1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "stor-layout.h"
32 #include "hard-reg-set.h"
35 #include "dominance.h"
37 #include "basic-block.h"
38 #include "tree-ssa-alias.h"
39 #include "internal-fn.h"
41 #include "gimple-expr.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-ssa.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
56 #include "tree-iterator.h"
57 #include "tree-pass.h"
58 #include "tree-ssa-propagate.h"
59 #include "tree-hasher.h"
63 /* For each complex ssa name, a lattice value. We're interested in finding
64 out whether a complex number is degenerate in some way, having only real
65 or only complex parts. */
75 /* The type complex_lattice_t holds combinations of the above
77 typedef int complex_lattice_t
;
79 #define PAIR(a, b) ((a) << 2 | (b))
82 static vec
<complex_lattice_t
> complex_lattice_values
;
84 /* For each complex variable, a pair of variables for the components exists in
86 static int_tree_htab_type
*complex_variable_components
;
88 /* For each complex SSA_NAME, a pair of ssa names for the components. */
89 static vec
<tree
> complex_ssa_name_components
;
91 /* Lookup UID in the complex_variable_components hashtable and return the
94 cvc_lookup (unsigned int uid
)
96 struct int_tree_map in
;
98 return complex_variable_components
->find_with_hash (in
, uid
).to
;
101 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
104 cvc_insert (unsigned int uid
, tree to
)
110 loc
= complex_variable_components
->find_slot_with_hash (h
, uid
, INSERT
);
115 /* Return true if T is not a zero constant. In the case of real values,
116 we're only interested in +0.0. */
119 some_nonzerop (tree t
)
123 /* Operations with real or imaginary part of a complex number zero
124 cannot be treated the same as operations with a real or imaginary
125 operand if we care about the signs of zeros in the result. */
126 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
127 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
128 else if (TREE_CODE (t
) == FIXED_CST
)
129 zerop
= fixed_zerop (t
);
130 else if (TREE_CODE (t
) == INTEGER_CST
)
131 zerop
= integer_zerop (t
);
137 /* Compute a lattice value from the components of a complex type REAL
140 static complex_lattice_t
141 find_lattice_value_parts (tree real
, tree imag
)
144 complex_lattice_t ret
;
146 r
= some_nonzerop (real
);
147 i
= some_nonzerop (imag
);
148 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
150 /* ??? On occasion we could do better than mapping 0+0i to real, but we
151 certainly don't want to leave it UNINITIALIZED, which eventually gets
152 mapped to VARYING. */
153 if (ret
== UNINITIALIZED
)
160 /* Compute a lattice value from gimple_val T. */
162 static complex_lattice_t
163 find_lattice_value (tree t
)
167 switch (TREE_CODE (t
))
170 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
173 real
= TREE_REALPART (t
);
174 imag
= TREE_IMAGPART (t
);
181 return find_lattice_value_parts (real
, imag
);
184 /* Determine if LHS is something for which we're interested in seeing
185 simulation results. */
188 is_complex_reg (tree lhs
)
190 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
193 /* Mark the incoming parameters to the function as VARYING. */
196 init_parameter_lattice_values (void)
200 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
201 if (is_complex_reg (parm
)
202 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
203 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
206 /* Initialize simulation state for each statement. Return false if we
207 found no statements we want to simulate, and thus there's nothing
208 for the entire pass to do. */
211 init_dont_simulate_again (void)
214 gimple_stmt_iterator gsi
;
216 bool saw_a_complex_op
= false;
218 FOR_EACH_BB_FN (bb
, cfun
)
220 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
222 phi
= gsi_stmt (gsi
);
223 prop_set_simulate_again (phi
,
224 is_complex_reg (gimple_phi_result (phi
)));
227 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
233 stmt
= gsi_stmt (gsi
);
234 op0
= op1
= NULL_TREE
;
236 /* Most control-altering statements must be initially
237 simulated, else we won't cover the entire cfg. */
238 sim_again_p
= stmt_ends_bb_p (stmt
);
240 switch (gimple_code (stmt
))
243 if (gimple_call_lhs (stmt
))
244 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
248 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
249 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
250 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
251 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
253 op0
= gimple_assign_rhs1 (stmt
);
254 if (gimple_num_ops (stmt
) > 2)
255 op1
= gimple_assign_rhs2 (stmt
);
259 op0
= gimple_cond_lhs (stmt
);
260 op1
= gimple_cond_rhs (stmt
);
268 switch (gimple_expr_code (stmt
))
280 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
281 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
282 saw_a_complex_op
= true;
287 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
288 saw_a_complex_op
= true;
293 /* The total store transformation performed during
294 gimplification creates such uninitialized loads
295 and we need to lower the statement to be able
297 if (TREE_CODE (op0
) == SSA_NAME
298 && ssa_undefined_value_p (op0
))
299 saw_a_complex_op
= true;
306 prop_set_simulate_again (stmt
, sim_again_p
);
310 return saw_a_complex_op
;
314 /* Evaluate statement STMT against the complex lattice defined above. */
316 static enum ssa_prop_result
317 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
320 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
324 lhs
= gimple_get_lhs (stmt
);
325 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
327 return SSA_PROP_VARYING
;
329 /* These conditions should be satisfied due to the initial filter
330 set up in init_dont_simulate_again. */
331 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
332 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
335 ver
= SSA_NAME_VERSION (lhs
);
336 old_l
= complex_lattice_values
[ver
];
338 switch (gimple_expr_code (stmt
))
342 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
346 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
347 gimple_assign_rhs2 (stmt
));
352 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
353 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
355 /* We've set up the lattice values such that IOR neatly
357 new_l
= op1_l
| op2_l
;
366 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
367 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
369 /* Obviously, if either varies, so does the result. */
370 if (op1_l
== VARYING
|| op2_l
== VARYING
)
372 /* Don't prematurely promote variables if we've not yet seen
374 else if (op1_l
== UNINITIALIZED
)
376 else if (op2_l
== UNINITIALIZED
)
380 /* At this point both numbers have only one component. If the
381 numbers are of opposite kind, the result is imaginary,
382 otherwise the result is real. The add/subtract translates
383 the real/imag from/to 0/1; the ^ performs the comparison. */
384 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
386 /* Don't allow the lattice value to flip-flop indefinitely. */
393 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
401 /* If nothing changed this round, let the propagator know. */
403 return SSA_PROP_NOT_INTERESTING
;
405 complex_lattice_values
[ver
] = new_l
;
406 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
409 /* Evaluate a PHI node against the complex lattice defined above. */
411 static enum ssa_prop_result
412 complex_visit_phi (gimple phi
)
414 complex_lattice_t new_l
, old_l
;
419 lhs
= gimple_phi_result (phi
);
421 /* This condition should be satisfied due to the initial filter
422 set up in init_dont_simulate_again. */
423 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
425 /* We've set up the lattice values such that IOR neatly models PHI meet. */
426 new_l
= UNINITIALIZED
;
427 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
428 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
430 ver
= SSA_NAME_VERSION (lhs
);
431 old_l
= complex_lattice_values
[ver
];
434 return SSA_PROP_NOT_INTERESTING
;
436 complex_lattice_values
[ver
] = new_l
;
437 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
440 /* Create one backing variable for a complex component of ORIG. */
443 create_one_component_var (tree type
, tree orig
, const char *prefix
,
444 const char *suffix
, enum tree_code code
)
446 tree r
= create_tmp_var (type
, prefix
);
448 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
449 DECL_ARTIFICIAL (r
) = 1;
451 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
453 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
455 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
457 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
458 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
459 DECL_IGNORED_P (r
) = 0;
460 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
464 DECL_IGNORED_P (r
) = 1;
465 TREE_NO_WARNING (r
) = 1;
471 /* Retrieve a value for a complex component of VAR. */
474 get_component_var (tree var
, bool imag_p
)
476 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
477 tree ret
= cvc_lookup (decl_index
);
481 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
482 imag_p
? "CI" : "CR",
483 imag_p
? "$imag" : "$real",
484 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
485 cvc_insert (decl_index
, ret
);
491 /* Retrieve a value for a complex component of SSA_NAME. */
494 get_component_ssa_name (tree ssa_name
, bool imag_p
)
496 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
497 size_t ssa_name_index
;
500 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
502 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
503 if (SCALAR_FLOAT_TYPE_P (inner_type
))
504 return build_real (inner_type
, dconst0
);
506 return build_int_cst (inner_type
, 0);
509 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
510 ret
= complex_ssa_name_components
[ssa_name_index
];
513 if (SSA_NAME_VAR (ssa_name
))
514 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
516 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
517 ret
= make_ssa_name (ret
, NULL
);
519 /* Copy some properties from the original. In particular, whether it
520 is used in an abnormal phi, and whether it's uninitialized. */
521 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
522 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
523 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
524 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
526 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
527 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
530 complex_ssa_name_components
[ssa_name_index
] = ret
;
536 /* Set a value for a complex component of SSA_NAME, return a
537 gimple_seq of stuff that needs doing. */
540 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
542 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
543 size_t ssa_name_index
;
548 /* We know the value must be zero, else there's a bug in our lattice
549 analysis. But the value may well be a variable known to contain
550 zero. We should be safe ignoring it. */
551 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
554 /* If we've already assigned an SSA_NAME to this component, then this
555 means that our walk of the basic blocks found a use before the set.
556 This is fine. Now we should create an initialization for the value
557 we created earlier. */
558 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
559 comp
= complex_ssa_name_components
[ssa_name_index
];
563 /* If we've nothing assigned, and the value we're given is already stable,
564 then install that as the value for this SSA_NAME. This preemptively
565 copy-propagates the value, which avoids unnecessary memory allocation. */
566 else if (is_gimple_min_invariant (value
)
567 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
569 complex_ssa_name_components
[ssa_name_index
] = value
;
572 else if (TREE_CODE (value
) == SSA_NAME
573 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
575 /* Replace an anonymous base value with the variable from cvc_lookup.
576 This should result in better debug info. */
577 if (SSA_NAME_VAR (ssa_name
)
578 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
579 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
581 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
582 replace_ssa_name_symbol (value
, comp
);
585 complex_ssa_name_components
[ssa_name_index
] = value
;
589 /* Finally, we need to stabilize the result by installing the value into
592 comp
= get_component_ssa_name (ssa_name
, imag_p
);
594 /* Do all the work to assign VALUE to COMP. */
596 value
= force_gimple_operand (value
, &list
, false, NULL
);
597 last
= gimple_build_assign (comp
, value
);
598 gimple_seq_add_stmt (&list
, last
);
599 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
604 /* Extract the real or imaginary part of a complex variable or constant.
605 Make sure that it's a proper gimple_val and gimplify it if not.
606 Emit any new code before gsi. */
609 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
612 switch (TREE_CODE (t
))
615 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
625 case VIEW_CONVERT_EXPR
:
628 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
630 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
631 inner_type
, unshare_expr (t
));
634 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
641 return get_component_ssa_name (t
, imagpart_p
);
648 /* Update the complex components of the ssa name on the lhs of STMT. */
651 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
657 lhs
= gimple_get_lhs (stmt
);
659 list
= set_component_ssa_name (lhs
, false, r
);
661 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
663 list
= set_component_ssa_name (lhs
, true, i
);
665 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
669 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
673 list
= set_component_ssa_name (lhs
, false, r
);
675 gsi_insert_seq_on_edge (e
, list
);
677 list
= set_component_ssa_name (lhs
, true, i
);
679 gsi_insert_seq_on_edge (e
, list
);
683 /* Update an assignment to a complex variable in place. */
686 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
690 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
691 stmt
= gsi_stmt (*gsi
);
693 if (maybe_clean_eh_stmt (stmt
))
694 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
696 if (gimple_in_ssa_p (cfun
))
697 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
701 /* Generate code at the entry point of the function to initialize the
702 component variables for a complex parameter. */
705 update_parameter_components (void)
707 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
710 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
712 tree type
= TREE_TYPE (parm
);
715 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
718 type
= TREE_TYPE (type
);
719 ssa_name
= ssa_default_def (cfun
, parm
);
723 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
724 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
725 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
729 /* Generate code to set the component variables of a complex variable
730 to match the PHI statements in block BB. */
733 update_phi_components (basic_block bb
)
735 gimple_stmt_iterator gsi
;
737 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
739 gimple phi
= gsi_stmt (gsi
);
741 if (is_complex_reg (gimple_phi_result (phi
)))
744 gimple pr
= NULL
, pi
= NULL
;
747 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
748 if (TREE_CODE (lr
) == SSA_NAME
)
749 pr
= create_phi_node (lr
, bb
);
751 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
752 if (TREE_CODE (li
) == SSA_NAME
)
753 pi
= create_phi_node (li
, bb
);
755 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
757 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
760 comp
= extract_component (NULL
, arg
, false, false);
761 SET_PHI_ARG_DEF (pr
, i
, comp
);
765 comp
= extract_component (NULL
, arg
, true, false);
766 SET_PHI_ARG_DEF (pi
, i
, comp
);
773 /* Expand a complex move to scalars. */
776 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
778 tree inner_type
= TREE_TYPE (type
);
780 gimple stmt
= gsi_stmt (*gsi
);
782 if (is_gimple_assign (stmt
))
784 lhs
= gimple_assign_lhs (stmt
);
785 if (gimple_num_ops (stmt
) == 2)
786 rhs
= gimple_assign_rhs1 (stmt
);
790 else if (is_gimple_call (stmt
))
792 lhs
= gimple_call_lhs (stmt
);
798 if (TREE_CODE (lhs
) == SSA_NAME
)
800 if (is_ctrl_altering_stmt (stmt
))
804 /* The value is not assigned on the exception edges, so we need not
805 concern ourselves there. We do need to update on the fallthru
807 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
811 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
812 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
813 update_complex_components_on_edge (e
, lhs
, r
, i
);
815 else if (is_gimple_call (stmt
)
816 || gimple_has_side_effects (stmt
)
817 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
819 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
820 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
821 update_complex_components (gsi
, stmt
, r
, i
);
825 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
827 r
= extract_component (gsi
, rhs
, 0, true);
828 i
= extract_component (gsi
, rhs
, 1, true);
832 r
= gimple_assign_rhs1 (stmt
);
833 i
= gimple_assign_rhs2 (stmt
);
835 update_complex_assignment (gsi
, r
, i
);
838 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
844 loc
= gimple_location (stmt
);
845 r
= extract_component (gsi
, rhs
, 0, false);
846 i
= extract_component (gsi
, rhs
, 1, false);
848 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
849 t
= gimple_build_assign (x
, r
);
850 gimple_set_location (t
, loc
);
851 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
853 if (stmt
== gsi_stmt (*gsi
))
855 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
856 gimple_assign_set_lhs (stmt
, x
);
857 gimple_assign_set_rhs1 (stmt
, i
);
861 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
862 t
= gimple_build_assign (x
, i
);
863 gimple_set_location (t
, loc
);
864 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
866 stmt
= gsi_stmt (*gsi
);
867 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
868 gimple_return_set_retval (stmt
, lhs
);
875 /* Expand complex addition to scalars:
876 a + b = (ar + br) + i(ai + bi)
877 a - b = (ar - br) + i(ai + bi)
881 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
882 tree ar
, tree ai
, tree br
, tree bi
,
884 complex_lattice_t al
, complex_lattice_t bl
)
888 switch (PAIR (al
, bl
))
890 case PAIR (ONLY_REAL
, ONLY_REAL
):
891 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
895 case PAIR (ONLY_REAL
, ONLY_IMAG
):
897 if (code
== MINUS_EXPR
)
898 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
903 case PAIR (ONLY_IMAG
, ONLY_REAL
):
904 if (code
== MINUS_EXPR
)
905 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
911 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
913 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
916 case PAIR (VARYING
, ONLY_REAL
):
917 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
921 case PAIR (VARYING
, ONLY_IMAG
):
923 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
926 case PAIR (ONLY_REAL
, VARYING
):
927 if (code
== MINUS_EXPR
)
929 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
933 case PAIR (ONLY_IMAG
, VARYING
):
934 if (code
== MINUS_EXPR
)
937 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
940 case PAIR (VARYING
, VARYING
):
942 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
943 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
950 update_complex_assignment (gsi
, rr
, ri
);
953 /* Expand a complex multiplication or division to a libcall to the c99
954 compliant routines. */
957 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
958 tree br
, tree bi
, enum tree_code code
)
961 enum built_in_function bcode
;
963 gimple old_stmt
, stmt
;
965 old_stmt
= gsi_stmt (*gsi
);
966 lhs
= gimple_assign_lhs (old_stmt
);
967 type
= TREE_TYPE (lhs
);
969 mode
= TYPE_MODE (type
);
970 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
972 if (code
== MULT_EXPR
)
973 bcode
= ((enum built_in_function
)
974 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
975 else if (code
== RDIV_EXPR
)
976 bcode
= ((enum built_in_function
)
977 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
980 fn
= builtin_decl_explicit (bcode
);
982 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
983 gimple_call_set_lhs (stmt
, lhs
);
985 gsi_replace (gsi
, stmt
, false);
987 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
988 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
990 if (gimple_in_ssa_p (cfun
))
992 type
= TREE_TYPE (type
);
993 update_complex_components (gsi
, stmt
,
994 build1 (REALPART_EXPR
, type
, lhs
),
995 build1 (IMAGPART_EXPR
, type
, lhs
));
996 SSA_NAME_DEF_STMT (lhs
) = stmt
;
1000 /* Expand complex multiplication to scalars:
1001 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1005 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
1006 tree ar
, tree ai
, tree br
, tree bi
,
1007 complex_lattice_t al
, complex_lattice_t bl
)
1013 complex_lattice_t tl
;
1014 rr
= ar
, ar
= br
, br
= rr
;
1015 ri
= ai
, ai
= bi
, bi
= ri
;
1016 tl
= al
, al
= bl
, bl
= tl
;
1019 switch (PAIR (al
, bl
))
1021 case PAIR (ONLY_REAL
, ONLY_REAL
):
1022 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1026 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1028 if (TREE_CODE (ai
) == REAL_CST
1029 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1032 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1035 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1036 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1037 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1041 case PAIR (VARYING
, ONLY_REAL
):
1042 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1043 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1046 case PAIR (VARYING
, ONLY_IMAG
):
1047 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1048 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1049 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1052 case PAIR (VARYING
, VARYING
):
1053 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1055 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1060 tree t1
, t2
, t3
, t4
;
1062 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1063 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1064 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1066 /* Avoid expanding redundant multiplication for the common
1067 case of squaring a complex number. */
1068 if (ar
== br
&& ai
== bi
)
1071 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1073 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1074 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1082 update_complex_assignment (gsi
, rr
, ri
);
1085 /* Keep this algorithm in sync with fold-const.c:const_binop().
1087 Expand complex division to scalars, straightforward algorithm.
1088 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1093 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1094 tree ar
, tree ai
, tree br
, tree bi
,
1095 enum tree_code code
)
1097 tree rr
, ri
, div
, t1
, t2
, t3
;
1099 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1100 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1101 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1103 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1104 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1105 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1106 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1108 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1109 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1110 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1111 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1113 update_complex_assignment (gsi
, rr
, ri
);
1116 /* Keep this algorithm in sync with fold-const.c:const_binop().
1118 Expand complex division to scalars, modified algorithm to minimize
1119 overflow with wide input ranges. */
1122 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1123 tree ar
, tree ai
, tree br
, tree bi
,
1124 enum tree_code code
)
1126 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1127 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1130 /* Examine |br| < |bi|, and branch. */
1131 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1132 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1133 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1134 LT_EXPR
, boolean_type_node
, t1
, t2
);
1135 STRIP_NOPS (compare
);
1137 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1138 rr
= ri
= tr
= ti
= NULL
;
1139 if (TREE_CODE (compare
) != INTEGER_CST
)
1145 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1146 stmt
= gimple_build_assign (tmp
, compare
);
1147 if (gimple_in_ssa_p (cfun
))
1149 tmp
= make_ssa_name (tmp
, stmt
);
1150 gimple_assign_set_lhs (stmt
, tmp
);
1153 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1155 cond
= fold_build2_loc (gimple_location (stmt
),
1156 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1157 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1158 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1160 /* Split the original block, and create the TRUE and FALSE blocks. */
1161 e
= split_block (gsi_bb (*gsi
), stmt
);
1164 bb_true
= create_empty_bb (bb_cond
);
1165 bb_false
= create_empty_bb (bb_true
);
1167 /* Wire the blocks together. */
1168 e
->flags
= EDGE_TRUE_VALUE
;
1169 redirect_edge_succ (e
, bb_true
);
1170 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1171 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1172 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1173 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1174 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1176 /* Update dominance info. Note that bb_join's data was
1177 updated by split_block. */
1178 if (dom_info_available_p (CDI_DOMINATORS
))
1180 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1181 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1184 rr
= create_tmp_reg (inner_type
, NULL
);
1185 ri
= create_tmp_reg (inner_type
, NULL
);
1188 /* In the TRUE branch, we compute
1190 div = (br * ratio) + bi;
1191 tr = (ar * ratio) + ai;
1192 ti = (ai * ratio) - ar;
1195 if (bb_true
|| integer_nonzerop (compare
))
1199 *gsi
= gsi_last_bb (bb_true
);
1200 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1203 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1205 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1206 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1208 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1209 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1211 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1212 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1214 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1215 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1219 stmt
= gimple_build_assign (rr
, tr
);
1220 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1221 stmt
= gimple_build_assign (ri
, ti
);
1222 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1223 gsi_remove (gsi
, true);
1227 /* In the FALSE branch, we compute
1229 divisor = (d * ratio) + c;
1230 tr = (b * ratio) + a;
1231 ti = b - (a * ratio);
1234 if (bb_false
|| integer_zerop (compare
))
1238 *gsi
= gsi_last_bb (bb_false
);
1239 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1242 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1244 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1245 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1247 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1248 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1250 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1251 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1253 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1254 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1258 stmt
= gimple_build_assign (rr
, tr
);
1259 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1260 stmt
= gimple_build_assign (ri
, ti
);
1261 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1262 gsi_remove (gsi
, true);
1267 *gsi
= gsi_start_bb (bb_join
);
1271 update_complex_assignment (gsi
, rr
, ri
);
1274 /* Expand complex division to scalars. */
1277 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1278 tree ar
, tree ai
, tree br
, tree bi
,
1279 enum tree_code code
,
1280 complex_lattice_t al
, complex_lattice_t bl
)
1284 switch (PAIR (al
, bl
))
1286 case PAIR (ONLY_REAL
, ONLY_REAL
):
1287 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1291 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1293 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1294 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1297 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1299 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1302 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1303 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1307 case PAIR (VARYING
, ONLY_REAL
):
1308 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1309 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1312 case PAIR (VARYING
, ONLY_IMAG
):
1313 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1314 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1315 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1317 case PAIR (ONLY_REAL
, VARYING
):
1318 case PAIR (ONLY_IMAG
, VARYING
):
1319 case PAIR (VARYING
, VARYING
):
1320 switch (flag_complex_method
)
1323 /* straightforward implementation of complex divide acceptable. */
1324 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1328 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1330 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1336 /* wide ranges of inputs must work for complex divide. */
1337 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1349 update_complex_assignment (gsi
, rr
, ri
);
1352 /* Expand complex negation to scalars:
1357 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1362 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1363 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1365 update_complex_assignment (gsi
, rr
, ri
);
1368 /* Expand complex conjugate to scalars:
1373 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1378 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1380 update_complex_assignment (gsi
, ar
, ri
);
1383 /* Expand complex comparison (EQ or NE only). */
1386 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1387 tree br
, tree bi
, enum tree_code code
)
1389 tree cr
, ci
, cc
, type
;
1392 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1393 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1394 cc
= gimplify_build2 (gsi
,
1395 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1396 boolean_type_node
, cr
, ci
);
1398 stmt
= gsi_stmt (*gsi
);
1400 switch (gimple_code (stmt
))
1403 type
= TREE_TYPE (gimple_return_retval (stmt
));
1404 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1408 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1409 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1410 stmt
= gsi_stmt (*gsi
);
1414 gimple_cond_set_code (stmt
, EQ_EXPR
);
1415 gimple_cond_set_lhs (stmt
, cc
);
1416 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1426 /* Expand inline asm that sets some complex SSA_NAMEs. */
1429 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1431 gimple stmt
= gsi_stmt (*gsi
);
1434 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1436 tree link
= gimple_asm_output_op (stmt
, i
);
1437 tree op
= TREE_VALUE (link
);
1438 if (TREE_CODE (op
) == SSA_NAME
1439 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1441 tree type
= TREE_TYPE (op
);
1442 tree inner_type
= TREE_TYPE (type
);
1443 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1444 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1445 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1448 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1450 list
= set_component_ssa_name (op
, true, i
);
1452 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1457 /* Process one statement. If we identify a complex operation, expand it. */
1460 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1462 gimple stmt
= gsi_stmt (*gsi
);
1463 tree type
, inner_type
, lhs
;
1464 tree ac
, ar
, ai
, bc
, br
, bi
;
1465 complex_lattice_t al
, bl
;
1466 enum tree_code code
;
1468 if (gimple_code (stmt
) == GIMPLE_ASM
)
1470 expand_complex_asm (gsi
);
1474 lhs
= gimple_get_lhs (stmt
);
1475 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1478 type
= TREE_TYPE (gimple_op (stmt
, 0));
1479 code
= gimple_expr_code (stmt
);
1481 /* Initial filter for operations we handle. */
1487 case TRUNC_DIV_EXPR
:
1489 case FLOOR_DIV_EXPR
:
1490 case ROUND_DIV_EXPR
:
1494 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1496 inner_type
= TREE_TYPE (type
);
1501 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1502 subcode, so we need to access the operands using gimple_op. */
1503 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1504 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1512 /* GIMPLE_COND may also fallthru here, but we do not need to
1513 do anything with it. */
1514 if (gimple_code (stmt
) == GIMPLE_COND
)
1517 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1518 expand_complex_move (gsi
, type
);
1519 else if (is_gimple_assign (stmt
)
1520 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1521 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1522 && TREE_CODE (lhs
) == SSA_NAME
)
1524 rhs
= gimple_assign_rhs1 (stmt
);
1525 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1526 gimple_assign_rhs_code (stmt
)
1529 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1530 stmt
= gsi_stmt (*gsi
);
1537 /* Extract the components of the two complex values. Make sure and
1538 handle the common case of the same value used twice specially. */
1539 if (is_gimple_assign (stmt
))
1541 ac
= gimple_assign_rhs1 (stmt
);
1542 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1544 /* GIMPLE_CALL can not get here. */
1547 ac
= gimple_cond_lhs (stmt
);
1548 bc
= gimple_cond_rhs (stmt
);
1551 ar
= extract_component (gsi
, ac
, false, true);
1552 ai
= extract_component (gsi
, ac
, true, true);
1558 br
= extract_component (gsi
, bc
, 0, true);
1559 bi
= extract_component (gsi
, bc
, 1, true);
1562 br
= bi
= NULL_TREE
;
1564 if (gimple_in_ssa_p (cfun
))
1566 al
= find_lattice_value (ac
);
1567 if (al
== UNINITIALIZED
)
1570 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1576 bl
= find_lattice_value (bc
);
1577 if (bl
== UNINITIALIZED
)
1588 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1592 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1595 case TRUNC_DIV_EXPR
:
1597 case FLOOR_DIV_EXPR
:
1598 case ROUND_DIV_EXPR
:
1600 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1604 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1608 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1613 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1622 /* Entry point for complex operation lowering during optimization. */
1625 tree_lower_complex (void)
1627 int old_last_basic_block
;
1628 gimple_stmt_iterator gsi
;
1631 if (!init_dont_simulate_again ())
1634 complex_lattice_values
.create (num_ssa_names
);
1635 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1637 init_parameter_lattice_values ();
1638 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1640 complex_variable_components
= new int_tree_htab_type (10);
1642 complex_ssa_name_components
.create (2 * num_ssa_names
);
1643 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1645 update_parameter_components ();
1647 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1648 old_last_basic_block
= last_basic_block_for_fn (cfun
);
1649 FOR_EACH_BB_FN (bb
, cfun
)
1651 if (bb
->index
>= old_last_basic_block
)
1654 update_phi_components (bb
);
1655 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1656 expand_complex_operations_1 (&gsi
);
1659 gsi_commit_edge_inserts ();
1661 delete complex_variable_components
;
1662 complex_variable_components
= NULL
;
1663 complex_ssa_name_components
.release ();
1664 complex_lattice_values
.release ();
1670 const pass_data pass_data_lower_complex
=
1672 GIMPLE_PASS
, /* type */
1673 "cplxlower", /* name */
1674 OPTGROUP_NONE
, /* optinfo_flags */
1675 TV_NONE
, /* tv_id */
1676 PROP_ssa
, /* properties_required */
1677 PROP_gimple_lcx
, /* properties_provided */
1678 0, /* properties_destroyed */
1679 0, /* todo_flags_start */
1680 TODO_update_ssa
, /* todo_flags_finish */
1683 class pass_lower_complex
: public gimple_opt_pass
1686 pass_lower_complex (gcc::context
*ctxt
)
1687 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1690 /* opt_pass methods: */
1691 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1692 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1694 }; // class pass_lower_complex
1699 make_pass_lower_complex (gcc::context
*ctxt
)
1701 return new pass_lower_complex (ctxt
);
1707 const pass_data pass_data_lower_complex_O0
=
1709 GIMPLE_PASS
, /* type */
1710 "cplxlower0", /* name */
1711 OPTGROUP_NONE
, /* optinfo_flags */
1712 TV_NONE
, /* tv_id */
1713 PROP_cfg
, /* properties_required */
1714 PROP_gimple_lcx
, /* properties_provided */
1715 0, /* properties_destroyed */
1716 0, /* todo_flags_start */
1717 TODO_update_ssa
, /* todo_flags_finish */
1720 class pass_lower_complex_O0
: public gimple_opt_pass
1723 pass_lower_complex_O0 (gcc::context
*ctxt
)
1724 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1727 /* opt_pass methods: */
1728 virtual bool gate (function
*fun
)
1730 /* With errors, normal optimization passes are not run. If we don't
1731 lower complex operations at all, rtl expansion will abort. */
1732 return !(fun
->curr_properties
& PROP_gimple_lcx
);
1735 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1737 }; // class pass_lower_complex_O0
1742 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1744 return new pass_lower_complex_O0 (ctxt
);