* basic-block.h (ei_safe_edge): New function.
[official-gcc.git] / gcc / cfgloopanal.c
blobff2950d2864a1b63edbdcc346b25f1d6a38dcc11
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34 bool
35 just_once_each_iteration_p (struct loop *loop, basic_block bb)
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
39 return false;
41 /* And just once. */
42 if (bb->loop_father != loop)
43 return false;
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb->flags & BB_IRREDUCIBLE_LOOP)
47 return false;
49 return true;
52 /* Structure representing edge of a graph. */
54 struct edge
56 int src, dest; /* Source and destination. */
57 struct edge *pred_next, *succ_next;
58 /* Next edge in predecessor and successor lists. */
59 void *data; /* Data attached to the edge. */
62 /* Structure representing vertex of a graph. */
64 struct vertex
66 struct edge *pred, *succ;
67 /* Lists of predecessors and successors. */
68 int component; /* Number of dfs restarts before reaching the
69 vertex. */
70 int post; /* Postorder number. */
73 /* Structure representing a graph. */
75 struct graph
77 int n_vertices; /* Number of vertices. */
78 struct vertex *vertices;
79 /* The vertices. */
82 /* Dumps graph G into F. */
84 extern void dump_graph (FILE *, struct graph *);
85 void dump_graph (FILE *f, struct graph *g)
87 int i;
88 struct edge *e;
90 for (i = 0; i < g->n_vertices; i++)
92 if (!g->vertices[i].pred
93 && !g->vertices[i].succ)
94 continue;
96 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
97 for (e = g->vertices[i].pred; e; e = e->pred_next)
98 fprintf (f, " %d", e->src);
99 fprintf (f, "\n");
101 fprintf (f, "\t->");
102 for (e = g->vertices[i].succ; e; e = e->succ_next)
103 fprintf (f, " %d", e->dest);
104 fprintf (f, "\n");
108 /* Creates a new graph with N_VERTICES vertices. */
110 static struct graph *
111 new_graph (int n_vertices)
113 struct graph *g = xmalloc (sizeof (struct graph));
115 g->n_vertices = n_vertices;
116 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
118 return g;
121 /* Adds an edge from F to T to graph G, with DATA attached. */
123 static void
124 add_edge (struct graph *g, int f, int t, void *data)
126 struct edge *e = xmalloc (sizeof (struct edge));
128 e->src = f;
129 e->dest = t;
130 e->data = data;
132 e->pred_next = g->vertices[t].pred;
133 g->vertices[t].pred = e;
135 e->succ_next = g->vertices[f].succ;
136 g->vertices[f].succ = e;
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
143 static void
144 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
146 int i, tick = 0, v, comp = 0, top;
147 struct edge *e;
148 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
150 for (i = 0; i < g->n_vertices; i++)
152 g->vertices[i].component = -1;
153 g->vertices[i].post = -1;
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161 for (i = 0; i < nq; i++)
163 v = qs[i];
164 if (g->vertices[v].post != -1)
165 continue;
167 g->vertices[v].component = comp++;
168 e = FST_EDGE (v);
169 top = 0;
171 while (1)
173 while (e && g->vertices[EDGE_DEST (e)].component != -1)
174 e = NEXT_EDGE (e);
176 if (!e)
178 if (qt)
179 qt[tick] = v;
180 g->vertices[v].post = tick++;
182 if (!top)
183 break;
185 e = stack[--top];
186 v = EDGE_SRC (e);
187 e = NEXT_EDGE (e);
188 continue;
191 stack[top++] = e;
192 v = EDGE_DEST (e);
193 e = FST_EDGE (v);
194 g->vertices[v].component = comp - 1;
198 free (stack);
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
202 same scc. */
204 static void
205 check_irred (struct graph *g, struct edge *e)
207 edge real = e->data;
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
213 if (g->vertices[e->src].component != g->vertices[e->dest].component)
214 return;
216 real->flags |= EDGE_IRREDUCIBLE_LOOP;
217 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
218 real->src->flags |= BB_IRREDUCIBLE_LOOP;
221 /* Runs CALLBACK for all edges in G. */
223 static void
224 for_each_edge (struct graph *g,
225 void (callback) (struct graph *, struct edge *))
227 struct edge *e;
228 int i;
230 for (i = 0; i < g->n_vertices; i++)
231 for (e = g->vertices[i].succ; e; e = e->succ_next)
232 callback (g, e);
235 /* Releases the memory occupied by G. */
237 static void
238 free_graph (struct graph *g)
240 struct edge *e, *n;
241 int i;
243 for (i = 0; i < g->n_vertices; i++)
244 for (e = g->vertices[i].succ; e; e = n)
246 n = e->succ_next;
247 free (e);
249 free (g->vertices);
250 free (g);
253 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
254 throw away all latch edges and mark blocks inside any remaining cycle.
255 Everything is a bit complicated due to fact we do not want to do this
256 for parts of cycles that only "pass" through some loop -- i.e. for
257 each cycle, we want to mark blocks that belong directly to innermost
258 loop containing the whole cycle.
260 LOOPS is the loop tree. */
262 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
263 #define BB_REPR(BB) ((BB)->index + 1)
265 void
266 mark_irreducible_loops (struct loops *loops)
268 basic_block act;
269 edge e;
270 edge_iterator ei;
271 int i, src, dest;
272 struct graph *g;
273 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
274 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int nq, depth;
276 struct loop *cloop;
278 /* Reset the flags. */
279 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
281 act->flags &= ~BB_IRREDUCIBLE_LOOP;
282 FOR_EACH_EDGE (e, ei, act->succs)
284 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
288 /* Create the edge lists. */
289 g = new_graph (last_basic_block + loops->num);
291 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
292 FOR_EACH_EDGE (e, ei, act->succs)
294 /* Ignore edges to exit. */
295 if (e->dest == EXIT_BLOCK_PTR)
296 continue;
298 /* And latch edges. */
299 if (e->dest->loop_father->header == e->dest
300 && e->dest->loop_father->latch == act)
301 continue;
303 /* Edges inside a single loop should be left where they are. Edges
304 to subloop headers should lead to representative of the subloop,
305 but from the same place.
307 Edges exiting loops should lead from representative
308 of the son of nearest common ancestor of the loops in that
309 act lays. */
311 src = BB_REPR (act);
312 dest = BB_REPR (e->dest);
314 if (e->dest->loop_father->header == e->dest)
315 dest = LOOP_REPR (e->dest->loop_father);
317 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
319 depth = find_common_loop (act->loop_father,
320 e->dest->loop_father)->depth + 1;
321 if (depth == act->loop_father->depth)
322 cloop = act->loop_father;
323 else
324 cloop = act->loop_father->pred[depth];
326 src = LOOP_REPR (cloop);
329 add_edge (g, src, dest, e);
332 /* Find the strongly connected components. Use the algorithm of Tarjan --
333 first determine the postorder dfs numbering in reversed graph, then
334 run the dfs on the original graph in the order given by decreasing
335 numbers assigned by the previous pass. */
336 nq = 0;
337 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
339 queue1[nq++] = BB_REPR (act);
341 for (i = 1; i < (int) loops->num; i++)
342 if (loops->parray[i])
343 queue1[nq++] = LOOP_REPR (loops->parray[i]);
344 dfs (g, queue1, nq, queue2, false);
345 for (i = 0; i < nq; i++)
346 queue1[i] = queue2[nq - i - 1];
347 dfs (g, queue1, nq, NULL, true);
349 /* Mark the irreducible loops. */
350 for_each_edge (g, check_irred);
352 free_graph (g);
353 free (queue1);
354 free (queue2);
356 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
359 /* Counts number of insns inside LOOP. */
361 num_loop_insns (struct loop *loop)
363 basic_block *bbs, bb;
364 unsigned i, ninsns = 0;
365 rtx insn;
367 bbs = get_loop_body (loop);
368 for (i = 0; i < loop->num_nodes; i++)
370 bb = bbs[i];
371 ninsns++;
372 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
373 if (INSN_P (insn))
374 ninsns++;
376 free(bbs);
378 return ninsns;
381 /* Counts number of insns executed on average per iteration LOOP. */
383 average_num_loop_insns (struct loop *loop)
385 basic_block *bbs, bb;
386 unsigned i, binsns, ninsns, ratio;
387 rtx insn;
389 ninsns = 0;
390 bbs = get_loop_body (loop);
391 for (i = 0; i < loop->num_nodes; i++)
393 bb = bbs[i];
395 binsns = 1;
396 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
397 if (INSN_P (insn))
398 binsns++;
400 ratio = loop->header->frequency == 0
401 ? BB_FREQ_MAX
402 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
403 ninsns += binsns * ratio;
405 free(bbs);
407 ninsns /= BB_FREQ_MAX;
408 if (!ninsns)
409 ninsns = 1; /* To avoid division by zero. */
411 return ninsns;
414 /* Returns expected number of LOOP iterations.
415 Compute upper bound on number of iterations in case they do not fit integer
416 to help loop peeling heuristics. Use exact counts if at all possible. */
417 unsigned
418 expected_loop_iterations (const struct loop *loop)
420 edge e;
421 edge_iterator ei;
423 if (loop->header->count)
425 gcov_type count_in, count_latch, expected;
427 count_in = 0;
428 count_latch = 0;
430 FOR_EACH_EDGE (e, ei, loop->header->preds)
432 if (e->src == loop->latch)
433 count_latch = e->count;
434 else
435 count_in += e->count;
438 if (count_in == 0)
439 expected = count_latch * 2;
440 else
441 expected = (count_latch + count_in - 1) / count_in;
443 /* Avoid overflows. */
444 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
446 else
448 int freq_in, freq_latch;
450 freq_in = 0;
451 freq_latch = 0;
453 FOR_EACH_EDGE (e, ei, loop->header->preds)
455 if (e->src == loop->latch)
456 freq_latch = EDGE_FREQUENCY (e);
457 else
458 freq_in += EDGE_FREQUENCY (e);
461 if (freq_in == 0)
462 return freq_latch * 2;
464 return (freq_latch + freq_in - 1) / freq_in;
468 /* Returns the maximum level of nesting of subloops of LOOP. */
470 unsigned
471 get_loop_level (const struct loop *loop)
473 const struct loop *ploop;
474 unsigned mx = 0, l;
476 for (ploop = loop->inner; ploop; ploop = ploop->next)
478 l = get_loop_level (ploop);
479 if (l >= mx)
480 mx = l + 1;
482 return mx;
485 /* Returns estimate on cost of computing SEQ. */
487 static unsigned
488 seq_cost (rtx seq)
490 unsigned cost = 0;
491 rtx set;
493 for (; seq; seq = NEXT_INSN (seq))
495 set = single_set (seq);
496 if (set)
497 cost += rtx_cost (set, SET);
498 else
499 cost++;
502 return cost;
505 /* The properties of the target. */
507 unsigned target_avail_regs; /* Number of available registers. */
508 unsigned target_res_regs; /* Number of reserved registers. */
509 unsigned target_small_cost; /* The cost for register when there is a free one. */
510 unsigned target_pres_cost; /* The cost for register when there are not too many
511 free ones. */
512 unsigned target_spill_cost; /* The cost for register when we need to spill. */
514 /* Initialize the constants for computing set costs. */
516 void
517 init_set_costs (void)
519 rtx seq;
520 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
521 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
522 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
523 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
524 unsigned i;
526 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
527 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
528 && !fixed_regs[i])
529 target_avail_regs++;
531 target_res_regs = 3;
533 /* These are really just heuristic values. */
535 start_sequence ();
536 emit_move_insn (reg1, reg2);
537 seq = get_insns ();
538 end_sequence ();
539 target_small_cost = seq_cost (seq);
540 target_pres_cost = 2 * target_small_cost;
542 start_sequence ();
543 emit_move_insn (mem, reg1);
544 emit_move_insn (reg2, mem);
545 seq = get_insns ();
546 end_sequence ();
547 target_spill_cost = seq_cost (seq);
550 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
551 number of global registers used in loop. N_USES is the number of relevant
552 variable uses. */
554 unsigned
555 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
557 unsigned regs_needed = regs_used + size;
558 unsigned cost = 0;
560 if (regs_needed + target_res_regs <= target_avail_regs)
561 cost += target_small_cost * size;
562 else if (regs_needed <= target_avail_regs)
563 cost += target_pres_cost * size;
564 else
566 cost += target_pres_cost * size;
567 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
570 return cost;