Fix compilation failure with C++98 compilers
[official-gcc.git] / gcc / lra-constraints.c
blob774d1ff3aaa722d088bdde09ad78095704e98f8f
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs (hard_regno, reg_mode);
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
595 GET_MODE_SIZE (mode)))
596 continue;
597 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
598 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
599 continue;
601 *result_reg = reg;
602 if (lra_dump_file != NULL)
604 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
605 dump_value_slim (lra_dump_file, original, 1);
607 if (new_class != lra_get_allocno_class (regno))
608 lra_change_class (regno, new_class, ", change to", false);
609 if (lra_dump_file != NULL)
610 fprintf (lra_dump_file, "\n");
611 return false;
613 /* If we have an input reload with a different mode, make sure it
614 will get a different hard reg. */
615 else if (REG_P (original)
616 && REG_P (curr_insn_input_reloads[i].input)
617 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
618 && (GET_MODE (original)
619 != GET_MODE (curr_insn_input_reloads[i].input)))
620 unique_p = true;
622 *result_reg = (unique_p
623 ? lra_create_new_reg_with_unique_value
624 : lra_create_new_reg) (mode, original, rclass, title);
625 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
626 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
627 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
628 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
629 return true;
633 /* The page contains major code to choose the current insn alternative
634 and generate reloads for it. */
636 /* Return the offset from REGNO of the least significant register
637 in (reg:MODE REGNO).
639 This function is used to tell whether two registers satisfy
640 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
642 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
643 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
645 lra_constraint_offset (int regno, machine_mode mode)
647 lra_assert (regno < FIRST_PSEUDO_REGISTER);
649 scalar_int_mode int_mode;
650 if (WORDS_BIG_ENDIAN
651 && is_a <scalar_int_mode> (mode, &int_mode)
652 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
653 return hard_regno_nregs (regno, mode) - 1;
654 return 0;
657 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
658 if they are the same hard reg, and has special hacks for
659 auto-increment and auto-decrement. This is specifically intended for
660 process_alt_operands to use in determining whether two operands
661 match. X is the operand whose number is the lower of the two.
663 It is supposed that X is the output operand and Y is the input
664 operand. Y_HARD_REGNO is the final hard regno of register Y or
665 register in subreg Y as we know it now. Otherwise, it is a
666 negative value. */
667 static bool
668 operands_match_p (rtx x, rtx y, int y_hard_regno)
670 int i;
671 RTX_CODE code = GET_CODE (x);
672 const char *fmt;
674 if (x == y)
675 return true;
676 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
677 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
679 int j;
681 i = get_hard_regno (x, false);
682 if (i < 0)
683 goto slow;
685 if ((j = y_hard_regno) < 0)
686 goto slow;
688 i += lra_constraint_offset (i, GET_MODE (x));
689 j += lra_constraint_offset (j, GET_MODE (y));
691 return i == j;
694 /* If two operands must match, because they are really a single
695 operand of an assembler insn, then two post-increments are invalid
696 because the assembler insn would increment only once. On the
697 other hand, a post-increment matches ordinary indexing if the
698 post-increment is the output operand. */
699 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
700 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
702 /* Two pre-increments are invalid because the assembler insn would
703 increment only once. On the other hand, a pre-increment matches
704 ordinary indexing if the pre-increment is the input operand. */
705 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
706 || GET_CODE (y) == PRE_MODIFY)
707 return operands_match_p (x, XEXP (y, 0), -1);
709 slow:
711 if (code == REG && REG_P (y))
712 return REGNO (x) == REGNO (y);
714 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
715 && x == SUBREG_REG (y))
716 return true;
717 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
718 && SUBREG_REG (x) == y)
719 return true;
721 /* Now we have disposed of all the cases in which different rtx
722 codes can match. */
723 if (code != GET_CODE (y))
724 return false;
726 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
727 if (GET_MODE (x) != GET_MODE (y))
728 return false;
730 switch (code)
732 CASE_CONST_UNIQUE:
733 return false;
735 case LABEL_REF:
736 return label_ref_label (x) == label_ref_label (y);
737 case SYMBOL_REF:
738 return XSTR (x, 0) == XSTR (y, 0);
740 default:
741 break;
744 /* Compare the elements. If any pair of corresponding elements fail
745 to match, return false for the whole things. */
747 fmt = GET_RTX_FORMAT (code);
748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
750 int val, j;
751 switch (fmt[i])
753 case 'w':
754 if (XWINT (x, i) != XWINT (y, i))
755 return false;
756 break;
758 case 'i':
759 if (XINT (x, i) != XINT (y, i))
760 return false;
761 break;
763 case 'p':
764 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
765 return false;
766 break;
768 case 'e':
769 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
770 if (val == 0)
771 return false;
772 break;
774 case '0':
775 break;
777 case 'E':
778 if (XVECLEN (x, i) != XVECLEN (y, i))
779 return false;
780 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
782 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
783 if (val == 0)
784 return false;
786 break;
788 /* It is believed that rtx's at this level will never
789 contain anything but integers and other rtx's, except for
790 within LABEL_REFs and SYMBOL_REFs. */
791 default:
792 gcc_unreachable ();
795 return true;
798 /* True if X is a constant that can be forced into the constant pool.
799 MODE is the mode of the operand, or VOIDmode if not known. */
800 #define CONST_POOL_OK_P(MODE, X) \
801 ((MODE) != VOIDmode \
802 && CONSTANT_P (X) \
803 && GET_CODE (X) != HIGH \
804 && GET_MODE_SIZE (MODE).is_constant () \
805 && !targetm.cannot_force_const_mem (MODE, X))
807 /* True if C is a non-empty register class that has too few registers
808 to be safely used as a reload target class. */
809 #define SMALL_REGISTER_CLASS_P(C) \
810 (ira_class_hard_regs_num [(C)] == 1 \
811 || (ira_class_hard_regs_num [(C)] >= 1 \
812 && targetm.class_likely_spilled_p (C)))
814 /* If REG is a reload pseudo, try to make its class satisfying CL. */
815 static void
816 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
818 enum reg_class rclass;
820 /* Do not make more accurate class from reloads generated. They are
821 mostly moves with a lot of constraints. Making more accurate
822 class may results in very narrow class and impossibility of find
823 registers for several reloads of one insn. */
824 if (INSN_UID (curr_insn) >= new_insn_uid_start)
825 return;
826 if (GET_CODE (reg) == SUBREG)
827 reg = SUBREG_REG (reg);
828 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
829 return;
830 if (in_class_p (reg, cl, &rclass) && rclass != cl)
831 lra_change_class (REGNO (reg), rclass, " Change to", true);
834 /* Searches X for any reference to a reg with the same value as REGNO,
835 returning the rtx of the reference found if any. Otherwise,
836 returns NULL_RTX. */
837 static rtx
838 regno_val_use_in (unsigned int regno, rtx x)
840 const char *fmt;
841 int i, j;
842 rtx tem;
844 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
845 return x;
847 fmt = GET_RTX_FORMAT (GET_CODE (x));
848 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
850 if (fmt[i] == 'e')
852 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
853 return tem;
855 else if (fmt[i] == 'E')
856 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
857 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
858 return tem;
861 return NULL_RTX;
864 /* Return true if all current insn non-output operands except INS (it
865 has a negaitve end marker) do not use pseudos with the same value
866 as REGNO. */
867 static bool
868 check_conflict_input_operands (int regno, signed char *ins)
870 int in;
871 int n_operands = curr_static_id->n_operands;
873 for (int nop = 0; nop < n_operands; nop++)
874 if (! curr_static_id->operand[nop].is_operator
875 && curr_static_id->operand[nop].type != OP_OUT)
877 for (int i = 0; (in = ins[i]) >= 0; i++)
878 if (in == nop)
879 break;
880 if (in < 0
881 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
882 return false;
884 return true;
887 /* Generate reloads for matching OUT and INS (array of input operand
888 numbers with end marker -1) with reg class GOAL_CLASS, considering
889 output operands OUTS (similar array to INS) needing to be in different
890 registers. Add input and output reloads correspondingly to the lists
891 *BEFORE and *AFTER. OUT might be negative. In this case we generate
892 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
893 that the output operand is early clobbered for chosen alternative. */
894 static void
895 match_reload (signed char out, signed char *ins, signed char *outs,
896 enum reg_class goal_class, rtx_insn **before,
897 rtx_insn **after, bool early_clobber_p)
899 bool out_conflict;
900 int i, in;
901 rtx new_in_reg, new_out_reg, reg;
902 machine_mode inmode, outmode;
903 rtx in_rtx = *curr_id->operand_loc[ins[0]];
904 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
906 inmode = curr_operand_mode[ins[0]];
907 outmode = out < 0 ? inmode : curr_operand_mode[out];
908 push_to_sequence (*before);
909 if (inmode != outmode)
911 /* process_alt_operands has already checked that the mode sizes
912 are ordered. */
913 if (partial_subreg_p (outmode, inmode))
915 reg = new_in_reg
916 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
917 goal_class, "");
918 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
919 LRA_SUBREG_P (new_out_reg) = 1;
920 /* If the input reg is dying here, we can use the same hard
921 register for REG and IN_RTX. We do it only for original
922 pseudos as reload pseudos can die although original
923 pseudos still live where reload pseudos dies. */
924 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
925 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
926 && (!early_clobber_p
927 || check_conflict_input_operands(REGNO (in_rtx), ins)))
928 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
930 else
932 reg = new_out_reg
933 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
934 goal_class, "");
935 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
936 /* NEW_IN_REG is non-paradoxical subreg. We don't want
937 NEW_OUT_REG living above. We add clobber clause for
938 this. This is just a temporary clobber. We can remove
939 it at the end of LRA work. */
940 rtx_insn *clobber = emit_clobber (new_out_reg);
941 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
942 LRA_SUBREG_P (new_in_reg) = 1;
943 if (GET_CODE (in_rtx) == SUBREG)
945 rtx subreg_reg = SUBREG_REG (in_rtx);
947 /* If SUBREG_REG is dying here and sub-registers IN_RTX
948 and NEW_IN_REG are similar, we can use the same hard
949 register for REG and SUBREG_REG. */
950 if (REG_P (subreg_reg)
951 && (int) REGNO (subreg_reg) < lra_new_regno_start
952 && GET_MODE (subreg_reg) == outmode
953 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
954 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
955 && (! early_clobber_p
956 || check_conflict_input_operands (REGNO (subreg_reg),
957 ins)))
958 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
962 else
964 /* Pseudos have values -- see comments for lra_reg_info.
965 Different pseudos with the same value do not conflict even if
966 they live in the same place. When we create a pseudo we
967 assign value of original pseudo (if any) from which we
968 created the new pseudo. If we create the pseudo from the
969 input pseudo, the new pseudo will have no conflict with the
970 input pseudo which is wrong when the input pseudo lives after
971 the insn and as the new pseudo value is changed by the insn
972 output. Therefore we create the new pseudo from the output
973 except the case when we have single matched dying input
974 pseudo.
976 We cannot reuse the current output register because we might
977 have a situation like "a <- a op b", where the constraints
978 force the second input operand ("b") to match the output
979 operand ("a"). "b" must then be copied into a new register
980 so that it doesn't clobber the current value of "a".
982 We can not use the same value if the output pseudo is
983 early clobbered or the input pseudo is mentioned in the
984 output, e.g. as an address part in memory, because
985 output reload will actually extend the pseudo liveness.
986 We don't care about eliminable hard regs here as we are
987 interesting only in pseudos. */
989 /* Matching input's register value is the same as one of the other
990 output operand. Output operands in a parallel insn must be in
991 different registers. */
992 out_conflict = false;
993 if (REG_P (in_rtx))
995 for (i = 0; outs[i] >= 0; i++)
997 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
998 if (REG_P (other_out_rtx)
999 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1000 != NULL_RTX))
1002 out_conflict = true;
1003 break;
1008 new_in_reg = new_out_reg
1009 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1010 && (int) REGNO (in_rtx) < lra_new_regno_start
1011 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1012 && (! early_clobber_p
1013 || check_conflict_input_operands (REGNO (in_rtx), ins))
1014 && (out < 0
1015 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1016 && !out_conflict
1017 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1018 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1019 goal_class, ""));
1021 /* In operand can be got from transformations before processing insn
1022 constraints. One example of such transformations is subreg
1023 reloading (see function simplify_operand_subreg). The new
1024 pseudos created by the transformations might have inaccurate
1025 class (ALL_REGS) and we should make their classes more
1026 accurate. */
1027 narrow_reload_pseudo_class (in_rtx, goal_class);
1028 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1029 *before = get_insns ();
1030 end_sequence ();
1031 /* Add the new pseudo to consider values of subsequent input reload
1032 pseudos. */
1033 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1034 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1035 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1036 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1037 for (i = 0; (in = ins[i]) >= 0; i++)
1039 lra_assert
1040 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1041 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1042 *curr_id->operand_loc[in] = new_in_reg;
1044 lra_update_dups (curr_id, ins);
1045 if (out < 0)
1046 return;
1047 /* See a comment for the input operand above. */
1048 narrow_reload_pseudo_class (out_rtx, goal_class);
1049 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1051 start_sequence ();
1052 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1053 emit_insn (*after);
1054 *after = get_insns ();
1055 end_sequence ();
1057 *curr_id->operand_loc[out] = new_out_reg;
1058 lra_update_dup (curr_id, out);
1061 /* Return register class which is union of all reg classes in insn
1062 constraint alternative string starting with P. */
1063 static enum reg_class
1064 reg_class_from_constraints (const char *p)
1066 int c, len;
1067 enum reg_class op_class = NO_REGS;
1070 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1072 case '#':
1073 case ',':
1074 return op_class;
1076 case 'g':
1077 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1078 break;
1080 default:
1081 enum constraint_num cn = lookup_constraint (p);
1082 enum reg_class cl = reg_class_for_constraint (cn);
1083 if (cl == NO_REGS)
1085 if (insn_extra_address_constraint (cn))
1086 op_class
1087 = (reg_class_subunion
1088 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1089 ADDRESS, SCRATCH)]);
1090 break;
1093 op_class = reg_class_subunion[op_class][cl];
1094 break;
1096 while ((p += len), c);
1097 return op_class;
1100 /* If OP is a register, return the class of the register as per
1101 get_reg_class, otherwise return NO_REGS. */
1102 static inline enum reg_class
1103 get_op_class (rtx op)
1105 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1108 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1109 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1110 SUBREG for VAL to make them equal. */
1111 static rtx_insn *
1112 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1114 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1116 /* Usually size of mem_pseudo is greater than val size but in
1117 rare cases it can be less as it can be defined by target
1118 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1119 if (! MEM_P (val))
1121 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1122 GET_CODE (val) == SUBREG
1123 ? SUBREG_REG (val) : val);
1124 LRA_SUBREG_P (val) = 1;
1126 else
1128 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1129 LRA_SUBREG_P (mem_pseudo) = 1;
1132 return to_p ? gen_move_insn (mem_pseudo, val)
1133 : gen_move_insn (val, mem_pseudo);
1136 /* Process a special case insn (register move), return true if we
1137 don't need to process it anymore. INSN should be a single set
1138 insn. Set up that RTL was changed through CHANGE_P and that hook
1139 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1140 SEC_MEM_P. */
1141 static bool
1142 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1144 int sregno, dregno;
1145 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1146 rtx_insn *before;
1147 enum reg_class dclass, sclass, secondary_class;
1148 secondary_reload_info sri;
1150 lra_assert (curr_insn_set != NULL_RTX);
1151 dreg = dest = SET_DEST (curr_insn_set);
1152 sreg = src = SET_SRC (curr_insn_set);
1153 if (GET_CODE (dest) == SUBREG)
1154 dreg = SUBREG_REG (dest);
1155 if (GET_CODE (src) == SUBREG)
1156 sreg = SUBREG_REG (src);
1157 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1158 return false;
1159 sclass = dclass = NO_REGS;
1160 if (REG_P (dreg))
1161 dclass = get_reg_class (REGNO (dreg));
1162 gcc_assert (dclass < LIM_REG_CLASSES);
1163 if (dclass == ALL_REGS)
1164 /* ALL_REGS is used for new pseudos created by transformations
1165 like reload of SUBREG_REG (see function
1166 simplify_operand_subreg). We don't know their class yet. We
1167 should figure out the class from processing the insn
1168 constraints not in this fast path function. Even if ALL_REGS
1169 were a right class for the pseudo, secondary_... hooks usually
1170 are not define for ALL_REGS. */
1171 return false;
1172 if (REG_P (sreg))
1173 sclass = get_reg_class (REGNO (sreg));
1174 gcc_assert (sclass < LIM_REG_CLASSES);
1175 if (sclass == ALL_REGS)
1176 /* See comments above. */
1177 return false;
1178 if (sclass == NO_REGS && dclass == NO_REGS)
1179 return false;
1180 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1181 && ((sclass != NO_REGS && dclass != NO_REGS)
1182 || (GET_MODE (src)
1183 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1185 *sec_mem_p = true;
1186 return false;
1188 if (! REG_P (dreg) || ! REG_P (sreg))
1189 return false;
1190 sri.prev_sri = NULL;
1191 sri.icode = CODE_FOR_nothing;
1192 sri.extra_cost = 0;
1193 secondary_class = NO_REGS;
1194 /* Set up hard register for a reload pseudo for hook
1195 secondary_reload because some targets just ignore unassigned
1196 pseudos in the hook. */
1197 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1199 dregno = REGNO (dreg);
1200 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1202 else
1203 dregno = -1;
1204 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1206 sregno = REGNO (sreg);
1207 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1209 else
1210 sregno = -1;
1211 if (sclass != NO_REGS)
1212 secondary_class
1213 = (enum reg_class) targetm.secondary_reload (false, dest,
1214 (reg_class_t) sclass,
1215 GET_MODE (src), &sri);
1216 if (sclass == NO_REGS
1217 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1218 && dclass != NO_REGS))
1220 enum reg_class old_sclass = secondary_class;
1221 secondary_reload_info old_sri = sri;
1223 sri.prev_sri = NULL;
1224 sri.icode = CODE_FOR_nothing;
1225 sri.extra_cost = 0;
1226 secondary_class
1227 = (enum reg_class) targetm.secondary_reload (true, src,
1228 (reg_class_t) dclass,
1229 GET_MODE (src), &sri);
1230 /* Check the target hook consistency. */
1231 lra_assert
1232 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1233 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1234 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1236 if (sregno >= 0)
1237 reg_renumber [sregno] = -1;
1238 if (dregno >= 0)
1239 reg_renumber [dregno] = -1;
1240 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1241 return false;
1242 *change_p = true;
1243 new_reg = NULL_RTX;
1244 if (secondary_class != NO_REGS)
1245 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1246 secondary_class,
1247 "secondary");
1248 start_sequence ();
1249 if (sri.icode == CODE_FOR_nothing)
1250 lra_emit_move (new_reg, src);
1251 else
1253 enum reg_class scratch_class;
1255 scratch_class = (reg_class_from_constraints
1256 (insn_data[sri.icode].operand[2].constraint));
1257 scratch_reg = (lra_create_new_reg_with_unique_value
1258 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1259 scratch_class, "scratch"));
1260 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1261 src, scratch_reg));
1263 before = get_insns ();
1264 end_sequence ();
1265 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1266 if (new_reg != NULL_RTX)
1267 SET_SRC (curr_insn_set) = new_reg;
1268 else
1270 if (lra_dump_file != NULL)
1272 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1273 dump_insn_slim (lra_dump_file, curr_insn);
1275 lra_set_insn_deleted (curr_insn);
1276 return true;
1278 return false;
1281 /* The following data describe the result of process_alt_operands.
1282 The data are used in curr_insn_transform to generate reloads. */
1284 /* The chosen reg classes which should be used for the corresponding
1285 operands. */
1286 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1287 /* True if the operand should be the same as another operand and that
1288 other operand does not need a reload. */
1289 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1290 /* True if the operand does not need a reload. */
1291 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1292 /* True if the operand can be offsetable memory. */
1293 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1294 /* The number of an operand to which given operand can be matched to. */
1295 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1296 /* The number of elements in the following array. */
1297 static int goal_alt_dont_inherit_ops_num;
1298 /* Numbers of operands whose reload pseudos should not be inherited. */
1299 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1300 /* True if the insn commutative operands should be swapped. */
1301 static bool goal_alt_swapped;
1302 /* The chosen insn alternative. */
1303 static int goal_alt_number;
1305 /* True if the corresponding operand is the result of an equivalence
1306 substitution. */
1307 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1309 /* The following five variables are used to choose the best insn
1310 alternative. They reflect final characteristics of the best
1311 alternative. */
1313 /* Number of necessary reloads and overall cost reflecting the
1314 previous value and other unpleasantness of the best alternative. */
1315 static int best_losers, best_overall;
1316 /* Overall number hard registers used for reloads. For example, on
1317 some targets we need 2 general registers to reload DFmode and only
1318 one floating point register. */
1319 static int best_reload_nregs;
1320 /* Overall number reflecting distances of previous reloading the same
1321 value. The distances are counted from the current BB start. It is
1322 used to improve inheritance chances. */
1323 static int best_reload_sum;
1325 /* True if the current insn should have no correspondingly input or
1326 output reloads. */
1327 static bool no_input_reloads_p, no_output_reloads_p;
1329 /* True if we swapped the commutative operands in the current
1330 insn. */
1331 static int curr_swapped;
1333 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1334 register of class CL. Add any input reloads to list BEFORE. AFTER
1335 is nonnull if *LOC is an automodified value; handle that case by
1336 adding the required output reloads to list AFTER. Return true if
1337 the RTL was changed.
1339 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1340 register. Return false if the address register is correct. */
1341 static bool
1342 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1343 enum reg_class cl)
1345 int regno;
1346 enum reg_class rclass, new_class;
1347 rtx reg;
1348 rtx new_reg;
1349 machine_mode mode;
1350 bool subreg_p, before_p = false;
1352 subreg_p = GET_CODE (*loc) == SUBREG;
1353 if (subreg_p)
1355 reg = SUBREG_REG (*loc);
1356 mode = GET_MODE (reg);
1358 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1359 between two registers with different classes, but there normally will
1360 be "mov" which transfers element of vector register into the general
1361 register, and this normally will be a subreg which should be reloaded
1362 as a whole. This is particularly likely to be triggered when
1363 -fno-split-wide-types specified. */
1364 if (!REG_P (reg)
1365 || in_class_p (reg, cl, &new_class)
1366 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1367 loc = &SUBREG_REG (*loc);
1370 reg = *loc;
1371 mode = GET_MODE (reg);
1372 if (! REG_P (reg))
1374 if (check_only_p)
1375 return true;
1376 /* Always reload memory in an address even if the target supports
1377 such addresses. */
1378 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1379 before_p = true;
1381 else
1383 regno = REGNO (reg);
1384 rclass = get_reg_class (regno);
1385 if (! check_only_p
1386 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1388 if (lra_dump_file != NULL)
1390 fprintf (lra_dump_file,
1391 "Changing pseudo %d in address of insn %u on equiv ",
1392 REGNO (reg), INSN_UID (curr_insn));
1393 dump_value_slim (lra_dump_file, *loc, 1);
1394 fprintf (lra_dump_file, "\n");
1396 *loc = copy_rtx (*loc);
1398 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1400 if (check_only_p)
1401 return true;
1402 reg = *loc;
1403 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1404 mode, reg, cl, subreg_p, "address", &new_reg))
1405 before_p = true;
1407 else if (new_class != NO_REGS && rclass != new_class)
1409 if (check_only_p)
1410 return true;
1411 lra_change_class (regno, new_class, " Change to", true);
1412 return false;
1414 else
1415 return false;
1417 if (before_p)
1419 push_to_sequence (*before);
1420 lra_emit_move (new_reg, reg);
1421 *before = get_insns ();
1422 end_sequence ();
1424 *loc = new_reg;
1425 if (after != NULL)
1427 start_sequence ();
1428 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1429 emit_insn (*after);
1430 *after = get_insns ();
1431 end_sequence ();
1433 return true;
1436 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1437 the insn to be inserted before curr insn. AFTER returns the
1438 the insn to be inserted after curr insn. ORIGREG and NEWREG
1439 are the original reg and new reg for reload. */
1440 static void
1441 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1442 rtx newreg)
1444 if (before)
1446 push_to_sequence (*before);
1447 lra_emit_move (newreg, origreg);
1448 *before = get_insns ();
1449 end_sequence ();
1451 if (after)
1453 start_sequence ();
1454 lra_emit_move (origreg, newreg);
1455 emit_insn (*after);
1456 *after = get_insns ();
1457 end_sequence ();
1461 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1462 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1464 /* Make reloads for subreg in operand NOP with internal subreg mode
1465 REG_MODE, add new reloads for further processing. Return true if
1466 any change was done. */
1467 static bool
1468 simplify_operand_subreg (int nop, machine_mode reg_mode)
1470 int hard_regno;
1471 rtx_insn *before, *after;
1472 machine_mode mode, innermode;
1473 rtx reg, new_reg;
1474 rtx operand = *curr_id->operand_loc[nop];
1475 enum reg_class regclass;
1476 enum op_type type;
1478 before = after = NULL;
1480 if (GET_CODE (operand) != SUBREG)
1481 return false;
1483 mode = GET_MODE (operand);
1484 reg = SUBREG_REG (operand);
1485 innermode = GET_MODE (reg);
1486 type = curr_static_id->operand[nop].type;
1487 if (MEM_P (reg))
1489 const bool addr_was_valid
1490 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1491 alter_subreg (curr_id->operand_loc[nop], false);
1492 rtx subst = *curr_id->operand_loc[nop];
1493 lra_assert (MEM_P (subst));
1495 if (!addr_was_valid
1496 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1497 MEM_ADDR_SPACE (subst))
1498 || ((get_constraint_type (lookup_constraint
1499 (curr_static_id->operand[nop].constraint))
1500 != CT_SPECIAL_MEMORY)
1501 /* We still can reload address and if the address is
1502 valid, we can remove subreg without reloading its
1503 inner memory. */
1504 && valid_address_p (GET_MODE (subst),
1505 regno_reg_rtx
1506 [ira_class_hard_regs
1507 [base_reg_class (GET_MODE (subst),
1508 MEM_ADDR_SPACE (subst),
1509 ADDRESS, SCRATCH)][0]],
1510 MEM_ADDR_SPACE (subst))))
1512 /* If we change the address for a paradoxical subreg of memory, the
1513 new address might violate the necessary alignment or the access
1514 might be slow; take this into consideration. We need not worry
1515 about accesses beyond allocated memory for paradoxical memory
1516 subregs as we don't substitute such equiv memory (see processing
1517 equivalences in function lra_constraints) and because for spilled
1518 pseudos we allocate stack memory enough for the biggest
1519 corresponding paradoxical subreg.
1521 However, do not blindly simplify a (subreg (mem ...)) for
1522 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1523 data into a register when the inner is narrower than outer or
1524 missing important data from memory when the inner is wider than
1525 outer. This rule only applies to modes that are no wider than
1526 a word. */
1527 if (!(maybe_ne (GET_MODE_PRECISION (mode),
1528 GET_MODE_PRECISION (innermode))
1529 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1530 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1531 && WORD_REGISTER_OPERATIONS)
1532 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1533 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1534 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1535 && targetm.slow_unaligned_access (innermode,
1536 MEM_ALIGN (reg)))))
1537 return true;
1539 *curr_id->operand_loc[nop] = operand;
1541 /* But if the address was not valid, we cannot reload the MEM without
1542 reloading the address first. */
1543 if (!addr_was_valid)
1544 process_address (nop, false, &before, &after);
1546 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1547 enum reg_class rclass
1548 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1549 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1550 reg, rclass, TRUE, "slow mem", &new_reg))
1552 bool insert_before, insert_after;
1553 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1555 insert_before = (type != OP_OUT
1556 || partial_subreg_p (mode, innermode));
1557 insert_after = type != OP_IN;
1558 insert_move_for_subreg (insert_before ? &before : NULL,
1559 insert_after ? &after : NULL,
1560 reg, new_reg);
1562 SUBREG_REG (operand) = new_reg;
1564 /* Convert to MODE. */
1565 reg = operand;
1566 rclass
1567 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1568 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1569 rclass, TRUE, "slow mem", &new_reg))
1571 bool insert_before, insert_after;
1572 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1574 insert_before = type != OP_OUT;
1575 insert_after = type != OP_IN;
1576 insert_move_for_subreg (insert_before ? &before : NULL,
1577 insert_after ? &after : NULL,
1578 reg, new_reg);
1580 *curr_id->operand_loc[nop] = new_reg;
1581 lra_process_new_insns (curr_insn, before, after,
1582 "Inserting slow mem reload");
1583 return true;
1586 /* If the address was valid and became invalid, prefer to reload
1587 the memory. Typical case is when the index scale should
1588 correspond the memory. */
1589 *curr_id->operand_loc[nop] = operand;
1590 /* Do not return false here as the MEM_P (reg) will be processed
1591 later in this function. */
1593 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1595 alter_subreg (curr_id->operand_loc[nop], false);
1596 return true;
1598 else if (CONSTANT_P (reg))
1600 /* Try to simplify subreg of constant. It is usually result of
1601 equivalence substitution. */
1602 if (innermode == VOIDmode
1603 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1604 innermode = curr_static_id->operand[nop].mode;
1605 if ((new_reg = simplify_subreg (mode, reg, innermode,
1606 SUBREG_BYTE (operand))) != NULL_RTX)
1608 *curr_id->operand_loc[nop] = new_reg;
1609 return true;
1612 /* Put constant into memory when we have mixed modes. It generates
1613 a better code in most cases as it does not need a secondary
1614 reload memory. It also prevents LRA looping when LRA is using
1615 secondary reload memory again and again. */
1616 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1617 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1619 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1620 alter_subreg (curr_id->operand_loc[nop], false);
1621 return true;
1623 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1624 if there may be a problem accessing OPERAND in the outer
1625 mode. */
1626 if ((REG_P (reg)
1627 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1628 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1629 /* Don't reload paradoxical subregs because we could be looping
1630 having repeatedly final regno out of hard regs range. */
1631 && (hard_regno_nregs (hard_regno, innermode)
1632 >= hard_regno_nregs (hard_regno, mode))
1633 && simplify_subreg_regno (hard_regno, innermode,
1634 SUBREG_BYTE (operand), mode) < 0
1635 /* Don't reload subreg for matching reload. It is actually
1636 valid subreg in LRA. */
1637 && ! LRA_SUBREG_P (operand))
1638 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1640 enum reg_class rclass;
1642 if (REG_P (reg))
1643 /* There is a big probability that we will get the same class
1644 for the new pseudo and we will get the same insn which
1645 means infinite looping. So spill the new pseudo. */
1646 rclass = NO_REGS;
1647 else
1648 /* The class will be defined later in curr_insn_transform. */
1649 rclass
1650 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1652 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1653 rclass, TRUE, "subreg reg", &new_reg))
1655 bool insert_before, insert_after;
1656 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1658 insert_before = (type != OP_OUT
1659 || read_modify_subreg_p (operand));
1660 insert_after = (type != OP_IN);
1661 insert_move_for_subreg (insert_before ? &before : NULL,
1662 insert_after ? &after : NULL,
1663 reg, new_reg);
1665 SUBREG_REG (operand) = new_reg;
1666 lra_process_new_insns (curr_insn, before, after,
1667 "Inserting subreg reload");
1668 return true;
1670 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1671 IRA allocates hardreg to the inner pseudo reg according to its mode
1672 instead of the outermode, so the size of the hardreg may not be enough
1673 to contain the outermode operand, in that case we may need to insert
1674 reload for the reg. For the following two types of paradoxical subreg,
1675 we need to insert reload:
1676 1. If the op_type is OP_IN, and the hardreg could not be paired with
1677 other hardreg to contain the outermode operand
1678 (checked by in_hard_reg_set_p), we need to insert the reload.
1679 2. If the op_type is OP_OUT or OP_INOUT.
1681 Here is a paradoxical subreg example showing how the reload is generated:
1683 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1684 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1686 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1687 here, if reg107 is assigned to hardreg R15, because R15 is the last
1688 hardreg, compiler cannot find another hardreg to pair with R15 to
1689 contain TImode data. So we insert a TImode reload reg180 for it.
1690 After reload is inserted:
1692 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1693 (reg:DI 107 [ __comp ])) -1
1694 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1695 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1697 Two reload hard registers will be allocated to reg180 to save TImode data
1698 in LRA_assign.
1700 For LRA pseudos this should normally be handled by the biggest_mode
1701 mechanism. However, it's possible for new uses of an LRA pseudo
1702 to be introduced after we've allocated it, such as when undoing
1703 inheritance, and the allocated register might not then be appropriate
1704 for the new uses. */
1705 else if (REG_P (reg)
1706 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1707 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1708 && (hard_regno_nregs (hard_regno, innermode)
1709 < hard_regno_nregs (hard_regno, mode))
1710 && (regclass = lra_get_allocno_class (REGNO (reg)))
1711 && (type != OP_IN
1712 || !in_hard_reg_set_p (reg_class_contents[regclass],
1713 mode, hard_regno)
1714 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1715 mode, hard_regno)))
1717 /* The class will be defined later in curr_insn_transform. */
1718 enum reg_class rclass
1719 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1721 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1722 rclass, TRUE, "paradoxical subreg", &new_reg))
1724 rtx subreg;
1725 bool insert_before, insert_after;
1727 PUT_MODE (new_reg, mode);
1728 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1729 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1731 insert_before = (type != OP_OUT);
1732 insert_after = (type != OP_IN);
1733 insert_move_for_subreg (insert_before ? &before : NULL,
1734 insert_after ? &after : NULL,
1735 reg, subreg);
1737 SUBREG_REG (operand) = new_reg;
1738 lra_process_new_insns (curr_insn, before, after,
1739 "Inserting paradoxical subreg reload");
1740 return true;
1742 return false;
1745 /* Return TRUE if X refers for a hard register from SET. */
1746 static bool
1747 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1749 int i, j, x_hard_regno;
1750 machine_mode mode;
1751 const char *fmt;
1752 enum rtx_code code;
1754 if (x == NULL_RTX)
1755 return false;
1756 code = GET_CODE (x);
1757 mode = GET_MODE (x);
1758 if (code == SUBREG)
1760 mode = wider_subreg_mode (x);
1761 x = SUBREG_REG (x);
1762 code = GET_CODE (x);
1765 if (REG_P (x))
1767 x_hard_regno = get_hard_regno (x, true);
1768 return (x_hard_regno >= 0
1769 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1771 if (MEM_P (x))
1773 struct address_info ad;
1775 decompose_mem_address (&ad, x);
1776 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1777 return true;
1778 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1779 return true;
1781 fmt = GET_RTX_FORMAT (code);
1782 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1784 if (fmt[i] == 'e')
1786 if (uses_hard_regs_p (XEXP (x, i), set))
1787 return true;
1789 else if (fmt[i] == 'E')
1791 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1792 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1793 return true;
1796 return false;
1799 /* Return true if OP is a spilled pseudo. */
1800 static inline bool
1801 spilled_pseudo_p (rtx op)
1803 return (REG_P (op)
1804 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1807 /* Return true if X is a general constant. */
1808 static inline bool
1809 general_constant_p (rtx x)
1811 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1814 static bool
1815 reg_in_class_p (rtx reg, enum reg_class cl)
1817 if (cl == NO_REGS)
1818 return get_reg_class (REGNO (reg)) == NO_REGS;
1819 return in_class_p (reg, cl, NULL);
1822 /* Return true if SET of RCLASS contains no hard regs which can be
1823 used in MODE. */
1824 static bool
1825 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1826 HARD_REG_SET &set,
1827 machine_mode mode)
1829 HARD_REG_SET temp;
1831 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1832 COPY_HARD_REG_SET (temp, set);
1833 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1834 return (hard_reg_set_subset_p
1835 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1839 /* Used to check validity info about small class input operands. It
1840 should be incremented at start of processing an insn
1841 alternative. */
1842 static unsigned int curr_small_class_check = 0;
1844 /* Update number of used inputs of class OP_CLASS for operand NOP.
1845 Return true if we have more such class operands than the number of
1846 available regs. */
1847 static bool
1848 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1850 static unsigned int small_class_check[LIM_REG_CLASSES];
1851 static int small_class_input_nums[LIM_REG_CLASSES];
1853 if (SMALL_REGISTER_CLASS_P (op_class)
1854 /* We are interesting in classes became small because of fixing
1855 some hard regs, e.g. by an user through GCC options. */
1856 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1857 ira_no_alloc_regs)
1858 && (curr_static_id->operand[nop].type != OP_OUT
1859 || curr_static_id->operand[nop].early_clobber))
1861 if (small_class_check[op_class] == curr_small_class_check)
1862 small_class_input_nums[op_class]++;
1863 else
1865 small_class_check[op_class] = curr_small_class_check;
1866 small_class_input_nums[op_class] = 1;
1868 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1869 return true;
1871 return false;
1874 /* Major function to choose the current insn alternative and what
1875 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1876 negative we should consider only this alternative. Return false if
1877 we can not choose the alternative or find how to reload the
1878 operands. */
1879 static bool
1880 process_alt_operands (int only_alternative)
1882 bool ok_p = false;
1883 int nop, overall, nalt;
1884 int n_alternatives = curr_static_id->n_alternatives;
1885 int n_operands = curr_static_id->n_operands;
1886 /* LOSERS counts the operands that don't fit this alternative and
1887 would require loading. */
1888 int losers;
1889 int addr_losers;
1890 /* REJECT is a count of how undesirable this alternative says it is
1891 if any reloading is required. If the alternative matches exactly
1892 then REJECT is ignored, but otherwise it gets this much counted
1893 against it in addition to the reloading needed. */
1894 int reject;
1895 /* This is defined by '!' or '?' alternative constraint and added to
1896 reject. But in some cases it can be ignored. */
1897 int static_reject;
1898 int op_reject;
1899 /* The number of elements in the following array. */
1900 int early_clobbered_regs_num;
1901 /* Numbers of operands which are early clobber registers. */
1902 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1903 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1904 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1905 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1906 bool curr_alt_win[MAX_RECOG_OPERANDS];
1907 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1908 int curr_alt_matches[MAX_RECOG_OPERANDS];
1909 /* The number of elements in the following array. */
1910 int curr_alt_dont_inherit_ops_num;
1911 /* Numbers of operands whose reload pseudos should not be inherited. */
1912 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1913 rtx op;
1914 /* The register when the operand is a subreg of register, otherwise the
1915 operand itself. */
1916 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1917 /* The register if the operand is a register or subreg of register,
1918 otherwise NULL. */
1919 rtx operand_reg[MAX_RECOG_OPERANDS];
1920 int hard_regno[MAX_RECOG_OPERANDS];
1921 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1922 int reload_nregs, reload_sum;
1923 bool costly_p;
1924 enum reg_class cl;
1926 /* Calculate some data common for all alternatives to speed up the
1927 function. */
1928 for (nop = 0; nop < n_operands; nop++)
1930 rtx reg;
1932 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1933 /* The real hard regno of the operand after the allocation. */
1934 hard_regno[nop] = get_hard_regno (op, true);
1936 operand_reg[nop] = reg = op;
1937 biggest_mode[nop] = GET_MODE (op);
1938 if (GET_CODE (op) == SUBREG)
1940 biggest_mode[nop] = wider_subreg_mode (op);
1941 operand_reg[nop] = reg = SUBREG_REG (op);
1943 if (! REG_P (reg))
1944 operand_reg[nop] = NULL_RTX;
1945 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1946 || ((int) REGNO (reg)
1947 == lra_get_elimination_hard_regno (REGNO (reg))))
1948 no_subreg_reg_operand[nop] = reg;
1949 else
1950 operand_reg[nop] = no_subreg_reg_operand[nop]
1951 /* Just use natural mode for elimination result. It should
1952 be enough for extra constraints hooks. */
1953 = regno_reg_rtx[hard_regno[nop]];
1956 /* The constraints are made of several alternatives. Each operand's
1957 constraint looks like foo,bar,... with commas separating the
1958 alternatives. The first alternatives for all operands go
1959 together, the second alternatives go together, etc.
1961 First loop over alternatives. */
1962 alternative_mask preferred = curr_id->preferred_alternatives;
1963 if (only_alternative >= 0)
1964 preferred &= ALTERNATIVE_BIT (only_alternative);
1966 for (nalt = 0; nalt < n_alternatives; nalt++)
1968 /* Loop over operands for one constraint alternative. */
1969 if (!TEST_BIT (preferred, nalt))
1970 continue;
1972 curr_small_class_check++;
1973 overall = losers = addr_losers = 0;
1974 static_reject = reject = reload_nregs = reload_sum = 0;
1975 for (nop = 0; nop < n_operands; nop++)
1977 int inc = (curr_static_id
1978 ->operand_alternative[nalt * n_operands + nop].reject);
1979 if (lra_dump_file != NULL && inc != 0)
1980 fprintf (lra_dump_file,
1981 " Staticly defined alt reject+=%d\n", inc);
1982 static_reject += inc;
1984 reject += static_reject;
1985 early_clobbered_regs_num = 0;
1987 for (nop = 0; nop < n_operands; nop++)
1989 const char *p;
1990 char *end;
1991 int len, c, m, i, opalt_num, this_alternative_matches;
1992 bool win, did_match, offmemok, early_clobber_p;
1993 /* false => this operand can be reloaded somehow for this
1994 alternative. */
1995 bool badop;
1996 /* true => this operand can be reloaded if the alternative
1997 allows regs. */
1998 bool winreg;
1999 /* True if a constant forced into memory would be OK for
2000 this operand. */
2001 bool constmemok;
2002 enum reg_class this_alternative, this_costly_alternative;
2003 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2004 bool this_alternative_match_win, this_alternative_win;
2005 bool this_alternative_offmemok;
2006 bool scratch_p;
2007 machine_mode mode;
2008 enum constraint_num cn;
2010 opalt_num = nalt * n_operands + nop;
2011 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2013 /* Fast track for no constraints at all. */
2014 curr_alt[nop] = NO_REGS;
2015 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2016 curr_alt_win[nop] = true;
2017 curr_alt_match_win[nop] = false;
2018 curr_alt_offmemok[nop] = false;
2019 curr_alt_matches[nop] = -1;
2020 continue;
2023 op = no_subreg_reg_operand[nop];
2024 mode = curr_operand_mode[nop];
2026 win = did_match = winreg = offmemok = constmemok = false;
2027 badop = true;
2029 early_clobber_p = false;
2030 p = curr_static_id->operand_alternative[opalt_num].constraint;
2032 this_costly_alternative = this_alternative = NO_REGS;
2033 /* We update set of possible hard regs besides its class
2034 because reg class might be inaccurate. For example,
2035 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2036 is translated in HI_REGS because classes are merged by
2037 pairs and there is no accurate intermediate class. */
2038 CLEAR_HARD_REG_SET (this_alternative_set);
2039 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2040 this_alternative_win = false;
2041 this_alternative_match_win = false;
2042 this_alternative_offmemok = false;
2043 this_alternative_matches = -1;
2045 /* An empty constraint should be excluded by the fast
2046 track. */
2047 lra_assert (*p != 0 && *p != ',');
2049 op_reject = 0;
2050 /* Scan this alternative's specs for this operand; set WIN
2051 if the operand fits any letter in this alternative.
2052 Otherwise, clear BADOP if this operand could fit some
2053 letter after reloads, or set WINREG if this operand could
2054 fit after reloads provided the constraint allows some
2055 registers. */
2056 costly_p = false;
2059 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2061 case '\0':
2062 len = 0;
2063 break;
2064 case ',':
2065 c = '\0';
2066 break;
2068 case '&':
2069 early_clobber_p = true;
2070 break;
2072 case '$':
2073 op_reject += LRA_MAX_REJECT;
2074 break;
2075 case '^':
2076 op_reject += LRA_LOSER_COST_FACTOR;
2077 break;
2079 case '#':
2080 /* Ignore rest of this alternative. */
2081 c = '\0';
2082 break;
2084 case '0': case '1': case '2': case '3': case '4':
2085 case '5': case '6': case '7': case '8': case '9':
2087 int m_hregno;
2088 bool match_p;
2090 m = strtoul (p, &end, 10);
2091 p = end;
2092 len = 0;
2093 lra_assert (nop > m);
2095 /* Reject matches if we don't know which operand is
2096 bigger. This situation would arguably be a bug in
2097 an .md pattern, but could also occur in a user asm. */
2098 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2099 GET_MODE_SIZE (biggest_mode[nop])))
2100 break;
2102 /* Don't match wrong asm insn operands for proper
2103 diagnostic later. */
2104 if (INSN_CODE (curr_insn) < 0
2105 && (curr_operand_mode[m] == BLKmode
2106 || curr_operand_mode[nop] == BLKmode)
2107 && curr_operand_mode[m] != curr_operand_mode[nop])
2108 break;
2110 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2111 /* We are supposed to match a previous operand.
2112 If we do, we win if that one did. If we do
2113 not, count both of the operands as losers.
2114 (This is too conservative, since most of the
2115 time only a single reload insn will be needed
2116 to make the two operands win. As a result,
2117 this alternative may be rejected when it is
2118 actually desirable.) */
2119 match_p = false;
2120 if (operands_match_p (*curr_id->operand_loc[nop],
2121 *curr_id->operand_loc[m], m_hregno))
2123 /* We should reject matching of an early
2124 clobber operand if the matching operand is
2125 not dying in the insn. */
2126 if (! curr_static_id->operand[m].early_clobber
2127 || operand_reg[nop] == NULL_RTX
2128 || (find_regno_note (curr_insn, REG_DEAD,
2129 REGNO (op))
2130 || REGNO (op) == REGNO (operand_reg[m])))
2131 match_p = true;
2133 if (match_p)
2135 /* If we are matching a non-offsettable
2136 address where an offsettable address was
2137 expected, then we must reject this
2138 combination, because we can't reload
2139 it. */
2140 if (curr_alt_offmemok[m]
2141 && MEM_P (*curr_id->operand_loc[m])
2142 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2143 continue;
2145 else
2147 /* Operands don't match. Both operands must
2148 allow a reload register, otherwise we
2149 cannot make them match. */
2150 if (curr_alt[m] == NO_REGS)
2151 break;
2152 /* Retroactively mark the operand we had to
2153 match as a loser, if it wasn't already and
2154 it wasn't matched to a register constraint
2155 (e.g it might be matched by memory). */
2156 if (curr_alt_win[m]
2157 && (operand_reg[m] == NULL_RTX
2158 || hard_regno[m] < 0))
2160 losers++;
2161 reload_nregs
2162 += (ira_reg_class_max_nregs[curr_alt[m]]
2163 [GET_MODE (*curr_id->operand_loc[m])]);
2166 /* Prefer matching earlyclobber alternative as
2167 it results in less hard regs required for
2168 the insn than a non-matching earlyclobber
2169 alternative. */
2170 if (curr_static_id->operand[m].early_clobber)
2172 if (lra_dump_file != NULL)
2173 fprintf
2174 (lra_dump_file,
2175 " %d Matching earlyclobber alt:"
2176 " reject--\n",
2177 nop);
2178 reject--;
2180 /* Otherwise we prefer no matching
2181 alternatives because it gives more freedom
2182 in RA. */
2183 else if (operand_reg[nop] == NULL_RTX
2184 || (find_regno_note (curr_insn, REG_DEAD,
2185 REGNO (operand_reg[nop]))
2186 == NULL_RTX))
2188 if (lra_dump_file != NULL)
2189 fprintf
2190 (lra_dump_file,
2191 " %d Matching alt: reject+=2\n",
2192 nop);
2193 reject += 2;
2196 /* If we have to reload this operand and some
2197 previous operand also had to match the same
2198 thing as this operand, we don't know how to do
2199 that. */
2200 if (!match_p || !curr_alt_win[m])
2202 for (i = 0; i < nop; i++)
2203 if (curr_alt_matches[i] == m)
2204 break;
2205 if (i < nop)
2206 break;
2208 else
2209 did_match = true;
2211 this_alternative_matches = m;
2212 /* This can be fixed with reloads if the operand
2213 we are supposed to match can be fixed with
2214 reloads. */
2215 badop = false;
2216 this_alternative = curr_alt[m];
2217 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2218 winreg = this_alternative != NO_REGS;
2219 break;
2222 case 'g':
2223 if (MEM_P (op)
2224 || general_constant_p (op)
2225 || spilled_pseudo_p (op))
2226 win = true;
2227 cl = GENERAL_REGS;
2228 goto reg;
2230 default:
2231 cn = lookup_constraint (p);
2232 switch (get_constraint_type (cn))
2234 case CT_REGISTER:
2235 cl = reg_class_for_constraint (cn);
2236 if (cl != NO_REGS)
2237 goto reg;
2238 break;
2240 case CT_CONST_INT:
2241 if (CONST_INT_P (op)
2242 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2243 win = true;
2244 break;
2246 case CT_MEMORY:
2247 if (MEM_P (op)
2248 && satisfies_memory_constraint_p (op, cn))
2249 win = true;
2250 else if (spilled_pseudo_p (op))
2251 win = true;
2253 /* If we didn't already win, we can reload constants
2254 via force_const_mem or put the pseudo value into
2255 memory, or make other memory by reloading the
2256 address like for 'o'. */
2257 if (CONST_POOL_OK_P (mode, op)
2258 || MEM_P (op) || REG_P (op)
2259 /* We can restore the equiv insn by a
2260 reload. */
2261 || equiv_substition_p[nop])
2262 badop = false;
2263 constmemok = true;
2264 offmemok = true;
2265 break;
2267 case CT_ADDRESS:
2268 /* An asm operand with an address constraint
2269 that doesn't satisfy address_operand has
2270 is_address cleared, so that we don't try to
2271 make a non-address fit. */
2272 if (!curr_static_id->operand[nop].is_address)
2273 break;
2274 /* If we didn't already win, we can reload the address
2275 into a base register. */
2276 if (satisfies_address_constraint_p (op, cn))
2277 win = true;
2278 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2279 ADDRESS, SCRATCH);
2280 badop = false;
2281 goto reg;
2283 case CT_FIXED_FORM:
2284 if (constraint_satisfied_p (op, cn))
2285 win = true;
2286 break;
2288 case CT_SPECIAL_MEMORY:
2289 if (MEM_P (op)
2290 && satisfies_memory_constraint_p (op, cn))
2291 win = true;
2292 else if (spilled_pseudo_p (op))
2293 win = true;
2294 break;
2296 break;
2298 reg:
2299 this_alternative = reg_class_subunion[this_alternative][cl];
2300 IOR_HARD_REG_SET (this_alternative_set,
2301 reg_class_contents[cl]);
2302 if (costly_p)
2304 this_costly_alternative
2305 = reg_class_subunion[this_costly_alternative][cl];
2306 IOR_HARD_REG_SET (this_costly_alternative_set,
2307 reg_class_contents[cl]);
2309 if (mode == BLKmode)
2310 break;
2311 winreg = true;
2312 if (REG_P (op))
2314 if (hard_regno[nop] >= 0
2315 && in_hard_reg_set_p (this_alternative_set,
2316 mode, hard_regno[nop]))
2317 win = true;
2318 else if (hard_regno[nop] < 0
2319 && in_class_p (op, this_alternative, NULL))
2320 win = true;
2322 break;
2324 if (c != ' ' && c != '\t')
2325 costly_p = c == '*';
2327 while ((p += len), c);
2329 scratch_p = (operand_reg[nop] != NULL_RTX
2330 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2331 /* Record which operands fit this alternative. */
2332 if (win)
2334 this_alternative_win = true;
2335 if (operand_reg[nop] != NULL_RTX)
2337 if (hard_regno[nop] >= 0)
2339 if (in_hard_reg_set_p (this_costly_alternative_set,
2340 mode, hard_regno[nop]))
2342 if (lra_dump_file != NULL)
2343 fprintf (lra_dump_file,
2344 " %d Costly set: reject++\n",
2345 nop);
2346 reject++;
2349 else
2351 /* Prefer won reg to spilled pseudo under other
2352 equal conditions for possibe inheritance. */
2353 if (! scratch_p)
2355 if (lra_dump_file != NULL)
2356 fprintf
2357 (lra_dump_file,
2358 " %d Non pseudo reload: reject++\n",
2359 nop);
2360 reject++;
2362 if (in_class_p (operand_reg[nop],
2363 this_costly_alternative, NULL))
2365 if (lra_dump_file != NULL)
2366 fprintf
2367 (lra_dump_file,
2368 " %d Non pseudo costly reload:"
2369 " reject++\n",
2370 nop);
2371 reject++;
2374 /* We simulate the behavior of old reload here.
2375 Although scratches need hard registers and it
2376 might result in spilling other pseudos, no reload
2377 insns are generated for the scratches. So it
2378 might cost something but probably less than old
2379 reload pass believes. */
2380 if (scratch_p)
2382 if (lra_dump_file != NULL)
2383 fprintf (lra_dump_file,
2384 " %d Scratch win: reject+=2\n",
2385 nop);
2386 reject += 2;
2390 else if (did_match)
2391 this_alternative_match_win = true;
2392 else
2394 int const_to_mem = 0;
2395 bool no_regs_p;
2397 reject += op_reject;
2398 /* Never do output reload of stack pointer. It makes
2399 impossible to do elimination when SP is changed in
2400 RTL. */
2401 if (op == stack_pointer_rtx && ! frame_pointer_needed
2402 && curr_static_id->operand[nop].type != OP_IN)
2403 goto fail;
2405 /* If this alternative asks for a specific reg class, see if there
2406 is at least one allocatable register in that class. */
2407 no_regs_p
2408 = (this_alternative == NO_REGS
2409 || (hard_reg_set_subset_p
2410 (reg_class_contents[this_alternative],
2411 lra_no_alloc_regs)));
2413 /* For asms, verify that the class for this alternative is possible
2414 for the mode that is specified. */
2415 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2417 int i;
2418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2419 if (targetm.hard_regno_mode_ok (i, mode)
2420 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2421 mode, i))
2422 break;
2423 if (i == FIRST_PSEUDO_REGISTER)
2424 winreg = false;
2427 /* If this operand accepts a register, and if the
2428 register class has at least one allocatable register,
2429 then this operand can be reloaded. */
2430 if (winreg && !no_regs_p)
2431 badop = false;
2433 if (badop)
2435 if (lra_dump_file != NULL)
2436 fprintf (lra_dump_file,
2437 " alt=%d: Bad operand -- refuse\n",
2438 nalt);
2439 goto fail;
2442 if (this_alternative != NO_REGS)
2444 HARD_REG_SET available_regs;
2446 COPY_HARD_REG_SET (available_regs,
2447 reg_class_contents[this_alternative]);
2448 AND_COMPL_HARD_REG_SET
2449 (available_regs,
2450 ira_prohibited_class_mode_regs[this_alternative][mode]);
2451 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2452 if (hard_reg_set_empty_p (available_regs))
2454 /* There are no hard regs holding a value of given
2455 mode. */
2456 if (offmemok)
2458 this_alternative = NO_REGS;
2459 if (lra_dump_file != NULL)
2460 fprintf (lra_dump_file,
2461 " %d Using memory because of"
2462 " a bad mode: reject+=2\n",
2463 nop);
2464 reject += 2;
2466 else
2468 if (lra_dump_file != NULL)
2469 fprintf (lra_dump_file,
2470 " alt=%d: Wrong mode -- refuse\n",
2471 nalt);
2472 goto fail;
2477 /* If not assigned pseudo has a class which a subset of
2478 required reg class, it is a less costly alternative
2479 as the pseudo still can get a hard reg of necessary
2480 class. */
2481 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2482 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2483 && ira_class_subset_p[this_alternative][cl])
2485 if (lra_dump_file != NULL)
2486 fprintf
2487 (lra_dump_file,
2488 " %d Super set class reg: reject-=3\n", nop);
2489 reject -= 3;
2492 this_alternative_offmemok = offmemok;
2493 if (this_costly_alternative != NO_REGS)
2495 if (lra_dump_file != NULL)
2496 fprintf (lra_dump_file,
2497 " %d Costly loser: reject++\n", nop);
2498 reject++;
2500 /* If the operand is dying, has a matching constraint,
2501 and satisfies constraints of the matched operand
2502 which failed to satisfy the own constraints, most probably
2503 the reload for this operand will be gone. */
2504 if (this_alternative_matches >= 0
2505 && !curr_alt_win[this_alternative_matches]
2506 && REG_P (op)
2507 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2508 && (hard_regno[nop] >= 0
2509 ? in_hard_reg_set_p (this_alternative_set,
2510 mode, hard_regno[nop])
2511 : in_class_p (op, this_alternative, NULL)))
2513 if (lra_dump_file != NULL)
2514 fprintf
2515 (lra_dump_file,
2516 " %d Dying matched operand reload: reject++\n",
2517 nop);
2518 reject++;
2520 else
2522 /* Strict_low_part requires to reload the register
2523 not the sub-register. In this case we should
2524 check that a final reload hard reg can hold the
2525 value mode. */
2526 if (curr_static_id->operand[nop].strict_low
2527 && REG_P (op)
2528 && hard_regno[nop] < 0
2529 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2530 && ira_class_hard_regs_num[this_alternative] > 0
2531 && (!targetm.hard_regno_mode_ok
2532 (ira_class_hard_regs[this_alternative][0],
2533 GET_MODE (*curr_id->operand_loc[nop]))))
2535 if (lra_dump_file != NULL)
2536 fprintf
2537 (lra_dump_file,
2538 " alt=%d: Strict low subreg reload -- refuse\n",
2539 nalt);
2540 goto fail;
2542 losers++;
2544 if (operand_reg[nop] != NULL_RTX
2545 /* Output operands and matched input operands are
2546 not inherited. The following conditions do not
2547 exactly describe the previous statement but they
2548 are pretty close. */
2549 && curr_static_id->operand[nop].type != OP_OUT
2550 && (this_alternative_matches < 0
2551 || curr_static_id->operand[nop].type != OP_IN))
2553 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2554 (operand_reg[nop])]
2555 .last_reload);
2557 /* The value of reload_sum has sense only if we
2558 process insns in their order. It happens only on
2559 the first constraints sub-pass when we do most of
2560 reload work. */
2561 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2562 reload_sum += last_reload - bb_reload_num;
2564 /* If this is a constant that is reloaded into the
2565 desired class by copying it to memory first, count
2566 that as another reload. This is consistent with
2567 other code and is required to avoid choosing another
2568 alternative when the constant is moved into memory.
2569 Note that the test here is precisely the same as in
2570 the code below that calls force_const_mem. */
2571 if (CONST_POOL_OK_P (mode, op)
2572 && ((targetm.preferred_reload_class
2573 (op, this_alternative) == NO_REGS)
2574 || no_input_reloads_p))
2576 const_to_mem = 1;
2577 if (! no_regs_p)
2578 losers++;
2581 /* Alternative loses if it requires a type of reload not
2582 permitted for this insn. We can always reload
2583 objects with a REG_UNUSED note. */
2584 if ((curr_static_id->operand[nop].type != OP_IN
2585 && no_output_reloads_p
2586 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2587 || (curr_static_id->operand[nop].type != OP_OUT
2588 && no_input_reloads_p && ! const_to_mem)
2589 || (this_alternative_matches >= 0
2590 && (no_input_reloads_p
2591 || (no_output_reloads_p
2592 && (curr_static_id->operand
2593 [this_alternative_matches].type != OP_IN)
2594 && ! find_reg_note (curr_insn, REG_UNUSED,
2595 no_subreg_reg_operand
2596 [this_alternative_matches])))))
2598 if (lra_dump_file != NULL)
2599 fprintf
2600 (lra_dump_file,
2601 " alt=%d: No input/otput reload -- refuse\n",
2602 nalt);
2603 goto fail;
2606 /* Alternative loses if it required class pseudo can not
2607 hold value of required mode. Such insns can be
2608 described by insn definitions with mode iterators. */
2609 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2610 && ! hard_reg_set_empty_p (this_alternative_set)
2611 /* It is common practice for constraints to use a
2612 class which does not have actually enough regs to
2613 hold the value (e.g. x86 AREG for mode requiring
2614 more one general reg). Therefore we have 2
2615 conditions to check that the reload pseudo can
2616 not hold the mode value. */
2617 && (!targetm.hard_regno_mode_ok
2618 (ira_class_hard_regs[this_alternative][0],
2619 GET_MODE (*curr_id->operand_loc[nop])))
2620 /* The above condition is not enough as the first
2621 reg in ira_class_hard_regs can be not aligned for
2622 multi-words mode values. */
2623 && (prohibited_class_reg_set_mode_p
2624 (this_alternative, this_alternative_set,
2625 GET_MODE (*curr_id->operand_loc[nop]))))
2627 if (lra_dump_file != NULL)
2628 fprintf (lra_dump_file,
2629 " alt=%d: reload pseudo for op %d "
2630 " can not hold the mode value -- refuse\n",
2631 nalt, nop);
2632 goto fail;
2635 /* Check strong discouragement of reload of non-constant
2636 into class THIS_ALTERNATIVE. */
2637 if (! CONSTANT_P (op) && ! no_regs_p
2638 && (targetm.preferred_reload_class
2639 (op, this_alternative) == NO_REGS
2640 || (curr_static_id->operand[nop].type == OP_OUT
2641 && (targetm.preferred_output_reload_class
2642 (op, this_alternative) == NO_REGS))))
2644 if (lra_dump_file != NULL)
2645 fprintf (lra_dump_file,
2646 " %d Non-prefered reload: reject+=%d\n",
2647 nop, LRA_MAX_REJECT);
2648 reject += LRA_MAX_REJECT;
2651 if (! (MEM_P (op) && offmemok)
2652 && ! (const_to_mem && constmemok))
2654 /* We prefer to reload pseudos over reloading other
2655 things, since such reloads may be able to be
2656 eliminated later. So bump REJECT in other cases.
2657 Don't do this in the case where we are forcing a
2658 constant into memory and it will then win since
2659 we don't want to have a different alternative
2660 match then. */
2661 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2663 if (lra_dump_file != NULL)
2664 fprintf
2665 (lra_dump_file,
2666 " %d Non-pseudo reload: reject+=2\n",
2667 nop);
2668 reject += 2;
2671 if (! no_regs_p)
2672 reload_nregs
2673 += ira_reg_class_max_nregs[this_alternative][mode];
2675 if (SMALL_REGISTER_CLASS_P (this_alternative))
2677 if (lra_dump_file != NULL)
2678 fprintf
2679 (lra_dump_file,
2680 " %d Small class reload: reject+=%d\n",
2681 nop, LRA_LOSER_COST_FACTOR / 2);
2682 reject += LRA_LOSER_COST_FACTOR / 2;
2686 /* We are trying to spill pseudo into memory. It is
2687 usually more costly than moving to a hard register
2688 although it might takes the same number of
2689 reloads.
2691 Non-pseudo spill may happen also. Suppose a target allows both
2692 register and memory in the operand constraint alternatives,
2693 then it's typical that an eliminable register has a substition
2694 of "base + offset" which can either be reloaded by a simple
2695 "new_reg <= base + offset" which will match the register
2696 constraint, or a similar reg addition followed by further spill
2697 to and reload from memory which will match the memory
2698 constraint, but this memory spill will be much more costly
2699 usually.
2701 Code below increases the reject for both pseudo and non-pseudo
2702 spill. */
2703 if (no_regs_p
2704 && !(MEM_P (op) && offmemok)
2705 && !(REG_P (op) && hard_regno[nop] < 0))
2707 if (lra_dump_file != NULL)
2708 fprintf
2709 (lra_dump_file,
2710 " %d Spill %spseudo into memory: reject+=3\n",
2711 nop, REG_P (op) ? "" : "Non-");
2712 reject += 3;
2713 if (VECTOR_MODE_P (mode))
2715 /* Spilling vectors into memory is usually more
2716 costly as they contain big values. */
2717 if (lra_dump_file != NULL)
2718 fprintf
2719 (lra_dump_file,
2720 " %d Spill vector pseudo: reject+=2\n",
2721 nop);
2722 reject += 2;
2726 /* When we use an operand requiring memory in given
2727 alternative, the insn should write *and* read the
2728 value to/from memory it is costly in comparison with
2729 an insn alternative which does not use memory
2730 (e.g. register or immediate operand). We exclude
2731 memory operand for such case as we can satisfy the
2732 memory constraints by reloading address. */
2733 if (no_regs_p && offmemok && !MEM_P (op))
2735 if (lra_dump_file != NULL)
2736 fprintf
2737 (lra_dump_file,
2738 " Using memory insn operand %d: reject+=3\n",
2739 nop);
2740 reject += 3;
2743 /* If reload requires moving value through secondary
2744 memory, it will need one more insn at least. */
2745 if (this_alternative != NO_REGS
2746 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2747 && ((curr_static_id->operand[nop].type != OP_OUT
2748 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2749 this_alternative))
2750 || (curr_static_id->operand[nop].type != OP_IN
2751 && (targetm.secondary_memory_needed
2752 (GET_MODE (op), this_alternative, cl)))))
2753 losers++;
2755 /* Input reloads can be inherited more often than output
2756 reloads can be removed, so penalize output
2757 reloads. */
2758 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2760 if (lra_dump_file != NULL)
2761 fprintf
2762 (lra_dump_file,
2763 " %d Non input pseudo reload: reject++\n",
2764 nop);
2765 reject++;
2768 if (MEM_P (op) && offmemok)
2769 addr_losers++;
2770 else if (curr_static_id->operand[nop].type == OP_INOUT)
2772 if (lra_dump_file != NULL)
2773 fprintf
2774 (lra_dump_file,
2775 " %d Input/Output reload: reject+=%d\n",
2776 nop, LRA_LOSER_COST_FACTOR);
2777 reject += LRA_LOSER_COST_FACTOR;
2781 if (early_clobber_p && ! scratch_p)
2783 if (lra_dump_file != NULL)
2784 fprintf (lra_dump_file,
2785 " %d Early clobber: reject++\n", nop);
2786 reject++;
2788 /* ??? We check early clobbers after processing all operands
2789 (see loop below) and there we update the costs more.
2790 Should we update the cost (may be approximately) here
2791 because of early clobber register reloads or it is a rare
2792 or non-important thing to be worth to do it. */
2793 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2794 - (addr_losers == losers ? static_reject : 0));
2795 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2797 if (lra_dump_file != NULL)
2798 fprintf (lra_dump_file,
2799 " alt=%d,overall=%d,losers=%d -- refuse\n",
2800 nalt, overall, losers);
2801 goto fail;
2804 if (update_and_check_small_class_inputs (nop, this_alternative))
2806 if (lra_dump_file != NULL)
2807 fprintf (lra_dump_file,
2808 " alt=%d, not enough small class regs -- refuse\n",
2809 nalt);
2810 goto fail;
2812 curr_alt[nop] = this_alternative;
2813 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2814 curr_alt_win[nop] = this_alternative_win;
2815 curr_alt_match_win[nop] = this_alternative_match_win;
2816 curr_alt_offmemok[nop] = this_alternative_offmemok;
2817 curr_alt_matches[nop] = this_alternative_matches;
2819 if (this_alternative_matches >= 0
2820 && !did_match && !this_alternative_win)
2821 curr_alt_win[this_alternative_matches] = false;
2823 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2824 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2827 if (curr_insn_set != NULL_RTX && n_operands == 2
2828 /* Prevent processing non-move insns. */
2829 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2830 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2831 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2832 && REG_P (no_subreg_reg_operand[0])
2833 && REG_P (no_subreg_reg_operand[1])
2834 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2835 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2836 || (! curr_alt_win[0] && curr_alt_win[1]
2837 && REG_P (no_subreg_reg_operand[1])
2838 /* Check that we reload memory not the memory
2839 address. */
2840 && ! (curr_alt_offmemok[0]
2841 && MEM_P (no_subreg_reg_operand[0]))
2842 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2843 || (curr_alt_win[0] && ! curr_alt_win[1]
2844 && REG_P (no_subreg_reg_operand[0])
2845 /* Check that we reload memory not the memory
2846 address. */
2847 && ! (curr_alt_offmemok[1]
2848 && MEM_P (no_subreg_reg_operand[1]))
2849 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2850 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2851 no_subreg_reg_operand[1])
2852 || (targetm.preferred_reload_class
2853 (no_subreg_reg_operand[1],
2854 (enum reg_class) curr_alt[1]) != NO_REGS))
2855 /* If it is a result of recent elimination in move
2856 insn we can transform it into an add still by
2857 using this alternative. */
2858 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2859 /* Likewise if the source has been replaced with an
2860 equivalent value. This only happens once -- the reload
2861 will use the equivalent value instead of the register it
2862 replaces -- so there should be no danger of cycling. */
2863 && !equiv_substition_p[1])))
2865 /* We have a move insn and a new reload insn will be similar
2866 to the current insn. We should avoid such situation as
2867 it results in LRA cycling. */
2868 if (lra_dump_file != NULL)
2869 fprintf (lra_dump_file,
2870 " Cycle danger: overall += LRA_MAX_REJECT\n");
2871 overall += LRA_MAX_REJECT;
2873 ok_p = true;
2874 curr_alt_dont_inherit_ops_num = 0;
2875 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2877 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2878 HARD_REG_SET temp_set;
2880 i = early_clobbered_nops[nop];
2881 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2882 || hard_regno[i] < 0)
2883 continue;
2884 lra_assert (operand_reg[i] != NULL_RTX);
2885 clobbered_hard_regno = hard_regno[i];
2886 CLEAR_HARD_REG_SET (temp_set);
2887 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2888 first_conflict_j = last_conflict_j = -1;
2889 for (j = 0; j < n_operands; j++)
2890 if (j == i
2891 /* We don't want process insides of match_operator and
2892 match_parallel because otherwise we would process
2893 their operands once again generating a wrong
2894 code. */
2895 || curr_static_id->operand[j].is_operator)
2896 continue;
2897 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2898 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2899 continue;
2900 /* If we don't reload j-th operand, check conflicts. */
2901 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2902 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2904 if (first_conflict_j < 0)
2905 first_conflict_j = j;
2906 last_conflict_j = j;
2908 if (last_conflict_j < 0)
2909 continue;
2910 /* If earlyclobber operand conflicts with another
2911 non-matching operand which is actually the same register
2912 as the earlyclobber operand, it is better to reload the
2913 another operand as an operand matching the earlyclobber
2914 operand can be also the same. */
2915 if (first_conflict_j == last_conflict_j
2916 && operand_reg[last_conflict_j] != NULL_RTX
2917 && ! curr_alt_match_win[last_conflict_j]
2918 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2920 curr_alt_win[last_conflict_j] = false;
2921 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2922 = last_conflict_j;
2923 losers++;
2924 /* Early clobber was already reflected in REJECT. */
2925 lra_assert (reject > 0);
2926 if (lra_dump_file != NULL)
2927 fprintf
2928 (lra_dump_file,
2929 " %d Conflict early clobber reload: reject--\n",
2931 reject--;
2932 overall += LRA_LOSER_COST_FACTOR - 1;
2934 else
2936 /* We need to reload early clobbered register and the
2937 matched registers. */
2938 for (j = 0; j < n_operands; j++)
2939 if (curr_alt_matches[j] == i)
2941 curr_alt_match_win[j] = false;
2942 losers++;
2943 overall += LRA_LOSER_COST_FACTOR;
2945 if (! curr_alt_match_win[i])
2946 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2947 else
2949 /* Remember pseudos used for match reloads are never
2950 inherited. */
2951 lra_assert (curr_alt_matches[i] >= 0);
2952 curr_alt_win[curr_alt_matches[i]] = false;
2954 curr_alt_win[i] = curr_alt_match_win[i] = false;
2955 losers++;
2956 /* Early clobber was already reflected in REJECT. */
2957 lra_assert (reject > 0);
2958 if (lra_dump_file != NULL)
2959 fprintf
2960 (lra_dump_file,
2961 " %d Matched conflict early clobber reloads: "
2962 "reject--\n",
2964 reject--;
2965 overall += LRA_LOSER_COST_FACTOR - 1;
2968 if (lra_dump_file != NULL)
2969 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2970 nalt, overall, losers, reload_nregs);
2972 /* If this alternative can be made to work by reloading, and it
2973 needs less reloading than the others checked so far, record
2974 it as the chosen goal for reloading. */
2975 if ((best_losers != 0 && losers == 0)
2976 || (((best_losers == 0 && losers == 0)
2977 || (best_losers != 0 && losers != 0))
2978 && (best_overall > overall
2979 || (best_overall == overall
2980 /* If the cost of the reloads is the same,
2981 prefer alternative which requires minimal
2982 number of reload regs. */
2983 && (reload_nregs < best_reload_nregs
2984 || (reload_nregs == best_reload_nregs
2985 && (best_reload_sum < reload_sum
2986 || (best_reload_sum == reload_sum
2987 && nalt < goal_alt_number))))))))
2989 for (nop = 0; nop < n_operands; nop++)
2991 goal_alt_win[nop] = curr_alt_win[nop];
2992 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2993 goal_alt_matches[nop] = curr_alt_matches[nop];
2994 goal_alt[nop] = curr_alt[nop];
2995 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2997 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2998 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2999 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3000 goal_alt_swapped = curr_swapped;
3001 best_overall = overall;
3002 best_losers = losers;
3003 best_reload_nregs = reload_nregs;
3004 best_reload_sum = reload_sum;
3005 goal_alt_number = nalt;
3007 if (losers == 0)
3008 /* Everything is satisfied. Do not process alternatives
3009 anymore. */
3010 break;
3011 fail:
3014 return ok_p;
3017 /* Make reload base reg from address AD. */
3018 static rtx
3019 base_to_reg (struct address_info *ad)
3021 enum reg_class cl;
3022 int code = -1;
3023 rtx new_inner = NULL_RTX;
3024 rtx new_reg = NULL_RTX;
3025 rtx_insn *insn;
3026 rtx_insn *last_insn = get_last_insn();
3028 lra_assert (ad->disp == ad->disp_term);
3029 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3030 get_index_code (ad));
3031 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3032 cl, "base");
3033 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3034 ad->disp_term == NULL
3035 ? const0_rtx
3036 : *ad->disp_term);
3037 if (!valid_address_p (ad->mode, new_inner, ad->as))
3038 return NULL_RTX;
3039 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3040 code = recog_memoized (insn);
3041 if (code < 0)
3043 delete_insns_since (last_insn);
3044 return NULL_RTX;
3047 return new_inner;
3050 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3051 static rtx
3052 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3054 enum reg_class cl;
3055 rtx new_reg;
3057 lra_assert (ad->base == ad->base_term);
3058 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3059 get_index_code (ad));
3060 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3061 cl, "base + disp");
3062 lra_emit_add (new_reg, *ad->base_term, disp);
3063 return new_reg;
3066 /* Make reload of index part of address AD. Return the new
3067 pseudo. */
3068 static rtx
3069 index_part_to_reg (struct address_info *ad)
3071 rtx new_reg;
3073 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3074 INDEX_REG_CLASS, "index term");
3075 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3076 GEN_INT (get_index_scale (ad)), new_reg, 1);
3077 return new_reg;
3080 /* Return true if we can add a displacement to address AD, even if that
3081 makes the address invalid. The fix-up code requires any new address
3082 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3083 static bool
3084 can_add_disp_p (struct address_info *ad)
3086 return (!ad->autoinc_p
3087 && ad->segment == NULL
3088 && ad->base == ad->base_term
3089 && ad->disp == ad->disp_term);
3092 /* Make equiv substitution in address AD. Return true if a substitution
3093 was made. */
3094 static bool
3095 equiv_address_substitution (struct address_info *ad)
3097 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3098 poly_int64 disp;
3099 HOST_WIDE_INT scale;
3100 bool change_p;
3102 base_term = strip_subreg (ad->base_term);
3103 if (base_term == NULL)
3104 base_reg = new_base_reg = NULL_RTX;
3105 else
3107 base_reg = *base_term;
3108 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3110 index_term = strip_subreg (ad->index_term);
3111 if (index_term == NULL)
3112 index_reg = new_index_reg = NULL_RTX;
3113 else
3115 index_reg = *index_term;
3116 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3118 if (base_reg == new_base_reg && index_reg == new_index_reg)
3119 return false;
3120 disp = 0;
3121 change_p = false;
3122 if (lra_dump_file != NULL)
3124 fprintf (lra_dump_file, "Changing address in insn %d ",
3125 INSN_UID (curr_insn));
3126 dump_value_slim (lra_dump_file, *ad->outer, 1);
3128 if (base_reg != new_base_reg)
3130 poly_int64 offset;
3131 if (REG_P (new_base_reg))
3133 *base_term = new_base_reg;
3134 change_p = true;
3136 else if (GET_CODE (new_base_reg) == PLUS
3137 && REG_P (XEXP (new_base_reg, 0))
3138 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3139 && can_add_disp_p (ad))
3141 disp += offset;
3142 *base_term = XEXP (new_base_reg, 0);
3143 change_p = true;
3145 if (ad->base_term2 != NULL)
3146 *ad->base_term2 = *ad->base_term;
3148 if (index_reg != new_index_reg)
3150 poly_int64 offset;
3151 if (REG_P (new_index_reg))
3153 *index_term = new_index_reg;
3154 change_p = true;
3156 else if (GET_CODE (new_index_reg) == PLUS
3157 && REG_P (XEXP (new_index_reg, 0))
3158 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3159 && can_add_disp_p (ad)
3160 && (scale = get_index_scale (ad)))
3162 disp += offset * scale;
3163 *index_term = XEXP (new_index_reg, 0);
3164 change_p = true;
3167 if (maybe_ne (disp, 0))
3169 if (ad->disp != NULL)
3170 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3171 else
3173 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3174 update_address (ad);
3176 change_p = true;
3178 if (lra_dump_file != NULL)
3180 if (! change_p)
3181 fprintf (lra_dump_file, " -- no change\n");
3182 else
3184 fprintf (lra_dump_file, " on equiv ");
3185 dump_value_slim (lra_dump_file, *ad->outer, 1);
3186 fprintf (lra_dump_file, "\n");
3189 return change_p;
3192 /* Major function to make reloads for an address in operand NOP or
3193 check its correctness (If CHECK_ONLY_P is true). The supported
3194 cases are:
3196 1) an address that existed before LRA started, at which point it
3197 must have been valid. These addresses are subject to elimination
3198 and may have become invalid due to the elimination offset being out
3199 of range.
3201 2) an address created by forcing a constant to memory
3202 (force_const_to_mem). The initial form of these addresses might
3203 not be valid, and it is this function's job to make them valid.
3205 3) a frame address formed from a register and a (possibly zero)
3206 constant offset. As above, these addresses might not be valid and
3207 this function must make them so.
3209 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3210 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3211 address. Return true for any RTL change.
3213 The function is a helper function which does not produce all
3214 transformations (when CHECK_ONLY_P is false) which can be
3215 necessary. It does just basic steps. To do all necessary
3216 transformations use function process_address. */
3217 static bool
3218 process_address_1 (int nop, bool check_only_p,
3219 rtx_insn **before, rtx_insn **after)
3221 struct address_info ad;
3222 rtx new_reg;
3223 HOST_WIDE_INT scale;
3224 rtx op = *curr_id->operand_loc[nop];
3225 const char *constraint = curr_static_id->operand[nop].constraint;
3226 enum constraint_num cn = lookup_constraint (constraint);
3227 bool change_p = false;
3229 if (MEM_P (op)
3230 && GET_MODE (op) == BLKmode
3231 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3232 return false;
3234 if (insn_extra_address_constraint (cn)
3235 /* When we find an asm operand with an address constraint that
3236 doesn't satisfy address_operand to begin with, we clear
3237 is_address, so that we don't try to make a non-address fit.
3238 If the asm statement got this far, it's because other
3239 constraints are available, and we'll use them, disregarding
3240 the unsatisfiable address ones. */
3241 && curr_static_id->operand[nop].is_address)
3242 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3243 /* Do not attempt to decompose arbitrary addresses generated by combine
3244 for asm operands with loose constraints, e.g 'X'. */
3245 else if (MEM_P (op)
3246 && !(INSN_CODE (curr_insn) < 0
3247 && get_constraint_type (cn) == CT_FIXED_FORM
3248 && constraint_satisfied_p (op, cn)))
3249 decompose_mem_address (&ad, op);
3250 else if (GET_CODE (op) == SUBREG
3251 && MEM_P (SUBREG_REG (op)))
3252 decompose_mem_address (&ad, SUBREG_REG (op));
3253 else
3254 return false;
3255 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3256 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3257 when INDEX_REG_CLASS is a single register class. */
3258 if (ad.base_term != NULL
3259 && ad.index_term != NULL
3260 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3261 && REG_P (*ad.base_term)
3262 && REG_P (*ad.index_term)
3263 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3264 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3266 std::swap (ad.base, ad.index);
3267 std::swap (ad.base_term, ad.index_term);
3269 if (! check_only_p)
3270 change_p = equiv_address_substitution (&ad);
3271 if (ad.base_term != NULL
3272 && (process_addr_reg
3273 (ad.base_term, check_only_p, before,
3274 (ad.autoinc_p
3275 && !(REG_P (*ad.base_term)
3276 && find_regno_note (curr_insn, REG_DEAD,
3277 REGNO (*ad.base_term)) != NULL_RTX)
3278 ? after : NULL),
3279 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3280 get_index_code (&ad)))))
3282 change_p = true;
3283 if (ad.base_term2 != NULL)
3284 *ad.base_term2 = *ad.base_term;
3286 if (ad.index_term != NULL
3287 && process_addr_reg (ad.index_term, check_only_p,
3288 before, NULL, INDEX_REG_CLASS))
3289 change_p = true;
3291 /* Target hooks sometimes don't treat extra-constraint addresses as
3292 legitimate address_operands, so handle them specially. */
3293 if (insn_extra_address_constraint (cn)
3294 && satisfies_address_constraint_p (&ad, cn))
3295 return change_p;
3297 if (check_only_p)
3298 return change_p;
3300 /* There are three cases where the shape of *AD.INNER may now be invalid:
3302 1) the original address was valid, but either elimination or
3303 equiv_address_substitution was applied and that made
3304 the address invalid.
3306 2) the address is an invalid symbolic address created by
3307 force_const_to_mem.
3309 3) the address is a frame address with an invalid offset.
3311 4) the address is a frame address with an invalid base.
3313 All these cases involve a non-autoinc address, so there is no
3314 point revalidating other types. */
3315 if (ad.autoinc_p || valid_address_p (&ad))
3316 return change_p;
3318 /* Any index existed before LRA started, so we can assume that the
3319 presence and shape of the index is valid. */
3320 push_to_sequence (*before);
3321 lra_assert (ad.disp == ad.disp_term);
3322 if (ad.base == NULL)
3324 if (ad.index == NULL)
3326 rtx_insn *insn;
3327 rtx_insn *last = get_last_insn ();
3328 int code = -1;
3329 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3330 SCRATCH, SCRATCH);
3331 rtx addr = *ad.inner;
3333 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3334 if (HAVE_lo_sum)
3336 /* addr => lo_sum (new_base, addr), case (2) above. */
3337 insn = emit_insn (gen_rtx_SET
3338 (new_reg,
3339 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3340 code = recog_memoized (insn);
3341 if (code >= 0)
3343 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3344 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3346 /* Try to put lo_sum into register. */
3347 insn = emit_insn (gen_rtx_SET
3348 (new_reg,
3349 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3350 code = recog_memoized (insn);
3351 if (code >= 0)
3353 *ad.inner = new_reg;
3354 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3356 *ad.inner = addr;
3357 code = -1;
3363 if (code < 0)
3364 delete_insns_since (last);
3367 if (code < 0)
3369 /* addr => new_base, case (2) above. */
3370 lra_emit_move (new_reg, addr);
3372 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3373 insn != NULL_RTX;
3374 insn = NEXT_INSN (insn))
3375 if (recog_memoized (insn) < 0)
3376 break;
3377 if (insn != NULL_RTX)
3379 /* Do nothing if we cannot generate right insns.
3380 This is analogous to reload pass behavior. */
3381 delete_insns_since (last);
3382 end_sequence ();
3383 return false;
3385 *ad.inner = new_reg;
3388 else
3390 /* index * scale + disp => new base + index * scale,
3391 case (1) above. */
3392 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3393 GET_CODE (*ad.index));
3395 lra_assert (INDEX_REG_CLASS != NO_REGS);
3396 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3397 lra_emit_move (new_reg, *ad.disp);
3398 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3399 new_reg, *ad.index);
3402 else if (ad.index == NULL)
3404 int regno;
3405 enum reg_class cl;
3406 rtx set;
3407 rtx_insn *insns, *last_insn;
3408 /* Try to reload base into register only if the base is invalid
3409 for the address but with valid offset, case (4) above. */
3410 start_sequence ();
3411 new_reg = base_to_reg (&ad);
3413 /* base + disp => new base, cases (1) and (3) above. */
3414 /* Another option would be to reload the displacement into an
3415 index register. However, postreload has code to optimize
3416 address reloads that have the same base and different
3417 displacements, so reloading into an index register would
3418 not necessarily be a win. */
3419 if (new_reg == NULL_RTX)
3421 /* See if the target can split the displacement into a
3422 legitimate new displacement from a local anchor. */
3423 gcc_assert (ad.disp == ad.disp_term);
3424 poly_int64 orig_offset;
3425 rtx offset1, offset2;
3426 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3427 && targetm.legitimize_address_displacement (&offset1, &offset2,
3428 orig_offset,
3429 ad.mode))
3431 new_reg = base_plus_disp_to_reg (&ad, offset1);
3432 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3434 else
3435 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3437 insns = get_insns ();
3438 last_insn = get_last_insn ();
3439 /* If we generated at least two insns, try last insn source as
3440 an address. If we succeed, we generate one less insn. */
3441 if (REG_P (new_reg)
3442 && last_insn != insns
3443 && (set = single_set (last_insn)) != NULL_RTX
3444 && GET_CODE (SET_SRC (set)) == PLUS
3445 && REG_P (XEXP (SET_SRC (set), 0))
3446 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3448 *ad.inner = SET_SRC (set);
3449 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3451 *ad.base_term = XEXP (SET_SRC (set), 0);
3452 *ad.disp_term = XEXP (SET_SRC (set), 1);
3453 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3454 get_index_code (&ad));
3455 regno = REGNO (*ad.base_term);
3456 if (regno >= FIRST_PSEUDO_REGISTER
3457 && cl != lra_get_allocno_class (regno))
3458 lra_change_class (regno, cl, " Change to", true);
3459 new_reg = SET_SRC (set);
3460 delete_insns_since (PREV_INSN (last_insn));
3463 end_sequence ();
3464 emit_insn (insns);
3465 *ad.inner = new_reg;
3467 else if (ad.disp_term != NULL)
3469 /* base + scale * index + disp => new base + scale * index,
3470 case (1) above. */
3471 gcc_assert (ad.disp == ad.disp_term);
3472 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3473 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3474 new_reg, *ad.index);
3476 else if ((scale = get_index_scale (&ad)) == 1)
3478 /* The last transformation to one reg will be made in
3479 curr_insn_transform function. */
3480 end_sequence ();
3481 return false;
3483 else if (scale != 0)
3485 /* base + scale * index => base + new_reg,
3486 case (1) above.
3487 Index part of address may become invalid. For example, we
3488 changed pseudo on the equivalent memory and a subreg of the
3489 pseudo onto the memory of different mode for which the scale is
3490 prohibitted. */
3491 new_reg = index_part_to_reg (&ad);
3492 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3493 *ad.base_term, new_reg);
3495 else
3497 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3498 SCRATCH, SCRATCH);
3499 rtx addr = *ad.inner;
3501 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3502 /* addr => new_base. */
3503 lra_emit_move (new_reg, addr);
3504 *ad.inner = new_reg;
3506 *before = get_insns ();
3507 end_sequence ();
3508 return true;
3511 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3512 Use process_address_1 as a helper function. Return true for any
3513 RTL changes.
3515 If CHECK_ONLY_P is true, just check address correctness. Return
3516 false if the address correct. */
3517 static bool
3518 process_address (int nop, bool check_only_p,
3519 rtx_insn **before, rtx_insn **after)
3521 bool res = false;
3523 while (process_address_1 (nop, check_only_p, before, after))
3525 if (check_only_p)
3526 return true;
3527 res = true;
3529 return res;
3532 /* Emit insns to reload VALUE into a new register. VALUE is an
3533 auto-increment or auto-decrement RTX whose operand is a register or
3534 memory location; so reloading involves incrementing that location.
3535 IN is either identical to VALUE, or some cheaper place to reload
3536 value being incremented/decremented from.
3538 INC_AMOUNT is the number to increment or decrement by (always
3539 positive and ignored for POST_MODIFY/PRE_MODIFY).
3541 Return pseudo containing the result. */
3542 static rtx
3543 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3545 /* REG or MEM to be copied and incremented. */
3546 rtx incloc = XEXP (value, 0);
3547 /* Nonzero if increment after copying. */
3548 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3549 || GET_CODE (value) == POST_MODIFY);
3550 rtx_insn *last;
3551 rtx inc;
3552 rtx_insn *add_insn;
3553 int code;
3554 rtx real_in = in == value ? incloc : in;
3555 rtx result;
3556 bool plus_p = true;
3558 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3560 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3561 || GET_CODE (XEXP (value, 1)) == MINUS);
3562 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3563 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3564 inc = XEXP (XEXP (value, 1), 1);
3566 else
3568 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3569 inc_amount = -inc_amount;
3571 inc = gen_int_mode (inc_amount, GET_MODE (value));
3574 if (! post && REG_P (incloc))
3575 result = incloc;
3576 else
3577 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3578 "INC/DEC result");
3580 if (real_in != result)
3582 /* First copy the location to the result register. */
3583 lra_assert (REG_P (result));
3584 emit_insn (gen_move_insn (result, real_in));
3587 /* We suppose that there are insns to add/sub with the constant
3588 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3589 old reload worked with this assumption. If the assumption
3590 becomes wrong, we should use approach in function
3591 base_plus_disp_to_reg. */
3592 if (in == value)
3594 /* See if we can directly increment INCLOC. */
3595 last = get_last_insn ();
3596 add_insn = emit_insn (plus_p
3597 ? gen_add2_insn (incloc, inc)
3598 : gen_sub2_insn (incloc, inc));
3600 code = recog_memoized (add_insn);
3601 if (code >= 0)
3603 if (! post && result != incloc)
3604 emit_insn (gen_move_insn (result, incloc));
3605 return result;
3607 delete_insns_since (last);
3610 /* If couldn't do the increment directly, must increment in RESULT.
3611 The way we do this depends on whether this is pre- or
3612 post-increment. For pre-increment, copy INCLOC to the reload
3613 register, increment it there, then save back. */
3614 if (! post)
3616 if (real_in != result)
3617 emit_insn (gen_move_insn (result, real_in));
3618 if (plus_p)
3619 emit_insn (gen_add2_insn (result, inc));
3620 else
3621 emit_insn (gen_sub2_insn (result, inc));
3622 if (result != incloc)
3623 emit_insn (gen_move_insn (incloc, result));
3625 else
3627 /* Post-increment.
3629 Because this might be a jump insn or a compare, and because
3630 RESULT may not be available after the insn in an input
3631 reload, we must do the incrementing before the insn being
3632 reloaded for.
3634 We have already copied IN to RESULT. Increment the copy in
3635 RESULT, save that back, then decrement RESULT so it has
3636 the original value. */
3637 if (plus_p)
3638 emit_insn (gen_add2_insn (result, inc));
3639 else
3640 emit_insn (gen_sub2_insn (result, inc));
3641 emit_insn (gen_move_insn (incloc, result));
3642 /* Restore non-modified value for the result. We prefer this
3643 way because it does not require an additional hard
3644 register. */
3645 if (plus_p)
3647 poly_int64 offset;
3648 if (poly_int_rtx_p (inc, &offset))
3649 emit_insn (gen_add2_insn (result,
3650 gen_int_mode (-offset,
3651 GET_MODE (result))));
3652 else
3653 emit_insn (gen_sub2_insn (result, inc));
3655 else
3656 emit_insn (gen_add2_insn (result, inc));
3658 return result;
3661 /* Return true if the current move insn does not need processing as we
3662 already know that it satisfies its constraints. */
3663 static bool
3664 simple_move_p (void)
3666 rtx dest, src;
3667 enum reg_class dclass, sclass;
3669 lra_assert (curr_insn_set != NULL_RTX);
3670 dest = SET_DEST (curr_insn_set);
3671 src = SET_SRC (curr_insn_set);
3673 /* If the instruction has multiple sets we need to process it even if it
3674 is single_set. This can happen if one or more of the SETs are dead.
3675 See PR73650. */
3676 if (multiple_sets (curr_insn))
3677 return false;
3679 return ((dclass = get_op_class (dest)) != NO_REGS
3680 && (sclass = get_op_class (src)) != NO_REGS
3681 /* The backend guarantees that register moves of cost 2
3682 never need reloads. */
3683 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3686 /* Swap operands NOP and NOP + 1. */
3687 static inline void
3688 swap_operands (int nop)
3690 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3691 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3692 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3693 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3694 /* Swap the duplicates too. */
3695 lra_update_dup (curr_id, nop);
3696 lra_update_dup (curr_id, nop + 1);
3699 /* Main entry point of the constraint code: search the body of the
3700 current insn to choose the best alternative. It is mimicking insn
3701 alternative cost calculation model of former reload pass. That is
3702 because machine descriptions were written to use this model. This
3703 model can be changed in future. Make commutative operand exchange
3704 if it is chosen.
3706 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3707 constraints. Return true if any change happened during function
3708 call.
3710 If CHECK_ONLY_P is true then don't do any transformation. Just
3711 check that the insn satisfies all constraints. If the insn does
3712 not satisfy any constraint, return true. */
3713 static bool
3714 curr_insn_transform (bool check_only_p)
3716 int i, j, k;
3717 int n_operands;
3718 int n_alternatives;
3719 int n_outputs;
3720 int commutative;
3721 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3722 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3723 signed char outputs[MAX_RECOG_OPERANDS + 1];
3724 rtx_insn *before, *after;
3725 bool alt_p = false;
3726 /* Flag that the insn has been changed through a transformation. */
3727 bool change_p;
3728 bool sec_mem_p;
3729 bool use_sec_mem_p;
3730 int max_regno_before;
3731 int reused_alternative_num;
3733 curr_insn_set = single_set (curr_insn);
3734 if (curr_insn_set != NULL_RTX && simple_move_p ())
3736 /* We assume that the corresponding insn alternative has no
3737 earlier clobbers. If it is not the case, don't define move
3738 cost equal to 2 for the corresponding register classes. */
3739 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3740 return false;
3743 no_input_reloads_p = no_output_reloads_p = false;
3744 goal_alt_number = -1;
3745 change_p = sec_mem_p = false;
3746 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3747 reloads; neither are insns that SET cc0. Insns that use CC0 are
3748 not allowed to have any input reloads. */
3749 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3750 no_output_reloads_p = true;
3752 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3753 no_input_reloads_p = true;
3754 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3755 no_output_reloads_p = true;
3757 n_operands = curr_static_id->n_operands;
3758 n_alternatives = curr_static_id->n_alternatives;
3760 /* Just return "no reloads" if insn has no operands with
3761 constraints. */
3762 if (n_operands == 0 || n_alternatives == 0)
3763 return false;
3765 max_regno_before = max_reg_num ();
3767 for (i = 0; i < n_operands; i++)
3769 goal_alt_matched[i][0] = -1;
3770 goal_alt_matches[i] = -1;
3773 commutative = curr_static_id->commutative;
3775 /* Now see what we need for pseudos that didn't get hard regs or got
3776 the wrong kind of hard reg. For this, we must consider all the
3777 operands together against the register constraints. */
3779 best_losers = best_overall = INT_MAX;
3780 best_reload_sum = 0;
3782 curr_swapped = false;
3783 goal_alt_swapped = false;
3785 if (! check_only_p)
3786 /* Make equivalence substitution and memory subreg elimination
3787 before address processing because an address legitimacy can
3788 depend on memory mode. */
3789 for (i = 0; i < n_operands; i++)
3791 rtx op, subst, old;
3792 bool op_change_p = false;
3794 if (curr_static_id->operand[i].is_operator)
3795 continue;
3797 old = op = *curr_id->operand_loc[i];
3798 if (GET_CODE (old) == SUBREG)
3799 old = SUBREG_REG (old);
3800 subst = get_equiv_with_elimination (old, curr_insn);
3801 original_subreg_reg_mode[i] = VOIDmode;
3802 equiv_substition_p[i] = false;
3803 if (subst != old)
3805 equiv_substition_p[i] = true;
3806 subst = copy_rtx (subst);
3807 lra_assert (REG_P (old));
3808 if (GET_CODE (op) != SUBREG)
3809 *curr_id->operand_loc[i] = subst;
3810 else
3812 SUBREG_REG (op) = subst;
3813 if (GET_MODE (subst) == VOIDmode)
3814 original_subreg_reg_mode[i] = GET_MODE (old);
3816 if (lra_dump_file != NULL)
3818 fprintf (lra_dump_file,
3819 "Changing pseudo %d in operand %i of insn %u on equiv ",
3820 REGNO (old), i, INSN_UID (curr_insn));
3821 dump_value_slim (lra_dump_file, subst, 1);
3822 fprintf (lra_dump_file, "\n");
3824 op_change_p = change_p = true;
3826 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3828 change_p = true;
3829 lra_update_dup (curr_id, i);
3833 /* Reload address registers and displacements. We do it before
3834 finding an alternative because of memory constraints. */
3835 before = after = NULL;
3836 for (i = 0; i < n_operands; i++)
3837 if (! curr_static_id->operand[i].is_operator
3838 && process_address (i, check_only_p, &before, &after))
3840 if (check_only_p)
3841 return true;
3842 change_p = true;
3843 lra_update_dup (curr_id, i);
3846 if (change_p)
3847 /* If we've changed the instruction then any alternative that
3848 we chose previously may no longer be valid. */
3849 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3851 if (! check_only_p && curr_insn_set != NULL_RTX
3852 && check_and_process_move (&change_p, &sec_mem_p))
3853 return change_p;
3855 try_swapped:
3857 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3858 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3859 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3860 reused_alternative_num, INSN_UID (curr_insn));
3862 if (process_alt_operands (reused_alternative_num))
3863 alt_p = true;
3865 if (check_only_p)
3866 return ! alt_p || best_losers != 0;
3868 /* If insn is commutative (it's safe to exchange a certain pair of
3869 operands) then we need to try each alternative twice, the second
3870 time matching those two operands as if we had exchanged them. To
3871 do this, really exchange them in operands.
3873 If we have just tried the alternatives the second time, return
3874 operands to normal and drop through. */
3876 if (reused_alternative_num < 0 && commutative >= 0)
3878 curr_swapped = !curr_swapped;
3879 if (curr_swapped)
3881 swap_operands (commutative);
3882 goto try_swapped;
3884 else
3885 swap_operands (commutative);
3888 if (! alt_p && ! sec_mem_p)
3890 /* No alternative works with reloads?? */
3891 if (INSN_CODE (curr_insn) >= 0)
3892 fatal_insn ("unable to generate reloads for:", curr_insn);
3893 error_for_asm (curr_insn,
3894 "inconsistent operand constraints in an %<asm%>");
3895 /* Avoid further trouble with this insn. Don't generate use
3896 pattern here as we could use the insn SP offset. */
3897 lra_set_insn_deleted (curr_insn);
3898 return true;
3901 /* If the best alternative is with operands 1 and 2 swapped, swap
3902 them. Update the operand numbers of any reloads already
3903 pushed. */
3905 if (goal_alt_swapped)
3907 if (lra_dump_file != NULL)
3908 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3909 INSN_UID (curr_insn));
3911 /* Swap the duplicates too. */
3912 swap_operands (commutative);
3913 change_p = true;
3916 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3917 too conservatively. So we use the secondary memory only if there
3918 is no any alternative without reloads. */
3919 use_sec_mem_p = false;
3920 if (! alt_p)
3921 use_sec_mem_p = true;
3922 else if (sec_mem_p)
3924 for (i = 0; i < n_operands; i++)
3925 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3926 break;
3927 use_sec_mem_p = i < n_operands;
3930 if (use_sec_mem_p)
3932 int in = -1, out = -1;
3933 rtx new_reg, src, dest, rld;
3934 machine_mode sec_mode, rld_mode;
3936 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3937 dest = SET_DEST (curr_insn_set);
3938 src = SET_SRC (curr_insn_set);
3939 for (i = 0; i < n_operands; i++)
3940 if (*curr_id->operand_loc[i] == dest)
3941 out = i;
3942 else if (*curr_id->operand_loc[i] == src)
3943 in = i;
3944 for (i = 0; i < curr_static_id->n_dups; i++)
3945 if (out < 0 && *curr_id->dup_loc[i] == dest)
3946 out = curr_static_id->dup_num[i];
3947 else if (in < 0 && *curr_id->dup_loc[i] == src)
3948 in = curr_static_id->dup_num[i];
3949 lra_assert (out >= 0 && in >= 0
3950 && curr_static_id->operand[out].type == OP_OUT
3951 && curr_static_id->operand[in].type == OP_IN);
3952 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
3953 rld_mode = GET_MODE (rld);
3954 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
3955 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3956 NO_REGS, "secondary");
3957 /* If the mode is changed, it should be wider. */
3958 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
3959 if (sec_mode != rld_mode)
3961 /* If the target says specifically to use another mode for
3962 secondary memory moves we can not reuse the original
3963 insn. */
3964 after = emit_spill_move (false, new_reg, dest);
3965 lra_process_new_insns (curr_insn, NULL, after,
3966 "Inserting the sec. move");
3967 /* We may have non null BEFORE here (e.g. after address
3968 processing. */
3969 push_to_sequence (before);
3970 before = emit_spill_move (true, new_reg, src);
3971 emit_insn (before);
3972 before = get_insns ();
3973 end_sequence ();
3974 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3975 lra_set_insn_deleted (curr_insn);
3977 else if (dest == rld)
3979 *curr_id->operand_loc[out] = new_reg;
3980 lra_update_dup (curr_id, out);
3981 after = emit_spill_move (false, new_reg, dest);
3982 lra_process_new_insns (curr_insn, NULL, after,
3983 "Inserting the sec. move");
3985 else
3987 *curr_id->operand_loc[in] = new_reg;
3988 lra_update_dup (curr_id, in);
3989 /* See comments above. */
3990 push_to_sequence (before);
3991 before = emit_spill_move (true, new_reg, src);
3992 emit_insn (before);
3993 before = get_insns ();
3994 end_sequence ();
3995 lra_process_new_insns (curr_insn, before, NULL,
3996 "Inserting the sec. move");
3998 lra_update_insn_regno_info (curr_insn);
3999 return true;
4002 lra_assert (goal_alt_number >= 0);
4003 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4005 if (lra_dump_file != NULL)
4007 const char *p;
4009 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4010 goal_alt_number, INSN_UID (curr_insn));
4011 for (i = 0; i < n_operands; i++)
4013 p = (curr_static_id->operand_alternative
4014 [goal_alt_number * n_operands + i].constraint);
4015 if (*p == '\0')
4016 continue;
4017 fprintf (lra_dump_file, " (%d) ", i);
4018 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4019 fputc (*p, lra_dump_file);
4021 if (INSN_CODE (curr_insn) >= 0
4022 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4023 fprintf (lra_dump_file, " {%s}", p);
4024 if (maybe_ne (curr_id->sp_offset, 0))
4026 fprintf (lra_dump_file, " (sp_off=");
4027 print_dec (curr_id->sp_offset, lra_dump_file);
4028 fprintf (lra_dump_file, ")");
4030 fprintf (lra_dump_file, "\n");
4033 /* Right now, for any pair of operands I and J that are required to
4034 match, with J < I, goal_alt_matches[I] is J. Add I to
4035 goal_alt_matched[J]. */
4037 for (i = 0; i < n_operands; i++)
4038 if ((j = goal_alt_matches[i]) >= 0)
4040 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4042 /* We allow matching one output operand and several input
4043 operands. */
4044 lra_assert (k == 0
4045 || (curr_static_id->operand[j].type == OP_OUT
4046 && curr_static_id->operand[i].type == OP_IN
4047 && (curr_static_id->operand
4048 [goal_alt_matched[j][0]].type == OP_IN)));
4049 goal_alt_matched[j][k] = i;
4050 goal_alt_matched[j][k + 1] = -1;
4053 for (i = 0; i < n_operands; i++)
4054 goal_alt_win[i] |= goal_alt_match_win[i];
4056 /* Any constants that aren't allowed and can't be reloaded into
4057 registers are here changed into memory references. */
4058 for (i = 0; i < n_operands; i++)
4059 if (goal_alt_win[i])
4061 int regno;
4062 enum reg_class new_class;
4063 rtx reg = *curr_id->operand_loc[i];
4065 if (GET_CODE (reg) == SUBREG)
4066 reg = SUBREG_REG (reg);
4068 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4070 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4072 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4074 lra_assert (ok_p);
4075 lra_change_class (regno, new_class, " Change to", true);
4079 else
4081 const char *constraint;
4082 char c;
4083 rtx op = *curr_id->operand_loc[i];
4084 rtx subreg = NULL_RTX;
4085 machine_mode mode = curr_operand_mode[i];
4087 if (GET_CODE (op) == SUBREG)
4089 subreg = op;
4090 op = SUBREG_REG (op);
4091 mode = GET_MODE (op);
4094 if (CONST_POOL_OK_P (mode, op)
4095 && ((targetm.preferred_reload_class
4096 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4097 || no_input_reloads_p))
4099 rtx tem = force_const_mem (mode, op);
4101 change_p = true;
4102 if (subreg != NULL_RTX)
4103 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4105 *curr_id->operand_loc[i] = tem;
4106 lra_update_dup (curr_id, i);
4107 process_address (i, false, &before, &after);
4109 /* If the alternative accepts constant pool refs directly
4110 there will be no reload needed at all. */
4111 if (subreg != NULL_RTX)
4112 continue;
4113 /* Skip alternatives before the one requested. */
4114 constraint = (curr_static_id->operand_alternative
4115 [goal_alt_number * n_operands + i].constraint);
4116 for (;
4117 (c = *constraint) && c != ',' && c != '#';
4118 constraint += CONSTRAINT_LEN (c, constraint))
4120 enum constraint_num cn = lookup_constraint (constraint);
4121 if ((insn_extra_memory_constraint (cn)
4122 || insn_extra_special_memory_constraint (cn))
4123 && satisfies_memory_constraint_p (tem, cn))
4124 break;
4126 if (c == '\0' || c == ',' || c == '#')
4127 continue;
4129 goal_alt_win[i] = true;
4133 n_outputs = 0;
4134 outputs[0] = -1;
4135 for (i = 0; i < n_operands; i++)
4137 int regno;
4138 bool optional_p = false;
4139 rtx old, new_reg;
4140 rtx op = *curr_id->operand_loc[i];
4142 if (goal_alt_win[i])
4144 if (goal_alt[i] == NO_REGS
4145 && REG_P (op)
4146 /* When we assign NO_REGS it means that we will not
4147 assign a hard register to the scratch pseudo by
4148 assigment pass and the scratch pseudo will be
4149 spilled. Spilled scratch pseudos are transformed
4150 back to scratches at the LRA end. */
4151 && lra_former_scratch_operand_p (curr_insn, i)
4152 && lra_former_scratch_p (REGNO (op)))
4154 int regno = REGNO (op);
4155 lra_change_class (regno, NO_REGS, " Change to", true);
4156 if (lra_get_regno_hard_regno (regno) >= 0)
4157 /* We don't have to mark all insn affected by the
4158 spilled pseudo as there is only one such insn, the
4159 current one. */
4160 reg_renumber[regno] = -1;
4161 lra_assert (bitmap_single_bit_set_p
4162 (&lra_reg_info[REGNO (op)].insn_bitmap));
4164 /* We can do an optional reload. If the pseudo got a hard
4165 reg, we might improve the code through inheritance. If
4166 it does not get a hard register we coalesce memory/memory
4167 moves later. Ignore move insns to avoid cycling. */
4168 if (! lra_simple_p
4169 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4170 && goal_alt[i] != NO_REGS && REG_P (op)
4171 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4172 && regno < new_regno_start
4173 && ! lra_former_scratch_p (regno)
4174 && reg_renumber[regno] < 0
4175 /* Check that the optional reload pseudo will be able to
4176 hold given mode value. */
4177 && ! (prohibited_class_reg_set_mode_p
4178 (goal_alt[i], reg_class_contents[goal_alt[i]],
4179 PSEUDO_REGNO_MODE (regno)))
4180 && (curr_insn_set == NULL_RTX
4181 || !((REG_P (SET_SRC (curr_insn_set))
4182 || MEM_P (SET_SRC (curr_insn_set))
4183 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4184 && (REG_P (SET_DEST (curr_insn_set))
4185 || MEM_P (SET_DEST (curr_insn_set))
4186 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4187 optional_p = true;
4188 else
4189 continue;
4192 /* Operands that match previous ones have already been handled. */
4193 if (goal_alt_matches[i] >= 0)
4194 continue;
4196 /* We should not have an operand with a non-offsettable address
4197 appearing where an offsettable address will do. It also may
4198 be a case when the address should be special in other words
4199 not a general one (e.g. it needs no index reg). */
4200 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4202 enum reg_class rclass;
4203 rtx *loc = &XEXP (op, 0);
4204 enum rtx_code code = GET_CODE (*loc);
4206 push_to_sequence (before);
4207 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4208 MEM, SCRATCH);
4209 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4210 new_reg = emit_inc (rclass, *loc, *loc,
4211 /* This value does not matter for MODIFY. */
4212 GET_MODE_SIZE (GET_MODE (op)));
4213 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4214 "offsetable address", &new_reg))
4216 rtx addr = *loc;
4217 enum rtx_code code = GET_CODE (addr);
4219 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4220 /* (and ... (const_int -X)) is used to align to X bytes. */
4221 addr = XEXP (*loc, 0);
4222 lra_emit_move (new_reg, addr);
4223 if (addr != *loc)
4224 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4226 before = get_insns ();
4227 end_sequence ();
4228 *loc = new_reg;
4229 lra_update_dup (curr_id, i);
4231 else if (goal_alt_matched[i][0] == -1)
4233 machine_mode mode;
4234 rtx reg, *loc;
4235 int hard_regno;
4236 enum op_type type = curr_static_id->operand[i].type;
4238 loc = curr_id->operand_loc[i];
4239 mode = curr_operand_mode[i];
4240 if (GET_CODE (*loc) == SUBREG)
4242 reg = SUBREG_REG (*loc);
4243 poly_int64 byte = SUBREG_BYTE (*loc);
4244 if (REG_P (reg)
4245 /* Strict_low_part requires reloading the register and not
4246 just the subreg. Likewise for a strict subreg no wider
4247 than a word for WORD_REGISTER_OPERATIONS targets. */
4248 && (curr_static_id->operand[i].strict_low
4249 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4250 && (hard_regno
4251 = get_try_hard_regno (REGNO (reg))) >= 0
4252 && (simplify_subreg_regno
4253 (hard_regno,
4254 GET_MODE (reg), byte, mode) < 0)
4255 && (goal_alt[i] == NO_REGS
4256 || (simplify_subreg_regno
4257 (ira_class_hard_regs[goal_alt[i]][0],
4258 GET_MODE (reg), byte, mode) >= 0)))
4259 || (partial_subreg_p (mode, GET_MODE (reg))
4260 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4261 UNITS_PER_WORD)
4262 && WORD_REGISTER_OPERATIONS)))
4264 /* An OP_INOUT is required when reloading a subreg of a
4265 mode wider than a word to ensure that data beyond the
4266 word being reloaded is preserved. Also automatically
4267 ensure that strict_low_part reloads are made into
4268 OP_INOUT which should already be true from the backend
4269 constraints. */
4270 if (type == OP_OUT
4271 && (curr_static_id->operand[i].strict_low
4272 || read_modify_subreg_p (*loc)))
4273 type = OP_INOUT;
4274 loc = &SUBREG_REG (*loc);
4275 mode = GET_MODE (*loc);
4278 old = *loc;
4279 if (get_reload_reg (type, mode, old, goal_alt[i],
4280 loc != curr_id->operand_loc[i], "", &new_reg)
4281 && type != OP_OUT)
4283 push_to_sequence (before);
4284 lra_emit_move (new_reg, old);
4285 before = get_insns ();
4286 end_sequence ();
4288 *loc = new_reg;
4289 if (type != OP_IN
4290 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4292 start_sequence ();
4293 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4294 emit_insn (after);
4295 after = get_insns ();
4296 end_sequence ();
4297 *loc = new_reg;
4299 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4300 if (goal_alt_dont_inherit_ops[j] == i)
4302 lra_set_regno_unique_value (REGNO (new_reg));
4303 break;
4305 lra_update_dup (curr_id, i);
4307 else if (curr_static_id->operand[i].type == OP_IN
4308 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4309 == OP_OUT
4310 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4311 == OP_INOUT
4312 && (operands_match_p
4313 (*curr_id->operand_loc[i],
4314 *curr_id->operand_loc[goal_alt_matched[i][0]],
4315 -1)))))
4317 /* generate reloads for input and matched outputs. */
4318 match_inputs[0] = i;
4319 match_inputs[1] = -1;
4320 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4321 goal_alt[i], &before, &after,
4322 curr_static_id->operand_alternative
4323 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4324 .earlyclobber);
4326 else if ((curr_static_id->operand[i].type == OP_OUT
4327 || (curr_static_id->operand[i].type == OP_INOUT
4328 && (operands_match_p
4329 (*curr_id->operand_loc[i],
4330 *curr_id->operand_loc[goal_alt_matched[i][0]],
4331 -1))))
4332 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4333 == OP_IN))
4334 /* Generate reloads for output and matched inputs. */
4335 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4336 &after, curr_static_id->operand_alternative
4337 [goal_alt_number * n_operands + i].earlyclobber);
4338 else if (curr_static_id->operand[i].type == OP_IN
4339 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4340 == OP_IN))
4342 /* Generate reloads for matched inputs. */
4343 match_inputs[0] = i;
4344 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4345 match_inputs[j + 1] = k;
4346 match_inputs[j + 1] = -1;
4347 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4348 &after, false);
4350 else
4351 /* We must generate code in any case when function
4352 process_alt_operands decides that it is possible. */
4353 gcc_unreachable ();
4355 /* Memorise processed outputs so that output remaining to be processed
4356 can avoid using the same register value (see match_reload). */
4357 if (curr_static_id->operand[i].type == OP_OUT)
4359 outputs[n_outputs++] = i;
4360 outputs[n_outputs] = -1;
4363 if (optional_p)
4365 rtx reg = op;
4367 lra_assert (REG_P (reg));
4368 regno = REGNO (reg);
4369 op = *curr_id->operand_loc[i]; /* Substitution. */
4370 if (GET_CODE (op) == SUBREG)
4371 op = SUBREG_REG (op);
4372 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4373 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4374 lra_reg_info[REGNO (op)].restore_rtx = reg;
4375 if (lra_dump_file != NULL)
4376 fprintf (lra_dump_file,
4377 " Making reload reg %d for reg %d optional\n",
4378 REGNO (op), regno);
4381 if (before != NULL_RTX || after != NULL_RTX
4382 || max_regno_before != max_reg_num ())
4383 change_p = true;
4384 if (change_p)
4386 lra_update_operator_dups (curr_id);
4387 /* Something changes -- process the insn. */
4388 lra_update_insn_regno_info (curr_insn);
4390 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4391 return change_p;
4394 /* Return true if INSN satisfies all constraints. In other words, no
4395 reload insns are needed. */
4396 bool
4397 lra_constrain_insn (rtx_insn *insn)
4399 int saved_new_regno_start = new_regno_start;
4400 int saved_new_insn_uid_start = new_insn_uid_start;
4401 bool change_p;
4403 curr_insn = insn;
4404 curr_id = lra_get_insn_recog_data (curr_insn);
4405 curr_static_id = curr_id->insn_static_data;
4406 new_insn_uid_start = get_max_uid ();
4407 new_regno_start = max_reg_num ();
4408 change_p = curr_insn_transform (true);
4409 new_regno_start = saved_new_regno_start;
4410 new_insn_uid_start = saved_new_insn_uid_start;
4411 return ! change_p;
4414 /* Return true if X is in LIST. */
4415 static bool
4416 in_list_p (rtx x, rtx list)
4418 for (; list != NULL_RTX; list = XEXP (list, 1))
4419 if (XEXP (list, 0) == x)
4420 return true;
4421 return false;
4424 /* Return true if X contains an allocatable hard register (if
4425 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4426 static bool
4427 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4429 int i, j;
4430 const char *fmt;
4431 enum rtx_code code;
4433 code = GET_CODE (x);
4434 if (REG_P (x))
4436 int regno = REGNO (x);
4437 HARD_REG_SET alloc_regs;
4439 if (hard_reg_p)
4441 if (regno >= FIRST_PSEUDO_REGISTER)
4442 regno = lra_get_regno_hard_regno (regno);
4443 if (regno < 0)
4444 return false;
4445 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4446 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4448 else
4450 if (regno < FIRST_PSEUDO_REGISTER)
4451 return false;
4452 if (! spilled_p)
4453 return true;
4454 return lra_get_regno_hard_regno (regno) < 0;
4457 fmt = GET_RTX_FORMAT (code);
4458 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4460 if (fmt[i] == 'e')
4462 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4463 return true;
4465 else if (fmt[i] == 'E')
4467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4468 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4469 return true;
4472 return false;
4475 /* Process all regs in location *LOC and change them on equivalent
4476 substitution. Return true if any change was done. */
4477 static bool
4478 loc_equivalence_change_p (rtx *loc)
4480 rtx subst, reg, x = *loc;
4481 bool result = false;
4482 enum rtx_code code = GET_CODE (x);
4483 const char *fmt;
4484 int i, j;
4486 if (code == SUBREG)
4488 reg = SUBREG_REG (x);
4489 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4490 && GET_MODE (subst) == VOIDmode)
4492 /* We cannot reload debug location. Simplify subreg here
4493 while we know the inner mode. */
4494 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4495 GET_MODE (reg), SUBREG_BYTE (x));
4496 return true;
4499 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4501 *loc = subst;
4502 return true;
4505 /* Scan all the operand sub-expressions. */
4506 fmt = GET_RTX_FORMAT (code);
4507 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4509 if (fmt[i] == 'e')
4510 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4511 else if (fmt[i] == 'E')
4512 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4513 result
4514 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4516 return result;
4519 /* Similar to loc_equivalence_change_p, but for use as
4520 simplify_replace_fn_rtx callback. DATA is insn for which the
4521 elimination is done. If it null we don't do the elimination. */
4522 static rtx
4523 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4525 if (!REG_P (loc))
4526 return NULL_RTX;
4528 rtx subst = (data == NULL
4529 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4530 if (subst != loc)
4531 return subst;
4533 return NULL_RTX;
4536 /* Maximum number of generated reload insns per an insn. It is for
4537 preventing this pass cycling in a bug case. */
4538 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4540 /* The current iteration number of this LRA pass. */
4541 int lra_constraint_iter;
4543 /* True if we substituted equiv which needs checking register
4544 allocation correctness because the equivalent value contains
4545 allocatable hard registers or when we restore multi-register
4546 pseudo. */
4547 bool lra_risky_transformations_p;
4549 /* Return true if REGNO is referenced in more than one block. */
4550 static bool
4551 multi_block_pseudo_p (int regno)
4553 basic_block bb = NULL;
4554 unsigned int uid;
4555 bitmap_iterator bi;
4557 if (regno < FIRST_PSEUDO_REGISTER)
4558 return false;
4560 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4561 if (bb == NULL)
4562 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4563 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4564 return true;
4565 return false;
4568 /* Return true if LIST contains a deleted insn. */
4569 static bool
4570 contains_deleted_insn_p (rtx_insn_list *list)
4572 for (; list != NULL_RTX; list = list->next ())
4573 if (NOTE_P (list->insn ())
4574 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4575 return true;
4576 return false;
4579 /* Return true if X contains a pseudo dying in INSN. */
4580 static bool
4581 dead_pseudo_p (rtx x, rtx_insn *insn)
4583 int i, j;
4584 const char *fmt;
4585 enum rtx_code code;
4587 if (REG_P (x))
4588 return (insn != NULL_RTX
4589 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4590 code = GET_CODE (x);
4591 fmt = GET_RTX_FORMAT (code);
4592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4594 if (fmt[i] == 'e')
4596 if (dead_pseudo_p (XEXP (x, i), insn))
4597 return true;
4599 else if (fmt[i] == 'E')
4601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4602 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4603 return true;
4606 return false;
4609 /* Return true if INSN contains a dying pseudo in INSN right hand
4610 side. */
4611 static bool
4612 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4614 rtx set = single_set (insn);
4616 gcc_assert (set != NULL);
4617 return dead_pseudo_p (SET_SRC (set), insn);
4620 /* Return true if any init insn of REGNO contains a dying pseudo in
4621 insn right hand side. */
4622 static bool
4623 init_insn_rhs_dead_pseudo_p (int regno)
4625 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4627 if (insns == NULL)
4628 return false;
4629 for (; insns != NULL_RTX; insns = insns->next ())
4630 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4631 return true;
4632 return false;
4635 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4636 reverse only if we have one init insn with given REGNO as a
4637 source. */
4638 static bool
4639 reverse_equiv_p (int regno)
4641 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4642 rtx set;
4644 if (insns == NULL)
4645 return false;
4646 if (! INSN_P (insns->insn ())
4647 || insns->next () != NULL)
4648 return false;
4649 if ((set = single_set (insns->insn ())) == NULL_RTX)
4650 return false;
4651 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4654 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4655 call this function only for non-reverse equivalence. */
4656 static bool
4657 contains_reloaded_insn_p (int regno)
4659 rtx set;
4660 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4662 for (; list != NULL; list = list->next ())
4663 if ((set = single_set (list->insn ())) == NULL_RTX
4664 || ! REG_P (SET_DEST (set))
4665 || (int) REGNO (SET_DEST (set)) != regno)
4666 return true;
4667 return false;
4670 /* Entry function of LRA constraint pass. Return true if the
4671 constraint pass did change the code. */
4672 bool
4673 lra_constraints (bool first_p)
4675 bool changed_p;
4676 int i, hard_regno, new_insns_num;
4677 unsigned int min_len, new_min_len, uid;
4678 rtx set, x, reg, dest_reg;
4679 basic_block last_bb;
4680 bitmap_iterator bi;
4682 lra_constraint_iter++;
4683 if (lra_dump_file != NULL)
4684 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4685 lra_constraint_iter);
4686 changed_p = false;
4687 if (pic_offset_table_rtx
4688 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4689 lra_risky_transformations_p = true;
4690 else
4691 /* On the first iteration we should check IRA assignment
4692 correctness. In rare cases, the assignments can be wrong as
4693 early clobbers operands are ignored in IRA. */
4694 lra_risky_transformations_p = first_p;
4695 new_insn_uid_start = get_max_uid ();
4696 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4697 /* Mark used hard regs for target stack size calulations. */
4698 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4699 if (lra_reg_info[i].nrefs != 0
4700 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4702 int j, nregs;
4704 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4705 for (j = 0; j < nregs; j++)
4706 df_set_regs_ever_live (hard_regno + j, true);
4708 /* Do elimination before the equivalence processing as we can spill
4709 some pseudos during elimination. */
4710 lra_eliminate (false, first_p);
4711 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4712 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4713 if (lra_reg_info[i].nrefs != 0)
4715 ira_reg_equiv[i].profitable_p = true;
4716 reg = regno_reg_rtx[i];
4717 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4719 bool pseudo_p = contains_reg_p (x, false, false);
4721 /* After RTL transformation, we can not guarantee that
4722 pseudo in the substitution was not reloaded which might
4723 make equivalence invalid. For example, in reverse
4724 equiv of p0
4726 p0 <- ...
4728 equiv_mem <- p0
4730 the memory address register was reloaded before the 2nd
4731 insn. */
4732 if ((! first_p && pseudo_p)
4733 /* We don't use DF for compilation speed sake. So it
4734 is problematic to update live info when we use an
4735 equivalence containing pseudos in more than one
4736 BB. */
4737 || (pseudo_p && multi_block_pseudo_p (i))
4738 /* If an init insn was deleted for some reason, cancel
4739 the equiv. We could update the equiv insns after
4740 transformations including an equiv insn deletion
4741 but it is not worthy as such cases are extremely
4742 rare. */
4743 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4744 /* If it is not a reverse equivalence, we check that a
4745 pseudo in rhs of the init insn is not dying in the
4746 insn. Otherwise, the live info at the beginning of
4747 the corresponding BB might be wrong after we
4748 removed the insn. When the equiv can be a
4749 constant, the right hand side of the init insn can
4750 be a pseudo. */
4751 || (! reverse_equiv_p (i)
4752 && (init_insn_rhs_dead_pseudo_p (i)
4753 /* If we reloaded the pseudo in an equivalence
4754 init insn, we can not remove the equiv init
4755 insns and the init insns might write into
4756 const memory in this case. */
4757 || contains_reloaded_insn_p (i)))
4758 /* Prevent access beyond equivalent memory for
4759 paradoxical subregs. */
4760 || (MEM_P (x)
4761 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4762 GET_MODE_SIZE (GET_MODE (x))))
4763 || (pic_offset_table_rtx
4764 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4765 && (targetm.preferred_reload_class
4766 (x, lra_get_allocno_class (i)) == NO_REGS))
4767 || contains_symbol_ref_p (x))))
4768 ira_reg_equiv[i].defined_p = false;
4769 if (contains_reg_p (x, false, true))
4770 ira_reg_equiv[i].profitable_p = false;
4771 if (get_equiv (reg) != reg)
4772 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4775 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4776 update_equiv (i);
4777 /* We should add all insns containing pseudos which should be
4778 substituted by their equivalences. */
4779 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4780 lra_push_insn_by_uid (uid);
4781 min_len = lra_insn_stack_length ();
4782 new_insns_num = 0;
4783 last_bb = NULL;
4784 changed_p = false;
4785 while ((new_min_len = lra_insn_stack_length ()) != 0)
4787 curr_insn = lra_pop_insn ();
4788 --new_min_len;
4789 curr_bb = BLOCK_FOR_INSN (curr_insn);
4790 if (curr_bb != last_bb)
4792 last_bb = curr_bb;
4793 bb_reload_num = lra_curr_reload_num;
4795 if (min_len > new_min_len)
4797 min_len = new_min_len;
4798 new_insns_num = 0;
4800 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4801 internal_error
4802 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4803 MAX_RELOAD_INSNS_NUMBER);
4804 new_insns_num++;
4805 if (DEBUG_INSN_P (curr_insn))
4807 /* We need to check equivalence in debug insn and change
4808 pseudo to the equivalent value if necessary. */
4809 curr_id = lra_get_insn_recog_data (curr_insn);
4810 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4812 rtx old = *curr_id->operand_loc[0];
4813 *curr_id->operand_loc[0]
4814 = simplify_replace_fn_rtx (old, NULL_RTX,
4815 loc_equivalence_callback, curr_insn);
4816 if (old != *curr_id->operand_loc[0])
4818 lra_update_insn_regno_info (curr_insn);
4819 changed_p = true;
4823 else if (INSN_P (curr_insn))
4825 if ((set = single_set (curr_insn)) != NULL_RTX)
4827 dest_reg = SET_DEST (set);
4828 /* The equivalence pseudo could be set up as SUBREG in a
4829 case when it is a call restore insn in a mode
4830 different from the pseudo mode. */
4831 if (GET_CODE (dest_reg) == SUBREG)
4832 dest_reg = SUBREG_REG (dest_reg);
4833 if ((REG_P (dest_reg)
4834 && (x = get_equiv (dest_reg)) != dest_reg
4835 /* Remove insns which set up a pseudo whose value
4836 can not be changed. Such insns might be not in
4837 init_insns because we don't update equiv data
4838 during insn transformations.
4840 As an example, let suppose that a pseudo got
4841 hard register and on the 1st pass was not
4842 changed to equivalent constant. We generate an
4843 additional insn setting up the pseudo because of
4844 secondary memory movement. Then the pseudo is
4845 spilled and we use the equiv constant. In this
4846 case we should remove the additional insn and
4847 this insn is not init_insns list. */
4848 && (! MEM_P (x) || MEM_READONLY_P (x)
4849 /* Check that this is actually an insn setting
4850 up the equivalence. */
4851 || in_list_p (curr_insn,
4852 ira_reg_equiv
4853 [REGNO (dest_reg)].init_insns)))
4854 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4855 && in_list_p (curr_insn,
4856 ira_reg_equiv
4857 [REGNO (SET_SRC (set))].init_insns)))
4859 /* This is equiv init insn of pseudo which did not get a
4860 hard register -- remove the insn. */
4861 if (lra_dump_file != NULL)
4863 fprintf (lra_dump_file,
4864 " Removing equiv init insn %i (freq=%d)\n",
4865 INSN_UID (curr_insn),
4866 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4867 dump_insn_slim (lra_dump_file, curr_insn);
4869 if (contains_reg_p (x, true, false))
4870 lra_risky_transformations_p = true;
4871 lra_set_insn_deleted (curr_insn);
4872 continue;
4875 curr_id = lra_get_insn_recog_data (curr_insn);
4876 curr_static_id = curr_id->insn_static_data;
4877 init_curr_insn_input_reloads ();
4878 init_curr_operand_mode ();
4879 if (curr_insn_transform (false))
4880 changed_p = true;
4881 /* Check non-transformed insns too for equiv change as USE
4882 or CLOBBER don't need reloads but can contain pseudos
4883 being changed on their equivalences. */
4884 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4885 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4887 lra_update_insn_regno_info (curr_insn);
4888 changed_p = true;
4893 /* If we used a new hard regno, changed_p should be true because the
4894 hard reg is assigned to a new pseudo. */
4895 if (flag_checking && !changed_p)
4897 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4898 if (lra_reg_info[i].nrefs != 0
4899 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4901 int j, nregs = hard_regno_nregs (hard_regno,
4902 PSEUDO_REGNO_MODE (i));
4904 for (j = 0; j < nregs; j++)
4905 lra_assert (df_regs_ever_live_p (hard_regno + j));
4908 return changed_p;
4911 static void initiate_invariants (void);
4912 static void finish_invariants (void);
4914 /* Initiate the LRA constraint pass. It is done once per
4915 function. */
4916 void
4917 lra_constraints_init (void)
4919 initiate_invariants ();
4922 /* Finalize the LRA constraint pass. It is done once per
4923 function. */
4924 void
4925 lra_constraints_finish (void)
4927 finish_invariants ();
4932 /* Structure describes invariants for ineheritance. */
4933 struct lra_invariant
4935 /* The order number of the invariant. */
4936 int num;
4937 /* The invariant RTX. */
4938 rtx invariant_rtx;
4939 /* The origin insn of the invariant. */
4940 rtx_insn *insn;
4943 typedef lra_invariant invariant_t;
4944 typedef invariant_t *invariant_ptr_t;
4945 typedef const invariant_t *const_invariant_ptr_t;
4947 /* Pointer to the inheritance invariants. */
4948 static vec<invariant_ptr_t> invariants;
4950 /* Allocation pool for the invariants. */
4951 static object_allocator<lra_invariant> *invariants_pool;
4953 /* Hash table for the invariants. */
4954 static htab_t invariant_table;
4956 /* Hash function for INVARIANT. */
4957 static hashval_t
4958 invariant_hash (const void *invariant)
4960 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4961 return lra_rtx_hash (inv);
4964 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4965 static int
4966 invariant_eq_p (const void *invariant1, const void *invariant2)
4968 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4969 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4971 return rtx_equal_p (inv1, inv2);
4974 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4975 invariant which is in the table. */
4976 static invariant_ptr_t
4977 insert_invariant (rtx invariant_rtx)
4979 void **entry_ptr;
4980 invariant_t invariant;
4981 invariant_ptr_t invariant_ptr;
4983 invariant.invariant_rtx = invariant_rtx;
4984 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4985 if (*entry_ptr == NULL)
4987 invariant_ptr = invariants_pool->allocate ();
4988 invariant_ptr->invariant_rtx = invariant_rtx;
4989 invariant_ptr->insn = NULL;
4990 invariants.safe_push (invariant_ptr);
4991 *entry_ptr = (void *) invariant_ptr;
4993 return (invariant_ptr_t) *entry_ptr;
4996 /* Initiate the invariant table. */
4997 static void
4998 initiate_invariants (void)
5000 invariants.create (100);
5001 invariants_pool
5002 = new object_allocator<lra_invariant> ("Inheritance invariants");
5003 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5006 /* Finish the invariant table. */
5007 static void
5008 finish_invariants (void)
5010 htab_delete (invariant_table);
5011 delete invariants_pool;
5012 invariants.release ();
5015 /* Make the invariant table empty. */
5016 static void
5017 clear_invariants (void)
5019 htab_empty (invariant_table);
5020 invariants_pool->release ();
5021 invariants.truncate (0);
5026 /* This page contains code to do inheritance/split
5027 transformations. */
5029 /* Number of reloads passed so far in current EBB. */
5030 static int reloads_num;
5032 /* Number of calls passed so far in current EBB. */
5033 static int calls_num;
5035 /* Current reload pseudo check for validity of elements in
5036 USAGE_INSNS. */
5037 static int curr_usage_insns_check;
5039 /* Info about last usage of registers in EBB to do inheritance/split
5040 transformation. Inheritance transformation is done from a spilled
5041 pseudo and split transformations from a hard register or a pseudo
5042 assigned to a hard register. */
5043 struct usage_insns
5045 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5046 value INSNS is valid. The insns is chain of optional debug insns
5047 and a finishing non-debug insn using the corresponding reg. The
5048 value is also used to mark the registers which are set up in the
5049 current insn. The negated insn uid is used for this. */
5050 int check;
5051 /* Value of global reloads_num at the last insn in INSNS. */
5052 int reloads_num;
5053 /* Value of global reloads_nums at the last insn in INSNS. */
5054 int calls_num;
5055 /* It can be true only for splitting. And it means that the restore
5056 insn should be put after insn given by the following member. */
5057 bool after_p;
5058 /* Next insns in the current EBB which use the original reg and the
5059 original reg value is not changed between the current insn and
5060 the next insns. In order words, e.g. for inheritance, if we need
5061 to use the original reg value again in the next insns we can try
5062 to use the value in a hard register from a reload insn of the
5063 current insn. */
5064 rtx insns;
5067 /* Map: regno -> corresponding pseudo usage insns. */
5068 static struct usage_insns *usage_insns;
5070 static void
5071 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5073 usage_insns[regno].check = curr_usage_insns_check;
5074 usage_insns[regno].insns = insn;
5075 usage_insns[regno].reloads_num = reloads_num;
5076 usage_insns[regno].calls_num = calls_num;
5077 usage_insns[regno].after_p = after_p;
5080 /* The function is used to form list REGNO usages which consists of
5081 optional debug insns finished by a non-debug insn using REGNO.
5082 RELOADS_NUM is current number of reload insns processed so far. */
5083 static void
5084 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5086 rtx next_usage_insns;
5088 if (usage_insns[regno].check == curr_usage_insns_check
5089 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5090 && DEBUG_INSN_P (insn))
5092 /* Check that we did not add the debug insn yet. */
5093 if (next_usage_insns != insn
5094 && (GET_CODE (next_usage_insns) != INSN_LIST
5095 || XEXP (next_usage_insns, 0) != insn))
5096 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5097 next_usage_insns);
5099 else if (NONDEBUG_INSN_P (insn))
5100 setup_next_usage_insn (regno, insn, reloads_num, false);
5101 else
5102 usage_insns[regno].check = 0;
5105 /* Return first non-debug insn in list USAGE_INSNS. */
5106 static rtx_insn *
5107 skip_usage_debug_insns (rtx usage_insns)
5109 rtx insn;
5111 /* Skip debug insns. */
5112 for (insn = usage_insns;
5113 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5114 insn = XEXP (insn, 1))
5116 return safe_as_a <rtx_insn *> (insn);
5119 /* Return true if we need secondary memory moves for insn in
5120 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5121 into the insn. */
5122 static bool
5123 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5124 rtx usage_insns ATTRIBUTE_UNUSED)
5126 rtx_insn *insn;
5127 rtx set, dest;
5128 enum reg_class cl;
5130 if (inher_cl == ALL_REGS
5131 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5132 return false;
5133 lra_assert (INSN_P (insn));
5134 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5135 return false;
5136 dest = SET_DEST (set);
5137 if (! REG_P (dest))
5138 return false;
5139 lra_assert (inher_cl != NO_REGS);
5140 cl = get_reg_class (REGNO (dest));
5141 return (cl != NO_REGS && cl != ALL_REGS
5142 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5145 /* Registers involved in inheritance/split in the current EBB
5146 (inheritance/split pseudos and original registers). */
5147 static bitmap_head check_only_regs;
5149 /* Reload pseudos can not be involded in invariant inheritance in the
5150 current EBB. */
5151 static bitmap_head invalid_invariant_regs;
5153 /* Do inheritance transformations for insn INSN, which defines (if
5154 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5155 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5156 form as the "insns" field of usage_insns. Return true if we
5157 succeed in such transformation.
5159 The transformations look like:
5161 p <- ... i <- ...
5162 ... p <- i (new insn)
5163 ... =>
5164 <- ... p ... <- ... i ...
5166 ... i <- p (new insn)
5167 <- ... p ... <- ... i ...
5168 ... =>
5169 <- ... p ... <- ... i ...
5170 where p is a spilled original pseudo and i is a new inheritance pseudo.
5173 The inheritance pseudo has the smallest class of two classes CL and
5174 class of ORIGINAL REGNO. */
5175 static bool
5176 inherit_reload_reg (bool def_p, int original_regno,
5177 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5179 if (optimize_function_for_size_p (cfun))
5180 return false;
5182 enum reg_class rclass = lra_get_allocno_class (original_regno);
5183 rtx original_reg = regno_reg_rtx[original_regno];
5184 rtx new_reg, usage_insn;
5185 rtx_insn *new_insns;
5187 lra_assert (! usage_insns[original_regno].after_p);
5188 if (lra_dump_file != NULL)
5189 fprintf (lra_dump_file,
5190 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5191 if (! ira_reg_classes_intersect_p[cl][rclass])
5193 if (lra_dump_file != NULL)
5195 fprintf (lra_dump_file,
5196 " Rejecting inheritance for %d "
5197 "because of disjoint classes %s and %s\n",
5198 original_regno, reg_class_names[cl],
5199 reg_class_names[rclass]);
5200 fprintf (lra_dump_file,
5201 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5203 return false;
5205 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5206 /* We don't use a subset of two classes because it can be
5207 NO_REGS. This transformation is still profitable in most
5208 cases even if the classes are not intersected as register
5209 move is probably cheaper than a memory load. */
5210 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5212 if (lra_dump_file != NULL)
5213 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5214 reg_class_names[cl], reg_class_names[rclass]);
5216 rclass = cl;
5218 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5220 /* Reject inheritance resulting in secondary memory moves.
5221 Otherwise, there is a danger in LRA cycling. Also such
5222 transformation will be unprofitable. */
5223 if (lra_dump_file != NULL)
5225 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5226 rtx set = single_set (insn);
5228 lra_assert (set != NULL_RTX);
5230 rtx dest = SET_DEST (set);
5232 lra_assert (REG_P (dest));
5233 fprintf (lra_dump_file,
5234 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5235 "as secondary mem is needed\n",
5236 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5237 original_regno, reg_class_names[rclass]);
5238 fprintf (lra_dump_file,
5239 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5241 return false;
5243 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5244 rclass, "inheritance");
5245 start_sequence ();
5246 if (def_p)
5247 lra_emit_move (original_reg, new_reg);
5248 else
5249 lra_emit_move (new_reg, original_reg);
5250 new_insns = get_insns ();
5251 end_sequence ();
5252 if (NEXT_INSN (new_insns) != NULL_RTX)
5254 if (lra_dump_file != NULL)
5256 fprintf (lra_dump_file,
5257 " Rejecting inheritance %d->%d "
5258 "as it results in 2 or more insns:\n",
5259 original_regno, REGNO (new_reg));
5260 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5261 fprintf (lra_dump_file,
5262 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5264 return false;
5266 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5267 lra_update_insn_regno_info (insn);
5268 if (! def_p)
5269 /* We now have a new usage insn for original regno. */
5270 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5271 if (lra_dump_file != NULL)
5272 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5273 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5274 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5275 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5276 bitmap_set_bit (&check_only_regs, original_regno);
5277 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5278 if (def_p)
5279 lra_process_new_insns (insn, NULL, new_insns,
5280 "Add original<-inheritance");
5281 else
5282 lra_process_new_insns (insn, new_insns, NULL,
5283 "Add inheritance<-original");
5284 while (next_usage_insns != NULL_RTX)
5286 if (GET_CODE (next_usage_insns) != INSN_LIST)
5288 usage_insn = next_usage_insns;
5289 lra_assert (NONDEBUG_INSN_P (usage_insn));
5290 next_usage_insns = NULL;
5292 else
5294 usage_insn = XEXP (next_usage_insns, 0);
5295 lra_assert (DEBUG_INSN_P (usage_insn));
5296 next_usage_insns = XEXP (next_usage_insns, 1);
5298 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5299 DEBUG_INSN_P (usage_insn));
5300 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5301 if (lra_dump_file != NULL)
5303 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5304 fprintf (lra_dump_file,
5305 " Inheritance reuse change %d->%d (bb%d):\n",
5306 original_regno, REGNO (new_reg),
5307 bb ? bb->index : -1);
5308 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5311 if (lra_dump_file != NULL)
5312 fprintf (lra_dump_file,
5313 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5314 return true;
5317 /* Return true if we need a caller save/restore for pseudo REGNO which
5318 was assigned to a hard register. */
5319 static inline bool
5320 need_for_call_save_p (int regno)
5322 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5323 return (usage_insns[regno].calls_num < calls_num
5324 && (overlaps_hard_reg_set_p
5325 ((flag_ipa_ra &&
5326 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5327 ? lra_reg_info[regno].actual_call_used_reg_set
5328 : call_used_reg_set,
5329 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5330 || (targetm.hard_regno_call_part_clobbered
5331 (reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5334 /* Global registers occurring in the current EBB. */
5335 static bitmap_head ebb_global_regs;
5337 /* Return true if we need a split for hard register REGNO or pseudo
5338 REGNO which was assigned to a hard register.
5339 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5340 used for reloads since the EBB end. It is an approximation of the
5341 used hard registers in the split range. The exact value would
5342 require expensive calculations. If we were aggressive with
5343 splitting because of the approximation, the split pseudo will save
5344 the same hard register assignment and will be removed in the undo
5345 pass. We still need the approximation because too aggressive
5346 splitting would result in too inaccurate cost calculation in the
5347 assignment pass because of too many generated moves which will be
5348 probably removed in the undo pass. */
5349 static inline bool
5350 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5352 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5354 lra_assert (hard_regno >= 0);
5355 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5356 /* Don't split eliminable hard registers, otherwise we can
5357 split hard registers like hard frame pointer, which
5358 lives on BB start/end according to DF-infrastructure,
5359 when there is a pseudo assigned to the register and
5360 living in the same BB. */
5361 && (regno >= FIRST_PSEUDO_REGISTER
5362 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5363 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5364 /* Don't split call clobbered hard regs living through
5365 calls, otherwise we might have a check problem in the
5366 assign sub-pass as in the most cases (exception is a
5367 situation when lra_risky_transformations_p value is
5368 true) the assign pass assumes that all pseudos living
5369 through calls are assigned to call saved hard regs. */
5370 && (regno >= FIRST_PSEUDO_REGISTER
5371 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5372 || usage_insns[regno].calls_num == calls_num)
5373 /* We need at least 2 reloads to make pseudo splitting
5374 profitable. We should provide hard regno splitting in
5375 any case to solve 1st insn scheduling problem when
5376 moving hard register definition up might result in
5377 impossibility to find hard register for reload pseudo of
5378 small register class. */
5379 && (usage_insns[regno].reloads_num
5380 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5381 && (regno < FIRST_PSEUDO_REGISTER
5382 /* For short living pseudos, spilling + inheritance can
5383 be considered a substitution for splitting.
5384 Therefore we do not splitting for local pseudos. It
5385 decreases also aggressiveness of splitting. The
5386 minimal number of references is chosen taking into
5387 account that for 2 references splitting has no sense
5388 as we can just spill the pseudo. */
5389 || (regno >= FIRST_PSEUDO_REGISTER
5390 && lra_reg_info[regno].nrefs > 3
5391 && bitmap_bit_p (&ebb_global_regs, regno))))
5392 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5395 /* Return class for the split pseudo created from original pseudo with
5396 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5397 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5398 results in no secondary memory movements. */
5399 static enum reg_class
5400 choose_split_class (enum reg_class allocno_class,
5401 int hard_regno ATTRIBUTE_UNUSED,
5402 machine_mode mode ATTRIBUTE_UNUSED)
5404 int i;
5405 enum reg_class cl, best_cl = NO_REGS;
5406 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5407 = REGNO_REG_CLASS (hard_regno);
5409 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5410 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5411 return allocno_class;
5412 for (i = 0;
5413 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5414 i++)
5415 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5416 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5417 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5418 && (best_cl == NO_REGS
5419 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5420 best_cl = cl;
5421 return best_cl;
5424 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5425 It only makes sense to call this function if NEW_REGNO is always
5426 equal to ORIGINAL_REGNO. */
5428 static void
5429 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5431 if (!ira_reg_equiv[original_regno].defined_p)
5432 return;
5434 ira_expand_reg_equiv ();
5435 ira_reg_equiv[new_regno].defined_p = true;
5436 if (ira_reg_equiv[original_regno].memory)
5437 ira_reg_equiv[new_regno].memory
5438 = copy_rtx (ira_reg_equiv[original_regno].memory);
5439 if (ira_reg_equiv[original_regno].constant)
5440 ira_reg_equiv[new_regno].constant
5441 = copy_rtx (ira_reg_equiv[original_regno].constant);
5442 if (ira_reg_equiv[original_regno].invariant)
5443 ira_reg_equiv[new_regno].invariant
5444 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5447 /* Do split transformations for insn INSN, which defines or uses
5448 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5449 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5450 "insns" field of usage_insns. If TO is not NULL, we don't use
5451 usage_insns, we put restore insns after TO insn.
5453 The transformations look like:
5455 p <- ... p <- ...
5456 ... s <- p (new insn -- save)
5457 ... =>
5458 ... p <- s (new insn -- restore)
5459 <- ... p ... <- ... p ...
5461 <- ... p ... <- ... p ...
5462 ... s <- p (new insn -- save)
5463 ... =>
5464 ... p <- s (new insn -- restore)
5465 <- ... p ... <- ... p ...
5467 where p is an original pseudo got a hard register or a hard
5468 register and s is a new split pseudo. The save is put before INSN
5469 if BEFORE_P is true. Return true if we succeed in such
5470 transformation. */
5471 static bool
5472 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5473 rtx next_usage_insns, rtx_insn *to)
5475 enum reg_class rclass;
5476 rtx original_reg;
5477 int hard_regno, nregs;
5478 rtx new_reg, usage_insn;
5479 rtx_insn *restore, *save;
5480 bool after_p;
5481 bool call_save_p;
5482 machine_mode mode;
5484 if (original_regno < FIRST_PSEUDO_REGISTER)
5486 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5487 hard_regno = original_regno;
5488 call_save_p = false;
5489 nregs = 1;
5490 mode = lra_reg_info[hard_regno].biggest_mode;
5491 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5492 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5493 as part of a multi-word register. In that case, or if the biggest
5494 mode was larger than a register, just use the reg_rtx. Otherwise,
5495 limit the size to that of the biggest access in the function. */
5496 if (mode == VOIDmode
5497 || paradoxical_subreg_p (mode, reg_rtx_mode))
5499 original_reg = regno_reg_rtx[hard_regno];
5500 mode = reg_rtx_mode;
5502 else
5503 original_reg = gen_rtx_REG (mode, hard_regno);
5505 else
5507 mode = PSEUDO_REGNO_MODE (original_regno);
5508 hard_regno = reg_renumber[original_regno];
5509 nregs = hard_regno_nregs (hard_regno, mode);
5510 rclass = lra_get_allocno_class (original_regno);
5511 original_reg = regno_reg_rtx[original_regno];
5512 call_save_p = need_for_call_save_p (original_regno);
5514 lra_assert (hard_regno >= 0);
5515 if (lra_dump_file != NULL)
5516 fprintf (lra_dump_file,
5517 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5519 if (call_save_p)
5521 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5522 hard_regno_nregs (hard_regno, mode),
5523 mode);
5524 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5526 else
5528 rclass = choose_split_class (rclass, hard_regno, mode);
5529 if (rclass == NO_REGS)
5531 if (lra_dump_file != NULL)
5533 fprintf (lra_dump_file,
5534 " Rejecting split of %d(%s): "
5535 "no good reg class for %d(%s)\n",
5536 original_regno,
5537 reg_class_names[lra_get_allocno_class (original_regno)],
5538 hard_regno,
5539 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5540 fprintf
5541 (lra_dump_file,
5542 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5544 return false;
5546 /* Split_if_necessary can split hard registers used as part of a
5547 multi-register mode but splits each register individually. The
5548 mode used for each independent register may not be supported
5549 so reject the split. Splitting the wider mode should theoretically
5550 be possible but is not implemented. */
5551 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5553 if (lra_dump_file != NULL)
5555 fprintf (lra_dump_file,
5556 " Rejecting split of %d(%s): unsuitable mode %s\n",
5557 original_regno,
5558 reg_class_names[lra_get_allocno_class (original_regno)],
5559 GET_MODE_NAME (mode));
5560 fprintf
5561 (lra_dump_file,
5562 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5564 return false;
5566 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5567 reg_renumber[REGNO (new_reg)] = hard_regno;
5569 int new_regno = REGNO (new_reg);
5570 save = emit_spill_move (true, new_reg, original_reg);
5571 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5573 if (lra_dump_file != NULL)
5575 fprintf
5576 (lra_dump_file,
5577 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5578 original_regno, new_regno);
5579 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5580 fprintf (lra_dump_file,
5581 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5583 return false;
5585 restore = emit_spill_move (false, new_reg, original_reg);
5586 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5588 if (lra_dump_file != NULL)
5590 fprintf (lra_dump_file,
5591 " Rejecting split %d->%d "
5592 "resulting in > 2 restore insns:\n",
5593 original_regno, new_regno);
5594 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5595 fprintf (lra_dump_file,
5596 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5598 return false;
5600 /* Transfer equivalence information to the spill register, so that
5601 if we fail to allocate the spill register, we have the option of
5602 rematerializing the original value instead of spilling to the stack. */
5603 if (!HARD_REGISTER_NUM_P (original_regno)
5604 && mode == PSEUDO_REGNO_MODE (original_regno))
5605 lra_copy_reg_equiv (new_regno, original_regno);
5606 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5607 bitmap_set_bit (&check_only_regs, new_regno);
5608 bitmap_set_bit (&check_only_regs, original_regno);
5609 bitmap_set_bit (&lra_split_regs, new_regno);
5610 if (to != NULL)
5612 usage_insn = to;
5613 after_p = TRUE;
5615 else
5617 after_p = usage_insns[original_regno].after_p;
5618 for (;;)
5620 if (GET_CODE (next_usage_insns) != INSN_LIST)
5622 usage_insn = next_usage_insns;
5623 break;
5625 usage_insn = XEXP (next_usage_insns, 0);
5626 lra_assert (DEBUG_INSN_P (usage_insn));
5627 next_usage_insns = XEXP (next_usage_insns, 1);
5628 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5629 true);
5630 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5631 if (lra_dump_file != NULL)
5633 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5634 original_regno, new_regno);
5635 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5639 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5640 lra_assert (usage_insn != insn || (after_p && before_p));
5641 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5642 after_p ? NULL : restore,
5643 after_p ? restore : NULL,
5644 call_save_p
5645 ? "Add reg<-save" : "Add reg<-split");
5646 lra_process_new_insns (insn, before_p ? save : NULL,
5647 before_p ? NULL : save,
5648 call_save_p
5649 ? "Add save<-reg" : "Add split<-reg");
5650 if (nregs > 1)
5651 /* If we are trying to split multi-register. We should check
5652 conflicts on the next assignment sub-pass. IRA can allocate on
5653 sub-register levels, LRA do this on pseudos level right now and
5654 this discrepancy may create allocation conflicts after
5655 splitting. */
5656 lra_risky_transformations_p = true;
5657 if (lra_dump_file != NULL)
5658 fprintf (lra_dump_file,
5659 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5660 return true;
5663 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5664 in the range [FROM, TO]. Return true if did a split. Otherwise,
5665 return false. */
5666 bool
5667 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5669 int i, hard_regno;
5670 int rclass_size;
5671 rtx_insn *insn;
5672 unsigned int uid;
5673 bitmap_iterator bi;
5674 HARD_REG_SET ignore;
5676 lra_assert (from != NULL && to != NULL);
5677 CLEAR_HARD_REG_SET (ignore);
5678 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5680 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5681 struct lra_static_insn_data *static_id = id->insn_static_data;
5682 struct lra_insn_reg *reg;
5684 for (reg = id->regs; reg != NULL; reg = reg->next)
5685 if (reg->regno < FIRST_PSEUDO_REGISTER)
5686 SET_HARD_REG_BIT (ignore, reg->regno);
5687 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5688 SET_HARD_REG_BIT (ignore, reg->regno);
5690 rclass_size = ira_class_hard_regs_num[rclass];
5691 for (i = 0; i < rclass_size; i++)
5693 hard_regno = ira_class_hard_regs[rclass][i];
5694 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5695 || TEST_HARD_REG_BIT (ignore, hard_regno))
5696 continue;
5697 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5699 lra_insn_recog_data_t id = lra_insn_recog_data[uid = INSN_UID (insn)];
5700 struct lra_static_insn_data *static_id = id->insn_static_data;
5701 struct lra_insn_reg *reg;
5703 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap, uid))
5704 break;
5705 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5706 if (reg->regno == hard_regno)
5707 break;
5708 if (reg != NULL)
5709 break;
5711 if (insn != NEXT_INSN (to))
5712 continue;
5713 if (split_reg (TRUE, hard_regno, from, NULL, to))
5714 return true;
5716 return false;
5719 /* Recognize that we need a split transformation for insn INSN, which
5720 defines or uses REGNO in its insn biggest MODE (we use it only if
5721 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5722 hard registers which might be used for reloads since the EBB end.
5723 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5724 uid before starting INSN processing. Return true if we succeed in
5725 such transformation. */
5726 static bool
5727 split_if_necessary (int regno, machine_mode mode,
5728 HARD_REG_SET potential_reload_hard_regs,
5729 bool before_p, rtx_insn *insn, int max_uid)
5731 bool res = false;
5732 int i, nregs = 1;
5733 rtx next_usage_insns;
5735 if (regno < FIRST_PSEUDO_REGISTER)
5736 nregs = hard_regno_nregs (regno, mode);
5737 for (i = 0; i < nregs; i++)
5738 if (usage_insns[regno + i].check == curr_usage_insns_check
5739 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5740 /* To avoid processing the register twice or more. */
5741 && ((GET_CODE (next_usage_insns) != INSN_LIST
5742 && INSN_UID (next_usage_insns) < max_uid)
5743 || (GET_CODE (next_usage_insns) == INSN_LIST
5744 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5745 && need_for_split_p (potential_reload_hard_regs, regno + i)
5746 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5747 res = true;
5748 return res;
5751 /* Return TRUE if rtx X is considered as an invariant for
5752 inheritance. */
5753 static bool
5754 invariant_p (const_rtx x)
5756 machine_mode mode;
5757 const char *fmt;
5758 enum rtx_code code;
5759 int i, j;
5761 code = GET_CODE (x);
5762 mode = GET_MODE (x);
5763 if (code == SUBREG)
5765 x = SUBREG_REG (x);
5766 code = GET_CODE (x);
5767 mode = wider_subreg_mode (mode, GET_MODE (x));
5770 if (MEM_P (x))
5771 return false;
5773 if (REG_P (x))
5775 int i, nregs, regno = REGNO (x);
5777 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5778 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5779 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5780 return false;
5781 nregs = hard_regno_nregs (regno, mode);
5782 for (i = 0; i < nregs; i++)
5783 if (! fixed_regs[regno + i]
5784 /* A hard register may be clobbered in the current insn
5785 but we can ignore this case because if the hard
5786 register is used it should be set somewhere after the
5787 clobber. */
5788 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5789 return false;
5791 fmt = GET_RTX_FORMAT (code);
5792 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5794 if (fmt[i] == 'e')
5796 if (! invariant_p (XEXP (x, i)))
5797 return false;
5799 else if (fmt[i] == 'E')
5801 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5802 if (! invariant_p (XVECEXP (x, i, j)))
5803 return false;
5806 return true;
5809 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5810 inheritance transformation (using dest_reg instead invariant in a
5811 subsequent insn). */
5812 static bool
5813 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5815 invariant_ptr_t invariant_ptr;
5816 rtx_insn *insn, *new_insns;
5817 rtx insn_set, insn_reg, new_reg;
5818 int insn_regno;
5819 bool succ_p = false;
5820 int dst_regno = REGNO (dst_reg);
5821 machine_mode dst_mode = GET_MODE (dst_reg);
5822 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5824 invariant_ptr = insert_invariant (invariant_rtx);
5825 if ((insn = invariant_ptr->insn) != NULL_RTX)
5827 /* We have a subsequent insn using the invariant. */
5828 insn_set = single_set (insn);
5829 lra_assert (insn_set != NULL);
5830 insn_reg = SET_DEST (insn_set);
5831 lra_assert (REG_P (insn_reg));
5832 insn_regno = REGNO (insn_reg);
5833 insn_reg_cl = lra_get_allocno_class (insn_regno);
5835 if (dst_mode == GET_MODE (insn_reg)
5836 /* We should consider only result move reg insns which are
5837 cheap. */
5838 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5839 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5841 if (lra_dump_file != NULL)
5842 fprintf (lra_dump_file,
5843 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5844 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5845 cl, "invariant inheritance");
5846 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5847 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5848 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5849 start_sequence ();
5850 lra_emit_move (new_reg, dst_reg);
5851 new_insns = get_insns ();
5852 end_sequence ();
5853 lra_process_new_insns (curr_insn, NULL, new_insns,
5854 "Add invariant inheritance<-original");
5855 start_sequence ();
5856 lra_emit_move (SET_DEST (insn_set), new_reg);
5857 new_insns = get_insns ();
5858 end_sequence ();
5859 lra_process_new_insns (insn, NULL, new_insns,
5860 "Changing reload<-inheritance");
5861 lra_set_insn_deleted (insn);
5862 succ_p = true;
5863 if (lra_dump_file != NULL)
5865 fprintf (lra_dump_file,
5866 " Invariant inheritance reuse change %d (bb%d):\n",
5867 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5868 dump_insn_slim (lra_dump_file, insn);
5869 fprintf (lra_dump_file,
5870 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5874 invariant_ptr->insn = curr_insn;
5875 return succ_p;
5878 /* Check only registers living at the current program point in the
5879 current EBB. */
5880 static bitmap_head live_regs;
5882 /* Update live info in EBB given by its HEAD and TAIL insns after
5883 inheritance/split transformation. The function removes dead moves
5884 too. */
5885 static void
5886 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5888 unsigned int j;
5889 int i, regno;
5890 bool live_p;
5891 rtx_insn *prev_insn;
5892 rtx set;
5893 bool remove_p;
5894 basic_block last_bb, prev_bb, curr_bb;
5895 bitmap_iterator bi;
5896 struct lra_insn_reg *reg;
5897 edge e;
5898 edge_iterator ei;
5900 last_bb = BLOCK_FOR_INSN (tail);
5901 prev_bb = NULL;
5902 for (curr_insn = tail;
5903 curr_insn != PREV_INSN (head);
5904 curr_insn = prev_insn)
5906 prev_insn = PREV_INSN (curr_insn);
5907 /* We need to process empty blocks too. They contain
5908 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5909 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5910 continue;
5911 curr_bb = BLOCK_FOR_INSN (curr_insn);
5912 if (curr_bb != prev_bb)
5914 if (prev_bb != NULL)
5916 /* Update df_get_live_in (prev_bb): */
5917 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5918 if (bitmap_bit_p (&live_regs, j))
5919 bitmap_set_bit (df_get_live_in (prev_bb), j);
5920 else
5921 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5923 if (curr_bb != last_bb)
5925 /* Update df_get_live_out (curr_bb): */
5926 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5928 live_p = bitmap_bit_p (&live_regs, j);
5929 if (! live_p)
5930 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5931 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5933 live_p = true;
5934 break;
5936 if (live_p)
5937 bitmap_set_bit (df_get_live_out (curr_bb), j);
5938 else
5939 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5942 prev_bb = curr_bb;
5943 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5945 if (! NONDEBUG_INSN_P (curr_insn))
5946 continue;
5947 curr_id = lra_get_insn_recog_data (curr_insn);
5948 curr_static_id = curr_id->insn_static_data;
5949 remove_p = false;
5950 if ((set = single_set (curr_insn)) != NULL_RTX
5951 && REG_P (SET_DEST (set))
5952 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5953 && SET_DEST (set) != pic_offset_table_rtx
5954 && bitmap_bit_p (&check_only_regs, regno)
5955 && ! bitmap_bit_p (&live_regs, regno))
5956 remove_p = true;
5957 /* See which defined values die here. */
5958 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5959 if (reg->type == OP_OUT && ! reg->subreg_p)
5960 bitmap_clear_bit (&live_regs, reg->regno);
5961 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5962 if (reg->type == OP_OUT && ! reg->subreg_p)
5963 bitmap_clear_bit (&live_regs, reg->regno);
5964 if (curr_id->arg_hard_regs != NULL)
5965 /* Make clobbered argument hard registers die. */
5966 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5967 if (regno >= FIRST_PSEUDO_REGISTER)
5968 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5969 /* Mark each used value as live. */
5970 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5971 if (reg->type != OP_OUT
5972 && bitmap_bit_p (&check_only_regs, reg->regno))
5973 bitmap_set_bit (&live_regs, reg->regno);
5974 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5975 if (reg->type != OP_OUT
5976 && bitmap_bit_p (&check_only_regs, reg->regno))
5977 bitmap_set_bit (&live_regs, reg->regno);
5978 if (curr_id->arg_hard_regs != NULL)
5979 /* Make used argument hard registers live. */
5980 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5981 if (regno < FIRST_PSEUDO_REGISTER
5982 && bitmap_bit_p (&check_only_regs, regno))
5983 bitmap_set_bit (&live_regs, regno);
5984 /* It is quite important to remove dead move insns because it
5985 means removing dead store. We don't need to process them for
5986 constraints. */
5987 if (remove_p)
5989 if (lra_dump_file != NULL)
5991 fprintf (lra_dump_file, " Removing dead insn:\n ");
5992 dump_insn_slim (lra_dump_file, curr_insn);
5994 lra_set_insn_deleted (curr_insn);
5999 /* The structure describes info to do an inheritance for the current
6000 insn. We need to collect such info first before doing the
6001 transformations because the transformations change the insn
6002 internal representation. */
6003 struct to_inherit
6005 /* Original regno. */
6006 int regno;
6007 /* Subsequent insns which can inherit original reg value. */
6008 rtx insns;
6011 /* Array containing all info for doing inheritance from the current
6012 insn. */
6013 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6015 /* Number elements in the previous array. */
6016 static int to_inherit_num;
6018 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6019 structure to_inherit. */
6020 static void
6021 add_to_inherit (int regno, rtx insns)
6023 int i;
6025 for (i = 0; i < to_inherit_num; i++)
6026 if (to_inherit[i].regno == regno)
6027 return;
6028 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6029 to_inherit[to_inherit_num].regno = regno;
6030 to_inherit[to_inherit_num++].insns = insns;
6033 /* Return the last non-debug insn in basic block BB, or the block begin
6034 note if none. */
6035 static rtx_insn *
6036 get_last_insertion_point (basic_block bb)
6038 rtx_insn *insn;
6040 FOR_BB_INSNS_REVERSE (bb, insn)
6041 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6042 return insn;
6043 gcc_unreachable ();
6046 /* Set up RES by registers living on edges FROM except the edge (FROM,
6047 TO) or by registers set up in a jump insn in BB FROM. */
6048 static void
6049 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6051 rtx_insn *last;
6052 struct lra_insn_reg *reg;
6053 edge e;
6054 edge_iterator ei;
6056 lra_assert (to != NULL);
6057 bitmap_clear (res);
6058 FOR_EACH_EDGE (e, ei, from->succs)
6059 if (e->dest != to)
6060 bitmap_ior_into (res, df_get_live_in (e->dest));
6061 last = get_last_insertion_point (from);
6062 if (! JUMP_P (last))
6063 return;
6064 curr_id = lra_get_insn_recog_data (last);
6065 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6066 if (reg->type != OP_IN)
6067 bitmap_set_bit (res, reg->regno);
6070 /* Used as a temporary results of some bitmap calculations. */
6071 static bitmap_head temp_bitmap;
6073 /* We split for reloads of small class of hard regs. The following
6074 defines how many hard regs the class should have to be qualified as
6075 small. The code is mostly oriented to x86/x86-64 architecture
6076 where some insns need to use only specific register or pair of
6077 registers and these register can live in RTL explicitly, e.g. for
6078 parameter passing. */
6079 static const int max_small_class_regs_num = 2;
6081 /* Do inheritance/split transformations in EBB starting with HEAD and
6082 finishing on TAIL. We process EBB insns in the reverse order.
6083 Return true if we did any inheritance/split transformation in the
6084 EBB.
6086 We should avoid excessive splitting which results in worse code
6087 because of inaccurate cost calculations for spilling new split
6088 pseudos in such case. To achieve this we do splitting only if
6089 register pressure is high in given basic block and there are reload
6090 pseudos requiring hard registers. We could do more register
6091 pressure calculations at any given program point to avoid necessary
6092 splitting even more but it is to expensive and the current approach
6093 works well enough. */
6094 static bool
6095 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6097 int i, src_regno, dst_regno, nregs;
6098 bool change_p, succ_p, update_reloads_num_p;
6099 rtx_insn *prev_insn, *last_insn;
6100 rtx next_usage_insns, curr_set;
6101 enum reg_class cl;
6102 struct lra_insn_reg *reg;
6103 basic_block last_processed_bb, curr_bb = NULL;
6104 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6105 bitmap to_process;
6106 unsigned int j;
6107 bitmap_iterator bi;
6108 bool head_p, after_p;
6110 change_p = false;
6111 curr_usage_insns_check++;
6112 clear_invariants ();
6113 reloads_num = calls_num = 0;
6114 bitmap_clear (&check_only_regs);
6115 bitmap_clear (&invalid_invariant_regs);
6116 last_processed_bb = NULL;
6117 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6118 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6119 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6120 /* We don't process new insns generated in the loop. */
6121 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6123 prev_insn = PREV_INSN (curr_insn);
6124 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6125 curr_bb = BLOCK_FOR_INSN (curr_insn);
6126 if (last_processed_bb != curr_bb)
6128 /* We are at the end of BB. Add qualified living
6129 pseudos for potential splitting. */
6130 to_process = df_get_live_out (curr_bb);
6131 if (last_processed_bb != NULL)
6133 /* We are somewhere in the middle of EBB. */
6134 get_live_on_other_edges (curr_bb, last_processed_bb,
6135 &temp_bitmap);
6136 to_process = &temp_bitmap;
6138 last_processed_bb = curr_bb;
6139 last_insn = get_last_insertion_point (curr_bb);
6140 after_p = (! JUMP_P (last_insn)
6141 && (! CALL_P (last_insn)
6142 || (find_reg_note (last_insn,
6143 REG_NORETURN, NULL_RTX) == NULL_RTX
6144 && ! SIBLING_CALL_P (last_insn))));
6145 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6146 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6148 if ((int) j >= lra_constraint_new_regno_start)
6149 break;
6150 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6152 if (j < FIRST_PSEUDO_REGISTER)
6153 SET_HARD_REG_BIT (live_hard_regs, j);
6154 else
6155 add_to_hard_reg_set (&live_hard_regs,
6156 PSEUDO_REGNO_MODE (j),
6157 reg_renumber[j]);
6158 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6162 src_regno = dst_regno = -1;
6163 curr_set = single_set (curr_insn);
6164 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6165 dst_regno = REGNO (SET_DEST (curr_set));
6166 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6167 src_regno = REGNO (SET_SRC (curr_set));
6168 update_reloads_num_p = true;
6169 if (src_regno < lra_constraint_new_regno_start
6170 && src_regno >= FIRST_PSEUDO_REGISTER
6171 && reg_renumber[src_regno] < 0
6172 && dst_regno >= lra_constraint_new_regno_start
6173 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6175 /* 'reload_pseudo <- original_pseudo'. */
6176 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6177 reloads_num++;
6178 update_reloads_num_p = false;
6179 succ_p = false;
6180 if (usage_insns[src_regno].check == curr_usage_insns_check
6181 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6182 succ_p = inherit_reload_reg (false, src_regno, cl,
6183 curr_insn, next_usage_insns);
6184 if (succ_p)
6185 change_p = true;
6186 else
6187 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6188 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6189 IOR_HARD_REG_SET (potential_reload_hard_regs,
6190 reg_class_contents[cl]);
6192 else if (src_regno < 0
6193 && dst_regno >= lra_constraint_new_regno_start
6194 && invariant_p (SET_SRC (curr_set))
6195 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6196 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6197 && ! bitmap_bit_p (&invalid_invariant_regs,
6198 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6200 /* 'reload_pseudo <- invariant'. */
6201 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6202 reloads_num++;
6203 update_reloads_num_p = false;
6204 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6205 change_p = true;
6206 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6207 IOR_HARD_REG_SET (potential_reload_hard_regs,
6208 reg_class_contents[cl]);
6210 else if (src_regno >= lra_constraint_new_regno_start
6211 && dst_regno < lra_constraint_new_regno_start
6212 && dst_regno >= FIRST_PSEUDO_REGISTER
6213 && reg_renumber[dst_regno] < 0
6214 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6215 && usage_insns[dst_regno].check == curr_usage_insns_check
6216 && (next_usage_insns
6217 = usage_insns[dst_regno].insns) != NULL_RTX)
6219 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6220 reloads_num++;
6221 update_reloads_num_p = false;
6222 /* 'original_pseudo <- reload_pseudo'. */
6223 if (! JUMP_P (curr_insn)
6224 && inherit_reload_reg (true, dst_regno, cl,
6225 curr_insn, next_usage_insns))
6226 change_p = true;
6227 /* Invalidate. */
6228 usage_insns[dst_regno].check = 0;
6229 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6230 IOR_HARD_REG_SET (potential_reload_hard_regs,
6231 reg_class_contents[cl]);
6233 else if (INSN_P (curr_insn))
6235 int iter;
6236 int max_uid = get_max_uid ();
6238 curr_id = lra_get_insn_recog_data (curr_insn);
6239 curr_static_id = curr_id->insn_static_data;
6240 to_inherit_num = 0;
6241 /* Process insn definitions. */
6242 for (iter = 0; iter < 2; iter++)
6243 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6244 reg != NULL;
6245 reg = reg->next)
6246 if (reg->type != OP_IN
6247 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6249 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6250 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6251 && usage_insns[dst_regno].check == curr_usage_insns_check
6252 && (next_usage_insns
6253 = usage_insns[dst_regno].insns) != NULL_RTX)
6255 struct lra_insn_reg *r;
6257 for (r = curr_id->regs; r != NULL; r = r->next)
6258 if (r->type != OP_OUT && r->regno == dst_regno)
6259 break;
6260 /* Don't do inheritance if the pseudo is also
6261 used in the insn. */
6262 if (r == NULL)
6263 /* We can not do inheritance right now
6264 because the current insn reg info (chain
6265 regs) can change after that. */
6266 add_to_inherit (dst_regno, next_usage_insns);
6268 /* We can not process one reg twice here because of
6269 usage_insns invalidation. */
6270 if ((dst_regno < FIRST_PSEUDO_REGISTER
6271 || reg_renumber[dst_regno] >= 0)
6272 && ! reg->subreg_p && reg->type != OP_IN)
6274 HARD_REG_SET s;
6276 if (split_if_necessary (dst_regno, reg->biggest_mode,
6277 potential_reload_hard_regs,
6278 false, curr_insn, max_uid))
6279 change_p = true;
6280 CLEAR_HARD_REG_SET (s);
6281 if (dst_regno < FIRST_PSEUDO_REGISTER)
6282 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6283 else
6284 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6285 reg_renumber[dst_regno]);
6286 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6288 /* We should invalidate potential inheritance or
6289 splitting for the current insn usages to the next
6290 usage insns (see code below) as the output pseudo
6291 prevents this. */
6292 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6293 && reg_renumber[dst_regno] < 0)
6294 || (reg->type == OP_OUT && ! reg->subreg_p
6295 && (dst_regno < FIRST_PSEUDO_REGISTER
6296 || reg_renumber[dst_regno] >= 0)))
6298 /* Invalidate and mark definitions. */
6299 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6300 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6301 else
6303 nregs = hard_regno_nregs (dst_regno,
6304 reg->biggest_mode);
6305 for (i = 0; i < nregs; i++)
6306 usage_insns[dst_regno + i].check
6307 = -(int) INSN_UID (curr_insn);
6311 /* Process clobbered call regs. */
6312 if (curr_id->arg_hard_regs != NULL)
6313 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6314 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6315 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6316 = -(int) INSN_UID (curr_insn);
6317 if (! JUMP_P (curr_insn))
6318 for (i = 0; i < to_inherit_num; i++)
6319 if (inherit_reload_reg (true, to_inherit[i].regno,
6320 ALL_REGS, curr_insn,
6321 to_inherit[i].insns))
6322 change_p = true;
6323 if (CALL_P (curr_insn))
6325 rtx cheap, pat, dest;
6326 rtx_insn *restore;
6327 int regno, hard_regno;
6329 calls_num++;
6330 if ((cheap = find_reg_note (curr_insn,
6331 REG_RETURNED, NULL_RTX)) != NULL_RTX
6332 && ((cheap = XEXP (cheap, 0)), true)
6333 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6334 && (hard_regno = reg_renumber[regno]) >= 0
6335 && usage_insns[regno].check == curr_usage_insns_check
6336 /* If there are pending saves/restores, the
6337 optimization is not worth. */
6338 && usage_insns[regno].calls_num == calls_num - 1
6339 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6341 /* Restore the pseudo from the call result as
6342 REG_RETURNED note says that the pseudo value is
6343 in the call result and the pseudo is an argument
6344 of the call. */
6345 pat = PATTERN (curr_insn);
6346 if (GET_CODE (pat) == PARALLEL)
6347 pat = XVECEXP (pat, 0, 0);
6348 dest = SET_DEST (pat);
6349 /* For multiple return values dest is PARALLEL.
6350 Currently we handle only single return value case. */
6351 if (REG_P (dest))
6353 start_sequence ();
6354 emit_move_insn (cheap, copy_rtx (dest));
6355 restore = get_insns ();
6356 end_sequence ();
6357 lra_process_new_insns (curr_insn, NULL, restore,
6358 "Inserting call parameter restore");
6359 /* We don't need to save/restore of the pseudo from
6360 this call. */
6361 usage_insns[regno].calls_num = calls_num;
6362 bitmap_set_bit (&check_only_regs, regno);
6366 to_inherit_num = 0;
6367 /* Process insn usages. */
6368 for (iter = 0; iter < 2; iter++)
6369 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6370 reg != NULL;
6371 reg = reg->next)
6372 if ((reg->type != OP_OUT
6373 || (reg->type == OP_OUT && reg->subreg_p))
6374 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6376 if (src_regno >= FIRST_PSEUDO_REGISTER
6377 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6379 if (usage_insns[src_regno].check == curr_usage_insns_check
6380 && (next_usage_insns
6381 = usage_insns[src_regno].insns) != NULL_RTX
6382 && NONDEBUG_INSN_P (curr_insn))
6383 add_to_inherit (src_regno, next_usage_insns);
6384 else if (usage_insns[src_regno].check
6385 != -(int) INSN_UID (curr_insn))
6386 /* Add usages but only if the reg is not set up
6387 in the same insn. */
6388 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6390 else if (src_regno < FIRST_PSEUDO_REGISTER
6391 || reg_renumber[src_regno] >= 0)
6393 bool before_p;
6394 rtx_insn *use_insn = curr_insn;
6396 before_p = (JUMP_P (curr_insn)
6397 || (CALL_P (curr_insn) && reg->type == OP_IN));
6398 if (NONDEBUG_INSN_P (curr_insn)
6399 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6400 && split_if_necessary (src_regno, reg->biggest_mode,
6401 potential_reload_hard_regs,
6402 before_p, curr_insn, max_uid))
6404 if (reg->subreg_p)
6405 lra_risky_transformations_p = true;
6406 change_p = true;
6407 /* Invalidate. */
6408 usage_insns[src_regno].check = 0;
6409 if (before_p)
6410 use_insn = PREV_INSN (curr_insn);
6412 if (NONDEBUG_INSN_P (curr_insn))
6414 if (src_regno < FIRST_PSEUDO_REGISTER)
6415 add_to_hard_reg_set (&live_hard_regs,
6416 reg->biggest_mode, src_regno);
6417 else
6418 add_to_hard_reg_set (&live_hard_regs,
6419 PSEUDO_REGNO_MODE (src_regno),
6420 reg_renumber[src_regno]);
6422 if (src_regno >= FIRST_PSEUDO_REGISTER)
6423 add_next_usage_insn (src_regno, use_insn, reloads_num);
6424 else
6426 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6427 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6431 /* Process used call regs. */
6432 if (curr_id->arg_hard_regs != NULL)
6433 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6434 if (src_regno < FIRST_PSEUDO_REGISTER)
6436 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6437 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6439 for (i = 0; i < to_inherit_num; i++)
6441 src_regno = to_inherit[i].regno;
6442 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6443 curr_insn, to_inherit[i].insns))
6444 change_p = true;
6445 else
6446 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6449 if (update_reloads_num_p
6450 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6452 int regno = -1;
6453 if ((REG_P (SET_DEST (curr_set))
6454 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6455 && reg_renumber[regno] < 0
6456 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6457 || (REG_P (SET_SRC (curr_set))
6458 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6459 && reg_renumber[regno] < 0
6460 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6462 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6463 reloads_num++;
6464 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6465 IOR_HARD_REG_SET (potential_reload_hard_regs,
6466 reg_class_contents[cl]);
6469 if (NONDEBUG_INSN_P (curr_insn))
6471 int regno;
6473 /* Invalidate invariants with changed regs. */
6474 curr_id = lra_get_insn_recog_data (curr_insn);
6475 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6476 if (reg->type != OP_IN)
6478 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6479 bitmap_set_bit (&invalid_invariant_regs,
6480 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6482 curr_static_id = curr_id->insn_static_data;
6483 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6484 if (reg->type != OP_IN)
6485 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6486 if (curr_id->arg_hard_regs != NULL)
6487 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6488 if (regno >= FIRST_PSEUDO_REGISTER)
6489 bitmap_set_bit (&invalid_invariant_regs,
6490 regno - FIRST_PSEUDO_REGISTER);
6492 /* We reached the start of the current basic block. */
6493 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6494 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6496 /* We reached the beginning of the current block -- do
6497 rest of spliting in the current BB. */
6498 to_process = df_get_live_in (curr_bb);
6499 if (BLOCK_FOR_INSN (head) != curr_bb)
6501 /* We are somewhere in the middle of EBB. */
6502 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6503 curr_bb, &temp_bitmap);
6504 to_process = &temp_bitmap;
6506 head_p = true;
6507 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6509 if ((int) j >= lra_constraint_new_regno_start)
6510 break;
6511 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6512 && usage_insns[j].check == curr_usage_insns_check
6513 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6515 if (need_for_split_p (potential_reload_hard_regs, j))
6517 if (lra_dump_file != NULL && head_p)
6519 fprintf (lra_dump_file,
6520 " ----------------------------------\n");
6521 head_p = false;
6523 if (split_reg (false, j, bb_note (curr_bb),
6524 next_usage_insns, NULL))
6525 change_p = true;
6527 usage_insns[j].check = 0;
6532 return change_p;
6535 /* This value affects EBB forming. If probability of edge from EBB to
6536 a BB is not greater than the following value, we don't add the BB
6537 to EBB. */
6538 #define EBB_PROBABILITY_CUTOFF \
6539 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6541 /* Current number of inheritance/split iteration. */
6542 int lra_inheritance_iter;
6544 /* Entry function for inheritance/split pass. */
6545 void
6546 lra_inheritance (void)
6548 int i;
6549 basic_block bb, start_bb;
6550 edge e;
6552 lra_inheritance_iter++;
6553 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6554 return;
6555 timevar_push (TV_LRA_INHERITANCE);
6556 if (lra_dump_file != NULL)
6557 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6558 lra_inheritance_iter);
6559 curr_usage_insns_check = 0;
6560 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6561 for (i = 0; i < lra_constraint_new_regno_start; i++)
6562 usage_insns[i].check = 0;
6563 bitmap_initialize (&check_only_regs, &reg_obstack);
6564 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6565 bitmap_initialize (&live_regs, &reg_obstack);
6566 bitmap_initialize (&temp_bitmap, &reg_obstack);
6567 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6568 FOR_EACH_BB_FN (bb, cfun)
6570 start_bb = bb;
6571 if (lra_dump_file != NULL)
6572 fprintf (lra_dump_file, "EBB");
6573 /* Form a EBB starting with BB. */
6574 bitmap_clear (&ebb_global_regs);
6575 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6576 for (;;)
6578 if (lra_dump_file != NULL)
6579 fprintf (lra_dump_file, " %d", bb->index);
6580 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6581 || LABEL_P (BB_HEAD (bb->next_bb)))
6582 break;
6583 e = find_fallthru_edge (bb->succs);
6584 if (! e)
6585 break;
6586 if (e->probability.initialized_p ()
6587 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6588 break;
6589 bb = bb->next_bb;
6591 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6592 if (lra_dump_file != NULL)
6593 fprintf (lra_dump_file, "\n");
6594 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6595 /* Remember that the EBB head and tail can change in
6596 inherit_in_ebb. */
6597 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6599 bitmap_clear (&ebb_global_regs);
6600 bitmap_clear (&temp_bitmap);
6601 bitmap_clear (&live_regs);
6602 bitmap_clear (&invalid_invariant_regs);
6603 bitmap_clear (&check_only_regs);
6604 free (usage_insns);
6606 timevar_pop (TV_LRA_INHERITANCE);
6611 /* This page contains code to undo failed inheritance/split
6612 transformations. */
6614 /* Current number of iteration undoing inheritance/split. */
6615 int lra_undo_inheritance_iter;
6617 /* Fix BB live info LIVE after removing pseudos created on pass doing
6618 inheritance/split which are REMOVED_PSEUDOS. */
6619 static void
6620 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6622 unsigned int regno;
6623 bitmap_iterator bi;
6625 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6626 if (bitmap_clear_bit (live, regno)
6627 && REG_P (lra_reg_info[regno].restore_rtx))
6628 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6631 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6632 number. */
6633 static int
6634 get_regno (rtx reg)
6636 if (GET_CODE (reg) == SUBREG)
6637 reg = SUBREG_REG (reg);
6638 if (REG_P (reg))
6639 return REGNO (reg);
6640 return -1;
6643 /* Delete a move INSN with destination reg DREGNO and a previous
6644 clobber insn with the same regno. The inheritance/split code can
6645 generate moves with preceding clobber and when we delete such moves
6646 we should delete the clobber insn too to keep the correct life
6647 info. */
6648 static void
6649 delete_move_and_clobber (rtx_insn *insn, int dregno)
6651 rtx_insn *prev_insn = PREV_INSN (insn);
6653 lra_set_insn_deleted (insn);
6654 lra_assert (dregno >= 0);
6655 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6656 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6657 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6658 lra_set_insn_deleted (prev_insn);
6661 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6662 return true if we did any change. The undo transformations for
6663 inheritance looks like
6664 i <- i2
6665 p <- i => p <- i2
6666 or removing
6667 p <- i, i <- p, and i <- i3
6668 where p is original pseudo from which inheritance pseudo i was
6669 created, i and i3 are removed inheritance pseudos, i2 is another
6670 not removed inheritance pseudo. All split pseudos or other
6671 occurrences of removed inheritance pseudos are changed on the
6672 corresponding original pseudos.
6674 The function also schedules insns changed and created during
6675 inheritance/split pass for processing by the subsequent constraint
6676 pass. */
6677 static bool
6678 remove_inheritance_pseudos (bitmap remove_pseudos)
6680 basic_block bb;
6681 int regno, sregno, prev_sregno, dregno;
6682 rtx restore_rtx;
6683 rtx set, prev_set;
6684 rtx_insn *prev_insn;
6685 bool change_p, done_p;
6687 change_p = ! bitmap_empty_p (remove_pseudos);
6688 /* We can not finish the function right away if CHANGE_P is true
6689 because we need to marks insns affected by previous
6690 inheritance/split pass for processing by the subsequent
6691 constraint pass. */
6692 FOR_EACH_BB_FN (bb, cfun)
6694 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6695 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6696 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6698 if (! INSN_P (curr_insn))
6699 continue;
6700 done_p = false;
6701 sregno = dregno = -1;
6702 if (change_p && NONDEBUG_INSN_P (curr_insn)
6703 && (set = single_set (curr_insn)) != NULL_RTX)
6705 dregno = get_regno (SET_DEST (set));
6706 sregno = get_regno (SET_SRC (set));
6709 if (sregno >= 0 && dregno >= 0)
6711 if (bitmap_bit_p (remove_pseudos, dregno)
6712 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6714 /* invariant inheritance pseudo <- original pseudo */
6715 if (lra_dump_file != NULL)
6717 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6718 dump_insn_slim (lra_dump_file, curr_insn);
6719 fprintf (lra_dump_file, "\n");
6721 delete_move_and_clobber (curr_insn, dregno);
6722 done_p = true;
6724 else if (bitmap_bit_p (remove_pseudos, sregno)
6725 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6727 /* reload pseudo <- invariant inheritance pseudo */
6728 start_sequence ();
6729 /* We can not just change the source. It might be
6730 an insn different from the move. */
6731 emit_insn (lra_reg_info[sregno].restore_rtx);
6732 rtx_insn *new_insns = get_insns ();
6733 end_sequence ();
6734 lra_assert (single_set (new_insns) != NULL
6735 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6736 lra_process_new_insns (curr_insn, NULL, new_insns,
6737 "Changing reload<-invariant inheritance");
6738 delete_move_and_clobber (curr_insn, dregno);
6739 done_p = true;
6741 else if ((bitmap_bit_p (remove_pseudos, sregno)
6742 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6743 || (bitmap_bit_p (remove_pseudos, dregno)
6744 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6745 && (get_regno (lra_reg_info[sregno].restore_rtx)
6746 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6747 || (bitmap_bit_p (remove_pseudos, dregno)
6748 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6749 /* One of the following cases:
6750 original <- removed inheritance pseudo
6751 removed inherit pseudo <- another removed inherit pseudo
6752 removed inherit pseudo <- original pseudo
6754 removed_split_pseudo <- original_reg
6755 original_reg <- removed_split_pseudo */
6757 if (lra_dump_file != NULL)
6759 fprintf (lra_dump_file, " Removing %s:\n",
6760 bitmap_bit_p (&lra_split_regs, sregno)
6761 || bitmap_bit_p (&lra_split_regs, dregno)
6762 ? "split" : "inheritance");
6763 dump_insn_slim (lra_dump_file, curr_insn);
6765 delete_move_and_clobber (curr_insn, dregno);
6766 done_p = true;
6768 else if (bitmap_bit_p (remove_pseudos, sregno)
6769 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6771 /* Search the following pattern:
6772 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6773 original_pseudo <- inherit_or_split_pseudo1
6774 where the 2nd insn is the current insn and
6775 inherit_or_split_pseudo2 is not removed. If it is found,
6776 change the current insn onto:
6777 original_pseudo <- inherit_or_split_pseudo2. */
6778 for (prev_insn = PREV_INSN (curr_insn);
6779 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6780 prev_insn = PREV_INSN (prev_insn))
6782 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6783 && (prev_set = single_set (prev_insn)) != NULL_RTX
6784 /* There should be no subregs in insn we are
6785 searching because only the original reg might
6786 be in subreg when we changed the mode of
6787 load/store for splitting. */
6788 && REG_P (SET_DEST (prev_set))
6789 && REG_P (SET_SRC (prev_set))
6790 && (int) REGNO (SET_DEST (prev_set)) == sregno
6791 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6792 >= FIRST_PSEUDO_REGISTER)
6793 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6795 /* As we consider chain of inheritance or
6796 splitting described in above comment we should
6797 check that sregno and prev_sregno were
6798 inheritance/split pseudos created from the
6799 same original regno. */
6800 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6801 && (get_regno (lra_reg_info[sregno].restore_rtx)
6802 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6803 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6805 lra_assert (GET_MODE (SET_SRC (prev_set))
6806 == GET_MODE (regno_reg_rtx[sregno]));
6807 /* Although we have a single set, the insn can
6808 contain more one sregno register occurrence
6809 as a source. Change all occurrences. */
6810 lra_substitute_pseudo_within_insn (curr_insn, sregno,
6811 SET_SRC (prev_set),
6812 false);
6813 /* As we are finishing with processing the insn
6814 here, check the destination too as it might
6815 inheritance pseudo for another pseudo. */
6816 if (bitmap_bit_p (remove_pseudos, dregno)
6817 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6818 && (restore_rtx
6819 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6821 if (GET_CODE (SET_DEST (set)) == SUBREG)
6822 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6823 else
6824 SET_DEST (set) = restore_rtx;
6826 lra_push_insn_and_update_insn_regno_info (curr_insn);
6827 lra_set_used_insn_alternative_by_uid
6828 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6829 done_p = true;
6830 if (lra_dump_file != NULL)
6832 fprintf (lra_dump_file, " Change reload insn:\n");
6833 dump_insn_slim (lra_dump_file, curr_insn);
6838 if (! done_p)
6840 struct lra_insn_reg *reg;
6841 bool restored_regs_p = false;
6842 bool kept_regs_p = false;
6844 curr_id = lra_get_insn_recog_data (curr_insn);
6845 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6847 regno = reg->regno;
6848 restore_rtx = lra_reg_info[regno].restore_rtx;
6849 if (restore_rtx != NULL_RTX)
6851 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6853 lra_substitute_pseudo_within_insn
6854 (curr_insn, regno, restore_rtx, false);
6855 restored_regs_p = true;
6857 else
6858 kept_regs_p = true;
6861 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6863 /* The instruction has changed since the previous
6864 constraints pass. */
6865 lra_push_insn_and_update_insn_regno_info (curr_insn);
6866 lra_set_used_insn_alternative_by_uid
6867 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6869 else if (restored_regs_p)
6870 /* The instruction has been restored to the form that
6871 it had during the previous constraints pass. */
6872 lra_update_insn_regno_info (curr_insn);
6873 if (restored_regs_p && lra_dump_file != NULL)
6875 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6876 dump_insn_slim (lra_dump_file, curr_insn);
6881 return change_p;
6884 /* If optional reload pseudos failed to get a hard register or was not
6885 inherited, it is better to remove optional reloads. We do this
6886 transformation after undoing inheritance to figure out necessity to
6887 remove optional reloads easier. Return true if we do any
6888 change. */
6889 static bool
6890 undo_optional_reloads (void)
6892 bool change_p, keep_p;
6893 unsigned int regno, uid;
6894 bitmap_iterator bi, bi2;
6895 rtx_insn *insn;
6896 rtx set, src, dest;
6897 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6899 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6900 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6902 keep_p = false;
6903 /* Keep optional reloads from previous subpasses. */
6904 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6905 /* If the original pseudo changed its allocation, just
6906 removing the optional pseudo is dangerous as the original
6907 pseudo will have longer live range. */
6908 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6909 keep_p = true;
6910 else if (reg_renumber[regno] >= 0)
6911 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6913 insn = lra_insn_recog_data[uid]->insn;
6914 if ((set = single_set (insn)) == NULL_RTX)
6915 continue;
6916 src = SET_SRC (set);
6917 dest = SET_DEST (set);
6918 if (! REG_P (src) || ! REG_P (dest))
6919 continue;
6920 if (REGNO (dest) == regno
6921 /* Ignore insn for optional reloads itself. */
6922 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6923 /* Check only inheritance on last inheritance pass. */
6924 && (int) REGNO (src) >= new_regno_start
6925 /* Check that the optional reload was inherited. */
6926 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6928 keep_p = true;
6929 break;
6932 if (keep_p)
6934 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
6935 if (lra_dump_file != NULL)
6936 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6939 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
6940 auto_bitmap insn_bitmap (&reg_obstack);
6941 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
6943 if (lra_dump_file != NULL)
6944 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6945 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6946 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
6948 insn = lra_insn_recog_data[uid]->insn;
6949 if ((set = single_set (insn)) != NULL_RTX)
6951 src = SET_SRC (set);
6952 dest = SET_DEST (set);
6953 if (REG_P (src) && REG_P (dest)
6954 && ((REGNO (src) == regno
6955 && (REGNO (lra_reg_info[regno].restore_rtx)
6956 == REGNO (dest)))
6957 || (REGNO (dest) == regno
6958 && (REGNO (lra_reg_info[regno].restore_rtx)
6959 == REGNO (src)))))
6961 if (lra_dump_file != NULL)
6963 fprintf (lra_dump_file, " Deleting move %u\n",
6964 INSN_UID (insn));
6965 dump_insn_slim (lra_dump_file, insn);
6967 delete_move_and_clobber (insn, REGNO (dest));
6968 continue;
6970 /* We should not worry about generation memory-memory
6971 moves here as if the corresponding inheritance did
6972 not work (inheritance pseudo did not get a hard reg),
6973 we remove the inheritance pseudo and the optional
6974 reload. */
6976 lra_substitute_pseudo_within_insn
6977 (insn, regno, lra_reg_info[regno].restore_rtx, false);
6978 lra_update_insn_regno_info (insn);
6979 if (lra_dump_file != NULL)
6981 fprintf (lra_dump_file,
6982 " Restoring original insn:\n");
6983 dump_insn_slim (lra_dump_file, insn);
6987 /* Clear restore_regnos. */
6988 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6989 lra_reg_info[regno].restore_rtx = NULL_RTX;
6990 return change_p;
6993 /* Entry function for undoing inheritance/split transformation. Return true
6994 if we did any RTL change in this pass. */
6995 bool
6996 lra_undo_inheritance (void)
6998 unsigned int regno;
6999 int hard_regno;
7000 int n_all_inherit, n_inherit, n_all_split, n_split;
7001 rtx restore_rtx;
7002 bitmap_iterator bi;
7003 bool change_p;
7005 lra_undo_inheritance_iter++;
7006 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7007 return false;
7008 if (lra_dump_file != NULL)
7009 fprintf (lra_dump_file,
7010 "\n********** Undoing inheritance #%d: **********\n\n",
7011 lra_undo_inheritance_iter);
7012 auto_bitmap remove_pseudos (&reg_obstack);
7013 n_inherit = n_all_inherit = 0;
7014 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7015 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7017 n_all_inherit++;
7018 if (reg_renumber[regno] < 0
7019 /* If the original pseudo changed its allocation, just
7020 removing inheritance is dangerous as for changing
7021 allocation we used shorter live-ranges. */
7022 && (! REG_P (lra_reg_info[regno].restore_rtx)
7023 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7024 bitmap_set_bit (remove_pseudos, regno);
7025 else
7026 n_inherit++;
7028 if (lra_dump_file != NULL && n_all_inherit != 0)
7029 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7030 n_inherit, n_all_inherit,
7031 (double) n_inherit / n_all_inherit * 100);
7032 n_split = n_all_split = 0;
7033 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7034 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7036 int restore_regno = REGNO (restore_rtx);
7038 n_all_split++;
7039 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7040 ? reg_renumber[restore_regno] : restore_regno);
7041 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7042 bitmap_set_bit (remove_pseudos, regno);
7043 else
7045 n_split++;
7046 if (lra_dump_file != NULL)
7047 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7048 regno, restore_regno);
7051 if (lra_dump_file != NULL && n_all_split != 0)
7052 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7053 n_split, n_all_split,
7054 (double) n_split / n_all_split * 100);
7055 change_p = remove_inheritance_pseudos (remove_pseudos);
7056 /* Clear restore_regnos. */
7057 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7058 lra_reg_info[regno].restore_rtx = NULL_RTX;
7059 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7060 lra_reg_info[regno].restore_rtx = NULL_RTX;
7061 change_p = undo_optional_reloads () || change_p;
7062 return change_p;