);
7317 end if;
7319 Change_Selected_Component_To_Expanded_Name (N);
7320 Set_Entity (N, Any_Id);
7321 Set_Etype (N, Any_Type);
7323 -- Issue error message, but avoid this if error issued already.
7324 -- Use identifier of prefix if one is available.
7326 if P_Name = Any_Id then
7327 null;
7329 -- It is not an error if the prefix is the current instance of
7330 -- type name, e.g. the expression of a type aspect, when it is
7331 -- analyzed for ASIS use.
7333 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7334 null;
7336 elsif Ekind (P_Name) = E_Void then
7337 Premature_Usage (P);
7339 elsif Nkind (P) /= N_Attribute_Reference then
7341 -- This may have been meant as a prefixed call to a primitive
7342 -- of an untagged type. If it is a function call check type of
7343 -- its first formal and add explanation.
7345 declare
7346 F : constant Entity_Id :=
7347 Current_Entity (Selector_Name (N));
7348 begin
7349 if Present (F)
7350 and then Is_Overloadable (F)
7351 and then Present (First_Entity (F))
7352 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7353 then
7354 Error_Msg_N
7355 ("prefixed call is only allowed for objects of a "
7356 & "tagged type", N);
7357 end if;
7358 end;
7360 Error_Msg_N ("invalid prefix in selected component&", P);
7362 if Is_Access_Type (P_Type)
7363 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7364 then
7365 Error_Msg_N
7366 ("\dereference must not be of an incomplete type "
7367 & "(RM 3.10.1)", P);
7368 end if;
7370 else
7371 Error_Msg_N ("invalid prefix in selected component", P);
7372 end if;
7373 end if;
7375 -- Selector name is restricted in SPARK
7377 if Nkind (N) = N_Expanded_Name
7378 and then Restriction_Check_Required (SPARK_05)
7379 then
7380 if Is_Subprogram (P_Name) then
7381 Check_SPARK_05_Restriction
7382 ("prefix of expanded name cannot be a subprogram", P);
7383 elsif Ekind (P_Name) = E_Loop then
7384 Check_SPARK_05_Restriction
7385 ("prefix of expanded name cannot be a loop statement", P);
7386 end if;
7387 end if;
7389 else
7390 -- If prefix is not the name of an entity, it must be an expression,
7391 -- whose type is appropriate for a record. This is determined by
7392 -- type resolution.
7394 Analyze_Selected_Component (N);
7395 end if;
7397 Analyze_Dimension (N);
7398 end Find_Selected_Component;
7400 ---------------
7401 -- Find_Type --
7402 ---------------
7404 procedure Find_Type (N : Node_Id) is
7405 C : Entity_Id;
7406 Typ : Entity_Id;
7407 T : Entity_Id;
7408 T_Name : Entity_Id;
7410 begin
7411 if N = Error then
7412 return;
7414 elsif Nkind (N) = N_Attribute_Reference then
7416 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7417 -- need to enforce that at this point, since the declaration of the
7418 -- tagged type in the prefix would have been flagged already.
7420 if Attribute_Name (N) = Name_Class then
7421 Check_Restriction (No_Dispatch, N);
7422 Find_Type (Prefix (N));
7424 -- Propagate error from bad prefix
7426 if Etype (Prefix (N)) = Any_Type then
7427 Set_Entity (N, Any_Type);
7428 Set_Etype (N, Any_Type);
7429 return;
7430 end if;
7432 T := Base_Type (Entity (Prefix (N)));
7434 -- Case where type is not known to be tagged. Its appearance in
7435 -- the prefix of the 'Class attribute indicates that the full view
7436 -- will be tagged.
7438 if not Is_Tagged_Type (T) then
7439 if Ekind (T) = E_Incomplete_Type then
7441 -- It is legal to denote the class type of an incomplete
7442 -- type. The full type will have to be tagged, of course.
7443 -- In Ada 2005 this usage is declared obsolescent, so we
7444 -- warn accordingly. This usage is only legal if the type
7445 -- is completed in the current scope, and not for a limited
7446 -- view of a type.
7448 if Ada_Version >= Ada_2005 then
7450 -- Test whether the Available_View of a limited type view
7451 -- is tagged, since the limited view may not be marked as
7452 -- tagged if the type itself has an untagged incomplete
7453 -- type view in its package.
7455 if From_Limited_With (T)
7456 and then not Is_Tagged_Type (Available_View (T))
7457 then
7458 Error_Msg_N
7459 ("prefix of Class attribute must be tagged", N);
7460 Set_Etype (N, Any_Type);
7461 Set_Entity (N, Any_Type);
7462 return;
7464 -- ??? This test is temporarily disabled (always
7465 -- False) because it causes an unwanted warning on
7466 -- GNAT sources (built with -gnatg, which includes
7467 -- Warn_On_Obsolescent_ Feature). Once this issue
7468 -- is cleared in the sources, it can be enabled.
7470 elsif Warn_On_Obsolescent_Feature and then False then
7471 Error_Msg_N
7472 ("applying 'Class to an untagged incomplete type"
7473 & " is an obsolescent feature (RM J.11)?r?", N);
7474 end if;
7475 end if;
7477 Set_Is_Tagged_Type (T);
7478 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7479 Make_Class_Wide_Type (T);
7480 Set_Entity (N, Class_Wide_Type (T));
7481 Set_Etype (N, Class_Wide_Type (T));
7483 elsif Ekind (T) = E_Private_Type
7484 and then not Is_Generic_Type (T)
7485 and then In_Private_Part (Scope (T))
7486 then
7487 -- The Class attribute can be applied to an untagged private
7488 -- type fulfilled by a tagged type prior to the full type
7489 -- declaration (but only within the parent package's private
7490 -- part). Create the class-wide type now and check that the
7491 -- full type is tagged later during its analysis. Note that
7492 -- we do not mark the private type as tagged, unlike the
7493 -- case of incomplete types, because the type must still
7494 -- appear untagged to outside units.
7496 if No (Class_Wide_Type (T)) then
7497 Make_Class_Wide_Type (T);
7498 end if;
7500 Set_Entity (N, Class_Wide_Type (T));
7501 Set_Etype (N, Class_Wide_Type (T));
7503 else
7504 -- Should we introduce a type Any_Tagged and use Wrong_Type
7505 -- here, it would be a bit more consistent???
7507 Error_Msg_NE
7508 ("tagged type required, found}",
7509 Prefix (N), First_Subtype (T));
7510 Set_Entity (N, Any_Type);
7511 return;
7512 end if;
7514 -- Case of tagged type
7516 else
7517 if Is_Concurrent_Type (T) then
7518 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7520 -- Previous error. Create a class-wide type for the
7521 -- synchronized type itself, with minimal semantic
7522 -- attributes, to catch other errors in some ACATS tests.
7524 pragma Assert (Serious_Errors_Detected /= 0);
7525 Make_Class_Wide_Type (T);
7526 C := Class_Wide_Type (T);
7527 Set_First_Entity (C, First_Entity (T));
7529 else
7530 C := Class_Wide_Type
7531 (Corresponding_Record_Type (Entity (Prefix (N))));
7532 end if;
7534 else
7535 C := Class_Wide_Type (Entity (Prefix (N)));
7536 end if;
7538 Set_Entity_With_Checks (N, C);
7539 Generate_Reference (C, N);
7540 Set_Etype (N, C);
7541 end if;
7543 -- Base attribute, not allowed in Ada 83
7545 elsif Attribute_Name (N) = Name_Base then
7546 Error_Msg_Name_1 := Name_Base;
7547 Check_SPARK_05_Restriction
7548 ("attribute% is only allowed as prefix of another attribute", N);
7550 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7551 Error_Msg_N
7552 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7554 else
7555 Find_Type (Prefix (N));
7556 Typ := Entity (Prefix (N));
7558 if Ada_Version >= Ada_95
7559 and then not Is_Scalar_Type (Typ)
7560 and then not Is_Generic_Type (Typ)
7561 then
7562 Error_Msg_N
7563 ("prefix of Base attribute must be scalar type",
7564 Prefix (N));
7566 elsif Warn_On_Redundant_Constructs
7567 and then Base_Type (Typ) = Typ
7568 then
7569 Error_Msg_NE -- CODEFIX
7570 ("redundant attribute, & is its own base type?r?", N, Typ);
7571 end if;
7573 T := Base_Type (Typ);
7575 -- Rewrite attribute reference with type itself (see similar
7576 -- processing in Analyze_Attribute, case Base). Preserve prefix
7577 -- if present, for other legality checks.
7579 if Nkind (Prefix (N)) = N_Expanded_Name then
7580 Rewrite (N,
7581 Make_Expanded_Name (Sloc (N),
7582 Chars => Chars (T),
7583 Prefix => New_Copy (Prefix (Prefix (N))),
7584 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7586 else
7587 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7588 end if;
7590 Set_Entity (N, T);
7591 Set_Etype (N, T);
7592 end if;
7594 elsif Attribute_Name (N) = Name_Stub_Type then
7596 -- This is handled in Analyze_Attribute
7598 Analyze (N);
7600 -- All other attributes are invalid in a subtype mark
7602 else
7603 Error_Msg_N ("invalid attribute in subtype mark", N);
7604 end if;
7606 else
7607 Analyze (N);
7609 if Is_Entity_Name (N) then
7610 T_Name := Entity (N);
7611 else
7612 Error_Msg_N ("subtype mark required in this context", N);
7613 Set_Etype (N, Any_Type);
7614 return;
7615 end if;
7617 if T_Name = Any_Id or else Etype (N) = Any_Type then
7619 -- Undefined id. Make it into a valid type
7621 Set_Entity (N, Any_Type);
7623 elsif not Is_Type (T_Name)
7624 and then T_Name /= Standard_Void_Type
7625 then
7626 Error_Msg_Sloc := Sloc (T_Name);
7627 Error_Msg_N ("subtype mark required in this context", N);
7628 Error_Msg_NE ("\\found & declared#", N, T_Name);
7629 Set_Entity (N, Any_Type);
7631 else
7632 -- If the type is an incomplete type created to handle
7633 -- anonymous access components of a record type, then the
7634 -- incomplete type is the visible entity and subsequent
7635 -- references will point to it. Mark the original full
7636 -- type as referenced, to prevent spurious warnings.
7638 if Is_Incomplete_Type (T_Name)
7639 and then Present (Full_View (T_Name))
7640 and then not Comes_From_Source (T_Name)
7641 then
7642 Set_Referenced (Full_View (T_Name));
7643 end if;
7645 T_Name := Get_Full_View (T_Name);
7647 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7648 -- limited-with clauses
7650 if From_Limited_With (T_Name)
7651 and then Ekind (T_Name) in Incomplete_Kind
7652 and then Present (Non_Limited_View (T_Name))
7653 and then Is_Interface (Non_Limited_View (T_Name))
7654 then
7655 T_Name := Non_Limited_View (T_Name);
7656 end if;
7658 if In_Open_Scopes (T_Name) then
7659 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7661 -- In Ada 2005, a task name can be used in an access
7662 -- definition within its own body. It cannot be used
7663 -- in the discriminant part of the task declaration,
7664 -- nor anywhere else in the declaration because entries
7665 -- cannot have access parameters.
7667 if Ada_Version >= Ada_2005
7668 and then Nkind (Parent (N)) = N_Access_Definition
7669 then
7670 Set_Entity (N, T_Name);
7671 Set_Etype (N, T_Name);
7673 if Has_Completion (T_Name) then
7674 return;
7676 else
7677 Error_Msg_N
7678 ("task type cannot be used as type mark " &
7679 "within its own declaration", N);
7680 end if;
7682 else
7683 Error_Msg_N
7684 ("task type cannot be used as type mark " &
7685 "within its own spec or body", N);
7686 end if;
7688 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7690 -- In Ada 2005, a protected name can be used in an access
7691 -- definition within its own body.
7693 if Ada_Version >= Ada_2005
7694 and then Nkind (Parent (N)) = N_Access_Definition
7695 then
7696 Set_Entity (N, T_Name);
7697 Set_Etype (N, T_Name);
7698 return;
7700 else
7701 Error_Msg_N
7702 ("protected type cannot be used as type mark " &
7703 "within its own spec or body", N);
7704 end if;
7706 else
7707 Error_Msg_N ("type declaration cannot refer to itself", N);
7708 end if;
7710 Set_Etype (N, Any_Type);
7711 Set_Entity (N, Any_Type);
7712 Set_Error_Posted (T_Name);
7713 return;
7714 end if;
7716 Set_Entity (N, T_Name);
7717 Set_Etype (N, T_Name);
7718 end if;
7719 end if;
7721 if Present (Etype (N)) and then Comes_From_Source (N) then
7722 if Is_Fixed_Point_Type (Etype (N)) then
7723 Check_Restriction (No_Fixed_Point, N);
7724 elsif Is_Floating_Point_Type (Etype (N)) then
7725 Check_Restriction (No_Floating_Point, N);
7726 end if;
7728 -- A Ghost type must appear in a specific context
7730 if Is_Ghost_Entity (Etype (N)) then
7731 Check_Ghost_Context (Etype (N), N);
7732 end if;
7733 end if;
7734 end Find_Type;
7736 ------------------------------------
7737 -- Has_Implicit_Character_Literal --
7738 ------------------------------------
7740 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7741 Id : Entity_Id;
7742 Found : Boolean := False;
7743 P : constant Entity_Id := Entity (Prefix (N));
7744 Priv_Id : Entity_Id := Empty;
7746 begin
7747 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7748 Priv_Id := First_Private_Entity (P);
7749 end if;
7751 if P = Standard_Standard then
7752 Change_Selected_Component_To_Expanded_Name (N);
7753 Rewrite (N, Selector_Name (N));
7754 Analyze (N);
7755 Set_Etype (Original_Node (N), Standard_Character);
7756 return True;
7757 end if;
7759 Id := First_Entity (P);
7760 while Present (Id) and then Id /= Priv_Id loop
7761 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7763 -- We replace the node with the literal itself, resolve as a
7764 -- character, and set the type correctly.
7766 if not Found then
7767 Change_Selected_Component_To_Expanded_Name (N);
7768 Rewrite (N, Selector_Name (N));
7769 Analyze (N);
7770 Set_Etype (N, Id);
7771 Set_Etype (Original_Node (N), Id);
7772 Found := True;
7774 else
7775 -- More than one type derived from Character in given scope.
7776 -- Collect all possible interpretations.
7778 Add_One_Interp (N, Id, Id);
7779 end if;
7780 end if;
7782 Next_Entity (Id);
7783 end loop;
7785 return Found;
7786 end Has_Implicit_Character_Literal;
7788 ----------------------
7789 -- Has_Private_With --
7790 ----------------------
7792 function Has_Private_With (E : Entity_Id) return Boolean is
7793 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7794 Item : Node_Id;
7796 begin
7797 Item := First (Context_Items (Comp_Unit));
7798 while Present (Item) loop
7799 if Nkind (Item) = N_With_Clause
7800 and then Private_Present (Item)
7801 and then Entity (Name (Item)) = E
7802 then
7803 return True;
7804 end if;
7806 Next (Item);
7807 end loop;
7809 return False;
7810 end Has_Private_With;
7812 ---------------------------
7813 -- Has_Implicit_Operator --
7814 ---------------------------
7816 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7817 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7818 P : constant Entity_Id := Entity (Prefix (N));
7819 Id : Entity_Id;
7820 Priv_Id : Entity_Id := Empty;
7822 procedure Add_Implicit_Operator
7823 (T : Entity_Id;
7824 Op_Type : Entity_Id := Empty);
7825 -- Add implicit interpretation to node N, using the type for which a
7826 -- predefined operator exists. If the operator yields a boolean type,
7827 -- the Operand_Type is implicitly referenced by the operator, and a
7828 -- reference to it must be generated.
7830 ---------------------------
7831 -- Add_Implicit_Operator --
7832 ---------------------------
7834 procedure Add_Implicit_Operator
7835 (T : Entity_Id;
7836 Op_Type : Entity_Id := Empty)
7838 Predef_Op : Entity_Id;
7840 begin
7841 Predef_Op := Current_Entity (Selector_Name (N));
7842 while Present (Predef_Op)
7843 and then Scope (Predef_Op) /= Standard_Standard
7844 loop
7845 Predef_Op := Homonym (Predef_Op);
7846 end loop;
7848 if Nkind (N) = N_Selected_Component then
7849 Change_Selected_Component_To_Expanded_Name (N);
7850 end if;
7852 -- If the context is an unanalyzed function call, determine whether
7853 -- a binary or unary interpretation is required.
7855 if Nkind (Parent (N)) = N_Indexed_Component then
7856 declare
7857 Is_Binary_Call : constant Boolean :=
7858 Present
7859 (Next (First (Expressions (Parent (N)))));
7860 Is_Binary_Op : constant Boolean :=
7861 First_Entity
7862 (Predef_Op) /= Last_Entity (Predef_Op);
7863 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7865 begin
7866 if Is_Binary_Call then
7867 if Is_Binary_Op then
7868 Add_One_Interp (N, Predef_Op, T);
7869 else
7870 Add_One_Interp (N, Predef_Op2, T);
7871 end if;
7873 else
7874 if not Is_Binary_Op then
7875 Add_One_Interp (N, Predef_Op, T);
7876 else
7877 Add_One_Interp (N, Predef_Op2, T);
7878 end if;
7879 end if;
7880 end;
7882 else
7883 Add_One_Interp (N, Predef_Op, T);
7885 -- For operators with unary and binary interpretations, if
7886 -- context is not a call, add both
7888 if Present (Homonym (Predef_Op)) then
7889 Add_One_Interp (N, Homonym (Predef_Op), T);
7890 end if;
7891 end if;
7893 -- The node is a reference to a predefined operator, and
7894 -- an implicit reference to the type of its operands.
7896 if Present (Op_Type) then
7897 Generate_Operator_Reference (N, Op_Type);
7898 else
7899 Generate_Operator_Reference (N, T);
7900 end if;
7901 end Add_Implicit_Operator;
7903 -- Start of processing for Has_Implicit_Operator
7905 begin
7906 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7907 Priv_Id := First_Private_Entity (P);
7908 end if;
7910 Id := First_Entity (P);
7912 case Op_Id is
7914 -- Boolean operators: an implicit declaration exists if the scope
7915 -- contains a declaration for a derived Boolean type, or for an
7916 -- array of Boolean type.
7918 when Name_Op_And
7919 | Name_Op_Not
7920 | Name_Op_Or
7921 | Name_Op_Xor
7923 while Id /= Priv_Id loop
7924 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7925 Add_Implicit_Operator (Id);
7926 return True;
7927 end if;
7929 Next_Entity (Id);
7930 end loop;
7932 -- Equality: look for any non-limited type (result is Boolean)
7934 when Name_Op_Eq
7935 | Name_Op_Ne
7937 while Id /= Priv_Id loop
7938 if Is_Type (Id)
7939 and then not Is_Limited_Type (Id)
7940 and then Is_Base_Type (Id)
7941 then
7942 Add_Implicit_Operator (Standard_Boolean, Id);
7943 return True;
7944 end if;
7946 Next_Entity (Id);
7947 end loop;
7949 -- Comparison operators: scalar type, or array of scalar
7951 when Name_Op_Ge
7952 | Name_Op_Gt
7953 | Name_Op_Le
7954 | Name_Op_Lt
7956 while Id /= Priv_Id loop
7957 if (Is_Scalar_Type (Id)
7958 or else (Is_Array_Type (Id)
7959 and then Is_Scalar_Type (Component_Type (Id))))
7960 and then Is_Base_Type (Id)
7961 then
7962 Add_Implicit_Operator (Standard_Boolean, Id);
7963 return True;
7964 end if;
7966 Next_Entity (Id);
7967 end loop;
7969 -- Arithmetic operators: any numeric type
7971 when Name_Op_Abs
7972 | Name_Op_Add
7973 | Name_Op_Divide
7974 | Name_Op_Expon
7975 | Name_Op_Mod
7976 | Name_Op_Multiply
7977 | Name_Op_Rem
7978 | Name_Op_Subtract
7980 while Id /= Priv_Id loop
7981 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7982 Add_Implicit_Operator (Id);
7983 return True;
7984 end if;
7986 Next_Entity (Id);
7987 end loop;
7989 -- Concatenation: any one-dimensional array type
7991 when Name_Op_Concat =>
7992 while Id /= Priv_Id loop
7993 if Is_Array_Type (Id)
7994 and then Number_Dimensions (Id) = 1
7995 and then Is_Base_Type (Id)
7996 then
7997 Add_Implicit_Operator (Id);
7998 return True;
7999 end if;
8001 Next_Entity (Id);
8002 end loop;
8004 -- What is the others condition here? Should we be using a
8005 -- subtype of Name_Id that would restrict to operators ???
8007 when others =>
8008 null;
8009 end case;
8011 -- If we fall through, then we do not have an implicit operator
8013 return False;
8014 end Has_Implicit_Operator;
8016 -----------------------------------
8017 -- Has_Loop_In_Inner_Open_Scopes --
8018 -----------------------------------
8020 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8021 begin
8022 -- Several scope stacks are maintained by Scope_Stack. The base of the
8023 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8024 -- flag in the scope stack entry. Note that the scope stacks used to
8025 -- simply be delimited implicitly by the presence of Standard_Standard
8026 -- at their base, but there now are cases where this is not sufficient
8027 -- because Standard_Standard actually may appear in the middle of the
8028 -- active set of scopes.
8030 for J in reverse 0 .. Scope_Stack.Last loop
8032 -- S was reached without seing a loop scope first
8034 if Scope_Stack.Table (J).Entity = S then
8035 return False;
8037 -- S was not yet reached, so it contains at least one inner loop
8039 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8040 return True;
8041 end if;
8043 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8044 -- cases where Standard_Standard appears in the middle of the active
8045 -- set of scopes. This affects the declaration and overriding of
8046 -- private inherited operations in instantiations of generic child
8047 -- units.
8049 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8050 end loop;
8052 raise Program_Error; -- unreachable
8053 end Has_Loop_In_Inner_Open_Scopes;
8055 --------------------
8056 -- In_Open_Scopes --
8057 --------------------
8059 function In_Open_Scopes (S : Entity_Id) return Boolean is
8060 begin
8061 -- Several scope stacks are maintained by Scope_Stack. The base of the
8062 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8063 -- flag in the scope stack entry. Note that the scope stacks used to
8064 -- simply be delimited implicitly by the presence of Standard_Standard
8065 -- at their base, but there now are cases where this is not sufficient
8066 -- because Standard_Standard actually may appear in the middle of the
8067 -- active set of scopes.
8069 for J in reverse 0 .. Scope_Stack.Last loop
8070 if Scope_Stack.Table (J).Entity = S then
8071 return True;
8072 end if;
8074 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8075 -- cases where Standard_Standard appears in the middle of the active
8076 -- set of scopes. This affects the declaration and overriding of
8077 -- private inherited operations in instantiations of generic child
8078 -- units.
8080 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8081 end loop;
8083 return False;
8084 end In_Open_Scopes;
8086 -----------------------------
8087 -- Inherit_Renamed_Profile --
8088 -----------------------------
8090 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8091 New_F : Entity_Id;
8092 Old_F : Entity_Id;
8093 Old_T : Entity_Id;
8094 New_T : Entity_Id;
8096 begin
8097 if Ekind (Old_S) = E_Operator then
8098 New_F := First_Formal (New_S);
8100 while Present (New_F) loop
8101 Set_Etype (New_F, Base_Type (Etype (New_F)));
8102 Next_Formal (New_F);
8103 end loop;
8105 Set_Etype (New_S, Base_Type (Etype (New_S)));
8107 else
8108 New_F := First_Formal (New_S);
8109 Old_F := First_Formal (Old_S);
8111 while Present (New_F) loop
8112 New_T := Etype (New_F);
8113 Old_T := Etype (Old_F);
8115 -- If the new type is a renaming of the old one, as is the case
8116 -- for actuals in instances, retain its name, to simplify later
8117 -- disambiguation.
8119 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8120 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8121 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8122 then
8123 null;
8124 else
8125 Set_Etype (New_F, Old_T);
8126 end if;
8128 Next_Formal (New_F);
8129 Next_Formal (Old_F);
8130 end loop;
8132 pragma Assert (No (Old_F));
8134 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8135 Set_Etype (New_S, Etype (Old_S));
8136 end if;
8137 end if;
8138 end Inherit_Renamed_Profile;
8140 ----------------
8141 -- Initialize --
8142 ----------------
8144 procedure Initialize is
8145 begin
8146 Urefs.Init;
8147 end Initialize;
8149 -------------------------
8150 -- Install_Use_Clauses --
8151 -------------------------
8153 procedure Install_Use_Clauses
8154 (Clause : Node_Id;
8155 Force_Installation : Boolean := False)
8157 U : Node_Id;
8159 begin
8160 U := Clause;
8161 while Present (U) loop
8163 -- Case of USE package
8165 if Nkind (U) = N_Use_Package_Clause then
8166 Use_One_Package (U, Name (U), True);
8168 -- Case of USE TYPE
8170 else
8171 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8173 end if;
8175 Next_Use_Clause (U);
8176 end loop;
8177 end Install_Use_Clauses;
8179 -------------------------------------
8180 -- Is_Appropriate_For_Entry_Prefix --
8181 -------------------------------------
8183 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8184 P_Type : Entity_Id := T;
8186 begin
8187 if Is_Access_Type (P_Type) then
8188 P_Type := Designated_Type (P_Type);
8189 end if;
8191 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8192 end Is_Appropriate_For_Entry_Prefix;
8194 -------------------------------
8195 -- Is_Appropriate_For_Record --
8196 -------------------------------
8198 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8200 function Has_Components (T1 : Entity_Id) return Boolean;
8201 -- Determine if given type has components (i.e. is either a record
8202 -- type or a type that has discriminants).
8204 --------------------
8205 -- Has_Components --
8206 --------------------
8208 function Has_Components (T1 : Entity_Id) return Boolean is
8209 begin
8210 return Is_Record_Type (T1)
8211 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8212 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8213 or else (Is_Incomplete_Type (T1)
8214 and then From_Limited_With (T1)
8215 and then Present (Non_Limited_View (T1))
8216 and then Is_Record_Type
8217 (Get_Full_View (Non_Limited_View (T1))));
8218 end Has_Components;
8220 -- Start of processing for Is_Appropriate_For_Record
8222 begin
8223 return
8224 Present (T)
8225 and then (Has_Components (T)
8226 or else (Is_Access_Type (T)
8227 and then Has_Components (Designated_Type (T))));
8228 end Is_Appropriate_For_Record;
8230 ----------------------
8231 -- Mark_Use_Clauses --
8232 ----------------------
8234 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8235 procedure Mark_Parameters (Call : Entity_Id);
8236 -- Perform use_type_clause marking for all parameters in a subprogram
8237 -- or operator call.
8239 procedure Mark_Use_Package (Pak : Entity_Id);
8240 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8241 -- marking each clause in the chain as effective in the process.
8243 procedure Mark_Use_Type (E : Entity_Id);
8244 -- Similar to Do_Use_Package_Marking except we move up the
8245 -- Prev_Use_Clause chain for the type denoted by E.
8247 ---------------------
8248 -- Mark_Parameters --
8249 ---------------------
8251 procedure Mark_Parameters (Call : Entity_Id) is
8252 Curr : Node_Id;
8254 begin
8255 -- Move through all of the formals
8257 Curr := First_Formal (Call);
8258 while Present (Curr) loop
8259 Mark_Use_Type (Curr);
8261 Curr := Next_Formal (Curr);
8262 end loop;
8264 -- Handle the return type
8266 Mark_Use_Type (Call);
8267 end Mark_Parameters;
8269 ----------------------
8270 -- Mark_Use_Package --
8271 ----------------------
8273 procedure Mark_Use_Package (Pak : Entity_Id) is
8274 Curr : Node_Id;
8276 begin
8277 -- Ignore cases where the scope of the type is not a package (e.g.
8278 -- Standard_Standard).
8280 if Ekind (Pak) /= E_Package then
8281 return;
8282 end if;
8284 Curr := Current_Use_Clause (Pak);
8285 while Present (Curr)
8286 and then not Is_Effective_Use_Clause (Curr)
8287 loop
8288 -- We need to mark the previous use clauses as effective, but
8289 -- each use clause may in turn render other use_package_clauses
8290 -- effective. Additionally, it is possible to have a parent
8291 -- package renamed as a child of itself so we must check the
8292 -- prefix entity is not the same as the package we are marking.
8294 if Nkind (Name (Curr)) /= N_Identifier
8295 and then Present (Prefix (Name (Curr)))
8296 and then Entity (Prefix (Name (Curr))) /= Pak
8297 then
8298 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8300 -- It is also possible to have a child package without a prefix
8301 -- that relies on a previous use_package_clause.
8303 elsif Nkind (Name (Curr)) = N_Identifier
8304 and then Is_Child_Unit (Entity (Name (Curr)))
8305 then
8306 Mark_Use_Package (Scope (Entity (Name (Curr))));
8307 end if;
8309 -- Mark the use_package_clause as effective and move up the chain
8311 Set_Is_Effective_Use_Clause (Curr);
8313 Curr := Prev_Use_Clause (Curr);
8314 end loop;
8315 end Mark_Use_Package;
8317 -------------------
8318 -- Mark_Use_Type --
8319 -------------------
8321 procedure Mark_Use_Type (E : Entity_Id) is
8322 Curr : Node_Id;
8323 Base : Entity_Id;
8325 begin
8326 -- Ignore void types and unresolved string literals and primitives
8328 if Nkind (E) = N_String_Literal
8329 or else Nkind (Etype (E)) not in N_Entity
8330 or else not Is_Type (Etype (E))
8331 then
8332 return;
8333 end if;
8335 -- Primitives with class-wide operands might additionally render
8336 -- their base type's use_clauses effective - so do a recursive check
8337 -- here.
8339 Base := Base_Type (Etype (E));
8341 if Ekind (Base) = E_Class_Wide_Type then
8342 Mark_Use_Type (Base);
8343 end if;
8345 -- The package containing the type or operator function being used
8346 -- may be in use as well, so mark any use_package_clauses for it as
8347 -- effective. There are also additional sanity checks performed here
8348 -- for ignoring previous errors.
8350 Mark_Use_Package (Scope (Base));
8352 if Nkind (E) in N_Op
8353 and then Present (Entity (E))
8354 and then Present (Scope (Entity (E)))
8355 then
8356 Mark_Use_Package (Scope (Entity (E)));
8357 end if;
8359 Curr := Current_Use_Clause (Base);
8360 while Present (Curr)
8361 and then not Is_Effective_Use_Clause (Curr)
8362 loop
8363 -- Current use_type_clause may render other use_package_clauses
8364 -- effective.
8366 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8367 and then Present (Prefix (Subtype_Mark (Curr)))
8368 then
8369 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8370 end if;
8372 -- Mark the use_type_clause as effective and move up the chain
8374 Set_Is_Effective_Use_Clause (Curr);
8376 Curr := Prev_Use_Clause (Curr);
8377 end loop;
8378 end Mark_Use_Type;
8380 -- Start of processing for Mark_Use_Clauses
8382 begin
8383 -- Use clauses in and of themselves do not count as a "use" of a
8384 -- package.
8386 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8387 return;
8388 end if;
8390 -- Handle entities
8392 if Nkind (Id) in N_Entity then
8394 -- Mark the entity's package
8396 if Is_Potentially_Use_Visible (Id) then
8397 Mark_Use_Package (Scope (Id));
8398 end if;
8400 -- Mark enumeration literals
8402 if Ekind (Id) = E_Enumeration_Literal then
8403 Mark_Use_Type (Id);
8405 -- Mark primitives
8407 elsif (Ekind (Id) in Overloadable_Kind
8408 or else Ekind_In (Id, E_Generic_Function,
8409 E_Generic_Procedure))
8410 and then (Is_Potentially_Use_Visible (Id)
8411 or else Is_Intrinsic_Subprogram (Id)
8412 or else (Ekind_In (Id, E_Function, E_Procedure)
8413 and then Is_Generic_Actual_Subprogram (Id)))
8414 then
8415 Mark_Parameters (Id);
8416 end if;
8418 -- Handle nodes
8420 else
8421 -- Mark operators
8423 if Nkind (Id) in N_Op then
8425 -- At this point the left operand may not be resolved if we are
8426 -- encountering multiple operators next to eachother in an
8427 -- expression.
8429 if Nkind (Id) in N_Binary_Op
8430 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8431 then
8432 Mark_Use_Type (Left_Opnd (Id));
8433 end if;
8435 Mark_Use_Type (Right_Opnd (Id));
8436 Mark_Use_Type (Id);
8438 -- Mark entity identifiers
8440 elsif Nkind (Id) in N_Has_Entity
8441 and then (Is_Potentially_Use_Visible (Entity (Id))
8442 or else (Is_Generic_Instance (Entity (Id))
8443 and then Is_Immediately_Visible (Entity (Id))))
8444 then
8445 -- Ignore fully qualified names as they do not count as a "use" of
8446 -- a package.
8448 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8449 or else (Present (Prefix (Id))
8450 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8451 then
8452 Mark_Use_Clauses (Entity (Id));
8453 end if;
8454 end if;
8455 end if;
8456 end Mark_Use_Clauses;
8458 --------------------------------
8459 -- Most_Descendant_Use_Clause --
8460 --------------------------------
8462 function Most_Descendant_Use_Clause
8463 (Clause1 : Entity_Id;
8464 Clause2 : Entity_Id) return Entity_Id
8466 Scope1, Scope2 : Entity_Id;
8468 begin
8469 if Clause1 = Clause2 then
8470 return Clause1;
8471 end if;
8473 -- We determine which one is the most descendant by the scope distance
8474 -- to the ultimate parent unit.
8476 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8477 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8478 while Scope1 /= Standard_Standard
8479 and then Scope2 /= Standard_Standard
8480 loop
8481 Scope1 := Scope (Scope1);
8482 Scope2 := Scope (Scope2);
8484 if not Present (Scope1) then
8485 return Clause1;
8486 elsif not Present (Scope2) then
8487 return Clause2;
8488 end if;
8489 end loop;
8491 if Scope1 = Standard_Standard then
8492 return Clause1;
8493 end if;
8495 return Clause2;
8496 end Most_Descendant_Use_Clause;
8498 ---------------
8499 -- Pop_Scope --
8500 ---------------
8502 procedure Pop_Scope is
8503 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8504 S : constant Entity_Id := SST.Entity;
8506 begin
8507 if Debug_Flag_E then
8508 Write_Info;
8509 end if;
8511 -- Set Default_Storage_Pool field of the library unit if necessary
8513 if Ekind_In (S, E_Package, E_Generic_Package)
8514 and then
8515 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8516 then
8517 declare
8518 Aux : constant Node_Id :=
8519 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8520 begin
8521 if No (Default_Storage_Pool (Aux)) then
8522 Set_Default_Storage_Pool (Aux, Default_Pool);
8523 end if;
8524 end;
8525 end if;
8527 Scope_Suppress := SST.Save_Scope_Suppress;
8528 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8529 Check_Policy_List := SST.Save_Check_Policy_List;
8530 Default_Pool := SST.Save_Default_Storage_Pool;
8531 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8532 SPARK_Mode := SST.Save_SPARK_Mode;
8533 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8534 Default_SSO := SST.Save_Default_SSO;
8535 Uneval_Old := SST.Save_Uneval_Old;
8537 if Debug_Flag_W then
8538 Write_Str ("<-- exiting scope: ");
8539 Write_Name (Chars (Current_Scope));
8540 Write_Str (", Depth=");
8541 Write_Int (Int (Scope_Stack.Last));
8542 Write_Eol;
8543 end if;
8545 End_Use_Clauses (SST.First_Use_Clause);
8547 -- If the actions to be wrapped are still there they will get lost
8548 -- causing incomplete code to be generated. It is better to abort in
8549 -- this case (and we do the abort even with assertions off since the
8550 -- penalty is incorrect code generation).
8552 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8553 raise Program_Error;
8554 end if;
8556 -- Free last subprogram name if allocated, and pop scope
8558 Free (SST.Last_Subprogram_Name);
8559 Scope_Stack.Decrement_Last;
8560 end Pop_Scope;
8562 ----------------
8563 -- Push_Scope --
8564 ----------------
8566 procedure Push_Scope (S : Entity_Id) is
8567 E : constant Entity_Id := Scope (S);
8569 begin
8570 if Ekind (S) = E_Void then
8571 null;
8573 -- Set scope depth if not a non-concurrent type, and we have not yet set
8574 -- the scope depth. This means that we have the first occurrence of the
8575 -- scope, and this is where the depth is set.
8577 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8578 and then not Scope_Depth_Set (S)
8579 then
8580 if S = Standard_Standard then
8581 Set_Scope_Depth_Value (S, Uint_0);
8583 elsif Is_Child_Unit (S) then
8584 Set_Scope_Depth_Value (S, Uint_1);
8586 elsif not Is_Record_Type (Current_Scope) then
8587 if Ekind (S) = E_Loop then
8588 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8589 else
8590 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8591 end if;
8592 end if;
8593 end if;
8595 Scope_Stack.Increment_Last;
8597 declare
8598 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8600 begin
8601 SST.Entity := S;
8602 SST.Save_Scope_Suppress := Scope_Suppress;
8603 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8604 SST.Save_Check_Policy_List := Check_Policy_List;
8605 SST.Save_Default_Storage_Pool := Default_Pool;
8606 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8607 SST.Save_SPARK_Mode := SPARK_Mode;
8608 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8609 SST.Save_Default_SSO := Default_SSO;
8610 SST.Save_Uneval_Old := Uneval_Old;
8612 -- Each new scope pushed onto the scope stack inherits the component
8613 -- alignment of the previous scope. This emulates the "visibility"
8614 -- semantics of pragma Component_Alignment.
8616 if Scope_Stack.Last > Scope_Stack.First then
8617 SST.Component_Alignment_Default :=
8618 Scope_Stack.Table
8619 (Scope_Stack.Last - 1). Component_Alignment_Default;
8621 -- Otherwise, this is the first scope being pushed on the scope
8622 -- stack. Inherit the component alignment from the configuration
8623 -- form of pragma Component_Alignment (if any).
8625 else
8626 SST.Component_Alignment_Default :=
8627 Configuration_Component_Alignment;
8628 end if;
8630 SST.Last_Subprogram_Name := null;
8631 SST.Is_Transient := False;
8632 SST.Node_To_Be_Wrapped := Empty;
8633 SST.Pending_Freeze_Actions := No_List;
8634 SST.Actions_To_Be_Wrapped := (others => No_List);
8635 SST.First_Use_Clause := Empty;
8636 SST.Is_Active_Stack_Base := False;
8637 SST.Previous_Visibility := False;
8638 SST.Locked_Shared_Objects := No_Elist;
8639 end;
8641 if Debug_Flag_W then
8642 Write_Str ("--> new scope: ");
8643 Write_Name (Chars (Current_Scope));
8644 Write_Str (", Id=");
8645 Write_Int (Int (Current_Scope));
8646 Write_Str (", Depth=");
8647 Write_Int (Int (Scope_Stack.Last));
8648 Write_Eol;
8649 end if;
8651 -- Deal with copying flags from the previous scope to this one. This is
8652 -- not necessary if either scope is standard, or if the new scope is a
8653 -- child unit.
8655 if S /= Standard_Standard
8656 and then Scope (S) /= Standard_Standard
8657 and then not Is_Child_Unit (S)
8658 then
8659 if Nkind (E) not in N_Entity then
8660 return;
8661 end if;
8663 -- Copy categorization flags from Scope (S) to S, this is not done
8664 -- when Scope (S) is Standard_Standard since propagation is from
8665 -- library unit entity inwards. Copy other relevant attributes as
8666 -- well (Discard_Names in particular).
8668 -- We only propagate inwards for library level entities,
8669 -- inner level subprograms do not inherit the categorization.
8671 if Is_Library_Level_Entity (S) then
8672 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8673 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8674 Set_Discard_Names (S, Discard_Names (E));
8675 Set_Suppress_Value_Tracking_On_Call
8676 (S, Suppress_Value_Tracking_On_Call (E));
8677 Set_Categorization_From_Scope (E => S, Scop => E);
8678 end if;
8679 end if;
8681 if Is_Child_Unit (S)
8682 and then Present (E)
8683 and then Ekind_In (E, E_Package, E_Generic_Package)
8684 and then
8685 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8686 then
8687 declare
8688 Aux : constant Node_Id :=
8689 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8690 begin
8691 if Present (Default_Storage_Pool (Aux)) then
8692 Default_Pool := Default_Storage_Pool (Aux);
8693 end if;
8694 end;
8695 end if;
8696 end Push_Scope;
8698 ---------------------
8699 -- Premature_Usage --
8700 ---------------------
8702 procedure Premature_Usage (N : Node_Id) is
8703 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8704 E : Entity_Id := Entity (N);
8706 begin
8707 -- Within an instance, the analysis of the actual for a formal object
8708 -- does not see the name of the object itself. This is significant only
8709 -- if the object is an aggregate, where its analysis does not do any
8710 -- name resolution on component associations. (see 4717-008). In such a
8711 -- case, look for the visible homonym on the chain.
8713 if In_Instance and then Present (Homonym (E)) then
8714 E := Homonym (E);
8715 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8716 E := Homonym (E);
8717 end loop;
8719 if Present (E) then
8720 Set_Entity (N, E);
8721 Set_Etype (N, Etype (E));
8722 return;
8723 end if;
8724 end if;
8726 if Kind = N_Component_Declaration then
8727 Error_Msg_N
8728 ("component&! cannot be used before end of record declaration", N);
8730 elsif Kind = N_Parameter_Specification then
8731 Error_Msg_N
8732 ("formal parameter&! cannot be used before end of specification",
8735 elsif Kind = N_Discriminant_Specification then
8736 Error_Msg_N
8737 ("discriminant&! cannot be used before end of discriminant part",
8740 elsif Kind = N_Procedure_Specification
8741 or else Kind = N_Function_Specification
8742 then
8743 Error_Msg_N
8744 ("subprogram&! cannot be used before end of its declaration",
8747 elsif Kind = N_Full_Type_Declaration then
8748 Error_Msg_N
8749 ("type& cannot be used before end of its declaration!", N);
8751 else
8752 Error_Msg_N
8753 ("object& cannot be used before end of its declaration!", N);
8755 -- If the premature reference appears as the expression in its own
8756 -- declaration, rewrite it to prevent compiler loops in subsequent
8757 -- uses of this mangled declaration in address clauses.
8759 if Nkind (Parent (N)) = N_Object_Declaration then
8760 Set_Entity (N, Any_Id);
8761 end if;
8762 end if;
8763 end Premature_Usage;
8765 ------------------------
8766 -- Present_System_Aux --
8767 ------------------------
8769 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8770 Loc : Source_Ptr;
8771 Aux_Name : Unit_Name_Type;
8772 Unum : Unit_Number_Type;
8773 Withn : Node_Id;
8774 With_Sys : Node_Id;
8775 The_Unit : Node_Id;
8777 function Find_System (C_Unit : Node_Id) return Entity_Id;
8778 -- Scan context clause of compilation unit to find with_clause
8779 -- for System.
8781 -----------------
8782 -- Find_System --
8783 -----------------
8785 function Find_System (C_Unit : Node_Id) return Entity_Id is
8786 With_Clause : Node_Id;
8788 begin
8789 With_Clause := First (Context_Items (C_Unit));
8790 while Present (With_Clause) loop
8791 if (Nkind (With_Clause) = N_With_Clause
8792 and then Chars (Name (With_Clause)) = Name_System)
8793 and then Comes_From_Source (With_Clause)
8794 then
8795 return With_Clause;
8796 end if;
8798 Next (With_Clause);
8799 end loop;
8801 return Empty;
8802 end Find_System;
8804 -- Start of processing for Present_System_Aux
8806 begin
8807 -- The child unit may have been loaded and analyzed already
8809 if Present (System_Aux_Id) then
8810 return True;
8812 -- If no previous pragma for System.Aux, nothing to load
8814 elsif No (System_Extend_Unit) then
8815 return False;
8817 -- Use the unit name given in the pragma to retrieve the unit.
8818 -- Verify that System itself appears in the context clause of the
8819 -- current compilation. If System is not present, an error will
8820 -- have been reported already.
8822 else
8823 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8825 The_Unit := Unit (Cunit (Current_Sem_Unit));
8827 if No (With_Sys)
8828 and then
8829 (Nkind (The_Unit) = N_Package_Body
8830 or else (Nkind (The_Unit) = N_Subprogram_Body
8831 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8832 then
8833 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8834 end if;
8836 if No (With_Sys) and then Present (N) then
8838 -- If we are compiling a subunit, we need to examine its
8839 -- context as well (Current_Sem_Unit is the parent unit);
8841 The_Unit := Parent (N);
8842 while Nkind (The_Unit) /= N_Compilation_Unit loop
8843 The_Unit := Parent (The_Unit);
8844 end loop;
8846 if Nkind (Unit (The_Unit)) = N_Subunit then
8847 With_Sys := Find_System (The_Unit);
8848 end if;
8849 end if;
8851 if No (With_Sys) then
8852 return False;
8853 end if;
8855 Loc := Sloc (With_Sys);
8856 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8857 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8858 Name_Buffer (1 .. 7) := "system.";
8859 Name_Buffer (Name_Len + 8) := '%';
8860 Name_Buffer (Name_Len + 9) := 's';
8861 Name_Len := Name_Len + 9;
8862 Aux_Name := Name_Find;
8864 Unum :=
8865 Load_Unit
8866 (Load_Name => Aux_Name,
8867 Required => False,
8868 Subunit => False,
8869 Error_Node => With_Sys);
8871 if Unum /= No_Unit then
8872 Semantics (Cunit (Unum));
8873 System_Aux_Id :=
8874 Defining_Entity (Specification (Unit (Cunit (Unum))));
8876 Withn :=
8877 Make_With_Clause (Loc,
8878 Name =>
8879 Make_Expanded_Name (Loc,
8880 Chars => Chars (System_Aux_Id),
8881 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8882 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8884 Set_Entity (Name (Withn), System_Aux_Id);
8886 Set_Library_Unit (Withn, Cunit (Unum));
8887 Set_Corresponding_Spec (Withn, System_Aux_Id);
8888 Set_First_Name (Withn, True);
8889 Set_Implicit_With (Withn, True);
8891 Insert_After (With_Sys, Withn);
8892 Mark_Rewrite_Insertion (Withn);
8893 Set_Context_Installed (Withn);
8895 return True;
8897 -- Here if unit load failed
8899 else
8900 Error_Msg_Name_1 := Name_System;
8901 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8902 Error_Msg_N
8903 ("extension package `%.%` does not exist",
8904 Opt.System_Extend_Unit);
8905 return False;
8906 end if;
8907 end if;
8908 end Present_System_Aux;
8910 -------------------------
8911 -- Restore_Scope_Stack --
8912 -------------------------
8914 procedure Restore_Scope_Stack
8915 (List : Elist_Id;
8916 Handle_Use : Boolean := True)
8918 SS_Last : constant Int := Scope_Stack.Last;
8919 Elmt : Elmt_Id;
8921 begin
8922 -- Restore visibility of previous scope stack, if any, using the list
8923 -- we saved (we use Remove, since this list will not be used again).
8925 loop
8926 Elmt := Last_Elmt (List);
8927 exit when Elmt = No_Elmt;
8928 Set_Is_Immediately_Visible (Node (Elmt));
8929 Remove_Last_Elmt (List);
8930 end loop;
8932 -- Restore use clauses
8934 if SS_Last >= Scope_Stack.First
8935 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8936 and then Handle_Use
8937 then
8938 Install_Use_Clauses
8939 (Scope_Stack.Table (SS_Last).First_Use_Clause,
8940 Force_Installation => True);
8941 end if;
8942 end Restore_Scope_Stack;
8944 ----------------------
8945 -- Save_Scope_Stack --
8946 ----------------------
8948 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8949 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8950 -- from immediate visibility entities and Restore_Scope_Stack took care
8951 -- of restoring their visibility analyzing the context of each entity. The
8952 -- problem of such approach is that it was fragile and caused unexpected
8953 -- visibility problems, and indeed one test was found where there was a
8954 -- real problem.
8956 -- Furthermore, the following experiment was carried out:
8958 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8959 -- entities whose attribute Is_Immediately_Visible is modified
8960 -- from True to False.
8962 -- - Restore_Scope_Stack was modified to store in another Elist2
8963 -- all the entities whose attribute Is_Immediately_Visible is
8964 -- modified from False to True.
8966 -- - Extra code was added to verify that all the elements of Elist1
8967 -- are found in Elist2
8969 -- This test shows that there may be more occurrences of this problem which
8970 -- have not yet been detected. As a result, we replaced that approach by
8971 -- the current one in which Save_Scope_Stack returns the list of entities
8972 -- whose visibility is changed, and that list is passed to Restore_Scope_
8973 -- Stack to undo that change. This approach is simpler and safer, although
8974 -- it consumes more memory.
8976 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8977 Result : constant Elist_Id := New_Elmt_List;
8978 E : Entity_Id;
8979 S : Entity_Id;
8980 SS_Last : constant Int := Scope_Stack.Last;
8982 procedure Remove_From_Visibility (E : Entity_Id);
8983 -- If E is immediately visible then append it to the result and remove
8984 -- it temporarily from visibility.
8986 ----------------------------
8987 -- Remove_From_Visibility --
8988 ----------------------------
8990 procedure Remove_From_Visibility (E : Entity_Id) is
8991 begin
8992 if Is_Immediately_Visible (E) then
8993 Append_Elmt (E, Result);
8994 Set_Is_Immediately_Visible (E, False);
8995 end if;
8996 end Remove_From_Visibility;
8998 -- Start of processing for Save_Scope_Stack
9000 begin
9001 if SS_Last >= Scope_Stack.First
9002 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9003 then
9004 if Handle_Use then
9005 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9006 end if;
9008 -- If the call is from within a compilation unit, as when called from
9009 -- Rtsfind, make current entries in scope stack invisible while we
9010 -- analyze the new unit.
9012 for J in reverse 0 .. SS_Last loop
9013 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9014 or else No (Scope_Stack.Table (J).Entity);
9016 S := Scope_Stack.Table (J).Entity;
9018 Remove_From_Visibility (S);
9020 E := First_Entity (S);
9021 while Present (E) loop
9022 Remove_From_Visibility (E);
9023 Next_Entity (E);
9024 end loop;
9025 end loop;
9027 end if;
9029 return Result;
9030 end Save_Scope_Stack;
9032 -------------
9033 -- Set_Use --
9034 -------------
9036 procedure Set_Use (L : List_Id) is
9037 Decl : Node_Id;
9039 begin
9040 if Present (L) then
9041 Decl := First (L);
9042 while Present (Decl) loop
9043 if Nkind (Decl) = N_Use_Package_Clause then
9044 Chain_Use_Clause (Decl);
9045 Use_One_Package (Decl, Name (Decl));
9047 elsif Nkind (Decl) = N_Use_Type_Clause then
9048 Chain_Use_Clause (Decl);
9049 Use_One_Type (Subtype_Mark (Decl));
9051 end if;
9053 Next (Decl);
9054 end loop;
9055 end if;
9056 end Set_Use;
9058 -----------------------------
9059 -- Update_Use_Clause_Chain --
9060 -----------------------------
9062 procedure Update_Use_Clause_Chain is
9063 procedure Update_Chain_In_Scope (Level : Int);
9064 -- Iterate through one level in the scope stack verifying each use-type
9065 -- clause within said level is used then reset the Current_Use_Clause
9066 -- to a redundant use clause outside of the current ending scope if such
9067 -- a clause exists.
9069 ---------------------------
9070 -- Update_Chain_In_Scope --
9071 ---------------------------
9073 procedure Update_Chain_In_Scope (Level : Int) is
9074 Curr : Node_Id;
9075 N : Node_Id;
9077 begin
9078 -- Loop through all use clauses within the scope dictated by Level
9080 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9081 while Present (Curr) loop
9083 -- Retrieve the subtype mark or name within the current current
9084 -- use clause.
9086 if Nkind (Curr) = N_Use_Type_Clause then
9087 N := Subtype_Mark (Curr);
9088 else
9089 N := Name (Curr);
9090 end if;
9092 -- If warnings for unreferenced entities are enabled and the
9093 -- current use clause has not been marked effective.
9095 if Check_Unreferenced
9096 and then Comes_From_Source (Curr)
9097 and then not Is_Effective_Use_Clause (Curr)
9098 and then not In_Instance
9099 and then not In_Inlined_Body
9100 then
9101 -- We are dealing with a potentially unused use_package_clause
9103 if Nkind (Curr) = N_Use_Package_Clause then
9105 -- Renamings and formal subprograms may cause the associated
9106 -- to be marked as effective instead of the original.
9108 if not (Present (Associated_Node (N))
9109 and then Present
9110 (Current_Use_Clause
9111 (Associated_Node (N)))
9112 and then Is_Effective_Use_Clause
9113 (Current_Use_Clause
9114 (Associated_Node (N))))
9115 then
9116 Error_Msg_Node_1 := Entity (N);
9117 Error_Msg_NE
9118 ("use clause for package & has no effect?u?",
9119 Curr, Entity (N));
9120 end if;
9122 -- We are dealing with an unused use_type_clause
9124 else
9125 Error_Msg_Node_1 := Etype (N);
9126 Error_Msg_NE
9127 ("use clause for } has no effect?u?", Curr, Etype (N));
9128 end if;
9129 end if;
9131 -- Verify that we haven't already processed a redundant
9132 -- use_type_clause within the same scope before we move the
9133 -- current use clause up to a previous one for type T.
9135 if Present (Prev_Use_Clause (Curr)) then
9136 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9137 end if;
9139 Curr := Next_Use_Clause (Curr);
9140 end loop;
9141 end Update_Chain_In_Scope;
9143 -- Start of processing for Update_Use_Clause_Chain
9145 begin
9146 Update_Chain_In_Scope (Scope_Stack.Last);
9148 -- Deal with use clauses within the context area if the current
9149 -- scope is a compilation unit.
9151 if Is_Compilation_Unit (Current_Scope)
9152 and then Sloc (Scope_Stack.Table
9153 (Scope_Stack.Last - 1).Entity) = Standard_Location
9154 then
9155 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9156 end if;
9157 end Update_Use_Clause_Chain;
9159 ---------------------
9160 -- Use_One_Package --
9161 ---------------------
9163 procedure Use_One_Package
9164 (N : Node_Id;
9165 Pack_Name : Entity_Id := Empty;
9166 Force : Boolean := False)
9168 procedure Note_Redundant_Use (Clause : Node_Id);
9169 -- Mark the name in a use clause as redundant if the corresponding
9170 -- entity is already use-visible. Emit a warning if the use clause comes
9171 -- from source and the proper warnings are enabled.
9173 ------------------------
9174 -- Note_Redundant_Use --
9175 ------------------------
9177 procedure Note_Redundant_Use (Clause : Node_Id) is
9178 Decl : constant Node_Id := Parent (Clause);
9179 Pack_Name : constant Entity_Id := Entity (Clause);
9181 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9182 Prev_Use : Node_Id := Empty;
9183 Redundant : Node_Id := Empty;
9184 -- The Use_Clause which is actually redundant. In the simplest case
9185 -- it is Pack itself, but when we compile a body we install its
9186 -- context before that of its spec, in which case it is the
9187 -- use_clause in the spec that will appear to be redundant, and we
9188 -- want the warning to be placed on the body. Similar complications
9189 -- appear when the redundancy is between a child unit and one of its
9190 -- ancestors.
9192 begin
9193 -- Could be renamed...
9195 if No (Cur_Use) then
9196 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9197 end if;
9199 Set_Redundant_Use (Clause, True);
9201 if not Comes_From_Source (Clause)
9202 or else In_Instance
9203 or else not Warn_On_Redundant_Constructs
9204 then
9205 return;
9206 end if;
9208 if not Is_Compilation_Unit (Current_Scope) then
9210 -- If the use_clause is in an inner scope, it is made redundant by
9211 -- some clause in the current context, with one exception: If we
9212 -- are compiling a nested package body, and the use_clause comes
9213 -- from then corresponding spec, the clause is not necessarily
9214 -- fully redundant, so we should not warn. If a warning was
9215 -- warranted, it would have been given when the spec was
9216 -- processed.
9218 if Nkind (Parent (Decl)) = N_Package_Specification then
9219 declare
9220 Package_Spec_Entity : constant Entity_Id :=
9221 Defining_Unit_Name (Parent (Decl));
9222 begin
9223 if In_Package_Body (Package_Spec_Entity) then
9224 return;
9225 end if;
9226 end;
9227 end if;
9229 Redundant := Clause;
9230 Prev_Use := Cur_Use;
9232 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9233 declare
9234 Cur_Unit : constant Unit_Number_Type :=
9235 Get_Source_Unit (Cur_Use);
9236 New_Unit : constant Unit_Number_Type :=
9237 Get_Source_Unit (Clause);
9239 Scop : Entity_Id;
9241 begin
9242 if Cur_Unit = New_Unit then
9244 -- Redundant clause in same body
9246 Redundant := Clause;
9247 Prev_Use := Cur_Use;
9249 elsif Cur_Unit = Current_Sem_Unit then
9251 -- If the new clause is not in the current unit it has been
9252 -- analyzed first, and it makes the other one redundant.
9253 -- However, if the new clause appears in a subunit, Cur_Unit
9254 -- is still the parent, and in that case the redundant one
9255 -- is the one appearing in the subunit.
9257 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9258 Redundant := Clause;
9259 Prev_Use := Cur_Use;
9261 -- Most common case: redundant clause in body, original
9262 -- clause in spec. Current scope is spec entity.
9264 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9265 Redundant := Cur_Use;
9266 Prev_Use := Clause;
9268 else
9269 -- The new clause may appear in an unrelated unit, when
9270 -- the parents of a generic are being installed prior to
9271 -- instantiation. In this case there must be no warning.
9272 -- We detect this case by checking whether the current
9273 -- top of the stack is related to the current
9274 -- compilation.
9276 Scop := Current_Scope;
9277 while Present (Scop)
9278 and then Scop /= Standard_Standard
9279 loop
9280 if Is_Compilation_Unit (Scop)
9281 and then not Is_Child_Unit (Scop)
9282 then
9283 return;
9285 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9286 exit;
9287 end if;
9289 Scop := Scope (Scop);
9290 end loop;
9292 Redundant := Cur_Use;
9293 Prev_Use := Clause;
9294 end if;
9296 elsif New_Unit = Current_Sem_Unit then
9297 Redundant := Clause;
9298 Prev_Use := Cur_Use;
9300 else
9301 -- Neither is the current unit, so they appear in parent or
9302 -- sibling units. Warning will be emitted elsewhere.
9304 return;
9305 end if;
9306 end;
9308 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9309 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9310 then
9311 -- Use_clause is in child unit of current unit, and the child unit
9312 -- appears in the context of the body of the parent, so it has
9313 -- been installed first, even though it is the redundant one.
9314 -- Depending on their placement in the context, the visible or the
9315 -- private parts of the two units, either might appear as
9316 -- redundant, but the message has to be on the current unit.
9318 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9319 Redundant := Cur_Use;
9320 Prev_Use := Clause;
9321 else
9322 Redundant := Clause;
9323 Prev_Use := Cur_Use;
9324 end if;
9326 -- If the new use clause appears in the private part of a parent
9327 -- unit it may appear to be redundant w.r.t. a use clause in a
9328 -- child unit, but the previous use clause was needed in the
9329 -- visible part of the child, and no warning should be emitted.
9331 if Nkind (Parent (Decl)) = N_Package_Specification
9332 and then List_Containing (Decl) =
9333 Private_Declarations (Parent (Decl))
9334 then
9335 declare
9336 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9337 Spec : constant Node_Id :=
9338 Specification (Unit (Cunit (Current_Sem_Unit)));
9340 begin
9341 if Is_Compilation_Unit (Par)
9342 and then Par /= Cunit_Entity (Current_Sem_Unit)
9343 and then Parent (Cur_Use) = Spec
9344 and then List_Containing (Cur_Use) =
9345 Visible_Declarations (Spec)
9346 then
9347 return;
9348 end if;
9349 end;
9350 end if;
9352 -- Finally, if the current use clause is in the context then the
9353 -- clause is redundant when it is nested within the unit.
9355 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9356 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9357 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9358 then
9359 Redundant := Clause;
9360 Prev_Use := Cur_Use;
9362 end if;
9364 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9366 -- Make sure we are looking at most-descendant use_package_clause
9367 -- by traversing the chain with Find_Most_Prev and then verifying
9368 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9370 if Nkind (Prev_Use) = N_Use_Package_Clause
9371 and then
9372 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9373 or else Most_Descendant_Use_Clause
9374 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9375 then
9376 Prev_Use := Find_Most_Prev (Prev_Use);
9377 end if;
9379 Error_Msg_Sloc := Sloc (Prev_Use);
9380 Error_Msg_NE -- CODEFIX
9381 ("& is already use-visible through previous use_clause #??",
9382 Redundant, Pack_Name);
9383 end if;
9384 end Note_Redundant_Use;
9386 -- Local variables
9388 Current_Instance : Entity_Id := Empty;
9389 Id : Entity_Id;
9390 P : Entity_Id;
9391 Prev : Entity_Id;
9392 Private_With_OK : Boolean := False;
9393 Real_P : Entity_Id;
9395 -- Start of processing for Use_One_Package
9397 begin
9398 -- Use_One_Package may have been called recursively to handle an
9399 -- implicit use for a auxiliary system package, so set P accordingly
9400 -- and skip redundancy checks.
9402 if No (Pack_Name) and then Present_System_Aux (N) then
9403 P := System_Aux_Id;
9405 -- Check for redundant use_package_clauses
9407 else
9408 -- Ignore cases where we are dealing with a non user defined package
9409 -- like Standard_Standard or something other than a valid package.
9411 if not Is_Entity_Name (Pack_Name)
9412 or else No (Entity (Pack_Name))
9413 or else Ekind (Entity (Pack_Name)) /= E_Package
9414 then
9415 return;
9416 end if;
9418 -- When a renaming exists we must check it for redundancy. The
9419 -- original package would have already been seen at this point.
9421 if Present (Renamed_Object (Entity (Pack_Name))) then
9422 P := Renamed_Object (Entity (Pack_Name));
9423 else
9424 P := Entity (Pack_Name);
9425 end if;
9427 -- Check for redundant clauses then set the current use clause for
9428 -- P if were are not "forcing" an installation from a scope
9429 -- reinstallation that is done throughout analysis for various
9430 -- reasons.
9432 if In_Use (P) then
9433 Note_Redundant_Use (Pack_Name);
9435 if not Force then
9436 Set_Current_Use_Clause (P, N);
9437 end if;
9439 return;
9441 -- Warn about detected redundant clauses
9443 elsif not Force
9444 and then In_Open_Scopes (P)
9445 and then not Is_Hidden_Open_Scope (P)
9446 then
9447 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9448 Error_Msg_NE -- CODEFIX
9449 ("& is already use-visible within itself?r?",
9450 Pack_Name, P);
9451 end if;
9453 return;
9454 end if;
9456 -- Set P back to the non-renamed package so that visiblilty of the
9457 -- entities within the package can be properly set below.
9459 P := Entity (Pack_Name);
9460 end if;
9462 Set_In_Use (P);
9463 Set_Current_Use_Clause (P, N);
9465 -- Ada 2005 (AI-50217): Check restriction
9467 if From_Limited_With (P) then
9468 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9469 end if;
9471 -- Find enclosing instance, if any
9473 if In_Instance then
9474 Current_Instance := Current_Scope;
9475 while not Is_Generic_Instance (Current_Instance) loop
9476 Current_Instance := Scope (Current_Instance);
9477 end loop;
9479 if No (Hidden_By_Use_Clause (N)) then
9480 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9481 end if;
9482 end if;
9484 -- If unit is a package renaming, indicate that the renamed package is
9485 -- also in use (the flags on both entities must remain consistent, and a
9486 -- subsequent use of either of them should be recognized as redundant).
9488 if Present (Renamed_Object (P)) then
9489 Set_In_Use (Renamed_Object (P));
9490 Set_Current_Use_Clause (Renamed_Object (P), N);
9491 Real_P := Renamed_Object (P);
9492 else
9493 Real_P := P;
9494 end if;
9496 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9497 -- found in the private part of a package specification
9499 if In_Private_Part (Current_Scope)
9500 and then Has_Private_With (P)
9501 and then Is_Child_Unit (Current_Scope)
9502 and then Is_Child_Unit (P)
9503 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9504 then
9505 Private_With_OK := True;
9506 end if;
9508 -- Loop through entities in one package making them potentially
9509 -- use-visible.
9511 Id := First_Entity (P);
9512 while Present (Id)
9513 and then (Id /= First_Private_Entity (P)
9514 or else Private_With_OK) -- Ada 2005 (AI-262)
9515 loop
9516 Prev := Current_Entity (Id);
9517 while Present (Prev) loop
9518 if Is_Immediately_Visible (Prev)
9519 and then (not Is_Overloadable (Prev)
9520 or else not Is_Overloadable (Id)
9521 or else (Type_Conformant (Id, Prev)))
9522 then
9523 if No (Current_Instance) then
9525 -- Potentially use-visible entity remains hidden
9527 goto Next_Usable_Entity;
9529 -- A use clause within an instance hides outer global entities,
9530 -- which are not used to resolve local entities in the
9531 -- instance. Note that the predefined entities in Standard
9532 -- could not have been hidden in the generic by a use clause,
9533 -- and therefore remain visible. Other compilation units whose
9534 -- entities appear in Standard must be hidden in an instance.
9536 -- To determine whether an entity is external to the instance
9537 -- we compare the scope depth of its scope with that of the
9538 -- current instance. However, a generic actual of a subprogram
9539 -- instance is declared in the wrapper package but will not be
9540 -- hidden by a use-visible entity. similarly, an entity that is
9541 -- declared in an enclosing instance will not be hidden by an
9542 -- an entity declared in a generic actual, which can only have
9543 -- been use-visible in the generic and will not have hidden the
9544 -- entity in the generic parent.
9546 -- If Id is called Standard, the predefined package with the
9547 -- same name is in the homonym chain. It has to be ignored
9548 -- because it has no defined scope (being the only entity in
9549 -- the system with this mandated behavior).
9551 elsif not Is_Hidden (Id)
9552 and then Present (Scope (Prev))
9553 and then not Is_Wrapper_Package (Scope (Prev))
9554 and then Scope_Depth (Scope (Prev)) <
9555 Scope_Depth (Current_Instance)
9556 and then (Scope (Prev) /= Standard_Standard
9557 or else Sloc (Prev) > Standard_Location)
9558 then
9559 if In_Open_Scopes (Scope (Prev))
9560 and then Is_Generic_Instance (Scope (Prev))
9561 and then Present (Associated_Formal_Package (P))
9562 then
9563 null;
9565 else
9566 Set_Is_Potentially_Use_Visible (Id);
9567 Set_Is_Immediately_Visible (Prev, False);
9568 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9569 end if;
9570 end if;
9572 -- A user-defined operator is not use-visible if the predefined
9573 -- operator for the type is immediately visible, which is the case
9574 -- if the type of the operand is in an open scope. This does not
9575 -- apply to user-defined operators that have operands of different
9576 -- types, because the predefined mixed mode operations (multiply
9577 -- and divide) apply to universal types and do not hide anything.
9579 elsif Ekind (Prev) = E_Operator
9580 and then Operator_Matches_Spec (Prev, Id)
9581 and then In_Open_Scopes
9582 (Scope (Base_Type (Etype (First_Formal (Id)))))
9583 and then (No (Next_Formal (First_Formal (Id)))
9584 or else Etype (First_Formal (Id)) =
9585 Etype (Next_Formal (First_Formal (Id)))
9586 or else Chars (Prev) = Name_Op_Expon)
9587 then
9588 goto Next_Usable_Entity;
9590 -- In an instance, two homonyms may become use_visible through the
9591 -- actuals of distinct formal packages. In the generic, only the
9592 -- current one would have been visible, so make the other one
9593 -- not use_visible.
9595 elsif Present (Current_Instance)
9596 and then Is_Potentially_Use_Visible (Prev)
9597 and then not Is_Overloadable (Prev)
9598 and then Scope (Id) /= Scope (Prev)
9599 and then Used_As_Generic_Actual (Scope (Prev))
9600 and then Used_As_Generic_Actual (Scope (Id))
9601 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9602 Current_Use_Clause (Scope (Id)))
9603 then
9604 Set_Is_Potentially_Use_Visible (Prev, False);
9605 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9606 end if;
9608 Prev := Homonym (Prev);
9609 end loop;
9611 -- On exit, we know entity is not hidden, unless it is private
9613 if not Is_Hidden (Id)
9614 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9615 then
9616 Set_Is_Potentially_Use_Visible (Id);
9618 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9619 Set_Is_Potentially_Use_Visible (Full_View (Id));
9620 end if;
9621 end if;
9623 <<Next_Usable_Entity>>
9624 Next_Entity (Id);
9625 end loop;
9627 -- Child units are also made use-visible by a use clause, but they may
9628 -- appear after all visible declarations in the parent entity list.
9630 while Present (Id) loop
9631 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9632 Set_Is_Potentially_Use_Visible (Id);
9633 end if;
9635 Next_Entity (Id);
9636 end loop;
9638 if Chars (Real_P) = Name_System
9639 and then Scope (Real_P) = Standard_Standard
9640 and then Present_System_Aux (N)
9641 then
9642 Use_One_Package (N);
9643 end if;
9644 end Use_One_Package;
9646 ------------------
9647 -- Use_One_Type --
9648 ------------------
9650 procedure Use_One_Type
9651 (Id : Node_Id;
9652 Installed : Boolean := False;
9653 Force : Boolean := False)
9655 function Spec_Reloaded_For_Body return Boolean;
9656 -- Determine whether the compilation unit is a package body and the use
9657 -- type clause is in the spec of the same package. Even though the spec
9658 -- was analyzed first, its context is reloaded when analysing the body.
9660 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9661 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9662 -- class-wide operations of ancestor types are use-visible if the
9663 -- ancestor type is visible.
9665 ----------------------------
9666 -- Spec_Reloaded_For_Body --
9667 ----------------------------
9669 function Spec_Reloaded_For_Body return Boolean is
9670 begin
9671 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9672 declare
9673 Spec : constant Node_Id :=
9674 Parent (List_Containing (Parent (Id)));
9676 begin
9677 -- Check whether type is declared in a package specification,
9678 -- and current unit is the corresponding package body. The
9679 -- use clauses themselves may be within a nested package.
9681 return
9682 Nkind (Spec) = N_Package_Specification
9683 and then In_Same_Source_Unit
9684 (Corresponding_Body (Parent (Spec)),
9685 Cunit_Entity (Current_Sem_Unit));
9686 end;
9687 end if;
9689 return False;
9690 end Spec_Reloaded_For_Body;
9692 -------------------------------
9693 -- Use_Class_Wide_Operations --
9694 -------------------------------
9696 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9697 function Is_Class_Wide_Operation_Of
9698 (Op : Entity_Id;
9699 T : Entity_Id) return Boolean;
9700 -- Determine whether a subprogram has a class-wide parameter or
9701 -- result that is T'Class.
9703 ---------------------------------
9704 -- Is_Class_Wide_Operation_Of --
9705 ---------------------------------
9707 function Is_Class_Wide_Operation_Of
9708 (Op : Entity_Id;
9709 T : Entity_Id) return Boolean
9711 Formal : Entity_Id;
9713 begin
9714 Formal := First_Formal (Op);
9715 while Present (Formal) loop
9716 if Etype (Formal) = Class_Wide_Type (T) then
9717 return True;
9718 end if;
9720 Next_Formal (Formal);
9721 end loop;
9723 if Etype (Op) = Class_Wide_Type (T) then
9724 return True;
9725 end if;
9727 return False;
9728 end Is_Class_Wide_Operation_Of;
9730 -- Local variables
9732 Ent : Entity_Id;
9733 Scop : Entity_Id;
9735 -- Start of processing for Use_Class_Wide_Operations
9737 begin
9738 Scop := Scope (Typ);
9739 if not Is_Hidden (Scop) then
9740 Ent := First_Entity (Scop);
9741 while Present (Ent) loop
9742 if Is_Overloadable (Ent)
9743 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9744 and then not Is_Potentially_Use_Visible (Ent)
9745 then
9746 Set_Is_Potentially_Use_Visible (Ent);
9747 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9748 end if;
9750 Next_Entity (Ent);
9751 end loop;
9752 end if;
9754 if Is_Derived_Type (Typ) then
9755 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9756 end if;
9757 end Use_Class_Wide_Operations;
9759 -- Local variables
9761 Elmt : Elmt_Id;
9762 Is_Known_Used : Boolean;
9763 Op_List : Elist_Id;
9764 T : Entity_Id;
9766 -- Start of processing for Use_One_Type
9768 begin
9769 if Entity (Id) = Any_Type then
9770 return;
9771 end if;
9773 -- It is the type determined by the subtype mark (8.4(8)) whose
9774 -- operations become potentially use-visible.
9776 T := Base_Type (Entity (Id));
9778 -- Either the type itself is used, the package where it is declared is
9779 -- in use or the entity is declared in the current package, thus
9780 -- use-visible.
9782 Is_Known_Used :=
9783 (In_Use (T)
9784 and then ((Present (Current_Use_Clause (T))
9785 and then All_Present (Current_Use_Clause (T)))
9786 or else not All_Present (Parent (Id))))
9787 or else In_Use (Scope (T))
9788 or else Scope (T) = Current_Scope;
9790 Set_Redundant_Use (Id,
9791 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9793 if Ekind (T) = E_Incomplete_Type then
9794 Error_Msg_N ("premature usage of incomplete type", Id);
9796 elsif In_Open_Scopes (Scope (T)) then
9797 null;
9799 -- A limited view cannot appear in a use_type_clause. However, an access
9800 -- type whose designated type is limited has the flag but is not itself
9801 -- a limited view unless we only have a limited view of its enclosing
9802 -- package.
9804 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9805 Error_Msg_N
9806 ("incomplete type from limited view cannot appear in use clause",
9807 Id);
9809 -- If the use clause is redundant, Used_Operations will usually be
9810 -- empty, but we need to set it to empty here in one case: If we are
9811 -- instantiating a generic library unit, then we install the ancestors
9812 -- of that unit in the scope stack, which involves reprocessing use
9813 -- clauses in those ancestors. Such a use clause will typically have a
9814 -- nonempty Used_Operations unless it was redundant in the generic unit,
9815 -- even if it is redundant at the place of the instantiation.
9817 elsif Redundant_Use (Id) then
9819 -- We must avoid incorrectly setting the Current_Use_Clause when we
9820 -- are working with a redundant clause that has already been linked
9821 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9823 if Present (Current_Use_Clause (T))
9824 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9825 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9826 then
9827 null;
9828 else
9829 Set_Current_Use_Clause (T, Parent (Id));
9830 end if;
9832 Set_Used_Operations (Parent (Id), New_Elmt_List);
9834 -- If the subtype mark designates a subtype in a different package,
9835 -- we have to check that the parent type is visible, otherwise the
9836 -- use_type_clause is a no-op. Not clear how to do that???
9838 else
9839 Set_Current_Use_Clause (T, Parent (Id));
9840 Set_In_Use (T);
9842 -- If T is tagged, primitive operators on class-wide operands are
9843 -- also available.
9845 if Is_Tagged_Type (T) then
9846 Set_In_Use (Class_Wide_Type (T));
9847 end if;
9849 -- Iterate over primitive operations of the type. If an operation is
9850 -- already use_visible, it is the result of a previous use_clause,
9851 -- and already appears on the corresponding entity chain. If the
9852 -- clause is being reinstalled, operations are already use-visible.
9854 if Installed then
9855 null;
9857 else
9858 Op_List := Collect_Primitive_Operations (T);
9859 Elmt := First_Elmt (Op_List);
9860 while Present (Elmt) loop
9861 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9862 or else Chars (Node (Elmt)) in Any_Operator_Name)
9863 and then not Is_Hidden (Node (Elmt))
9864 and then not Is_Potentially_Use_Visible (Node (Elmt))
9865 then
9866 Set_Is_Potentially_Use_Visible (Node (Elmt));
9867 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9869 elsif Ada_Version >= Ada_2012
9870 and then All_Present (Parent (Id))
9871 and then not Is_Hidden (Node (Elmt))
9872 and then not Is_Potentially_Use_Visible (Node (Elmt))
9873 then
9874 Set_Is_Potentially_Use_Visible (Node (Elmt));
9875 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9876 end if;
9878 Next_Elmt (Elmt);
9879 end loop;
9880 end if;
9882 if Ada_Version >= Ada_2012
9883 and then All_Present (Parent (Id))
9884 and then Is_Tagged_Type (T)
9885 then
9886 Use_Class_Wide_Operations (T);
9887 end if;
9888 end if;
9890 -- If warning on redundant constructs, check for unnecessary WITH
9892 if not Force
9893 and then Warn_On_Redundant_Constructs
9894 and then Is_Known_Used
9896 -- with P; with P; use P;
9897 -- package P is package X is package body X is
9898 -- type T ... use P.T;
9900 -- The compilation unit is the body of X. GNAT first compiles the
9901 -- spec of X, then proceeds to the body. At that point P is marked
9902 -- as use visible. The analysis then reinstalls the spec along with
9903 -- its context. The use clause P.T is now recognized as redundant,
9904 -- but in the wrong context. Do not emit a warning in such cases.
9905 -- Do not emit a warning either if we are in an instance, there is
9906 -- no redundancy between an outer use_clause and one that appears
9907 -- within the generic.
9909 and then not Spec_Reloaded_For_Body
9910 and then not In_Instance
9911 and then not In_Inlined_Body
9912 then
9913 -- The type already has a use clause
9915 if In_Use (T) then
9917 -- Case where we know the current use clause for the type
9919 if Present (Current_Use_Clause (T)) then
9920 Use_Clause_Known : declare
9921 Clause1 : constant Node_Id :=
9922 Find_Most_Prev (Current_Use_Clause (T));
9923 Clause2 : constant Node_Id := Parent (Id);
9924 Ent1 : Entity_Id;
9925 Ent2 : Entity_Id;
9926 Err_No : Node_Id;
9927 Unit1 : Node_Id;
9928 Unit2 : Node_Id;
9930 -- Start of processing for Use_Clause_Known
9932 begin
9933 -- If both current use_type_clause and the use_type_clause
9934 -- for the type are at the compilation unit level, one of
9935 -- the units must be an ancestor of the other, and the
9936 -- warning belongs on the descendant.
9938 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9939 and then
9940 Nkind (Parent (Clause2)) = N_Compilation_Unit
9941 then
9942 -- If the unit is a subprogram body that acts as spec,
9943 -- the context clause is shared with the constructed
9944 -- subprogram spec. Clearly there is no redundancy.
9946 if Clause1 = Clause2 then
9947 return;
9948 end if;
9950 Unit1 := Unit (Parent (Clause1));
9951 Unit2 := Unit (Parent (Clause2));
9953 -- If both clauses are on same unit, or one is the body
9954 -- of the other, or one of them is in a subunit, report
9955 -- redundancy on the later one.
9957 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
9958 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9959 Error_Msg_NE -- CODEFIX
9960 ("& is already use-visible through previous "
9961 & "use_type_clause #??", Clause1, T);
9962 return;
9964 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9965 and then Nkind (Unit1) /= Nkind (Unit2)
9966 and then Nkind (Unit1) /= N_Subunit
9967 then
9968 Error_Msg_Sloc := Sloc (Clause1);
9969 Error_Msg_NE -- CODEFIX
9970 ("& is already use-visible through previous "
9971 & "use_type_clause #??", Current_Use_Clause (T), T);
9972 return;
9973 end if;
9975 -- There is a redundant use_type_clause in a child unit.
9976 -- Determine which of the units is more deeply nested.
9977 -- If a unit is a package instance, retrieve the entity
9978 -- and its scope from the instance spec.
9980 Ent1 := Entity_Of_Unit (Unit1);
9981 Ent2 := Entity_Of_Unit (Unit2);
9983 if Scope (Ent2) = Standard_Standard then
9984 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9985 Err_No := Clause1;
9987 elsif Scope (Ent1) = Standard_Standard then
9988 Error_Msg_Sloc := Sloc (Id);
9989 Err_No := Clause2;
9991 -- If both units are child units, we determine which one
9992 -- is the descendant by the scope distance to the
9993 -- ultimate parent unit.
9995 else
9996 declare
9997 S1 : Entity_Id;
9998 S2 : Entity_Id;
10000 begin
10001 S1 := Scope (Ent1);
10002 S2 := Scope (Ent2);
10003 while Present (S1)
10004 and then Present (S2)
10005 and then S1 /= Standard_Standard
10006 and then S2 /= Standard_Standard
10007 loop
10008 S1 := Scope (S1);
10009 S2 := Scope (S2);
10010 end loop;
10012 if S1 = Standard_Standard then
10013 Error_Msg_Sloc := Sloc (Id);
10014 Err_No := Clause2;
10015 else
10016 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10017 Err_No := Clause1;
10018 end if;
10019 end;
10020 end if;
10022 if Parent (Id) /= Err_No then
10023 if Most_Descendant_Use_Clause
10024 (Err_No, Parent (Id)) = Parent (Id)
10025 then
10026 Error_Msg_Sloc := Sloc (Err_No);
10027 Err_No := Parent (Id);
10028 end if;
10030 Error_Msg_NE -- CODEFIX
10031 ("& is already use-visible through previous "
10032 & "use_type_clause #??", Err_No, Id);
10033 end if;
10035 -- Case where current use_type_clause and use_type_clause
10036 -- for the type are not both at the compilation unit level.
10037 -- In this case we don't have location information.
10039 else
10040 Error_Msg_NE -- CODEFIX
10041 ("& is already use-visible through previous "
10042 & "use_type_clause??", Id, T);
10043 end if;
10044 end Use_Clause_Known;
10046 -- Here if Current_Use_Clause is not set for T, another case where
10047 -- we do not have the location information available.
10049 else
10050 Error_Msg_NE -- CODEFIX
10051 ("& is already use-visible through previous "
10052 & "use_type_clause??", Id, T);
10053 end if;
10055 -- The package where T is declared is already used
10057 elsif In_Use (Scope (T)) then
10058 Error_Msg_Sloc :=
10059 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10060 Error_Msg_NE -- CODEFIX
10061 ("& is already use-visible through package use clause #??",
10062 Id, T);
10064 -- The current scope is the package where T is declared
10066 else
10067 Error_Msg_Node_2 := Scope (T);
10068 Error_Msg_NE -- CODEFIX
10069 ("& is already use-visible inside package &??", Id, T);
10070 end if;
10071 end if;
10072 end Use_One_Type;
10074 ----------------
10075 -- Write_Info --
10076 ----------------
10078 procedure Write_Info is
10079 Id : Entity_Id := First_Entity (Current_Scope);
10081 begin
10082 -- No point in dumping standard entities
10084 if Current_Scope = Standard_Standard then
10085 return;
10086 end if;
10088 Write_Str ("========================================================");
10089 Write_Eol;
10090 Write_Str (" Defined Entities in ");
10091 Write_Name (Chars (Current_Scope));
10092 Write_Eol;
10093 Write_Str ("========================================================");
10094 Write_Eol;
10096 if No (Id) then
10097 Write_Str ("-- none --");
10098 Write_Eol;
10100 else
10101 while Present (Id) loop
10102 Write_Entity_Info (Id, " ");
10103 Next_Entity (Id);
10104 end loop;
10105 end if;
10107 if Scope (Current_Scope) = Standard_Standard then
10109 -- Print information on the current unit itself
10111 Write_Entity_Info (Current_Scope, " ");
10112 end if;
10114 Write_Eol;
10115 end Write_Info;
10117 --------
10118 -- ws --
10119 --------
10121 procedure ws is
10122 S : Entity_Id;
10123 begin
10124 for J in reverse 1 .. Scope_Stack.Last loop
10125 S := Scope_Stack.Table (J).Entity;
10126 Write_Int (Int (S));
10127 Write_Str (" === ");
10128 Write_Name (Chars (S));
10129 Write_Eol;
10130 end loop;
10131 end ws;
10133 --------
10134 -- we --
10135 --------
10137 procedure we (S : Entity_Id) is
10138 E : Entity_Id;
10139 begin
10140 E := First_Entity (S);
10141 while Present (E) loop
10142 Write_Int (Int (E));
10143 Write_Str (" === ");
10144 Write_Name (Chars (E));
10145 Write_Eol;
10146 Next_Entity (E);
10147 end loop;
10148 end we;
10149 end Sem_Ch8;