1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
34 #include "coretypes.h"
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
40 #define ATTRIBUTE_HIDDEN
45 #ifdef DECLARE_LIBRARY_RENAMES
46 DECLARE_LIBRARY_RENAMES
49 #if defined (L_negdi2)
53 const DWunion uu
= {.ll
= u
};
54 const DWunion w
= { {.low
= -uu
.s
.low
,
55 .high
= -uu
.s
.high
- ((UWtype
) -uu
.s
.low
> 0) } };
63 __addvSI3 (Wtype a
, Wtype b
)
65 const Wtype w
= a
+ b
;
67 if (b
>= 0 ? w
< a
: w
> a
)
72 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
74 __addvsi3 (SItype a
, SItype b
)
76 const SItype w
= a
+ b
;
78 if (b
>= 0 ? w
< a
: w
> a
)
83 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
88 __addvDI3 (DWtype a
, DWtype b
)
90 const DWtype w
= a
+ b
;
92 if (b
>= 0 ? w
< a
: w
> a
)
101 __subvSI3 (Wtype a
, Wtype b
)
103 const Wtype w
= a
- b
;
105 if (b
>= 0 ? w
> a
: w
< a
)
110 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
112 __subvsi3 (SItype a
, SItype b
)
114 const SItype w
= a
- b
;
116 if (b
>= 0 ? w
> a
: w
< a
)
121 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
126 __subvDI3 (DWtype a
, DWtype b
)
128 const DWtype w
= a
- b
;
130 if (b
>= 0 ? w
> a
: w
< a
)
139 __mulvSI3 (Wtype a
, Wtype b
)
141 const DWtype w
= (DWtype
) a
* (DWtype
) b
;
143 if ((Wtype
) (w
>> W_TYPE_SIZE
) != (Wtype
) w
>> (W_TYPE_SIZE
- 1))
148 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
150 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
152 __mulvsi3 (SItype a
, SItype b
)
154 const DItype w
= (DItype
) a
* (DItype
) b
;
156 if ((SItype
) (w
>> WORD_SIZE
) != (SItype
) w
>> (WORD_SIZE
-1))
161 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
170 if (a
>= 0 ? w
> 0 : w
< 0)
175 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
181 if (a
>= 0 ? w
> 0 : w
< 0)
186 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
195 if (a
>= 0 ? w
> 0 : w
< 0)
220 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
238 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
263 __mulvDI3 (DWtype u
, DWtype v
)
265 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
266 but the checked multiplication needs only two. */
267 const DWunion uu
= {.ll
= u
};
268 const DWunion vv
= {.ll
= v
};
270 if (__builtin_expect (uu
.s
.high
== uu
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
272 /* u fits in a single Wtype. */
273 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
275 /* v fits in a single Wtype as well. */
276 /* A single multiplication. No overflow risk. */
277 return (DWtype
) uu
.s
.low
* (DWtype
) vv
.s
.low
;
281 /* Two multiplications. */
282 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
283 * (UDWtype
) (UWtype
) vv
.s
.low
};
284 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
285 * (UDWtype
) (UWtype
) vv
.s
.high
};
288 w1
.s
.high
-= uu
.s
.low
;
291 w1
.ll
+= (UWtype
) w0
.s
.high
;
292 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
294 w0
.s
.high
= w1
.s
.low
;
301 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
303 /* v fits into a single Wtype. */
304 /* Two multiplications. */
305 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
306 * (UDWtype
) (UWtype
) vv
.s
.low
};
307 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.high
308 * (UDWtype
) (UWtype
) vv
.s
.low
};
311 w1
.s
.high
-= vv
.s
.low
;
314 w1
.ll
+= (UWtype
) w0
.s
.high
;
315 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
317 w0
.s
.high
= w1
.s
.low
;
323 /* A few sign checks and a single multiplication. */
328 if (uu
.s
.high
== 0 && vv
.s
.high
== 0)
330 const DWtype w
= (UDWtype
) (UWtype
) uu
.s
.low
331 * (UDWtype
) (UWtype
) vv
.s
.low
;
332 if (__builtin_expect (w
>= 0, 1))
338 if (uu
.s
.high
== 0 && vv
.s
.high
== (Wtype
) -1)
340 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
341 * (UDWtype
) (UWtype
) vv
.s
.low
};
343 ww
.s
.high
-= uu
.s
.low
;
344 if (__builtin_expect (ww
.s
.high
< 0, 1))
353 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== 0)
355 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
356 * (UDWtype
) (UWtype
) vv
.s
.low
};
358 ww
.s
.high
-= vv
.s
.low
;
359 if (__builtin_expect (ww
.s
.high
< 0, 1))
365 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== (Wtype
) - 1)
367 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
368 * (UDWtype
) (UWtype
) vv
.s
.low
};
370 ww
.s
.high
-= uu
.s
.low
;
371 ww
.s
.high
-= vv
.s
.low
;
372 if (__builtin_expect (ww
.s
.high
>= 0, 1))
386 /* Unless shift functions are defined with full ANSI prototypes,
387 parameter b will be promoted to int if word_type is smaller than an int. */
390 __lshrdi3 (DWtype u
, word_type b
)
395 const DWunion uu
= {.ll
= u
};
396 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
402 w
.s
.low
= (UWtype
) uu
.s
.high
>> -bm
;
406 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
408 w
.s
.high
= (UWtype
) uu
.s
.high
>> b
;
409 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
418 __ashldi3 (DWtype u
, word_type b
)
423 const DWunion uu
= {.ll
= u
};
424 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
430 w
.s
.high
= (UWtype
) uu
.s
.low
<< -bm
;
434 const UWtype carries
= (UWtype
) uu
.s
.low
>> bm
;
436 w
.s
.low
= (UWtype
) uu
.s
.low
<< b
;
437 w
.s
.high
= ((UWtype
) uu
.s
.high
<< b
) | carries
;
446 __ashrdi3 (DWtype u
, word_type b
)
451 const DWunion uu
= {.ll
= u
};
452 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
457 /* w.s.high = 1..1 or 0..0 */
458 w
.s
.high
= uu
.s
.high
>> (sizeof (Wtype
) * BITS_PER_UNIT
- 1);
459 w
.s
.low
= uu
.s
.high
>> -bm
;
463 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
465 w
.s
.high
= uu
.s
.high
>> b
;
466 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
483 count_trailing_zeros (count
, u
);
493 const DWunion uu
= {.ll
= u
};
494 UWtype word
, count
, add
;
497 word
= uu
.s
.low
, add
= 0;
498 else if (uu
.s
.high
!= 0)
499 word
= uu
.s
.high
, add
= BITS_PER_UNIT
* sizeof (Wtype
);
503 count_trailing_zeros (count
, word
);
504 return count
+ add
+ 1;
510 __muldi3 (DWtype u
, DWtype v
)
512 const DWunion uu
= {.ll
= u
};
513 const DWunion vv
= {.ll
= v
};
514 DWunion w
= {.ll
= __umulsidi3 (uu
.s
.low
, vv
.s
.low
)};
516 w
.s
.high
+= ((UWtype
) uu
.s
.low
* (UWtype
) vv
.s
.high
517 + (UWtype
) uu
.s
.high
* (UWtype
) vv
.s
.low
);
523 #if (defined (L_udivdi3) || defined (L_divdi3) || \
524 defined (L_umoddi3) || defined (L_moddi3))
525 #if defined (sdiv_qrnnd)
526 #define L_udiv_w_sdiv
531 #if defined (sdiv_qrnnd)
532 #if (defined (L_udivdi3) || defined (L_divdi3) || \
533 defined (L_umoddi3) || defined (L_moddi3))
534 static inline __attribute__ ((__always_inline__
))
537 __udiv_w_sdiv (UWtype
*rp
, UWtype a1
, UWtype a0
, UWtype d
)
544 if (a1
< d
- a1
- (a0
>> (W_TYPE_SIZE
- 1)))
546 /* Dividend, divisor, and quotient are nonnegative. */
547 sdiv_qrnnd (q
, r
, a1
, a0
, d
);
551 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
552 sub_ddmmss (c1
, c0
, a1
, a0
, d
>> 1, d
<< (W_TYPE_SIZE
- 1));
553 /* Divide (c1*2^32 + c0) by d. */
554 sdiv_qrnnd (q
, r
, c1
, c0
, d
);
555 /* Add 2^31 to quotient. */
556 q
+= (UWtype
) 1 << (W_TYPE_SIZE
- 1);
561 b1
= d
>> 1; /* d/2, between 2^30 and 2^31 - 1 */
562 c1
= a1
>> 1; /* A/2 */
563 c0
= (a1
<< (W_TYPE_SIZE
- 1)) + (a0
>> 1);
565 if (a1
< b1
) /* A < 2^32*b1, so A/2 < 2^31*b1 */
567 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
569 r
= 2*r
+ (a0
& 1); /* Remainder from A/(2*b1) */
586 else if (c1
< b1
) /* So 2^31 <= (A/2)/b1 < 2^32 */
589 c0
= ~c0
; /* logical NOT */
591 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
593 q
= ~q
; /* (A/2)/b1 */
596 r
= 2*r
+ (a0
& 1); /* A/(2*b1) */
614 else /* Implies c1 = b1 */
615 { /* Hence a1 = d - 1 = 2*b1 - 1 */
633 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
635 __udiv_w_sdiv (UWtype
*rp
__attribute__ ((__unused__
)),
636 UWtype a1
__attribute__ ((__unused__
)),
637 UWtype a0
__attribute__ ((__unused__
)),
638 UWtype d
__attribute__ ((__unused__
)))
645 #if (defined (L_udivdi3) || defined (L_divdi3) || \
646 defined (L_umoddi3) || defined (L_moddi3))
651 const UQItype __clz_tab
[] =
653 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
654 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
655 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
656 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
657 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
658 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
659 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
660 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
671 count_leading_zeros (ret
, x
);
682 const DWunion uu
= {.ll
= x
};
687 word
= uu
.s
.high
, add
= 0;
689 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
691 count_leading_zeros (ret
, word
);
703 count_trailing_zeros (ret
, x
);
714 const DWunion uu
= {.ll
= x
};
719 word
= uu
.s
.low
, add
= 0;
721 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
723 count_trailing_zeros (ret
, word
);
728 #if (defined (L_popcountsi2) || defined (L_popcountdi2) \
729 || defined (L_popcount_tab))
730 extern const UQItype __popcount_tab
[] ATTRIBUTE_HIDDEN
;
733 #ifdef L_popcount_tab
734 const UQItype __popcount_tab
[] =
736 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
737 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
738 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
739 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
740 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
741 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
742 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
743 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,
750 __popcountSI2 (UWtype x
)
754 for (i
= 0; i
< W_TYPE_SIZE
; i
+= 8)
755 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
764 __popcountDI2 (UDWtype x
)
768 for (i
= 0; i
< 2*W_TYPE_SIZE
; i
+= 8)
769 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
778 __paritySI2 (UWtype x
)
781 # error "fill out the table"
792 return (0x6996 >> x
) & 1;
799 __parityDI2 (UDWtype x
)
801 const DWunion uu
= {.ll
= x
};
802 UWtype nx
= uu
.s
.low
^ uu
.s
.high
;
805 # error "fill out the table"
816 return (0x6996 >> nx
) & 1;
822 #if (defined (L_udivdi3) || defined (L_divdi3) || \
823 defined (L_umoddi3) || defined (L_moddi3))
824 static inline __attribute__ ((__always_inline__
))
827 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
829 const DWunion nn
= {.ll
= n
};
830 const DWunion dd
= {.ll
= d
};
832 UWtype d0
, d1
, n0
, n1
, n2
;
841 #if !UDIV_NEEDS_NORMALIZATION
848 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
851 /* Remainder in n0. */
858 d0
= 1 / d0
; /* Divide intentionally by zero. */
860 udiv_qrnnd (q1
, n1
, 0, n1
, d0
);
861 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
863 /* Remainder in n0. */
874 #else /* UDIV_NEEDS_NORMALIZATION */
882 count_leading_zeros (bm
, d0
);
886 /* Normalize, i.e. make the most significant bit of the
890 n1
= (n1
<< bm
) | (n0
>> (W_TYPE_SIZE
- bm
));
894 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
897 /* Remainder in n0 >> bm. */
904 d0
= 1 / d0
; /* Divide intentionally by zero. */
906 count_leading_zeros (bm
, d0
);
910 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
911 conclude (the most significant bit of n1 is set) /\ (the
912 leading quotient digit q1 = 1).
914 This special case is necessary, not an optimization.
915 (Shifts counts of W_TYPE_SIZE are undefined.) */
924 b
= W_TYPE_SIZE
- bm
;
928 n1
= (n1
<< bm
) | (n0
>> b
);
931 udiv_qrnnd (q1
, n1
, n2
, n1
, d0
);
936 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
938 /* Remainder in n0 >> bm. */
948 #endif /* UDIV_NEEDS_NORMALIZATION */
959 /* Remainder in n1n0. */
971 count_leading_zeros (bm
, d1
);
974 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
975 conclude (the most significant bit of n1 is set) /\ (the
976 quotient digit q0 = 0 or 1).
978 This special case is necessary, not an optimization. */
980 /* The condition on the next line takes advantage of that
981 n1 >= d1 (true due to program flow). */
982 if (n1
> d1
|| n0
>= d0
)
985 sub_ddmmss (n1
, n0
, n1
, n0
, d1
, d0
);
1004 b
= W_TYPE_SIZE
- bm
;
1006 d1
= (d1
<< bm
) | (d0
>> b
);
1009 n1
= (n1
<< bm
) | (n0
>> b
);
1012 udiv_qrnnd (q0
, n1
, n2
, n1
, d1
);
1013 umul_ppmm (m1
, m0
, q0
, d0
);
1015 if (m1
> n1
|| (m1
== n1
&& m0
> n0
))
1018 sub_ddmmss (m1
, m0
, m1
, m0
, d1
, d0
);
1023 /* Remainder in (n1n0 - m1m0) >> bm. */
1026 sub_ddmmss (n1
, n0
, n1
, n0
, m1
, m0
);
1027 rr
.s
.low
= (n1
<< b
) | (n0
>> bm
);
1028 rr
.s
.high
= n1
>> bm
;
1035 const DWunion ww
= {{.low
= q0
, .high
= q1
}};
1042 __divdi3 (DWtype u
, DWtype v
)
1045 DWunion uu
= {.ll
= u
};
1046 DWunion vv
= {.ll
= v
};
1056 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*) 0);
1066 __moddi3 (DWtype u
, DWtype v
)
1069 DWunion uu
= {.ll
= u
};
1070 DWunion vv
= {.ll
= v
};
1079 (void) __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&w
);
1089 __umoddi3 (UDWtype u
, UDWtype v
)
1093 (void) __udivmoddi4 (u
, v
, &w
);
1101 __udivdi3 (UDWtype n
, UDWtype d
)
1103 return __udivmoddi4 (n
, d
, (UDWtype
*) 0);
1109 __cmpdi2 (DWtype a
, DWtype b
)
1111 const DWunion au
= {.ll
= a
};
1112 const DWunion bu
= {.ll
= b
};
1114 if (au
.s
.high
< bu
.s
.high
)
1116 else if (au
.s
.high
> bu
.s
.high
)
1118 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1120 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1128 __ucmpdi2 (DWtype a
, DWtype b
)
1130 const DWunion au
= {.ll
= a
};
1131 const DWunion bu
= {.ll
= b
};
1133 if ((UWtype
) au
.s
.high
< (UWtype
) bu
.s
.high
)
1135 else if ((UWtype
) au
.s
.high
> (UWtype
) bu
.s
.high
)
1137 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1139 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1145 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1147 __fixunstfDI (TFtype a
)
1152 /* Compute high word of result, as a flonum. */
1153 const TFtype b
= (a
/ Wtype_MAXp1_F
);
1154 /* Convert that to fixed (but not to DWtype!),
1155 and shift it into the high word. */
1156 UDWtype v
= (UWtype
) b
;
1158 /* Remove high part from the TFtype, leaving the low part as flonum. */
1160 /* Convert that to fixed (but not to DWtype!) and add it in.
1161 Sometimes A comes out negative. This is significant, since
1162 A has more bits than a long int does. */
1164 v
-= (UWtype
) (- a
);
1171 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1173 __fixtfdi (TFtype a
)
1176 return - __fixunstfDI (-a
);
1177 return __fixunstfDI (a
);
1181 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1183 __fixunsxfDI (XFtype a
)
1188 /* Compute high word of result, as a flonum. */
1189 const XFtype b
= (a
/ Wtype_MAXp1_F
);
1190 /* Convert that to fixed (but not to DWtype!),
1191 and shift it into the high word. */
1192 UDWtype v
= (UWtype
) b
;
1194 /* Remove high part from the XFtype, leaving the low part as flonum. */
1196 /* Convert that to fixed (but not to DWtype!) and add it in.
1197 Sometimes A comes out negative. This is significant, since
1198 A has more bits than a long int does. */
1200 v
-= (UWtype
) (- a
);
1207 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1209 __fixxfdi (XFtype a
)
1212 return - __fixunsxfDI (-a
);
1213 return __fixunsxfDI (a
);
1217 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1219 __fixunsdfDI (DFtype a
)
1221 /* Get high part of result. The division here will just moves the radix
1222 point and will not cause any rounding. Then the conversion to integral
1223 type chops result as desired. */
1224 const UWtype hi
= a
/ Wtype_MAXp1_F
;
1226 /* Get low part of result. Convert `hi' to floating type and scale it back,
1227 then subtract this from the number being converted. This leaves the low
1228 part. Convert that to integral type. */
1229 const UWtype lo
= a
- (DFtype
) hi
* Wtype_MAXp1_F
;
1231 /* Assemble result from the two parts. */
1232 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1236 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1238 __fixdfdi (DFtype a
)
1241 return - __fixunsdfDI (-a
);
1242 return __fixunsdfDI (a
);
1246 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1248 __fixunssfDI (SFtype a
)
1250 #if LIBGCC2_HAS_DF_MODE
1251 /* Convert the SFtype to a DFtype, because that is surely not going
1252 to lose any bits. Some day someone else can write a faster version
1253 that avoids converting to DFtype, and verify it really works right. */
1254 const DFtype dfa
= a
;
1256 /* Get high part of result. The division here will just moves the radix
1257 point and will not cause any rounding. Then the conversion to integral
1258 type chops result as desired. */
1259 const UWtype hi
= dfa
/ Wtype_MAXp1_F
;
1261 /* Get low part of result. Convert `hi' to floating type and scale it back,
1262 then subtract this from the number being converted. This leaves the low
1263 part. Convert that to integral type. */
1264 const UWtype lo
= dfa
- (DFtype
) hi
* Wtype_MAXp1_F
;
1266 /* Assemble result from the two parts. */
1267 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1268 #elif FLT_MANT_DIG < W_TYPE_SIZE
1271 if (a
< Wtype_MAXp1_F
)
1273 if (a
< Wtype_MAXp1_F
* Wtype_MAXp1_F
)
1275 /* Since we know that there are fewer significant bits in the SFmode
1276 quantity than in a word, we know that we can convert out all the
1277 significant bits in one step, and thus avoid losing bits. */
1279 /* ??? This following loop essentially performs frexpf. If we could
1280 use the real libm function, or poke at the actual bits of the fp
1281 format, it would be significantly faster. */
1283 UWtype shift
= 0, counter
;
1287 for (counter
= W_TYPE_SIZE
/ 2; counter
!= 0; counter
>>= 1)
1289 SFtype counterf
= (UWtype
)1 << counter
;
1297 /* Rescale into the range of one word, extract the bits of that
1298 one word, and shift the result into position. */
1301 return (DWtype
)counter
<< shift
;
1310 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1312 __fixsfdi (SFtype a
)
1315 return - __fixunssfDI (-a
);
1316 return __fixunssfDI (a
);
1320 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1322 __floatdixf (DWtype u
)
1324 XFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1331 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1333 __floatditf (DWtype u
)
1335 TFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1342 #if defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE
1344 __floatdidf (DWtype u
)
1346 DFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1353 #if defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE
1354 #define DI_SIZE (W_TYPE_SIZE * 2)
1355 #define SF_SIZE FLT_MANT_DIG
1358 __floatdisf (DWtype u
)
1360 #if SF_SIZE >= W_TYPE_SIZE
1361 /* When the word size is small, we never get any rounding error. */
1362 SFtype f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1366 #elif LIBGCC2_HAS_DF_MODE
1368 #if LIBGCC2_DOUBLE_TYPE_SIZE == 64
1369 #define DF_SIZE DBL_MANT_DIG
1370 #elif LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1371 #define DF_SIZE LDBL_MANT_DIG
1376 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1378 /* Protect against double-rounding error.
1379 Represent any low-order bits, that might be truncated by a bit that
1380 won't be lost. The bit can go in anywhere below the rounding position
1381 of the SFmode. A fixed mask and bit position handles all usual
1382 configurations. It doesn't handle the case of 128-bit DImode, however. */
1383 if (DF_SIZE
< DI_SIZE
1384 && DF_SIZE
> (DI_SIZE
- DF_SIZE
+ SF_SIZE
))
1386 if (! (- ((DWtype
) 1 << DF_SIZE
) < u
1387 && u
< ((DWtype
) 1 << DF_SIZE
)))
1389 if ((UDWtype
) u
& (REP_BIT
- 1))
1391 u
&= ~ (REP_BIT
- 1);
1397 /* Do the calculation in DFmode so that we don't lose any of the
1398 precision of the high word while multiplying it. */
1399 DFtype f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1404 /* Finally, the word size is larger than the number of bits in SFmode,
1405 and we've got no DFmode. The only way to avoid double rounding is
1406 to special case the extraction. */
1408 /* If there are no high bits set, fall back to one conversion. */
1410 return (SFtype
)(Wtype
)u
;
1412 /* Otherwise, find the power of two. */
1413 Wtype hi
= u
>> W_TYPE_SIZE
;
1417 UWtype count
, shift
;
1418 count_leading_zeros (count
, hi
);
1420 /* No leading bits means u == minimum. */
1422 return -(Wtype_MAXp1_F
* Wtype_MAXp1_F
/ 2);
1424 shift
= W_TYPE_SIZE
- count
;
1426 /* Shift down the most significant bits. */
1429 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1430 if (u
& ((1 << shift
) - 1))
1433 /* Convert the one word of data, and rescale. */
1435 f
*= (UWtype
)1 << shift
;
1441 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1442 /* Reenable the normal types, in case limits.h needs them. */
1455 __fixunsxfSI (XFtype a
)
1457 if (a
>= - (DFtype
) Wtype_MIN
)
1458 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1463 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1464 /* Reenable the normal types, in case limits.h needs them. */
1477 __fixunsdfSI (DFtype a
)
1479 if (a
>= - (DFtype
) Wtype_MIN
)
1480 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1485 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1486 /* Reenable the normal types, in case limits.h needs them. */
1499 __fixunssfSI (SFtype a
)
1501 if (a
>= - (SFtype
) Wtype_MIN
)
1502 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1507 /* Integer power helper used from __builtin_powi for non-constant
1510 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1511 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1512 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1513 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1514 # if defined(L_powisf2)
1515 # define TYPE SFtype
1516 # define NAME __powisf2
1517 # elif defined(L_powidf2)
1518 # define TYPE DFtype
1519 # define NAME __powidf2
1520 # elif defined(L_powixf2)
1521 # define TYPE XFtype
1522 # define NAME __powixf2
1523 # elif defined(L_powitf2)
1524 # define TYPE TFtype
1525 # define NAME __powitf2
1531 NAME (TYPE x
, int m
)
1533 unsigned int n
= m
< 0 ? -m
: m
;
1534 TYPE y
= n
% 2 ? x
: 1;
1541 return m
< 0 ? 1/y
: y
;
1546 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1547 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1548 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1549 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1555 #if defined(L_mulsc3) || defined(L_divsc3)
1556 # define MTYPE SFtype
1557 # define CTYPE SCtype
1560 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1561 #elif defined(L_muldc3) || defined(L_divdc3)
1562 # define MTYPE DFtype
1563 # define CTYPE DCtype
1565 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1570 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1572 #elif defined(L_mulxc3) || defined(L_divxc3)
1573 # define MTYPE XFtype
1574 # define CTYPE XCtype
1578 #elif defined(L_multc3) || defined(L_divtc3)
1579 # define MTYPE TFtype
1580 # define CTYPE TCtype
1588 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1589 #define _CONCAT3(A,B,C) A##B##C
1591 #define CONCAT2(A,B) _CONCAT2(A,B)
1592 #define _CONCAT2(A,B) A##B
1594 /* All of these would be present in a full C99 implementation of <math.h>
1595 and <complex.h>. Our problem is that only a few systems have such full
1596 implementations. Further, libgcc_s.so isn't currently linked against
1597 libm.so, and even for systems that do provide full C99, the extra overhead
1598 of all programs using libgcc having to link against libm. So avoid it. */
1600 #define isnan(x) __builtin_expect ((x) != (x), 0)
1601 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1602 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1604 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1607 /* Helpers to make the following code slightly less gross. */
1608 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1609 #define FABS CONCAT2(__builtin_fabs, CEXT)
1611 /* Verify that MTYPE matches up with CEXT. */
1612 extern void *compile_type_assert
[sizeof(INFINITY
) == sizeof(MTYPE
) ? 1 : -1];
1614 /* Ensure that we've lost any extra precision. */
1618 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1621 #if defined(L_mulsc3) || defined(L_muldc3) \
1622 || defined(L_mulxc3) || defined(L_multc3)
1625 CONCAT3(__mul
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1627 MTYPE ac
, bd
, ad
, bc
, x
, y
;
1642 if (isnan (x
) && isnan (y
))
1644 /* Recover infinities that computed as NaN + iNaN. */
1646 if (isinf (a
) || isinf (b
))
1648 /* z is infinite. "Box" the infinity and change NaNs in
1649 the other factor to 0. */
1650 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1651 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1652 if (isnan (c
)) c
= COPYSIGN (0, c
);
1653 if (isnan (d
)) d
= COPYSIGN (0, d
);
1656 if (isinf (c
) || isinf (d
))
1658 /* w is infinite. "Box" the infinity and change NaNs in
1659 the other factor to 0. */
1660 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1661 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1662 if (isnan (a
)) a
= COPYSIGN (0, a
);
1663 if (isnan (b
)) b
= COPYSIGN (0, b
);
1667 && (isinf (ac
) || isinf (bd
)
1668 || isinf (ad
) || isinf (bc
)))
1670 /* Recover infinities from overflow by changing NaNs to 0. */
1671 if (isnan (a
)) a
= COPYSIGN (0, a
);
1672 if (isnan (b
)) b
= COPYSIGN (0, b
);
1673 if (isnan (c
)) c
= COPYSIGN (0, c
);
1674 if (isnan (d
)) d
= COPYSIGN (0, d
);
1679 x
= INFINITY
* (a
* c
- b
* d
);
1680 y
= INFINITY
* (a
* d
+ b
* c
);
1686 #endif /* complex multiply */
1688 #if defined(L_divsc3) || defined(L_divdc3) \
1689 || defined(L_divxc3) || defined(L_divtc3)
1692 CONCAT3(__div
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1694 MTYPE denom
, ratio
, x
, y
;
1696 /* ??? We can get better behavior from logarithmic scaling instead of
1697 the division. But that would mean starting to link libgcc against
1698 libm. We could implement something akin to ldexp/frexp as gcc builtins
1700 if (FABS (c
) < FABS (d
))
1703 denom
= (c
* ratio
) + d
;
1704 x
= ((a
* ratio
) + b
) / denom
;
1705 y
= ((b
* ratio
) - a
) / denom
;
1710 denom
= (d
* ratio
) + c
;
1711 x
= ((b
* ratio
) + a
) / denom
;
1712 y
= (b
- (a
* ratio
)) / denom
;
1715 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1716 are nonzero/zero, infinite/finite, and finite/infinite. */
1717 if (isnan (x
) && isnan (y
))
1719 if (denom
== 0.0 && (!isnan (a
) || !isnan (b
)))
1721 x
= COPYSIGN (INFINITY
, c
) * a
;
1722 y
= COPYSIGN (INFINITY
, c
) * b
;
1724 else if ((isinf (a
) || isinf (b
)) && isfinite (c
) && isfinite (d
))
1726 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1727 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1728 x
= INFINITY
* (a
* c
+ b
* d
);
1729 y
= INFINITY
* (b
* c
- a
* d
);
1731 else if ((isinf (c
) || isinf (d
)) && isfinite (a
) && isfinite (b
))
1733 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1734 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1735 x
= 0.0 * (a
* c
+ b
* d
);
1736 y
= 0.0 * (b
* c
- a
* d
);
1742 #endif /* complex divide */
1744 #endif /* all complex float routines */
1746 /* From here on down, the routines use normal data types. */
1748 #define SItype bogus_type
1749 #define USItype bogus_type
1750 #define DItype bogus_type
1751 #define UDItype bogus_type
1752 #define SFtype bogus_type
1753 #define DFtype bogus_type
1771 /* Like bcmp except the sign is meaningful.
1772 Result is negative if S1 is less than S2,
1773 positive if S1 is greater, 0 if S1 and S2 are equal. */
1776 __gcc_bcmp (const unsigned char *s1
, const unsigned char *s2
, size_t size
)
1780 const unsigned char c1
= *s1
++, c2
= *s2
++;
1790 /* __eprintf used to be used by GCC's private version of <assert.h>.
1791 We no longer provide that header, but this routine remains in libgcc.a
1792 for binary backward compatibility. Note that it is not included in
1793 the shared version of libgcc. */
1795 #ifndef inhibit_libc
1797 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1801 __eprintf (const char *string
, const char *expression
,
1802 unsigned int line
, const char *filename
)
1804 fprintf (stderr
, string
, expression
, line
, filename
);
1813 #ifdef L_clear_cache
1814 /* Clear part of an instruction cache. */
1817 __clear_cache (char *beg
__attribute__((__unused__
)),
1818 char *end
__attribute__((__unused__
)))
1820 #ifdef CLEAR_INSN_CACHE
1821 CLEAR_INSN_CACHE (beg
, end
);
1822 #endif /* CLEAR_INSN_CACHE */
1825 #endif /* L_clear_cache */
1827 #ifdef L_enable_execute_stack
1828 /* Attempt to turn on execute permission for the stack. */
1830 #ifdef ENABLE_EXECUTE_STACK
1831 ENABLE_EXECUTE_STACK
1834 __enable_execute_stack (void *addr
__attribute__((__unused__
)))
1836 #endif /* ENABLE_EXECUTE_STACK */
1838 #endif /* L_enable_execute_stack */
1842 /* Jump to a trampoline, loading the static chain address. */
1844 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1857 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1861 mprotect (char *addr
, int len
, int prot
)
1878 if (VirtualProtect (addr
, len
, np
, &op
))
1884 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
1886 #ifdef TRANSFER_FROM_TRAMPOLINE
1887 TRANSFER_FROM_TRAMPOLINE
1889 #endif /* L_trampoline */
1894 #include "gbl-ctors.h"
1896 /* Some systems use __main in a way incompatible with its use in gcc, in these
1897 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
1898 give the same symbol without quotes for an alternative entry point. You
1899 must define both, or neither. */
1901 #define NAME__MAIN "__main"
1902 #define SYMBOL__MAIN __main
1905 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
1906 #undef HAS_INIT_SECTION
1907 #define HAS_INIT_SECTION
1910 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
1912 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
1913 code to run constructors. In that case, we need to handle EH here, too. */
1915 #ifdef EH_FRAME_SECTION_NAME
1916 #include "unwind-dw2-fde.h"
1917 extern unsigned char __EH_FRAME_BEGIN__
[];
1920 /* Run all the global destructors on exit from the program. */
1923 __do_global_dtors (void)
1925 #ifdef DO_GLOBAL_DTORS_BODY
1926 DO_GLOBAL_DTORS_BODY
;
1928 static func_ptr
*p
= __DTOR_LIST__
+ 1;
1935 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
1937 static int completed
= 0;
1941 __deregister_frame_info (__EH_FRAME_BEGIN__
);
1948 #ifndef HAS_INIT_SECTION
1949 /* Run all the global constructors on entry to the program. */
1952 __do_global_ctors (void)
1954 #ifdef EH_FRAME_SECTION_NAME
1956 static struct object object
;
1957 __register_frame_info (__EH_FRAME_BEGIN__
, &object
);
1960 DO_GLOBAL_CTORS_BODY
;
1961 atexit (__do_global_dtors
);
1963 #endif /* no HAS_INIT_SECTION */
1965 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
1966 /* Subroutine called automatically by `main'.
1967 Compiling a global function named `main'
1968 produces an automatic call to this function at the beginning.
1970 For many systems, this routine calls __do_global_ctors.
1971 For systems which support a .init section we use the .init section
1972 to run __do_global_ctors, so we need not do anything here. */
1974 extern void SYMBOL__MAIN (void);
1978 /* Support recursive calls to `main': run initializers just once. */
1979 static int initialized
;
1983 __do_global_ctors ();
1986 #endif /* no HAS_INIT_SECTION or INVOKE__main */
1988 #endif /* L__main */
1989 #endif /* __CYGWIN__ */
1993 #include "gbl-ctors.h"
1995 /* Provide default definitions for the lists of constructors and
1996 destructors, so that we don't get linker errors. These symbols are
1997 intentionally bss symbols, so that gld and/or collect will provide
1998 the right values. */
2000 /* We declare the lists here with two elements each,
2001 so that they are valid empty lists if no other definition is loaded.
2003 If we are using the old "set" extensions to have the gnu linker
2004 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2005 must be in the bss/common section.
2007 Long term no port should use those extensions. But many still do. */
2008 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2009 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2010 func_ptr __CTOR_LIST__
[2] = {0, 0};
2011 func_ptr __DTOR_LIST__
[2] = {0, 0};
2013 func_ptr __CTOR_LIST__
[2];
2014 func_ptr __DTOR_LIST__
[2];
2016 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2017 #endif /* L_ctors */