1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 #include "coretypes.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
35 just_once_each_iteration_p (struct loop
*loop
, basic_block bb
)
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
42 if (bb
->loop_father
!= loop
)
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
52 /* Structure representing edge of a graph. */
56 int src
, dest
; /* Source and destination. */
57 struct edge
*pred_next
, *succ_next
;
58 /* Next edge in predecessor and successor lists. */
59 void *data
; /* Data attached to the edge. */
62 /* Structure representing vertex of a graph. */
66 struct edge
*pred
, *succ
;
67 /* Lists of predecessors and successors. */
68 int component
; /* Number of dfs restarts before reaching the
70 int post
; /* Postorder number. */
73 /* Structure representing a graph. */
77 int n_vertices
; /* Number of vertices. */
78 struct vertex
*vertices
;
82 /* Dumps graph G into F. */
84 extern void dump_graph (FILE *, struct graph
*);
85 void dump_graph (FILE *f
, struct graph
*g
)
90 for (i
= 0; i
< g
->n_vertices
; i
++)
92 if (!g
->vertices
[i
].pred
93 && !g
->vertices
[i
].succ
)
96 fprintf (f
, "%d (%d)\t<-", i
, g
->vertices
[i
].component
);
97 for (e
= g
->vertices
[i
].pred
; e
; e
= e
->pred_next
)
98 fprintf (f
, " %d", e
->src
);
102 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
103 fprintf (f
, " %d", e
->dest
);
108 /* Creates a new graph with N_VERTICES vertices. */
110 static struct graph
*
111 new_graph (int n_vertices
)
113 struct graph
*g
= xmalloc (sizeof (struct graph
));
115 g
->n_vertices
= n_vertices
;
116 g
->vertices
= xcalloc (n_vertices
, sizeof (struct vertex
));
121 /* Adds an edge from F to T to graph G, with DATA attached. */
124 add_edge (struct graph
*g
, int f
, int t
, void *data
)
126 struct edge
*e
= xmalloc (sizeof (struct edge
));
132 e
->pred_next
= g
->vertices
[t
].pred
;
133 g
->vertices
[t
].pred
= e
;
135 e
->succ_next
= g
->vertices
[f
].succ
;
136 g
->vertices
[f
].succ
= e
;
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
144 dfs (struct graph
*g
, int *qs
, int nq
, int *qt
, bool forward
)
146 int i
, tick
= 0, v
, comp
= 0, top
;
148 struct edge
**stack
= xmalloc (sizeof (struct edge
*) * g
->n_vertices
);
150 for (i
= 0; i
< g
->n_vertices
; i
++)
152 g
->vertices
[i
].component
= -1;
153 g
->vertices
[i
].post
= -1;
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161 for (i
= 0; i
< nq
; i
++)
164 if (g
->vertices
[v
].post
!= -1)
167 g
->vertices
[v
].component
= comp
++;
173 while (e
&& g
->vertices
[EDGE_DEST (e
)].component
!= -1)
180 g
->vertices
[v
].post
= tick
++;
194 g
->vertices
[v
].component
= comp
- 1;
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205 check_irred (struct graph
*g
, struct edge
*e
)
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 gcc_assert (g
->vertices
[e
->src
].component
>= g
->vertices
[e
->dest
].component
);
213 if (g
->vertices
[e
->src
].component
!= g
->vertices
[e
->dest
].component
)
216 real
->flags
|= EDGE_IRREDUCIBLE_LOOP
;
217 if (flow_bb_inside_loop_p (real
->src
->loop_father
, real
->dest
))
218 real
->src
->flags
|= BB_IRREDUCIBLE_LOOP
;
221 /* Runs CALLBACK for all edges in G. */
224 for_each_edge (struct graph
*g
,
225 void (callback
) (struct graph
*, struct edge
*))
230 for (i
= 0; i
< g
->n_vertices
; i
++)
231 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
235 /* Releases the memory occupied by G. */
238 free_graph (struct graph
*g
)
243 for (i
= 0; i
< g
->n_vertices
; i
++)
244 for (e
= g
->vertices
[i
].succ
; e
; e
= n
)
253 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
254 throw away all latch edges and mark blocks inside any remaining cycle.
255 Everything is a bit complicated due to fact we do not want to do this
256 for parts of cycles that only "pass" through some loop -- i.e. for
257 each cycle, we want to mark blocks that belong directly to innermost
258 loop containing the whole cycle.
260 LOOPS is the loop tree. */
262 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
263 #define BB_REPR(BB) ((BB)->index + 1)
266 mark_irreducible_loops (struct loops
*loops
)
273 int *queue1
= xmalloc ((last_basic_block
+ loops
->num
) * sizeof (int));
274 int *queue2
= xmalloc ((last_basic_block
+ loops
->num
) * sizeof (int));
278 /* Reset the flags. */
279 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
281 act
->flags
&= ~BB_IRREDUCIBLE_LOOP
;
282 FOR_EACH_EDGE (e
, ei
, act
->succs
)
284 e
->flags
&= ~EDGE_IRREDUCIBLE_LOOP
;
288 /* Create the edge lists. */
289 g
= new_graph (last_basic_block
+ loops
->num
);
291 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
292 FOR_EACH_EDGE (e
, ei
, act
->succs
)
294 /* Ignore edges to exit. */
295 if (e
->dest
== EXIT_BLOCK_PTR
)
298 /* And latch edges. */
299 if (e
->dest
->loop_father
->header
== e
->dest
300 && e
->dest
->loop_father
->latch
== act
)
303 /* Edges inside a single loop should be left where they are. Edges
304 to subloop headers should lead to representative of the subloop,
305 but from the same place.
307 Edges exiting loops should lead from representative
308 of the son of nearest common ancestor of the loops in that
312 dest
= BB_REPR (e
->dest
);
314 if (e
->dest
->loop_father
->header
== e
->dest
)
315 dest
= LOOP_REPR (e
->dest
->loop_father
);
317 if (!flow_bb_inside_loop_p (act
->loop_father
, e
->dest
))
319 depth
= find_common_loop (act
->loop_father
,
320 e
->dest
->loop_father
)->depth
+ 1;
321 if (depth
== act
->loop_father
->depth
)
322 cloop
= act
->loop_father
;
324 cloop
= act
->loop_father
->pred
[depth
];
326 src
= LOOP_REPR (cloop
);
329 add_edge (g
, src
, dest
, e
);
332 /* Find the strongly connected components. Use the algorithm of Tarjan --
333 first determine the postorder dfs numbering in reversed graph, then
334 run the dfs on the original graph in the order given by decreasing
335 numbers assigned by the previous pass. */
337 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
339 queue1
[nq
++] = BB_REPR (act
);
341 for (i
= 1; i
< (int) loops
->num
; i
++)
342 if (loops
->parray
[i
])
343 queue1
[nq
++] = LOOP_REPR (loops
->parray
[i
]);
344 dfs (g
, queue1
, nq
, queue2
, false);
345 for (i
= 0; i
< nq
; i
++)
346 queue1
[i
] = queue2
[nq
- i
- 1];
347 dfs (g
, queue1
, nq
, NULL
, true);
349 /* Mark the irreducible loops. */
350 for_each_edge (g
, check_irred
);
356 loops
->state
|= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
;
359 /* Counts number of insns inside LOOP. */
361 num_loop_insns (struct loop
*loop
)
363 basic_block
*bbs
, bb
;
364 unsigned i
, ninsns
= 0;
367 bbs
= get_loop_body (loop
);
368 for (i
= 0; i
< loop
->num_nodes
; i
++)
372 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
381 /* Counts number of insns executed on average per iteration LOOP. */
383 average_num_loop_insns (struct loop
*loop
)
385 basic_block
*bbs
, bb
;
386 unsigned i
, binsns
, ninsns
, ratio
;
390 bbs
= get_loop_body (loop
);
391 for (i
= 0; i
< loop
->num_nodes
; i
++)
396 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
400 ratio
= loop
->header
->frequency
== 0
402 : (bb
->frequency
* BB_FREQ_MAX
) / loop
->header
->frequency
;
403 ninsns
+= binsns
* ratio
;
407 ninsns
/= BB_FREQ_MAX
;
409 ninsns
= 1; /* To avoid division by zero. */
414 /* Returns expected number of LOOP iterations.
415 Compute upper bound on number of iterations in case they do not fit integer
416 to help loop peeling heuristics. Use exact counts if at all possible. */
418 expected_loop_iterations (const struct loop
*loop
)
423 if (loop
->header
->count
)
425 gcov_type count_in
, count_latch
, expected
;
430 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
432 if (e
->src
== loop
->latch
)
433 count_latch
= e
->count
;
435 count_in
+= e
->count
;
439 expected
= count_latch
* 2;
441 expected
= (count_latch
+ count_in
- 1) / count_in
;
443 /* Avoid overflows. */
444 return (expected
> REG_BR_PROB_BASE
? REG_BR_PROB_BASE
: expected
);
448 int freq_in
, freq_latch
;
453 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
455 if (e
->src
== loop
->latch
)
456 freq_latch
= EDGE_FREQUENCY (e
);
458 freq_in
+= EDGE_FREQUENCY (e
);
462 return freq_latch
* 2;
464 return (freq_latch
+ freq_in
- 1) / freq_in
;
468 /* Returns the maximum level of nesting of subloops of LOOP. */
471 get_loop_level (const struct loop
*loop
)
473 const struct loop
*ploop
;
476 for (ploop
= loop
->inner
; ploop
; ploop
= ploop
->next
)
478 l
= get_loop_level (ploop
);
485 /* Returns estimate on cost of computing SEQ. */
493 for (; seq
; seq
= NEXT_INSN (seq
))
495 set
= single_set (seq
);
497 cost
+= rtx_cost (set
, SET
);
505 /* The properties of the target. */
507 unsigned target_avail_regs
; /* Number of available registers. */
508 unsigned target_res_regs
; /* Number of reserved registers. */
509 unsigned target_small_cost
; /* The cost for register when there is a free one. */
510 unsigned target_pres_cost
; /* The cost for register when there are not too many
512 unsigned target_spill_cost
; /* The cost for register when we need to spill. */
514 /* Initialize the constants for computing set costs. */
517 init_set_costs (void)
520 rtx reg1
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
);
521 rtx reg2
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
+ 1);
522 rtx addr
= gen_raw_REG (Pmode
, FIRST_PSEUDO_REGISTER
+ 2);
523 rtx mem
= validize_mem (gen_rtx_MEM (SImode
, addr
));
526 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
527 if (TEST_HARD_REG_BIT (reg_class_contents
[GENERAL_REGS
], i
)
533 /* These are really just heuristic values. */
536 emit_move_insn (reg1
, reg2
);
539 target_small_cost
= seq_cost (seq
);
540 target_pres_cost
= 2 * target_small_cost
;
543 emit_move_insn (mem
, reg1
);
544 emit_move_insn (reg2
, mem
);
547 target_spill_cost
= seq_cost (seq
);
550 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
551 number of global registers used in loop. N_USES is the number of relevant
555 global_cost_for_size (unsigned size
, unsigned regs_used
, unsigned n_uses
)
557 unsigned regs_needed
= regs_used
+ size
;
560 if (regs_needed
+ target_res_regs
<= target_avail_regs
)
561 cost
+= target_small_cost
* size
;
562 else if (regs_needed
<= target_avail_regs
)
563 cost
+= target_pres_cost
* size
;
566 cost
+= target_pres_cost
* size
;
567 cost
+= target_spill_cost
* n_uses
* (regs_needed
- target_avail_regs
) / regs_needed
;