1 /* Array translation routines
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-array.c-- Various array related code, including scalarization,
23 allocation, initialization and other support routines. */
25 /* How the scalarizer works.
26 In gfortran, array expressions use the same core routines as scalar
28 First, a Scalarization State (SS) chain is built. This is done by walking
29 the expression tree, and building a linear list of the terms in the
30 expression. As the tree is walked, scalar subexpressions are translated.
32 The scalarization parameters are stored in a gfc_loopinfo structure.
33 First the start and stride of each term is calculated by
34 gfc_conv_ss_startstride. During this process the expressions for the array
35 descriptors and data pointers are also translated.
37 If the expression is an assignment, we must then resolve any dependencies.
38 In Fortran all the rhs values of an assignment must be evaluated before
39 any assignments take place. This can require a temporary array to store the
40 values. We also require a temporary when we are passing array expressions
41 or vector subscripts as procedure parameters.
43 Array sections are passed without copying to a temporary. These use the
44 scalarizer to determine the shape of the section. The flag
45 loop->array_parameter tells the scalarizer that the actual values and loop
46 variables will not be required.
48 The function gfc_conv_loop_setup generates the scalarization setup code.
49 It determines the range of the scalarizing loop variables. If a temporary
50 is required, this is created and initialized. Code for scalar expressions
51 taken outside the loop is also generated at this time. Next the offset and
52 scaling required to translate from loop variables to array indices for each
55 A call to gfc_start_scalarized_body marks the start of the scalarized
56 expression. This creates a scope and declares the loop variables. Before
57 calling this gfc_make_ss_chain_used must be used to indicate which terms
58 will be used inside this loop.
60 The scalar gfc_conv_* functions are then used to build the main body of the
61 scalarization loop. Scalarization loop variables and precalculated scalar
62 values are automatically substituted. Note that gfc_advance_se_ss_chain
63 must be used, rather than changing the se->ss directly.
65 For assignment expressions requiring a temporary two sub loops are
66 generated. The first stores the result of the expression in the temporary,
67 the second copies it to the result. A call to
68 gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
69 the start of the copying loop. The temporary may be less than full rank.
71 Finally gfc_trans_scalarizing_loops is called to generate the implicit do
72 loops. The loops are added to the pre chain of the loopinfo. The post
73 chain may still contain cleanup code.
75 After the loop code has been added into its parent scope gfc_cleanup_loop
76 is called to free all the SS allocated by the scalarizer. */
80 #include "coretypes.h"
84 #include "gimple-expr.h"
86 #include "fold-const.h"
87 #include "constructor.h"
88 #include "trans-types.h"
89 #include "trans-array.h"
90 #include "trans-const.h"
91 #include "dependency.h"
93 static bool gfc_get_array_constructor_size (mpz_t
*, gfc_constructor_base
);
95 /* The contents of this structure aren't actually used, just the address. */
96 static gfc_ss gfc_ss_terminator_var
;
97 gfc_ss
* const gfc_ss_terminator
= &gfc_ss_terminator_var
;
101 gfc_array_dataptr_type (tree desc
)
103 return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc
)));
107 /* Build expressions to access the members of an array descriptor.
108 It's surprisingly easy to mess up here, so never access
109 an array descriptor by "brute force", always use these
110 functions. This also avoids problems if we change the format
111 of an array descriptor.
113 To understand these magic numbers, look at the comments
114 before gfc_build_array_type() in trans-types.c.
116 The code within these defines should be the only code which knows the format
117 of an array descriptor.
119 Any code just needing to read obtain the bounds of an array should use
120 gfc_conv_array_* rather than the following functions as these will return
121 know constant values, and work with arrays which do not have descriptors.
123 Don't forget to #undef these! */
126 #define OFFSET_FIELD 1
127 #define DTYPE_FIELD 2
129 #define DIMENSION_FIELD 4
130 #define CAF_TOKEN_FIELD 5
132 #define STRIDE_SUBFIELD 0
133 #define LBOUND_SUBFIELD 1
134 #define UBOUND_SUBFIELD 2
136 /* This provides READ-ONLY access to the data field. The field itself
137 doesn't have the proper type. */
140 gfc_conv_descriptor_data_get (tree desc
)
144 type
= TREE_TYPE (desc
);
145 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
147 field
= TYPE_FIELDS (type
);
148 gcc_assert (DATA_FIELD
== 0);
150 t
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
), desc
,
152 t
= fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type
), t
);
157 /* This provides WRITE access to the data field.
159 TUPLES_P is true if we are generating tuples.
161 This function gets called through the following macros:
162 gfc_conv_descriptor_data_set
163 gfc_conv_descriptor_data_set. */
166 gfc_conv_descriptor_data_set (stmtblock_t
*block
, tree desc
, tree value
)
170 type
= TREE_TYPE (desc
);
171 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
173 field
= TYPE_FIELDS (type
);
174 gcc_assert (DATA_FIELD
== 0);
176 t
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
), desc
,
178 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (field
), value
));
182 /* This provides address access to the data field. This should only be
183 used by array allocation, passing this on to the runtime. */
186 gfc_conv_descriptor_data_addr (tree desc
)
190 type
= TREE_TYPE (desc
);
191 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
193 field
= TYPE_FIELDS (type
);
194 gcc_assert (DATA_FIELD
== 0);
196 t
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
), desc
,
198 return gfc_build_addr_expr (NULL_TREE
, t
);
202 gfc_conv_descriptor_offset (tree desc
)
207 type
= TREE_TYPE (desc
);
208 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
210 field
= gfc_advance_chain (TYPE_FIELDS (type
), OFFSET_FIELD
);
211 gcc_assert (field
!= NULL_TREE
&& TREE_TYPE (field
) == gfc_array_index_type
);
213 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
214 desc
, field
, NULL_TREE
);
218 gfc_conv_descriptor_offset_get (tree desc
)
220 return gfc_conv_descriptor_offset (desc
);
224 gfc_conv_descriptor_offset_set (stmtblock_t
*block
, tree desc
,
227 tree t
= gfc_conv_descriptor_offset (desc
);
228 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (t
), value
));
233 gfc_conv_descriptor_dtype (tree desc
)
238 type
= TREE_TYPE (desc
);
239 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
241 field
= gfc_advance_chain (TYPE_FIELDS (type
), DTYPE_FIELD
);
242 gcc_assert (field
!= NULL_TREE
243 && TREE_TYPE (field
) == get_dtype_type_node ());
245 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
246 desc
, field
, NULL_TREE
);
250 gfc_conv_descriptor_span (tree desc
)
255 type
= TREE_TYPE (desc
);
256 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
258 field
= gfc_advance_chain (TYPE_FIELDS (type
), SPAN_FIELD
);
259 gcc_assert (field
!= NULL_TREE
&& TREE_TYPE (field
) == gfc_array_index_type
);
261 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
262 desc
, field
, NULL_TREE
);
266 gfc_conv_descriptor_span_get (tree desc
)
268 return gfc_conv_descriptor_span (desc
);
272 gfc_conv_descriptor_span_set (stmtblock_t
*block
, tree desc
,
275 tree t
= gfc_conv_descriptor_span (desc
);
276 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (t
), value
));
281 gfc_conv_descriptor_rank (tree desc
)
286 dtype
= gfc_conv_descriptor_dtype (desc
);
287 tmp
= gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype
)), GFC_DTYPE_RANK
);
288 gcc_assert (tmp
!= NULL_TREE
289 && TREE_TYPE (tmp
) == signed_char_type_node
);
290 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (tmp
),
291 dtype
, tmp
, NULL_TREE
);
296 gfc_get_descriptor_dimension (tree desc
)
300 type
= TREE_TYPE (desc
);
301 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
303 field
= gfc_advance_chain (TYPE_FIELDS (type
), DIMENSION_FIELD
);
304 gcc_assert (field
!= NULL_TREE
305 && TREE_CODE (TREE_TYPE (field
)) == ARRAY_TYPE
306 && TREE_CODE (TREE_TYPE (TREE_TYPE (field
))) == RECORD_TYPE
);
308 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
309 desc
, field
, NULL_TREE
);
314 gfc_conv_descriptor_dimension (tree desc
, tree dim
)
318 tmp
= gfc_get_descriptor_dimension (desc
);
320 return gfc_build_array_ref (tmp
, dim
, NULL
);
325 gfc_conv_descriptor_token (tree desc
)
330 type
= TREE_TYPE (desc
);
331 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
332 gcc_assert (flag_coarray
== GFC_FCOARRAY_LIB
);
333 field
= gfc_advance_chain (TYPE_FIELDS (type
), CAF_TOKEN_FIELD
);
335 /* Should be a restricted pointer - except in the finalization wrapper. */
336 gcc_assert (field
!= NULL_TREE
337 && (TREE_TYPE (field
) == prvoid_type_node
338 || TREE_TYPE (field
) == pvoid_type_node
));
340 return fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
341 desc
, field
, NULL_TREE
);
346 gfc_conv_descriptor_stride (tree desc
, tree dim
)
351 tmp
= gfc_conv_descriptor_dimension (desc
, dim
);
352 field
= TYPE_FIELDS (TREE_TYPE (tmp
));
353 field
= gfc_advance_chain (field
, STRIDE_SUBFIELD
);
354 gcc_assert (field
!= NULL_TREE
&& TREE_TYPE (field
) == gfc_array_index_type
);
356 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
357 tmp
, field
, NULL_TREE
);
362 gfc_conv_descriptor_stride_get (tree desc
, tree dim
)
364 tree type
= TREE_TYPE (desc
);
365 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
366 if (integer_zerop (dim
)
367 && (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ALLOCATABLE
368 ||GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE_CONT
369 ||GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_RANK_CONT
370 ||GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_POINTER_CONT
))
371 return gfc_index_one_node
;
373 return gfc_conv_descriptor_stride (desc
, dim
);
377 gfc_conv_descriptor_stride_set (stmtblock_t
*block
, tree desc
,
378 tree dim
, tree value
)
380 tree t
= gfc_conv_descriptor_stride (desc
, dim
);
381 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (t
), value
));
385 gfc_conv_descriptor_lbound (tree desc
, tree dim
)
390 tmp
= gfc_conv_descriptor_dimension (desc
, dim
);
391 field
= TYPE_FIELDS (TREE_TYPE (tmp
));
392 field
= gfc_advance_chain (field
, LBOUND_SUBFIELD
);
393 gcc_assert (field
!= NULL_TREE
&& TREE_TYPE (field
) == gfc_array_index_type
);
395 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
396 tmp
, field
, NULL_TREE
);
401 gfc_conv_descriptor_lbound_get (tree desc
, tree dim
)
403 return gfc_conv_descriptor_lbound (desc
, dim
);
407 gfc_conv_descriptor_lbound_set (stmtblock_t
*block
, tree desc
,
408 tree dim
, tree value
)
410 tree t
= gfc_conv_descriptor_lbound (desc
, dim
);
411 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (t
), value
));
415 gfc_conv_descriptor_ubound (tree desc
, tree dim
)
420 tmp
= gfc_conv_descriptor_dimension (desc
, dim
);
421 field
= TYPE_FIELDS (TREE_TYPE (tmp
));
422 field
= gfc_advance_chain (field
, UBOUND_SUBFIELD
);
423 gcc_assert (field
!= NULL_TREE
&& TREE_TYPE (field
) == gfc_array_index_type
);
425 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
, TREE_TYPE (field
),
426 tmp
, field
, NULL_TREE
);
431 gfc_conv_descriptor_ubound_get (tree desc
, tree dim
)
433 return gfc_conv_descriptor_ubound (desc
, dim
);
437 gfc_conv_descriptor_ubound_set (stmtblock_t
*block
, tree desc
,
438 tree dim
, tree value
)
440 tree t
= gfc_conv_descriptor_ubound (desc
, dim
);
441 gfc_add_modify (block
, t
, fold_convert (TREE_TYPE (t
), value
));
444 /* Build a null array descriptor constructor. */
447 gfc_build_null_descriptor (tree type
)
452 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
453 gcc_assert (DATA_FIELD
== 0);
454 field
= TYPE_FIELDS (type
);
456 /* Set a NULL data pointer. */
457 tmp
= build_constructor_single (type
, field
, null_pointer_node
);
458 TREE_CONSTANT (tmp
) = 1;
459 /* All other fields are ignored. */
465 /* Modify a descriptor such that the lbound of a given dimension is the value
466 specified. This also updates ubound and offset accordingly. */
469 gfc_conv_shift_descriptor_lbound (stmtblock_t
* block
, tree desc
,
470 int dim
, tree new_lbound
)
472 tree offs
, ubound
, lbound
, stride
;
473 tree diff
, offs_diff
;
475 new_lbound
= fold_convert (gfc_array_index_type
, new_lbound
);
477 offs
= gfc_conv_descriptor_offset_get (desc
);
478 lbound
= gfc_conv_descriptor_lbound_get (desc
, gfc_rank_cst
[dim
]);
479 ubound
= gfc_conv_descriptor_ubound_get (desc
, gfc_rank_cst
[dim
]);
480 stride
= gfc_conv_descriptor_stride_get (desc
, gfc_rank_cst
[dim
]);
482 /* Get difference (new - old) by which to shift stuff. */
483 diff
= fold_build2_loc (input_location
, MINUS_EXPR
, gfc_array_index_type
,
486 /* Shift ubound and offset accordingly. This has to be done before
487 updating the lbound, as they depend on the lbound expression! */
488 ubound
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
490 gfc_conv_descriptor_ubound_set (block
, desc
, gfc_rank_cst
[dim
], ubound
);
491 offs_diff
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
493 offs
= fold_build2_loc (input_location
, MINUS_EXPR
, gfc_array_index_type
,
495 gfc_conv_descriptor_offset_set (block
, desc
, offs
);
497 /* Finally set lbound to value we want. */
498 gfc_conv_descriptor_lbound_set (block
, desc
, gfc_rank_cst
[dim
], new_lbound
);
502 /* Obtain offsets for trans-types.c(gfc_get_array_descr_info). */
505 gfc_get_descriptor_offsets_for_info (const_tree desc_type
, tree
*data_off
,
506 tree
*dtype_off
, tree
*dim_off
,
507 tree
*dim_size
, tree
*stride_suboff
,
508 tree
*lower_suboff
, tree
*upper_suboff
)
513 type
= TYPE_MAIN_VARIANT (desc_type
);
514 field
= gfc_advance_chain (TYPE_FIELDS (type
), DATA_FIELD
);
515 *data_off
= byte_position (field
);
516 field
= gfc_advance_chain (TYPE_FIELDS (type
), DTYPE_FIELD
);
517 *dtype_off
= byte_position (field
);
518 field
= gfc_advance_chain (TYPE_FIELDS (type
), DIMENSION_FIELD
);
519 *dim_off
= byte_position (field
);
520 type
= TREE_TYPE (TREE_TYPE (field
));
521 *dim_size
= TYPE_SIZE_UNIT (type
);
522 field
= gfc_advance_chain (TYPE_FIELDS (type
), STRIDE_SUBFIELD
);
523 *stride_suboff
= byte_position (field
);
524 field
= gfc_advance_chain (TYPE_FIELDS (type
), LBOUND_SUBFIELD
);
525 *lower_suboff
= byte_position (field
);
526 field
= gfc_advance_chain (TYPE_FIELDS (type
), UBOUND_SUBFIELD
);
527 *upper_suboff
= byte_position (field
);
531 /* Cleanup those #defines. */
537 #undef DIMENSION_FIELD
538 #undef CAF_TOKEN_FIELD
539 #undef STRIDE_SUBFIELD
540 #undef LBOUND_SUBFIELD
541 #undef UBOUND_SUBFIELD
544 /* Mark a SS chain as used. Flags specifies in which loops the SS is used.
545 flags & 1 = Main loop body.
546 flags & 2 = temp copy loop. */
549 gfc_mark_ss_chain_used (gfc_ss
* ss
, unsigned flags
)
551 for (; ss
!= gfc_ss_terminator
; ss
= ss
->next
)
552 ss
->info
->useflags
= flags
;
556 /* Free a gfc_ss chain. */
559 gfc_free_ss_chain (gfc_ss
* ss
)
563 while (ss
!= gfc_ss_terminator
)
565 gcc_assert (ss
!= NULL
);
574 free_ss_info (gfc_ss_info
*ss_info
)
579 if (ss_info
->refcount
> 0)
582 gcc_assert (ss_info
->refcount
== 0);
584 switch (ss_info
->type
)
587 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
588 if (ss_info
->data
.array
.subscript
[n
])
589 gfc_free_ss_chain (ss_info
->data
.array
.subscript
[n
]);
603 gfc_free_ss (gfc_ss
* ss
)
605 free_ss_info (ss
->info
);
610 /* Creates and initializes an array type gfc_ss struct. */
613 gfc_get_array_ss (gfc_ss
*next
, gfc_expr
*expr
, int dimen
, gfc_ss_type type
)
616 gfc_ss_info
*ss_info
;
619 ss_info
= gfc_get_ss_info ();
621 ss_info
->type
= type
;
622 ss_info
->expr
= expr
;
628 for (i
= 0; i
< ss
->dimen
; i
++)
635 /* Creates and initializes a temporary type gfc_ss struct. */
638 gfc_get_temp_ss (tree type
, tree string_length
, int dimen
)
641 gfc_ss_info
*ss_info
;
644 ss_info
= gfc_get_ss_info ();
646 ss_info
->type
= GFC_SS_TEMP
;
647 ss_info
->string_length
= string_length
;
648 ss_info
->data
.temp
.type
= type
;
652 ss
->next
= gfc_ss_terminator
;
654 for (i
= 0; i
< ss
->dimen
; i
++)
661 /* Creates and initializes a scalar type gfc_ss struct. */
664 gfc_get_scalar_ss (gfc_ss
*next
, gfc_expr
*expr
)
667 gfc_ss_info
*ss_info
;
669 ss_info
= gfc_get_ss_info ();
671 ss_info
->type
= GFC_SS_SCALAR
;
672 ss_info
->expr
= expr
;
682 /* Free all the SS associated with a loop. */
685 gfc_cleanup_loop (gfc_loopinfo
* loop
)
687 gfc_loopinfo
*loop_next
, **ploop
;
692 while (ss
!= gfc_ss_terminator
)
694 gcc_assert (ss
!= NULL
);
695 next
= ss
->loop_chain
;
700 /* Remove reference to self in the parent loop. */
702 for (ploop
= &loop
->parent
->nested
; *ploop
; ploop
= &(*ploop
)->next
)
709 /* Free non-freed nested loops. */
710 for (loop
= loop
->nested
; loop
; loop
= loop_next
)
712 loop_next
= loop
->next
;
713 gfc_cleanup_loop (loop
);
720 set_ss_loop (gfc_ss
*ss
, gfc_loopinfo
*loop
)
724 for (; ss
!= gfc_ss_terminator
; ss
= ss
->next
)
728 if (ss
->info
->type
== GFC_SS_SCALAR
729 || ss
->info
->type
== GFC_SS_REFERENCE
730 || ss
->info
->type
== GFC_SS_TEMP
)
733 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
734 if (ss
->info
->data
.array
.subscript
[n
] != NULL
)
735 set_ss_loop (ss
->info
->data
.array
.subscript
[n
], loop
);
740 /* Associate a SS chain with a loop. */
743 gfc_add_ss_to_loop (gfc_loopinfo
* loop
, gfc_ss
* head
)
746 gfc_loopinfo
*nested_loop
;
748 if (head
== gfc_ss_terminator
)
751 set_ss_loop (head
, loop
);
754 for (; ss
&& ss
!= gfc_ss_terminator
; ss
= ss
->next
)
758 nested_loop
= ss
->nested_ss
->loop
;
760 /* More than one ss can belong to the same loop. Hence, we add the
761 loop to the chain only if it is different from the previously
762 added one, to avoid duplicate nested loops. */
763 if (nested_loop
!= loop
->nested
)
765 gcc_assert (nested_loop
->parent
== NULL
);
766 nested_loop
->parent
= loop
;
768 gcc_assert (nested_loop
->next
== NULL
);
769 nested_loop
->next
= loop
->nested
;
770 loop
->nested
= nested_loop
;
773 gcc_assert (nested_loop
->parent
== loop
);
776 if (ss
->next
== gfc_ss_terminator
)
777 ss
->loop_chain
= loop
->ss
;
779 ss
->loop_chain
= ss
->next
;
781 gcc_assert (ss
== gfc_ss_terminator
);
786 /* Returns true if the expression is an array pointer. */
789 is_pointer_array (tree expr
)
791 if (expr
== NULL_TREE
792 || !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (expr
))
793 || GFC_CLASS_TYPE_P (TREE_TYPE (expr
)))
796 if (TREE_CODE (expr
) == VAR_DECL
797 && GFC_DECL_PTR_ARRAY_P (expr
))
800 if (TREE_CODE (expr
) == PARM_DECL
801 && GFC_DECL_PTR_ARRAY_P (expr
))
804 if (TREE_CODE (expr
) == INDIRECT_REF
805 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr
, 0)))
808 /* The field declaration is marked as an pointer array. */
809 if (TREE_CODE (expr
) == COMPONENT_REF
810 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr
, 1))
811 && !GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
818 /* Return the span of an array. */
821 gfc_get_array_span (tree desc
, gfc_expr
*expr
)
825 if (is_pointer_array (desc
))
826 /* This will have the span field set. */
827 tmp
= gfc_conv_descriptor_span_get (desc
);
828 else if (TREE_CODE (desc
) == COMPONENT_REF
829 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
))
830 && GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (desc
, 0))))
832 /* The descriptor is a class _data field and so use the vtable
833 size for the receiving span field. */
834 tmp
= gfc_get_vptr_from_expr (desc
);
835 tmp
= gfc_vptr_size_get (tmp
);
837 else if (expr
&& expr
->expr_type
== EXPR_VARIABLE
838 && expr
->symtree
->n
.sym
->ts
.type
== BT_CLASS
839 && expr
->ref
->type
== REF_COMPONENT
840 && expr
->ref
->next
->type
== REF_ARRAY
841 && expr
->ref
->next
->next
== NULL
842 && CLASS_DATA (expr
->symtree
->n
.sym
)->attr
.dimension
)
844 /* Dummys come in sometimes with the descriptor detached from
845 the class field or declaration. */
846 tmp
= gfc_class_vptr_get (expr
->symtree
->n
.sym
->backend_decl
);
847 tmp
= gfc_vptr_size_get (tmp
);
851 /* If none of the fancy stuff works, the span is the element
852 size of the array. */
853 tmp
= gfc_get_element_type (TREE_TYPE (desc
));
854 tmp
= fold_convert (gfc_array_index_type
,
855 size_in_bytes (tmp
));
861 /* Generate an initializer for a static pointer or allocatable array. */
864 gfc_trans_static_array_pointer (gfc_symbol
* sym
)
868 gcc_assert (TREE_STATIC (sym
->backend_decl
));
869 /* Just zero the data member. */
870 type
= TREE_TYPE (sym
->backend_decl
);
871 DECL_INITIAL (sym
->backend_decl
) = gfc_build_null_descriptor (type
);
875 /* If the bounds of SE's loop have not yet been set, see if they can be
876 determined from array spec AS, which is the array spec of a called
877 function. MAPPING maps the callee's dummy arguments to the values
878 that the caller is passing. Add any initialization and finalization
882 gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping
* mapping
,
883 gfc_se
* se
, gfc_array_spec
* as
)
885 int n
, dim
, total_dim
;
894 if (!as
|| as
->type
!= AS_EXPLICIT
)
897 for (ss
= se
->ss
; ss
; ss
= ss
->parent
)
899 total_dim
+= ss
->loop
->dimen
;
900 for (n
= 0; n
< ss
->loop
->dimen
; n
++)
902 /* The bound is known, nothing to do. */
903 if (ss
->loop
->to
[n
] != NULL_TREE
)
907 gcc_assert (dim
< as
->rank
);
908 gcc_assert (ss
->loop
->dimen
<= as
->rank
);
910 /* Evaluate the lower bound. */
911 gfc_init_se (&tmpse
, NULL
);
912 gfc_apply_interface_mapping (mapping
, &tmpse
, as
->lower
[dim
]);
913 gfc_add_block_to_block (&se
->pre
, &tmpse
.pre
);
914 gfc_add_block_to_block (&se
->post
, &tmpse
.post
);
915 lower
= fold_convert (gfc_array_index_type
, tmpse
.expr
);
917 /* ...and the upper bound. */
918 gfc_init_se (&tmpse
, NULL
);
919 gfc_apply_interface_mapping (mapping
, &tmpse
, as
->upper
[dim
]);
920 gfc_add_block_to_block (&se
->pre
, &tmpse
.pre
);
921 gfc_add_block_to_block (&se
->post
, &tmpse
.post
);
922 upper
= fold_convert (gfc_array_index_type
, tmpse
.expr
);
924 /* Set the upper bound of the loop to UPPER - LOWER. */
925 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
926 gfc_array_index_type
, upper
, lower
);
927 tmp
= gfc_evaluate_now (tmp
, &se
->pre
);
928 ss
->loop
->to
[n
] = tmp
;
932 gcc_assert (total_dim
== as
->rank
);
936 /* Generate code to allocate an array temporary, or create a variable to
937 hold the data. If size is NULL, zero the descriptor so that the
938 callee will allocate the array. If DEALLOC is true, also generate code to
939 free the array afterwards.
941 If INITIAL is not NULL, it is packed using internal_pack and the result used
942 as data instead of allocating a fresh, unitialized area of memory.
944 Initialization code is added to PRE and finalization code to POST.
945 DYNAMIC is true if the caller may want to extend the array later
946 using realloc. This prevents us from putting the array on the stack. */
949 gfc_trans_allocate_array_storage (stmtblock_t
* pre
, stmtblock_t
* post
,
950 gfc_array_info
* info
, tree size
, tree nelem
,
951 tree initial
, bool dynamic
, bool dealloc
)
957 desc
= info
->descriptor
;
958 info
->offset
= gfc_index_zero_node
;
959 if (size
== NULL_TREE
|| integer_zerop (size
))
961 /* A callee allocated array. */
962 gfc_conv_descriptor_data_set (pre
, desc
, null_pointer_node
);
967 /* Allocate the temporary. */
968 onstack
= !dynamic
&& initial
== NULL_TREE
969 && (flag_stack_arrays
970 || gfc_can_put_var_on_stack (size
));
974 /* Make a temporary variable to hold the data. */
975 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
, TREE_TYPE (nelem
),
976 nelem
, gfc_index_one_node
);
977 tmp
= gfc_evaluate_now (tmp
, pre
);
978 tmp
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
980 tmp
= build_array_type (gfc_get_element_type (TREE_TYPE (desc
)),
982 tmp
= gfc_create_var (tmp
, "A");
983 /* If we're here only because of -fstack-arrays we have to
984 emit a DECL_EXPR to make the gimplifier emit alloca calls. */
985 if (!gfc_can_put_var_on_stack (size
))
986 gfc_add_expr_to_block (pre
,
987 fold_build1_loc (input_location
,
988 DECL_EXPR
, TREE_TYPE (tmp
),
990 tmp
= gfc_build_addr_expr (NULL_TREE
, tmp
);
991 gfc_conv_descriptor_data_set (pre
, desc
, tmp
);
995 /* Allocate memory to hold the data or call internal_pack. */
996 if (initial
== NULL_TREE
)
998 tmp
= gfc_call_malloc (pre
, NULL
, size
);
999 tmp
= gfc_evaluate_now (tmp
, pre
);
1006 stmtblock_t do_copying
;
1008 tmp
= TREE_TYPE (initial
); /* Pointer to descriptor. */
1009 gcc_assert (TREE_CODE (tmp
) == POINTER_TYPE
);
1010 tmp
= TREE_TYPE (tmp
); /* The descriptor itself. */
1011 tmp
= gfc_get_element_type (tmp
);
1012 gcc_assert (tmp
== gfc_get_element_type (TREE_TYPE (desc
)));
1013 packed
= gfc_create_var (build_pointer_type (tmp
), "data");
1015 tmp
= build_call_expr_loc (input_location
,
1016 gfor_fndecl_in_pack
, 1, initial
);
1017 tmp
= fold_convert (TREE_TYPE (packed
), tmp
);
1018 gfc_add_modify (pre
, packed
, tmp
);
1020 tmp
= build_fold_indirect_ref_loc (input_location
,
1022 source_data
= gfc_conv_descriptor_data_get (tmp
);
1024 /* internal_pack may return source->data without any allocation
1025 or copying if it is already packed. If that's the case, we
1026 need to allocate and copy manually. */
1028 gfc_start_block (&do_copying
);
1029 tmp
= gfc_call_malloc (&do_copying
, NULL
, size
);
1030 tmp
= fold_convert (TREE_TYPE (packed
), tmp
);
1031 gfc_add_modify (&do_copying
, packed
, tmp
);
1032 tmp
= gfc_build_memcpy_call (packed
, source_data
, size
);
1033 gfc_add_expr_to_block (&do_copying
, tmp
);
1035 was_packed
= fold_build2_loc (input_location
, EQ_EXPR
,
1036 logical_type_node
, packed
,
1038 tmp
= gfc_finish_block (&do_copying
);
1039 tmp
= build3_v (COND_EXPR
, was_packed
, tmp
,
1040 build_empty_stmt (input_location
));
1041 gfc_add_expr_to_block (pre
, tmp
);
1043 tmp
= fold_convert (pvoid_type_node
, packed
);
1046 gfc_conv_descriptor_data_set (pre
, desc
, tmp
);
1049 info
->data
= gfc_conv_descriptor_data_get (desc
);
1051 /* The offset is zero because we create temporaries with a zero
1053 gfc_conv_descriptor_offset_set (pre
, desc
, gfc_index_zero_node
);
1055 if (dealloc
&& !onstack
)
1057 /* Free the temporary. */
1058 tmp
= gfc_conv_descriptor_data_get (desc
);
1059 tmp
= gfc_call_free (tmp
);
1060 gfc_add_expr_to_block (post
, tmp
);
1065 /* Get the scalarizer array dimension corresponding to actual array dimension
1068 For example, if SS represents the array ref a(1,:,:,1), it is a
1069 bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1,
1070 and 1 for ARRAY_DIM=2.
1071 If SS represents transpose(a(:,1,1,:)), it is again a bidimensional
1072 scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for
1074 If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer
1075 array. If called on the inner ss, the result would be respectively 0,1,2 for
1076 ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1
1077 for ARRAY_DIM=1,2. */
1080 get_scalarizer_dim_for_array_dim (gfc_ss
*ss
, int array_dim
)
1087 for (; ss
; ss
= ss
->parent
)
1088 for (n
= 0; n
< ss
->dimen
; n
++)
1089 if (ss
->dim
[n
] < array_dim
)
1092 return array_ref_dim
;
1097 innermost_ss (gfc_ss
*ss
)
1099 while (ss
->nested_ss
!= NULL
)
1107 /* Get the array reference dimension corresponding to the given loop dimension.
1108 It is different from the true array dimension given by the dim array in
1109 the case of a partial array reference (i.e. a(:,:,1,:) for example)
1110 It is different from the loop dimension in the case of a transposed array.
1114 get_array_ref_dim_for_loop_dim (gfc_ss
*ss
, int loop_dim
)
1116 return get_scalarizer_dim_for_array_dim (innermost_ss (ss
),
1121 /* Generate code to create and initialize the descriptor for a temporary
1122 array. This is used for both temporaries needed by the scalarizer, and
1123 functions returning arrays. Adjusts the loop variables to be
1124 zero-based, and calculates the loop bounds for callee allocated arrays.
1125 Allocate the array unless it's callee allocated (we have a callee
1126 allocated array if 'callee_alloc' is true, or if loop->to[n] is
1127 NULL_TREE for any n). Also fills in the descriptor, data and offset
1128 fields of info if known. Returns the size of the array, or NULL for a
1129 callee allocated array.
1131 'eltype' == NULL signals that the temporary should be a class object.
1132 The 'initial' expression is used to obtain the size of the dynamic
1133 type; otherwise the allocation and initialization proceeds as for any
1136 PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
1137 gfc_trans_allocate_array_storage. */
1140 gfc_trans_create_temp_array (stmtblock_t
* pre
, stmtblock_t
* post
, gfc_ss
* ss
,
1141 tree eltype
, tree initial
, bool dynamic
,
1142 bool dealloc
, bool callee_alloc
, locus
* where
)
1146 gfc_array_info
*info
;
1147 tree from
[GFC_MAX_DIMENSIONS
], to
[GFC_MAX_DIMENSIONS
];
1155 tree class_expr
= NULL_TREE
;
1156 int n
, dim
, tmp_dim
;
1159 /* This signals a class array for which we need the size of the
1160 dynamic type. Generate an eltype and then the class expression. */
1161 if (eltype
== NULL_TREE
&& initial
)
1163 gcc_assert (POINTER_TYPE_P (TREE_TYPE (initial
)));
1164 class_expr
= build_fold_indirect_ref_loc (input_location
, initial
);
1165 eltype
= TREE_TYPE (class_expr
);
1166 eltype
= gfc_get_element_type (eltype
);
1167 /* Obtain the structure (class) expression. */
1168 class_expr
= TREE_OPERAND (class_expr
, 0);
1169 gcc_assert (class_expr
);
1172 memset (from
, 0, sizeof (from
));
1173 memset (to
, 0, sizeof (to
));
1175 info
= &ss
->info
->data
.array
;
1177 gcc_assert (ss
->dimen
> 0);
1178 gcc_assert (ss
->loop
->dimen
== ss
->dimen
);
1180 if (warn_array_temporaries
&& where
)
1181 gfc_warning (OPT_Warray_temporaries
,
1182 "Creating array temporary at %L", where
);
1184 /* Set the lower bound to zero. */
1185 for (s
= ss
; s
; s
= s
->parent
)
1189 total_dim
+= loop
->dimen
;
1190 for (n
= 0; n
< loop
->dimen
; n
++)
1194 /* Callee allocated arrays may not have a known bound yet. */
1196 loop
->to
[n
] = gfc_evaluate_now (
1197 fold_build2_loc (input_location
, MINUS_EXPR
,
1198 gfc_array_index_type
,
1199 loop
->to
[n
], loop
->from
[n
]),
1201 loop
->from
[n
] = gfc_index_zero_node
;
1203 /* We have just changed the loop bounds, we must clear the
1204 corresponding specloop, so that delta calculation is not skipped
1205 later in gfc_set_delta. */
1206 loop
->specloop
[n
] = NULL
;
1208 /* We are constructing the temporary's descriptor based on the loop
1209 dimensions. As the dimensions may be accessed in arbitrary order
1210 (think of transpose) the size taken from the n'th loop may not map
1211 to the n'th dimension of the array. We need to reconstruct loop
1212 infos in the right order before using it to set the descriptor
1214 tmp_dim
= get_scalarizer_dim_for_array_dim (ss
, dim
);
1215 from
[tmp_dim
] = loop
->from
[n
];
1216 to
[tmp_dim
] = loop
->to
[n
];
1218 info
->delta
[dim
] = gfc_index_zero_node
;
1219 info
->start
[dim
] = gfc_index_zero_node
;
1220 info
->end
[dim
] = gfc_index_zero_node
;
1221 info
->stride
[dim
] = gfc_index_one_node
;
1225 /* Initialize the descriptor. */
1227 gfc_get_array_type_bounds (eltype
, total_dim
, 0, from
, to
, 1,
1228 GFC_ARRAY_UNKNOWN
, true);
1229 desc
= gfc_create_var (type
, "atmp");
1230 GFC_DECL_PACKED_ARRAY (desc
) = 1;
1232 info
->descriptor
= desc
;
1233 size
= gfc_index_one_node
;
1235 /* Emit a DECL_EXPR for the variable sized array type in
1236 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
1237 sizes works correctly. */
1238 tree arraytype
= TREE_TYPE (GFC_TYPE_ARRAY_DATAPTR_TYPE (type
));
1239 if (! TYPE_NAME (arraytype
))
1240 TYPE_NAME (arraytype
) = build_decl (UNKNOWN_LOCATION
, TYPE_DECL
,
1241 NULL_TREE
, arraytype
);
1242 gfc_add_expr_to_block (pre
, build1 (DECL_EXPR
,
1243 arraytype
, TYPE_NAME (arraytype
)));
1245 /* Fill in the array dtype. */
1246 tmp
= gfc_conv_descriptor_dtype (desc
);
1247 gfc_add_modify (pre
, tmp
, gfc_get_dtype (TREE_TYPE (desc
)));
1250 Fill in the bounds and stride. This is a packed array, so:
1253 for (n = 0; n < rank; n++)
1256 delta = ubound[n] + 1 - lbound[n];
1257 size = size * delta;
1259 size = size * sizeof(element);
1262 or_expr
= NULL_TREE
;
1264 /* If there is at least one null loop->to[n], it is a callee allocated
1266 for (n
= 0; n
< total_dim
; n
++)
1267 if (to
[n
] == NULL_TREE
)
1273 if (size
== NULL_TREE
)
1274 for (s
= ss
; s
; s
= s
->parent
)
1275 for (n
= 0; n
< s
->loop
->dimen
; n
++)
1277 dim
= get_scalarizer_dim_for_array_dim (ss
, s
->dim
[n
]);
1279 /* For a callee allocated array express the loop bounds in terms
1280 of the descriptor fields. */
1281 tmp
= fold_build2_loc (input_location
,
1282 MINUS_EXPR
, gfc_array_index_type
,
1283 gfc_conv_descriptor_ubound_get (desc
, gfc_rank_cst
[dim
]),
1284 gfc_conv_descriptor_lbound_get (desc
, gfc_rank_cst
[dim
]));
1285 s
->loop
->to
[n
] = tmp
;
1289 for (n
= 0; n
< total_dim
; n
++)
1291 /* Store the stride and bound components in the descriptor. */
1292 gfc_conv_descriptor_stride_set (pre
, desc
, gfc_rank_cst
[n
], size
);
1294 gfc_conv_descriptor_lbound_set (pre
, desc
, gfc_rank_cst
[n
],
1295 gfc_index_zero_node
);
1297 gfc_conv_descriptor_ubound_set (pre
, desc
, gfc_rank_cst
[n
], to
[n
]);
1299 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
1300 gfc_array_index_type
,
1301 to
[n
], gfc_index_one_node
);
1303 /* Check whether the size for this dimension is negative. */
1304 cond
= fold_build2_loc (input_location
, LE_EXPR
, logical_type_node
,
1305 tmp
, gfc_index_zero_node
);
1306 cond
= gfc_evaluate_now (cond
, pre
);
1311 or_expr
= fold_build2_loc (input_location
, TRUTH_OR_EXPR
,
1312 logical_type_node
, or_expr
, cond
);
1314 size
= fold_build2_loc (input_location
, MULT_EXPR
,
1315 gfc_array_index_type
, size
, tmp
);
1316 size
= gfc_evaluate_now (size
, pre
);
1320 /* Get the size of the array. */
1321 if (size
&& !callee_alloc
)
1324 /* If or_expr is true, then the extent in at least one
1325 dimension is zero and the size is set to zero. */
1326 size
= fold_build3_loc (input_location
, COND_EXPR
, gfc_array_index_type
,
1327 or_expr
, gfc_index_zero_node
, size
);
1330 if (class_expr
== NULL_TREE
)
1331 elemsize
= fold_convert (gfc_array_index_type
,
1332 TYPE_SIZE_UNIT (gfc_get_element_type (type
)));
1334 elemsize
= gfc_class_vtab_size_get (class_expr
);
1336 size
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
1345 gfc_trans_allocate_array_storage (pre
, post
, info
, size
, nelem
, initial
,
1351 if (ss
->dimen
> ss
->loop
->temp_dim
)
1352 ss
->loop
->temp_dim
= ss
->dimen
;
1358 /* Return the number of iterations in a loop that starts at START,
1359 ends at END, and has step STEP. */
1362 gfc_get_iteration_count (tree start
, tree end
, tree step
)
1367 type
= TREE_TYPE (step
);
1368 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
, type
, end
, start
);
1369 tmp
= fold_build2_loc (input_location
, FLOOR_DIV_EXPR
, type
, tmp
, step
);
1370 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, type
, tmp
,
1371 build_int_cst (type
, 1));
1372 tmp
= fold_build2_loc (input_location
, MAX_EXPR
, type
, tmp
,
1373 build_int_cst (type
, 0));
1374 return fold_convert (gfc_array_index_type
, tmp
);
1378 /* Extend the data in array DESC by EXTRA elements. */
1381 gfc_grow_array (stmtblock_t
* pblock
, tree desc
, tree extra
)
1388 if (integer_zerop (extra
))
1391 ubound
= gfc_conv_descriptor_ubound_get (desc
, gfc_rank_cst
[0]);
1393 /* Add EXTRA to the upper bound. */
1394 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
1396 gfc_conv_descriptor_ubound_set (pblock
, desc
, gfc_rank_cst
[0], tmp
);
1398 /* Get the value of the current data pointer. */
1399 arg0
= gfc_conv_descriptor_data_get (desc
);
1401 /* Calculate the new array size. */
1402 size
= TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc
)));
1403 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
1404 ubound
, gfc_index_one_node
);
1405 arg1
= fold_build2_loc (input_location
, MULT_EXPR
, size_type_node
,
1406 fold_convert (size_type_node
, tmp
),
1407 fold_convert (size_type_node
, size
));
1409 /* Call the realloc() function. */
1410 tmp
= gfc_call_realloc (pblock
, arg0
, arg1
);
1411 gfc_conv_descriptor_data_set (pblock
, desc
, tmp
);
1415 /* Return true if the bounds of iterator I can only be determined
1419 gfc_iterator_has_dynamic_bounds (gfc_iterator
* i
)
1421 return (i
->start
->expr_type
!= EXPR_CONSTANT
1422 || i
->end
->expr_type
!= EXPR_CONSTANT
1423 || i
->step
->expr_type
!= EXPR_CONSTANT
);
1427 /* Split the size of constructor element EXPR into the sum of two terms,
1428 one of which can be determined at compile time and one of which must
1429 be calculated at run time. Set *SIZE to the former and return true
1430 if the latter might be nonzero. */
1433 gfc_get_array_constructor_element_size (mpz_t
* size
, gfc_expr
* expr
)
1435 if (expr
->expr_type
== EXPR_ARRAY
)
1436 return gfc_get_array_constructor_size (size
, expr
->value
.constructor
);
1437 else if (expr
->rank
> 0)
1439 /* Calculate everything at run time. */
1440 mpz_set_ui (*size
, 0);
1445 /* A single element. */
1446 mpz_set_ui (*size
, 1);
1452 /* Like gfc_get_array_constructor_element_size, but applied to the whole
1453 of array constructor C. */
1456 gfc_get_array_constructor_size (mpz_t
* size
, gfc_constructor_base base
)
1464 mpz_set_ui (*size
, 0);
1469 for (c
= gfc_constructor_first (base
); c
; c
= gfc_constructor_next (c
))
1472 if (i
&& gfc_iterator_has_dynamic_bounds (i
))
1476 dynamic
|= gfc_get_array_constructor_element_size (&len
, c
->expr
);
1479 /* Multiply the static part of the element size by the
1480 number of iterations. */
1481 mpz_sub (val
, i
->end
->value
.integer
, i
->start
->value
.integer
);
1482 mpz_fdiv_q (val
, val
, i
->step
->value
.integer
);
1483 mpz_add_ui (val
, val
, 1);
1484 if (mpz_sgn (val
) > 0)
1485 mpz_mul (len
, len
, val
);
1487 mpz_set_ui (len
, 0);
1489 mpz_add (*size
, *size
, len
);
1498 /* Make sure offset is a variable. */
1501 gfc_put_offset_into_var (stmtblock_t
* pblock
, tree
* poffset
,
1504 /* We should have already created the offset variable. We cannot
1505 create it here because we may be in an inner scope. */
1506 gcc_assert (*offsetvar
!= NULL_TREE
);
1507 gfc_add_modify (pblock
, *offsetvar
, *poffset
);
1508 *poffset
= *offsetvar
;
1509 TREE_USED (*offsetvar
) = 1;
1513 /* Variables needed for bounds-checking. */
1514 static bool first_len
;
1515 static tree first_len_val
;
1516 static bool typespec_chararray_ctor
;
1519 gfc_trans_array_ctor_element (stmtblock_t
* pblock
, tree desc
,
1520 tree offset
, gfc_se
* se
, gfc_expr
* expr
)
1524 gfc_conv_expr (se
, expr
);
1526 /* Store the value. */
1527 tmp
= build_fold_indirect_ref_loc (input_location
,
1528 gfc_conv_descriptor_data_get (desc
));
1529 tmp
= gfc_build_array_ref (tmp
, offset
, NULL
);
1531 if (expr
->ts
.type
== BT_CHARACTER
)
1533 int i
= gfc_validate_kind (BT_CHARACTER
, expr
->ts
.kind
, false);
1536 esize
= size_in_bytes (gfc_get_element_type (TREE_TYPE (desc
)));
1537 esize
= fold_convert (gfc_charlen_type_node
, esize
);
1538 esize
= fold_build2_loc (input_location
, TRUNC_DIV_EXPR
,
1539 TREE_TYPE (esize
), esize
,
1540 build_int_cst (TREE_TYPE (esize
),
1541 gfc_character_kinds
[i
].bit_size
/ 8));
1543 gfc_conv_string_parameter (se
);
1544 if (POINTER_TYPE_P (TREE_TYPE (tmp
)))
1546 /* The temporary is an array of pointers. */
1547 se
->expr
= fold_convert (TREE_TYPE (tmp
), se
->expr
);
1548 gfc_add_modify (&se
->pre
, tmp
, se
->expr
);
1552 /* The temporary is an array of string values. */
1553 tmp
= gfc_build_addr_expr (gfc_get_pchar_type (expr
->ts
.kind
), tmp
);
1554 /* We know the temporary and the value will be the same length,
1555 so can use memcpy. */
1556 gfc_trans_string_copy (&se
->pre
, esize
, tmp
, expr
->ts
.kind
,
1557 se
->string_length
, se
->expr
, expr
->ts
.kind
);
1559 if ((gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
) && !typespec_chararray_ctor
)
1563 gfc_add_modify (&se
->pre
, first_len_val
,
1564 fold_convert (TREE_TYPE (first_len_val
),
1565 se
->string_length
));
1570 /* Verify that all constructor elements are of the same
1572 tree rhs
= fold_convert (TREE_TYPE (first_len_val
),
1574 tree cond
= fold_build2_loc (input_location
, NE_EXPR
,
1575 logical_type_node
, first_len_val
,
1577 gfc_trans_runtime_check
1578 (true, false, cond
, &se
->pre
, &expr
->where
,
1579 "Different CHARACTER lengths (%ld/%ld) in array constructor",
1580 fold_convert (long_integer_type_node
, first_len_val
),
1581 fold_convert (long_integer_type_node
, se
->string_length
));
1585 else if (GFC_CLASS_TYPE_P (TREE_TYPE (se
->expr
))
1586 && !GFC_CLASS_TYPE_P (gfc_get_element_type (TREE_TYPE (desc
))))
1588 /* Assignment of a CLASS array constructor to a derived type array. */
1589 if (expr
->expr_type
== EXPR_FUNCTION
)
1590 se
->expr
= gfc_evaluate_now (se
->expr
, pblock
);
1591 se
->expr
= gfc_class_data_get (se
->expr
);
1592 se
->expr
= build_fold_indirect_ref_loc (input_location
, se
->expr
);
1593 se
->expr
= fold_convert (TREE_TYPE (tmp
), se
->expr
);
1594 gfc_add_modify (&se
->pre
, tmp
, se
->expr
);
1598 /* TODO: Should the frontend already have done this conversion? */
1599 se
->expr
= fold_convert (TREE_TYPE (tmp
), se
->expr
);
1600 gfc_add_modify (&se
->pre
, tmp
, se
->expr
);
1603 gfc_add_block_to_block (pblock
, &se
->pre
);
1604 gfc_add_block_to_block (pblock
, &se
->post
);
1608 /* Add the contents of an array to the constructor. DYNAMIC is as for
1609 gfc_trans_array_constructor_value. */
1612 gfc_trans_array_constructor_subarray (stmtblock_t
* pblock
,
1613 tree type ATTRIBUTE_UNUSED
,
1614 tree desc
, gfc_expr
* expr
,
1615 tree
* poffset
, tree
* offsetvar
,
1626 /* We need this to be a variable so we can increment it. */
1627 gfc_put_offset_into_var (pblock
, poffset
, offsetvar
);
1629 gfc_init_se (&se
, NULL
);
1631 /* Walk the array expression. */
1632 ss
= gfc_walk_expr (expr
);
1633 gcc_assert (ss
!= gfc_ss_terminator
);
1635 /* Initialize the scalarizer. */
1636 gfc_init_loopinfo (&loop
);
1637 gfc_add_ss_to_loop (&loop
, ss
);
1639 /* Initialize the loop. */
1640 gfc_conv_ss_startstride (&loop
);
1641 gfc_conv_loop_setup (&loop
, &expr
->where
);
1643 /* Make sure the constructed array has room for the new data. */
1646 /* Set SIZE to the total number of elements in the subarray. */
1647 size
= gfc_index_one_node
;
1648 for (n
= 0; n
< loop
.dimen
; n
++)
1650 tmp
= gfc_get_iteration_count (loop
.from
[n
], loop
.to
[n
],
1651 gfc_index_one_node
);
1652 size
= fold_build2_loc (input_location
, MULT_EXPR
,
1653 gfc_array_index_type
, size
, tmp
);
1656 /* Grow the constructed array by SIZE elements. */
1657 gfc_grow_array (&loop
.pre
, desc
, size
);
1660 /* Make the loop body. */
1661 gfc_mark_ss_chain_used (ss
, 1);
1662 gfc_start_scalarized_body (&loop
, &body
);
1663 gfc_copy_loopinfo_to_se (&se
, &loop
);
1666 gfc_trans_array_ctor_element (&body
, desc
, *poffset
, &se
, expr
);
1667 gcc_assert (se
.ss
== gfc_ss_terminator
);
1669 /* Increment the offset. */
1670 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
1671 *poffset
, gfc_index_one_node
);
1672 gfc_add_modify (&body
, *poffset
, tmp
);
1674 /* Finish the loop. */
1675 gfc_trans_scalarizing_loops (&loop
, &body
);
1676 gfc_add_block_to_block (&loop
.pre
, &loop
.post
);
1677 tmp
= gfc_finish_block (&loop
.pre
);
1678 gfc_add_expr_to_block (pblock
, tmp
);
1680 gfc_cleanup_loop (&loop
);
1684 /* Assign the values to the elements of an array constructor. DYNAMIC
1685 is true if descriptor DESC only contains enough data for the static
1686 size calculated by gfc_get_array_constructor_size. When true, memory
1687 for the dynamic parts must be allocated using realloc. */
1690 gfc_trans_array_constructor_value (stmtblock_t
* pblock
, tree type
,
1691 tree desc
, gfc_constructor_base base
,
1692 tree
* poffset
, tree
* offsetvar
,
1696 tree start
= NULL_TREE
;
1697 tree end
= NULL_TREE
;
1698 tree step
= NULL_TREE
;
1704 tree shadow_loopvar
= NULL_TREE
;
1705 gfc_saved_var saved_loopvar
;
1708 for (c
= gfc_constructor_first (base
); c
; c
= gfc_constructor_next (c
))
1710 /* If this is an iterator or an array, the offset must be a variable. */
1711 if ((c
->iterator
|| c
->expr
->rank
> 0) && INTEGER_CST_P (*poffset
))
1712 gfc_put_offset_into_var (pblock
, poffset
, offsetvar
);
1714 /* Shadowing the iterator avoids changing its value and saves us from
1715 keeping track of it. Further, it makes sure that there's always a
1716 backend-decl for the symbol, even if there wasn't one before,
1717 e.g. in the case of an iterator that appears in a specification
1718 expression in an interface mapping. */
1724 /* Evaluate loop bounds before substituting the loop variable
1725 in case they depend on it. Such a case is invalid, but it is
1726 not more expensive to do the right thing here.
1728 gfc_init_se (&se
, NULL
);
1729 gfc_conv_expr_val (&se
, c
->iterator
->start
);
1730 gfc_add_block_to_block (pblock
, &se
.pre
);
1731 start
= gfc_evaluate_now (se
.expr
, pblock
);
1733 gfc_init_se (&se
, NULL
);
1734 gfc_conv_expr_val (&se
, c
->iterator
->end
);
1735 gfc_add_block_to_block (pblock
, &se
.pre
);
1736 end
= gfc_evaluate_now (se
.expr
, pblock
);
1738 gfc_init_se (&se
, NULL
);
1739 gfc_conv_expr_val (&se
, c
->iterator
->step
);
1740 gfc_add_block_to_block (pblock
, &se
.pre
);
1741 step
= gfc_evaluate_now (se
.expr
, pblock
);
1743 sym
= c
->iterator
->var
->symtree
->n
.sym
;
1744 type
= gfc_typenode_for_spec (&sym
->ts
);
1746 shadow_loopvar
= gfc_create_var (type
, "shadow_loopvar");
1747 gfc_shadow_sym (sym
, shadow_loopvar
, &saved_loopvar
);
1750 gfc_start_block (&body
);
1752 if (c
->expr
->expr_type
== EXPR_ARRAY
)
1754 /* Array constructors can be nested. */
1755 gfc_trans_array_constructor_value (&body
, type
, desc
,
1756 c
->expr
->value
.constructor
,
1757 poffset
, offsetvar
, dynamic
);
1759 else if (c
->expr
->rank
> 0)
1761 gfc_trans_array_constructor_subarray (&body
, type
, desc
, c
->expr
,
1762 poffset
, offsetvar
, dynamic
);
1766 /* This code really upsets the gimplifier so don't bother for now. */
1773 while (p
&& !(p
->iterator
|| p
->expr
->expr_type
!= EXPR_CONSTANT
))
1775 p
= gfc_constructor_next (p
);
1780 /* Scalar values. */
1781 gfc_init_se (&se
, NULL
);
1782 gfc_trans_array_ctor_element (&body
, desc
, *poffset
,
1785 *poffset
= fold_build2_loc (input_location
, PLUS_EXPR
,
1786 gfc_array_index_type
,
1787 *poffset
, gfc_index_one_node
);
1791 /* Collect multiple scalar constants into a constructor. */
1792 vec
<constructor_elt
, va_gc
> *v
= NULL
;
1796 HOST_WIDE_INT idx
= 0;
1799 /* Count the number of consecutive scalar constants. */
1800 while (p
&& !(p
->iterator
1801 || p
->expr
->expr_type
!= EXPR_CONSTANT
))
1803 gfc_init_se (&se
, NULL
);
1804 gfc_conv_constant (&se
, p
->expr
);
1806 if (c
->expr
->ts
.type
!= BT_CHARACTER
)
1807 se
.expr
= fold_convert (type
, se
.expr
);
1808 /* For constant character array constructors we build
1809 an array of pointers. */
1810 else if (POINTER_TYPE_P (type
))
1811 se
.expr
= gfc_build_addr_expr
1812 (gfc_get_pchar_type (p
->expr
->ts
.kind
),
1815 CONSTRUCTOR_APPEND_ELT (v
,
1816 build_int_cst (gfc_array_index_type
,
1820 p
= gfc_constructor_next (p
);
1823 bound
= size_int (n
- 1);
1824 /* Create an array type to hold them. */
1825 tmptype
= build_range_type (gfc_array_index_type
,
1826 gfc_index_zero_node
, bound
);
1827 tmptype
= build_array_type (type
, tmptype
);
1829 init
= build_constructor (tmptype
, v
);
1830 TREE_CONSTANT (init
) = 1;
1831 TREE_STATIC (init
) = 1;
1832 /* Create a static variable to hold the data. */
1833 tmp
= gfc_create_var (tmptype
, "data");
1834 TREE_STATIC (tmp
) = 1;
1835 TREE_CONSTANT (tmp
) = 1;
1836 TREE_READONLY (tmp
) = 1;
1837 DECL_INITIAL (tmp
) = init
;
1840 /* Use BUILTIN_MEMCPY to assign the values. */
1841 tmp
= gfc_conv_descriptor_data_get (desc
);
1842 tmp
= build_fold_indirect_ref_loc (input_location
,
1844 tmp
= gfc_build_array_ref (tmp
, *poffset
, NULL
);
1845 tmp
= gfc_build_addr_expr (NULL_TREE
, tmp
);
1846 init
= gfc_build_addr_expr (NULL_TREE
, init
);
1848 size
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type
));
1849 bound
= build_int_cst (size_type_node
, n
* size
);
1850 tmp
= build_call_expr_loc (input_location
,
1851 builtin_decl_explicit (BUILT_IN_MEMCPY
),
1852 3, tmp
, init
, bound
);
1853 gfc_add_expr_to_block (&body
, tmp
);
1855 *poffset
= fold_build2_loc (input_location
, PLUS_EXPR
,
1856 gfc_array_index_type
, *poffset
,
1857 build_int_cst (gfc_array_index_type
, n
));
1859 if (!INTEGER_CST_P (*poffset
))
1861 gfc_add_modify (&body
, *offsetvar
, *poffset
);
1862 *poffset
= *offsetvar
;
1866 /* The frontend should already have done any expansions
1870 /* Pass the code as is. */
1871 tmp
= gfc_finish_block (&body
);
1872 gfc_add_expr_to_block (pblock
, tmp
);
1876 /* Build the implied do-loop. */
1877 stmtblock_t implied_do_block
;
1883 loopbody
= gfc_finish_block (&body
);
1885 /* Create a new block that holds the implied-do loop. A temporary
1886 loop-variable is used. */
1887 gfc_start_block(&implied_do_block
);
1889 /* Initialize the loop. */
1890 gfc_add_modify (&implied_do_block
, shadow_loopvar
, start
);
1892 /* If this array expands dynamically, and the number of iterations
1893 is not constant, we won't have allocated space for the static
1894 part of C->EXPR's size. Do that now. */
1895 if (dynamic
&& gfc_iterator_has_dynamic_bounds (c
->iterator
))
1897 /* Get the number of iterations. */
1898 tmp
= gfc_get_iteration_count (shadow_loopvar
, end
, step
);
1900 /* Get the static part of C->EXPR's size. */
1901 gfc_get_array_constructor_element_size (&size
, c
->expr
);
1902 tmp2
= gfc_conv_mpz_to_tree (size
, gfc_index_integer_kind
);
1904 /* Grow the array by TMP * TMP2 elements. */
1905 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
1906 gfc_array_index_type
, tmp
, tmp2
);
1907 gfc_grow_array (&implied_do_block
, desc
, tmp
);
1910 /* Generate the loop body. */
1911 exit_label
= gfc_build_label_decl (NULL_TREE
);
1912 gfc_start_block (&body
);
1914 /* Generate the exit condition. Depending on the sign of
1915 the step variable we have to generate the correct
1917 tmp
= fold_build2_loc (input_location
, GT_EXPR
, logical_type_node
,
1918 step
, build_int_cst (TREE_TYPE (step
), 0));
1919 cond
= fold_build3_loc (input_location
, COND_EXPR
,
1920 logical_type_node
, tmp
,
1921 fold_build2_loc (input_location
, GT_EXPR
,
1922 logical_type_node
, shadow_loopvar
, end
),
1923 fold_build2_loc (input_location
, LT_EXPR
,
1924 logical_type_node
, shadow_loopvar
, end
));
1925 tmp
= build1_v (GOTO_EXPR
, exit_label
);
1926 TREE_USED (exit_label
) = 1;
1927 tmp
= build3_v (COND_EXPR
, cond
, tmp
,
1928 build_empty_stmt (input_location
));
1929 gfc_add_expr_to_block (&body
, tmp
);
1931 /* The main loop body. */
1932 gfc_add_expr_to_block (&body
, loopbody
);
1934 /* Increase loop variable by step. */
1935 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
1936 TREE_TYPE (shadow_loopvar
), shadow_loopvar
,
1938 gfc_add_modify (&body
, shadow_loopvar
, tmp
);
1940 /* Finish the loop. */
1941 tmp
= gfc_finish_block (&body
);
1942 tmp
= build1_v (LOOP_EXPR
, tmp
);
1943 gfc_add_expr_to_block (&implied_do_block
, tmp
);
1945 /* Add the exit label. */
1946 tmp
= build1_v (LABEL_EXPR
, exit_label
);
1947 gfc_add_expr_to_block (&implied_do_block
, tmp
);
1949 /* Finish the implied-do loop. */
1950 tmp
= gfc_finish_block(&implied_do_block
);
1951 gfc_add_expr_to_block(pblock
, tmp
);
1953 gfc_restore_sym (c
->iterator
->var
->symtree
->n
.sym
, &saved_loopvar
);
1960 /* The array constructor code can create a string length with an operand
1961 in the form of a temporary variable. This variable will retain its
1962 context (current_function_decl). If we store this length tree in a
1963 gfc_charlen structure which is shared by a variable in another
1964 context, the resulting gfc_charlen structure with a variable in a
1965 different context, we could trip the assertion in expand_expr_real_1
1966 when it sees that a variable has been created in one context and
1967 referenced in another.
1969 If this might be the case, we create a new gfc_charlen structure and
1970 link it into the current namespace. */
1973 store_backend_decl (gfc_charlen
**clp
, tree len
, bool force_new_cl
)
1977 gfc_charlen
*new_cl
= gfc_new_charlen (gfc_current_ns
, *clp
);
1980 (*clp
)->backend_decl
= len
;
1983 /* A catch-all to obtain the string length for anything that is not
1984 a substring of non-constant length, a constant, array or variable. */
1987 get_array_ctor_all_strlen (stmtblock_t
*block
, gfc_expr
*e
, tree
*len
)
1991 /* Don't bother if we already know the length is a constant. */
1992 if (*len
&& INTEGER_CST_P (*len
))
1995 if (!e
->ref
&& e
->ts
.u
.cl
&& e
->ts
.u
.cl
->length
1996 && e
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
)
1999 gfc_conv_const_charlen (e
->ts
.u
.cl
);
2000 *len
= e
->ts
.u
.cl
->backend_decl
;
2004 /* Otherwise, be brutal even if inefficient. */
2005 gfc_init_se (&se
, NULL
);
2007 /* No function call, in case of side effects. */
2008 se
.no_function_call
= 1;
2010 gfc_conv_expr (&se
, e
);
2012 gfc_conv_expr_descriptor (&se
, e
);
2014 /* Fix the value. */
2015 *len
= gfc_evaluate_now (se
.string_length
, &se
.pre
);
2017 gfc_add_block_to_block (block
, &se
.pre
);
2018 gfc_add_block_to_block (block
, &se
.post
);
2020 store_backend_decl (&e
->ts
.u
.cl
, *len
, true);
2025 /* Figure out the string length of a variable reference expression.
2026 Used by get_array_ctor_strlen. */
2029 get_array_ctor_var_strlen (stmtblock_t
*block
, gfc_expr
* expr
, tree
* len
)
2035 /* Don't bother if we already know the length is a constant. */
2036 if (*len
&& INTEGER_CST_P (*len
))
2039 ts
= &expr
->symtree
->n
.sym
->ts
;
2040 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
2045 /* Array references don't change the string length. */
2049 /* Use the length of the component. */
2050 ts
= &ref
->u
.c
.component
->ts
;
2054 if (ref
->u
.ss
.start
->expr_type
!= EXPR_CONSTANT
2055 || ref
->u
.ss
.end
->expr_type
!= EXPR_CONSTANT
)
2057 /* Note that this might evaluate expr. */
2058 get_array_ctor_all_strlen (block
, expr
, len
);
2061 mpz_init_set_ui (char_len
, 1);
2062 mpz_add (char_len
, char_len
, ref
->u
.ss
.end
->value
.integer
);
2063 mpz_sub (char_len
, char_len
, ref
->u
.ss
.start
->value
.integer
);
2064 *len
= gfc_conv_mpz_to_tree_type (char_len
, gfc_charlen_type_node
);
2065 mpz_clear (char_len
);
2073 *len
= ts
->u
.cl
->backend_decl
;
2077 /* Figure out the string length of a character array constructor.
2078 If len is NULL, don't calculate the length; this happens for recursive calls
2079 when a sub-array-constructor is an element but not at the first position,
2080 so when we're not interested in the length.
2081 Returns TRUE if all elements are character constants. */
2084 get_array_ctor_strlen (stmtblock_t
*block
, gfc_constructor_base base
, tree
* len
)
2091 if (gfc_constructor_first (base
) == NULL
)
2094 *len
= build_int_cstu (gfc_charlen_type_node
, 0);
2098 /* Loop over all constructor elements to find out is_const, but in len we
2099 want to store the length of the first, not the last, element. We can
2100 of course exit the loop as soon as is_const is found to be false. */
2101 for (c
= gfc_constructor_first (base
);
2102 c
&& is_const
; c
= gfc_constructor_next (c
))
2104 switch (c
->expr
->expr_type
)
2107 if (len
&& !(*len
&& INTEGER_CST_P (*len
)))
2108 *len
= build_int_cstu (gfc_charlen_type_node
,
2109 c
->expr
->value
.character
.length
);
2113 if (!get_array_ctor_strlen (block
, c
->expr
->value
.constructor
, len
))
2120 get_array_ctor_var_strlen (block
, c
->expr
, len
);
2126 get_array_ctor_all_strlen (block
, c
->expr
, len
);
2130 /* After the first iteration, we don't want the length modified. */
2137 /* Check whether the array constructor C consists entirely of constant
2138 elements, and if so returns the number of those elements, otherwise
2139 return zero. Note, an empty or NULL array constructor returns zero. */
2141 unsigned HOST_WIDE_INT
2142 gfc_constant_array_constructor_p (gfc_constructor_base base
)
2144 unsigned HOST_WIDE_INT nelem
= 0;
2146 gfc_constructor
*c
= gfc_constructor_first (base
);
2150 || c
->expr
->rank
> 0
2151 || c
->expr
->expr_type
!= EXPR_CONSTANT
)
2153 c
= gfc_constructor_next (c
);
2160 /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
2161 and the tree type of it's elements, TYPE, return a static constant
2162 variable that is compile-time initialized. */
2165 gfc_build_constant_array_constructor (gfc_expr
* expr
, tree type
)
2167 tree tmptype
, init
, tmp
;
2168 HOST_WIDE_INT nelem
;
2173 vec
<constructor_elt
, va_gc
> *v
= NULL
;
2175 /* First traverse the constructor list, converting the constants
2176 to tree to build an initializer. */
2178 c
= gfc_constructor_first (expr
->value
.constructor
);
2181 gfc_init_se (&se
, NULL
);
2182 gfc_conv_constant (&se
, c
->expr
);
2183 if (c
->expr
->ts
.type
!= BT_CHARACTER
)
2184 se
.expr
= fold_convert (type
, se
.expr
);
2185 else if (POINTER_TYPE_P (type
))
2186 se
.expr
= gfc_build_addr_expr (gfc_get_pchar_type (c
->expr
->ts
.kind
),
2188 CONSTRUCTOR_APPEND_ELT (v
, build_int_cst (gfc_array_index_type
, nelem
),
2190 c
= gfc_constructor_next (c
);
2194 /* Next determine the tree type for the array. We use the gfortran
2195 front-end's gfc_get_nodesc_array_type in order to create a suitable
2196 GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
2198 memset (&as
, 0, sizeof (gfc_array_spec
));
2200 as
.rank
= expr
->rank
;
2201 as
.type
= AS_EXPLICIT
;
2204 as
.lower
[0] = gfc_get_int_expr (gfc_default_integer_kind
, NULL
, 0);
2205 as
.upper
[0] = gfc_get_int_expr (gfc_default_integer_kind
,
2209 for (i
= 0; i
< expr
->rank
; i
++)
2211 int tmp
= (int) mpz_get_si (expr
->shape
[i
]);
2212 as
.lower
[i
] = gfc_get_int_expr (gfc_default_integer_kind
, NULL
, 0);
2213 as
.upper
[i
] = gfc_get_int_expr (gfc_default_integer_kind
,
2217 tmptype
= gfc_get_nodesc_array_type (type
, &as
, PACKED_STATIC
, true);
2219 /* as is not needed anymore. */
2220 for (i
= 0; i
< as
.rank
+ as
.corank
; i
++)
2222 gfc_free_expr (as
.lower
[i
]);
2223 gfc_free_expr (as
.upper
[i
]);
2226 init
= build_constructor (tmptype
, v
);
2228 TREE_CONSTANT (init
) = 1;
2229 TREE_STATIC (init
) = 1;
2231 tmp
= build_decl (input_location
, VAR_DECL
, create_tmp_var_name ("A"),
2233 DECL_ARTIFICIAL (tmp
) = 1;
2234 DECL_IGNORED_P (tmp
) = 1;
2235 TREE_STATIC (tmp
) = 1;
2236 TREE_CONSTANT (tmp
) = 1;
2237 TREE_READONLY (tmp
) = 1;
2238 DECL_INITIAL (tmp
) = init
;
2245 /* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
2246 This mostly initializes the scalarizer state info structure with the
2247 appropriate values to directly use the array created by the function
2248 gfc_build_constant_array_constructor. */
2251 trans_constant_array_constructor (gfc_ss
* ss
, tree type
)
2253 gfc_array_info
*info
;
2257 tmp
= gfc_build_constant_array_constructor (ss
->info
->expr
, type
);
2259 info
= &ss
->info
->data
.array
;
2261 info
->descriptor
= tmp
;
2262 info
->data
= gfc_build_addr_expr (NULL_TREE
, tmp
);
2263 info
->offset
= gfc_index_zero_node
;
2265 for (i
= 0; i
< ss
->dimen
; i
++)
2267 info
->delta
[i
] = gfc_index_zero_node
;
2268 info
->start
[i
] = gfc_index_zero_node
;
2269 info
->end
[i
] = gfc_index_zero_node
;
2270 info
->stride
[i
] = gfc_index_one_node
;
2276 get_rank (gfc_loopinfo
*loop
)
2281 for (; loop
; loop
= loop
->parent
)
2282 rank
+= loop
->dimen
;
2288 /* Helper routine of gfc_trans_array_constructor to determine if the
2289 bounds of the loop specified by LOOP are constant and simple enough
2290 to use with trans_constant_array_constructor. Returns the
2291 iteration count of the loop if suitable, and NULL_TREE otherwise. */
2294 constant_array_constructor_loop_size (gfc_loopinfo
* l
)
2297 tree size
= gfc_index_one_node
;
2301 total_dim
= get_rank (l
);
2303 for (loop
= l
; loop
; loop
= loop
->parent
)
2305 for (i
= 0; i
< loop
->dimen
; i
++)
2307 /* If the bounds aren't constant, return NULL_TREE. */
2308 if (!INTEGER_CST_P (loop
->from
[i
]) || !INTEGER_CST_P (loop
->to
[i
]))
2310 if (!integer_zerop (loop
->from
[i
]))
2312 /* Only allow nonzero "from" in one-dimensional arrays. */
2315 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
2316 gfc_array_index_type
,
2317 loop
->to
[i
], loop
->from
[i
]);
2321 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
2322 gfc_array_index_type
, tmp
, gfc_index_one_node
);
2323 size
= fold_build2_loc (input_location
, MULT_EXPR
,
2324 gfc_array_index_type
, size
, tmp
);
2333 get_loop_upper_bound_for_array (gfc_ss
*array
, int array_dim
)
2338 gcc_assert (array
->nested_ss
== NULL
);
2340 for (ss
= array
; ss
; ss
= ss
->parent
)
2341 for (n
= 0; n
< ss
->loop
->dimen
; n
++)
2342 if (array_dim
== get_array_ref_dim_for_loop_dim (ss
, n
))
2343 return &(ss
->loop
->to
[n
]);
2349 static gfc_loopinfo
*
2350 outermost_loop (gfc_loopinfo
* loop
)
2352 while (loop
->parent
!= NULL
)
2353 loop
= loop
->parent
;
2359 /* Array constructors are handled by constructing a temporary, then using that
2360 within the scalarization loop. This is not optimal, but seems by far the
2364 trans_array_constructor (gfc_ss
* ss
, locus
* where
)
2366 gfc_constructor_base c
;
2374 bool old_first_len
, old_typespec_chararray_ctor
;
2375 tree old_first_len_val
;
2376 gfc_loopinfo
*loop
, *outer_loop
;
2377 gfc_ss_info
*ss_info
;
2383 /* Save the old values for nested checking. */
2384 old_first_len
= first_len
;
2385 old_first_len_val
= first_len_val
;
2386 old_typespec_chararray_ctor
= typespec_chararray_ctor
;
2389 outer_loop
= outermost_loop (loop
);
2391 expr
= ss_info
->expr
;
2393 /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
2394 typespec was given for the array constructor. */
2395 typespec_chararray_ctor
= (expr
->ts
.type
== BT_CHARACTER
2397 && expr
->ts
.u
.cl
->length_from_typespec
);
2399 if ((gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
2400 && expr
->ts
.type
== BT_CHARACTER
&& !typespec_chararray_ctor
)
2402 first_len_val
= gfc_create_var (gfc_charlen_type_node
, "len");
2406 gcc_assert (ss
->dimen
== ss
->loop
->dimen
);
2408 c
= expr
->value
.constructor
;
2409 if (expr
->ts
.type
== BT_CHARACTER
)
2412 bool force_new_cl
= false;
2414 /* get_array_ctor_strlen walks the elements of the constructor, if a
2415 typespec was given, we already know the string length and want the one
2417 if (typespec_chararray_ctor
&& expr
->ts
.u
.cl
->length
2418 && expr
->ts
.u
.cl
->length
->expr_type
!= EXPR_CONSTANT
)
2422 const_string
= false;
2423 gfc_init_se (&length_se
, NULL
);
2424 gfc_conv_expr_type (&length_se
, expr
->ts
.u
.cl
->length
,
2425 gfc_charlen_type_node
);
2426 ss_info
->string_length
= length_se
.expr
;
2428 /* Check if the character length is negative. If it is, then
2430 neg_len
= fold_build2_loc (input_location
, LT_EXPR
,
2431 logical_type_node
, ss_info
->string_length
,
2432 build_zero_cst (TREE_TYPE
2433 (ss_info
->string_length
)));
2434 /* Print a warning if bounds checking is enabled. */
2435 if (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
2437 msg
= xasprintf ("Negative character length treated as LEN = 0");
2438 gfc_trans_runtime_check (false, true, neg_len
, &length_se
.pre
,
2443 ss_info
->string_length
2444 = fold_build3_loc (input_location
, COND_EXPR
,
2445 gfc_charlen_type_node
, neg_len
,
2447 (TREE_TYPE (ss_info
->string_length
)),
2448 ss_info
->string_length
);
2449 ss_info
->string_length
= gfc_evaluate_now (ss_info
->string_length
,
2452 gfc_add_block_to_block (&outer_loop
->pre
, &length_se
.pre
);
2453 gfc_add_block_to_block (&outer_loop
->post
, &length_se
.post
);
2457 const_string
= get_array_ctor_strlen (&outer_loop
->pre
, c
,
2458 &ss_info
->string_length
);
2459 force_new_cl
= true;
2462 /* Complex character array constructors should have been taken care of
2463 and not end up here. */
2464 gcc_assert (ss_info
->string_length
);
2466 store_backend_decl (&expr
->ts
.u
.cl
, ss_info
->string_length
, force_new_cl
);
2468 type
= gfc_get_character_type_len (expr
->ts
.kind
, ss_info
->string_length
);
2470 type
= build_pointer_type (type
);
2473 type
= gfc_typenode_for_spec (expr
->ts
.type
== BT_CLASS
2474 ? &CLASS_DATA (expr
)->ts
: &expr
->ts
);
2476 /* See if the constructor determines the loop bounds. */
2479 loop_ubound0
= get_loop_upper_bound_for_array (ss
, 0);
2481 if (expr
->shape
&& get_rank (loop
) > 1 && *loop_ubound0
== NULL_TREE
)
2483 /* We have a multidimensional parameter. */
2484 for (s
= ss
; s
; s
= s
->parent
)
2487 for (n
= 0; n
< s
->loop
->dimen
; n
++)
2489 s
->loop
->from
[n
] = gfc_index_zero_node
;
2490 s
->loop
->to
[n
] = gfc_conv_mpz_to_tree (expr
->shape
[s
->dim
[n
]],
2491 gfc_index_integer_kind
);
2492 s
->loop
->to
[n
] = fold_build2_loc (input_location
, MINUS_EXPR
,
2493 gfc_array_index_type
,
2495 gfc_index_one_node
);
2500 if (*loop_ubound0
== NULL_TREE
)
2504 /* We should have a 1-dimensional, zero-based loop. */
2505 gcc_assert (loop
->parent
== NULL
&& loop
->nested
== NULL
);
2506 gcc_assert (loop
->dimen
== 1);
2507 gcc_assert (integer_zerop (loop
->from
[0]));
2509 /* Split the constructor size into a static part and a dynamic part.
2510 Allocate the static size up-front and record whether the dynamic
2511 size might be nonzero. */
2513 dynamic
= gfc_get_array_constructor_size (&size
, c
);
2514 mpz_sub_ui (size
, size
, 1);
2515 loop
->to
[0] = gfc_conv_mpz_to_tree (size
, gfc_index_integer_kind
);
2519 /* Special case constant array constructors. */
2522 unsigned HOST_WIDE_INT nelem
= gfc_constant_array_constructor_p (c
);
2525 tree size
= constant_array_constructor_loop_size (loop
);
2526 if (size
&& compare_tree_int (size
, nelem
) == 0)
2528 trans_constant_array_constructor (ss
, type
);
2534 gfc_trans_create_temp_array (&outer_loop
->pre
, &outer_loop
->post
, ss
, type
,
2535 NULL_TREE
, dynamic
, true, false, where
);
2537 desc
= ss_info
->data
.array
.descriptor
;
2538 offset
= gfc_index_zero_node
;
2539 offsetvar
= gfc_create_var_np (gfc_array_index_type
, "offset");
2540 TREE_NO_WARNING (offsetvar
) = 1;
2541 TREE_USED (offsetvar
) = 0;
2542 gfc_trans_array_constructor_value (&outer_loop
->pre
, type
, desc
, c
,
2543 &offset
, &offsetvar
, dynamic
);
2545 /* If the array grows dynamically, the upper bound of the loop variable
2546 is determined by the array's final upper bound. */
2549 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
2550 gfc_array_index_type
,
2551 offsetvar
, gfc_index_one_node
);
2552 tmp
= gfc_evaluate_now (tmp
, &outer_loop
->pre
);
2553 gfc_conv_descriptor_ubound_set (&loop
->pre
, desc
, gfc_rank_cst
[0], tmp
);
2554 if (*loop_ubound0
&& VAR_P (*loop_ubound0
))
2555 gfc_add_modify (&outer_loop
->pre
, *loop_ubound0
, tmp
);
2557 *loop_ubound0
= tmp
;
2560 if (TREE_USED (offsetvar
))
2561 pushdecl (offsetvar
);
2563 gcc_assert (INTEGER_CST_P (offset
));
2566 /* Disable bound checking for now because it's probably broken. */
2567 if (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
2574 /* Restore old values of globals. */
2575 first_len
= old_first_len
;
2576 first_len_val
= old_first_len_val
;
2577 typespec_chararray_ctor
= old_typespec_chararray_ctor
;
2581 /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
2582 called after evaluating all of INFO's vector dimensions. Go through
2583 each such vector dimension and see if we can now fill in any missing
2587 set_vector_loop_bounds (gfc_ss
* ss
)
2589 gfc_loopinfo
*loop
, *outer_loop
;
2590 gfc_array_info
*info
;
2598 outer_loop
= outermost_loop (ss
->loop
);
2600 info
= &ss
->info
->data
.array
;
2602 for (; ss
; ss
= ss
->parent
)
2606 for (n
= 0; n
< loop
->dimen
; n
++)
2609 if (info
->ref
->u
.ar
.dimen_type
[dim
] != DIMEN_VECTOR
2610 || loop
->to
[n
] != NULL
)
2613 /* Loop variable N indexes vector dimension DIM, and we don't
2614 yet know the upper bound of loop variable N. Set it to the
2615 difference between the vector's upper and lower bounds. */
2616 gcc_assert (loop
->from
[n
] == gfc_index_zero_node
);
2617 gcc_assert (info
->subscript
[dim
]
2618 && info
->subscript
[dim
]->info
->type
== GFC_SS_VECTOR
);
2620 gfc_init_se (&se
, NULL
);
2621 desc
= info
->subscript
[dim
]->info
->data
.array
.descriptor
;
2622 zero
= gfc_rank_cst
[0];
2623 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
2624 gfc_array_index_type
,
2625 gfc_conv_descriptor_ubound_get (desc
, zero
),
2626 gfc_conv_descriptor_lbound_get (desc
, zero
));
2627 tmp
= gfc_evaluate_now (tmp
, &outer_loop
->pre
);
2634 /* Tells whether a scalar argument to an elemental procedure is saved out
2635 of a scalarization loop as a value or as a reference. */
2638 gfc_scalar_elemental_arg_saved_as_reference (gfc_ss_info
* ss_info
)
2640 if (ss_info
->type
!= GFC_SS_REFERENCE
)
2643 /* If the actual argument can be absent (in other words, it can
2644 be a NULL reference), don't try to evaluate it; pass instead
2645 the reference directly. */
2646 if (ss_info
->can_be_null_ref
)
2649 /* If the expression is of polymorphic type, it's actual size is not known,
2650 so we avoid copying it anywhere. */
2651 if (ss_info
->data
.scalar
.dummy_arg
2652 && ss_info
->data
.scalar
.dummy_arg
->ts
.type
== BT_CLASS
2653 && ss_info
->expr
->ts
.type
== BT_CLASS
)
2656 /* If the expression is a data reference of aggregate type,
2657 and the data reference is not used on the left hand side,
2658 avoid a copy by saving a reference to the content. */
2659 if (!ss_info
->data
.scalar
.needs_temporary
2660 && (ss_info
->expr
->ts
.type
== BT_DERIVED
2661 || ss_info
->expr
->ts
.type
== BT_CLASS
)
2662 && gfc_expr_is_variable (ss_info
->expr
))
2665 /* Otherwise the expression is evaluated to a temporary variable before the
2666 scalarization loop. */
2671 /* Add the pre and post chains for all the scalar expressions in a SS chain
2672 to loop. This is called after the loop parameters have been calculated,
2673 but before the actual scalarizing loops. */
2676 gfc_add_loop_ss_code (gfc_loopinfo
* loop
, gfc_ss
* ss
, bool subscript
,
2679 gfc_loopinfo
*nested_loop
, *outer_loop
;
2681 gfc_ss_info
*ss_info
;
2682 gfc_array_info
*info
;
2686 /* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise,
2687 arguments could get evaluated multiple times. */
2688 if (ss
->is_alloc_lhs
)
2691 outer_loop
= outermost_loop (loop
);
2693 /* TODO: This can generate bad code if there are ordering dependencies,
2694 e.g., a callee allocated function and an unknown size constructor. */
2695 gcc_assert (ss
!= NULL
);
2697 for (; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
2701 /* Cross loop arrays are handled from within the most nested loop. */
2702 if (ss
->nested_ss
!= NULL
)
2706 expr
= ss_info
->expr
;
2707 info
= &ss_info
->data
.array
;
2709 switch (ss_info
->type
)
2712 /* Scalar expression. Evaluate this now. This includes elemental
2713 dimension indices, but not array section bounds. */
2714 gfc_init_se (&se
, NULL
);
2715 gfc_conv_expr (&se
, expr
);
2716 gfc_add_block_to_block (&outer_loop
->pre
, &se
.pre
);
2718 if (expr
->ts
.type
!= BT_CHARACTER
2719 && !gfc_is_alloc_class_scalar_function (expr
))
2721 /* Move the evaluation of scalar expressions outside the
2722 scalarization loop, except for WHERE assignments. */
2724 se
.expr
= convert(gfc_array_index_type
, se
.expr
);
2725 if (!ss_info
->where
)
2726 se
.expr
= gfc_evaluate_now (se
.expr
, &outer_loop
->pre
);
2727 gfc_add_block_to_block (&outer_loop
->pre
, &se
.post
);
2730 gfc_add_block_to_block (&outer_loop
->post
, &se
.post
);
2732 ss_info
->data
.scalar
.value
= se
.expr
;
2733 ss_info
->string_length
= se
.string_length
;
2736 case GFC_SS_REFERENCE
:
2737 /* Scalar argument to elemental procedure. */
2738 gfc_init_se (&se
, NULL
);
2739 if (gfc_scalar_elemental_arg_saved_as_reference (ss_info
))
2740 gfc_conv_expr_reference (&se
, expr
);
2743 /* Evaluate the argument outside the loop and pass
2744 a reference to the value. */
2745 gfc_conv_expr (&se
, expr
);
2748 /* Ensure that a pointer to the string is stored. */
2749 if (expr
->ts
.type
== BT_CHARACTER
)
2750 gfc_conv_string_parameter (&se
);
2752 gfc_add_block_to_block (&outer_loop
->pre
, &se
.pre
);
2753 gfc_add_block_to_block (&outer_loop
->post
, &se
.post
);
2754 if (gfc_is_class_scalar_expr (expr
))
2755 /* This is necessary because the dynamic type will always be
2756 large than the declared type. In consequence, assigning
2757 the value to a temporary could segfault.
2758 OOP-TODO: see if this is generally correct or is the value
2759 has to be written to an allocated temporary, whose address
2760 is passed via ss_info. */
2761 ss_info
->data
.scalar
.value
= se
.expr
;
2763 ss_info
->data
.scalar
.value
= gfc_evaluate_now (se
.expr
,
2766 ss_info
->string_length
= se
.string_length
;
2769 case GFC_SS_SECTION
:
2770 /* Add the expressions for scalar and vector subscripts. */
2771 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
2772 if (info
->subscript
[n
])
2773 gfc_add_loop_ss_code (loop
, info
->subscript
[n
], true, where
);
2775 set_vector_loop_bounds (ss
);
2779 /* Get the vector's descriptor and store it in SS. */
2780 gfc_init_se (&se
, NULL
);
2781 gfc_conv_expr_descriptor (&se
, expr
);
2782 gfc_add_block_to_block (&outer_loop
->pre
, &se
.pre
);
2783 gfc_add_block_to_block (&outer_loop
->post
, &se
.post
);
2784 info
->descriptor
= se
.expr
;
2787 case GFC_SS_INTRINSIC
:
2788 gfc_add_intrinsic_ss_code (loop
, ss
);
2791 case GFC_SS_FUNCTION
:
2792 /* Array function return value. We call the function and save its
2793 result in a temporary for use inside the loop. */
2794 gfc_init_se (&se
, NULL
);
2797 if (gfc_is_class_array_function (expr
))
2798 expr
->must_finalize
= 1;
2799 gfc_conv_expr (&se
, expr
);
2800 gfc_add_block_to_block (&outer_loop
->pre
, &se
.pre
);
2801 gfc_add_block_to_block (&outer_loop
->post
, &se
.post
);
2802 ss_info
->string_length
= se
.string_length
;
2805 case GFC_SS_CONSTRUCTOR
:
2806 if (expr
->ts
.type
== BT_CHARACTER
2807 && ss_info
->string_length
== NULL
2809 && expr
->ts
.u
.cl
->length
2810 && expr
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
)
2812 gfc_init_se (&se
, NULL
);
2813 gfc_conv_expr_type (&se
, expr
->ts
.u
.cl
->length
,
2814 gfc_charlen_type_node
);
2815 ss_info
->string_length
= se
.expr
;
2816 gfc_add_block_to_block (&outer_loop
->pre
, &se
.pre
);
2817 gfc_add_block_to_block (&outer_loop
->post
, &se
.post
);
2819 trans_array_constructor (ss
, where
);
2823 case GFC_SS_COMPONENT
:
2824 /* Do nothing. These are handled elsewhere. */
2833 for (nested_loop
= loop
->nested
; nested_loop
;
2834 nested_loop
= nested_loop
->next
)
2835 gfc_add_loop_ss_code (nested_loop
, nested_loop
->ss
, subscript
, where
);
2839 /* Translate expressions for the descriptor and data pointer of a SS. */
2843 gfc_conv_ss_descriptor (stmtblock_t
* block
, gfc_ss
* ss
, int base
)
2846 gfc_ss_info
*ss_info
;
2847 gfc_array_info
*info
;
2851 info
= &ss_info
->data
.array
;
2853 /* Get the descriptor for the array to be scalarized. */
2854 gcc_assert (ss_info
->expr
->expr_type
== EXPR_VARIABLE
);
2855 gfc_init_se (&se
, NULL
);
2856 se
.descriptor_only
= 1;
2857 gfc_conv_expr_lhs (&se
, ss_info
->expr
);
2858 gfc_add_block_to_block (block
, &se
.pre
);
2859 info
->descriptor
= se
.expr
;
2860 ss_info
->string_length
= se
.string_length
;
2864 if (ss_info
->expr
->ts
.type
== BT_CHARACTER
&& !ss_info
->expr
->ts
.deferred
2865 && ss_info
->expr
->ts
.u
.cl
->length
== NULL
)
2867 /* Emit a DECL_EXPR for the variable sized array type in
2868 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
2869 sizes works correctly. */
2870 tree arraytype
= TREE_TYPE (
2871 GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (info
->descriptor
)));
2872 if (! TYPE_NAME (arraytype
))
2873 TYPE_NAME (arraytype
) = build_decl (UNKNOWN_LOCATION
, TYPE_DECL
,
2874 NULL_TREE
, arraytype
);
2875 gfc_add_expr_to_block (block
, build1 (DECL_EXPR
, arraytype
,
2876 TYPE_NAME (arraytype
)));
2878 /* Also the data pointer. */
2879 tmp
= gfc_conv_array_data (se
.expr
);
2880 /* If this is a variable or address of a variable we use it directly.
2881 Otherwise we must evaluate it now to avoid breaking dependency
2882 analysis by pulling the expressions for elemental array indices
2885 || (TREE_CODE (tmp
) == ADDR_EXPR
2886 && DECL_P (TREE_OPERAND (tmp
, 0)))))
2887 tmp
= gfc_evaluate_now (tmp
, block
);
2890 tmp
= gfc_conv_array_offset (se
.expr
);
2891 info
->offset
= gfc_evaluate_now (tmp
, block
);
2893 /* Make absolutely sure that the saved_offset is indeed saved
2894 so that the variable is still accessible after the loops
2896 info
->saved_offset
= info
->offset
;
2901 /* Initialize a gfc_loopinfo structure. */
2904 gfc_init_loopinfo (gfc_loopinfo
* loop
)
2908 memset (loop
, 0, sizeof (gfc_loopinfo
));
2909 gfc_init_block (&loop
->pre
);
2910 gfc_init_block (&loop
->post
);
2912 /* Initially scalarize in order and default to no loop reversal. */
2913 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
2916 loop
->reverse
[n
] = GFC_INHIBIT_REVERSE
;
2919 loop
->ss
= gfc_ss_terminator
;
2923 /* Copies the loop variable info to a gfc_se structure. Does not copy the SS
2927 gfc_copy_loopinfo_to_se (gfc_se
* se
, gfc_loopinfo
* loop
)
2933 /* Return an expression for the data pointer of an array. */
2936 gfc_conv_array_data (tree descriptor
)
2940 type
= TREE_TYPE (descriptor
);
2941 if (GFC_ARRAY_TYPE_P (type
))
2943 if (TREE_CODE (type
) == POINTER_TYPE
)
2947 /* Descriptorless arrays. */
2948 return gfc_build_addr_expr (NULL_TREE
, descriptor
);
2952 return gfc_conv_descriptor_data_get (descriptor
);
2956 /* Return an expression for the base offset of an array. */
2959 gfc_conv_array_offset (tree descriptor
)
2963 type
= TREE_TYPE (descriptor
);
2964 if (GFC_ARRAY_TYPE_P (type
))
2965 return GFC_TYPE_ARRAY_OFFSET (type
);
2967 return gfc_conv_descriptor_offset_get (descriptor
);
2971 /* Get an expression for the array stride. */
2974 gfc_conv_array_stride (tree descriptor
, int dim
)
2979 type
= TREE_TYPE (descriptor
);
2981 /* For descriptorless arrays use the array size. */
2982 tmp
= GFC_TYPE_ARRAY_STRIDE (type
, dim
);
2983 if (tmp
!= NULL_TREE
)
2986 tmp
= gfc_conv_descriptor_stride_get (descriptor
, gfc_rank_cst
[dim
]);
2991 /* Like gfc_conv_array_stride, but for the lower bound. */
2994 gfc_conv_array_lbound (tree descriptor
, int dim
)
2999 type
= TREE_TYPE (descriptor
);
3001 tmp
= GFC_TYPE_ARRAY_LBOUND (type
, dim
);
3002 if (tmp
!= NULL_TREE
)
3005 tmp
= gfc_conv_descriptor_lbound_get (descriptor
, gfc_rank_cst
[dim
]);
3010 /* Like gfc_conv_array_stride, but for the upper bound. */
3013 gfc_conv_array_ubound (tree descriptor
, int dim
)
3018 type
= TREE_TYPE (descriptor
);
3020 tmp
= GFC_TYPE_ARRAY_UBOUND (type
, dim
);
3021 if (tmp
!= NULL_TREE
)
3024 /* This should only ever happen when passing an assumed shape array
3025 as an actual parameter. The value will never be used. */
3026 if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor
)))
3027 return gfc_index_zero_node
;
3029 tmp
= gfc_conv_descriptor_ubound_get (descriptor
, gfc_rank_cst
[dim
]);
3034 /* Generate code to perform an array index bound check. */
3037 trans_array_bound_check (gfc_se
* se
, gfc_ss
*ss
, tree index
, int n
,
3038 locus
* where
, bool check_upper
)
3041 tree tmp_lo
, tmp_up
;
3044 const char * name
= NULL
;
3046 if (!(gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
))
3049 descriptor
= ss
->info
->data
.array
.descriptor
;
3051 index
= gfc_evaluate_now (index
, &se
->pre
);
3053 /* We find a name for the error message. */
3054 name
= ss
->info
->expr
->symtree
->n
.sym
->name
;
3055 gcc_assert (name
!= NULL
);
3057 if (VAR_P (descriptor
))
3058 name
= IDENTIFIER_POINTER (DECL_NAME (descriptor
));
3060 /* If upper bound is present, include both bounds in the error message. */
3063 tmp_lo
= gfc_conv_array_lbound (descriptor
, n
);
3064 tmp_up
= gfc_conv_array_ubound (descriptor
, n
);
3067 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3068 "outside of expected range (%%ld:%%ld)", n
+1, name
);
3070 msg
= xasprintf ("Index '%%ld' of dimension %d "
3071 "outside of expected range (%%ld:%%ld)", n
+1);
3073 fault
= fold_build2_loc (input_location
, LT_EXPR
, logical_type_node
,
3075 gfc_trans_runtime_check (true, false, fault
, &se
->pre
, where
, msg
,
3076 fold_convert (long_integer_type_node
, index
),
3077 fold_convert (long_integer_type_node
, tmp_lo
),
3078 fold_convert (long_integer_type_node
, tmp_up
));
3079 fault
= fold_build2_loc (input_location
, GT_EXPR
, logical_type_node
,
3081 gfc_trans_runtime_check (true, false, fault
, &se
->pre
, where
, msg
,
3082 fold_convert (long_integer_type_node
, index
),
3083 fold_convert (long_integer_type_node
, tmp_lo
),
3084 fold_convert (long_integer_type_node
, tmp_up
));
3089 tmp_lo
= gfc_conv_array_lbound (descriptor
, n
);
3092 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3093 "below lower bound of %%ld", n
+1, name
);
3095 msg
= xasprintf ("Index '%%ld' of dimension %d "
3096 "below lower bound of %%ld", n
+1);
3098 fault
= fold_build2_loc (input_location
, LT_EXPR
, logical_type_node
,
3100 gfc_trans_runtime_check (true, false, fault
, &se
->pre
, where
, msg
,
3101 fold_convert (long_integer_type_node
, index
),
3102 fold_convert (long_integer_type_node
, tmp_lo
));
3110 /* Return the offset for an index. Performs bound checking for elemental
3111 dimensions. Single element references are processed separately.
3112 DIM is the array dimension, I is the loop dimension. */
3115 conv_array_index_offset (gfc_se
* se
, gfc_ss
* ss
, int dim
, int i
,
3116 gfc_array_ref
* ar
, tree stride
)
3118 gfc_array_info
*info
;
3123 info
= &ss
->info
->data
.array
;
3125 /* Get the index into the array for this dimension. */
3128 gcc_assert (ar
->type
!= AR_ELEMENT
);
3129 switch (ar
->dimen_type
[dim
])
3131 case DIMEN_THIS_IMAGE
:
3135 /* Elemental dimension. */
3136 gcc_assert (info
->subscript
[dim
]
3137 && info
->subscript
[dim
]->info
->type
== GFC_SS_SCALAR
);
3138 /* We've already translated this value outside the loop. */
3139 index
= info
->subscript
[dim
]->info
->data
.scalar
.value
;
3141 index
= trans_array_bound_check (se
, ss
, index
, dim
, &ar
->where
,
3142 ar
->as
->type
!= AS_ASSUMED_SIZE
3143 || dim
< ar
->dimen
- 1);
3147 gcc_assert (info
&& se
->loop
);
3148 gcc_assert (info
->subscript
[dim
]
3149 && info
->subscript
[dim
]->info
->type
== GFC_SS_VECTOR
);
3150 desc
= info
->subscript
[dim
]->info
->data
.array
.descriptor
;
3152 /* Get a zero-based index into the vector. */
3153 index
= fold_build2_loc (input_location
, MINUS_EXPR
,
3154 gfc_array_index_type
,
3155 se
->loop
->loopvar
[i
], se
->loop
->from
[i
]);
3157 /* Multiply the index by the stride. */
3158 index
= fold_build2_loc (input_location
, MULT_EXPR
,
3159 gfc_array_index_type
,
3160 index
, gfc_conv_array_stride (desc
, 0));
3162 /* Read the vector to get an index into info->descriptor. */
3163 data
= build_fold_indirect_ref_loc (input_location
,
3164 gfc_conv_array_data (desc
));
3165 index
= gfc_build_array_ref (data
, index
, NULL
);
3166 index
= gfc_evaluate_now (index
, &se
->pre
);
3167 index
= fold_convert (gfc_array_index_type
, index
);
3169 /* Do any bounds checking on the final info->descriptor index. */
3170 index
= trans_array_bound_check (se
, ss
, index
, dim
, &ar
->where
,
3171 ar
->as
->type
!= AS_ASSUMED_SIZE
3172 || dim
< ar
->dimen
- 1);
3176 /* Scalarized dimension. */
3177 gcc_assert (info
&& se
->loop
);
3179 /* Multiply the loop variable by the stride and delta. */
3180 index
= se
->loop
->loopvar
[i
];
3181 if (!integer_onep (info
->stride
[dim
]))
3182 index
= fold_build2_loc (input_location
, MULT_EXPR
,
3183 gfc_array_index_type
, index
,
3185 if (!integer_zerop (info
->delta
[dim
]))
3186 index
= fold_build2_loc (input_location
, PLUS_EXPR
,
3187 gfc_array_index_type
, index
,
3197 /* Temporary array or derived type component. */
3198 gcc_assert (se
->loop
);
3199 index
= se
->loop
->loopvar
[se
->loop
->order
[i
]];
3201 /* Pointer functions can have stride[0] different from unity.
3202 Use the stride returned by the function call and stored in
3203 the descriptor for the temporary. */
3204 if (se
->ss
&& se
->ss
->info
->type
== GFC_SS_FUNCTION
3205 && se
->ss
->info
->expr
3206 && se
->ss
->info
->expr
->symtree
3207 && se
->ss
->info
->expr
->symtree
->n
.sym
->result
3208 && se
->ss
->info
->expr
->symtree
->n
.sym
->result
->attr
.pointer
)
3209 stride
= gfc_conv_descriptor_stride_get (info
->descriptor
,
3212 if (info
->delta
[dim
] && !integer_zerop (info
->delta
[dim
]))
3213 index
= fold_build2_loc (input_location
, PLUS_EXPR
,
3214 gfc_array_index_type
, index
, info
->delta
[dim
]);
3217 /* Multiply by the stride. */
3218 if (stride
!= NULL
&& !integer_onep (stride
))
3219 index
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
3226 /* Build a scalarized array reference using the vptr 'size'. */
3229 build_class_array_ref (gfc_se
*se
, tree base
, tree index
)
3234 tree decl
= NULL_TREE
;
3236 gfc_expr
*expr
= se
->ss
->info
->expr
;
3238 gfc_ref
*class_ref
= NULL
;
3241 if (se
->expr
&& DECL_P (se
->expr
) && DECL_LANG_SPECIFIC (se
->expr
)
3242 && GFC_DECL_SAVED_DESCRIPTOR (se
->expr
)
3243 && GFC_CLASS_TYPE_P (TREE_TYPE (GFC_DECL_SAVED_DESCRIPTOR (se
->expr
))))
3248 || (expr
->ts
.type
!= BT_CLASS
3249 && !gfc_is_class_array_function (expr
)
3250 && !gfc_is_class_array_ref (expr
, NULL
)))
3253 if (expr
->symtree
&& expr
->symtree
->n
.sym
->ts
.type
== BT_CLASS
)
3254 ts
= &expr
->symtree
->n
.sym
->ts
;
3258 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
3260 if (ref
->type
== REF_COMPONENT
3261 && ref
->u
.c
.component
->ts
.type
== BT_CLASS
3262 && ref
->next
&& ref
->next
->type
== REF_COMPONENT
3263 && strcmp (ref
->next
->u
.c
.component
->name
, "_data") == 0
3265 && ref
->next
->next
->type
== REF_ARRAY
3266 && ref
->next
->next
->u
.ar
.type
!= AR_ELEMENT
)
3268 ts
= &ref
->u
.c
.component
->ts
;
3278 if (class_ref
== NULL
&& expr
&& expr
->symtree
->n
.sym
->attr
.function
3279 && expr
->symtree
->n
.sym
== expr
->symtree
->n
.sym
->result
3280 && expr
->symtree
->n
.sym
->backend_decl
== current_function_decl
)
3282 decl
= gfc_get_fake_result_decl (expr
->symtree
->n
.sym
, 0);
3284 else if (expr
&& gfc_is_class_array_function (expr
))
3288 for (tmp
= base
; tmp
; tmp
= TREE_OPERAND (tmp
, 0))
3291 type
= TREE_TYPE (tmp
);
3294 if (GFC_CLASS_TYPE_P (type
))
3296 if (type
!= TYPE_CANONICAL (type
))
3297 type
= TYPE_CANONICAL (type
);
3305 if (decl
== NULL_TREE
)
3308 se
->class_vptr
= gfc_evaluate_now (gfc_class_vptr_get (decl
), &se
->pre
);
3310 else if (class_ref
== NULL
)
3312 if (decl
== NULL_TREE
)
3313 decl
= expr
->symtree
->n
.sym
->backend_decl
;
3314 /* For class arrays the tree containing the class is stored in
3315 GFC_DECL_SAVED_DESCRIPTOR of the sym's backend_decl.
3316 For all others it's sym's backend_decl directly. */
3317 if (DECL_LANG_SPECIFIC (decl
) && GFC_DECL_SAVED_DESCRIPTOR (decl
))
3318 decl
= GFC_DECL_SAVED_DESCRIPTOR (decl
);
3322 /* Remove everything after the last class reference, convert the
3323 expression and then recover its tailend once more. */
3325 ref
= class_ref
->next
;
3326 class_ref
->next
= NULL
;
3327 gfc_init_se (&tmpse
, NULL
);
3328 gfc_conv_expr (&tmpse
, expr
);
3329 gfc_add_block_to_block (&se
->pre
, &tmpse
.pre
);
3331 class_ref
->next
= ref
;
3334 if (POINTER_TYPE_P (TREE_TYPE (decl
)))
3335 decl
= build_fold_indirect_ref_loc (input_location
, decl
);
3337 if (!GFC_CLASS_TYPE_P (TREE_TYPE (decl
)))
3340 size
= gfc_class_vtab_size_get (decl
);
3342 /* For unlimited polymorphic entities then _len component needs to be
3343 multiplied with the size. If no _len component is present, then
3344 gfc_class_len_or_zero_get () return a zero_node. */
3345 tmp
= gfc_class_len_or_zero_get (decl
);
3346 if (!integer_zerop (tmp
))
3347 size
= fold_build2 (MULT_EXPR
, TREE_TYPE (index
),
3348 fold_convert (TREE_TYPE (index
), size
),
3349 fold_build2 (MAX_EXPR
, TREE_TYPE (index
),
3350 fold_convert (TREE_TYPE (index
), tmp
),
3351 fold_convert (TREE_TYPE (index
),
3352 integer_one_node
)));
3354 size
= fold_convert (TREE_TYPE (index
), size
);
3356 /* Build the address of the element. */
3357 type
= TREE_TYPE (TREE_TYPE (base
));
3358 offset
= fold_build2_loc (input_location
, MULT_EXPR
,
3359 gfc_array_index_type
,
3361 tmp
= gfc_build_addr_expr (pvoid_type_node
, base
);
3362 tmp
= fold_build_pointer_plus_loc (input_location
, tmp
, offset
);
3363 tmp
= fold_convert (build_pointer_type (type
), tmp
);
3365 /* Return the element in the se expression. */
3366 se
->expr
= build_fold_indirect_ref_loc (input_location
, tmp
);
3371 /* Build a scalarized reference to an array. */
3374 gfc_conv_scalarized_array_ref (gfc_se
* se
, gfc_array_ref
* ar
)
3376 gfc_array_info
*info
;
3377 tree decl
= NULL_TREE
;
3385 expr
= ss
->info
->expr
;
3386 info
= &ss
->info
->data
.array
;
3388 n
= se
->loop
->order
[0];
3392 index
= conv_array_index_offset (se
, ss
, ss
->dim
[n
], n
, ar
, info
->stride0
);
3393 /* Add the offset for this dimension to the stored offset for all other
3395 if (info
->offset
&& !integer_zerop (info
->offset
))
3396 index
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
3397 index
, info
->offset
);
3399 base
= build_fold_indirect_ref_loc (input_location
, info
->data
);
3401 /* Use the vptr 'size' field to access the element of a class array. */
3402 if (build_class_array_ref (se
, base
, index
))
3405 if (expr
&& ((is_subref_array (expr
)
3406 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (info
->descriptor
)))
3407 || (expr
->ts
.deferred
&& (expr
->expr_type
== EXPR_VARIABLE
3408 || expr
->expr_type
== EXPR_FUNCTION
))))
3409 decl
= expr
->symtree
->n
.sym
->backend_decl
;
3411 /* A pointer array component can be detected from its field decl. Fix
3412 the descriptor, mark the resulting variable decl and pass it to
3413 gfc_build_array_ref. */
3414 if (is_pointer_array (info
->descriptor
))
3416 if (TREE_CODE (info
->descriptor
) == COMPONENT_REF
)
3418 decl
= gfc_evaluate_now (info
->descriptor
, &se
->pre
);
3419 GFC_DECL_PTR_ARRAY_P (decl
) = 1;
3420 TREE_USED (decl
) = 1;
3422 else if (TREE_CODE (info
->descriptor
) == INDIRECT_REF
)
3423 decl
= TREE_OPERAND (info
->descriptor
, 0);
3425 if (decl
== NULL_TREE
)
3426 decl
= info
->descriptor
;
3429 se
->expr
= gfc_build_array_ref (base
, index
, decl
);
3433 /* Translate access of temporary array. */
3436 gfc_conv_tmp_array_ref (gfc_se
* se
)
3438 se
->string_length
= se
->ss
->info
->string_length
;
3439 gfc_conv_scalarized_array_ref (se
, NULL
);
3440 gfc_advance_se_ss_chain (se
);
3443 /* Add T to the offset pair *OFFSET, *CST_OFFSET. */
3446 add_to_offset (tree
*cst_offset
, tree
*offset
, tree t
)
3448 if (TREE_CODE (t
) == INTEGER_CST
)
3449 *cst_offset
= int_const_binop (PLUS_EXPR
, *cst_offset
, t
);
3452 if (!integer_zerop (*offset
))
3453 *offset
= fold_build2_loc (input_location
, PLUS_EXPR
,
3454 gfc_array_index_type
, *offset
, t
);
3462 build_array_ref (tree desc
, tree offset
, tree decl
, tree vptr
)
3468 /* For class arrays the class declaration is stored in the saved
3470 if (INDIRECT_REF_P (desc
)
3471 && DECL_LANG_SPECIFIC (TREE_OPERAND (desc
, 0))
3472 && GFC_DECL_SAVED_DESCRIPTOR (TREE_OPERAND (desc
, 0)))
3473 cdesc
= gfc_class_data_get (GFC_DECL_SAVED_DESCRIPTOR (
3474 TREE_OPERAND (desc
, 0)));
3478 /* Class container types do not always have the GFC_CLASS_TYPE_P
3479 but the canonical type does. */
3480 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (cdesc
))
3481 && TREE_CODE (cdesc
) == COMPONENT_REF
)
3483 type
= TREE_TYPE (TREE_OPERAND (cdesc
, 0));
3484 if (TYPE_CANONICAL (type
)
3485 && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type
)))
3486 vptr
= gfc_class_vptr_get (TREE_OPERAND (cdesc
, 0));
3489 tmp
= gfc_conv_array_data (desc
);
3490 tmp
= build_fold_indirect_ref_loc (input_location
, tmp
);
3491 tmp
= gfc_build_array_ref (tmp
, offset
, decl
, vptr
);
3496 /* Build an array reference. se->expr already holds the array descriptor.
3497 This should be either a variable, indirect variable reference or component
3498 reference. For arrays which do not have a descriptor, se->expr will be
3500 a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
3503 gfc_conv_array_ref (gfc_se
* se
, gfc_array_ref
* ar
, gfc_expr
*expr
,
3507 tree offset
, cst_offset
;
3510 tree decl
= NULL_TREE
;
3513 gfc_symbol
* sym
= expr
->symtree
->n
.sym
;
3514 char *var_name
= NULL
;
3518 gcc_assert (ar
->codimen
);
3520 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se
->expr
)))
3521 se
->expr
= build_fold_indirect_ref (gfc_conv_array_data (se
->expr
));
3524 if (GFC_ARRAY_TYPE_P (TREE_TYPE (se
->expr
))
3525 && TREE_CODE (TREE_TYPE (se
->expr
)) == POINTER_TYPE
)
3526 se
->expr
= build_fold_indirect_ref_loc (input_location
, se
->expr
);
3528 /* Use the actual tree type and not the wrapped coarray. */
3529 if (!se
->want_pointer
)
3530 se
->expr
= fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se
->expr
)),
3537 /* Handle scalarized references separately. */
3538 if (ar
->type
!= AR_ELEMENT
)
3540 gfc_conv_scalarized_array_ref (se
, ar
);
3541 gfc_advance_se_ss_chain (se
);
3545 if (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
3550 len
= strlen (sym
->name
) + 1;
3551 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
3553 if (ref
->type
== REF_ARRAY
&& &ref
->u
.ar
== ar
)
3555 if (ref
->type
== REF_COMPONENT
)
3556 len
+= 2 + strlen (ref
->u
.c
.component
->name
);
3559 var_name
= XALLOCAVEC (char, len
);
3560 strcpy (var_name
, sym
->name
);
3562 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
3564 if (ref
->type
== REF_ARRAY
&& &ref
->u
.ar
== ar
)
3566 if (ref
->type
== REF_COMPONENT
)
3568 strcat (var_name
, "%%");
3569 strcat (var_name
, ref
->u
.c
.component
->name
);
3574 cst_offset
= offset
= gfc_index_zero_node
;
3575 add_to_offset (&cst_offset
, &offset
, gfc_conv_array_offset (se
->expr
));
3577 /* Calculate the offsets from all the dimensions. Make sure to associate
3578 the final offset so that we form a chain of loop invariant summands. */
3579 for (n
= ar
->dimen
- 1; n
>= 0; n
--)
3581 /* Calculate the index for this dimension. */
3582 gfc_init_se (&indexse
, se
);
3583 gfc_conv_expr_type (&indexse
, ar
->start
[n
], gfc_array_index_type
);
3584 gfc_add_block_to_block (&se
->pre
, &indexse
.pre
);
3586 if (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
3588 /* Check array bounds. */
3592 /* Evaluate the indexse.expr only once. */
3593 indexse
.expr
= save_expr (indexse
.expr
);
3596 tmp
= gfc_conv_array_lbound (se
->expr
, n
);
3597 if (sym
->attr
.temporary
)
3599 gfc_init_se (&tmpse
, se
);
3600 gfc_conv_expr_type (&tmpse
, ar
->as
->lower
[n
],
3601 gfc_array_index_type
);
3602 gfc_add_block_to_block (&se
->pre
, &tmpse
.pre
);
3606 cond
= fold_build2_loc (input_location
, LT_EXPR
, logical_type_node
,
3608 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3609 "below lower bound of %%ld", n
+1, var_name
);
3610 gfc_trans_runtime_check (true, false, cond
, &se
->pre
, where
, msg
,
3611 fold_convert (long_integer_type_node
,
3613 fold_convert (long_integer_type_node
, tmp
));
3616 /* Upper bound, but not for the last dimension of assumed-size
3618 if (n
< ar
->dimen
- 1 || ar
->as
->type
!= AS_ASSUMED_SIZE
)
3620 tmp
= gfc_conv_array_ubound (se
->expr
, n
);
3621 if (sym
->attr
.temporary
)
3623 gfc_init_se (&tmpse
, se
);
3624 gfc_conv_expr_type (&tmpse
, ar
->as
->upper
[n
],
3625 gfc_array_index_type
);
3626 gfc_add_block_to_block (&se
->pre
, &tmpse
.pre
);
3630 cond
= fold_build2_loc (input_location
, GT_EXPR
,
3631 logical_type_node
, indexse
.expr
, tmp
);
3632 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3633 "above upper bound of %%ld", n
+1, var_name
);
3634 gfc_trans_runtime_check (true, false, cond
, &se
->pre
, where
, msg
,
3635 fold_convert (long_integer_type_node
,
3637 fold_convert (long_integer_type_node
, tmp
));
3642 /* Multiply the index by the stride. */
3643 stride
= gfc_conv_array_stride (se
->expr
, n
);
3644 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
3645 indexse
.expr
, stride
);
3647 /* And add it to the total. */
3648 add_to_offset (&cst_offset
, &offset
, tmp
);
3651 if (!integer_zerop (cst_offset
))
3652 offset
= fold_build2_loc (input_location
, PLUS_EXPR
,
3653 gfc_array_index_type
, offset
, cst_offset
);
3655 /* A pointer array component can be detected from its field decl. Fix
3656 the descriptor, mark the resulting variable decl and pass it to
3658 if (!expr
->ts
.deferred
&& !sym
->attr
.codimension
3659 && is_pointer_array (se
->expr
))
3661 if (TREE_CODE (se
->expr
) == COMPONENT_REF
)
3663 decl
= gfc_evaluate_now (se
->expr
, &se
->pre
);
3664 GFC_DECL_PTR_ARRAY_P (decl
) = 1;
3665 TREE_USED (decl
) = 1;
3667 else if (TREE_CODE (se
->expr
) == INDIRECT_REF
)
3668 decl
= TREE_OPERAND (se
->expr
, 0);
3672 else if (expr
->ts
.deferred
3673 || (sym
->ts
.type
== BT_CHARACTER
3674 && sym
->attr
.select_type_temporary
))
3675 decl
= sym
->backend_decl
;
3676 else if (sym
->ts
.type
== BT_CLASS
)
3679 se
->expr
= build_array_ref (se
->expr
, offset
, decl
, se
->class_vptr
);
3683 /* Add the offset corresponding to array's ARRAY_DIM dimension and loop's
3684 LOOP_DIM dimension (if any) to array's offset. */
3687 add_array_offset (stmtblock_t
*pblock
, gfc_loopinfo
*loop
, gfc_ss
*ss
,
3688 gfc_array_ref
*ar
, int array_dim
, int loop_dim
)
3691 gfc_array_info
*info
;
3694 info
= &ss
->info
->data
.array
;
3696 gfc_init_se (&se
, NULL
);
3698 se
.expr
= info
->descriptor
;
3699 stride
= gfc_conv_array_stride (info
->descriptor
, array_dim
);
3700 index
= conv_array_index_offset (&se
, ss
, array_dim
, loop_dim
, ar
, stride
);
3701 gfc_add_block_to_block (pblock
, &se
.pre
);
3703 info
->offset
= fold_build2_loc (input_location
, PLUS_EXPR
,
3704 gfc_array_index_type
,
3705 info
->offset
, index
);
3706 info
->offset
= gfc_evaluate_now (info
->offset
, pblock
);
3710 /* Generate the code to be executed immediately before entering a
3711 scalarization loop. */
3714 gfc_trans_preloop_setup (gfc_loopinfo
* loop
, int dim
, int flag
,
3715 stmtblock_t
* pblock
)
3718 gfc_ss_info
*ss_info
;
3719 gfc_array_info
*info
;
3720 gfc_ss_type ss_type
;
3722 gfc_loopinfo
*ploop
;
3726 /* This code will be executed before entering the scalarization loop
3727 for this dimension. */
3728 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
3732 if ((ss_info
->useflags
& flag
) == 0)
3735 ss_type
= ss_info
->type
;
3736 if (ss_type
!= GFC_SS_SECTION
3737 && ss_type
!= GFC_SS_FUNCTION
3738 && ss_type
!= GFC_SS_CONSTRUCTOR
3739 && ss_type
!= GFC_SS_COMPONENT
)
3742 info
= &ss_info
->data
.array
;
3744 gcc_assert (dim
< ss
->dimen
);
3745 gcc_assert (ss
->dimen
== loop
->dimen
);
3748 ar
= &info
->ref
->u
.ar
;
3752 if (dim
== loop
->dimen
- 1 && loop
->parent
!= NULL
)
3754 /* If we are in the outermost dimension of this loop, the previous
3755 dimension shall be in the parent loop. */
3756 gcc_assert (ss
->parent
!= NULL
);
3759 ploop
= loop
->parent
;
3761 /* ss and ss->parent are about the same array. */
3762 gcc_assert (ss_info
== pss
->info
);
3770 if (dim
== loop
->dimen
- 1)
3775 /* For the time being, there is no loop reordering. */
3776 gcc_assert (i
== ploop
->order
[i
]);
3777 i
= ploop
->order
[i
];
3779 if (dim
== loop
->dimen
- 1 && loop
->parent
== NULL
)
3781 stride
= gfc_conv_array_stride (info
->descriptor
,
3782 innermost_ss (ss
)->dim
[i
]);
3784 /* Calculate the stride of the innermost loop. Hopefully this will
3785 allow the backend optimizers to do their stuff more effectively.
3787 info
->stride0
= gfc_evaluate_now (stride
, pblock
);
3789 /* For the outermost loop calculate the offset due to any
3790 elemental dimensions. It will have been initialized with the
3791 base offset of the array. */
3794 for (i
= 0; i
< ar
->dimen
; i
++)
3796 if (ar
->dimen_type
[i
] != DIMEN_ELEMENT
)
3799 add_array_offset (pblock
, loop
, ss
, ar
, i
, /* unused */ -1);
3804 /* Add the offset for the previous loop dimension. */
3805 add_array_offset (pblock
, ploop
, ss
, ar
, pss
->dim
[i
], i
);
3807 /* Remember this offset for the second loop. */
3808 if (dim
== loop
->temp_dim
- 1 && loop
->parent
== NULL
)
3809 info
->saved_offset
= info
->offset
;
3814 /* Start a scalarized expression. Creates a scope and declares loop
3818 gfc_start_scalarized_body (gfc_loopinfo
* loop
, stmtblock_t
* pbody
)
3824 gcc_assert (!loop
->array_parameter
);
3826 for (dim
= loop
->dimen
- 1; dim
>= 0; dim
--)
3828 n
= loop
->order
[dim
];
3830 gfc_start_block (&loop
->code
[n
]);
3832 /* Create the loop variable. */
3833 loop
->loopvar
[n
] = gfc_create_var (gfc_array_index_type
, "S");
3835 if (dim
< loop
->temp_dim
)
3839 /* Calculate values that will be constant within this loop. */
3840 gfc_trans_preloop_setup (loop
, dim
, flags
, &loop
->code
[n
]);
3842 gfc_start_block (pbody
);
3846 /* Generates the actual loop code for a scalarization loop. */
3849 gfc_trans_scalarized_loop_end (gfc_loopinfo
* loop
, int n
,
3850 stmtblock_t
* pbody
)
3861 if ((ompws_flags
& (OMPWS_WORKSHARE_FLAG
| OMPWS_SCALARIZER_WS
3862 | OMPWS_SCALARIZER_BODY
))
3863 == (OMPWS_WORKSHARE_FLAG
| OMPWS_SCALARIZER_WS
)
3864 && n
== loop
->dimen
- 1)
3866 /* We create an OMP_FOR construct for the outermost scalarized loop. */
3867 init
= make_tree_vec (1);
3868 cond
= make_tree_vec (1);
3869 incr
= make_tree_vec (1);
3871 /* Cycle statement is implemented with a goto. Exit statement must not
3872 be present for this loop. */
3873 exit_label
= gfc_build_label_decl (NULL_TREE
);
3874 TREE_USED (exit_label
) = 1;
3876 /* Label for cycle statements (if needed). */
3877 tmp
= build1_v (LABEL_EXPR
, exit_label
);
3878 gfc_add_expr_to_block (pbody
, tmp
);
3880 stmt
= make_node (OMP_FOR
);
3882 TREE_TYPE (stmt
) = void_type_node
;
3883 OMP_FOR_BODY (stmt
) = loopbody
= gfc_finish_block (pbody
);
3885 OMP_FOR_CLAUSES (stmt
) = build_omp_clause (input_location
,
3886 OMP_CLAUSE_SCHEDULE
);
3887 OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt
))
3888 = OMP_CLAUSE_SCHEDULE_STATIC
;
3889 if (ompws_flags
& OMPWS_NOWAIT
)
3890 OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt
))
3891 = build_omp_clause (input_location
, OMP_CLAUSE_NOWAIT
);
3893 /* Initialize the loopvar. */
3894 TREE_VEC_ELT (init
, 0) = build2_v (MODIFY_EXPR
, loop
->loopvar
[n
],
3896 OMP_FOR_INIT (stmt
) = init
;
3897 /* The exit condition. */
3898 TREE_VEC_ELT (cond
, 0) = build2_loc (input_location
, LE_EXPR
,
3900 loop
->loopvar
[n
], loop
->to
[n
]);
3901 SET_EXPR_LOCATION (TREE_VEC_ELT (cond
, 0), input_location
);
3902 OMP_FOR_COND (stmt
) = cond
;
3903 /* Increment the loopvar. */
3904 tmp
= build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
3905 loop
->loopvar
[n
], gfc_index_one_node
);
3906 TREE_VEC_ELT (incr
, 0) = fold_build2_loc (input_location
, MODIFY_EXPR
,
3907 void_type_node
, loop
->loopvar
[n
], tmp
);
3908 OMP_FOR_INCR (stmt
) = incr
;
3910 ompws_flags
&= ~OMPWS_CURR_SINGLEUNIT
;
3911 gfc_add_expr_to_block (&loop
->code
[n
], stmt
);
3915 bool reverse_loop
= (loop
->reverse
[n
] == GFC_REVERSE_SET
)
3916 && (loop
->temp_ss
== NULL
);
3918 loopbody
= gfc_finish_block (pbody
);
3921 std::swap (loop
->from
[n
], loop
->to
[n
]);
3923 /* Initialize the loopvar. */
3924 if (loop
->loopvar
[n
] != loop
->from
[n
])
3925 gfc_add_modify (&loop
->code
[n
], loop
->loopvar
[n
], loop
->from
[n
]);
3927 exit_label
= gfc_build_label_decl (NULL_TREE
);
3929 /* Generate the loop body. */
3930 gfc_init_block (&block
);
3932 /* The exit condition. */
3933 cond
= fold_build2_loc (input_location
, reverse_loop
? LT_EXPR
: GT_EXPR
,
3934 logical_type_node
, loop
->loopvar
[n
], loop
->to
[n
]);
3935 tmp
= build1_v (GOTO_EXPR
, exit_label
);
3936 TREE_USED (exit_label
) = 1;
3937 tmp
= build3_v (COND_EXPR
, cond
, tmp
, build_empty_stmt (input_location
));
3938 gfc_add_expr_to_block (&block
, tmp
);
3940 /* The main body. */
3941 gfc_add_expr_to_block (&block
, loopbody
);
3943 /* Increment the loopvar. */
3944 tmp
= fold_build2_loc (input_location
,
3945 reverse_loop
? MINUS_EXPR
: PLUS_EXPR
,
3946 gfc_array_index_type
, loop
->loopvar
[n
],
3947 gfc_index_one_node
);
3949 gfc_add_modify (&block
, loop
->loopvar
[n
], tmp
);
3951 /* Build the loop. */
3952 tmp
= gfc_finish_block (&block
);
3953 tmp
= build1_v (LOOP_EXPR
, tmp
);
3954 gfc_add_expr_to_block (&loop
->code
[n
], tmp
);
3956 /* Add the exit label. */
3957 tmp
= build1_v (LABEL_EXPR
, exit_label
);
3958 gfc_add_expr_to_block (&loop
->code
[n
], tmp
);
3964 /* Finishes and generates the loops for a scalarized expression. */
3967 gfc_trans_scalarizing_loops (gfc_loopinfo
* loop
, stmtblock_t
* body
)
3972 stmtblock_t
*pblock
;
3976 /* Generate the loops. */
3977 for (dim
= 0; dim
< loop
->dimen
; dim
++)
3979 n
= loop
->order
[dim
];
3980 gfc_trans_scalarized_loop_end (loop
, n
, pblock
);
3981 loop
->loopvar
[n
] = NULL_TREE
;
3982 pblock
= &loop
->code
[n
];
3985 tmp
= gfc_finish_block (pblock
);
3986 gfc_add_expr_to_block (&loop
->pre
, tmp
);
3988 /* Clear all the used flags. */
3989 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
3990 if (ss
->parent
== NULL
)
3991 ss
->info
->useflags
= 0;
3995 /* Finish the main body of a scalarized expression, and start the secondary
3999 gfc_trans_scalarized_loop_boundary (gfc_loopinfo
* loop
, stmtblock_t
* body
)
4003 stmtblock_t
*pblock
;
4007 /* We finish as many loops as are used by the temporary. */
4008 for (dim
= 0; dim
< loop
->temp_dim
- 1; dim
++)
4010 n
= loop
->order
[dim
];
4011 gfc_trans_scalarized_loop_end (loop
, n
, pblock
);
4012 loop
->loopvar
[n
] = NULL_TREE
;
4013 pblock
= &loop
->code
[n
];
4016 /* We don't want to finish the outermost loop entirely. */
4017 n
= loop
->order
[loop
->temp_dim
- 1];
4018 gfc_trans_scalarized_loop_end (loop
, n
, pblock
);
4020 /* Restore the initial offsets. */
4021 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4023 gfc_ss_type ss_type
;
4024 gfc_ss_info
*ss_info
;
4028 if ((ss_info
->useflags
& 2) == 0)
4031 ss_type
= ss_info
->type
;
4032 if (ss_type
!= GFC_SS_SECTION
4033 && ss_type
!= GFC_SS_FUNCTION
4034 && ss_type
!= GFC_SS_CONSTRUCTOR
4035 && ss_type
!= GFC_SS_COMPONENT
)
4038 ss_info
->data
.array
.offset
= ss_info
->data
.array
.saved_offset
;
4041 /* Restart all the inner loops we just finished. */
4042 for (dim
= loop
->temp_dim
- 2; dim
>= 0; dim
--)
4044 n
= loop
->order
[dim
];
4046 gfc_start_block (&loop
->code
[n
]);
4048 loop
->loopvar
[n
] = gfc_create_var (gfc_array_index_type
, "Q");
4050 gfc_trans_preloop_setup (loop
, dim
, 2, &loop
->code
[n
]);
4053 /* Start a block for the secondary copying code. */
4054 gfc_start_block (body
);
4058 /* Precalculate (either lower or upper) bound of an array section.
4059 BLOCK: Block in which the (pre)calculation code will go.
4060 BOUNDS[DIM]: Where the bound value will be stored once evaluated.
4061 VALUES[DIM]: Specified bound (NULL <=> unspecified).
4062 DESC: Array descriptor from which the bound will be picked if unspecified
4063 (either lower or upper bound according to LBOUND). */
4066 evaluate_bound (stmtblock_t
*block
, tree
*bounds
, gfc_expr
** values
,
4067 tree desc
, int dim
, bool lbound
, bool deferred
)
4070 gfc_expr
* input_val
= values
[dim
];
4071 tree
*output
= &bounds
[dim
];
4076 /* Specified section bound. */
4077 gfc_init_se (&se
, NULL
);
4078 gfc_conv_expr_type (&se
, input_val
, gfc_array_index_type
);
4079 gfc_add_block_to_block (block
, &se
.pre
);
4082 else if (deferred
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
)))
4084 /* The gfc_conv_array_lbound () routine returns a constant zero for
4085 deferred length arrays, which in the scalarizer wreaks havoc, when
4086 copying to a (newly allocated) one-based array.
4087 Keep returning the actual result in sync for both bounds. */
4088 *output
= lbound
? gfc_conv_descriptor_lbound_get (desc
,
4090 gfc_conv_descriptor_ubound_get (desc
,
4095 /* No specific bound specified so use the bound of the array. */
4096 *output
= lbound
? gfc_conv_array_lbound (desc
, dim
) :
4097 gfc_conv_array_ubound (desc
, dim
);
4099 *output
= gfc_evaluate_now (*output
, block
);
4103 /* Calculate the lower bound of an array section. */
4106 gfc_conv_section_startstride (stmtblock_t
* block
, gfc_ss
* ss
, int dim
)
4108 gfc_expr
*stride
= NULL
;
4111 gfc_array_info
*info
;
4114 gcc_assert (ss
->info
->type
== GFC_SS_SECTION
);
4116 info
= &ss
->info
->data
.array
;
4117 ar
= &info
->ref
->u
.ar
;
4119 if (ar
->dimen_type
[dim
] == DIMEN_VECTOR
)
4121 /* We use a zero-based index to access the vector. */
4122 info
->start
[dim
] = gfc_index_zero_node
;
4123 info
->end
[dim
] = NULL
;
4124 info
->stride
[dim
] = gfc_index_one_node
;
4128 gcc_assert (ar
->dimen_type
[dim
] == DIMEN_RANGE
4129 || ar
->dimen_type
[dim
] == DIMEN_THIS_IMAGE
);
4130 desc
= info
->descriptor
;
4131 stride
= ar
->stride
[dim
];
4134 /* Calculate the start of the range. For vector subscripts this will
4135 be the range of the vector. */
4136 evaluate_bound (block
, info
->start
, ar
->start
, desc
, dim
, true,
4137 ar
->as
->type
== AS_DEFERRED
);
4139 /* Similarly calculate the end. Although this is not used in the
4140 scalarizer, it is needed when checking bounds and where the end
4141 is an expression with side-effects. */
4142 evaluate_bound (block
, info
->end
, ar
->end
, desc
, dim
, false,
4143 ar
->as
->type
== AS_DEFERRED
);
4146 /* Calculate the stride. */
4148 info
->stride
[dim
] = gfc_index_one_node
;
4151 gfc_init_se (&se
, NULL
);
4152 gfc_conv_expr_type (&se
, stride
, gfc_array_index_type
);
4153 gfc_add_block_to_block (block
, &se
.pre
);
4154 info
->stride
[dim
] = gfc_evaluate_now (se
.expr
, block
);
4159 /* Calculates the range start and stride for a SS chain. Also gets the
4160 descriptor and data pointer. The range of vector subscripts is the size
4161 of the vector. Array bounds are also checked. */
4164 gfc_conv_ss_startstride (gfc_loopinfo
* loop
)
4171 gfc_loopinfo
* const outer_loop
= outermost_loop (loop
);
4174 /* Determine the rank of the loop. */
4175 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4177 switch (ss
->info
->type
)
4179 case GFC_SS_SECTION
:
4180 case GFC_SS_CONSTRUCTOR
:
4181 case GFC_SS_FUNCTION
:
4182 case GFC_SS_COMPONENT
:
4183 loop
->dimen
= ss
->dimen
;
4186 /* As usual, lbound and ubound are exceptions!. */
4187 case GFC_SS_INTRINSIC
:
4188 switch (ss
->info
->expr
->value
.function
.isym
->id
)
4190 case GFC_ISYM_LBOUND
:
4191 case GFC_ISYM_UBOUND
:
4192 case GFC_ISYM_LCOBOUND
:
4193 case GFC_ISYM_UCOBOUND
:
4194 case GFC_ISYM_THIS_IMAGE
:
4195 loop
->dimen
= ss
->dimen
;
4207 /* We should have determined the rank of the expression by now. If
4208 not, that's bad news. */
4212 /* Loop over all the SS in the chain. */
4213 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4215 gfc_ss_info
*ss_info
;
4216 gfc_array_info
*info
;
4220 expr
= ss_info
->expr
;
4221 info
= &ss_info
->data
.array
;
4223 if (expr
&& expr
->shape
&& !info
->shape
)
4224 info
->shape
= expr
->shape
;
4226 switch (ss_info
->type
)
4228 case GFC_SS_SECTION
:
4229 /* Get the descriptor for the array. If it is a cross loops array,
4230 we got the descriptor already in the outermost loop. */
4231 if (ss
->parent
== NULL
)
4232 gfc_conv_ss_descriptor (&outer_loop
->pre
, ss
,
4233 !loop
->array_parameter
);
4235 for (n
= 0; n
< ss
->dimen
; n
++)
4236 gfc_conv_section_startstride (&outer_loop
->pre
, ss
, ss
->dim
[n
]);
4239 case GFC_SS_INTRINSIC
:
4240 switch (expr
->value
.function
.isym
->id
)
4242 /* Fall through to supply start and stride. */
4243 case GFC_ISYM_LBOUND
:
4244 case GFC_ISYM_UBOUND
:
4248 /* This is the variant without DIM=... */
4249 gcc_assert (expr
->value
.function
.actual
->next
->expr
== NULL
);
4251 arg
= expr
->value
.function
.actual
->expr
;
4252 if (arg
->rank
== -1)
4257 /* The rank (hence the return value's shape) is unknown,
4258 we have to retrieve it. */
4259 gfc_init_se (&se
, NULL
);
4260 se
.descriptor_only
= 1;
4261 gfc_conv_expr (&se
, arg
);
4262 /* This is a bare variable, so there is no preliminary
4264 gcc_assert (se
.pre
.head
== NULL_TREE
4265 && se
.post
.head
== NULL_TREE
);
4266 rank
= gfc_conv_descriptor_rank (se
.expr
);
4267 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
4268 gfc_array_index_type
,
4269 fold_convert (gfc_array_index_type
,
4271 gfc_index_one_node
);
4272 info
->end
[0] = gfc_evaluate_now (tmp
, &outer_loop
->pre
);
4273 info
->start
[0] = gfc_index_zero_node
;
4274 info
->stride
[0] = gfc_index_one_node
;
4277 /* Otherwise fall through GFC_SS_FUNCTION. */
4280 case GFC_ISYM_LCOBOUND
:
4281 case GFC_ISYM_UCOBOUND
:
4282 case GFC_ISYM_THIS_IMAGE
:
4290 case GFC_SS_CONSTRUCTOR
:
4291 case GFC_SS_FUNCTION
:
4292 for (n
= 0; n
< ss
->dimen
; n
++)
4294 int dim
= ss
->dim
[n
];
4296 info
->start
[dim
] = gfc_index_zero_node
;
4297 info
->end
[dim
] = gfc_index_zero_node
;
4298 info
->stride
[dim
] = gfc_index_one_node
;
4307 /* The rest is just runtime bound checking. */
4308 if (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
)
4311 tree lbound
, ubound
;
4313 tree size
[GFC_MAX_DIMENSIONS
];
4314 tree stride_pos
, stride_neg
, non_zerosized
, tmp2
, tmp3
;
4315 gfc_array_info
*info
;
4319 gfc_start_block (&block
);
4321 for (n
= 0; n
< loop
->dimen
; n
++)
4322 size
[n
] = NULL_TREE
;
4324 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4327 gfc_ss_info
*ss_info
;
4330 const char *expr_name
;
4333 if (ss_info
->type
!= GFC_SS_SECTION
)
4336 /* Catch allocatable lhs in f2003. */
4337 if (flag_realloc_lhs
&& ss
->is_alloc_lhs
)
4340 expr
= ss_info
->expr
;
4341 expr_loc
= &expr
->where
;
4342 expr_name
= expr
->symtree
->name
;
4344 gfc_start_block (&inner
);
4346 /* TODO: range checking for mapped dimensions. */
4347 info
= &ss_info
->data
.array
;
4349 /* This code only checks ranges. Elemental and vector
4350 dimensions are checked later. */
4351 for (n
= 0; n
< loop
->dimen
; n
++)
4356 if (info
->ref
->u
.ar
.dimen_type
[dim
] != DIMEN_RANGE
)
4359 if (dim
== info
->ref
->u
.ar
.dimen
- 1
4360 && info
->ref
->u
.ar
.as
->type
== AS_ASSUMED_SIZE
)
4361 check_upper
= false;
4365 /* Zero stride is not allowed. */
4366 tmp
= fold_build2_loc (input_location
, EQ_EXPR
, logical_type_node
,
4367 info
->stride
[dim
], gfc_index_zero_node
);
4368 msg
= xasprintf ("Zero stride is not allowed, for dimension %d "
4369 "of array '%s'", dim
+ 1, expr_name
);
4370 gfc_trans_runtime_check (true, false, tmp
, &inner
,
4374 desc
= info
->descriptor
;
4376 /* This is the run-time equivalent of resolve.c's
4377 check_dimension(). The logical is more readable there
4378 than it is here, with all the trees. */
4379 lbound
= gfc_conv_array_lbound (desc
, dim
);
4380 end
= info
->end
[dim
];
4382 ubound
= gfc_conv_array_ubound (desc
, dim
);
4386 /* non_zerosized is true when the selected range is not
4388 stride_pos
= fold_build2_loc (input_location
, GT_EXPR
,
4389 logical_type_node
, info
->stride
[dim
],
4390 gfc_index_zero_node
);
4391 tmp
= fold_build2_loc (input_location
, LE_EXPR
, logical_type_node
,
4392 info
->start
[dim
], end
);
4393 stride_pos
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4394 logical_type_node
, stride_pos
, tmp
);
4396 stride_neg
= fold_build2_loc (input_location
, LT_EXPR
,
4398 info
->stride
[dim
], gfc_index_zero_node
);
4399 tmp
= fold_build2_loc (input_location
, GE_EXPR
, logical_type_node
,
4400 info
->start
[dim
], end
);
4401 stride_neg
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4404 non_zerosized
= fold_build2_loc (input_location
, TRUTH_OR_EXPR
,
4406 stride_pos
, stride_neg
);
4408 /* Check the start of the range against the lower and upper
4409 bounds of the array, if the range is not empty.
4410 If upper bound is present, include both bounds in the
4414 tmp
= fold_build2_loc (input_location
, LT_EXPR
,
4416 info
->start
[dim
], lbound
);
4417 tmp
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4419 non_zerosized
, tmp
);
4420 tmp2
= fold_build2_loc (input_location
, GT_EXPR
,
4422 info
->start
[dim
], ubound
);
4423 tmp2
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4425 non_zerosized
, tmp2
);
4426 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4427 "outside of expected range (%%ld:%%ld)",
4428 dim
+ 1, expr_name
);
4429 gfc_trans_runtime_check (true, false, tmp
, &inner
,
4431 fold_convert (long_integer_type_node
, info
->start
[dim
]),
4432 fold_convert (long_integer_type_node
, lbound
),
4433 fold_convert (long_integer_type_node
, ubound
));
4434 gfc_trans_runtime_check (true, false, tmp2
, &inner
,
4436 fold_convert (long_integer_type_node
, info
->start
[dim
]),
4437 fold_convert (long_integer_type_node
, lbound
),
4438 fold_convert (long_integer_type_node
, ubound
));
4443 tmp
= fold_build2_loc (input_location
, LT_EXPR
,
4445 info
->start
[dim
], lbound
);
4446 tmp
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4447 logical_type_node
, non_zerosized
, tmp
);
4448 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4449 "below lower bound of %%ld",
4450 dim
+ 1, expr_name
);
4451 gfc_trans_runtime_check (true, false, tmp
, &inner
,
4453 fold_convert (long_integer_type_node
, info
->start
[dim
]),
4454 fold_convert (long_integer_type_node
, lbound
));
4458 /* Compute the last element of the range, which is not
4459 necessarily "end" (think 0:5:3, which doesn't contain 5)
4460 and check it against both lower and upper bounds. */
4462 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
4463 gfc_array_index_type
, end
,
4465 tmp
= fold_build2_loc (input_location
, TRUNC_MOD_EXPR
,
4466 gfc_array_index_type
, tmp
,
4468 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
4469 gfc_array_index_type
, end
, tmp
);
4470 tmp2
= fold_build2_loc (input_location
, LT_EXPR
,
4471 logical_type_node
, tmp
, lbound
);
4472 tmp2
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4473 logical_type_node
, non_zerosized
, tmp2
);
4476 tmp3
= fold_build2_loc (input_location
, GT_EXPR
,
4477 logical_type_node
, tmp
, ubound
);
4478 tmp3
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
4479 logical_type_node
, non_zerosized
, tmp3
);
4480 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4481 "outside of expected range (%%ld:%%ld)",
4482 dim
+ 1, expr_name
);
4483 gfc_trans_runtime_check (true, false, tmp2
, &inner
,
4485 fold_convert (long_integer_type_node
, tmp
),
4486 fold_convert (long_integer_type_node
, ubound
),
4487 fold_convert (long_integer_type_node
, lbound
));
4488 gfc_trans_runtime_check (true, false, tmp3
, &inner
,
4490 fold_convert (long_integer_type_node
, tmp
),
4491 fold_convert (long_integer_type_node
, ubound
),
4492 fold_convert (long_integer_type_node
, lbound
));
4497 msg
= xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4498 "below lower bound of %%ld",
4499 dim
+ 1, expr_name
);
4500 gfc_trans_runtime_check (true, false, tmp2
, &inner
,
4502 fold_convert (long_integer_type_node
, tmp
),
4503 fold_convert (long_integer_type_node
, lbound
));
4507 /* Check the section sizes match. */
4508 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
4509 gfc_array_index_type
, end
,
4511 tmp
= fold_build2_loc (input_location
, FLOOR_DIV_EXPR
,
4512 gfc_array_index_type
, tmp
,
4514 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
4515 gfc_array_index_type
,
4516 gfc_index_one_node
, tmp
);
4517 tmp
= fold_build2_loc (input_location
, MAX_EXPR
,
4518 gfc_array_index_type
, tmp
,
4519 build_int_cst (gfc_array_index_type
, 0));
4520 /* We remember the size of the first section, and check all the
4521 others against this. */
4524 tmp3
= fold_build2_loc (input_location
, NE_EXPR
,
4525 logical_type_node
, tmp
, size
[n
]);
4526 msg
= xasprintf ("Array bound mismatch for dimension %d "
4527 "of array '%s' (%%ld/%%ld)",
4528 dim
+ 1, expr_name
);
4530 gfc_trans_runtime_check (true, false, tmp3
, &inner
,
4532 fold_convert (long_integer_type_node
, tmp
),
4533 fold_convert (long_integer_type_node
, size
[n
]));
4538 size
[n
] = gfc_evaluate_now (tmp
, &inner
);
4541 tmp
= gfc_finish_block (&inner
);
4543 /* For optional arguments, only check bounds if the argument is
4545 if (expr
->symtree
->n
.sym
->attr
.optional
4546 || expr
->symtree
->n
.sym
->attr
.not_always_present
)
4547 tmp
= build3_v (COND_EXPR
,
4548 gfc_conv_expr_present (expr
->symtree
->n
.sym
),
4549 tmp
, build_empty_stmt (input_location
));
4551 gfc_add_expr_to_block (&block
, tmp
);
4555 tmp
= gfc_finish_block (&block
);
4556 gfc_add_expr_to_block (&outer_loop
->pre
, tmp
);
4559 for (loop
= loop
->nested
; loop
; loop
= loop
->next
)
4560 gfc_conv_ss_startstride (loop
);
4563 /* Return true if both symbols could refer to the same data object. Does
4564 not take account of aliasing due to equivalence statements. */
4567 symbols_could_alias (gfc_symbol
*lsym
, gfc_symbol
*rsym
, bool lsym_pointer
,
4568 bool lsym_target
, bool rsym_pointer
, bool rsym_target
)
4570 /* Aliasing isn't possible if the symbols have different base types. */
4571 if (gfc_compare_types (&lsym
->ts
, &rsym
->ts
) == 0)
4574 /* Pointers can point to other pointers and target objects. */
4576 if ((lsym_pointer
&& (rsym_pointer
|| rsym_target
))
4577 || (rsym_pointer
&& (lsym_pointer
|| lsym_target
)))
4580 /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7
4581 and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already
4583 if (lsym_target
&& rsym_target
4584 && ((lsym
->attr
.dummy
&& !lsym
->attr
.contiguous
4585 && (!lsym
->attr
.dimension
|| lsym
->as
->type
== AS_ASSUMED_SHAPE
))
4586 || (rsym
->attr
.dummy
&& !rsym
->attr
.contiguous
4587 && (!rsym
->attr
.dimension
4588 || rsym
->as
->type
== AS_ASSUMED_SHAPE
))))
4595 /* Return true if the two SS could be aliased, i.e. both point to the same data
4597 /* TODO: resolve aliases based on frontend expressions. */
4600 gfc_could_be_alias (gfc_ss
* lss
, gfc_ss
* rss
)
4604 gfc_expr
*lexpr
, *rexpr
;
4607 bool lsym_pointer
, lsym_target
, rsym_pointer
, rsym_target
;
4609 lexpr
= lss
->info
->expr
;
4610 rexpr
= rss
->info
->expr
;
4612 lsym
= lexpr
->symtree
->n
.sym
;
4613 rsym
= rexpr
->symtree
->n
.sym
;
4615 lsym_pointer
= lsym
->attr
.pointer
;
4616 lsym_target
= lsym
->attr
.target
;
4617 rsym_pointer
= rsym
->attr
.pointer
;
4618 rsym_target
= rsym
->attr
.target
;
4620 if (symbols_could_alias (lsym
, rsym
, lsym_pointer
, lsym_target
,
4621 rsym_pointer
, rsym_target
))
4624 if (rsym
->ts
.type
!= BT_DERIVED
&& rsym
->ts
.type
!= BT_CLASS
4625 && lsym
->ts
.type
!= BT_DERIVED
&& lsym
->ts
.type
!= BT_CLASS
)
4628 /* For derived types we must check all the component types. We can ignore
4629 array references as these will have the same base type as the previous
4631 for (lref
= lexpr
->ref
; lref
!= lss
->info
->data
.array
.ref
; lref
= lref
->next
)
4633 if (lref
->type
!= REF_COMPONENT
)
4636 lsym_pointer
= lsym_pointer
|| lref
->u
.c
.sym
->attr
.pointer
;
4637 lsym_target
= lsym_target
|| lref
->u
.c
.sym
->attr
.target
;
4639 if (symbols_could_alias (lref
->u
.c
.sym
, rsym
, lsym_pointer
, lsym_target
,
4640 rsym_pointer
, rsym_target
))
4643 if ((lsym_pointer
&& (rsym_pointer
|| rsym_target
))
4644 || (rsym_pointer
&& (lsym_pointer
|| lsym_target
)))
4646 if (gfc_compare_types (&lref
->u
.c
.component
->ts
,
4651 for (rref
= rexpr
->ref
; rref
!= rss
->info
->data
.array
.ref
;
4654 if (rref
->type
!= REF_COMPONENT
)
4657 rsym_pointer
= rsym_pointer
|| rref
->u
.c
.sym
->attr
.pointer
;
4658 rsym_target
= lsym_target
|| rref
->u
.c
.sym
->attr
.target
;
4660 if (symbols_could_alias (lref
->u
.c
.sym
, rref
->u
.c
.sym
,
4661 lsym_pointer
, lsym_target
,
4662 rsym_pointer
, rsym_target
))
4665 if ((lsym_pointer
&& (rsym_pointer
|| rsym_target
))
4666 || (rsym_pointer
&& (lsym_pointer
|| lsym_target
)))
4668 if (gfc_compare_types (&lref
->u
.c
.component
->ts
,
4669 &rref
->u
.c
.sym
->ts
))
4671 if (gfc_compare_types (&lref
->u
.c
.sym
->ts
,
4672 &rref
->u
.c
.component
->ts
))
4674 if (gfc_compare_types (&lref
->u
.c
.component
->ts
,
4675 &rref
->u
.c
.component
->ts
))
4681 lsym_pointer
= lsym
->attr
.pointer
;
4682 lsym_target
= lsym
->attr
.target
;
4683 lsym_pointer
= lsym
->attr
.pointer
;
4684 lsym_target
= lsym
->attr
.target
;
4686 for (rref
= rexpr
->ref
; rref
!= rss
->info
->data
.array
.ref
; rref
= rref
->next
)
4688 if (rref
->type
!= REF_COMPONENT
)
4691 rsym_pointer
= rsym_pointer
|| rref
->u
.c
.sym
->attr
.pointer
;
4692 rsym_target
= lsym_target
|| rref
->u
.c
.sym
->attr
.target
;
4694 if (symbols_could_alias (rref
->u
.c
.sym
, lsym
,
4695 lsym_pointer
, lsym_target
,
4696 rsym_pointer
, rsym_target
))
4699 if ((lsym_pointer
&& (rsym_pointer
|| rsym_target
))
4700 || (rsym_pointer
&& (lsym_pointer
|| lsym_target
)))
4702 if (gfc_compare_types (&lsym
->ts
, &rref
->u
.c
.component
->ts
))
4711 /* Resolve array data dependencies. Creates a temporary if required. */
4712 /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
4716 gfc_conv_resolve_dependencies (gfc_loopinfo
* loop
, gfc_ss
* dest
,
4722 gfc_ss_info
*ss_info
;
4723 gfc_expr
*dest_expr
;
4728 loop
->temp_ss
= NULL
;
4729 dest_expr
= dest
->info
->expr
;
4731 for (ss
= rss
; ss
!= gfc_ss_terminator
; ss
= ss
->next
)
4734 ss_expr
= ss_info
->expr
;
4736 if (ss_info
->array_outer_dependency
)
4742 if (ss_info
->type
!= GFC_SS_SECTION
)
4744 if (flag_realloc_lhs
4745 && dest_expr
!= ss_expr
4746 && gfc_is_reallocatable_lhs (dest_expr
)
4748 nDepend
= gfc_check_dependency (dest_expr
, ss_expr
, true);
4750 /* Check for cases like c(:)(1:2) = c(2)(2:3) */
4751 if (!nDepend
&& dest_expr
->rank
> 0
4752 && dest_expr
->ts
.type
== BT_CHARACTER
4753 && ss_expr
->expr_type
== EXPR_VARIABLE
)
4755 nDepend
= gfc_check_dependency (dest_expr
, ss_expr
, false);
4757 if (ss_info
->type
== GFC_SS_REFERENCE
4758 && gfc_check_dependency (dest_expr
, ss_expr
, false))
4759 ss_info
->data
.scalar
.needs_temporary
= 1;
4767 if (dest_expr
->symtree
->n
.sym
!= ss_expr
->symtree
->n
.sym
)
4769 if (gfc_could_be_alias (dest
, ss
)
4770 || gfc_are_equivalenced_arrays (dest_expr
, ss_expr
))
4778 lref
= dest_expr
->ref
;
4779 rref
= ss_expr
->ref
;
4781 nDepend
= gfc_dep_resolver (lref
, rref
, &loop
->reverse
[0]);
4786 for (i
= 0; i
< dest
->dimen
; i
++)
4787 for (j
= 0; j
< ss
->dimen
; j
++)
4789 && dest
->dim
[i
] == ss
->dim
[j
])
4791 /* If we don't access array elements in the same order,
4792 there is a dependency. */
4797 /* TODO : loop shifting. */
4800 /* Mark the dimensions for LOOP SHIFTING */
4801 for (n
= 0; n
< loop
->dimen
; n
++)
4803 int dim
= dest
->data
.info
.dim
[n
];
4805 if (lref
->u
.ar
.dimen_type
[dim
] == DIMEN_VECTOR
)
4807 else if (! gfc_is_same_range (&lref
->u
.ar
,
4808 &rref
->u
.ar
, dim
, 0))
4812 /* Put all the dimensions with dependencies in the
4815 for (n
= 0; n
< loop
->dimen
; n
++)
4817 gcc_assert (loop
->order
[n
] == n
);
4819 loop
->order
[dim
++] = n
;
4821 for (n
= 0; n
< loop
->dimen
; n
++)
4824 loop
->order
[dim
++] = n
;
4827 gcc_assert (dim
== loop
->dimen
);
4838 tree base_type
= gfc_typenode_for_spec (&dest_expr
->ts
);
4839 if (GFC_ARRAY_TYPE_P (base_type
)
4840 || GFC_DESCRIPTOR_TYPE_P (base_type
))
4841 base_type
= gfc_get_element_type (base_type
);
4842 loop
->temp_ss
= gfc_get_temp_ss (base_type
, dest
->info
->string_length
,
4844 gfc_add_ss_to_loop (loop
, loop
->temp_ss
);
4847 loop
->temp_ss
= NULL
;
4851 /* Browse through each array's information from the scalarizer and set the loop
4852 bounds according to the "best" one (per dimension), i.e. the one which
4853 provides the most information (constant bounds, shape, etc.). */
4856 set_loop_bounds (gfc_loopinfo
*loop
)
4858 int n
, dim
, spec_dim
;
4859 gfc_array_info
*info
;
4860 gfc_array_info
*specinfo
;
4864 bool dynamic
[GFC_MAX_DIMENSIONS
];
4867 bool nonoptional_arr
;
4869 gfc_loopinfo
* const outer_loop
= outermost_loop (loop
);
4871 loopspec
= loop
->specloop
;
4874 for (n
= 0; n
< loop
->dimen
; n
++)
4879 /* If there are both optional and nonoptional array arguments, scalarize
4880 over the nonoptional; otherwise, it does not matter as then all
4881 (optional) arrays have to be present per F2008, 125.2.12p3(6). */
4883 nonoptional_arr
= false;
4885 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4886 if (ss
->info
->type
!= GFC_SS_SCALAR
&& ss
->info
->type
!= GFC_SS_TEMP
4887 && ss
->info
->type
!= GFC_SS_REFERENCE
&& !ss
->info
->can_be_null_ref
)
4889 nonoptional_arr
= true;
4893 /* We use one SS term, and use that to determine the bounds of the
4894 loop for this dimension. We try to pick the simplest term. */
4895 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
4897 gfc_ss_type ss_type
;
4899 ss_type
= ss
->info
->type
;
4900 if (ss_type
== GFC_SS_SCALAR
4901 || ss_type
== GFC_SS_TEMP
4902 || ss_type
== GFC_SS_REFERENCE
4903 || (ss
->info
->can_be_null_ref
&& nonoptional_arr
))
4906 info
= &ss
->info
->data
.array
;
4909 if (loopspec
[n
] != NULL
)
4911 specinfo
= &loopspec
[n
]->info
->data
.array
;
4912 spec_dim
= loopspec
[n
]->dim
[n
];
4916 /* Silence uninitialized warnings. */
4923 gcc_assert (info
->shape
[dim
]);
4924 /* The frontend has worked out the size for us. */
4927 || !integer_zerop (specinfo
->start
[spec_dim
]))
4928 /* Prefer zero-based descriptors if possible. */
4933 if (ss_type
== GFC_SS_CONSTRUCTOR
)
4935 gfc_constructor_base base
;
4936 /* An unknown size constructor will always be rank one.
4937 Higher rank constructors will either have known shape,
4938 or still be wrapped in a call to reshape. */
4939 gcc_assert (loop
->dimen
== 1);
4941 /* Always prefer to use the constructor bounds if the size
4942 can be determined at compile time. Prefer not to otherwise,
4943 since the general case involves realloc, and it's better to
4944 avoid that overhead if possible. */
4945 base
= ss
->info
->expr
->value
.constructor
;
4946 dynamic
[n
] = gfc_get_array_constructor_size (&i
, base
);
4947 if (!dynamic
[n
] || !loopspec
[n
])
4952 /* Avoid using an allocatable lhs in an assignment, since
4953 there might be a reallocation coming. */
4954 if (loopspec
[n
] && ss
->is_alloc_lhs
)
4959 /* Criteria for choosing a loop specifier (most important first):
4960 doesn't need realloc
4966 else if (loopspec
[n
]->info
->type
== GFC_SS_CONSTRUCTOR
&& dynamic
[n
])
4968 else if (integer_onep (info
->stride
[dim
])
4969 && !integer_onep (specinfo
->stride
[spec_dim
]))
4971 else if (INTEGER_CST_P (info
->stride
[dim
])
4972 && !INTEGER_CST_P (specinfo
->stride
[spec_dim
]))
4974 else if (INTEGER_CST_P (info
->start
[dim
])
4975 && !INTEGER_CST_P (specinfo
->start
[spec_dim
])
4976 && integer_onep (info
->stride
[dim
])
4977 == integer_onep (specinfo
->stride
[spec_dim
])
4978 && INTEGER_CST_P (info
->stride
[dim
])
4979 == INTEGER_CST_P (specinfo
->stride
[spec_dim
]))
4981 /* We don't work out the upper bound.
4982 else if (INTEGER_CST_P (info->finish[n])
4983 && ! INTEGER_CST_P (specinfo->finish[n]))
4984 loopspec[n] = ss; */
4987 /* We should have found the scalarization loop specifier. If not,
4989 gcc_assert (loopspec
[n
]);
4991 info
= &loopspec
[n
]->info
->data
.array
;
4992 dim
= loopspec
[n
]->dim
[n
];
4994 /* Set the extents of this range. */
4995 cshape
= info
->shape
;
4996 if (cshape
&& INTEGER_CST_P (info
->start
[dim
])
4997 && INTEGER_CST_P (info
->stride
[dim
]))
4999 loop
->from
[n
] = info
->start
[dim
];
5000 mpz_set (i
, cshape
[get_array_ref_dim_for_loop_dim (loopspec
[n
], n
)]);
5001 mpz_sub_ui (i
, i
, 1);
5002 /* To = from + (size - 1) * stride. */
5003 tmp
= gfc_conv_mpz_to_tree (i
, gfc_index_integer_kind
);
5004 if (!integer_onep (info
->stride
[dim
]))
5005 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
5006 gfc_array_index_type
, tmp
,
5008 loop
->to
[n
] = fold_build2_loc (input_location
, PLUS_EXPR
,
5009 gfc_array_index_type
,
5010 loop
->from
[n
], tmp
);
5014 loop
->from
[n
] = info
->start
[dim
];
5015 switch (loopspec
[n
]->info
->type
)
5017 case GFC_SS_CONSTRUCTOR
:
5018 /* The upper bound is calculated when we expand the
5020 gcc_assert (loop
->to
[n
] == NULL_TREE
);
5023 case GFC_SS_SECTION
:
5024 /* Use the end expression if it exists and is not constant,
5025 so that it is only evaluated once. */
5026 loop
->to
[n
] = info
->end
[dim
];
5029 case GFC_SS_FUNCTION
:
5030 /* The loop bound will be set when we generate the call. */
5031 gcc_assert (loop
->to
[n
] == NULL_TREE
);
5034 case GFC_SS_INTRINSIC
:
5036 gfc_expr
*expr
= loopspec
[n
]->info
->expr
;
5038 /* The {l,u}bound of an assumed rank. */
5039 gcc_assert ((expr
->value
.function
.isym
->id
== GFC_ISYM_LBOUND
5040 || expr
->value
.function
.isym
->id
== GFC_ISYM_UBOUND
)
5041 && expr
->value
.function
.actual
->next
->expr
== NULL
5042 && expr
->value
.function
.actual
->expr
->rank
== -1);
5044 loop
->to
[n
] = info
->end
[dim
];
5048 case GFC_SS_COMPONENT
:
5050 if (info
->end
[dim
] != NULL_TREE
)
5052 loop
->to
[n
] = info
->end
[dim
];
5064 /* Transform everything so we have a simple incrementing variable. */
5065 if (integer_onep (info
->stride
[dim
]))
5066 info
->delta
[dim
] = gfc_index_zero_node
;
5069 /* Set the delta for this section. */
5070 info
->delta
[dim
] = gfc_evaluate_now (loop
->from
[n
], &outer_loop
->pre
);
5071 /* Number of iterations is (end - start + step) / step.
5072 with start = 0, this simplifies to
5074 for (i = 0; i<=last; i++){...}; */
5075 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
5076 gfc_array_index_type
, loop
->to
[n
],
5078 tmp
= fold_build2_loc (input_location
, FLOOR_DIV_EXPR
,
5079 gfc_array_index_type
, tmp
, info
->stride
[dim
]);
5080 tmp
= fold_build2_loc (input_location
, MAX_EXPR
, gfc_array_index_type
,
5081 tmp
, build_int_cst (gfc_array_index_type
, -1));
5082 loop
->to
[n
] = gfc_evaluate_now (tmp
, &outer_loop
->pre
);
5083 /* Make the loop variable start at 0. */
5084 loop
->from
[n
] = gfc_index_zero_node
;
5089 for (loop
= loop
->nested
; loop
; loop
= loop
->next
)
5090 set_loop_bounds (loop
);
5094 /* Initialize the scalarization loop. Creates the loop variables. Determines
5095 the range of the loop variables. Creates a temporary if required.
5096 Also generates code for scalar expressions which have been
5097 moved outside the loop. */
5100 gfc_conv_loop_setup (gfc_loopinfo
* loop
, locus
* where
)
5105 set_loop_bounds (loop
);
5107 /* Add all the scalar code that can be taken out of the loops.
5108 This may include calculating the loop bounds, so do it before
5109 allocating the temporary. */
5110 gfc_add_loop_ss_code (loop
, loop
->ss
, false, where
);
5112 tmp_ss
= loop
->temp_ss
;
5113 /* If we want a temporary then create it. */
5116 gfc_ss_info
*tmp_ss_info
;
5118 tmp_ss_info
= tmp_ss
->info
;
5119 gcc_assert (tmp_ss_info
->type
== GFC_SS_TEMP
);
5120 gcc_assert (loop
->parent
== NULL
);
5122 /* Make absolutely sure that this is a complete type. */
5123 if (tmp_ss_info
->string_length
)
5124 tmp_ss_info
->data
.temp
.type
5125 = gfc_get_character_type_len_for_eltype
5126 (TREE_TYPE (tmp_ss_info
->data
.temp
.type
),
5127 tmp_ss_info
->string_length
);
5129 tmp
= tmp_ss_info
->data
.temp
.type
;
5130 memset (&tmp_ss_info
->data
.array
, 0, sizeof (gfc_array_info
));
5131 tmp_ss_info
->type
= GFC_SS_SECTION
;
5133 gcc_assert (tmp_ss
->dimen
!= 0);
5135 gfc_trans_create_temp_array (&loop
->pre
, &loop
->post
, tmp_ss
, tmp
,
5136 NULL_TREE
, false, true, false, where
);
5139 /* For array parameters we don't have loop variables, so don't calculate the
5141 if (!loop
->array_parameter
)
5142 gfc_set_delta (loop
);
5146 /* Calculates how to transform from loop variables to array indices for each
5147 array: once loop bounds are chosen, sets the difference (DELTA field) between
5148 loop bounds and array reference bounds, for each array info. */
5151 gfc_set_delta (gfc_loopinfo
*loop
)
5153 gfc_ss
*ss
, **loopspec
;
5154 gfc_array_info
*info
;
5158 gfc_loopinfo
* const outer_loop
= outermost_loop (loop
);
5160 loopspec
= loop
->specloop
;
5162 /* Calculate the translation from loop variables to array indices. */
5163 for (ss
= loop
->ss
; ss
!= gfc_ss_terminator
; ss
= ss
->loop_chain
)
5165 gfc_ss_type ss_type
;
5167 ss_type
= ss
->info
->type
;
5168 if (ss_type
!= GFC_SS_SECTION
5169 && ss_type
!= GFC_SS_COMPONENT
5170 && ss_type
!= GFC_SS_CONSTRUCTOR
)
5173 info
= &ss
->info
->data
.array
;
5175 for (n
= 0; n
< ss
->dimen
; n
++)
5177 /* If we are specifying the range the delta is already set. */
5178 if (loopspec
[n
] != ss
)
5182 /* Calculate the offset relative to the loop variable.
5183 First multiply by the stride. */
5184 tmp
= loop
->from
[n
];
5185 if (!integer_onep (info
->stride
[dim
]))
5186 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
5187 gfc_array_index_type
,
5188 tmp
, info
->stride
[dim
]);
5190 /* Then subtract this from our starting value. */
5191 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
5192 gfc_array_index_type
,
5193 info
->start
[dim
], tmp
);
5195 info
->delta
[dim
] = gfc_evaluate_now (tmp
, &outer_loop
->pre
);
5200 for (loop
= loop
->nested
; loop
; loop
= loop
->next
)
5201 gfc_set_delta (loop
);
5205 /* Calculate the size of a given array dimension from the bounds. This
5206 is simply (ubound - lbound + 1) if this expression is positive
5207 or 0 if it is negative (pick either one if it is zero). Optionally
5208 (if or_expr is present) OR the (expression != 0) condition to it. */
5211 gfc_conv_array_extent_dim (tree lbound
, tree ubound
, tree
* or_expr
)
5216 /* Calculate (ubound - lbound + 1). */
5217 res
= fold_build2_loc (input_location
, MINUS_EXPR
, gfc_array_index_type
,
5219 res
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
, res
,
5220 gfc_index_one_node
);
5222 /* Check whether the size for this dimension is negative. */
5223 cond
= fold_build2_loc (input_location
, LE_EXPR
, logical_type_node
, res
,
5224 gfc_index_zero_node
);
5225 res
= fold_build3_loc (input_location
, COND_EXPR
, gfc_array_index_type
, cond
,
5226 gfc_index_zero_node
, res
);
5228 /* Build OR expression. */
5230 *or_expr
= fold_build2_loc (input_location
, TRUTH_OR_EXPR
,
5231 logical_type_node
, *or_expr
, cond
);
5237 /* For an array descriptor, get the total number of elements. This is just
5238 the product of the extents along from_dim to to_dim. */
5241 gfc_conv_descriptor_size_1 (tree desc
, int from_dim
, int to_dim
)
5246 res
= gfc_index_one_node
;
5248 for (dim
= from_dim
; dim
< to_dim
; ++dim
)
5254 lbound
= gfc_conv_descriptor_lbound_get (desc
, gfc_rank_cst
[dim
]);
5255 ubound
= gfc_conv_descriptor_ubound_get (desc
, gfc_rank_cst
[dim
]);
5257 extent
= gfc_conv_array_extent_dim (lbound
, ubound
, NULL
);
5258 res
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
5266 /* Full size of an array. */
5269 gfc_conv_descriptor_size (tree desc
, int rank
)
5271 return gfc_conv_descriptor_size_1 (desc
, 0, rank
);
5275 /* Size of a coarray for all dimensions but the last. */
5278 gfc_conv_descriptor_cosize (tree desc
, int rank
, int corank
)
5280 return gfc_conv_descriptor_size_1 (desc
, rank
, rank
+ corank
- 1);
5284 /* Fills in an array descriptor, and returns the size of the array.
5285 The size will be a simple_val, ie a variable or a constant. Also
5286 calculates the offset of the base. The pointer argument overflow,
5287 which should be of integer type, will increase in value if overflow
5288 occurs during the size calculation. Returns the size of the array.
5292 for (n = 0; n < rank; n++)
5294 a.lbound[n] = specified_lower_bound;
5295 offset = offset + a.lbond[n] * stride;
5297 a.ubound[n] = specified_upper_bound;
5298 a.stride[n] = stride;
5299 size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
5300 overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0);
5301 stride = stride * size;
5303 for (n = rank; n < rank+corank; n++)
5304 (Set lcobound/ucobound as above.)
5305 element_size = sizeof (array element);
5308 stride = (size_t) stride;
5309 overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0);
5310 stride = stride * element_size;
5316 gfc_array_init_size (tree descriptor
, int rank
, int corank
, tree
* poffset
,
5317 gfc_expr
** lower
, gfc_expr
** upper
, stmtblock_t
* pblock
,
5318 stmtblock_t
* descriptor_block
, tree
* overflow
,
5319 tree expr3_elem_size
, tree
*nelems
, gfc_expr
*expr3
,
5320 tree expr3_desc
, bool e3_is_array_constr
, gfc_expr
*expr
)
5333 stmtblock_t thenblock
;
5334 stmtblock_t elseblock
;
5339 type
= TREE_TYPE (descriptor
);
5341 stride
= gfc_index_one_node
;
5342 offset
= gfc_index_zero_node
;
5344 /* Set the dtype before the alloc, because registration of coarrays needs
5346 if (expr
->ts
.type
== BT_CHARACTER
5347 && expr
->ts
.deferred
5348 && VAR_P (expr
->ts
.u
.cl
->backend_decl
))
5350 type
= gfc_typenode_for_spec (&expr
->ts
);
5351 tmp
= gfc_conv_descriptor_dtype (descriptor
);
5352 gfc_add_modify (pblock
, tmp
, gfc_get_dtype_rank_type (rank
, type
));
5356 tmp
= gfc_conv_descriptor_dtype (descriptor
);
5357 gfc_add_modify (pblock
, tmp
, gfc_get_dtype (type
));
5360 or_expr
= logical_false_node
;
5362 for (n
= 0; n
< rank
; n
++)
5367 /* We have 3 possibilities for determining the size of the array:
5368 lower == NULL => lbound = 1, ubound = upper[n]
5369 upper[n] = NULL => lbound = 1, ubound = lower[n]
5370 upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
5373 /* Set lower bound. */
5374 gfc_init_se (&se
, NULL
);
5375 if (expr3_desc
!= NULL_TREE
)
5377 if (e3_is_array_constr
)
5378 /* The lbound of a constant array [] starts at zero, but when
5379 allocating it, the standard expects the array to start at
5381 se
.expr
= gfc_index_one_node
;
5383 se
.expr
= gfc_conv_descriptor_lbound_get (expr3_desc
,
5386 else if (lower
== NULL
)
5387 se
.expr
= gfc_index_one_node
;
5390 gcc_assert (lower
[n
]);
5393 gfc_conv_expr_type (&se
, lower
[n
], gfc_array_index_type
);
5394 gfc_add_block_to_block (pblock
, &se
.pre
);
5398 se
.expr
= gfc_index_one_node
;
5402 gfc_conv_descriptor_lbound_set (descriptor_block
, descriptor
,
5403 gfc_rank_cst
[n
], se
.expr
);
5404 conv_lbound
= se
.expr
;
5406 /* Work out the offset for this component. */
5407 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
5409 offset
= fold_build2_loc (input_location
, MINUS_EXPR
,
5410 gfc_array_index_type
, offset
, tmp
);
5412 /* Set upper bound. */
5413 gfc_init_se (&se
, NULL
);
5414 if (expr3_desc
!= NULL_TREE
)
5416 if (e3_is_array_constr
)
5418 /* The lbound of a constant array [] starts at zero, but when
5419 allocating it, the standard expects the array to start at
5420 one. Therefore fix the upper bound to be
5421 (desc.ubound - desc.lbound)+ 1. */
5422 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
5423 gfc_array_index_type
,
5424 gfc_conv_descriptor_ubound_get (
5425 expr3_desc
, gfc_rank_cst
[n
]),
5426 gfc_conv_descriptor_lbound_get (
5427 expr3_desc
, gfc_rank_cst
[n
]));
5428 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
5429 gfc_array_index_type
, tmp
,
5430 gfc_index_one_node
);
5431 se
.expr
= gfc_evaluate_now (tmp
, pblock
);
5434 se
.expr
= gfc_conv_descriptor_ubound_get (expr3_desc
,
5439 gcc_assert (ubound
);
5440 gfc_conv_expr_type (&se
, ubound
, gfc_array_index_type
);
5441 gfc_add_block_to_block (pblock
, &se
.pre
);
5442 if (ubound
->expr_type
== EXPR_FUNCTION
)
5443 se
.expr
= gfc_evaluate_now (se
.expr
, pblock
);
5445 gfc_conv_descriptor_ubound_set (descriptor_block
, descriptor
,
5446 gfc_rank_cst
[n
], se
.expr
);
5447 conv_ubound
= se
.expr
;
5449 /* Store the stride. */
5450 gfc_conv_descriptor_stride_set (descriptor_block
, descriptor
,
5451 gfc_rank_cst
[n
], stride
);
5453 /* Calculate size and check whether extent is negative. */
5454 size
= gfc_conv_array_extent_dim (conv_lbound
, conv_ubound
, &or_expr
);
5455 size
= gfc_evaluate_now (size
, pblock
);
5457 /* Check whether multiplying the stride by the number of
5458 elements in this dimension would overflow. We must also check
5459 whether the current dimension has zero size in order to avoid
5462 tmp
= fold_build2_loc (input_location
, TRUNC_DIV_EXPR
,
5463 gfc_array_index_type
,
5464 fold_convert (gfc_array_index_type
,
5465 TYPE_MAX_VALUE (gfc_array_index_type
)),
5467 cond
= gfc_unlikely (fold_build2_loc (input_location
, LT_EXPR
,
5468 logical_type_node
, tmp
, stride
),
5469 PRED_FORTRAN_OVERFLOW
);
5470 tmp
= fold_build3_loc (input_location
, COND_EXPR
, integer_type_node
, cond
,
5471 integer_one_node
, integer_zero_node
);
5472 cond
= gfc_unlikely (fold_build2_loc (input_location
, EQ_EXPR
,
5473 logical_type_node
, size
,
5474 gfc_index_zero_node
),
5475 PRED_FORTRAN_SIZE_ZERO
);
5476 tmp
= fold_build3_loc (input_location
, COND_EXPR
, integer_type_node
, cond
,
5477 integer_zero_node
, tmp
);
5478 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, integer_type_node
,
5480 *overflow
= gfc_evaluate_now (tmp
, pblock
);
5482 /* Multiply the stride by the number of elements in this dimension. */
5483 stride
= fold_build2_loc (input_location
, MULT_EXPR
,
5484 gfc_array_index_type
, stride
, size
);
5485 stride
= gfc_evaluate_now (stride
, pblock
);
5488 for (n
= rank
; n
< rank
+ corank
; n
++)
5492 /* Set lower bound. */
5493 gfc_init_se (&se
, NULL
);
5494 if (lower
== NULL
|| lower
[n
] == NULL
)
5496 gcc_assert (n
== rank
+ corank
- 1);
5497 se
.expr
= gfc_index_one_node
;
5501 if (ubound
|| n
== rank
+ corank
- 1)
5503 gfc_conv_expr_type (&se
, lower
[n
], gfc_array_index_type
);
5504 gfc_add_block_to_block (pblock
, &se
.pre
);
5508 se
.expr
= gfc_index_one_node
;
5512 gfc_conv_descriptor_lbound_set (descriptor_block
, descriptor
,
5513 gfc_rank_cst
[n
], se
.expr
);
5515 if (n
< rank
+ corank
- 1)
5517 gfc_init_se (&se
, NULL
);
5518 gcc_assert (ubound
);
5519 gfc_conv_expr_type (&se
, ubound
, gfc_array_index_type
);
5520 gfc_add_block_to_block (pblock
, &se
.pre
);
5521 gfc_conv_descriptor_ubound_set (descriptor_block
, descriptor
,
5522 gfc_rank_cst
[n
], se
.expr
);
5526 /* The stride is the number of elements in the array, so multiply by the
5527 size of an element to get the total size. Obviously, if there is a
5528 SOURCE expression (expr3) we must use its element size. */
5529 if (expr3_elem_size
!= NULL_TREE
)
5530 tmp
= expr3_elem_size
;
5531 else if (expr3
!= NULL
)
5533 if (expr3
->ts
.type
== BT_CLASS
)
5536 gfc_expr
*sz
= gfc_copy_expr (expr3
);
5537 gfc_add_vptr_component (sz
);
5538 gfc_add_size_component (sz
);
5539 gfc_init_se (&se_sz
, NULL
);
5540 gfc_conv_expr (&se_sz
, sz
);
5546 tmp
= gfc_typenode_for_spec (&expr3
->ts
);
5547 tmp
= TYPE_SIZE_UNIT (tmp
);
5551 tmp
= TYPE_SIZE_UNIT (gfc_get_element_type (type
));
5553 /* Convert to size_t. */
5554 element_size
= fold_convert (size_type_node
, tmp
);
5557 return element_size
;
5559 *nelems
= gfc_evaluate_now (stride
, pblock
);
5560 stride
= fold_convert (size_type_node
, stride
);
5562 /* First check for overflow. Since an array of type character can
5563 have zero element_size, we must check for that before
5565 tmp
= fold_build2_loc (input_location
, TRUNC_DIV_EXPR
,
5567 TYPE_MAX_VALUE (size_type_node
), element_size
);
5568 cond
= gfc_unlikely (fold_build2_loc (input_location
, LT_EXPR
,
5569 logical_type_node
, tmp
, stride
),
5570 PRED_FORTRAN_OVERFLOW
);
5571 tmp
= fold_build3_loc (input_location
, COND_EXPR
, integer_type_node
, cond
,
5572 integer_one_node
, integer_zero_node
);
5573 cond
= gfc_unlikely (fold_build2_loc (input_location
, EQ_EXPR
,
5574 logical_type_node
, element_size
,
5575 build_int_cst (size_type_node
, 0)),
5576 PRED_FORTRAN_SIZE_ZERO
);
5577 tmp
= fold_build3_loc (input_location
, COND_EXPR
, integer_type_node
, cond
,
5578 integer_zero_node
, tmp
);
5579 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, integer_type_node
,
5581 *overflow
= gfc_evaluate_now (tmp
, pblock
);
5583 size
= fold_build2_loc (input_location
, MULT_EXPR
, size_type_node
,
5584 stride
, element_size
);
5586 if (poffset
!= NULL
)
5588 offset
= gfc_evaluate_now (offset
, pblock
);
5592 if (integer_zerop (or_expr
))
5594 if (integer_onep (or_expr
))
5595 return build_int_cst (size_type_node
, 0);
5597 var
= gfc_create_var (TREE_TYPE (size
), "size");
5598 gfc_start_block (&thenblock
);
5599 gfc_add_modify (&thenblock
, var
, build_int_cst (size_type_node
, 0));
5600 thencase
= gfc_finish_block (&thenblock
);
5602 gfc_start_block (&elseblock
);
5603 gfc_add_modify (&elseblock
, var
, size
);
5604 elsecase
= gfc_finish_block (&elseblock
);
5606 tmp
= gfc_evaluate_now (or_expr
, pblock
);
5607 tmp
= build3_v (COND_EXPR
, tmp
, thencase
, elsecase
);
5608 gfc_add_expr_to_block (pblock
, tmp
);
5614 /* Retrieve the last ref from the chain. This routine is specific to
5615 gfc_array_allocate ()'s needs. */
5618 retrieve_last_ref (gfc_ref
**ref_in
, gfc_ref
**prev_ref_in
)
5620 gfc_ref
*ref
, *prev_ref
;
5623 /* Prevent warnings for uninitialized variables. */
5624 prev_ref
= *prev_ref_in
;
5625 while (ref
&& ref
->next
!= NULL
)
5627 gcc_assert (ref
->type
!= REF_ARRAY
|| ref
->u
.ar
.type
== AR_ELEMENT
5628 || (ref
->u
.ar
.dimen
== 0 && ref
->u
.ar
.codimen
> 0));
5633 if (ref
== NULL
|| ref
->type
!= REF_ARRAY
)
5637 *prev_ref_in
= prev_ref
;
5641 /* Initializes the descriptor and generates a call to _gfor_allocate. Does
5642 the work for an ALLOCATE statement. */
5646 gfc_array_allocate (gfc_se
* se
, gfc_expr
* expr
, tree status
, tree errmsg
,
5647 tree errlen
, tree label_finish
, tree expr3_elem_size
,
5648 tree
*nelems
, gfc_expr
*expr3
, tree e3_arr_desc
,
5649 bool e3_is_array_constr
)
5653 tree offset
= NULL_TREE
;
5654 tree token
= NULL_TREE
;
5657 tree error
= NULL_TREE
;
5658 tree overflow
; /* Boolean storing whether size calculation overflows. */
5659 tree var_overflow
= NULL_TREE
;
5661 tree set_descriptor
;
5662 stmtblock_t set_descriptor_block
;
5663 stmtblock_t elseblock
;
5666 gfc_ref
*ref
, *prev_ref
= NULL
, *coref
;
5667 bool allocatable
, coarray
, dimension
, alloc_w_e3_arr_spec
= false,
5668 non_ulimate_coarray_ptr_comp
;
5672 /* Find the last reference in the chain. */
5673 if (!retrieve_last_ref (&ref
, &prev_ref
))
5676 /* Take the allocatable and coarray properties solely from the expr-ref's
5677 attributes and not from source=-expression. */
5680 allocatable
= expr
->symtree
->n
.sym
->attr
.allocatable
;
5681 dimension
= expr
->symtree
->n
.sym
->attr
.dimension
;
5682 non_ulimate_coarray_ptr_comp
= false;
5686 allocatable
= prev_ref
->u
.c
.component
->attr
.allocatable
;
5687 /* Pointer components in coarrayed derived types must be treated
5688 specially in that they are registered without a check if the are
5689 already associated. This does not hold for ultimate coarray
5691 non_ulimate_coarray_ptr_comp
= (prev_ref
->u
.c
.component
->attr
.pointer
5692 && !prev_ref
->u
.c
.component
->attr
.codimension
);
5693 dimension
= prev_ref
->u
.c
.component
->attr
.dimension
;
5696 /* For allocatable/pointer arrays in derived types, one of the refs has to be
5697 a coarray. In this case it does not matter whether we are on this_image
5700 for (coref
= expr
->ref
; coref
; coref
= coref
->next
)
5701 if (coref
->type
== REF_ARRAY
&& coref
->u
.ar
.codimen
> 0)
5708 gcc_assert (coarray
);
5710 if (ref
->u
.ar
.type
== AR_FULL
&& expr3
!= NULL
)
5712 gfc_ref
*old_ref
= ref
;
5713 /* F08:C633: Array shape from expr3. */
5716 /* Find the last reference in the chain. */
5717 if (!retrieve_last_ref (&ref
, &prev_ref
))
5719 if (expr3
->expr_type
== EXPR_FUNCTION
5720 && gfc_expr_attr (expr3
).dimension
)
5725 alloc_w_e3_arr_spec
= true;
5728 /* Figure out the size of the array. */
5729 switch (ref
->u
.ar
.type
)
5735 upper
= ref
->u
.ar
.start
;
5741 lower
= ref
->u
.ar
.start
;
5742 upper
= ref
->u
.ar
.end
;
5746 gcc_assert (ref
->u
.ar
.as
->type
== AS_EXPLICIT
5747 || alloc_w_e3_arr_spec
);
5749 lower
= ref
->u
.ar
.as
->lower
;
5750 upper
= ref
->u
.ar
.as
->upper
;
5758 overflow
= integer_zero_node
;
5760 gfc_init_block (&set_descriptor_block
);
5761 /* Take the corank only from the actual ref and not from the coref. The
5762 later will mislead the generation of the array dimensions for allocatable/
5763 pointer components in derived types. */
5764 size
= gfc_array_init_size (se
->expr
, alloc_w_e3_arr_spec
? expr
->rank
5765 : ref
->u
.ar
.as
->rank
,
5766 coarray
? ref
->u
.ar
.as
->corank
: 0,
5767 &offset
, lower
, upper
,
5768 &se
->pre
, &set_descriptor_block
, &overflow
,
5769 expr3_elem_size
, nelems
, expr3
, e3_arr_desc
,
5770 e3_is_array_constr
, expr
);
5774 var_overflow
= gfc_create_var (integer_type_node
, "overflow");
5775 gfc_add_modify (&se
->pre
, var_overflow
, overflow
);
5777 if (status
== NULL_TREE
)
5779 /* Generate the block of code handling overflow. */
5780 msg
= gfc_build_addr_expr (pchar_type_node
,
5781 gfc_build_localized_cstring_const
5782 ("Integer overflow when calculating the amount of "
5783 "memory to allocate"));
5784 error
= build_call_expr_loc (input_location
,
5785 gfor_fndecl_runtime_error
, 1, msg
);
5789 tree status_type
= TREE_TYPE (status
);
5790 stmtblock_t set_status_block
;
5792 gfc_start_block (&set_status_block
);
5793 gfc_add_modify (&set_status_block
, status
,
5794 build_int_cst (status_type
, LIBERROR_ALLOCATION
));
5795 error
= gfc_finish_block (&set_status_block
);
5799 gfc_start_block (&elseblock
);
5801 /* Allocate memory to store the data. */
5802 if (POINTER_TYPE_P (TREE_TYPE (se
->expr
)))
5803 se
->expr
= build_fold_indirect_ref_loc (input_location
, se
->expr
);
5805 if (coarray
&& flag_coarray
== GFC_FCOARRAY_LIB
)
5807 pointer
= non_ulimate_coarray_ptr_comp
? se
->expr
5808 : gfc_conv_descriptor_data_get (se
->expr
);
5809 token
= gfc_conv_descriptor_token (se
->expr
);
5810 token
= gfc_build_addr_expr (NULL_TREE
, token
);
5813 pointer
= gfc_conv_descriptor_data_get (se
->expr
);
5814 STRIP_NOPS (pointer
);
5816 /* The allocatable variant takes the old pointer as first argument. */
5818 gfc_allocate_allocatable (&elseblock
, pointer
, size
, token
,
5819 status
, errmsg
, errlen
, label_finish
, expr
,
5820 coref
!= NULL
? coref
->u
.ar
.as
->corank
: 0);
5821 else if (non_ulimate_coarray_ptr_comp
&& token
)
5822 /* The token is set only for GFC_FCOARRAY_LIB mode. */
5823 gfc_allocate_using_caf_lib (&elseblock
, pointer
, size
, token
, status
,
5825 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY
);
5827 gfc_allocate_using_malloc (&elseblock
, pointer
, size
, status
);
5831 cond
= gfc_unlikely (fold_build2_loc (input_location
, NE_EXPR
,
5832 logical_type_node
, var_overflow
, integer_zero_node
),
5833 PRED_FORTRAN_OVERFLOW
);
5834 tmp
= fold_build3_loc (input_location
, COND_EXPR
, void_type_node
, cond
,
5835 error
, gfc_finish_block (&elseblock
));
5838 tmp
= gfc_finish_block (&elseblock
);
5840 gfc_add_expr_to_block (&se
->pre
, tmp
);
5842 /* Update the array descriptors. */
5844 gfc_conv_descriptor_offset_set (&set_descriptor_block
, se
->expr
, offset
);
5846 /* Pointer arrays need the span field to be set. */
5847 if (is_pointer_array (se
->expr
)
5848 || (expr
->ts
.type
== BT_CLASS
5849 && CLASS_DATA (expr
)->attr
.class_pointer
))
5851 if (expr3
&& expr3_elem_size
!= NULL_TREE
)
5852 tmp
= expr3_elem_size
;
5854 tmp
= TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (se
->expr
)));
5855 tmp
= fold_convert (gfc_array_index_type
, tmp
);
5856 gfc_conv_descriptor_span_set (&set_descriptor_block
, se
->expr
, tmp
);
5859 set_descriptor
= gfc_finish_block (&set_descriptor_block
);
5860 if (status
!= NULL_TREE
)
5862 cond
= fold_build2_loc (input_location
, EQ_EXPR
,
5863 logical_type_node
, status
,
5864 build_int_cst (TREE_TYPE (status
), 0));
5865 gfc_add_expr_to_block (&se
->pre
,
5866 fold_build3_loc (input_location
, COND_EXPR
, void_type_node
,
5869 build_empty_stmt (input_location
)));
5872 gfc_add_expr_to_block (&se
->pre
, set_descriptor
);
5878 /* Create an array constructor from an initialization expression.
5879 We assume the frontend already did any expansions and conversions. */
5882 gfc_conv_array_initializer (tree type
, gfc_expr
* expr
)
5889 vec
<constructor_elt
, va_gc
> *v
= NULL
;
5891 if (expr
->expr_type
== EXPR_VARIABLE
5892 && expr
->symtree
->n
.sym
->attr
.flavor
== FL_PARAMETER
5893 && expr
->symtree
->n
.sym
->value
)
5894 expr
= expr
->symtree
->n
.sym
->value
;
5896 switch (expr
->expr_type
)
5899 case EXPR_STRUCTURE
:
5900 /* A single scalar or derived type value. Create an array with all
5901 elements equal to that value. */
5902 gfc_init_se (&se
, NULL
);
5904 if (expr
->expr_type
== EXPR_CONSTANT
)
5905 gfc_conv_constant (&se
, expr
);
5907 gfc_conv_structure (&se
, expr
, 1);
5909 wtmp
= wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (type
))) + 1;
5910 /* This will probably eat buckets of memory for large arrays. */
5913 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, se
.expr
);
5919 /* Create a vector of all the elements. */
5920 for (c
= gfc_constructor_first (expr
->value
.constructor
);
5921 c
; c
= gfc_constructor_next (c
))
5925 /* Problems occur when we get something like
5926 integer :: a(lots) = (/(i, i=1, lots)/) */
5927 gfc_fatal_error ("The number of elements in the array "
5928 "constructor at %L requires an increase of "
5929 "the allowed %d upper limit. See "
5930 "%<-fmax-array-constructor%> option",
5931 &expr
->where
, flag_max_array_constructor
);
5934 if (mpz_cmp_si (c
->offset
, 0) != 0)
5935 index
= gfc_conv_mpz_to_tree (c
->offset
, gfc_index_integer_kind
);
5939 if (mpz_cmp_si (c
->repeat
, 1) > 0)
5945 mpz_add (maxval
, c
->offset
, c
->repeat
);
5946 mpz_sub_ui (maxval
, maxval
, 1);
5947 tmp2
= gfc_conv_mpz_to_tree (maxval
, gfc_index_integer_kind
);
5948 if (mpz_cmp_si (c
->offset
, 0) != 0)
5950 mpz_add_ui (maxval
, c
->offset
, 1);
5951 tmp1
= gfc_conv_mpz_to_tree (maxval
, gfc_index_integer_kind
);
5954 tmp1
= gfc_conv_mpz_to_tree (c
->offset
, gfc_index_integer_kind
);
5956 range
= fold_build2 (RANGE_EXPR
, gfc_array_index_type
, tmp1
, tmp2
);
5962 gfc_init_se (&se
, NULL
);
5963 switch (c
->expr
->expr_type
)
5966 gfc_conv_constant (&se
, c
->expr
);
5969 case EXPR_STRUCTURE
:
5970 gfc_conv_structure (&se
, c
->expr
, 1);
5974 /* Catch those occasional beasts that do not simplify
5975 for one reason or another, assuming that if they are
5976 standard defying the frontend will catch them. */
5977 gfc_conv_expr (&se
, c
->expr
);
5981 if (range
== NULL_TREE
)
5982 CONSTRUCTOR_APPEND_ELT (v
, index
, se
.expr
);
5985 if (index
!= NULL_TREE
)
5986 CONSTRUCTOR_APPEND_ELT (v
, index
, se
.expr
);
5987 CONSTRUCTOR_APPEND_ELT (v
, range
, se
.expr
);
5993 return gfc_build_null_descriptor (type
);
5999 /* Create a constructor from the list of elements. */
6000 tmp
= build_constructor (type
, v
);
6001 TREE_CONSTANT (tmp
) = 1;
6006 /* Generate code to evaluate non-constant coarray cobounds. */
6009 gfc_trans_array_cobounds (tree type
, stmtblock_t
* pblock
,
6010 const gfc_symbol
*sym
)
6018 as
= IS_CLASS_ARRAY (sym
) ? CLASS_DATA (sym
)->as
: sym
->as
;
6020 for (dim
= as
->rank
; dim
< as
->rank
+ as
->corank
; dim
++)
6022 /* Evaluate non-constant array bound expressions. */
6023 lbound
= GFC_TYPE_ARRAY_LBOUND (type
, dim
);
6024 if (as
->lower
[dim
] && !INTEGER_CST_P (lbound
))
6026 gfc_init_se (&se
, NULL
);
6027 gfc_conv_expr_type (&se
, as
->lower
[dim
], gfc_array_index_type
);
6028 gfc_add_block_to_block (pblock
, &se
.pre
);
6029 gfc_add_modify (pblock
, lbound
, se
.expr
);
6031 ubound
= GFC_TYPE_ARRAY_UBOUND (type
, dim
);
6032 if (as
->upper
[dim
] && !INTEGER_CST_P (ubound
))
6034 gfc_init_se (&se
, NULL
);
6035 gfc_conv_expr_type (&se
, as
->upper
[dim
], gfc_array_index_type
);
6036 gfc_add_block_to_block (pblock
, &se
.pre
);
6037 gfc_add_modify (pblock
, ubound
, se
.expr
);
6043 /* Generate code to evaluate non-constant array bounds. Sets *poffset and
6044 returns the size (in elements) of the array. */
6047 gfc_trans_array_bounds (tree type
, gfc_symbol
* sym
, tree
* poffset
,
6048 stmtblock_t
* pblock
)
6061 as
= IS_CLASS_ARRAY (sym
) ? CLASS_DATA (sym
)->as
: sym
->as
;
6063 size
= gfc_index_one_node
;
6064 offset
= gfc_index_zero_node
;
6065 for (dim
= 0; dim
< as
->rank
; dim
++)
6067 /* Evaluate non-constant array bound expressions. */
6068 lbound
= GFC_TYPE_ARRAY_LBOUND (type
, dim
);
6069 if (as
->lower
[dim
] && !INTEGER_CST_P (lbound
))
6071 gfc_init_se (&se
, NULL
);
6072 gfc_conv_expr_type (&se
, as
->lower
[dim
], gfc_array_index_type
);
6073 gfc_add_block_to_block (pblock
, &se
.pre
);
6074 gfc_add_modify (pblock
, lbound
, se
.expr
);
6076 ubound
= GFC_TYPE_ARRAY_UBOUND (type
, dim
);
6077 if (as
->upper
[dim
] && !INTEGER_CST_P (ubound
))
6079 gfc_init_se (&se
, NULL
);
6080 gfc_conv_expr_type (&se
, as
->upper
[dim
], gfc_array_index_type
);
6081 gfc_add_block_to_block (pblock
, &se
.pre
);
6082 gfc_add_modify (pblock
, ubound
, se
.expr
);
6084 /* The offset of this dimension. offset = offset - lbound * stride. */
6085 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
6087 offset
= fold_build2_loc (input_location
, MINUS_EXPR
, gfc_array_index_type
,
6090 /* The size of this dimension, and the stride of the next. */
6091 if (dim
+ 1 < as
->rank
)
6092 stride
= GFC_TYPE_ARRAY_STRIDE (type
, dim
+ 1);
6094 stride
= GFC_TYPE_ARRAY_SIZE (type
);
6096 if (ubound
!= NULL_TREE
&& !(stride
&& INTEGER_CST_P (stride
)))
6098 /* Calculate stride = size * (ubound + 1 - lbound). */
6099 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6100 gfc_array_index_type
,
6101 gfc_index_one_node
, lbound
);
6102 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6103 gfc_array_index_type
, ubound
, tmp
);
6104 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
6105 gfc_array_index_type
, size
, tmp
);
6107 gfc_add_modify (pblock
, stride
, tmp
);
6109 stride
= gfc_evaluate_now (tmp
, pblock
);
6111 /* Make sure that negative size arrays are translated
6112 to being zero size. */
6113 tmp
= fold_build2_loc (input_location
, GE_EXPR
, logical_type_node
,
6114 stride
, gfc_index_zero_node
);
6115 tmp
= fold_build3_loc (input_location
, COND_EXPR
,
6116 gfc_array_index_type
, tmp
,
6117 stride
, gfc_index_zero_node
);
6118 gfc_add_modify (pblock
, stride
, tmp
);
6124 gfc_trans_array_cobounds (type
, pblock
, sym
);
6125 gfc_trans_vla_type_sizes (sym
, pblock
);
6132 /* Generate code to initialize/allocate an array variable. */
6135 gfc_trans_auto_array_allocation (tree decl
, gfc_symbol
* sym
,
6136 gfc_wrapped_block
* block
)
6140 tree tmp
= NULL_TREE
;
6147 gcc_assert (!(sym
->attr
.pointer
|| sym
->attr
.allocatable
));
6149 /* Do nothing for USEd variables. */
6150 if (sym
->attr
.use_assoc
)
6153 type
= TREE_TYPE (decl
);
6154 gcc_assert (GFC_ARRAY_TYPE_P (type
));
6155 onstack
= TREE_CODE (type
) != POINTER_TYPE
;
6157 gfc_init_block (&init
);
6159 /* Evaluate character string length. */
6160 if (sym
->ts
.type
== BT_CHARACTER
6161 && onstack
&& !INTEGER_CST_P (sym
->ts
.u
.cl
->backend_decl
))
6163 gfc_conv_string_length (sym
->ts
.u
.cl
, NULL
, &init
);
6165 gfc_trans_vla_type_sizes (sym
, &init
);
6167 /* Emit a DECL_EXPR for this variable, which will cause the
6168 gimplifier to allocate storage, and all that good stuff. */
6169 tmp
= fold_build1_loc (input_location
, DECL_EXPR
, TREE_TYPE (decl
), decl
);
6170 gfc_add_expr_to_block (&init
, tmp
);
6175 gfc_add_init_cleanup (block
, gfc_finish_block (&init
), NULL_TREE
);
6179 type
= TREE_TYPE (type
);
6181 gcc_assert (!sym
->attr
.use_assoc
);
6182 gcc_assert (!TREE_STATIC (decl
));
6183 gcc_assert (!sym
->module
);
6185 if (sym
->ts
.type
== BT_CHARACTER
6186 && !INTEGER_CST_P (sym
->ts
.u
.cl
->backend_decl
))
6187 gfc_conv_string_length (sym
->ts
.u
.cl
, NULL
, &init
);
6189 size
= gfc_trans_array_bounds (type
, sym
, &offset
, &init
);
6191 /* Don't actually allocate space for Cray Pointees. */
6192 if (sym
->attr
.cray_pointee
)
6194 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type
)))
6195 gfc_add_modify (&init
, GFC_TYPE_ARRAY_OFFSET (type
), offset
);
6197 gfc_add_init_cleanup (block
, gfc_finish_block (&init
), NULL_TREE
);
6201 if (flag_stack_arrays
)
6203 gcc_assert (TREE_CODE (TREE_TYPE (decl
)) == POINTER_TYPE
);
6204 space
= build_decl (sym
->declared_at
.lb
->location
,
6205 VAR_DECL
, create_tmp_var_name ("A"),
6206 TREE_TYPE (TREE_TYPE (decl
)));
6207 gfc_trans_vla_type_sizes (sym
, &init
);
6211 /* The size is the number of elements in the array, so multiply by the
6212 size of an element to get the total size. */
6213 tmp
= TYPE_SIZE_UNIT (gfc_get_element_type (type
));
6214 size
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
6215 size
, fold_convert (gfc_array_index_type
, tmp
));
6217 /* Allocate memory to hold the data. */
6218 tmp
= gfc_call_malloc (&init
, TREE_TYPE (decl
), size
);
6219 gfc_add_modify (&init
, decl
, tmp
);
6221 /* Free the temporary. */
6222 tmp
= gfc_call_free (decl
);
6226 /* Set offset of the array. */
6227 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type
)))
6228 gfc_add_modify (&init
, GFC_TYPE_ARRAY_OFFSET (type
), offset
);
6230 /* Automatic arrays should not have initializers. */
6231 gcc_assert (!sym
->value
);
6233 inittree
= gfc_finish_block (&init
);
6240 /* Don't create new scope, emit the DECL_EXPR in exactly the scope
6241 where also space is located. */
6242 gfc_init_block (&init
);
6243 tmp
= fold_build1_loc (input_location
, DECL_EXPR
,
6244 TREE_TYPE (space
), space
);
6245 gfc_add_expr_to_block (&init
, tmp
);
6246 addr
= fold_build1_loc (sym
->declared_at
.lb
->location
,
6247 ADDR_EXPR
, TREE_TYPE (decl
), space
);
6248 gfc_add_modify (&init
, decl
, addr
);
6249 gfc_add_init_cleanup (block
, gfc_finish_block (&init
), NULL_TREE
);
6252 gfc_add_init_cleanup (block
, inittree
, tmp
);
6256 /* Generate entry and exit code for g77 calling convention arrays. */
6259 gfc_trans_g77_array (gfc_symbol
* sym
, gfc_wrapped_block
* block
)
6269 gfc_save_backend_locus (&loc
);
6270 gfc_set_backend_locus (&sym
->declared_at
);
6272 /* Descriptor type. */
6273 parm
= sym
->backend_decl
;
6274 type
= TREE_TYPE (parm
);
6275 gcc_assert (GFC_ARRAY_TYPE_P (type
));
6277 gfc_start_block (&init
);
6279 if (sym
->ts
.type
== BT_CHARACTER
6280 && VAR_P (sym
->ts
.u
.cl
->backend_decl
))
6281 gfc_conv_string_length (sym
->ts
.u
.cl
, NULL
, &init
);
6283 /* Evaluate the bounds of the array. */
6284 gfc_trans_array_bounds (type
, sym
, &offset
, &init
);
6286 /* Set the offset. */
6287 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type
)))
6288 gfc_add_modify (&init
, GFC_TYPE_ARRAY_OFFSET (type
), offset
);
6290 /* Set the pointer itself if we aren't using the parameter directly. */
6291 if (TREE_CODE (parm
) != PARM_DECL
)
6293 tmp
= convert (TREE_TYPE (parm
), GFC_DECL_SAVED_DESCRIPTOR (parm
));
6294 gfc_add_modify (&init
, parm
, tmp
);
6296 stmt
= gfc_finish_block (&init
);
6298 gfc_restore_backend_locus (&loc
);
6300 /* Add the initialization code to the start of the function. */
6302 if (sym
->attr
.optional
|| sym
->attr
.not_always_present
)
6304 tmp
= gfc_conv_expr_present (sym
);
6305 stmt
= build3_v (COND_EXPR
, tmp
, stmt
, build_empty_stmt (input_location
));
6308 gfc_add_init_cleanup (block
, stmt
, NULL_TREE
);
6312 /* Modify the descriptor of an array parameter so that it has the
6313 correct lower bound. Also move the upper bound accordingly.
6314 If the array is not packed, it will be copied into a temporary.
6315 For each dimension we set the new lower and upper bounds. Then we copy the
6316 stride and calculate the offset for this dimension. We also work out
6317 what the stride of a packed array would be, and see it the two match.
6318 If the array need repacking, we set the stride to the values we just
6319 calculated, recalculate the offset and copy the array data.
6320 Code is also added to copy the data back at the end of the function.
6324 gfc_trans_dummy_array_bias (gfc_symbol
* sym
, tree tmpdesc
,
6325 gfc_wrapped_block
* block
)
6332 tree stmtInit
, stmtCleanup
;
6339 tree stride
, stride2
;
6349 bool is_classarray
= IS_CLASS_ARRAY (sym
);
6351 /* Do nothing for pointer and allocatable arrays. */
6352 if ((sym
->ts
.type
!= BT_CLASS
&& sym
->attr
.pointer
)
6353 || (sym
->ts
.type
== BT_CLASS
&& CLASS_DATA (sym
)->attr
.class_pointer
)
6354 || sym
->attr
.allocatable
6355 || (is_classarray
&& CLASS_DATA (sym
)->attr
.allocatable
))
6358 if (!is_classarray
&& sym
->attr
.dummy
&& gfc_is_nodesc_array (sym
))
6360 gfc_trans_g77_array (sym
, block
);
6365 gfc_save_backend_locus (&loc
);
6366 /* loc.nextc is not set by save_backend_locus but the location routines
6368 if (loc
.nextc
== NULL
)
6369 loc
.nextc
= loc
.lb
->line
;
6370 gfc_set_backend_locus (&sym
->declared_at
);
6372 /* Descriptor type. */
6373 type
= TREE_TYPE (tmpdesc
);
6374 gcc_assert (GFC_ARRAY_TYPE_P (type
));
6375 dumdesc
= GFC_DECL_SAVED_DESCRIPTOR (tmpdesc
);
6377 /* For a class array the dummy array descriptor is in the _class
6379 dumdesc
= gfc_class_data_get (dumdesc
);
6381 dumdesc
= build_fold_indirect_ref_loc (input_location
, dumdesc
);
6382 as
= IS_CLASS_ARRAY (sym
) ? CLASS_DATA (sym
)->as
: sym
->as
;
6383 gfc_start_block (&init
);
6385 if (sym
->ts
.type
== BT_CHARACTER
6386 && VAR_P (sym
->ts
.u
.cl
->backend_decl
))
6387 gfc_conv_string_length (sym
->ts
.u
.cl
, NULL
, &init
);
6389 checkparm
= (as
->type
== AS_EXPLICIT
6390 && (gfc_option
.rtcheck
& GFC_RTCHECK_BOUNDS
));
6392 no_repack
= !(GFC_DECL_PACKED_ARRAY (tmpdesc
)
6393 || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc
));
6395 if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc
))
6397 /* For non-constant shape arrays we only check if the first dimension
6398 is contiguous. Repacking higher dimensions wouldn't gain us
6399 anything as we still don't know the array stride. */
6400 partial
= gfc_create_var (logical_type_node
, "partial");
6401 TREE_USED (partial
) = 1;
6402 tmp
= gfc_conv_descriptor_stride_get (dumdesc
, gfc_rank_cst
[0]);
6403 tmp
= fold_build2_loc (input_location
, EQ_EXPR
, logical_type_node
, tmp
,
6404 gfc_index_one_node
);
6405 gfc_add_modify (&init
, partial
, tmp
);
6408 partial
= NULL_TREE
;
6410 /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
6411 here, however I think it does the right thing. */
6414 /* Set the first stride. */
6415 stride
= gfc_conv_descriptor_stride_get (dumdesc
, gfc_rank_cst
[0]);
6416 stride
= gfc_evaluate_now (stride
, &init
);
6418 tmp
= fold_build2_loc (input_location
, EQ_EXPR
, logical_type_node
,
6419 stride
, gfc_index_zero_node
);
6420 tmp
= fold_build3_loc (input_location
, COND_EXPR
, gfc_array_index_type
,
6421 tmp
, gfc_index_one_node
, stride
);
6422 stride
= GFC_TYPE_ARRAY_STRIDE (type
, 0);
6423 gfc_add_modify (&init
, stride
, tmp
);
6425 /* Allow the user to disable array repacking. */
6426 stmt_unpacked
= NULL_TREE
;
6430 gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type
, 0)));
6431 /* A library call to repack the array if necessary. */
6432 tmp
= GFC_DECL_SAVED_DESCRIPTOR (tmpdesc
);
6433 stmt_unpacked
= build_call_expr_loc (input_location
,
6434 gfor_fndecl_in_pack
, 1, tmp
);
6436 stride
= gfc_index_one_node
;
6438 if (warn_array_temporaries
)
6439 gfc_warning (OPT_Warray_temporaries
,
6440 "Creating array temporary at %L", &loc
);
6443 /* This is for the case where the array data is used directly without
6444 calling the repack function. */
6445 if (no_repack
|| partial
!= NULL_TREE
)
6446 stmt_packed
= gfc_conv_descriptor_data_get (dumdesc
);
6448 stmt_packed
= NULL_TREE
;
6450 /* Assign the data pointer. */
6451 if (stmt_packed
!= NULL_TREE
&& stmt_unpacked
!= NULL_TREE
)
6453 /* Don't repack unknown shape arrays when the first stride is 1. */
6454 tmp
= fold_build3_loc (input_location
, COND_EXPR
, TREE_TYPE (stmt_packed
),
6455 partial
, stmt_packed
, stmt_unpacked
);
6458 tmp
= stmt_packed
!= NULL_TREE
? stmt_packed
: stmt_unpacked
;
6459 gfc_add_modify (&init
, tmpdesc
, fold_convert (type
, tmp
));
6461 offset
= gfc_index_zero_node
;
6462 size
= gfc_index_one_node
;
6464 /* Evaluate the bounds of the array. */
6465 for (n
= 0; n
< as
->rank
; n
++)
6467 if (checkparm
|| !as
->upper
[n
])
6469 /* Get the bounds of the actual parameter. */
6470 dubound
= gfc_conv_descriptor_ubound_get (dumdesc
, gfc_rank_cst
[n
]);
6471 dlbound
= gfc_conv_descriptor_lbound_get (dumdesc
, gfc_rank_cst
[n
]);
6475 dubound
= NULL_TREE
;
6476 dlbound
= NULL_TREE
;
6479 lbound
= GFC_TYPE_ARRAY_LBOUND (type
, n
);
6480 if (!INTEGER_CST_P (lbound
))
6482 gfc_init_se (&se
, NULL
);
6483 gfc_conv_expr_type (&se
, as
->lower
[n
],
6484 gfc_array_index_type
);
6485 gfc_add_block_to_block (&init
, &se
.pre
);
6486 gfc_add_modify (&init
, lbound
, se
.expr
);
6489 ubound
= GFC_TYPE_ARRAY_UBOUND (type
, n
);
6490 /* Set the desired upper bound. */
6493 /* We know what we want the upper bound to be. */
6494 if (!INTEGER_CST_P (ubound
))
6496 gfc_init_se (&se
, NULL
);
6497 gfc_conv_expr_type (&se
, as
->upper
[n
],
6498 gfc_array_index_type
);
6499 gfc_add_block_to_block (&init
, &se
.pre
);
6500 gfc_add_modify (&init
, ubound
, se
.expr
);
6503 /* Check the sizes match. */
6506 /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
6510 temp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6511 gfc_array_index_type
, ubound
, lbound
);
6512 temp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6513 gfc_array_index_type
,
6514 gfc_index_one_node
, temp
);
6515 stride2
= fold_build2_loc (input_location
, MINUS_EXPR
,
6516 gfc_array_index_type
, dubound
,
6518 stride2
= fold_build2_loc (input_location
, PLUS_EXPR
,
6519 gfc_array_index_type
,
6520 gfc_index_one_node
, stride2
);
6521 tmp
= fold_build2_loc (input_location
, NE_EXPR
,
6522 gfc_array_index_type
, temp
, stride2
);
6523 msg
= xasprintf ("Dimension %d of array '%s' has extent "
6524 "%%ld instead of %%ld", n
+1, sym
->name
);
6526 gfc_trans_runtime_check (true, false, tmp
, &init
, &loc
, msg
,
6527 fold_convert (long_integer_type_node
, temp
),
6528 fold_convert (long_integer_type_node
, stride2
));
6535 /* For assumed shape arrays move the upper bound by the same amount
6536 as the lower bound. */
6537 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6538 gfc_array_index_type
, dubound
, dlbound
);
6539 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6540 gfc_array_index_type
, tmp
, lbound
);
6541 gfc_add_modify (&init
, ubound
, tmp
);
6543 /* The offset of this dimension. offset = offset - lbound * stride. */
6544 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
6546 offset
= fold_build2_loc (input_location
, MINUS_EXPR
,
6547 gfc_array_index_type
, offset
, tmp
);
6549 /* The size of this dimension, and the stride of the next. */
6550 if (n
+ 1 < as
->rank
)
6552 stride
= GFC_TYPE_ARRAY_STRIDE (type
, n
+ 1);
6554 if (no_repack
|| partial
!= NULL_TREE
)
6556 gfc_conv_descriptor_stride_get (dumdesc
, gfc_rank_cst
[n
+1]);
6558 /* Figure out the stride if not a known constant. */
6559 if (!INTEGER_CST_P (stride
))
6562 stmt_packed
= NULL_TREE
;
6565 /* Calculate stride = size * (ubound + 1 - lbound). */
6566 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6567 gfc_array_index_type
,
6568 gfc_index_one_node
, lbound
);
6569 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6570 gfc_array_index_type
, ubound
, tmp
);
6571 size
= fold_build2_loc (input_location
, MULT_EXPR
,
6572 gfc_array_index_type
, size
, tmp
);
6576 /* Assign the stride. */
6577 if (stmt_packed
!= NULL_TREE
&& stmt_unpacked
!= NULL_TREE
)
6578 tmp
= fold_build3_loc (input_location
, COND_EXPR
,
6579 gfc_array_index_type
, partial
,
6580 stmt_unpacked
, stmt_packed
);
6582 tmp
= (stmt_packed
!= NULL_TREE
) ? stmt_packed
: stmt_unpacked
;
6583 gfc_add_modify (&init
, stride
, tmp
);
6588 stride
= GFC_TYPE_ARRAY_SIZE (type
);
6590 if (stride
&& !INTEGER_CST_P (stride
))
6592 /* Calculate size = stride * (ubound + 1 - lbound). */
6593 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6594 gfc_array_index_type
,
6595 gfc_index_one_node
, lbound
);
6596 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6597 gfc_array_index_type
,
6599 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
6600 gfc_array_index_type
,
6601 GFC_TYPE_ARRAY_STRIDE (type
, n
), tmp
);
6602 gfc_add_modify (&init
, stride
, tmp
);
6607 gfc_trans_array_cobounds (type
, &init
, sym
);
6609 /* Set the offset. */
6610 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type
)))
6611 gfc_add_modify (&init
, GFC_TYPE_ARRAY_OFFSET (type
), offset
);
6613 gfc_trans_vla_type_sizes (sym
, &init
);
6615 stmtInit
= gfc_finish_block (&init
);
6617 /* Only do the entry/initialization code if the arg is present. */
6618 dumdesc
= GFC_DECL_SAVED_DESCRIPTOR (tmpdesc
);
6619 optional_arg
= (sym
->attr
.optional
6620 || (sym
->ns
->proc_name
->attr
.entry_master
6621 && sym
->attr
.dummy
));
6624 tmp
= gfc_conv_expr_present (sym
);
6625 stmtInit
= build3_v (COND_EXPR
, tmp
, stmtInit
,
6626 build_empty_stmt (input_location
));
6631 stmtCleanup
= NULL_TREE
;
6634 stmtblock_t cleanup
;
6635 gfc_start_block (&cleanup
);
6637 if (sym
->attr
.intent
!= INTENT_IN
)
6639 /* Copy the data back. */
6640 tmp
= build_call_expr_loc (input_location
,
6641 gfor_fndecl_in_unpack
, 2, dumdesc
, tmpdesc
);
6642 gfc_add_expr_to_block (&cleanup
, tmp
);
6645 /* Free the temporary. */
6646 tmp
= gfc_call_free (tmpdesc
);
6647 gfc_add_expr_to_block (&cleanup
, tmp
);
6649 stmtCleanup
= gfc_finish_block (&cleanup
);
6651 /* Only do the cleanup if the array was repacked. */
6653 /* For a class array the dummy array descriptor is in the _class
6655 tmp
= gfc_class_data_get (dumdesc
);
6657 tmp
= build_fold_indirect_ref_loc (input_location
, dumdesc
);
6658 tmp
= gfc_conv_descriptor_data_get (tmp
);
6659 tmp
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
6661 stmtCleanup
= build3_v (COND_EXPR
, tmp
, stmtCleanup
,
6662 build_empty_stmt (input_location
));
6666 tmp
= gfc_conv_expr_present (sym
);
6667 stmtCleanup
= build3_v (COND_EXPR
, tmp
, stmtCleanup
,
6668 build_empty_stmt (input_location
));
6672 /* We don't need to free any memory allocated by internal_pack as it will
6673 be freed at the end of the function by pop_context. */
6674 gfc_add_init_cleanup (block
, stmtInit
, stmtCleanup
);
6676 gfc_restore_backend_locus (&loc
);
6680 /* Calculate the overall offset, including subreferences. */
6682 gfc_get_dataptr_offset (stmtblock_t
*block
, tree parm
, tree desc
, tree offset
,
6683 bool subref
, gfc_expr
*expr
)
6693 /* If offset is NULL and this is not a subreferenced array, there is
6695 if (offset
== NULL_TREE
)
6698 offset
= gfc_index_zero_node
;
6703 tmp
= build_array_ref (desc
, offset
, NULL
, NULL
);
6705 /* Offset the data pointer for pointer assignments from arrays with
6706 subreferences; e.g. my_integer => my_type(:)%integer_component. */
6709 /* Go past the array reference. */
6710 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
6711 if (ref
->type
== REF_ARRAY
&&
6712 ref
->u
.ar
.type
!= AR_ELEMENT
)
6718 /* Calculate the offset for each subsequent subreference. */
6719 for (; ref
; ref
= ref
->next
)
6724 field
= ref
->u
.c
.component
->backend_decl
;
6725 gcc_assert (field
&& TREE_CODE (field
) == FIELD_DECL
);
6726 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
,
6728 tmp
, field
, NULL_TREE
);
6732 gcc_assert (TREE_CODE (TREE_TYPE (tmp
)) == ARRAY_TYPE
);
6733 gfc_init_se (&start
, NULL
);
6734 gfc_conv_expr_type (&start
, ref
->u
.ss
.start
, gfc_charlen_type_node
);
6735 gfc_add_block_to_block (block
, &start
.pre
);
6736 tmp
= gfc_build_array_ref (tmp
, start
.expr
, NULL
);
6740 gcc_assert (TREE_CODE (TREE_TYPE (tmp
)) == ARRAY_TYPE
6741 && ref
->u
.ar
.type
== AR_ELEMENT
);
6743 /* TODO - Add bounds checking. */
6744 stride
= gfc_index_one_node
;
6745 index
= gfc_index_zero_node
;
6746 for (n
= 0; n
< ref
->u
.ar
.dimen
; n
++)
6751 /* Update the index. */
6752 gfc_init_se (&start
, NULL
);
6753 gfc_conv_expr_type (&start
, ref
->u
.ar
.start
[n
], gfc_array_index_type
);
6754 itmp
= gfc_evaluate_now (start
.expr
, block
);
6755 gfc_init_se (&start
, NULL
);
6756 gfc_conv_expr_type (&start
, ref
->u
.ar
.as
->lower
[n
], gfc_array_index_type
);
6757 jtmp
= gfc_evaluate_now (start
.expr
, block
);
6758 itmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6759 gfc_array_index_type
, itmp
, jtmp
);
6760 itmp
= fold_build2_loc (input_location
, MULT_EXPR
,
6761 gfc_array_index_type
, itmp
, stride
);
6762 index
= fold_build2_loc (input_location
, PLUS_EXPR
,
6763 gfc_array_index_type
, itmp
, index
);
6764 index
= gfc_evaluate_now (index
, block
);
6766 /* Update the stride. */
6767 gfc_init_se (&start
, NULL
);
6768 gfc_conv_expr_type (&start
, ref
->u
.ar
.as
->upper
[n
], gfc_array_index_type
);
6769 itmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
6770 gfc_array_index_type
, start
.expr
,
6772 itmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
6773 gfc_array_index_type
,
6774 gfc_index_one_node
, itmp
);
6775 stride
= fold_build2_loc (input_location
, MULT_EXPR
,
6776 gfc_array_index_type
, stride
, itmp
);
6777 stride
= gfc_evaluate_now (stride
, block
);
6780 /* Apply the index to obtain the array element. */
6781 tmp
= gfc_build_array_ref (tmp
, index
, NULL
);
6791 /* Set the target data pointer. */
6792 offset
= gfc_build_addr_expr (gfc_array_dataptr_type (desc
), tmp
);
6793 gfc_conv_descriptor_data_set (block
, parm
, offset
);
6797 /* gfc_conv_expr_descriptor needs the string length an expression
6798 so that the size of the temporary can be obtained. This is done
6799 by adding up the string lengths of all the elements in the
6800 expression. Function with non-constant expressions have their
6801 string lengths mapped onto the actual arguments using the
6802 interface mapping machinery in trans-expr.c. */
6804 get_array_charlen (gfc_expr
*expr
, gfc_se
*se
)
6806 gfc_interface_mapping mapping
;
6807 gfc_formal_arglist
*formal
;
6808 gfc_actual_arglist
*arg
;
6811 if (expr
->ts
.u
.cl
->length
6812 && gfc_is_constant_expr (expr
->ts
.u
.cl
->length
))
6814 if (!expr
->ts
.u
.cl
->backend_decl
)
6815 gfc_conv_string_length (expr
->ts
.u
.cl
, expr
, &se
->pre
);
6819 switch (expr
->expr_type
)
6822 get_array_charlen (expr
->value
.op
.op1
, se
);
6824 /* For parentheses the expression ts.u.cl is identical. */
6825 if (expr
->value
.op
.op
== INTRINSIC_PARENTHESES
)
6828 expr
->ts
.u
.cl
->backend_decl
=
6829 gfc_create_var (gfc_charlen_type_node
, "sln");
6831 if (expr
->value
.op
.op2
)
6833 get_array_charlen (expr
->value
.op
.op2
, se
);
6835 gcc_assert (expr
->value
.op
.op
== INTRINSIC_CONCAT
);
6837 /* Add the string lengths and assign them to the expression
6838 string length backend declaration. */
6839 gfc_add_modify (&se
->pre
, expr
->ts
.u
.cl
->backend_decl
,
6840 fold_build2_loc (input_location
, PLUS_EXPR
,
6841 gfc_charlen_type_node
,
6842 expr
->value
.op
.op1
->ts
.u
.cl
->backend_decl
,
6843 expr
->value
.op
.op2
->ts
.u
.cl
->backend_decl
));
6846 gfc_add_modify (&se
->pre
, expr
->ts
.u
.cl
->backend_decl
,
6847 expr
->value
.op
.op1
->ts
.u
.cl
->backend_decl
);
6851 if (expr
->value
.function
.esym
== NULL
6852 || expr
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
)
6854 gfc_conv_string_length (expr
->ts
.u
.cl
, expr
, &se
->pre
);
6858 /* Map expressions involving the dummy arguments onto the actual
6859 argument expressions. */
6860 gfc_init_interface_mapping (&mapping
);
6861 formal
= gfc_sym_get_dummy_args (expr
->symtree
->n
.sym
);
6862 arg
= expr
->value
.function
.actual
;
6864 /* Set se = NULL in the calls to the interface mapping, to suppress any
6866 for (; arg
!= NULL
; arg
= arg
->next
, formal
= formal
? formal
->next
: NULL
)
6871 gfc_add_interface_mapping (&mapping
, formal
->sym
, NULL
, arg
->expr
);
6874 gfc_init_se (&tse
, NULL
);
6876 /* Build the expression for the character length and convert it. */
6877 gfc_apply_interface_mapping (&mapping
, &tse
, expr
->ts
.u
.cl
->length
);
6879 gfc_add_block_to_block (&se
->pre
, &tse
.pre
);
6880 gfc_add_block_to_block (&se
->post
, &tse
.post
);
6881 tse
.expr
= fold_convert (gfc_charlen_type_node
, tse
.expr
);
6882 tse
.expr
= fold_build2_loc (input_location
, MAX_EXPR
,
6883 TREE_TYPE (tse
.expr
), tse
.expr
,
6884 build_zero_cst (TREE_TYPE (tse
.expr
)));
6885 expr
->ts
.u
.cl
->backend_decl
= tse
.expr
;
6886 gfc_free_interface_mapping (&mapping
);
6890 gfc_conv_string_length (expr
->ts
.u
.cl
, expr
, &se
->pre
);
6896 /* Helper function to check dimensions. */
6898 transposed_dims (gfc_ss
*ss
)
6902 for (n
= 0; n
< ss
->dimen
; n
++)
6903 if (ss
->dim
[n
] != n
)
6909 /* Convert the last ref of a scalar coarray from an AR_ELEMENT to an
6910 AR_FULL, suitable for the scalarizer. */
6913 walk_coarray (gfc_expr
*e
)
6917 gcc_assert (gfc_get_corank (e
) > 0);
6919 ss
= gfc_walk_expr (e
);
6921 /* Fix scalar coarray. */
6922 if (ss
== gfc_ss_terminator
)
6929 if (ref
->type
== REF_ARRAY
6930 && ref
->u
.ar
.codimen
> 0)
6936 gcc_assert (ref
!= NULL
);
6937 if (ref
->u
.ar
.type
== AR_ELEMENT
)
6938 ref
->u
.ar
.type
= AR_SECTION
;
6939 ss
= gfc_reverse_ss (gfc_walk_array_ref (ss
, e
, ref
));
6946 /* Convert an array for passing as an actual argument. Expressions and
6947 vector subscripts are evaluated and stored in a temporary, which is then
6948 passed. For whole arrays the descriptor is passed. For array sections
6949 a modified copy of the descriptor is passed, but using the original data.
6951 This function is also used for array pointer assignments, and there
6954 - se->want_pointer && !se->direct_byref
6955 EXPR is an actual argument. On exit, se->expr contains a
6956 pointer to the array descriptor.
6958 - !se->want_pointer && !se->direct_byref
6959 EXPR is an actual argument to an intrinsic function or the
6960 left-hand side of a pointer assignment. On exit, se->expr
6961 contains the descriptor for EXPR.
6963 - !se->want_pointer && se->direct_byref
6964 EXPR is the right-hand side of a pointer assignment and
6965 se->expr is the descriptor for the previously-evaluated
6966 left-hand side. The function creates an assignment from
6970 The se->force_tmp flag disables the non-copying descriptor optimization
6971 that is used for transpose. It may be used in cases where there is an
6972 alias between the transpose argument and another argument in the same
6976 gfc_conv_expr_descriptor (gfc_se
*se
, gfc_expr
*expr
)
6979 gfc_ss_type ss_type
;
6980 gfc_ss_info
*ss_info
;
6982 gfc_array_info
*info
;
6991 bool subref_array_target
= false;
6992 gfc_expr
*arg
, *ss_expr
;
6994 if (se
->want_coarray
)
6995 ss
= walk_coarray (expr
);
6997 ss
= gfc_walk_expr (expr
);
6999 gcc_assert (ss
!= NULL
);
7000 gcc_assert (ss
!= gfc_ss_terminator
);
7003 ss_type
= ss_info
->type
;
7004 ss_expr
= ss_info
->expr
;
7006 /* Special case: TRANSPOSE which needs no temporary. */
7007 while (expr
->expr_type
== EXPR_FUNCTION
&& expr
->value
.function
.isym
7008 && (arg
= gfc_get_noncopying_intrinsic_argument (expr
)) != NULL
)
7010 /* This is a call to transpose which has already been handled by the
7011 scalarizer, so that we just need to get its argument's descriptor. */
7012 gcc_assert (expr
->value
.function
.isym
->id
== GFC_ISYM_TRANSPOSE
);
7013 expr
= expr
->value
.function
.actual
->expr
;
7016 /* Special case things we know we can pass easily. */
7017 switch (expr
->expr_type
)
7020 /* If we have a linear array section, we can pass it directly.
7021 Otherwise we need to copy it into a temporary. */
7023 gcc_assert (ss_type
== GFC_SS_SECTION
);
7024 gcc_assert (ss_expr
== expr
);
7025 info
= &ss_info
->data
.array
;
7027 /* Get the descriptor for the array. */
7028 gfc_conv_ss_descriptor (&se
->pre
, ss
, 0);
7029 desc
= info
->descriptor
;
7031 subref_array_target
= se
->direct_byref
&& is_subref_array (expr
);
7032 need_tmp
= gfc_ref_needs_temporary_p (expr
->ref
)
7033 && !subref_array_target
;
7040 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc
)))
7042 /* Create a new descriptor if the array doesn't have one. */
7045 else if (info
->ref
->u
.ar
.type
== AR_FULL
|| se
->descriptor_only
)
7047 else if (se
->direct_byref
)
7050 full
= gfc_full_array_ref_p (info
->ref
, NULL
);
7052 if (full
&& !transposed_dims (ss
))
7054 if (se
->direct_byref
&& !se
->byref_noassign
)
7056 /* Copy the descriptor for pointer assignments. */
7057 gfc_add_modify (&se
->pre
, se
->expr
, desc
);
7059 /* Add any offsets from subreferences. */
7060 gfc_get_dataptr_offset (&se
->pre
, se
->expr
, desc
, NULL_TREE
,
7061 subref_array_target
, expr
);
7063 /* ....and set the span field. */
7064 tmp
= gfc_get_array_span (desc
, expr
);
7065 gfc_conv_descriptor_span_set (&se
->pre
, se
->expr
, tmp
);
7067 else if (se
->want_pointer
)
7069 /* We pass full arrays directly. This means that pointers and
7070 allocatable arrays should also work. */
7071 se
->expr
= gfc_build_addr_expr (NULL_TREE
, desc
);
7078 if (expr
->ts
.type
== BT_CHARACTER
)
7079 se
->string_length
= gfc_get_expr_charlen (expr
);
7081 gfc_free_ss_chain (ss
);
7087 /* A transformational function return value will be a temporary
7088 array descriptor. We still need to go through the scalarizer
7089 to create the descriptor. Elemental functions are handled as
7090 arbitrary expressions, i.e. copy to a temporary. */
7092 if (se
->direct_byref
)
7094 gcc_assert (ss_type
== GFC_SS_FUNCTION
&& ss_expr
== expr
);
7096 /* For pointer assignments pass the descriptor directly. */
7100 gcc_assert (se
->ss
== ss
);
7102 if (!is_pointer_array (se
->expr
))
7104 tmp
= gfc_get_element_type (TREE_TYPE (se
->expr
));
7105 tmp
= fold_convert (gfc_array_index_type
,
7106 size_in_bytes (tmp
));
7107 gfc_conv_descriptor_span_set (&se
->pre
, se
->expr
, tmp
);
7110 se
->expr
= gfc_build_addr_expr (NULL_TREE
, se
->expr
);
7111 gfc_conv_expr (se
, expr
);
7113 gfc_free_ss_chain (ss
);
7117 if (ss_expr
!= expr
|| ss_type
!= GFC_SS_FUNCTION
)
7119 if (ss_expr
!= expr
)
7120 /* Elemental function. */
7121 gcc_assert ((expr
->value
.function
.esym
!= NULL
7122 && expr
->value
.function
.esym
->attr
.elemental
)
7123 || (expr
->value
.function
.isym
!= NULL
7124 && expr
->value
.function
.isym
->elemental
)
7125 || gfc_inline_intrinsic_function_p (expr
));
7127 gcc_assert (ss_type
== GFC_SS_INTRINSIC
);
7130 if (expr
->ts
.type
== BT_CHARACTER
7131 && expr
->ts
.u
.cl
->length
->expr_type
!= EXPR_CONSTANT
)
7132 get_array_charlen (expr
, se
);
7138 /* Transformational function. */
7139 info
= &ss_info
->data
.array
;
7145 /* Constant array constructors don't need a temporary. */
7146 if (ss_type
== GFC_SS_CONSTRUCTOR
7147 && expr
->ts
.type
!= BT_CHARACTER
7148 && gfc_constant_array_constructor_p (expr
->value
.constructor
))
7151 info
= &ss_info
->data
.array
;
7161 /* Something complicated. Copy it into a temporary. */
7167 /* If we are creating a temporary, we don't need to bother about aliases
7172 gfc_init_loopinfo (&loop
);
7174 /* Associate the SS with the loop. */
7175 gfc_add_ss_to_loop (&loop
, ss
);
7177 /* Tell the scalarizer not to bother creating loop variables, etc. */
7179 loop
.array_parameter
= 1;
7181 /* The right-hand side of a pointer assignment mustn't use a temporary. */
7182 gcc_assert (!se
->direct_byref
);
7184 /* Setup the scalarizing loops and bounds. */
7185 gfc_conv_ss_startstride (&loop
);
7189 if (expr
->ts
.type
== BT_CHARACTER
&& !expr
->ts
.u
.cl
->backend_decl
)
7190 get_array_charlen (expr
, se
);
7192 /* Tell the scalarizer to make a temporary. */
7193 loop
.temp_ss
= gfc_get_temp_ss (gfc_typenode_for_spec (&expr
->ts
),
7194 ((expr
->ts
.type
== BT_CHARACTER
)
7195 ? expr
->ts
.u
.cl
->backend_decl
7199 se
->string_length
= loop
.temp_ss
->info
->string_length
;
7200 gcc_assert (loop
.temp_ss
->dimen
== loop
.dimen
);
7201 gfc_add_ss_to_loop (&loop
, loop
.temp_ss
);
7204 gfc_conv_loop_setup (&loop
, & expr
->where
);
7208 /* Copy into a temporary and pass that. We don't need to copy the data
7209 back because expressions and vector subscripts must be INTENT_IN. */
7210 /* TODO: Optimize passing function return values. */
7215 /* Start the copying loops. */
7216 gfc_mark_ss_chain_used (loop
.temp_ss
, 1);
7217 gfc_mark_ss_chain_used (ss
, 1);
7218 gfc_start_scalarized_body (&loop
, &block
);
7220 /* Copy each data element. */
7221 gfc_init_se (&lse
, NULL
);
7222 gfc_copy_loopinfo_to_se (&lse
, &loop
);
7223 gfc_init_se (&rse
, NULL
);
7224 gfc_copy_loopinfo_to_se (&rse
, &loop
);
7226 lse
.ss
= loop
.temp_ss
;
7229 gfc_conv_scalarized_array_ref (&lse
, NULL
);
7230 if (expr
->ts
.type
== BT_CHARACTER
)
7232 gfc_conv_expr (&rse
, expr
);
7233 if (POINTER_TYPE_P (TREE_TYPE (rse
.expr
)))
7234 rse
.expr
= build_fold_indirect_ref_loc (input_location
,
7238 gfc_conv_expr_val (&rse
, expr
);
7240 gfc_add_block_to_block (&block
, &rse
.pre
);
7241 gfc_add_block_to_block (&block
, &lse
.pre
);
7243 lse
.string_length
= rse
.string_length
;
7245 deep_copy
= !se
->data_not_needed
7246 && (expr
->expr_type
== EXPR_VARIABLE
7247 || expr
->expr_type
== EXPR_ARRAY
);
7248 tmp
= gfc_trans_scalar_assign (&lse
, &rse
, expr
->ts
,
7250 gfc_add_expr_to_block (&block
, tmp
);
7252 /* Finish the copying loops. */
7253 gfc_trans_scalarizing_loops (&loop
, &block
);
7255 desc
= loop
.temp_ss
->info
->data
.array
.descriptor
;
7257 else if (expr
->expr_type
== EXPR_FUNCTION
&& !transposed_dims (ss
))
7259 desc
= info
->descriptor
;
7260 se
->string_length
= ss_info
->string_length
;
7264 /* We pass sections without copying to a temporary. Make a new
7265 descriptor and point it at the section we want. The loop variable
7266 limits will be the limits of the section.
7267 A function may decide to repack the array to speed up access, but
7268 we're not bothered about that here. */
7269 int dim
, ndim
, codim
;
7276 bool onebased
= false, rank_remap
;
7278 ndim
= info
->ref
? info
->ref
->u
.ar
.dimen
: ss
->dimen
;
7279 rank_remap
= ss
->dimen
< ndim
;
7281 if (se
->want_coarray
)
7283 gfc_array_ref
*ar
= &info
->ref
->u
.ar
;
7285 codim
= gfc_get_corank (expr
);
7286 for (n
= 0; n
< codim
- 1; n
++)
7288 /* Make sure we are not lost somehow. */
7289 gcc_assert (ar
->dimen_type
[n
+ ndim
] == DIMEN_THIS_IMAGE
);
7291 /* Make sure the call to gfc_conv_section_startstride won't
7292 generate unnecessary code to calculate stride. */
7293 gcc_assert (ar
->stride
[n
+ ndim
] == NULL
);
7295 gfc_conv_section_startstride (&loop
.pre
, ss
, n
+ ndim
);
7296 loop
.from
[n
+ loop
.dimen
] = info
->start
[n
+ ndim
];
7297 loop
.to
[n
+ loop
.dimen
] = info
->end
[n
+ ndim
];
7300 gcc_assert (n
== codim
- 1);
7301 evaluate_bound (&loop
.pre
, info
->start
, ar
->start
,
7302 info
->descriptor
, n
+ ndim
, true,
7303 ar
->as
->type
== AS_DEFERRED
);
7304 loop
.from
[n
+ loop
.dimen
] = info
->start
[n
+ ndim
];
7309 /* Set the string_length for a character array. */
7310 if (expr
->ts
.type
== BT_CHARACTER
)
7311 se
->string_length
= gfc_get_expr_charlen (expr
);
7313 /* If we have an array section or are assigning make sure that
7314 the lower bound is 1. References to the full
7315 array should otherwise keep the original bounds. */
7316 if ((!info
->ref
|| info
->ref
->u
.ar
.type
!= AR_FULL
) && !se
->want_pointer
)
7317 for (dim
= 0; dim
< loop
.dimen
; dim
++)
7318 if (!integer_onep (loop
.from
[dim
]))
7320 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
7321 gfc_array_index_type
, gfc_index_one_node
,
7323 loop
.to
[dim
] = fold_build2_loc (input_location
, PLUS_EXPR
,
7324 gfc_array_index_type
,
7326 loop
.from
[dim
] = gfc_index_one_node
;
7329 desc
= info
->descriptor
;
7330 if (se
->direct_byref
&& !se
->byref_noassign
)
7332 /* For pointer assignments we fill in the destination.... */
7334 parmtype
= TREE_TYPE (parm
);
7336 /* ....and set the span field. */
7337 tmp
= gfc_get_array_span (desc
, expr
);
7338 gfc_conv_descriptor_span_set (&loop
.pre
, parm
, tmp
);
7342 /* Otherwise make a new one. */
7343 if (expr
->ts
.type
== BT_CHARACTER
&& expr
->ts
.deferred
)
7344 parmtype
= gfc_typenode_for_spec (&expr
->ts
);
7346 parmtype
= gfc_get_element_type (TREE_TYPE (desc
));
7348 parmtype
= gfc_get_array_type_bounds (parmtype
, loop
.dimen
, codim
,
7349 loop
.from
, loop
.to
, 0,
7350 GFC_ARRAY_UNKNOWN
, false);
7351 parm
= gfc_create_var (parmtype
, "parm");
7353 /* When expression is a class object, then add the class' handle to
7355 if (expr
->ts
.type
== BT_CLASS
&& expr
->expr_type
== EXPR_VARIABLE
)
7357 gfc_expr
*class_expr
= gfc_find_and_cut_at_last_class_ref (expr
);
7360 /* class_expr can be NULL, when no _class ref is in expr.
7361 We must not fix this here with a gfc_fix_class_ref (). */
7364 gfc_init_se (&classse
, NULL
);
7365 gfc_conv_expr (&classse
, class_expr
);
7366 gfc_free_expr (class_expr
);
7368 gcc_assert (classse
.pre
.head
== NULL_TREE
7369 && classse
.post
.head
== NULL_TREE
);
7370 gfc_allocate_lang_decl (parm
);
7371 GFC_DECL_SAVED_DESCRIPTOR (parm
) = classse
.expr
;
7376 offset
= gfc_index_zero_node
;
7378 /* The following can be somewhat confusing. We have two
7379 descriptors, a new one and the original array.
7380 {parm, parmtype, dim} refer to the new one.
7381 {desc, type, n, loop} refer to the original, which maybe
7382 a descriptorless array.
7383 The bounds of the scalarization are the bounds of the section.
7384 We don't have to worry about numeric overflows when calculating
7385 the offsets because all elements are within the array data. */
7387 /* Set the dtype. */
7388 tmp
= gfc_conv_descriptor_dtype (parm
);
7389 gfc_add_modify (&loop
.pre
, tmp
, gfc_get_dtype (parmtype
));
7391 /* Set offset for assignments to pointer only to zero if it is not
7393 if ((se
->direct_byref
|| se
->use_offset
)
7394 && ((info
->ref
&& info
->ref
->u
.ar
.type
!= AR_FULL
)
7395 || (expr
->expr_type
== EXPR_ARRAY
&& se
->use_offset
)))
7396 base
= gfc_index_zero_node
;
7397 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc
)))
7398 base
= gfc_evaluate_now (gfc_conv_array_offset (desc
), &loop
.pre
);
7402 for (n
= 0; n
< ndim
; n
++)
7404 stride
= gfc_conv_array_stride (desc
, n
);
7406 /* Work out the offset. */
7408 && info
->ref
->u
.ar
.dimen_type
[n
] == DIMEN_ELEMENT
)
7410 gcc_assert (info
->subscript
[n
]
7411 && info
->subscript
[n
]->info
->type
== GFC_SS_SCALAR
);
7412 start
= info
->subscript
[n
]->info
->data
.scalar
.value
;
7416 /* Evaluate and remember the start of the section. */
7417 start
= info
->start
[n
];
7418 stride
= gfc_evaluate_now (stride
, &loop
.pre
);
7421 tmp
= gfc_conv_array_lbound (desc
, n
);
7422 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
, TREE_TYPE (tmp
),
7424 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, TREE_TYPE (tmp
),
7426 offset
= fold_build2_loc (input_location
, PLUS_EXPR
, TREE_TYPE (tmp
),
7430 && info
->ref
->u
.ar
.dimen_type
[n
] == DIMEN_ELEMENT
)
7432 /* For elemental dimensions, we only need the offset. */
7436 /* Vector subscripts need copying and are handled elsewhere. */
7438 gcc_assert (info
->ref
->u
.ar
.dimen_type
[n
] == DIMEN_RANGE
);
7440 /* look for the corresponding scalarizer dimension: dim. */
7441 for (dim
= 0; dim
< ndim
; dim
++)
7442 if (ss
->dim
[dim
] == n
)
7445 /* loop exited early: the DIM being looked for has been found. */
7446 gcc_assert (dim
< ndim
);
7448 /* Set the new lower bound. */
7449 from
= loop
.from
[dim
];
7452 onebased
= integer_onep (from
);
7453 gfc_conv_descriptor_lbound_set (&loop
.pre
, parm
,
7454 gfc_rank_cst
[dim
], from
);
7456 /* Set the new upper bound. */
7457 gfc_conv_descriptor_ubound_set (&loop
.pre
, parm
,
7458 gfc_rank_cst
[dim
], to
);
7460 /* Multiply the stride by the section stride to get the
7462 stride
= fold_build2_loc (input_location
, MULT_EXPR
,
7463 gfc_array_index_type
,
7464 stride
, info
->stride
[n
]);
7466 if ((se
->direct_byref
|| se
->use_offset
)
7467 && ((info
->ref
&& info
->ref
->u
.ar
.type
!= AR_FULL
)
7468 || (expr
->expr_type
== EXPR_ARRAY
&& se
->use_offset
)))
7470 base
= fold_build2_loc (input_location
, MINUS_EXPR
,
7471 TREE_TYPE (base
), base
, stride
);
7473 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc
)) || se
->use_offset
)
7476 tmp
= gfc_conv_array_lbound (desc
, n
);
7477 toonebased
= integer_onep (tmp
);
7478 // lb(arr) - from (- start + 1)
7479 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
7480 TREE_TYPE (base
), tmp
, from
);
7481 if (onebased
&& toonebased
)
7483 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
7484 TREE_TYPE (base
), tmp
, start
);
7485 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
7486 TREE_TYPE (base
), tmp
,
7487 gfc_index_one_node
);
7489 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
7490 TREE_TYPE (base
), tmp
,
7491 gfc_conv_array_stride (desc
, n
));
7492 base
= fold_build2_loc (input_location
, PLUS_EXPR
,
7493 TREE_TYPE (base
), tmp
, base
);
7496 /* Store the new stride. */
7497 gfc_conv_descriptor_stride_set (&loop
.pre
, parm
,
7498 gfc_rank_cst
[dim
], stride
);
7501 for (n
= loop
.dimen
; n
< loop
.dimen
+ codim
; n
++)
7503 from
= loop
.from
[n
];
7505 gfc_conv_descriptor_lbound_set (&loop
.pre
, parm
,
7506 gfc_rank_cst
[n
], from
);
7507 if (n
< loop
.dimen
+ codim
- 1)
7508 gfc_conv_descriptor_ubound_set (&loop
.pre
, parm
,
7509 gfc_rank_cst
[n
], to
);
7512 if (se
->data_not_needed
)
7513 gfc_conv_descriptor_data_set (&loop
.pre
, parm
,
7514 gfc_index_zero_node
);
7516 /* Point the data pointer at the 1st element in the section. */
7517 gfc_get_dataptr_offset (&loop
.pre
, parm
, desc
, offset
,
7518 subref_array_target
, expr
);
7520 /* Force the offset to be -1, when the lower bound of the highest
7521 dimension is one and the symbol is present and is not a
7522 pointer/allocatable or associated. */
7523 if (((se
->direct_byref
|| GFC_ARRAY_TYPE_P (TREE_TYPE (desc
)))
7524 && !se
->data_not_needed
)
7525 || (se
->use_offset
&& base
!= NULL_TREE
))
7527 /* Set the offset depending on base. */
7528 tmp
= rank_remap
&& !se
->direct_byref
?
7529 fold_build2_loc (input_location
, PLUS_EXPR
,
7530 gfc_array_index_type
, base
,
7533 gfc_conv_descriptor_offset_set (&loop
.pre
, parm
, tmp
);
7535 else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
))
7536 && !se
->data_not_needed
7537 && (!rank_remap
|| se
->use_offset
))
7539 gfc_conv_descriptor_offset_set (&loop
.pre
, parm
,
7540 gfc_conv_descriptor_offset_get (desc
));
7542 else if (onebased
&& (!rank_remap
|| se
->use_offset
)
7544 && !(expr
->symtree
->n
.sym
&& expr
->symtree
->n
.sym
->ts
.type
== BT_CLASS
7545 && !CLASS_DATA (expr
->symtree
->n
.sym
)->attr
.class_pointer
)
7546 && !expr
->symtree
->n
.sym
->attr
.allocatable
7547 && !expr
->symtree
->n
.sym
->attr
.pointer
7548 && !expr
->symtree
->n
.sym
->attr
.host_assoc
7549 && !expr
->symtree
->n
.sym
->attr
.use_assoc
)
7551 /* Set the offset to -1. */
7553 mpz_init_set_si (minus_one
, -1);
7554 tmp
= gfc_conv_mpz_to_tree (minus_one
, gfc_index_integer_kind
);
7555 gfc_conv_descriptor_offset_set (&loop
.pre
, parm
, tmp
);
7559 /* Only the callee knows what the correct offset it, so just set
7561 gfc_conv_descriptor_offset_set (&loop
.pre
, parm
, gfc_index_zero_node
);
7566 /* For class arrays add the class tree into the saved descriptor to
7567 enable getting of _vptr and the like. */
7568 if (expr
->expr_type
== EXPR_VARIABLE
&& VAR_P (desc
)
7569 && IS_CLASS_ARRAY (expr
->symtree
->n
.sym
))
7571 gfc_allocate_lang_decl (desc
);
7572 GFC_DECL_SAVED_DESCRIPTOR (desc
) =
7573 DECL_LANG_SPECIFIC (expr
->symtree
->n
.sym
->backend_decl
) ?
7574 GFC_DECL_SAVED_DESCRIPTOR (expr
->symtree
->n
.sym
->backend_decl
)
7575 : expr
->symtree
->n
.sym
->backend_decl
;
7577 else if (expr
->expr_type
== EXPR_ARRAY
&& VAR_P (desc
)
7578 && IS_CLASS_ARRAY (expr
))
7581 gfc_allocate_lang_decl (desc
);
7582 tmp
= gfc_create_var (expr
->ts
.u
.derived
->backend_decl
, "class");
7583 GFC_DECL_SAVED_DESCRIPTOR (desc
) = tmp
;
7584 vtype
= gfc_class_vptr_get (tmp
);
7585 gfc_add_modify (&se
->pre
, vtype
,
7586 gfc_build_addr_expr (TREE_TYPE (vtype
),
7587 gfc_find_vtab (&expr
->ts
)->backend_decl
));
7589 if (!se
->direct_byref
|| se
->byref_noassign
)
7591 /* Get a pointer to the new descriptor. */
7592 if (se
->want_pointer
)
7593 se
->expr
= gfc_build_addr_expr (NULL_TREE
, desc
);
7598 gfc_add_block_to_block (&se
->pre
, &loop
.pre
);
7599 gfc_add_block_to_block (&se
->post
, &loop
.post
);
7601 /* Cleanup the scalarizer. */
7602 gfc_cleanup_loop (&loop
);
7605 /* Helper function for gfc_conv_array_parameter if array size needs to be
7609 array_parameter_size (tree desc
, gfc_expr
*expr
, tree
*size
)
7612 if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc
)))
7613 *size
= GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc
));
7614 else if (expr
->rank
> 1)
7615 *size
= build_call_expr_loc (input_location
,
7616 gfor_fndecl_size0
, 1,
7617 gfc_build_addr_expr (NULL
, desc
));
7620 tree ubound
= gfc_conv_descriptor_ubound_get (desc
, gfc_index_zero_node
);
7621 tree lbound
= gfc_conv_descriptor_lbound_get (desc
, gfc_index_zero_node
);
7623 *size
= fold_build2_loc (input_location
, MINUS_EXPR
,
7624 gfc_array_index_type
, ubound
, lbound
);
7625 *size
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
7626 *size
, gfc_index_one_node
);
7627 *size
= fold_build2_loc (input_location
, MAX_EXPR
, gfc_array_index_type
,
7628 *size
, gfc_index_zero_node
);
7630 elem
= TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc
)));
7631 *size
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
7632 *size
, fold_convert (gfc_array_index_type
, elem
));
7635 /* Convert an array for passing as an actual parameter. */
7636 /* TODO: Optimize passing g77 arrays. */
7639 gfc_conv_array_parameter (gfc_se
* se
, gfc_expr
* expr
, bool g77
,
7640 const gfc_symbol
*fsym
, const char *proc_name
,
7645 tree tmp
= NULL_TREE
;
7647 tree parent
= DECL_CONTEXT (current_function_decl
);
7648 bool full_array_var
;
7649 bool this_array_result
;
7652 bool array_constructor
;
7653 bool good_allocatable
;
7654 bool ultimate_ptr_comp
;
7655 bool ultimate_alloc_comp
;
7660 ultimate_ptr_comp
= false;
7661 ultimate_alloc_comp
= false;
7663 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
7665 if (ref
->next
== NULL
)
7668 if (ref
->type
== REF_COMPONENT
)
7670 ultimate_ptr_comp
= ref
->u
.c
.component
->attr
.pointer
;
7671 ultimate_alloc_comp
= ref
->u
.c
.component
->attr
.allocatable
;
7675 full_array_var
= false;
7678 if (expr
->expr_type
== EXPR_VARIABLE
&& ref
&& !ultimate_ptr_comp
)
7679 full_array_var
= gfc_full_array_ref_p (ref
, &contiguous
);
7681 sym
= full_array_var
? expr
->symtree
->n
.sym
: NULL
;
7683 /* The symbol should have an array specification. */
7684 gcc_assert (!sym
|| sym
->as
|| ref
->u
.ar
.as
);
7686 if (expr
->expr_type
== EXPR_ARRAY
&& expr
->ts
.type
== BT_CHARACTER
)
7688 get_array_ctor_strlen (&se
->pre
, expr
->value
.constructor
, &tmp
);
7689 expr
->ts
.u
.cl
->backend_decl
= tmp
;
7690 se
->string_length
= tmp
;
7693 /* Is this the result of the enclosing procedure? */
7694 this_array_result
= (full_array_var
&& sym
->attr
.flavor
== FL_PROCEDURE
);
7695 if (this_array_result
7696 && (sym
->backend_decl
!= current_function_decl
)
7697 && (sym
->backend_decl
!= parent
))
7698 this_array_result
= false;
7700 /* Passing address of the array if it is not pointer or assumed-shape. */
7701 if (full_array_var
&& g77
&& !this_array_result
7702 && sym
->ts
.type
!= BT_DERIVED
&& sym
->ts
.type
!= BT_CLASS
)
7704 tmp
= gfc_get_symbol_decl (sym
);
7706 if (sym
->ts
.type
== BT_CHARACTER
)
7707 se
->string_length
= sym
->ts
.u
.cl
->backend_decl
;
7709 if (!sym
->attr
.pointer
7711 && sym
->as
->type
!= AS_ASSUMED_SHAPE
7712 && sym
->as
->type
!= AS_DEFERRED
7713 && sym
->as
->type
!= AS_ASSUMED_RANK
7714 && !sym
->attr
.allocatable
)
7716 /* Some variables are declared directly, others are declared as
7717 pointers and allocated on the heap. */
7718 if (sym
->attr
.dummy
|| POINTER_TYPE_P (TREE_TYPE (tmp
)))
7721 se
->expr
= gfc_build_addr_expr (NULL_TREE
, tmp
);
7723 array_parameter_size (tmp
, expr
, size
);
7727 if (sym
->attr
.allocatable
)
7729 if (sym
->attr
.dummy
|| sym
->attr
.result
)
7731 gfc_conv_expr_descriptor (se
, expr
);
7735 array_parameter_size (tmp
, expr
, size
);
7736 se
->expr
= gfc_conv_array_data (tmp
);
7741 /* A convenient reduction in scope. */
7742 contiguous
= g77
&& !this_array_result
&& contiguous
;
7744 /* There is no need to pack and unpack the array, if it is contiguous
7745 and not a deferred- or assumed-shape array, or if it is simply
7747 no_pack
= ((sym
&& sym
->as
7748 && !sym
->attr
.pointer
7749 && sym
->as
->type
!= AS_DEFERRED
7750 && sym
->as
->type
!= AS_ASSUMED_RANK
7751 && sym
->as
->type
!= AS_ASSUMED_SHAPE
)
7753 (ref
&& ref
->u
.ar
.as
7754 && ref
->u
.ar
.as
->type
!= AS_DEFERRED
7755 && ref
->u
.ar
.as
->type
!= AS_ASSUMED_RANK
7756 && ref
->u
.ar
.as
->type
!= AS_ASSUMED_SHAPE
)
7758 gfc_is_simply_contiguous (expr
, false, true));
7760 no_pack
= contiguous
&& no_pack
;
7762 /* Array constructors are always contiguous and do not need packing. */
7763 array_constructor
= g77
&& !this_array_result
&& expr
->expr_type
== EXPR_ARRAY
;
7765 /* Same is true of contiguous sections from allocatable variables. */
7766 good_allocatable
= contiguous
7768 && expr
->symtree
->n
.sym
->attr
.allocatable
;
7770 /* Or ultimate allocatable components. */
7771 ultimate_alloc_comp
= contiguous
&& ultimate_alloc_comp
;
7773 if (no_pack
|| array_constructor
|| good_allocatable
|| ultimate_alloc_comp
)
7775 gfc_conv_expr_descriptor (se
, expr
);
7776 /* Deallocate the allocatable components of structures that are
7778 if ((expr
->ts
.type
== BT_DERIVED
|| expr
->ts
.type
== BT_CLASS
)
7779 && expr
->ts
.u
.derived
->attr
.alloc_comp
7780 && expr
->expr_type
!= EXPR_VARIABLE
)
7782 tmp
= gfc_deallocate_alloc_comp (expr
->ts
.u
.derived
, se
->expr
, expr
->rank
);
7784 /* The components shall be deallocated before their containing entity. */
7785 gfc_prepend_expr_to_block (&se
->post
, tmp
);
7787 if (expr
->ts
.type
== BT_CHARACTER
)
7788 se
->string_length
= expr
->ts
.u
.cl
->backend_decl
;
7790 array_parameter_size (se
->expr
, expr
, size
);
7791 se
->expr
= gfc_conv_array_data (se
->expr
);
7795 if (this_array_result
)
7797 /* Result of the enclosing function. */
7798 gfc_conv_expr_descriptor (se
, expr
);
7800 array_parameter_size (se
->expr
, expr
, size
);
7801 se
->expr
= gfc_build_addr_expr (NULL_TREE
, se
->expr
);
7803 if (g77
&& TREE_TYPE (TREE_TYPE (se
->expr
)) != NULL_TREE
7804 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se
->expr
))))
7805 se
->expr
= gfc_conv_array_data (build_fold_indirect_ref_loc (input_location
,
7812 /* Every other type of array. */
7813 se
->want_pointer
= 1;
7814 gfc_conv_expr_descriptor (se
, expr
);
7817 array_parameter_size (build_fold_indirect_ref_loc (input_location
,
7822 /* Deallocate the allocatable components of structures that are
7823 not variable, for descriptorless arguments.
7824 Arguments with a descriptor are handled in gfc_conv_procedure_call. */
7825 if (g77
&& (expr
->ts
.type
== BT_DERIVED
|| expr
->ts
.type
== BT_CLASS
)
7826 && expr
->ts
.u
.derived
->attr
.alloc_comp
7827 && expr
->expr_type
!= EXPR_VARIABLE
)
7829 tmp
= build_fold_indirect_ref_loc (input_location
, se
->expr
);
7830 tmp
= gfc_deallocate_alloc_comp (expr
->ts
.u
.derived
, tmp
, expr
->rank
);
7832 /* The components shall be deallocated before their containing entity. */
7833 gfc_prepend_expr_to_block (&se
->post
, tmp
);
7836 if (g77
|| (fsym
&& fsym
->attr
.contiguous
7837 && !gfc_is_simply_contiguous (expr
, false, true)))
7839 tree origptr
= NULL_TREE
;
7843 /* For contiguous arrays, save the original value of the descriptor. */
7846 origptr
= gfc_create_var (pvoid_type_node
, "origptr");
7847 tmp
= build_fold_indirect_ref_loc (input_location
, desc
);
7848 tmp
= gfc_conv_array_data (tmp
);
7849 tmp
= fold_build2_loc (input_location
, MODIFY_EXPR
,
7850 TREE_TYPE (origptr
), origptr
,
7851 fold_convert (TREE_TYPE (origptr
), tmp
));
7852 gfc_add_expr_to_block (&se
->pre
, tmp
);
7855 /* Repack the array. */
7856 if (warn_array_temporaries
)
7859 gfc_warning (OPT_Warray_temporaries
,
7860 "Creating array temporary at %L for argument %qs",
7861 &expr
->where
, fsym
->name
);
7863 gfc_warning (OPT_Warray_temporaries
,
7864 "Creating array temporary at %L", &expr
->where
);
7867 ptr
= build_call_expr_loc (input_location
,
7868 gfor_fndecl_in_pack
, 1, desc
);
7870 if (fsym
&& fsym
->attr
.optional
&& sym
&& sym
->attr
.optional
)
7872 tmp
= gfc_conv_expr_present (sym
);
7873 ptr
= build3_loc (input_location
, COND_EXPR
, TREE_TYPE (se
->expr
),
7874 tmp
, fold_convert (TREE_TYPE (se
->expr
), ptr
),
7875 fold_convert (TREE_TYPE (se
->expr
), null_pointer_node
));
7878 ptr
= gfc_evaluate_now (ptr
, &se
->pre
);
7880 /* Use the packed data for the actual argument, except for contiguous arrays,
7881 where the descriptor's data component is set. */
7886 tmp
= build_fold_indirect_ref_loc (input_location
, desc
);
7888 gfc_ss
* ss
= gfc_walk_expr (expr
);
7889 if (!transposed_dims (ss
))
7890 gfc_conv_descriptor_data_set (&se
->pre
, tmp
, ptr
);
7893 tree old_field
, new_field
;
7895 /* The original descriptor has transposed dims so we can't reuse
7896 it directly; we have to create a new one. */
7897 tree old_desc
= tmp
;
7898 tree new_desc
= gfc_create_var (TREE_TYPE (old_desc
), "arg_desc");
7900 old_field
= gfc_conv_descriptor_dtype (old_desc
);
7901 new_field
= gfc_conv_descriptor_dtype (new_desc
);
7902 gfc_add_modify (&se
->pre
, new_field
, old_field
);
7904 old_field
= gfc_conv_descriptor_offset (old_desc
);
7905 new_field
= gfc_conv_descriptor_offset (new_desc
);
7906 gfc_add_modify (&se
->pre
, new_field
, old_field
);
7908 for (int i
= 0; i
< expr
->rank
; i
++)
7910 old_field
= gfc_conv_descriptor_dimension (old_desc
,
7911 gfc_rank_cst
[get_array_ref_dim_for_loop_dim (ss
, i
)]);
7912 new_field
= gfc_conv_descriptor_dimension (new_desc
,
7914 gfc_add_modify (&se
->pre
, new_field
, old_field
);
7917 if (flag_coarray
== GFC_FCOARRAY_LIB
7918 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (old_desc
))
7919 && GFC_TYPE_ARRAY_AKIND (TREE_TYPE (old_desc
))
7920 == GFC_ARRAY_ALLOCATABLE
)
7922 old_field
= gfc_conv_descriptor_token (old_desc
);
7923 new_field
= gfc_conv_descriptor_token (new_desc
);
7924 gfc_add_modify (&se
->pre
, new_field
, old_field
);
7927 gfc_conv_descriptor_data_set (&se
->pre
, new_desc
, ptr
);
7928 se
->expr
= gfc_build_addr_expr (NULL_TREE
, new_desc
);
7933 if (gfc_option
.rtcheck
& GFC_RTCHECK_ARRAY_TEMPS
)
7937 if (fsym
&& proc_name
)
7938 msg
= xasprintf ("An array temporary was created for argument "
7939 "'%s' of procedure '%s'", fsym
->name
, proc_name
);
7941 msg
= xasprintf ("An array temporary was created");
7943 tmp
= build_fold_indirect_ref_loc (input_location
,
7945 tmp
= gfc_conv_array_data (tmp
);
7946 tmp
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
7947 fold_convert (TREE_TYPE (tmp
), ptr
), tmp
);
7949 if (fsym
&& fsym
->attr
.optional
&& sym
&& sym
->attr
.optional
)
7950 tmp
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
7952 gfc_conv_expr_present (sym
), tmp
);
7954 gfc_trans_runtime_check (false, true, tmp
, &se
->pre
,
7959 gfc_start_block (&block
);
7961 /* Copy the data back. */
7962 if (fsym
== NULL
|| fsym
->attr
.intent
!= INTENT_IN
)
7964 tmp
= build_call_expr_loc (input_location
,
7965 gfor_fndecl_in_unpack
, 2, desc
, ptr
);
7966 gfc_add_expr_to_block (&block
, tmp
);
7969 /* Free the temporary. */
7970 tmp
= gfc_call_free (ptr
);
7971 gfc_add_expr_to_block (&block
, tmp
);
7973 stmt
= gfc_finish_block (&block
);
7975 gfc_init_block (&block
);
7976 /* Only if it was repacked. This code needs to be executed before the
7977 loop cleanup code. */
7978 tmp
= build_fold_indirect_ref_loc (input_location
,
7980 tmp
= gfc_conv_array_data (tmp
);
7981 tmp
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
7982 fold_convert (TREE_TYPE (tmp
), ptr
), tmp
);
7984 if (fsym
&& fsym
->attr
.optional
&& sym
&& sym
->attr
.optional
)
7985 tmp
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
7987 gfc_conv_expr_present (sym
), tmp
);
7989 tmp
= build3_v (COND_EXPR
, tmp
, stmt
, build_empty_stmt (input_location
));
7991 gfc_add_expr_to_block (&block
, tmp
);
7992 gfc_add_block_to_block (&block
, &se
->post
);
7994 gfc_init_block (&se
->post
);
7996 /* Reset the descriptor pointer. */
7999 tmp
= build_fold_indirect_ref_loc (input_location
, desc
);
8000 gfc_conv_descriptor_data_set (&se
->post
, tmp
, origptr
);
8003 gfc_add_block_to_block (&se
->post
, &block
);
8008 /* This helper function calculates the size in words of a full array. */
8011 gfc_full_array_size (stmtblock_t
*block
, tree decl
, int rank
)
8016 idx
= gfc_rank_cst
[rank
- 1];
8017 nelems
= gfc_conv_descriptor_ubound_get (decl
, idx
);
8018 tmp
= gfc_conv_descriptor_lbound_get (decl
, idx
);
8019 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
, gfc_array_index_type
,
8021 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
8022 tmp
, gfc_index_one_node
);
8023 tmp
= gfc_evaluate_now (tmp
, block
);
8025 nelems
= gfc_conv_descriptor_stride_get (decl
, idx
);
8026 tmp
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
8028 return gfc_evaluate_now (tmp
, block
);
8032 /* Allocate dest to the same size as src, and copy src -> dest.
8033 If no_malloc is set, only the copy is done. */
8036 duplicate_allocatable (tree dest
, tree src
, tree type
, int rank
,
8037 bool no_malloc
, bool no_memcpy
, tree str_sz
,
8038 tree add_when_allocated
)
8047 /* If the source is null, set the destination to null. Then,
8048 allocate memory to the destination. */
8049 gfc_init_block (&block
);
8051 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest
)))
8053 gfc_add_modify (&block
, dest
, fold_convert (type
, null_pointer_node
));
8054 null_data
= gfc_finish_block (&block
);
8056 gfc_init_block (&block
);
8057 if (str_sz
!= NULL_TREE
)
8060 size
= TYPE_SIZE_UNIT (TREE_TYPE (type
));
8064 tmp
= gfc_call_malloc (&block
, type
, size
);
8065 gfc_add_modify (&block
, dest
, fold_convert (type
, tmp
));
8070 tmp
= builtin_decl_explicit (BUILT_IN_MEMCPY
);
8071 tmp
= build_call_expr_loc (input_location
, tmp
, 3, dest
, src
,
8072 fold_convert (size_type_node
, size
));
8073 gfc_add_expr_to_block (&block
, tmp
);
8078 gfc_conv_descriptor_data_set (&block
, dest
, null_pointer_node
);
8079 null_data
= gfc_finish_block (&block
);
8081 gfc_init_block (&block
);
8083 nelems
= gfc_full_array_size (&block
, src
, rank
);
8085 nelems
= gfc_index_one_node
;
8087 if (str_sz
!= NULL_TREE
)
8088 tmp
= fold_convert (gfc_array_index_type
, str_sz
);
8090 tmp
= fold_convert (gfc_array_index_type
,
8091 TYPE_SIZE_UNIT (gfc_get_element_type (type
)));
8092 size
= fold_build2_loc (input_location
, MULT_EXPR
, gfc_array_index_type
,
8096 tmp
= TREE_TYPE (gfc_conv_descriptor_data_get (src
));
8097 tmp
= gfc_call_malloc (&block
, tmp
, size
);
8098 gfc_conv_descriptor_data_set (&block
, dest
, tmp
);
8101 /* We know the temporary and the value will be the same length,
8102 so can use memcpy. */
8105 tmp
= builtin_decl_explicit (BUILT_IN_MEMCPY
);
8106 tmp
= build_call_expr_loc (input_location
, tmp
, 3,
8107 gfc_conv_descriptor_data_get (dest
),
8108 gfc_conv_descriptor_data_get (src
),
8109 fold_convert (size_type_node
, size
));
8110 gfc_add_expr_to_block (&block
, tmp
);
8114 gfc_add_expr_to_block (&block
, add_when_allocated
);
8115 tmp
= gfc_finish_block (&block
);
8117 /* Null the destination if the source is null; otherwise do
8118 the allocate and copy. */
8119 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src
)))
8122 null_cond
= gfc_conv_descriptor_data_get (src
);
8124 null_cond
= convert (pvoid_type_node
, null_cond
);
8125 null_cond
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
8126 null_cond
, null_pointer_node
);
8127 return build3_v (COND_EXPR
, null_cond
, tmp
, null_data
);
8131 /* Allocate dest to the same size as src, and copy data src -> dest. */
8134 gfc_duplicate_allocatable (tree dest
, tree src
, tree type
, int rank
,
8135 tree add_when_allocated
)
8137 return duplicate_allocatable (dest
, src
, type
, rank
, false, false,
8138 NULL_TREE
, add_when_allocated
);
8142 /* Copy data src -> dest. */
8145 gfc_copy_allocatable_data (tree dest
, tree src
, tree type
, int rank
)
8147 return duplicate_allocatable (dest
, src
, type
, rank
, true, false,
8148 NULL_TREE
, NULL_TREE
);
8151 /* Allocate dest to the same size as src, but don't copy anything. */
8154 gfc_duplicate_allocatable_nocopy (tree dest
, tree src
, tree type
, int rank
)
8156 return duplicate_allocatable (dest
, src
, type
, rank
, false, true,
8157 NULL_TREE
, NULL_TREE
);
8162 duplicate_allocatable_coarray (tree dest
, tree dest_tok
, tree src
,
8163 tree type
, int rank
)
8170 stmtblock_t block
, globalblock
;
8172 /* If the source is null, set the destination to null. Then,
8173 allocate memory to the destination. */
8174 gfc_init_block (&block
);
8175 gfc_init_block (&globalblock
);
8177 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest
)))
8180 symbol_attribute attr
;
8183 gfc_init_se (&se
, NULL
);
8184 gfc_clear_attr (&attr
);
8185 attr
.allocatable
= 1;
8186 dummy_desc
= gfc_conv_scalar_to_descriptor (&se
, dest
, attr
);
8187 gfc_add_block_to_block (&globalblock
, &se
.pre
);
8188 size
= TYPE_SIZE_UNIT (TREE_TYPE (type
));
8190 gfc_add_modify (&block
, dest
, fold_convert (type
, null_pointer_node
));
8191 gfc_allocate_using_caf_lib (&block
, dummy_desc
, size
,
8192 gfc_build_addr_expr (NULL_TREE
, dest_tok
),
8193 NULL_TREE
, NULL_TREE
, NULL_TREE
,
8194 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY
);
8195 null_data
= gfc_finish_block (&block
);
8197 gfc_init_block (&block
);
8199 gfc_allocate_using_caf_lib (&block
, dummy_desc
,
8200 fold_convert (size_type_node
, size
),
8201 gfc_build_addr_expr (NULL_TREE
, dest_tok
),
8202 NULL_TREE
, NULL_TREE
, NULL_TREE
,
8203 GFC_CAF_COARRAY_ALLOC
);
8205 tmp
= builtin_decl_explicit (BUILT_IN_MEMCPY
);
8206 tmp
= build_call_expr_loc (input_location
, tmp
, 3, dest
, src
,
8207 fold_convert (size_type_node
, size
));
8208 gfc_add_expr_to_block (&block
, tmp
);
8212 /* Set the rank or unitialized memory access may be reported. */
8213 tmp
= gfc_conv_descriptor_rank (dest
);
8214 gfc_add_modify (&globalblock
, tmp
, build_int_cst (TREE_TYPE (tmp
), rank
));
8217 nelems
= gfc_full_array_size (&block
, src
, rank
);
8219 nelems
= integer_one_node
;
8221 tmp
= fold_convert (size_type_node
,
8222 TYPE_SIZE_UNIT (gfc_get_element_type (type
)));
8223 size
= fold_build2_loc (input_location
, MULT_EXPR
, size_type_node
,
8224 fold_convert (size_type_node
, nelems
), tmp
);
8226 gfc_conv_descriptor_data_set (&block
, dest
, null_pointer_node
);
8227 gfc_allocate_using_caf_lib (&block
, dest
, fold_convert (size_type_node
,
8229 gfc_build_addr_expr (NULL_TREE
, dest_tok
),
8230 NULL_TREE
, NULL_TREE
, NULL_TREE
,
8231 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY
);
8232 null_data
= gfc_finish_block (&block
);
8234 gfc_init_block (&block
);
8235 gfc_allocate_using_caf_lib (&block
, dest
,
8236 fold_convert (size_type_node
, size
),
8237 gfc_build_addr_expr (NULL_TREE
, dest_tok
),
8238 NULL_TREE
, NULL_TREE
, NULL_TREE
,
8239 GFC_CAF_COARRAY_ALLOC
);
8241 tmp
= builtin_decl_explicit (BUILT_IN_MEMCPY
);
8242 tmp
= build_call_expr_loc (input_location
, tmp
, 3,
8243 gfc_conv_descriptor_data_get (dest
),
8244 gfc_conv_descriptor_data_get (src
),
8245 fold_convert (size_type_node
, size
));
8246 gfc_add_expr_to_block (&block
, tmp
);
8249 tmp
= gfc_finish_block (&block
);
8251 /* Null the destination if the source is null; otherwise do
8252 the register and copy. */
8253 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src
)))
8256 null_cond
= gfc_conv_descriptor_data_get (src
);
8258 null_cond
= convert (pvoid_type_node
, null_cond
);
8259 null_cond
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
8260 null_cond
, null_pointer_node
);
8261 gfc_add_expr_to_block (&globalblock
, build3_v (COND_EXPR
, null_cond
, tmp
,
8263 return gfc_finish_block (&globalblock
);
8267 /* Helper function to abstract whether coarray processing is enabled. */
8270 caf_enabled (int caf_mode
)
8272 return (caf_mode
& GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
)
8273 == GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
;
8277 /* Helper function to abstract whether coarray processing is enabled
8278 and we are in a derived type coarray. */
8281 caf_in_coarray (int caf_mode
)
8283 static const int pat
= GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
8284 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY
;
8285 return (caf_mode
& pat
) == pat
;
8289 /* Helper function to abstract whether coarray is to deallocate only. */
8292 gfc_caf_is_dealloc_only (int caf_mode
)
8294 return (caf_mode
& GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY
)
8295 == GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY
;
8299 /* Recursively traverse an object of derived type, generating code to
8300 deallocate, nullify or copy allocatable components. This is the work horse
8301 function for the functions named in this enum. */
8303 enum {DEALLOCATE_ALLOC_COMP
= 1, NULLIFY_ALLOC_COMP
,
8304 COPY_ALLOC_COMP
, COPY_ONLY_ALLOC_COMP
, REASSIGN_CAF_COMP
,
8305 ALLOCATE_PDT_COMP
, DEALLOCATE_PDT_COMP
, CHECK_PDT_DUMMY
};
8307 static gfc_actual_arglist
*pdt_param_list
;
8310 structure_alloc_comps (gfc_symbol
* der_type
, tree decl
,
8311 tree dest
, int rank
, int purpose
, int caf_mode
)
8315 stmtblock_t fnblock
;
8316 stmtblock_t loopbody
;
8317 stmtblock_t tmpblock
;
8328 tree null_cond
= NULL_TREE
;
8329 tree add_when_allocated
;
8330 tree dealloc_fndecl
;
8334 symbol_attribute
*attr
;
8335 bool deallocate_called
;
8337 gfc_init_block (&fnblock
);
8339 decl_type
= TREE_TYPE (decl
);
8341 if ((POINTER_TYPE_P (decl_type
))
8342 || (TREE_CODE (decl_type
) == REFERENCE_TYPE
&& rank
== 0))
8344 decl
= build_fold_indirect_ref_loc (input_location
, decl
);
8345 /* Deref dest in sync with decl, but only when it is not NULL. */
8347 dest
= build_fold_indirect_ref_loc (input_location
, dest
);
8349 /* Update the decl_type because it got dereferenced. */
8350 decl_type
= TREE_TYPE (decl
);
8353 /* If this is an array of derived types with allocatable components
8354 build a loop and recursively call this function. */
8355 if (TREE_CODE (decl_type
) == ARRAY_TYPE
8356 || (GFC_DESCRIPTOR_TYPE_P (decl_type
) && rank
!= 0))
8358 tmp
= gfc_conv_array_data (decl
);
8359 var
= build_fold_indirect_ref_loc (input_location
, tmp
);
8361 /* Get the number of elements - 1 and set the counter. */
8362 if (GFC_DESCRIPTOR_TYPE_P (decl_type
))
8364 /* Use the descriptor for an allocatable array. Since this
8365 is a full array reference, we only need the descriptor
8366 information from dimension = rank. */
8367 tmp
= gfc_full_array_size (&fnblock
, decl
, rank
);
8368 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
8369 gfc_array_index_type
, tmp
,
8370 gfc_index_one_node
);
8372 null_cond
= gfc_conv_descriptor_data_get (decl
);
8373 null_cond
= fold_build2_loc (input_location
, NE_EXPR
,
8374 logical_type_node
, null_cond
,
8375 build_int_cst (TREE_TYPE (null_cond
), 0));
8379 /* Otherwise use the TYPE_DOMAIN information. */
8380 tmp
= array_type_nelts (decl_type
);
8381 tmp
= fold_convert (gfc_array_index_type
, tmp
);
8384 /* Remember that this is, in fact, the no. of elements - 1. */
8385 nelems
= gfc_evaluate_now (tmp
, &fnblock
);
8386 index
= gfc_create_var (gfc_array_index_type
, "S");
8388 /* Build the body of the loop. */
8389 gfc_init_block (&loopbody
);
8391 vref
= gfc_build_array_ref (var
, index
, NULL
);
8393 if ((purpose
== COPY_ALLOC_COMP
|| purpose
== COPY_ONLY_ALLOC_COMP
)
8394 && !caf_enabled (caf_mode
))
8396 tmp
= build_fold_indirect_ref_loc (input_location
,
8397 gfc_conv_array_data (dest
));
8398 dref
= gfc_build_array_ref (tmp
, index
, NULL
);
8399 tmp
= structure_alloc_comps (der_type
, vref
, dref
, rank
,
8400 COPY_ALLOC_COMP
, 0);
8403 tmp
= structure_alloc_comps (der_type
, vref
, NULL_TREE
, rank
, purpose
,
8406 gfc_add_expr_to_block (&loopbody
, tmp
);
8408 /* Build the loop and return. */
8409 gfc_init_loopinfo (&loop
);
8411 loop
.from
[0] = gfc_index_zero_node
;
8412 loop
.loopvar
[0] = index
;
8413 loop
.to
[0] = nelems
;
8414 gfc_trans_scalarizing_loops (&loop
, &loopbody
);
8415 gfc_add_block_to_block (&fnblock
, &loop
.pre
);
8417 tmp
= gfc_finish_block (&fnblock
);
8418 /* When copying allocateable components, the above implements the
8419 deep copy. Nevertheless is a deep copy only allowed, when the current
8420 component is allocated, for which code will be generated in
8421 gfc_duplicate_allocatable (), where the deep copy code is just added
8422 into the if's body, by adding tmp (the deep copy code) as last
8423 argument to gfc_duplicate_allocatable (). */
8424 if (purpose
== COPY_ALLOC_COMP
8425 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest
)))
8426 tmp
= gfc_duplicate_allocatable (dest
, decl
, decl_type
, rank
,
8428 else if (null_cond
!= NULL_TREE
)
8429 tmp
= build3_v (COND_EXPR
, null_cond
, tmp
,
8430 build_empty_stmt (input_location
));
8435 if (purpose
== DEALLOCATE_ALLOC_COMP
&& der_type
->attr
.pdt_type
)
8437 tmp
= structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
8438 DEALLOCATE_PDT_COMP
, 0);
8439 gfc_add_expr_to_block (&fnblock
, tmp
);
8441 else if (purpose
== ALLOCATE_PDT_COMP
&& der_type
->attr
.alloc_comp
)
8443 tmp
= structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
8444 NULLIFY_ALLOC_COMP
, 0);
8445 gfc_add_expr_to_block (&fnblock
, tmp
);
8448 /* Otherwise, act on the components or recursively call self to
8449 act on a chain of components. */
8450 for (c
= der_type
->components
; c
; c
= c
->next
)
8452 bool cmp_has_alloc_comps
= (c
->ts
.type
== BT_DERIVED
8453 || c
->ts
.type
== BT_CLASS
)
8454 && c
->ts
.u
.derived
->attr
.alloc_comp
;
8455 bool same_type
= (c
->ts
.type
== BT_DERIVED
&& der_type
== c
->ts
.u
.derived
)
8456 || (c
->ts
.type
== BT_CLASS
&& der_type
== CLASS_DATA (c
)->ts
.u
.derived
);
8458 bool is_pdt_type
= c
->ts
.type
== BT_DERIVED
8459 && c
->ts
.u
.derived
->attr
.pdt_type
;
8461 cdecl = c
->backend_decl
;
8462 ctype
= TREE_TYPE (cdecl);
8466 case DEALLOCATE_ALLOC_COMP
:
8468 gfc_init_block (&tmpblock
);
8470 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8471 decl
, cdecl, NULL_TREE
);
8473 /* Shortcut to get the attributes of the component. */
8474 if (c
->ts
.type
== BT_CLASS
)
8476 attr
= &CLASS_DATA (c
)->attr
;
8477 if (attr
->class_pointer
)
8487 if ((c
->ts
.type
== BT_DERIVED
&& !c
->attr
.pointer
)
8488 || (c
->ts
.type
== BT_CLASS
&& !CLASS_DATA (c
)->attr
.class_pointer
))
8489 /* Call the finalizer, which will free the memory and nullify the
8490 pointer of an array. */
8491 deallocate_called
= gfc_add_comp_finalizer_call (&tmpblock
, comp
, c
,
8492 caf_enabled (caf_mode
))
8495 deallocate_called
= false;
8497 /* Add the _class ref for classes. */
8498 if (c
->ts
.type
== BT_CLASS
&& attr
->allocatable
)
8499 comp
= gfc_class_data_get (comp
);
8501 add_when_allocated
= NULL_TREE
;
8502 if (cmp_has_alloc_comps
8503 && !c
->attr
.pointer
&& !c
->attr
.proc_pointer
8505 && !deallocate_called
)
8507 /* Add checked deallocation of the components. This code is
8508 obviously added because the finalizer is not trusted to free
8510 if (c
->ts
.type
== BT_CLASS
)
8512 rank
= CLASS_DATA (c
)->as
? CLASS_DATA (c
)->as
->rank
: 0;
8514 = structure_alloc_comps (CLASS_DATA (c
)->ts
.u
.derived
,
8515 comp
, NULL_TREE
, rank
, purpose
,
8520 rank
= c
->as
? c
->as
->rank
: 0;
8521 add_when_allocated
= structure_alloc_comps (c
->ts
.u
.derived
,
8528 if (attr
->allocatable
&& !same_type
8529 && (!attr
->codimension
|| caf_enabled (caf_mode
)))
8531 /* Handle all types of components besides components of the
8532 same_type as the current one, because those would create an
8535 = (caf_in_coarray (caf_mode
) || attr
->codimension
)
8536 ? (gfc_caf_is_dealloc_only (caf_mode
)
8537 ? GFC_CAF_COARRAY_DEALLOCATE_ONLY
8538 : GFC_CAF_COARRAY_DEREGISTER
)
8539 : GFC_CAF_COARRAY_NOCOARRAY
;
8541 caf_token
= NULL_TREE
;
8542 /* Coarray components are handled directly by
8543 deallocate_with_status. */
8544 if (!attr
->codimension
8545 && caf_dereg_mode
!= GFC_CAF_COARRAY_NOCOARRAY
)
8548 caf_token
= fold_build3_loc (input_location
, COMPONENT_REF
,
8549 TREE_TYPE (c
->caf_token
),
8550 decl
, c
->caf_token
, NULL_TREE
);
8551 else if (attr
->dimension
&& !attr
->proc_pointer
)
8552 caf_token
= gfc_conv_descriptor_token (comp
);
8554 if (attr
->dimension
&& !attr
->codimension
&& !attr
->proc_pointer
)
8555 /* When this is an array but not in conjunction with a coarray
8556 then add the data-ref. For coarray'ed arrays the data-ref
8557 is added by deallocate_with_status. */
8558 comp
= gfc_conv_descriptor_data_get (comp
);
8560 tmp
= gfc_deallocate_with_status (comp
, NULL_TREE
, NULL_TREE
,
8561 NULL_TREE
, NULL_TREE
, true,
8562 NULL
, caf_dereg_mode
,
8563 add_when_allocated
, caf_token
);
8565 gfc_add_expr_to_block (&tmpblock
, tmp
);
8567 else if (attr
->allocatable
&& !attr
->codimension
8568 && !deallocate_called
)
8570 /* Case of recursive allocatable derived types. */
8574 stmtblock_t dealloc_block
;
8576 gfc_init_block (&dealloc_block
);
8577 if (add_when_allocated
)
8578 gfc_add_expr_to_block (&dealloc_block
, add_when_allocated
);
8580 /* Convert the component into a rank 1 descriptor type. */
8581 if (attr
->dimension
)
8583 tmp
= gfc_get_element_type (TREE_TYPE (comp
));
8584 ubound
= gfc_full_array_size (&dealloc_block
, comp
,
8585 c
->ts
.type
== BT_CLASS
8586 ? CLASS_DATA (c
)->as
->rank
8591 tmp
= TREE_TYPE (comp
);
8592 ubound
= build_int_cst (gfc_array_index_type
, 1);
8595 cdesc
= gfc_get_array_type_bounds (tmp
, 1, 0, &gfc_index_one_node
,
8597 GFC_ARRAY_ALLOCATABLE
, false);
8599 cdesc
= gfc_create_var (cdesc
, "cdesc");
8600 DECL_ARTIFICIAL (cdesc
) = 1;
8602 gfc_add_modify (&dealloc_block
, gfc_conv_descriptor_dtype (cdesc
),
8603 gfc_get_dtype_rank_type (1, tmp
));
8604 gfc_conv_descriptor_lbound_set (&dealloc_block
, cdesc
,
8605 gfc_index_zero_node
,
8606 gfc_index_one_node
);
8607 gfc_conv_descriptor_stride_set (&dealloc_block
, cdesc
,
8608 gfc_index_zero_node
,
8609 gfc_index_one_node
);
8610 gfc_conv_descriptor_ubound_set (&dealloc_block
, cdesc
,
8611 gfc_index_zero_node
, ubound
);
8613 if (attr
->dimension
)
8614 comp
= gfc_conv_descriptor_data_get (comp
);
8616 gfc_conv_descriptor_data_set (&dealloc_block
, cdesc
, comp
);
8618 /* Now call the deallocator. */
8619 vtab
= gfc_find_vtab (&c
->ts
);
8620 if (vtab
->backend_decl
== NULL
)
8621 gfc_get_symbol_decl (vtab
);
8622 tmp
= gfc_build_addr_expr (NULL_TREE
, vtab
->backend_decl
);
8623 dealloc_fndecl
= gfc_vptr_deallocate_get (tmp
);
8624 dealloc_fndecl
= build_fold_indirect_ref_loc (input_location
,
8626 tmp
= build_int_cst (TREE_TYPE (comp
), 0);
8627 is_allocated
= fold_build2_loc (input_location
, NE_EXPR
,
8628 logical_type_node
, tmp
,
8630 cdesc
= gfc_build_addr_expr (NULL_TREE
, cdesc
);
8632 tmp
= build_call_expr_loc (input_location
,
8635 gfc_add_expr_to_block (&dealloc_block
, tmp
);
8637 tmp
= gfc_finish_block (&dealloc_block
);
8639 tmp
= fold_build3_loc (input_location
, COND_EXPR
,
8640 void_type_node
, is_allocated
, tmp
,
8641 build_empty_stmt (input_location
));
8643 gfc_add_expr_to_block (&tmpblock
, tmp
);
8645 else if (add_when_allocated
)
8646 gfc_add_expr_to_block (&tmpblock
, add_when_allocated
);
8648 if (c
->ts
.type
== BT_CLASS
&& attr
->allocatable
8649 && (!attr
->codimension
|| !caf_enabled (caf_mode
)))
8651 /* Finally, reset the vptr to the declared type vtable and, if
8652 necessary reset the _len field.
8654 First recover the reference to the component and obtain
8656 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8657 decl
, cdecl, NULL_TREE
);
8658 tmp
= gfc_class_vptr_get (comp
);
8660 if (UNLIMITED_POLY (c
))
8662 /* Both vptr and _len field should be nulled. */
8663 gfc_add_modify (&tmpblock
, tmp
,
8664 build_int_cst (TREE_TYPE (tmp
), 0));
8665 tmp
= gfc_class_len_get (comp
);
8666 gfc_add_modify (&tmpblock
, tmp
,
8667 build_int_cst (TREE_TYPE (tmp
), 0));
8671 /* Build the vtable address and set the vptr with it. */
8674 vtable
= gfc_find_derived_vtab (c
->ts
.u
.derived
);
8675 vtab
= vtable
->backend_decl
;
8676 if (vtab
== NULL_TREE
)
8677 vtab
= gfc_get_symbol_decl (vtable
);
8678 vtab
= gfc_build_addr_expr (NULL
, vtab
);
8679 vtab
= fold_convert (TREE_TYPE (tmp
), vtab
);
8680 gfc_add_modify (&tmpblock
, tmp
, vtab
);
8684 /* Now add the deallocation of this component. */
8685 gfc_add_block_to_block (&fnblock
, &tmpblock
);
8688 case NULLIFY_ALLOC_COMP
:
8690 - allocatable components (regular or in class)
8691 - components that have allocatable components
8692 - pointer components when in a coarray.
8693 Skip everything else especially proc_pointers, which may come
8694 coupled with the regular pointer attribute. */
8695 if (c
->attr
.proc_pointer
8696 || !(c
->attr
.allocatable
|| (c
->ts
.type
== BT_CLASS
8697 && CLASS_DATA (c
)->attr
.allocatable
)
8698 || (cmp_has_alloc_comps
8699 && ((c
->ts
.type
== BT_DERIVED
&& !c
->attr
.pointer
)
8700 || (c
->ts
.type
== BT_CLASS
8701 && !CLASS_DATA (c
)->attr
.class_pointer
)))
8702 || (caf_in_coarray (caf_mode
) && c
->attr
.pointer
)))
8705 /* Process class components first, because they always have the
8706 pointer-attribute set which would be caught wrong else. */
8707 if (c
->ts
.type
== BT_CLASS
8708 && (CLASS_DATA (c
)->attr
.allocatable
8709 || CLASS_DATA (c
)->attr
.class_pointer
))
8711 /* Allocatable CLASS components. */
8712 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8713 decl
, cdecl, NULL_TREE
);
8715 comp
= gfc_class_data_get (comp
);
8716 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp
)))
8717 gfc_conv_descriptor_data_set (&fnblock
, comp
,
8721 tmp
= fold_build2_loc (input_location
, MODIFY_EXPR
,
8722 void_type_node
, comp
,
8723 build_int_cst (TREE_TYPE (comp
), 0));
8724 gfc_add_expr_to_block (&fnblock
, tmp
);
8726 cmp_has_alloc_comps
= false;
8728 /* Coarrays need the component to be nulled before the api-call
8730 else if (c
->attr
.pointer
|| c
->attr
.allocatable
)
8732 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8733 decl
, cdecl, NULL_TREE
);
8734 if (c
->attr
.dimension
|| c
->attr
.codimension
)
8735 gfc_conv_descriptor_data_set (&fnblock
, comp
,
8738 gfc_add_modify (&fnblock
, comp
,
8739 build_int_cst (TREE_TYPE (comp
), 0));
8740 if (gfc_deferred_strlen (c
, &comp
))
8742 comp
= fold_build3_loc (input_location
, COMPONENT_REF
,
8744 decl
, comp
, NULL_TREE
);
8745 tmp
= fold_build2_loc (input_location
, MODIFY_EXPR
,
8746 TREE_TYPE (comp
), comp
,
8747 build_int_cst (TREE_TYPE (comp
), 0));
8748 gfc_add_expr_to_block (&fnblock
, tmp
);
8750 cmp_has_alloc_comps
= false;
8753 if (flag_coarray
== GFC_FCOARRAY_LIB
&& caf_in_coarray (caf_mode
))
8755 /* Register a component of a derived type coarray with the
8756 coarray library. Do not register ultimate component
8757 coarrays here. They are treated like regular coarrays and
8758 are either allocated on all images or on none. */
8761 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8762 decl
, cdecl, NULL_TREE
);
8763 if (c
->attr
.dimension
)
8765 /* Set the dtype, because caf_register needs it. */
8766 gfc_add_modify (&fnblock
, gfc_conv_descriptor_dtype (comp
),
8767 gfc_get_dtype (TREE_TYPE (comp
)));
8768 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8769 decl
, cdecl, NULL_TREE
);
8770 token
= gfc_conv_descriptor_token (tmp
);
8776 gfc_init_se (&se
, NULL
);
8777 token
= fold_build3_loc (input_location
, COMPONENT_REF
,
8778 pvoid_type_node
, decl
, c
->caf_token
,
8780 comp
= gfc_conv_scalar_to_descriptor (&se
, comp
,
8781 c
->ts
.type
== BT_CLASS
8782 ? CLASS_DATA (c
)->attr
8784 gfc_add_block_to_block (&fnblock
, &se
.pre
);
8787 gfc_allocate_using_caf_lib (&fnblock
, comp
, size_zero_node
,
8788 gfc_build_addr_expr (NULL_TREE
,
8790 NULL_TREE
, NULL_TREE
, NULL_TREE
,
8791 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY
);
8794 if (cmp_has_alloc_comps
)
8796 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8797 decl
, cdecl, NULL_TREE
);
8798 rank
= c
->as
? c
->as
->rank
: 0;
8799 tmp
= structure_alloc_comps (c
->ts
.u
.derived
, comp
, NULL_TREE
,
8800 rank
, purpose
, caf_mode
);
8801 gfc_add_expr_to_block (&fnblock
, tmp
);
8805 case REASSIGN_CAF_COMP
:
8806 if (caf_enabled (caf_mode
)
8807 && (c
->attr
.codimension
8808 || (c
->ts
.type
== BT_CLASS
8809 && (CLASS_DATA (c
)->attr
.coarray_comp
8810 || caf_in_coarray (caf_mode
)))
8811 || (c
->ts
.type
== BT_DERIVED
8812 && (c
->ts
.u
.derived
->attr
.coarray_comp
8813 || caf_in_coarray (caf_mode
))))
8816 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8817 decl
, cdecl, NULL_TREE
);
8818 dcmp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
8819 dest
, cdecl, NULL_TREE
);
8821 if (c
->attr
.codimension
)
8823 if (c
->ts
.type
== BT_CLASS
)
8825 comp
= gfc_class_data_get (comp
);
8826 dcmp
= gfc_class_data_get (dcmp
);
8828 gfc_conv_descriptor_data_set (&fnblock
, dcmp
,
8829 gfc_conv_descriptor_data_get (comp
));
8833 tmp
= structure_alloc_comps (c
->ts
.u
.derived
, comp
, dcmp
,
8834 rank
, purpose
, caf_mode
8835 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY
);
8836 gfc_add_expr_to_block (&fnblock
, tmp
);
8841 case COPY_ALLOC_COMP
:
8842 if (c
->attr
.pointer
)
8845 /* We need source and destination components. */
8846 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
, decl
,
8848 dcmp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
, dest
,
8850 dcmp
= fold_convert (TREE_TYPE (comp
), dcmp
);
8852 if (c
->ts
.type
== BT_CLASS
&& CLASS_DATA (c
)->attr
.allocatable
)
8860 dst_data
= gfc_class_data_get (dcmp
);
8861 src_data
= gfc_class_data_get (comp
);
8862 size
= fold_convert (size_type_node
,
8863 gfc_class_vtab_size_get (comp
));
8865 if (CLASS_DATA (c
)->attr
.dimension
)
8867 nelems
= gfc_conv_descriptor_size (src_data
,
8868 CLASS_DATA (c
)->as
->rank
);
8869 size
= fold_build2_loc (input_location
, MULT_EXPR
,
8870 size_type_node
, size
,
8871 fold_convert (size_type_node
,
8875 nelems
= build_int_cst (size_type_node
, 1);
8877 if (CLASS_DATA (c
)->attr
.dimension
8878 || CLASS_DATA (c
)->attr
.codimension
)
8880 src_data
= gfc_conv_descriptor_data_get (src_data
);
8881 dst_data
= gfc_conv_descriptor_data_get (dst_data
);
8884 gfc_init_block (&tmpblock
);
8886 gfc_add_modify (&tmpblock
, gfc_class_vptr_get (dcmp
),
8887 gfc_class_vptr_get (comp
));
8889 /* Copy the unlimited '_len' field. If it is greater than zero
8890 (ie. a character(_len)), multiply it by size and use this
8891 for the malloc call. */
8892 if (UNLIMITED_POLY (c
))
8895 gfc_add_modify (&tmpblock
, gfc_class_len_get (dcmp
),
8896 gfc_class_len_get (comp
));
8898 size
= gfc_evaluate_now (size
, &tmpblock
);
8899 tmp
= gfc_class_len_get (comp
);
8900 ctmp
= fold_build2_loc (input_location
, MULT_EXPR
,
8901 size_type_node
, size
,
8902 fold_convert (size_type_node
, tmp
));
8903 tmp
= fold_build2_loc (input_location
, GT_EXPR
,
8904 logical_type_node
, tmp
,
8905 build_zero_cst (TREE_TYPE (tmp
)));
8906 size
= fold_build3_loc (input_location
, COND_EXPR
,
8907 size_type_node
, tmp
, ctmp
, size
);
8908 size
= gfc_evaluate_now (size
, &tmpblock
);
8911 /* Coarray component have to have the same allocation status and
8912 shape/type-parameter/effective-type on the LHS and RHS of an
8913 intrinsic assignment. Hence, we did not deallocated them - and
8914 do not allocate them here. */
8915 if (!CLASS_DATA (c
)->attr
.codimension
)
8917 ftn_tree
= builtin_decl_explicit (BUILT_IN_MALLOC
);
8918 tmp
= build_call_expr_loc (input_location
, ftn_tree
, 1, size
);
8919 gfc_add_modify (&tmpblock
, dst_data
,
8920 fold_convert (TREE_TYPE (dst_data
), tmp
));
8923 tmp
= gfc_copy_class_to_class (comp
, dcmp
, nelems
,
8924 UNLIMITED_POLY (c
));
8925 gfc_add_expr_to_block (&tmpblock
, tmp
);
8926 tmp
= gfc_finish_block (&tmpblock
);
8928 gfc_init_block (&tmpblock
);
8929 gfc_add_modify (&tmpblock
, dst_data
,
8930 fold_convert (TREE_TYPE (dst_data
),
8931 null_pointer_node
));
8932 null_data
= gfc_finish_block (&tmpblock
);
8934 null_cond
= fold_build2_loc (input_location
, NE_EXPR
,
8935 logical_type_node
, src_data
,
8938 gfc_add_expr_to_block (&fnblock
, build3_v (COND_EXPR
, null_cond
,
8943 /* To implement guarded deep copy, i.e., deep copy only allocatable
8944 components that are really allocated, the deep copy code has to
8945 be generated first and then added to the if-block in
8946 gfc_duplicate_allocatable (). */
8947 if (cmp_has_alloc_comps
&& !c
->attr
.proc_pointer
&& !same_type
)
8949 rank
= c
->as
? c
->as
->rank
: 0;
8950 tmp
= fold_convert (TREE_TYPE (dcmp
), comp
);
8951 gfc_add_modify (&fnblock
, dcmp
, tmp
);
8952 add_when_allocated
= structure_alloc_comps (c
->ts
.u
.derived
,
8958 add_when_allocated
= NULL_TREE
;
8960 if (gfc_deferred_strlen (c
, &tmp
))
8964 tmp
= fold_build3_loc (input_location
, COMPONENT_REF
,
8966 decl
, len
, NULL_TREE
);
8967 len
= fold_build3_loc (input_location
, COMPONENT_REF
,
8969 dest
, len
, NULL_TREE
);
8970 tmp
= fold_build2_loc (input_location
, MODIFY_EXPR
,
8971 TREE_TYPE (len
), len
, tmp
);
8972 gfc_add_expr_to_block (&fnblock
, tmp
);
8973 size
= size_of_string_in_bytes (c
->ts
.kind
, len
);
8974 /* This component can not have allocatable components,
8975 therefore add_when_allocated of duplicate_allocatable ()
8977 tmp
= duplicate_allocatable (dcmp
, comp
, ctype
, rank
,
8978 false, false, size
, NULL_TREE
);
8979 gfc_add_expr_to_block (&fnblock
, tmp
);
8981 else if (c
->attr
.pdt_array
)
8983 tmp
= duplicate_allocatable (dcmp
, comp
, ctype
,
8984 c
->as
? c
->as
->rank
: 0,
8985 false, false, NULL_TREE
, NULL_TREE
);
8986 gfc_add_expr_to_block (&fnblock
, tmp
);
8988 else if ((c
->attr
.allocatable
)
8989 && !c
->attr
.proc_pointer
&& !same_type
8990 && (!(cmp_has_alloc_comps
&& c
->as
) || c
->attr
.codimension
8991 || caf_in_coarray (caf_mode
)))
8993 rank
= c
->as
? c
->as
->rank
: 0;
8994 if (c
->attr
.codimension
)
8995 tmp
= gfc_copy_allocatable_data (dcmp
, comp
, ctype
, rank
);
8996 else if (flag_coarray
== GFC_FCOARRAY_LIB
8997 && caf_in_coarray (caf_mode
))
8999 tree dst_tok
= c
->as
? gfc_conv_descriptor_token (dcmp
)
9000 : fold_build3_loc (input_location
,
9002 pvoid_type_node
, dest
,
9005 tmp
= duplicate_allocatable_coarray (dcmp
, dst_tok
, comp
,
9009 tmp
= gfc_duplicate_allocatable (dcmp
, comp
, ctype
, rank
,
9010 add_when_allocated
);
9011 gfc_add_expr_to_block (&fnblock
, tmp
);
9014 if (cmp_has_alloc_comps
|| is_pdt_type
)
9015 gfc_add_expr_to_block (&fnblock
, add_when_allocated
);
9019 case ALLOCATE_PDT_COMP
:
9021 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
9022 decl
, cdecl, NULL_TREE
);
9024 /* Set the PDT KIND and LEN fields. */
9025 if (c
->attr
.pdt_kind
|| c
->attr
.pdt_len
)
9028 gfc_expr
*c_expr
= NULL
;
9029 gfc_actual_arglist
*param
= pdt_param_list
;
9030 gfc_init_se (&tse
, NULL
);
9031 for (; param
; param
= param
->next
)
9032 if (param
->name
&& !strcmp (c
->name
, param
->name
))
9033 c_expr
= param
->expr
;
9036 c_expr
= c
->initializer
;
9040 gfc_conv_expr_type (&tse
, c_expr
, TREE_TYPE (comp
));
9041 gfc_add_modify (&fnblock
, comp
, tse
.expr
);
9045 if (c
->attr
.pdt_string
)
9048 gfc_init_se (&tse
, NULL
);
9049 tree strlen
= NULL_TREE
;
9050 gfc_expr
*e
= gfc_copy_expr (c
->ts
.u
.cl
->length
);
9051 /* Convert the parameterized string length to its value. The
9052 string length is stored in a hidden field in the same way as
9053 deferred string lengths. */
9054 gfc_insert_parameter_exprs (e
, pdt_param_list
);
9055 if (gfc_deferred_strlen (c
, &strlen
) && strlen
!= NULL_TREE
)
9057 gfc_conv_expr_type (&tse
, e
,
9058 TREE_TYPE (strlen
));
9059 strlen
= fold_build3_loc (input_location
, COMPONENT_REF
,
9061 decl
, strlen
, NULL_TREE
);
9062 gfc_add_modify (&fnblock
, strlen
, tse
.expr
);
9063 c
->ts
.u
.cl
->backend_decl
= strlen
;
9067 /* Scalar parameterized strings can be allocated now. */
9070 tmp
= fold_convert (gfc_array_index_type
, strlen
);
9071 tmp
= size_of_string_in_bytes (c
->ts
.kind
, tmp
);
9072 tmp
= gfc_evaluate_now (tmp
, &fnblock
);
9073 tmp
= gfc_call_malloc (&fnblock
, TREE_TYPE (comp
), tmp
);
9074 gfc_add_modify (&fnblock
, comp
, tmp
);
9078 /* Allocate parameterized arrays of parameterized derived types. */
9079 if (!(c
->attr
.pdt_array
&& c
->as
&& c
->as
->type
== AS_EXPLICIT
)
9080 && !((c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
9081 && (c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.pdt_type
)))
9084 if (c
->ts
.type
== BT_CLASS
)
9085 comp
= gfc_class_data_get (comp
);
9087 if (c
->attr
.pdt_array
)
9091 tree size
= gfc_index_one_node
;
9092 tree offset
= gfc_index_zero_node
;
9096 /* This chunk takes the expressions for 'lower' and 'upper'
9097 in the arrayspec and substitutes in the expressions for
9098 the parameters from 'pdt_param_list'. The descriptor
9099 fields can then be filled from the values so obtained. */
9100 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp
)));
9101 for (i
= 0; i
< c
->as
->rank
; i
++)
9103 gfc_init_se (&tse
, NULL
);
9104 e
= gfc_copy_expr (c
->as
->lower
[i
]);
9105 gfc_insert_parameter_exprs (e
, pdt_param_list
);
9106 gfc_conv_expr_type (&tse
, e
, gfc_array_index_type
);
9109 gfc_conv_descriptor_lbound_set (&fnblock
, comp
,
9112 e
= gfc_copy_expr (c
->as
->upper
[i
]);
9113 gfc_insert_parameter_exprs (e
, pdt_param_list
);
9114 gfc_conv_expr_type (&tse
, e
, gfc_array_index_type
);
9117 gfc_conv_descriptor_ubound_set (&fnblock
, comp
,
9120 gfc_conv_descriptor_stride_set (&fnblock
, comp
,
9123 size
= gfc_evaluate_now (size
, &fnblock
);
9124 offset
= fold_build2_loc (input_location
,
9126 gfc_array_index_type
,
9128 offset
= gfc_evaluate_now (offset
, &fnblock
);
9129 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9130 gfc_array_index_type
,
9132 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
9133 gfc_array_index_type
,
9134 tmp
, gfc_index_one_node
);
9135 size
= fold_build2_loc (input_location
, MULT_EXPR
,
9136 gfc_array_index_type
, size
, tmp
);
9138 gfc_conv_descriptor_offset_set (&fnblock
, comp
, offset
);
9139 if (c
->ts
.type
== BT_CLASS
)
9141 tmp
= gfc_get_vptr_from_expr (comp
);
9142 if (POINTER_TYPE_P (TREE_TYPE (tmp
)))
9143 tmp
= build_fold_indirect_ref_loc (input_location
, tmp
);
9144 tmp
= gfc_vptr_size_get (tmp
);
9147 tmp
= TYPE_SIZE_UNIT (gfc_get_element_type (ctype
));
9148 tmp
= fold_convert (gfc_array_index_type
, tmp
);
9149 size
= fold_build2_loc (input_location
, MULT_EXPR
,
9150 gfc_array_index_type
, size
, tmp
);
9151 size
= gfc_evaluate_now (size
, &fnblock
);
9152 tmp
= gfc_call_malloc (&fnblock
, NULL
, size
);
9153 gfc_conv_descriptor_data_set (&fnblock
, comp
, tmp
);
9154 tmp
= gfc_conv_descriptor_dtype (comp
);
9155 gfc_add_modify (&fnblock
, tmp
, gfc_get_dtype (ctype
));
9157 if (c
->initializer
&& c
->initializer
->rank
)
9159 gfc_init_se (&tse
, NULL
);
9160 e
= gfc_copy_expr (c
->initializer
);
9161 gfc_insert_parameter_exprs (e
, pdt_param_list
);
9162 gfc_conv_expr_descriptor (&tse
, e
);
9163 gfc_add_block_to_block (&fnblock
, &tse
.pre
);
9165 tmp
= builtin_decl_explicit (BUILT_IN_MEMCPY
);
9166 tmp
= build_call_expr_loc (input_location
, tmp
, 3,
9167 gfc_conv_descriptor_data_get (comp
),
9168 gfc_conv_descriptor_data_get (tse
.expr
),
9169 fold_convert (size_type_node
, size
));
9170 gfc_add_expr_to_block (&fnblock
, tmp
);
9171 gfc_add_block_to_block (&fnblock
, &tse
.post
);
9175 /* Recurse in to PDT components. */
9176 if ((c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
9177 && c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.pdt_type
9178 && !(c
->attr
.pointer
|| c
->attr
.allocatable
))
9180 bool is_deferred
= false;
9181 gfc_actual_arglist
*tail
= c
->param_list
;
9183 for (; tail
; tail
= tail
->next
)
9187 tail
= is_deferred
? pdt_param_list
: c
->param_list
;
9188 tmp
= gfc_allocate_pdt_comp (c
->ts
.u
.derived
, comp
,
9189 c
->as
? c
->as
->rank
: 0,
9191 gfc_add_expr_to_block (&fnblock
, tmp
);
9196 case DEALLOCATE_PDT_COMP
:
9197 /* Deallocate array or parameterized string length components
9198 of parameterized derived types. */
9199 if (!(c
->attr
.pdt_array
&& c
->as
&& c
->as
->type
== AS_EXPLICIT
)
9200 && !c
->attr
.pdt_string
9201 && !((c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
9202 && (c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.pdt_type
)))
9205 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
9206 decl
, cdecl, NULL_TREE
);
9207 if (c
->ts
.type
== BT_CLASS
)
9208 comp
= gfc_class_data_get (comp
);
9210 /* Recurse in to PDT components. */
9211 if ((c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
9212 && c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.pdt_type
9213 && (!c
->attr
.pointer
&& !c
->attr
.allocatable
))
9215 tmp
= gfc_deallocate_pdt_comp (c
->ts
.u
.derived
, comp
,
9216 c
->as
? c
->as
->rank
: 0);
9217 gfc_add_expr_to_block (&fnblock
, tmp
);
9220 if (c
->attr
.pdt_array
)
9222 tmp
= gfc_conv_descriptor_data_get (comp
);
9223 null_cond
= fold_build2_loc (input_location
, NE_EXPR
,
9224 logical_type_node
, tmp
,
9225 build_int_cst (TREE_TYPE (tmp
), 0));
9226 tmp
= gfc_call_free (tmp
);
9227 tmp
= build3_v (COND_EXPR
, null_cond
, tmp
,
9228 build_empty_stmt (input_location
));
9229 gfc_add_expr_to_block (&fnblock
, tmp
);
9230 gfc_conv_descriptor_data_set (&fnblock
, comp
, null_pointer_node
);
9232 else if (c
->attr
.pdt_string
)
9234 null_cond
= fold_build2_loc (input_location
, NE_EXPR
,
9235 logical_type_node
, comp
,
9236 build_int_cst (TREE_TYPE (comp
), 0));
9237 tmp
= gfc_call_free (comp
);
9238 tmp
= build3_v (COND_EXPR
, null_cond
, tmp
,
9239 build_empty_stmt (input_location
));
9240 gfc_add_expr_to_block (&fnblock
, tmp
);
9241 tmp
= fold_convert (TREE_TYPE (comp
), null_pointer_node
);
9242 gfc_add_modify (&fnblock
, comp
, tmp
);
9247 case CHECK_PDT_DUMMY
:
9249 comp
= fold_build3_loc (input_location
, COMPONENT_REF
, ctype
,
9250 decl
, cdecl, NULL_TREE
);
9251 if (c
->ts
.type
== BT_CLASS
)
9252 comp
= gfc_class_data_get (comp
);
9254 /* Recurse in to PDT components. */
9255 if ((c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
9256 && c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.pdt_type
)
9258 tmp
= gfc_check_pdt_dummy (c
->ts
.u
.derived
, comp
,
9259 c
->as
? c
->as
->rank
: 0,
9261 gfc_add_expr_to_block (&fnblock
, tmp
);
9264 if (!c
->attr
.pdt_len
)
9269 gfc_expr
*c_expr
= NULL
;
9270 gfc_actual_arglist
*param
= pdt_param_list
;
9272 gfc_init_se (&tse
, NULL
);
9273 for (; param
; param
= param
->next
)
9274 if (!strcmp (c
->name
, param
->name
)
9275 && param
->spec_type
== SPEC_EXPLICIT
)
9276 c_expr
= param
->expr
;
9280 tree error
, cond
, cname
;
9281 gfc_conv_expr_type (&tse
, c_expr
, TREE_TYPE (comp
));
9282 cond
= fold_build2_loc (input_location
, NE_EXPR
,
9285 cname
= gfc_build_cstring_const (c
->name
);
9286 cname
= gfc_build_addr_expr (pchar_type_node
, cname
);
9287 error
= gfc_trans_runtime_error (true, NULL
,
9288 "The value of the PDT LEN "
9289 "parameter '%s' does not "
9290 "agree with that in the "
9291 "dummy declaration",
9293 tmp
= fold_build3_loc (input_location
, COND_EXPR
,
9294 void_type_node
, cond
, error
,
9295 build_empty_stmt (input_location
));
9296 gfc_add_expr_to_block (&fnblock
, tmp
);
9307 return gfc_finish_block (&fnblock
);
9310 /* Recursively traverse an object of derived type, generating code to
9311 nullify allocatable components. */
9314 gfc_nullify_alloc_comp (gfc_symbol
* der_type
, tree decl
, int rank
,
9317 return structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9319 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
| caf_mode
);
9323 /* Recursively traverse an object of derived type, generating code to
9324 deallocate allocatable components. */
9327 gfc_deallocate_alloc_comp (gfc_symbol
* der_type
, tree decl
, int rank
,
9330 return structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9331 DEALLOCATE_ALLOC_COMP
,
9332 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
| caf_mode
);
9336 /* Recursively traverse an object of derived type, generating code to
9337 deallocate allocatable components. But do not deallocate coarrays.
9338 To be used for intrinsic assignment, which may not change the allocation
9339 status of coarrays. */
9342 gfc_deallocate_alloc_comp_no_caf (gfc_symbol
* der_type
, tree decl
, int rank
)
9344 return structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9345 DEALLOCATE_ALLOC_COMP
, 0);
9350 gfc_reassign_alloc_comp_caf (gfc_symbol
*der_type
, tree decl
, tree dest
)
9352 return structure_alloc_comps (der_type
, decl
, dest
, 0, REASSIGN_CAF_COMP
,
9353 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
);
9357 /* Recursively traverse an object of derived type, generating code to
9358 copy it and its allocatable components. */
9361 gfc_copy_alloc_comp (gfc_symbol
* der_type
, tree decl
, tree dest
, int rank
,
9364 return structure_alloc_comps (der_type
, decl
, dest
, rank
, COPY_ALLOC_COMP
,
9369 /* Recursively traverse an object of derived type, generating code to
9370 copy only its allocatable components. */
9373 gfc_copy_only_alloc_comp (gfc_symbol
* der_type
, tree decl
, tree dest
, int rank
)
9375 return structure_alloc_comps (der_type
, decl
, dest
, rank
,
9376 COPY_ONLY_ALLOC_COMP
, 0);
9380 /* Recursively traverse an object of paramterized derived type, generating
9381 code to allocate parameterized components. */
9384 gfc_allocate_pdt_comp (gfc_symbol
* der_type
, tree decl
, int rank
,
9385 gfc_actual_arglist
*param_list
)
9388 gfc_actual_arglist
*old_param_list
= pdt_param_list
;
9389 pdt_param_list
= param_list
;
9390 res
= structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9391 ALLOCATE_PDT_COMP
, 0);
9392 pdt_param_list
= old_param_list
;
9396 /* Recursively traverse an object of paramterized derived type, generating
9397 code to deallocate parameterized components. */
9400 gfc_deallocate_pdt_comp (gfc_symbol
* der_type
, tree decl
, int rank
)
9402 return structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9403 DEALLOCATE_PDT_COMP
, 0);
9407 /* Recursively traverse a dummy of paramterized derived type to check the
9408 values of LEN parameters. */
9411 gfc_check_pdt_dummy (gfc_symbol
* der_type
, tree decl
, int rank
,
9412 gfc_actual_arglist
*param_list
)
9415 gfc_actual_arglist
*old_param_list
= pdt_param_list
;
9416 pdt_param_list
= param_list
;
9417 res
= structure_alloc_comps (der_type
, decl
, NULL_TREE
, rank
,
9418 CHECK_PDT_DUMMY
, 0);
9419 pdt_param_list
= old_param_list
;
9424 /* Returns the value of LBOUND for an expression. This could be broken out
9425 from gfc_conv_intrinsic_bound but this seemed to be simpler. This is
9426 called by gfc_alloc_allocatable_for_assignment. */
9428 get_std_lbound (gfc_expr
*expr
, tree desc
, int dim
, bool assumed_size
)
9433 tree cond
, cond1
, cond3
, cond4
;
9437 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
)))
9439 tmp
= gfc_rank_cst
[dim
];
9440 lbound
= gfc_conv_descriptor_lbound_get (desc
, tmp
);
9441 ubound
= gfc_conv_descriptor_ubound_get (desc
, tmp
);
9442 stride
= gfc_conv_descriptor_stride_get (desc
, tmp
);
9443 cond1
= fold_build2_loc (input_location
, GE_EXPR
, logical_type_node
,
9445 cond3
= fold_build2_loc (input_location
, GE_EXPR
, logical_type_node
,
9446 stride
, gfc_index_zero_node
);
9447 cond3
= fold_build2_loc (input_location
, TRUTH_AND_EXPR
,
9448 logical_type_node
, cond3
, cond1
);
9449 cond4
= fold_build2_loc (input_location
, LT_EXPR
, logical_type_node
,
9450 stride
, gfc_index_zero_node
);
9452 cond
= fold_build2_loc (input_location
, EQ_EXPR
, logical_type_node
,
9453 tmp
, build_int_cst (gfc_array_index_type
,
9456 cond
= logical_false_node
;
9458 cond1
= fold_build2_loc (input_location
, TRUTH_OR_EXPR
,
9459 logical_type_node
, cond3
, cond4
);
9460 cond
= fold_build2_loc (input_location
, TRUTH_OR_EXPR
,
9461 logical_type_node
, cond
, cond1
);
9463 return fold_build3_loc (input_location
, COND_EXPR
,
9464 gfc_array_index_type
, cond
,
9465 lbound
, gfc_index_one_node
);
9468 if (expr
->expr_type
== EXPR_FUNCTION
)
9470 /* A conversion function, so use the argument. */
9471 gcc_assert (expr
->value
.function
.isym
9472 && expr
->value
.function
.isym
->conversion
);
9473 expr
= expr
->value
.function
.actual
->expr
;
9476 if (expr
->expr_type
== EXPR_VARIABLE
)
9478 tmp
= TREE_TYPE (expr
->symtree
->n
.sym
->backend_decl
);
9479 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
9481 if (ref
->type
== REF_COMPONENT
9482 && ref
->u
.c
.component
->as
9484 && ref
->next
->u
.ar
.type
== AR_FULL
)
9485 tmp
= TREE_TYPE (ref
->u
.c
.component
->backend_decl
);
9487 return GFC_TYPE_ARRAY_LBOUND(tmp
, dim
);
9490 return gfc_index_one_node
;
9494 /* Returns true if an expression represents an lhs that can be reallocated
9498 gfc_is_reallocatable_lhs (gfc_expr
*expr
)
9506 sym
= expr
->symtree
->n
.sym
;
9508 /* An allocatable class variable with no reference. */
9509 if (sym
->ts
.type
== BT_CLASS
9510 && CLASS_DATA (sym
)->attr
.allocatable
9511 && expr
->ref
&& expr
->ref
->type
== REF_COMPONENT
9512 && strcmp (expr
->ref
->u
.c
.component
->name
, "_data") == 0
9513 && expr
->ref
->next
== NULL
)
9516 /* An allocatable variable. */
9517 if (sym
->attr
.allocatable
9519 && expr
->ref
->type
== REF_ARRAY
9520 && expr
->ref
->u
.ar
.type
== AR_FULL
)
9523 /* All that can be left are allocatable components. */
9524 if ((sym
->ts
.type
!= BT_DERIVED
9525 && sym
->ts
.type
!= BT_CLASS
)
9526 || !sym
->ts
.u
.derived
->attr
.alloc_comp
)
9529 /* Find a component ref followed by an array reference. */
9530 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
9532 && ref
->type
== REF_COMPONENT
9533 && ref
->next
->type
== REF_ARRAY
9534 && !ref
->next
->next
)
9540 /* Return true if valid reallocatable lhs. */
9541 if (ref
->u
.c
.component
->attr
.allocatable
9542 && ref
->next
->u
.ar
.type
== AR_FULL
)
9550 concat_str_length (gfc_expr
* expr
)
9557 type
= gfc_typenode_for_spec (&expr
->value
.op
.op1
->ts
);
9558 len1
= TYPE_MAX_VALUE (TYPE_DOMAIN (type
));
9559 if (len1
== NULL_TREE
)
9561 if (expr
->value
.op
.op1
->expr_type
== EXPR_OP
)
9562 len1
= concat_str_length (expr
->value
.op
.op1
);
9563 else if (expr
->value
.op
.op1
->expr_type
== EXPR_CONSTANT
)
9564 len1
= build_int_cst (gfc_charlen_type_node
,
9565 expr
->value
.op
.op1
->value
.character
.length
);
9566 else if (expr
->value
.op
.op1
->ts
.u
.cl
->length
)
9568 gfc_init_se (&se
, NULL
);
9569 gfc_conv_expr (&se
, expr
->value
.op
.op1
->ts
.u
.cl
->length
);
9575 gfc_init_se (&se
, NULL
);
9576 se
.want_pointer
= 1;
9577 se
.descriptor_only
= 1;
9578 gfc_conv_expr (&se
, expr
->value
.op
.op1
);
9579 len1
= se
.string_length
;
9583 type
= gfc_typenode_for_spec (&expr
->value
.op
.op2
->ts
);
9584 len2
= TYPE_MAX_VALUE (TYPE_DOMAIN (type
));
9585 if (len2
== NULL_TREE
)
9587 if (expr
->value
.op
.op2
->expr_type
== EXPR_OP
)
9588 len2
= concat_str_length (expr
->value
.op
.op2
);
9589 else if (expr
->value
.op
.op2
->expr_type
== EXPR_CONSTANT
)
9590 len2
= build_int_cst (gfc_charlen_type_node
,
9591 expr
->value
.op
.op2
->value
.character
.length
);
9592 else if (expr
->value
.op
.op2
->ts
.u
.cl
->length
)
9594 gfc_init_se (&se
, NULL
);
9595 gfc_conv_expr (&se
, expr
->value
.op
.op2
->ts
.u
.cl
->length
);
9601 gfc_init_se (&se
, NULL
);
9602 se
.want_pointer
= 1;
9603 se
.descriptor_only
= 1;
9604 gfc_conv_expr (&se
, expr
->value
.op
.op2
);
9605 len2
= se
.string_length
;
9609 gcc_assert(len1
&& len2
);
9610 len1
= fold_convert (gfc_charlen_type_node
, len1
);
9611 len2
= fold_convert (gfc_charlen_type_node
, len2
);
9613 return fold_build2_loc (input_location
, PLUS_EXPR
,
9614 gfc_charlen_type_node
, len1
, len2
);
9618 /* Allocate the lhs of an assignment to an allocatable array, otherwise
9622 gfc_alloc_allocatable_for_assignment (gfc_loopinfo
*loop
,
9626 stmtblock_t realloc_block
;
9627 stmtblock_t alloc_block
;
9631 gfc_array_info
*linfo
;
9653 gfc_array_spec
* as
;
9654 bool coarray
= (flag_coarray
== GFC_FCOARRAY_LIB
9655 && gfc_caf_attr (expr1
, true).codimension
);
9659 /* x = f(...) with x allocatable. In this case, expr1 is the rhs.
9660 Find the lhs expression in the loop chain and set expr1 and
9661 expr2 accordingly. */
9662 if (expr1
->expr_type
== EXPR_FUNCTION
&& expr2
== NULL
)
9665 /* Find the ss for the lhs. */
9667 for (; lss
&& lss
!= gfc_ss_terminator
; lss
= lss
->loop_chain
)
9668 if (lss
->info
->expr
&& lss
->info
->expr
->expr_type
== EXPR_VARIABLE
)
9670 if (lss
== gfc_ss_terminator
)
9672 expr1
= lss
->info
->expr
;
9675 /* Bail out if this is not a valid allocate on assignment. */
9676 if (!gfc_is_reallocatable_lhs (expr1
)
9677 || (expr2
&& !expr2
->rank
))
9680 /* Find the ss for the lhs. */
9682 for (; lss
&& lss
!= gfc_ss_terminator
; lss
= lss
->loop_chain
)
9683 if (lss
->info
->expr
== expr1
)
9686 if (lss
== gfc_ss_terminator
)
9689 linfo
= &lss
->info
->data
.array
;
9691 /* Find an ss for the rhs. For operator expressions, we see the
9692 ss's for the operands. Any one of these will do. */
9694 for (; rss
&& rss
!= gfc_ss_terminator
; rss
= rss
->loop_chain
)
9695 if (rss
->info
->expr
!= expr1
&& rss
!= loop
->temp_ss
)
9698 if (expr2
&& rss
== gfc_ss_terminator
)
9701 /* Ensure that the string length from the current scope is used. */
9702 if (expr2
->ts
.type
== BT_CHARACTER
9703 && expr2
->expr_type
== EXPR_FUNCTION
9704 && !expr2
->value
.function
.isym
)
9705 expr2
->ts
.u
.cl
->backend_decl
= rss
->info
->string_length
;
9707 gfc_start_block (&fblock
);
9709 /* Since the lhs is allocatable, this must be a descriptor type.
9710 Get the data and array size. */
9711 desc
= linfo
->descriptor
;
9712 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
)));
9713 array1
= gfc_conv_descriptor_data_get (desc
);
9715 /* 7.4.1.3 "If variable is an allocated allocatable variable, it is
9716 deallocated if expr is an array of different shape or any of the
9717 corresponding length type parameter values of variable and expr
9718 differ." This assures F95 compatibility. */
9719 jump_label1
= gfc_build_label_decl (NULL_TREE
);
9720 jump_label2
= gfc_build_label_decl (NULL_TREE
);
9722 /* Allocate if data is NULL. */
9723 cond_null
= fold_build2_loc (input_location
, EQ_EXPR
, logical_type_node
,
9724 array1
, build_int_cst (TREE_TYPE (array1
), 0));
9726 if (expr1
->ts
.deferred
)
9727 cond_null
= gfc_evaluate_now (logical_true_node
, &fblock
);
9729 cond_null
= gfc_evaluate_now (cond_null
, &fblock
);
9731 tmp
= build3_v (COND_EXPR
, cond_null
,
9732 build1_v (GOTO_EXPR
, jump_label1
),
9733 build_empty_stmt (input_location
));
9734 gfc_add_expr_to_block (&fblock
, tmp
);
9736 /* Get arrayspec if expr is a full array. */
9737 if (expr2
&& expr2
->expr_type
== EXPR_FUNCTION
9738 && expr2
->value
.function
.isym
9739 && expr2
->value
.function
.isym
->conversion
)
9741 /* For conversion functions, take the arg. */
9742 gfc_expr
*arg
= expr2
->value
.function
.actual
->expr
;
9743 as
= gfc_get_full_arrayspec_from_expr (arg
);
9746 as
= gfc_get_full_arrayspec_from_expr (expr2
);
9750 /* If the lhs shape is not the same as the rhs jump to setting the
9751 bounds and doing the reallocation....... */
9752 for (n
= 0; n
< expr1
->rank
; n
++)
9754 /* Check the shape. */
9755 lbound
= gfc_conv_descriptor_lbound_get (desc
, gfc_rank_cst
[n
]);
9756 ubound
= gfc_conv_descriptor_ubound_get (desc
, gfc_rank_cst
[n
]);
9757 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9758 gfc_array_index_type
,
9759 loop
->to
[n
], loop
->from
[n
]);
9760 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
9761 gfc_array_index_type
,
9763 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9764 gfc_array_index_type
,
9766 cond
= fold_build2_loc (input_location
, NE_EXPR
,
9768 tmp
, gfc_index_zero_node
);
9769 tmp
= build3_v (COND_EXPR
, cond
,
9770 build1_v (GOTO_EXPR
, jump_label1
),
9771 build_empty_stmt (input_location
));
9772 gfc_add_expr_to_block (&fblock
, tmp
);
9775 /* ....else jump past the (re)alloc code. */
9776 tmp
= build1_v (GOTO_EXPR
, jump_label2
);
9777 gfc_add_expr_to_block (&fblock
, tmp
);
9779 /* Add the label to start automatic (re)allocation. */
9780 tmp
= build1_v (LABEL_EXPR
, jump_label1
);
9781 gfc_add_expr_to_block (&fblock
, tmp
);
9783 /* If the lhs has not been allocated, its bounds will not have been
9784 initialized and so its size is set to zero. */
9785 size1
= gfc_create_var (gfc_array_index_type
, NULL
);
9786 gfc_init_block (&alloc_block
);
9787 gfc_add_modify (&alloc_block
, size1
, gfc_index_zero_node
);
9788 gfc_init_block (&realloc_block
);
9789 gfc_add_modify (&realloc_block
, size1
,
9790 gfc_conv_descriptor_size (desc
, expr1
->rank
));
9791 tmp
= build3_v (COND_EXPR
, cond_null
,
9792 gfc_finish_block (&alloc_block
),
9793 gfc_finish_block (&realloc_block
));
9794 gfc_add_expr_to_block (&fblock
, tmp
);
9796 /* Get the rhs size and fix it. */
9798 desc2
= rss
->info
->data
.array
.descriptor
;
9802 size2
= gfc_index_one_node
;
9803 for (n
= 0; n
< expr2
->rank
; n
++)
9805 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9806 gfc_array_index_type
,
9807 loop
->to
[n
], loop
->from
[n
]);
9808 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
9809 gfc_array_index_type
,
9810 tmp
, gfc_index_one_node
);
9811 size2
= fold_build2_loc (input_location
, MULT_EXPR
,
9812 gfc_array_index_type
,
9815 size2
= gfc_evaluate_now (size2
, &fblock
);
9817 cond
= fold_build2_loc (input_location
, NE_EXPR
, logical_type_node
,
9820 /* If the lhs is deferred length, assume that the element size
9821 changes and force a reallocation. */
9822 if (expr1
->ts
.deferred
)
9823 neq_size
= gfc_evaluate_now (logical_true_node
, &fblock
);
9825 neq_size
= gfc_evaluate_now (cond
, &fblock
);
9827 /* Deallocation of allocatable components will have to occur on
9828 reallocation. Fix the old descriptor now. */
9829 if ((expr1
->ts
.type
== BT_DERIVED
)
9830 && expr1
->ts
.u
.derived
->attr
.alloc_comp
)
9831 old_desc
= gfc_evaluate_now (desc
, &fblock
);
9833 old_desc
= NULL_TREE
;
9835 /* Now modify the lhs descriptor and the associated scalarizer
9836 variables. F2003 7.4.1.3: "If variable is or becomes an
9837 unallocated allocatable variable, then it is allocated with each
9838 deferred type parameter equal to the corresponding type parameters
9839 of expr , with the shape of expr , and with each lower bound equal
9840 to the corresponding element of LBOUND(expr)."
9841 Reuse size1 to keep a dimension-by-dimension track of the
9842 stride of the new array. */
9843 size1
= gfc_index_one_node
;
9844 offset
= gfc_index_zero_node
;
9846 for (n
= 0; n
< expr2
->rank
; n
++)
9848 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9849 gfc_array_index_type
,
9850 loop
->to
[n
], loop
->from
[n
]);
9851 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
9852 gfc_array_index_type
,
9853 tmp
, gfc_index_one_node
);
9855 lbound
= gfc_index_one_node
;
9860 lbd
= get_std_lbound (expr2
, desc2
, n
,
9861 as
->type
== AS_ASSUMED_SIZE
);
9862 ubound
= fold_build2_loc (input_location
,
9864 gfc_array_index_type
,
9866 ubound
= fold_build2_loc (input_location
,
9868 gfc_array_index_type
,
9873 gfc_conv_descriptor_lbound_set (&fblock
, desc
,
9876 gfc_conv_descriptor_ubound_set (&fblock
, desc
,
9879 gfc_conv_descriptor_stride_set (&fblock
, desc
,
9882 lbound
= gfc_conv_descriptor_lbound_get (desc
,
9884 tmp2
= fold_build2_loc (input_location
, MULT_EXPR
,
9885 gfc_array_index_type
,
9887 offset
= fold_build2_loc (input_location
, MINUS_EXPR
,
9888 gfc_array_index_type
,
9890 size1
= fold_build2_loc (input_location
, MULT_EXPR
,
9891 gfc_array_index_type
,
9895 /* Set the lhs descriptor and scalarizer offsets. For rank > 1,
9896 the array offset is saved and the info.offset is used for a
9897 running offset. Use the saved_offset instead. */
9898 tmp
= gfc_conv_descriptor_offset (desc
);
9899 gfc_add_modify (&fblock
, tmp
, offset
);
9900 if (linfo
->saved_offset
9901 && VAR_P (linfo
->saved_offset
))
9902 gfc_add_modify (&fblock
, linfo
->saved_offset
, tmp
);
9904 /* Now set the deltas for the lhs. */
9905 for (n
= 0; n
< expr1
->rank
; n
++)
9907 tmp
= gfc_conv_descriptor_lbound_get (desc
, gfc_rank_cst
[n
]);
9909 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
9910 gfc_array_index_type
, tmp
,
9912 if (linfo
->delta
[dim
] && VAR_P (linfo
->delta
[dim
]))
9913 gfc_add_modify (&fblock
, linfo
->delta
[dim
], tmp
);
9916 /* Get the new lhs size in bytes. */
9917 if (expr1
->ts
.type
== BT_CHARACTER
&& expr1
->ts
.deferred
)
9919 if (expr2
->ts
.deferred
)
9921 if (VAR_P (expr2
->ts
.u
.cl
->backend_decl
))
9922 tmp
= expr2
->ts
.u
.cl
->backend_decl
;
9924 tmp
= rss
->info
->string_length
;
9928 tmp
= expr2
->ts
.u
.cl
->backend_decl
;
9929 if (!tmp
&& expr2
->expr_type
== EXPR_OP
9930 && expr2
->value
.op
.op
== INTRINSIC_CONCAT
)
9932 tmp
= concat_str_length (expr2
);
9933 expr2
->ts
.u
.cl
->backend_decl
= gfc_evaluate_now (tmp
, &fblock
);
9935 tmp
= fold_convert (TREE_TYPE (expr1
->ts
.u
.cl
->backend_decl
), tmp
);
9938 if (expr1
->ts
.u
.cl
->backend_decl
9939 && VAR_P (expr1
->ts
.u
.cl
->backend_decl
))
9940 gfc_add_modify (&fblock
, expr1
->ts
.u
.cl
->backend_decl
, tmp
);
9942 gfc_add_modify (&fblock
, lss
->info
->string_length
, tmp
);
9944 else if (expr1
->ts
.type
== BT_CHARACTER
&& expr1
->ts
.u
.cl
->backend_decl
)
9946 tmp
= TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1
->ts
)));
9947 tmp
= fold_build2_loc (input_location
, MULT_EXPR
,
9948 gfc_array_index_type
, tmp
,
9949 expr1
->ts
.u
.cl
->backend_decl
);
9952 tmp
= TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1
->ts
));
9953 tmp
= fold_convert (gfc_array_index_type
, tmp
);
9954 size2
= fold_build2_loc (input_location
, MULT_EXPR
,
9955 gfc_array_index_type
,
9957 size2
= fold_convert (size_type_node
, size2
);
9958 size2
= fold_build2_loc (input_location
, MAX_EXPR
, size_type_node
,
9959 size2
, size_one_node
);
9960 size2
= gfc_evaluate_now (size2
, &fblock
);
9962 /* For deferred character length, the 'size' field of the dtype might
9963 have changed so set the dtype. */
9964 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
))
9965 && expr1
->ts
.type
== BT_CHARACTER
&& expr1
->ts
.deferred
)
9968 tmp
= gfc_conv_descriptor_dtype (desc
);
9969 if (expr2
->ts
.u
.cl
->backend_decl
)
9970 type
= gfc_typenode_for_spec (&expr2
->ts
);
9972 type
= gfc_typenode_for_spec (&expr1
->ts
);
9974 gfc_add_modify (&fblock
, tmp
,
9975 gfc_get_dtype_rank_type (expr1
->rank
,type
));
9977 else if (coarray
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
)))
9979 gfc_add_modify (&fblock
, gfc_conv_descriptor_dtype (desc
),
9980 gfc_get_dtype (TREE_TYPE (desc
)));
9983 /* Realloc expression. Note that the scalarizer uses desc.data
9984 in the array reference - (*desc.data)[<element>]. */
9985 gfc_init_block (&realloc_block
);
9986 gfc_init_se (&caf_se
, NULL
);
9990 token
= gfc_get_ultimate_alloc_ptr_comps_caf_token (&caf_se
, expr1
);
9991 if (token
== NULL_TREE
)
9993 tmp
= gfc_get_tree_for_caf_expr (expr1
);
9994 if (POINTER_TYPE_P (TREE_TYPE (tmp
)))
9995 tmp
= build_fold_indirect_ref (tmp
);
9996 gfc_get_caf_token_offset (&caf_se
, &token
, NULL
, tmp
, NULL_TREE
,
9998 token
= gfc_build_addr_expr (NULL_TREE
, token
);
10001 gfc_add_block_to_block (&realloc_block
, &caf_se
.pre
);
10003 if ((expr1
->ts
.type
== BT_DERIVED
)
10004 && expr1
->ts
.u
.derived
->attr
.alloc_comp
)
10006 tmp
= gfc_deallocate_alloc_comp_no_caf (expr1
->ts
.u
.derived
, old_desc
,
10008 gfc_add_expr_to_block (&realloc_block
, tmp
);
10013 tmp
= build_call_expr_loc (input_location
,
10014 builtin_decl_explicit (BUILT_IN_REALLOC
), 2,
10015 fold_convert (pvoid_type_node
, array1
),
10017 gfc_conv_descriptor_data_set (&realloc_block
,
10022 tmp
= build_call_expr_loc (input_location
,
10023 gfor_fndecl_caf_deregister
, 5, token
,
10024 build_int_cst (integer_type_node
,
10025 GFC_CAF_COARRAY_DEALLOCATE_ONLY
),
10026 null_pointer_node
, null_pointer_node
,
10027 integer_zero_node
);
10028 gfc_add_expr_to_block (&realloc_block
, tmp
);
10029 tmp
= build_call_expr_loc (input_location
,
10030 gfor_fndecl_caf_register
,
10032 build_int_cst (integer_type_node
,
10033 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY
),
10034 token
, gfc_build_addr_expr (NULL_TREE
, desc
),
10035 null_pointer_node
, null_pointer_node
,
10036 integer_zero_node
);
10037 gfc_add_expr_to_block (&realloc_block
, tmp
);
10040 if ((expr1
->ts
.type
== BT_DERIVED
)
10041 && expr1
->ts
.u
.derived
->attr
.alloc_comp
)
10043 tmp
= gfc_nullify_alloc_comp (expr1
->ts
.u
.derived
, desc
,
10045 gfc_add_expr_to_block (&realloc_block
, tmp
);
10048 gfc_add_block_to_block (&realloc_block
, &caf_se
.post
);
10049 realloc_expr
= gfc_finish_block (&realloc_block
);
10051 /* Only reallocate if sizes are different. */
10052 tmp
= build3_v (COND_EXPR
, neq_size
, realloc_expr
,
10053 build_empty_stmt (input_location
));
10054 realloc_expr
= tmp
;
10057 /* Malloc expression. */
10058 gfc_init_block (&alloc_block
);
10061 tmp
= build_call_expr_loc (input_location
,
10062 builtin_decl_explicit (BUILT_IN_MALLOC
),
10064 gfc_conv_descriptor_data_set (&alloc_block
,
10069 tmp
= build_call_expr_loc (input_location
,
10070 gfor_fndecl_caf_register
,
10072 build_int_cst (integer_type_node
,
10073 GFC_CAF_COARRAY_ALLOC
),
10074 token
, gfc_build_addr_expr (NULL_TREE
, desc
),
10075 null_pointer_node
, null_pointer_node
,
10076 integer_zero_node
);
10077 gfc_add_expr_to_block (&alloc_block
, tmp
);
10081 /* We already set the dtype in the case of deferred character
10083 if (!(GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc
))
10084 && ((expr1
->ts
.type
== BT_CHARACTER
&& expr1
->ts
.deferred
)
10087 tmp
= gfc_conv_descriptor_dtype (desc
);
10088 gfc_add_modify (&alloc_block
, tmp
, gfc_get_dtype (TREE_TYPE (desc
)));
10091 if ((expr1
->ts
.type
== BT_DERIVED
)
10092 && expr1
->ts
.u
.derived
->attr
.alloc_comp
)
10094 tmp
= gfc_nullify_alloc_comp (expr1
->ts
.u
.derived
, desc
,
10096 gfc_add_expr_to_block (&alloc_block
, tmp
);
10098 alloc_expr
= gfc_finish_block (&alloc_block
);
10100 /* Malloc if not allocated; realloc otherwise. */
10101 tmp
= build_int_cst (TREE_TYPE (array1
), 0);
10102 cond
= fold_build2_loc (input_location
, EQ_EXPR
,
10105 tmp
= build3_v (COND_EXPR
, cond
, alloc_expr
, realloc_expr
);
10106 gfc_add_expr_to_block (&fblock
, tmp
);
10108 /* Make sure that the scalarizer data pointer is updated. */
10109 if (linfo
->data
&& VAR_P (linfo
->data
))
10111 tmp
= gfc_conv_descriptor_data_get (desc
);
10112 gfc_add_modify (&fblock
, linfo
->data
, tmp
);
10115 /* Add the exit label. */
10116 tmp
= build1_v (LABEL_EXPR
, jump_label2
);
10117 gfc_add_expr_to_block (&fblock
, tmp
);
10119 return gfc_finish_block (&fblock
);
10123 /* NULLIFY an allocatable/pointer array on function entry, free it on exit.
10124 Do likewise, recursively if necessary, with the allocatable components of
10128 gfc_trans_deferred_array (gfc_symbol
* sym
, gfc_wrapped_block
* block
)
10134 stmtblock_t cleanup
;
10137 bool sym_has_alloc_comp
, has_finalizer
;
10139 sym_has_alloc_comp
= (sym
->ts
.type
== BT_DERIVED
10140 || sym
->ts
.type
== BT_CLASS
)
10141 && sym
->ts
.u
.derived
->attr
.alloc_comp
;
10142 has_finalizer
= sym
->ts
.type
== BT_CLASS
|| sym
->ts
.type
== BT_DERIVED
10143 ? gfc_is_finalizable (sym
->ts
.u
.derived
, NULL
) : false;
10145 /* Make sure the frontend gets these right. */
10146 gcc_assert (sym
->attr
.pointer
|| sym
->attr
.allocatable
|| sym_has_alloc_comp
10149 gfc_save_backend_locus (&loc
);
10150 gfc_set_backend_locus (&sym
->declared_at
);
10151 gfc_init_block (&init
);
10153 gcc_assert (VAR_P (sym
->backend_decl
)
10154 || TREE_CODE (sym
->backend_decl
) == PARM_DECL
);
10156 if (sym
->ts
.type
== BT_CHARACTER
10157 && !INTEGER_CST_P (sym
->ts
.u
.cl
->backend_decl
))
10159 gfc_conv_string_length (sym
->ts
.u
.cl
, NULL
, &init
);
10160 gfc_trans_vla_type_sizes (sym
, &init
);
10163 /* Dummy, use associated and result variables don't need anything special. */
10164 if (sym
->attr
.dummy
|| sym
->attr
.use_assoc
|| sym
->attr
.result
)
10166 gfc_add_init_cleanup (block
, gfc_finish_block (&init
), NULL_TREE
);
10167 gfc_restore_backend_locus (&loc
);
10171 descriptor
= sym
->backend_decl
;
10173 /* Although static, derived types with default initializers and
10174 allocatable components must not be nulled wholesale; instead they
10175 are treated component by component. */
10176 if (TREE_STATIC (descriptor
) && !sym_has_alloc_comp
&& !has_finalizer
)
10178 /* SAVEd variables are not freed on exit. */
10179 gfc_trans_static_array_pointer (sym
);
10181 gfc_add_init_cleanup (block
, gfc_finish_block (&init
), NULL_TREE
);
10182 gfc_restore_backend_locus (&loc
);
10186 /* Get the descriptor type. */
10187 type
= TREE_TYPE (sym
->backend_decl
);
10189 if ((sym_has_alloc_comp
|| (has_finalizer
&& sym
->ts
.type
!= BT_CLASS
))
10190 && !(sym
->attr
.pointer
|| sym
->attr
.allocatable
))
10192 if (!sym
->attr
.save
10193 && !(TREE_STATIC (sym
->backend_decl
) && sym
->attr
.is_main_program
))
10195 if (sym
->value
== NULL
10196 || !gfc_has_default_initializer (sym
->ts
.u
.derived
))
10198 rank
= sym
->as
? sym
->as
->rank
: 0;
10199 tmp
= gfc_nullify_alloc_comp (sym
->ts
.u
.derived
,
10201 gfc_add_expr_to_block (&init
, tmp
);
10204 gfc_init_default_dt (sym
, &init
, false);
10207 else if (!GFC_DESCRIPTOR_TYPE_P (type
))
10209 /* If the backend_decl is not a descriptor, we must have a pointer
10211 descriptor
= build_fold_indirect_ref_loc (input_location
,
10212 sym
->backend_decl
);
10213 type
= TREE_TYPE (descriptor
);
10216 /* NULLIFY the data pointer, for non-saved allocatables. */
10217 if (GFC_DESCRIPTOR_TYPE_P (type
) && !sym
->attr
.save
&& sym
->attr
.allocatable
)
10219 gfc_conv_descriptor_data_set (&init
, descriptor
, null_pointer_node
);
10220 if (flag_coarray
== GFC_FCOARRAY_LIB
&& sym
->attr
.codimension
)
10222 /* Declare the variable static so its array descriptor stays present
10223 after leaving the scope. It may still be accessed through another
10224 image. This may happen, for example, with the caf_mpi
10226 TREE_STATIC (descriptor
) = 1;
10227 tmp
= gfc_conv_descriptor_token (descriptor
);
10228 gfc_add_modify (&init
, tmp
, fold_convert (TREE_TYPE (tmp
),
10229 null_pointer_node
));
10233 gfc_restore_backend_locus (&loc
);
10234 gfc_init_block (&cleanup
);
10236 /* Allocatable arrays need to be freed when they go out of scope.
10237 The allocatable components of pointers must not be touched. */
10238 if (!sym
->attr
.allocatable
&& has_finalizer
&& sym
->ts
.type
!= BT_CLASS
10239 && !sym
->attr
.pointer
&& !sym
->attr
.artificial
&& !sym
->attr
.save
10240 && !sym
->ns
->proc_name
->attr
.is_main_program
)
10243 sym
->attr
.referenced
= 1;
10244 e
= gfc_lval_expr_from_sym (sym
);
10245 gfc_add_finalizer_call (&cleanup
, e
);
10248 else if ((!sym
->attr
.allocatable
|| !has_finalizer
)
10249 && sym_has_alloc_comp
&& !(sym
->attr
.function
|| sym
->attr
.result
)
10250 && !sym
->attr
.pointer
&& !sym
->attr
.save
10251 && !sym
->ns
->proc_name
->attr
.is_main_program
)
10254 rank
= sym
->as
? sym
->as
->rank
: 0;
10255 tmp
= gfc_deallocate_alloc_comp (sym
->ts
.u
.derived
, descriptor
, rank
);
10256 gfc_add_expr_to_block (&cleanup
, tmp
);
10259 if (sym
->attr
.allocatable
&& (sym
->attr
.dimension
|| sym
->attr
.codimension
)
10260 && !sym
->attr
.save
&& !sym
->attr
.result
10261 && !sym
->ns
->proc_name
->attr
.is_main_program
)
10264 e
= has_finalizer
? gfc_lval_expr_from_sym (sym
) : NULL
;
10265 tmp
= gfc_deallocate_with_status (sym
->backend_decl
, NULL_TREE
, NULL_TREE
,
10266 NULL_TREE
, NULL_TREE
, true, e
,
10267 sym
->attr
.codimension
10268 ? GFC_CAF_COARRAY_DEREGISTER
10269 : GFC_CAF_COARRAY_NOCOARRAY
);
10272 gfc_add_expr_to_block (&cleanup
, tmp
);
10275 gfc_add_init_cleanup (block
, gfc_finish_block (&init
),
10276 gfc_finish_block (&cleanup
));
10279 /************ Expression Walking Functions ******************/
10281 /* Walk a variable reference.
10283 Possible extension - multiple component subscripts.
10284 x(:,:) = foo%a(:)%b(:)
10286 forall (i=..., j=...)
10287 x(i,j) = foo%a(j)%b(i)
10289 This adds a fair amount of complexity because you need to deal with more
10290 than one ref. Maybe handle in a similar manner to vector subscripts.
10291 Maybe not worth the effort. */
10295 gfc_walk_variable_expr (gfc_ss
* ss
, gfc_expr
* expr
)
10299 for (ref
= expr
->ref
; ref
; ref
= ref
->next
)
10300 if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
!= AR_ELEMENT
)
10303 return gfc_walk_array_ref (ss
, expr
, ref
);
10308 gfc_walk_array_ref (gfc_ss
* ss
, gfc_expr
* expr
, gfc_ref
* ref
)
10314 for (; ref
; ref
= ref
->next
)
10316 if (ref
->type
== REF_SUBSTRING
)
10318 ss
= gfc_get_scalar_ss (ss
, ref
->u
.ss
.start
);
10319 ss
= gfc_get_scalar_ss (ss
, ref
->u
.ss
.end
);
10322 /* We're only interested in array sections from now on. */
10323 if (ref
->type
!= REF_ARRAY
)
10331 for (n
= ar
->dimen
- 1; n
>= 0; n
--)
10332 ss
= gfc_get_scalar_ss (ss
, ar
->start
[n
]);
10336 newss
= gfc_get_array_ss (ss
, expr
, ar
->as
->rank
, GFC_SS_SECTION
);
10337 newss
->info
->data
.array
.ref
= ref
;
10339 /* Make sure array is the same as array(:,:), this way
10340 we don't need to special case all the time. */
10341 ar
->dimen
= ar
->as
->rank
;
10342 for (n
= 0; n
< ar
->dimen
; n
++)
10344 ar
->dimen_type
[n
] = DIMEN_RANGE
;
10346 gcc_assert (ar
->start
[n
] == NULL
);
10347 gcc_assert (ar
->end
[n
] == NULL
);
10348 gcc_assert (ar
->stride
[n
] == NULL
);
10354 newss
= gfc_get_array_ss (ss
, expr
, 0, GFC_SS_SECTION
);
10355 newss
->info
->data
.array
.ref
= ref
;
10357 /* We add SS chains for all the subscripts in the section. */
10358 for (n
= 0; n
< ar
->dimen
; n
++)
10362 switch (ar
->dimen_type
[n
])
10364 case DIMEN_ELEMENT
:
10365 /* Add SS for elemental (scalar) subscripts. */
10366 gcc_assert (ar
->start
[n
]);
10367 indexss
= gfc_get_scalar_ss (gfc_ss_terminator
, ar
->start
[n
]);
10368 indexss
->loop_chain
= gfc_ss_terminator
;
10369 newss
->info
->data
.array
.subscript
[n
] = indexss
;
10373 /* We don't add anything for sections, just remember this
10374 dimension for later. */
10375 newss
->dim
[newss
->dimen
] = n
;
10380 /* Create a GFC_SS_VECTOR index in which we can store
10381 the vector's descriptor. */
10382 indexss
= gfc_get_array_ss (gfc_ss_terminator
, ar
->start
[n
],
10384 indexss
->loop_chain
= gfc_ss_terminator
;
10385 newss
->info
->data
.array
.subscript
[n
] = indexss
;
10386 newss
->dim
[newss
->dimen
] = n
;
10391 /* We should know what sort of section it is by now. */
10392 gcc_unreachable ();
10395 /* We should have at least one non-elemental dimension,
10396 unless we are creating a descriptor for a (scalar) coarray. */
10397 gcc_assert (newss
->dimen
> 0
10398 || newss
->info
->data
.array
.ref
->u
.ar
.as
->corank
> 0);
10403 /* We should know what sort of section it is by now. */
10404 gcc_unreachable ();
10412 /* Walk an expression operator. If only one operand of a binary expression is
10413 scalar, we must also add the scalar term to the SS chain. */
10416 gfc_walk_op_expr (gfc_ss
* ss
, gfc_expr
* expr
)
10421 head
= gfc_walk_subexpr (ss
, expr
->value
.op
.op1
);
10422 if (expr
->value
.op
.op2
== NULL
)
10425 head2
= gfc_walk_subexpr (head
, expr
->value
.op
.op2
);
10427 /* All operands are scalar. Pass back and let the caller deal with it. */
10431 /* All operands require scalarization. */
10432 if (head
!= ss
&& (expr
->value
.op
.op2
== NULL
|| head2
!= head
))
10435 /* One of the operands needs scalarization, the other is scalar.
10436 Create a gfc_ss for the scalar expression. */
10439 /* First operand is scalar. We build the chain in reverse order, so
10440 add the scalar SS after the second operand. */
10442 while (head
&& head
->next
!= ss
)
10444 /* Check we haven't somehow broken the chain. */
10446 head
->next
= gfc_get_scalar_ss (ss
, expr
->value
.op
.op1
);
10448 else /* head2 == head */
10450 gcc_assert (head2
== head
);
10451 /* Second operand is scalar. */
10452 head2
= gfc_get_scalar_ss (head2
, expr
->value
.op
.op2
);
10459 /* Reverse a SS chain. */
10462 gfc_reverse_ss (gfc_ss
* ss
)
10467 gcc_assert (ss
!= NULL
);
10469 head
= gfc_ss_terminator
;
10470 while (ss
!= gfc_ss_terminator
)
10473 /* Check we didn't somehow break the chain. */
10474 gcc_assert (next
!= NULL
);
10484 /* Given an expression referring to a procedure, return the symbol of its
10485 interface. We can't get the procedure symbol directly as we have to handle
10486 the case of (deferred) type-bound procedures. */
10489 gfc_get_proc_ifc_for_expr (gfc_expr
*procedure_ref
)
10494 if (procedure_ref
== NULL
)
10497 /* Normal procedure case. */
10498 if (procedure_ref
->expr_type
== EXPR_FUNCTION
10499 && procedure_ref
->value
.function
.esym
)
10500 sym
= procedure_ref
->value
.function
.esym
;
10502 sym
= procedure_ref
->symtree
->n
.sym
;
10504 /* Typebound procedure case. */
10505 for (ref
= procedure_ref
->ref
; ref
; ref
= ref
->next
)
10507 if (ref
->type
== REF_COMPONENT
10508 && ref
->u
.c
.component
->attr
.proc_pointer
)
10509 sym
= ref
->u
.c
.component
->ts
.interface
;
10518 /* Walk the arguments of an elemental function.
10519 PROC_EXPR is used to check whether an argument is permitted to be absent. If
10520 it is NULL, we don't do the check and the argument is assumed to be present.
10524 gfc_walk_elemental_function_args (gfc_ss
* ss
, gfc_actual_arglist
*arg
,
10525 gfc_symbol
*proc_ifc
, gfc_ss_type type
)
10527 gfc_formal_arglist
*dummy_arg
;
10533 head
= gfc_ss_terminator
;
10537 dummy_arg
= gfc_sym_get_dummy_args (proc_ifc
);
10542 for (; arg
; arg
= arg
->next
)
10544 if (!arg
->expr
|| arg
->expr
->expr_type
== EXPR_NULL
)
10545 goto loop_continue
;
10547 newss
= gfc_walk_subexpr (head
, arg
->expr
);
10550 /* Scalar argument. */
10551 gcc_assert (type
== GFC_SS_SCALAR
|| type
== GFC_SS_REFERENCE
);
10552 newss
= gfc_get_scalar_ss (head
, arg
->expr
);
10553 newss
->info
->type
= type
;
10555 newss
->info
->data
.scalar
.dummy_arg
= dummy_arg
->sym
;
10560 if (dummy_arg
!= NULL
10561 && dummy_arg
->sym
->attr
.optional
10562 && arg
->expr
->expr_type
== EXPR_VARIABLE
10563 && (gfc_expr_attr (arg
->expr
).optional
10564 || gfc_expr_attr (arg
->expr
).allocatable
10565 || gfc_expr_attr (arg
->expr
).pointer
))
10566 newss
->info
->can_be_null_ref
= true;
10572 while (tail
->next
!= gfc_ss_terminator
)
10577 if (dummy_arg
!= NULL
)
10578 dummy_arg
= dummy_arg
->next
;
10583 /* If all the arguments are scalar we don't need the argument SS. */
10584 gfc_free_ss_chain (head
);
10585 /* Pass it back. */
10589 /* Add it onto the existing chain. */
10595 /* Walk a function call. Scalar functions are passed back, and taken out of
10596 scalarization loops. For elemental functions we walk their arguments.
10597 The result of functions returning arrays is stored in a temporary outside
10598 the loop, so that the function is only called once. Hence we do not need
10599 to walk their arguments. */
10602 gfc_walk_function_expr (gfc_ss
* ss
, gfc_expr
* expr
)
10604 gfc_intrinsic_sym
*isym
;
10606 gfc_component
*comp
= NULL
;
10608 isym
= expr
->value
.function
.isym
;
10610 /* Handle intrinsic functions separately. */
10612 return gfc_walk_intrinsic_function (ss
, expr
, isym
);
10614 sym
= expr
->value
.function
.esym
;
10616 sym
= expr
->symtree
->n
.sym
;
10618 if (gfc_is_class_array_function (expr
))
10619 return gfc_get_array_ss (ss
, expr
,
10620 CLASS_DATA (expr
->value
.function
.esym
->result
)->as
->rank
,
10623 /* A function that returns arrays. */
10624 comp
= gfc_get_proc_ptr_comp (expr
);
10625 if ((!comp
&& gfc_return_by_reference (sym
) && sym
->result
->attr
.dimension
)
10626 || (comp
&& comp
->attr
.dimension
))
10627 return gfc_get_array_ss (ss
, expr
, expr
->rank
, GFC_SS_FUNCTION
);
10629 /* Walk the parameters of an elemental function. For now we always pass
10631 if (sym
->attr
.elemental
|| (comp
&& comp
->attr
.elemental
))
10633 gfc_ss
*old_ss
= ss
;
10635 ss
= gfc_walk_elemental_function_args (old_ss
,
10636 expr
->value
.function
.actual
,
10637 gfc_get_proc_ifc_for_expr (expr
),
10641 || sym
->attr
.proc_pointer
10642 || sym
->attr
.if_source
!= IFSRC_DECL
10643 || sym
->attr
.array_outer_dependency
))
10644 ss
->info
->array_outer_dependency
= 1;
10647 /* Scalar functions are OK as these are evaluated outside the scalarization
10648 loop. Pass back and let the caller deal with it. */
10653 /* An array temporary is constructed for array constructors. */
10656 gfc_walk_array_constructor (gfc_ss
* ss
, gfc_expr
* expr
)
10658 return gfc_get_array_ss (ss
, expr
, expr
->rank
, GFC_SS_CONSTRUCTOR
);
10662 /* Walk an expression. Add walked expressions to the head of the SS chain.
10663 A wholly scalar expression will not be added. */
10666 gfc_walk_subexpr (gfc_ss
* ss
, gfc_expr
* expr
)
10670 switch (expr
->expr_type
)
10672 case EXPR_VARIABLE
:
10673 head
= gfc_walk_variable_expr (ss
, expr
);
10677 head
= gfc_walk_op_expr (ss
, expr
);
10680 case EXPR_FUNCTION
:
10681 head
= gfc_walk_function_expr (ss
, expr
);
10684 case EXPR_CONSTANT
:
10686 case EXPR_STRUCTURE
:
10687 /* Pass back and let the caller deal with it. */
10691 head
= gfc_walk_array_constructor (ss
, expr
);
10694 case EXPR_SUBSTRING
:
10695 /* Pass back and let the caller deal with it. */
10699 gfc_internal_error ("bad expression type during walk (%d)",
10706 /* Entry point for expression walking.
10707 A return value equal to the passed chain means this is
10708 a scalar expression. It is up to the caller to take whatever action is
10709 necessary to translate these. */
10712 gfc_walk_expr (gfc_expr
* expr
)
10716 res
= gfc_walk_subexpr (gfc_ss_terminator
, expr
);
10717 return gfc_reverse_ss (res
);