Make Linaro GCC4.9-2015.06.
[official-gcc.git] / gcc-4_9-branch / gcc / tree-cfg.c
blobf684a102ab236a78f1950b5a6a78bb9179586eb5
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t *edge_to_cases;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs;
101 /* CFG statistics. */
102 struct cfg_stats_d
104 long num_merged_labels;
107 static struct cfg_stats_d cfg_stats;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
112 location_t locus;
113 int discriminator;
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
165 static bool call_can_make_abnormal_goto (gimple);
167 /* Flowgraph optimization and cleanup. */
168 static void gimple_merge_blocks (basic_block, basic_block);
169 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
170 static void remove_bb (basic_block);
171 static edge find_taken_edge_computed_goto (basic_block, tree);
172 static edge find_taken_edge_cond_expr (basic_block, tree);
173 static edge find_taken_edge_switch_expr (basic_block, tree);
174 static tree find_case_label_for_value (gimple, tree);
176 void
177 init_empty_tree_cfg_for_function (struct function *fn)
179 /* Initialize the basic block array. */
180 init_flow (fn);
181 profile_status_for_fn (fn) = PROFILE_ABSENT;
182 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
183 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
184 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
185 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
186 initial_cfg_capacity);
188 /* Build a mapping of labels to their associated blocks. */
189 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
191 initial_cfg_capacity);
193 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
194 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
196 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
197 = EXIT_BLOCK_PTR_FOR_FN (fn);
198 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
199 = ENTRY_BLOCK_PTR_FOR_FN (fn);
202 void
203 init_empty_tree_cfg (void)
205 init_empty_tree_cfg_for_function (cfun);
208 /*---------------------------------------------------------------------------
209 Create basic blocks
210 ---------------------------------------------------------------------------*/
212 /* Entry point to the CFG builder for trees. SEQ is the sequence of
213 statements to be added to the flowgraph. */
215 static void
216 build_gimple_cfg (gimple_seq seq)
218 /* Register specific gimple functions. */
219 gimple_register_cfg_hooks ();
221 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
223 init_empty_tree_cfg ();
225 make_blocks (seq);
227 /* Make sure there is always at least one block, even if it's empty. */
228 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
231 /* Adjust the size of the array. */
232 if (basic_block_info_for_fn (cfun)->length ()
233 < (size_t) n_basic_blocks_for_fn (cfun))
234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
235 n_basic_blocks_for_fn (cfun));
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus.create (13);
247 make_edges ();
248 assign_discriminators ();
249 cleanup_dead_labels ();
250 discriminator_per_locus.dispose ();
254 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
255 it and set loop->safelen to INT_MAX. We assume that the annotation
256 comes immediately before the condition. */
258 static void
259 replace_loop_annotate ()
261 struct loop *loop;
262 basic_block bb;
263 gimple_stmt_iterator gsi;
264 gimple stmt;
266 FOR_EACH_LOOP (loop, 0)
268 gsi = gsi_last_bb (loop->header);
269 stmt = gsi_stmt (gsi);
270 if (stmt && gimple_code (stmt) == GIMPLE_COND)
272 gsi_prev_nondebug (&gsi);
273 if (gsi_end_p (gsi))
274 continue;
275 stmt = gsi_stmt (gsi);
276 if (gimple_code (stmt) != GIMPLE_CALL)
277 continue;
278 if (!gimple_call_internal_p (stmt)
279 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
280 continue;
281 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
282 != annot_expr_ivdep_kind)
283 continue;
284 stmt = gimple_build_assign (gimple_call_lhs (stmt),
285 gimple_call_arg (stmt, 0));
286 gsi_replace (&gsi, stmt, true);
287 loop->safelen = INT_MAX;
291 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
292 FOR_EACH_BB_FN (bb, cfun)
294 gsi = gsi_last_bb (bb);
295 stmt = gsi_stmt (gsi);
296 if (stmt && gimple_code (stmt) == GIMPLE_COND)
297 gsi_prev_nondebug (&gsi);
298 if (gsi_end_p (gsi))
299 continue;
300 stmt = gsi_stmt (gsi);
301 if (gimple_code (stmt) != GIMPLE_CALL)
302 continue;
303 if (!gimple_call_internal_p (stmt)
304 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
305 continue;
306 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
307 != annot_expr_ivdep_kind)
308 continue;
309 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
310 "annotation");
311 stmt = gimple_build_assign (gimple_call_lhs (stmt),
312 gimple_call_arg (stmt, 0));
313 gsi_replace (&gsi, stmt, true);
318 static unsigned int
319 execute_build_cfg (void)
321 gimple_seq body = gimple_body (current_function_decl);
323 build_gimple_cfg (body);
324 gimple_set_body (current_function_decl, NULL);
325 if (dump_file && (dump_flags & TDF_DETAILS))
327 fprintf (dump_file, "Scope blocks:\n");
328 dump_scope_blocks (dump_file, dump_flags);
330 cleanup_tree_cfg ();
331 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
332 replace_loop_annotate ();
333 return 0;
336 namespace {
338 const pass_data pass_data_build_cfg =
340 GIMPLE_PASS, /* type */
341 "cfg", /* name */
342 OPTGROUP_NONE, /* optinfo_flags */
343 false, /* has_gate */
344 true, /* has_execute */
345 TV_TREE_CFG, /* tv_id */
346 PROP_gimple_leh, /* properties_required */
347 ( PROP_cfg | PROP_loops ), /* properties_provided */
348 0, /* properties_destroyed */
349 0, /* todo_flags_start */
350 TODO_verify_stmts, /* todo_flags_finish */
353 class pass_build_cfg : public gimple_opt_pass
355 public:
356 pass_build_cfg (gcc::context *ctxt)
357 : gimple_opt_pass (pass_data_build_cfg, ctxt)
360 /* opt_pass methods: */
361 unsigned int execute () { return execute_build_cfg (); }
363 }; // class pass_build_cfg
365 } // anon namespace
367 gimple_opt_pass *
368 make_pass_build_cfg (gcc::context *ctxt)
370 return new pass_build_cfg (ctxt);
374 /* Return true if T is a computed goto. */
376 bool
377 computed_goto_p (gimple t)
379 return (gimple_code (t) == GIMPLE_GOTO
380 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
383 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
384 the other edge points to a bb with just __builtin_unreachable ().
385 I.e. return true for C->M edge in:
386 <bb C>:
388 if (something)
389 goto <bb N>;
390 else
391 goto <bb M>;
392 <bb N>:
393 __builtin_unreachable ();
394 <bb M>: */
396 bool
397 assert_unreachable_fallthru_edge_p (edge e)
399 basic_block pred_bb = e->src;
400 gimple last = last_stmt (pred_bb);
401 if (last && gimple_code (last) == GIMPLE_COND)
403 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
404 if (other_bb == e->dest)
405 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
406 if (EDGE_COUNT (other_bb->succs) == 0)
408 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
409 gimple stmt;
411 if (gsi_end_p (gsi))
412 return false;
413 stmt = gsi_stmt (gsi);
414 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
416 gsi_next (&gsi);
417 if (gsi_end_p (gsi))
418 return false;
419 stmt = gsi_stmt (gsi);
421 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
424 return false;
428 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
429 could alter control flow except via eh. We initialize the flag at
430 CFG build time and only ever clear it later. */
432 static void
433 gimple_call_initialize_ctrl_altering (gimple stmt)
435 int flags = gimple_call_flags (stmt);
437 /* A call alters control flow if it can make an abnormal goto. */
438 if (call_can_make_abnormal_goto (stmt)
439 /* A call also alters control flow if it does not return. */
440 || flags & ECF_NORETURN
441 /* TM ending statements have backedges out of the transaction.
442 Return true so we split the basic block containing them.
443 Note that the TM_BUILTIN test is merely an optimization. */
444 || ((flags & ECF_TM_BUILTIN)
445 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
446 /* BUILT_IN_RETURN call is same as return statement. */
447 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
448 gimple_call_set_ctrl_altering (stmt, true);
449 else
450 gimple_call_set_ctrl_altering (stmt, false);
454 /* Build a flowgraph for the sequence of stmts SEQ. */
456 static void
457 make_blocks (gimple_seq seq)
459 gimple_stmt_iterator i = gsi_start (seq);
460 gimple stmt = NULL;
461 bool start_new_block = true;
462 bool first_stmt_of_seq = true;
463 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
465 while (!gsi_end_p (i))
467 gimple prev_stmt;
469 prev_stmt = stmt;
470 stmt = gsi_stmt (i);
472 if (stmt && is_gimple_call (stmt))
473 gimple_call_initialize_ctrl_altering (stmt);
475 /* If the statement starts a new basic block or if we have determined
476 in a previous pass that we need to create a new block for STMT, do
477 so now. */
478 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
480 if (!first_stmt_of_seq)
481 gsi_split_seq_before (&i, &seq);
482 bb = create_basic_block (seq, NULL, bb);
483 start_new_block = false;
486 /* Now add STMT to BB and create the subgraphs for special statement
487 codes. */
488 gimple_set_bb (stmt, bb);
490 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
491 next iteration. */
492 if (stmt_ends_bb_p (stmt))
494 /* If the stmt can make abnormal goto use a new temporary
495 for the assignment to the LHS. This makes sure the old value
496 of the LHS is available on the abnormal edge. Otherwise
497 we will end up with overlapping life-ranges for abnormal
498 SSA names. */
499 if (gimple_has_lhs (stmt)
500 && stmt_can_make_abnormal_goto (stmt)
501 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
503 tree lhs = gimple_get_lhs (stmt);
504 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
505 gimple s = gimple_build_assign (lhs, tmp);
506 gimple_set_location (s, gimple_location (stmt));
507 gimple_set_block (s, gimple_block (stmt));
508 gimple_set_lhs (stmt, tmp);
509 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
510 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
511 DECL_GIMPLE_REG_P (tmp) = 1;
512 gsi_insert_after (&i, s, GSI_SAME_STMT);
514 start_new_block = true;
517 gsi_next (&i);
518 first_stmt_of_seq = false;
523 /* Create and return a new empty basic block after bb AFTER. */
525 static basic_block
526 create_bb (void *h, void *e, basic_block after)
528 basic_block bb;
530 gcc_assert (!e);
532 /* Create and initialize a new basic block. Since alloc_block uses
533 GC allocation that clears memory to allocate a basic block, we do
534 not have to clear the newly allocated basic block here. */
535 bb = alloc_block ();
537 bb->index = last_basic_block_for_fn (cfun);
538 bb->flags = BB_NEW;
539 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
541 /* Add the new block to the linked list of blocks. */
542 link_block (bb, after);
544 /* Grow the basic block array if needed. */
545 if ((size_t) last_basic_block_for_fn (cfun)
546 == basic_block_info_for_fn (cfun)->length ())
548 size_t new_size =
549 (last_basic_block_for_fn (cfun)
550 + (last_basic_block_for_fn (cfun) + 3) / 4);
551 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
554 /* Add the newly created block to the array. */
555 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
557 n_basic_blocks_for_fn (cfun)++;
558 last_basic_block_for_fn (cfun)++;
560 return bb;
564 /*---------------------------------------------------------------------------
565 Edge creation
566 ---------------------------------------------------------------------------*/
568 /* Fold COND_EXPR_COND of each COND_EXPR. */
570 void
571 fold_cond_expr_cond (void)
573 basic_block bb;
575 FOR_EACH_BB_FN (bb, cfun)
577 gimple stmt = last_stmt (bb);
579 if (stmt && gimple_code (stmt) == GIMPLE_COND)
581 location_t loc = gimple_location (stmt);
582 tree cond;
583 bool zerop, onep;
585 fold_defer_overflow_warnings ();
586 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
587 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
588 if (cond)
590 zerop = integer_zerop (cond);
591 onep = integer_onep (cond);
593 else
594 zerop = onep = false;
596 fold_undefer_overflow_warnings (zerop || onep,
597 stmt,
598 WARN_STRICT_OVERFLOW_CONDITIONAL);
599 if (zerop)
600 gimple_cond_make_false (stmt);
601 else if (onep)
602 gimple_cond_make_true (stmt);
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
614 edge e;
615 edge_iterator ei;
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
629 return NULL;
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
647 if (bb_to_omp_idx)
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
664 if (bbs->is_empty ())
665 return;
667 else
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, NULL, for_bb);
678 if (computed_goto)
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
698 /* Build our new computed goto. */
699 gimple factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
708 gsi = gsi_last_bb (bb);
709 gimple last = gsi_stmt (gsi);
711 gcc_assert (computed_goto_p (last));
713 /* Copy the original computed goto's destination into VAR. */
714 gimple assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
723 else
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
745 /* Join all the blocks in the flowgraph. */
747 static void
748 make_edges (void)
750 basic_block bb;
751 struct omp_region *cur_region = NULL;
752 auto_vec<basic_block> ab_edge_goto;
753 auto_vec<basic_block> ab_edge_call;
754 int *bb_to_omp_idx = NULL;
755 int cur_omp_region_idx = 0;
757 /* Create an edge from entry to the first block with executable
758 statements in it. */
759 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
760 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
761 EDGE_FALLTHRU);
763 /* Traverse the basic block array placing edges. */
764 FOR_EACH_BB_FN (bb, cfun)
766 gimple last = last_stmt (bb);
767 bool fallthru;
769 if (bb_to_omp_idx)
770 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
772 if (last)
774 enum gimple_code code = gimple_code (last);
775 switch (code)
777 case GIMPLE_GOTO:
778 if (make_goto_expr_edges (bb))
779 ab_edge_goto.safe_push (bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RETURN:
783 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
784 fallthru = false;
785 break;
786 case GIMPLE_COND:
787 make_cond_expr_edges (bb);
788 fallthru = false;
789 break;
790 case GIMPLE_SWITCH:
791 make_gimple_switch_edges (bb);
792 fallthru = false;
793 break;
794 case GIMPLE_RESX:
795 make_eh_edges (last);
796 fallthru = false;
797 break;
798 case GIMPLE_EH_DISPATCH:
799 fallthru = make_eh_dispatch_edges (last);
800 break;
802 case GIMPLE_CALL:
803 /* If this function receives a nonlocal goto, then we need to
804 make edges from this call site to all the nonlocal goto
805 handlers. */
806 if (stmt_can_make_abnormal_goto (last))
807 ab_edge_call.safe_push (bb);
809 /* If this statement has reachable exception handlers, then
810 create abnormal edges to them. */
811 make_eh_edges (last);
813 /* BUILTIN_RETURN is really a return statement. */
814 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
816 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
817 fallthru = false;
819 /* Some calls are known not to return. */
820 else
821 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
822 break;
824 case GIMPLE_ASSIGN:
825 /* A GIMPLE_ASSIGN may throw internally and thus be considered
826 control-altering. */
827 if (is_ctrl_altering_stmt (last))
828 make_eh_edges (last);
829 fallthru = true;
830 break;
832 case GIMPLE_ASM:
833 make_gimple_asm_edges (bb);
834 fallthru = true;
835 break;
837 CASE_GIMPLE_OMP:
838 fallthru = make_gimple_omp_edges (bb, &cur_region,
839 &cur_omp_region_idx);
840 if (cur_region && bb_to_omp_idx == NULL)
841 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
842 break;
844 case GIMPLE_TRANSACTION:
846 tree abort_label = gimple_transaction_label (last);
847 if (abort_label)
848 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
849 fallthru = true;
851 break;
853 default:
854 gcc_assert (!stmt_ends_bb_p (last));
855 fallthru = true;
858 else
859 fallthru = true;
861 if (fallthru)
862 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
865 /* Computed gotos are hell to deal with, especially if there are
866 lots of them with a large number of destinations. So we factor
867 them to a common computed goto location before we build the
868 edge list. After we convert back to normal form, we will un-factor
869 the computed gotos since factoring introduces an unwanted jump.
870 For non-local gotos and abnormal edges from calls to calls that return
871 twice or forced labels, factor the abnormal edges too, by having all
872 abnormal edges from the calls go to a common artificial basic block
873 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
874 basic block to all forced labels and calls returning twice.
875 We do this per-OpenMP structured block, because those regions
876 are guaranteed to be single entry single exit by the standard,
877 so it is not allowed to enter or exit such regions abnormally this way,
878 thus all computed gotos, non-local gotos and setjmp/longjmp calls
879 must not transfer control across SESE region boundaries. */
880 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
882 gimple_stmt_iterator gsi;
883 basic_block dispatcher_bb_array[2] = { NULL, NULL };
884 basic_block *dispatcher_bbs = dispatcher_bb_array;
885 int count = n_basic_blocks_for_fn (cfun);
887 if (bb_to_omp_idx)
888 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
890 FOR_EACH_BB_FN (bb, cfun)
892 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
894 gimple label_stmt = gsi_stmt (gsi);
895 tree target;
897 if (gimple_code (label_stmt) != GIMPLE_LABEL)
898 break;
900 target = gimple_label_label (label_stmt);
902 /* Make an edge to every label block that has been marked as a
903 potential target for a computed goto or a non-local goto. */
904 if (FORCED_LABEL (target))
905 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
906 &ab_edge_goto, true);
907 if (DECL_NONLOCAL (target))
909 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
910 &ab_edge_call, false);
911 break;
915 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
916 gsi_next_nondebug (&gsi);
917 if (!gsi_end_p (gsi))
919 /* Make an edge to every setjmp-like call. */
920 gimple call_stmt = gsi_stmt (gsi);
921 if (is_gimple_call (call_stmt)
922 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
923 || gimple_call_builtin_p (call_stmt,
924 BUILT_IN_SETJMP_RECEIVER)))
925 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
926 &ab_edge_call, false);
930 if (bb_to_omp_idx)
931 XDELETE (dispatcher_bbs);
934 XDELETE (bb_to_omp_idx);
936 free_omp_regions ();
938 /* Fold COND_EXPR_COND of each COND_EXPR. */
939 fold_cond_expr_cond ();
942 /* Find the next available discriminator value for LOCUS. The
943 discriminator distinguishes among several basic blocks that
944 share a common locus, allowing for more accurate sample-based
945 profiling. */
947 static int
948 next_discriminator_for_locus (location_t locus)
950 struct locus_discrim_map item;
951 struct locus_discrim_map **slot;
953 item.locus = locus;
954 item.discriminator = 0;
955 slot = discriminator_per_locus.find_slot_with_hash (
956 &item, LOCATION_LINE (locus), INSERT);
957 gcc_assert (slot);
958 if (*slot == HTAB_EMPTY_ENTRY)
960 *slot = XNEW (struct locus_discrim_map);
961 gcc_assert (*slot);
962 (*slot)->locus = locus;
963 (*slot)->discriminator = 0;
965 (*slot)->discriminator++;
966 return (*slot)->discriminator;
969 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
971 static bool
972 same_line_p (location_t locus1, location_t locus2)
974 expanded_location from, to;
976 if (locus1 == locus2)
977 return true;
979 from = expand_location (locus1);
980 to = expand_location (locus2);
982 if (from.line != to.line)
983 return false;
984 if (from.file == to.file)
985 return true;
986 return (from.file != NULL
987 && to.file != NULL
988 && filename_cmp (from.file, to.file) == 0);
991 /* Assign discriminators to each basic block. */
993 static void
994 assign_discriminators (void)
996 basic_block bb;
998 FOR_EACH_BB_FN (bb, cfun)
1000 edge e;
1001 edge_iterator ei;
1002 gimple last = last_stmt (bb);
1003 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1005 if (locus == UNKNOWN_LOCATION)
1006 continue;
1008 FOR_EACH_EDGE (e, ei, bb->succs)
1010 gimple first = first_non_label_stmt (e->dest);
1011 gimple last = last_stmt (e->dest);
1012 if ((first && same_line_p (locus, gimple_location (first)))
1013 || (last && same_line_p (locus, gimple_location (last))))
1015 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1016 bb->discriminator = next_discriminator_for_locus (locus);
1017 else
1018 e->dest->discriminator = next_discriminator_for_locus (locus);
1024 /* Create the edges for a GIMPLE_COND starting at block BB. */
1026 static void
1027 make_cond_expr_edges (basic_block bb)
1029 gimple entry = last_stmt (bb);
1030 gimple then_stmt, else_stmt;
1031 basic_block then_bb, else_bb;
1032 tree then_label, else_label;
1033 edge e;
1035 gcc_assert (entry);
1036 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1038 /* Entry basic blocks for each component. */
1039 then_label = gimple_cond_true_label (entry);
1040 else_label = gimple_cond_false_label (entry);
1041 then_bb = label_to_block (then_label);
1042 else_bb = label_to_block (else_label);
1043 then_stmt = first_stmt (then_bb);
1044 else_stmt = first_stmt (else_bb);
1046 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1047 e->goto_locus = gimple_location (then_stmt);
1048 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1049 if (e)
1050 e->goto_locus = gimple_location (else_stmt);
1052 /* We do not need the labels anymore. */
1053 gimple_cond_set_true_label (entry, NULL_TREE);
1054 gimple_cond_set_false_label (entry, NULL_TREE);
1058 /* Called for each element in the hash table (P) as we delete the
1059 edge to cases hash table.
1061 Clear all the TREE_CHAINs to prevent problems with copying of
1062 SWITCH_EXPRs and structure sharing rules, then free the hash table
1063 element. */
1065 static bool
1066 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1067 void *data ATTRIBUTE_UNUSED)
1069 tree t, next;
1071 for (t = (tree) *value; t; t = next)
1073 next = CASE_CHAIN (t);
1074 CASE_CHAIN (t) = NULL;
1077 *value = NULL;
1078 return true;
1081 /* Start recording information mapping edges to case labels. */
1083 void
1084 start_recording_case_labels (void)
1086 gcc_assert (edge_to_cases == NULL);
1087 edge_to_cases = pointer_map_create ();
1088 touched_switch_bbs = BITMAP_ALLOC (NULL);
1091 /* Return nonzero if we are recording information for case labels. */
1093 static bool
1094 recording_case_labels_p (void)
1096 return (edge_to_cases != NULL);
1099 /* Stop recording information mapping edges to case labels and
1100 remove any information we have recorded. */
1101 void
1102 end_recording_case_labels (void)
1104 bitmap_iterator bi;
1105 unsigned i;
1106 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1107 pointer_map_destroy (edge_to_cases);
1108 edge_to_cases = NULL;
1109 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1111 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1112 if (bb)
1114 gimple stmt = last_stmt (bb);
1115 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1116 group_case_labels_stmt (stmt);
1119 BITMAP_FREE (touched_switch_bbs);
1122 /* If we are inside a {start,end}_recording_cases block, then return
1123 a chain of CASE_LABEL_EXPRs from T which reference E.
1125 Otherwise return NULL. */
1127 static tree
1128 get_cases_for_edge (edge e, gimple t)
1130 void **slot;
1131 size_t i, n;
1133 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1134 chains available. Return NULL so the caller can detect this case. */
1135 if (!recording_case_labels_p ())
1136 return NULL;
1138 slot = pointer_map_contains (edge_to_cases, e);
1139 if (slot)
1140 return (tree) *slot;
1142 /* If we did not find E in the hash table, then this must be the first
1143 time we have been queried for information about E & T. Add all the
1144 elements from T to the hash table then perform the query again. */
1146 n = gimple_switch_num_labels (t);
1147 for (i = 0; i < n; i++)
1149 tree elt = gimple_switch_label (t, i);
1150 tree lab = CASE_LABEL (elt);
1151 basic_block label_bb = label_to_block (lab);
1152 edge this_edge = find_edge (e->src, label_bb);
1154 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1155 a new chain. */
1156 slot = pointer_map_insert (edge_to_cases, this_edge);
1157 CASE_CHAIN (elt) = (tree) *slot;
1158 *slot = elt;
1161 return (tree) *pointer_map_contains (edge_to_cases, e);
1164 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1166 static void
1167 make_gimple_switch_edges (basic_block bb)
1169 gimple entry = last_stmt (bb);
1170 size_t i, n;
1172 n = gimple_switch_num_labels (entry);
1174 for (i = 0; i < n; ++i)
1176 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1177 basic_block label_bb = label_to_block (lab);
1178 make_edge (bb, label_bb, 0);
1183 /* Return the basic block holding label DEST. */
1185 basic_block
1186 label_to_block_fn (struct function *ifun, tree dest)
1188 int uid = LABEL_DECL_UID (dest);
1190 /* We would die hard when faced by an undefined label. Emit a label to
1191 the very first basic block. This will hopefully make even the dataflow
1192 and undefined variable warnings quite right. */
1193 if (seen_error () && uid < 0)
1195 gimple_stmt_iterator gsi =
1196 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1197 gimple stmt;
1199 stmt = gimple_build_label (dest);
1200 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1201 uid = LABEL_DECL_UID (dest);
1203 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1204 return NULL;
1205 return (*ifun->cfg->x_label_to_block_map)[uid];
1208 /* Create edges for a goto statement at block BB. Returns true
1209 if abnormal edges should be created. */
1211 static bool
1212 make_goto_expr_edges (basic_block bb)
1214 gimple_stmt_iterator last = gsi_last_bb (bb);
1215 gimple goto_t = gsi_stmt (last);
1217 /* A simple GOTO creates normal edges. */
1218 if (simple_goto_p (goto_t))
1220 tree dest = gimple_goto_dest (goto_t);
1221 basic_block label_bb = label_to_block (dest);
1222 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1223 e->goto_locus = gimple_location (goto_t);
1224 gsi_remove (&last, true);
1225 return false;
1228 /* A computed GOTO creates abnormal edges. */
1229 return true;
1232 /* Create edges for an asm statement with labels at block BB. */
1234 static void
1235 make_gimple_asm_edges (basic_block bb)
1237 gimple stmt = last_stmt (bb);
1238 int i, n = gimple_asm_nlabels (stmt);
1240 for (i = 0; i < n; ++i)
1242 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1243 basic_block label_bb = label_to_block (label);
1244 make_edge (bb, label_bb, 0);
1248 /*---------------------------------------------------------------------------
1249 Flowgraph analysis
1250 ---------------------------------------------------------------------------*/
1252 /* Cleanup useless labels in basic blocks. This is something we wish
1253 to do early because it allows us to group case labels before creating
1254 the edges for the CFG, and it speeds up block statement iterators in
1255 all passes later on.
1256 We rerun this pass after CFG is created, to get rid of the labels that
1257 are no longer referenced. After then we do not run it any more, since
1258 (almost) no new labels should be created. */
1260 /* A map from basic block index to the leading label of that block. */
1261 static struct label_record
1263 /* The label. */
1264 tree label;
1266 /* True if the label is referenced from somewhere. */
1267 bool used;
1268 } *label_for_bb;
1270 /* Given LABEL return the first label in the same basic block. */
1272 static tree
1273 main_block_label (tree label)
1275 basic_block bb = label_to_block (label);
1276 tree main_label = label_for_bb[bb->index].label;
1278 /* label_to_block possibly inserted undefined label into the chain. */
1279 if (!main_label)
1281 label_for_bb[bb->index].label = label;
1282 main_label = label;
1285 label_for_bb[bb->index].used = true;
1286 return main_label;
1289 /* Clean up redundant labels within the exception tree. */
1291 static void
1292 cleanup_dead_labels_eh (void)
1294 eh_landing_pad lp;
1295 eh_region r;
1296 tree lab;
1297 int i;
1299 if (cfun->eh == NULL)
1300 return;
1302 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1303 if (lp && lp->post_landing_pad)
1305 lab = main_block_label (lp->post_landing_pad);
1306 if (lab != lp->post_landing_pad)
1308 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1309 EH_LANDING_PAD_NR (lab) = lp->index;
1313 FOR_ALL_EH_REGION (r)
1314 switch (r->type)
1316 case ERT_CLEANUP:
1317 case ERT_MUST_NOT_THROW:
1318 break;
1320 case ERT_TRY:
1322 eh_catch c;
1323 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1325 lab = c->label;
1326 if (lab)
1327 c->label = main_block_label (lab);
1330 break;
1332 case ERT_ALLOWED_EXCEPTIONS:
1333 lab = r->u.allowed.label;
1334 if (lab)
1335 r->u.allowed.label = main_block_label (lab);
1336 break;
1341 /* Cleanup redundant labels. This is a three-step process:
1342 1) Find the leading label for each block.
1343 2) Redirect all references to labels to the leading labels.
1344 3) Cleanup all useless labels. */
1346 void
1347 cleanup_dead_labels (void)
1349 basic_block bb;
1350 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1352 /* Find a suitable label for each block. We use the first user-defined
1353 label if there is one, or otherwise just the first label we see. */
1354 FOR_EACH_BB_FN (bb, cfun)
1356 gimple_stmt_iterator i;
1358 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1360 tree label;
1361 gimple stmt = gsi_stmt (i);
1363 if (gimple_code (stmt) != GIMPLE_LABEL)
1364 break;
1366 label = gimple_label_label (stmt);
1368 /* If we have not yet seen a label for the current block,
1369 remember this one and see if there are more labels. */
1370 if (!label_for_bb[bb->index].label)
1372 label_for_bb[bb->index].label = label;
1373 continue;
1376 /* If we did see a label for the current block already, but it
1377 is an artificially created label, replace it if the current
1378 label is a user defined label. */
1379 if (!DECL_ARTIFICIAL (label)
1380 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1382 label_for_bb[bb->index].label = label;
1383 break;
1388 /* Now redirect all jumps/branches to the selected label.
1389 First do so for each block ending in a control statement. */
1390 FOR_EACH_BB_FN (bb, cfun)
1392 gimple stmt = last_stmt (bb);
1393 tree label, new_label;
1395 if (!stmt)
1396 continue;
1398 switch (gimple_code (stmt))
1400 case GIMPLE_COND:
1401 label = gimple_cond_true_label (stmt);
1402 if (label)
1404 new_label = main_block_label (label);
1405 if (new_label != label)
1406 gimple_cond_set_true_label (stmt, new_label);
1409 label = gimple_cond_false_label (stmt);
1410 if (label)
1412 new_label = main_block_label (label);
1413 if (new_label != label)
1414 gimple_cond_set_false_label (stmt, new_label);
1416 break;
1418 case GIMPLE_SWITCH:
1420 size_t i, n = gimple_switch_num_labels (stmt);
1422 /* Replace all destination labels. */
1423 for (i = 0; i < n; ++i)
1425 tree case_label = gimple_switch_label (stmt, i);
1426 label = CASE_LABEL (case_label);
1427 new_label = main_block_label (label);
1428 if (new_label != label)
1429 CASE_LABEL (case_label) = new_label;
1431 break;
1434 case GIMPLE_ASM:
1436 int i, n = gimple_asm_nlabels (stmt);
1438 for (i = 0; i < n; ++i)
1440 tree cons = gimple_asm_label_op (stmt, i);
1441 tree label = main_block_label (TREE_VALUE (cons));
1442 TREE_VALUE (cons) = label;
1444 break;
1447 /* We have to handle gotos until they're removed, and we don't
1448 remove them until after we've created the CFG edges. */
1449 case GIMPLE_GOTO:
1450 if (!computed_goto_p (stmt))
1452 label = gimple_goto_dest (stmt);
1453 new_label = main_block_label (label);
1454 if (new_label != label)
1455 gimple_goto_set_dest (stmt, new_label);
1457 break;
1459 case GIMPLE_TRANSACTION:
1461 tree label = gimple_transaction_label (stmt);
1462 if (label)
1464 tree new_label = main_block_label (label);
1465 if (new_label != label)
1466 gimple_transaction_set_label (stmt, new_label);
1469 break;
1471 default:
1472 break;
1476 /* Do the same for the exception region tree labels. */
1477 cleanup_dead_labels_eh ();
1479 /* Finally, purge dead labels. All user-defined labels and labels that
1480 can be the target of non-local gotos and labels which have their
1481 address taken are preserved. */
1482 FOR_EACH_BB_FN (bb, cfun)
1484 gimple_stmt_iterator i;
1485 tree label_for_this_bb = label_for_bb[bb->index].label;
1487 if (!label_for_this_bb)
1488 continue;
1490 /* If the main label of the block is unused, we may still remove it. */
1491 if (!label_for_bb[bb->index].used)
1492 label_for_this_bb = NULL;
1494 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1496 tree label;
1497 gimple stmt = gsi_stmt (i);
1499 if (gimple_code (stmt) != GIMPLE_LABEL)
1500 break;
1502 label = gimple_label_label (stmt);
1504 if (label == label_for_this_bb
1505 || !DECL_ARTIFICIAL (label)
1506 || DECL_NONLOCAL (label)
1507 || FORCED_LABEL (label))
1508 gsi_next (&i);
1509 else
1510 gsi_remove (&i, true);
1514 free (label_for_bb);
1517 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1518 the ones jumping to the same label.
1519 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1521 void
1522 group_case_labels_stmt (gimple stmt)
1524 int old_size = gimple_switch_num_labels (stmt);
1525 int i, j, new_size = old_size;
1526 basic_block default_bb = NULL;
1528 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1530 /* Look for possible opportunities to merge cases. */
1531 i = 1;
1532 while (i < old_size)
1534 tree base_case, base_high;
1535 basic_block base_bb;
1537 base_case = gimple_switch_label (stmt, i);
1539 gcc_assert (base_case);
1540 base_bb = label_to_block (CASE_LABEL (base_case));
1542 /* Discard cases that have the same destination as the
1543 default case. */
1544 if (base_bb == default_bb)
1546 gimple_switch_set_label (stmt, i, NULL_TREE);
1547 i++;
1548 new_size--;
1549 continue;
1552 base_high = CASE_HIGH (base_case)
1553 ? CASE_HIGH (base_case)
1554 : CASE_LOW (base_case);
1555 i++;
1557 /* Try to merge case labels. Break out when we reach the end
1558 of the label vector or when we cannot merge the next case
1559 label with the current one. */
1560 while (i < old_size)
1562 tree merge_case = gimple_switch_label (stmt, i);
1563 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1564 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1566 /* Merge the cases if they jump to the same place,
1567 and their ranges are consecutive. */
1568 if (merge_bb == base_bb
1569 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1571 base_high = CASE_HIGH (merge_case) ?
1572 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1573 CASE_HIGH (base_case) = base_high;
1574 gimple_switch_set_label (stmt, i, NULL_TREE);
1575 new_size--;
1576 i++;
1578 else
1579 break;
1583 /* Compress the case labels in the label vector, and adjust the
1584 length of the vector. */
1585 for (i = 0, j = 0; i < new_size; i++)
1587 while (! gimple_switch_label (stmt, j))
1588 j++;
1589 gimple_switch_set_label (stmt, i,
1590 gimple_switch_label (stmt, j++));
1593 gcc_assert (new_size <= old_size);
1594 gimple_switch_set_num_labels (stmt, new_size);
1597 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1598 and scan the sorted vector of cases. Combine the ones jumping to the
1599 same label. */
1601 void
1602 group_case_labels (void)
1604 basic_block bb;
1606 FOR_EACH_BB_FN (bb, cfun)
1608 gimple stmt = last_stmt (bb);
1609 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1610 group_case_labels_stmt (stmt);
1614 /* Checks whether we can merge block B into block A. */
1616 static bool
1617 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1619 gimple stmt;
1620 gimple_stmt_iterator gsi;
1622 if (!single_succ_p (a))
1623 return false;
1625 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1626 return false;
1628 if (single_succ (a) != b)
1629 return false;
1631 if (!single_pred_p (b))
1632 return false;
1634 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1635 return false;
1637 /* If A ends by a statement causing exceptions or something similar, we
1638 cannot merge the blocks. */
1639 stmt = last_stmt (a);
1640 if (stmt && stmt_ends_bb_p (stmt))
1641 return false;
1643 /* Do not allow a block with only a non-local label to be merged. */
1644 if (stmt
1645 && gimple_code (stmt) == GIMPLE_LABEL
1646 && DECL_NONLOCAL (gimple_label_label (stmt)))
1647 return false;
1649 /* Examine the labels at the beginning of B. */
1650 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1652 tree lab;
1653 stmt = gsi_stmt (gsi);
1654 if (gimple_code (stmt) != GIMPLE_LABEL)
1655 break;
1656 lab = gimple_label_label (stmt);
1658 /* Do not remove user forced labels or for -O0 any user labels. */
1659 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1660 return false;
1663 /* Protect the loop latches. */
1664 if (current_loops && b->loop_father->latch == b)
1665 return false;
1667 /* It must be possible to eliminate all phi nodes in B. If ssa form
1668 is not up-to-date and a name-mapping is registered, we cannot eliminate
1669 any phis. Symbols marked for renaming are never a problem though. */
1670 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1672 gimple phi = gsi_stmt (gsi);
1673 /* Technically only new names matter. */
1674 if (name_registered_for_update_p (PHI_RESULT (phi)))
1675 return false;
1678 /* When not optimizing, don't merge if we'd lose goto_locus. */
1679 if (!optimize
1680 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1682 location_t goto_locus = single_succ_edge (a)->goto_locus;
1683 gimple_stmt_iterator prev, next;
1684 prev = gsi_last_nondebug_bb (a);
1685 next = gsi_after_labels (b);
1686 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1687 gsi_next_nondebug (&next);
1688 if ((gsi_end_p (prev)
1689 || gimple_location (gsi_stmt (prev)) != goto_locus)
1690 && (gsi_end_p (next)
1691 || gimple_location (gsi_stmt (next)) != goto_locus))
1692 return false;
1695 return true;
1698 /* Replaces all uses of NAME by VAL. */
1700 void
1701 replace_uses_by (tree name, tree val)
1703 imm_use_iterator imm_iter;
1704 use_operand_p use;
1705 gimple stmt;
1706 edge e;
1708 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1710 /* Mark the block if we change the last stmt in it. */
1711 if (cfgcleanup_altered_bbs
1712 && stmt_ends_bb_p (stmt))
1713 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1715 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1717 replace_exp (use, val);
1719 if (gimple_code (stmt) == GIMPLE_PHI)
1721 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1722 if (e->flags & EDGE_ABNORMAL)
1724 /* This can only occur for virtual operands, since
1725 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1726 would prevent replacement. */
1727 gcc_checking_assert (virtual_operand_p (name));
1728 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1733 if (gimple_code (stmt) != GIMPLE_PHI)
1735 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1736 gimple orig_stmt = stmt;
1737 size_t i;
1739 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1740 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1741 only change sth from non-invariant to invariant, and only
1742 when propagating constants. */
1743 if (is_gimple_min_invariant (val))
1744 for (i = 0; i < gimple_num_ops (stmt); i++)
1746 tree op = gimple_op (stmt, i);
1747 /* Operands may be empty here. For example, the labels
1748 of a GIMPLE_COND are nulled out following the creation
1749 of the corresponding CFG edges. */
1750 if (op && TREE_CODE (op) == ADDR_EXPR)
1751 recompute_tree_invariant_for_addr_expr (op);
1754 if (fold_stmt (&gsi))
1755 stmt = gsi_stmt (gsi);
1757 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1758 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1760 update_stmt (stmt);
1764 gcc_checking_assert (has_zero_uses (name));
1766 /* Also update the trees stored in loop structures. */
1767 if (current_loops)
1769 struct loop *loop;
1771 FOR_EACH_LOOP (loop, 0)
1773 substitute_in_loop_info (loop, name, val);
1778 /* Merge block B into block A. */
1780 static void
1781 gimple_merge_blocks (basic_block a, basic_block b)
1783 gimple_stmt_iterator last, gsi, psi;
1785 if (dump_file)
1786 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1788 /* Remove all single-valued PHI nodes from block B of the form
1789 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1790 gsi = gsi_last_bb (a);
1791 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1793 gimple phi = gsi_stmt (psi);
1794 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1795 gimple copy;
1796 bool may_replace_uses = (virtual_operand_p (def)
1797 || may_propagate_copy (def, use));
1799 /* In case we maintain loop closed ssa form, do not propagate arguments
1800 of loop exit phi nodes. */
1801 if (current_loops
1802 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1803 && !virtual_operand_p (def)
1804 && TREE_CODE (use) == SSA_NAME
1805 && a->loop_father != b->loop_father)
1806 may_replace_uses = false;
1808 if (!may_replace_uses)
1810 gcc_assert (!virtual_operand_p (def));
1812 /* Note that just emitting the copies is fine -- there is no problem
1813 with ordering of phi nodes. This is because A is the single
1814 predecessor of B, therefore results of the phi nodes cannot
1815 appear as arguments of the phi nodes. */
1816 copy = gimple_build_assign (def, use);
1817 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1818 remove_phi_node (&psi, false);
1820 else
1822 /* If we deal with a PHI for virtual operands, we can simply
1823 propagate these without fussing with folding or updating
1824 the stmt. */
1825 if (virtual_operand_p (def))
1827 imm_use_iterator iter;
1828 use_operand_p use_p;
1829 gimple stmt;
1831 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1832 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1833 SET_USE (use_p, use);
1835 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1836 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1838 else
1839 replace_uses_by (def, use);
1841 remove_phi_node (&psi, true);
1845 /* Ensure that B follows A. */
1846 move_block_after (b, a);
1848 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1849 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1851 /* Remove labels from B and set gimple_bb to A for other statements. */
1852 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1854 gimple stmt = gsi_stmt (gsi);
1855 if (gimple_code (stmt) == GIMPLE_LABEL)
1857 tree label = gimple_label_label (stmt);
1858 int lp_nr;
1860 gsi_remove (&gsi, false);
1862 /* Now that we can thread computed gotos, we might have
1863 a situation where we have a forced label in block B
1864 However, the label at the start of block B might still be
1865 used in other ways (think about the runtime checking for
1866 Fortran assigned gotos). So we can not just delete the
1867 label. Instead we move the label to the start of block A. */
1868 if (FORCED_LABEL (label))
1870 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1871 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1873 /* Other user labels keep around in a form of a debug stmt. */
1874 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1876 gimple dbg = gimple_build_debug_bind (label,
1877 integer_zero_node,
1878 stmt);
1879 gimple_debug_bind_reset_value (dbg);
1880 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1883 lp_nr = EH_LANDING_PAD_NR (label);
1884 if (lp_nr)
1886 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1887 lp->post_landing_pad = NULL;
1890 else
1892 gimple_set_bb (stmt, a);
1893 gsi_next (&gsi);
1897 /* Merge the sequences. */
1898 last = gsi_last_bb (a);
1899 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1900 set_bb_seq (b, NULL);
1902 if (cfgcleanup_altered_bbs)
1903 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1907 /* Return the one of two successors of BB that is not reachable by a
1908 complex edge, if there is one. Else, return BB. We use
1909 this in optimizations that use post-dominators for their heuristics,
1910 to catch the cases in C++ where function calls are involved. */
1912 basic_block
1913 single_noncomplex_succ (basic_block bb)
1915 edge e0, e1;
1916 if (EDGE_COUNT (bb->succs) != 2)
1917 return bb;
1919 e0 = EDGE_SUCC (bb, 0);
1920 e1 = EDGE_SUCC (bb, 1);
1921 if (e0->flags & EDGE_COMPLEX)
1922 return e1->dest;
1923 if (e1->flags & EDGE_COMPLEX)
1924 return e0->dest;
1926 return bb;
1929 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1931 void
1932 notice_special_calls (gimple call)
1934 int flags = gimple_call_flags (call);
1936 if (flags & ECF_MAY_BE_ALLOCA)
1937 cfun->calls_alloca = true;
1938 if (flags & ECF_RETURNS_TWICE)
1939 cfun->calls_setjmp = true;
1943 /* Clear flags set by notice_special_calls. Used by dead code removal
1944 to update the flags. */
1946 void
1947 clear_special_calls (void)
1949 cfun->calls_alloca = false;
1950 cfun->calls_setjmp = false;
1953 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1955 static void
1956 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1958 /* Since this block is no longer reachable, we can just delete all
1959 of its PHI nodes. */
1960 remove_phi_nodes (bb);
1962 /* Remove edges to BB's successors. */
1963 while (EDGE_COUNT (bb->succs) > 0)
1964 remove_edge (EDGE_SUCC (bb, 0));
1968 /* Remove statements of basic block BB. */
1970 static void
1971 remove_bb (basic_block bb)
1973 gimple_stmt_iterator i;
1975 if (dump_file)
1977 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1978 if (dump_flags & TDF_DETAILS)
1980 dump_bb (dump_file, bb, 0, dump_flags);
1981 fprintf (dump_file, "\n");
1985 if (current_loops)
1987 struct loop *loop = bb->loop_father;
1989 /* If a loop gets removed, clean up the information associated
1990 with it. */
1991 if (loop->latch == bb
1992 || loop->header == bb)
1993 free_numbers_of_iterations_estimates_loop (loop);
1996 /* Remove all the instructions in the block. */
1997 if (bb_seq (bb) != NULL)
1999 /* Walk backwards so as to get a chance to substitute all
2000 released DEFs into debug stmts. See
2001 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2002 details. */
2003 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2005 gimple stmt = gsi_stmt (i);
2006 if (gimple_code (stmt) == GIMPLE_LABEL
2007 && (FORCED_LABEL (gimple_label_label (stmt))
2008 || DECL_NONLOCAL (gimple_label_label (stmt))))
2010 basic_block new_bb;
2011 gimple_stmt_iterator new_gsi;
2013 /* A non-reachable non-local label may still be referenced.
2014 But it no longer needs to carry the extra semantics of
2015 non-locality. */
2016 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2018 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2019 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2022 new_bb = bb->prev_bb;
2023 new_gsi = gsi_start_bb (new_bb);
2024 gsi_remove (&i, false);
2025 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2027 else
2029 /* Release SSA definitions if we are in SSA. Note that we
2030 may be called when not in SSA. For example,
2031 final_cleanup calls this function via
2032 cleanup_tree_cfg. */
2033 if (gimple_in_ssa_p (cfun))
2034 release_defs (stmt);
2036 gsi_remove (&i, true);
2039 if (gsi_end_p (i))
2040 i = gsi_last_bb (bb);
2041 else
2042 gsi_prev (&i);
2046 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2047 bb->il.gimple.seq = NULL;
2048 bb->il.gimple.phi_nodes = NULL;
2052 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2053 predicate VAL, return the edge that will be taken out of the block.
2054 If VAL does not match a unique edge, NULL is returned. */
2056 edge
2057 find_taken_edge (basic_block bb, tree val)
2059 gimple stmt;
2061 stmt = last_stmt (bb);
2063 gcc_assert (stmt);
2064 gcc_assert (is_ctrl_stmt (stmt));
2066 if (val == NULL)
2067 return NULL;
2069 if (!is_gimple_min_invariant (val))
2070 return NULL;
2072 if (gimple_code (stmt) == GIMPLE_COND)
2073 return find_taken_edge_cond_expr (bb, val);
2075 if (gimple_code (stmt) == GIMPLE_SWITCH)
2076 return find_taken_edge_switch_expr (bb, val);
2078 if (computed_goto_p (stmt))
2080 /* Only optimize if the argument is a label, if the argument is
2081 not a label then we can not construct a proper CFG.
2083 It may be the case that we only need to allow the LABEL_REF to
2084 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2085 appear inside a LABEL_EXPR just to be safe. */
2086 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2087 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2088 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2089 return NULL;
2092 gcc_unreachable ();
2095 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2096 statement, determine which of the outgoing edges will be taken out of the
2097 block. Return NULL if either edge may be taken. */
2099 static edge
2100 find_taken_edge_computed_goto (basic_block bb, tree val)
2102 basic_block dest;
2103 edge e = NULL;
2105 dest = label_to_block (val);
2106 if (dest)
2108 e = find_edge (bb, dest);
2109 gcc_assert (e != NULL);
2112 return e;
2115 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2116 statement, determine which of the two edges will be taken out of the
2117 block. Return NULL if either edge may be taken. */
2119 static edge
2120 find_taken_edge_cond_expr (basic_block bb, tree val)
2122 edge true_edge, false_edge;
2124 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2126 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2127 return (integer_zerop (val) ? false_edge : true_edge);
2130 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2131 statement, determine which edge will be taken out of the block. Return
2132 NULL if any edge may be taken. */
2134 static edge
2135 find_taken_edge_switch_expr (basic_block bb, tree val)
2137 basic_block dest_bb;
2138 edge e;
2139 gimple switch_stmt;
2140 tree taken_case;
2142 switch_stmt = last_stmt (bb);
2143 taken_case = find_case_label_for_value (switch_stmt, val);
2144 dest_bb = label_to_block (CASE_LABEL (taken_case));
2146 e = find_edge (bb, dest_bb);
2147 gcc_assert (e);
2148 return e;
2152 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2153 We can make optimal use here of the fact that the case labels are
2154 sorted: We can do a binary search for a case matching VAL. */
2156 static tree
2157 find_case_label_for_value (gimple switch_stmt, tree val)
2159 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2160 tree default_case = gimple_switch_default_label (switch_stmt);
2162 for (low = 0, high = n; high - low > 1; )
2164 size_t i = (high + low) / 2;
2165 tree t = gimple_switch_label (switch_stmt, i);
2166 int cmp;
2168 /* Cache the result of comparing CASE_LOW and val. */
2169 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2171 if (cmp > 0)
2172 high = i;
2173 else
2174 low = i;
2176 if (CASE_HIGH (t) == NULL)
2178 /* A singe-valued case label. */
2179 if (cmp == 0)
2180 return t;
2182 else
2184 /* A case range. We can only handle integer ranges. */
2185 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2186 return t;
2190 return default_case;
2194 /* Dump a basic block on stderr. */
2196 void
2197 gimple_debug_bb (basic_block bb)
2199 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2203 /* Dump basic block with index N on stderr. */
2205 basic_block
2206 gimple_debug_bb_n (int n)
2208 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2209 return BASIC_BLOCK_FOR_FN (cfun, n);
2213 /* Dump the CFG on stderr.
2215 FLAGS are the same used by the tree dumping functions
2216 (see TDF_* in dumpfile.h). */
2218 void
2219 gimple_debug_cfg (int flags)
2221 gimple_dump_cfg (stderr, flags);
2225 /* Dump the program showing basic block boundaries on the given FILE.
2227 FLAGS are the same used by the tree dumping functions (see TDF_* in
2228 tree.h). */
2230 void
2231 gimple_dump_cfg (FILE *file, int flags)
2233 if (flags & TDF_DETAILS)
2235 dump_function_header (file, current_function_decl, flags);
2236 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2237 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2238 last_basic_block_for_fn (cfun));
2240 brief_dump_cfg (file, flags | TDF_COMMENT);
2241 fprintf (file, "\n");
2244 if (flags & TDF_STATS)
2245 dump_cfg_stats (file);
2247 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2251 /* Dump CFG statistics on FILE. */
2253 void
2254 dump_cfg_stats (FILE *file)
2256 static long max_num_merged_labels = 0;
2257 unsigned long size, total = 0;
2258 long num_edges;
2259 basic_block bb;
2260 const char * const fmt_str = "%-30s%-13s%12s\n";
2261 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2262 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2263 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2264 const char *funcname = current_function_name ();
2266 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2268 fprintf (file, "---------------------------------------------------------\n");
2269 fprintf (file, fmt_str, "", " Number of ", "Memory");
2270 fprintf (file, fmt_str, "", " instances ", "used ");
2271 fprintf (file, "---------------------------------------------------------\n");
2273 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2274 total += size;
2275 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2276 SCALE (size), LABEL (size));
2278 num_edges = 0;
2279 FOR_EACH_BB_FN (bb, cfun)
2280 num_edges += EDGE_COUNT (bb->succs);
2281 size = num_edges * sizeof (struct edge_def);
2282 total += size;
2283 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2285 fprintf (file, "---------------------------------------------------------\n");
2286 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2287 LABEL (total));
2288 fprintf (file, "---------------------------------------------------------\n");
2289 fprintf (file, "\n");
2291 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2292 max_num_merged_labels = cfg_stats.num_merged_labels;
2294 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2295 cfg_stats.num_merged_labels, max_num_merged_labels);
2297 fprintf (file, "\n");
2301 /* Dump CFG statistics on stderr. Keep extern so that it's always
2302 linked in the final executable. */
2304 DEBUG_FUNCTION void
2305 debug_cfg_stats (void)
2307 dump_cfg_stats (stderr);
2310 /*---------------------------------------------------------------------------
2311 Miscellaneous helpers
2312 ---------------------------------------------------------------------------*/
2314 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2315 flow. Transfers of control flow associated with EH are excluded. */
2317 static bool
2318 call_can_make_abnormal_goto (gimple t)
2320 /* If the function has no non-local labels, then a call cannot make an
2321 abnormal transfer of control. */
2322 if (!cfun->has_nonlocal_label
2323 && !cfun->calls_setjmp)
2324 return false;
2326 /* Likewise if the call has no side effects. */
2327 if (!gimple_has_side_effects (t))
2328 return false;
2330 /* Likewise if the called function is leaf. */
2331 if (gimple_call_flags (t) & ECF_LEAF)
2332 return false;
2334 return true;
2338 /* Return true if T can make an abnormal transfer of control flow.
2339 Transfers of control flow associated with EH are excluded. */
2341 bool
2342 stmt_can_make_abnormal_goto (gimple t)
2344 if (computed_goto_p (t))
2345 return true;
2346 if (is_gimple_call (t))
2347 return call_can_make_abnormal_goto (t);
2348 return false;
2352 /* Return true if T represents a stmt that always transfers control. */
2354 bool
2355 is_ctrl_stmt (gimple t)
2357 switch (gimple_code (t))
2359 case GIMPLE_COND:
2360 case GIMPLE_SWITCH:
2361 case GIMPLE_GOTO:
2362 case GIMPLE_RETURN:
2363 case GIMPLE_RESX:
2364 return true;
2365 default:
2366 return false;
2371 /* Return true if T is a statement that may alter the flow of control
2372 (e.g., a call to a non-returning function). */
2374 bool
2375 is_ctrl_altering_stmt (gimple t)
2377 gcc_assert (t);
2379 switch (gimple_code (t))
2381 case GIMPLE_CALL:
2382 /* Per stmt call flag indicates whether the call could alter
2383 controlflow. */
2384 if (gimple_call_ctrl_altering_p (t))
2385 return true;
2386 break;
2388 case GIMPLE_EH_DISPATCH:
2389 /* EH_DISPATCH branches to the individual catch handlers at
2390 this level of a try or allowed-exceptions region. It can
2391 fallthru to the next statement as well. */
2392 return true;
2394 case GIMPLE_ASM:
2395 if (gimple_asm_nlabels (t) > 0)
2396 return true;
2397 break;
2399 CASE_GIMPLE_OMP:
2400 /* OpenMP directives alter control flow. */
2401 return true;
2403 case GIMPLE_TRANSACTION:
2404 /* A transaction start alters control flow. */
2405 return true;
2407 default:
2408 break;
2411 /* If a statement can throw, it alters control flow. */
2412 return stmt_can_throw_internal (t);
2416 /* Return true if T is a simple local goto. */
2418 bool
2419 simple_goto_p (gimple t)
2421 return (gimple_code (t) == GIMPLE_GOTO
2422 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2426 /* Return true if STMT should start a new basic block. PREV_STMT is
2427 the statement preceding STMT. It is used when STMT is a label or a
2428 case label. Labels should only start a new basic block if their
2429 previous statement wasn't a label. Otherwise, sequence of labels
2430 would generate unnecessary basic blocks that only contain a single
2431 label. */
2433 static inline bool
2434 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2436 if (stmt == NULL)
2437 return false;
2439 /* Labels start a new basic block only if the preceding statement
2440 wasn't a label of the same type. This prevents the creation of
2441 consecutive blocks that have nothing but a single label. */
2442 if (gimple_code (stmt) == GIMPLE_LABEL)
2444 /* Nonlocal and computed GOTO targets always start a new block. */
2445 if (DECL_NONLOCAL (gimple_label_label (stmt))
2446 || FORCED_LABEL (gimple_label_label (stmt)))
2447 return true;
2449 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2451 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2452 return true;
2454 cfg_stats.num_merged_labels++;
2455 return false;
2457 else
2458 return true;
2460 else if (gimple_code (stmt) == GIMPLE_CALL
2461 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2462 /* setjmp acts similar to a nonlocal GOTO target and thus should
2463 start a new block. */
2464 return true;
2466 return false;
2470 /* Return true if T should end a basic block. */
2472 bool
2473 stmt_ends_bb_p (gimple t)
2475 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2478 /* Remove block annotations and other data structures. */
2480 void
2481 delete_tree_cfg_annotations (void)
2483 vec_free (label_to_block_map_for_fn (cfun));
2487 /* Return the first statement in basic block BB. */
2489 gimple
2490 first_stmt (basic_block bb)
2492 gimple_stmt_iterator i = gsi_start_bb (bb);
2493 gimple stmt = NULL;
2495 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2497 gsi_next (&i);
2498 stmt = NULL;
2500 return stmt;
2503 /* Return the first non-label statement in basic block BB. */
2505 static gimple
2506 first_non_label_stmt (basic_block bb)
2508 gimple_stmt_iterator i = gsi_start_bb (bb);
2509 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2510 gsi_next (&i);
2511 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2514 /* Return the last statement in basic block BB. */
2516 gimple
2517 last_stmt (basic_block bb)
2519 gimple_stmt_iterator i = gsi_last_bb (bb);
2520 gimple stmt = NULL;
2522 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2524 gsi_prev (&i);
2525 stmt = NULL;
2527 return stmt;
2530 /* Return the last statement of an otherwise empty block. Return NULL
2531 if the block is totally empty, or if it contains more than one
2532 statement. */
2534 gimple
2535 last_and_only_stmt (basic_block bb)
2537 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2538 gimple last, prev;
2540 if (gsi_end_p (i))
2541 return NULL;
2543 last = gsi_stmt (i);
2544 gsi_prev_nondebug (&i);
2545 if (gsi_end_p (i))
2546 return last;
2548 /* Empty statements should no longer appear in the instruction stream.
2549 Everything that might have appeared before should be deleted by
2550 remove_useless_stmts, and the optimizers should just gsi_remove
2551 instead of smashing with build_empty_stmt.
2553 Thus the only thing that should appear here in a block containing
2554 one executable statement is a label. */
2555 prev = gsi_stmt (i);
2556 if (gimple_code (prev) == GIMPLE_LABEL)
2557 return last;
2558 else
2559 return NULL;
2562 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2564 static void
2565 reinstall_phi_args (edge new_edge, edge old_edge)
2567 edge_var_map_vector *v;
2568 edge_var_map *vm;
2569 int i;
2570 gimple_stmt_iterator phis;
2572 v = redirect_edge_var_map_vector (old_edge);
2573 if (!v)
2574 return;
2576 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2577 v->iterate (i, &vm) && !gsi_end_p (phis);
2578 i++, gsi_next (&phis))
2580 gimple phi = gsi_stmt (phis);
2581 tree result = redirect_edge_var_map_result (vm);
2582 tree arg = redirect_edge_var_map_def (vm);
2584 gcc_assert (result == gimple_phi_result (phi));
2586 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2589 redirect_edge_var_map_clear (old_edge);
2592 /* Returns the basic block after which the new basic block created
2593 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2594 near its "logical" location. This is of most help to humans looking
2595 at debugging dumps. */
2597 basic_block
2598 split_edge_bb_loc (edge edge_in)
2600 basic_block dest = edge_in->dest;
2601 basic_block dest_prev = dest->prev_bb;
2603 if (dest_prev)
2605 edge e = find_edge (dest_prev, dest);
2606 if (e && !(e->flags & EDGE_COMPLEX))
2607 return edge_in->src;
2609 return dest_prev;
2612 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2613 Abort on abnormal edges. */
2615 static basic_block
2616 gimple_split_edge (edge edge_in)
2618 basic_block new_bb, after_bb, dest;
2619 edge new_edge, e;
2621 /* Abnormal edges cannot be split. */
2622 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2624 dest = edge_in->dest;
2626 after_bb = split_edge_bb_loc (edge_in);
2628 new_bb = create_empty_bb (after_bb);
2629 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2630 new_bb->count = edge_in->count;
2631 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2632 new_edge->probability = REG_BR_PROB_BASE;
2633 new_edge->count = edge_in->count;
2635 e = redirect_edge_and_branch (edge_in, new_bb);
2636 gcc_assert (e == edge_in);
2637 reinstall_phi_args (new_edge, e);
2639 return new_bb;
2643 /* Verify properties of the address expression T with base object BASE. */
2645 static tree
2646 verify_address (tree t, tree base)
2648 bool old_constant;
2649 bool old_side_effects;
2650 bool new_constant;
2651 bool new_side_effects;
2653 old_constant = TREE_CONSTANT (t);
2654 old_side_effects = TREE_SIDE_EFFECTS (t);
2656 recompute_tree_invariant_for_addr_expr (t);
2657 new_side_effects = TREE_SIDE_EFFECTS (t);
2658 new_constant = TREE_CONSTANT (t);
2660 if (old_constant != new_constant)
2662 error ("constant not recomputed when ADDR_EXPR changed");
2663 return t;
2665 if (old_side_effects != new_side_effects)
2667 error ("side effects not recomputed when ADDR_EXPR changed");
2668 return t;
2671 if (!(TREE_CODE (base) == VAR_DECL
2672 || TREE_CODE (base) == PARM_DECL
2673 || TREE_CODE (base) == RESULT_DECL))
2674 return NULL_TREE;
2676 if (DECL_GIMPLE_REG_P (base))
2678 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2679 return base;
2682 return NULL_TREE;
2685 /* Callback for walk_tree, check that all elements with address taken are
2686 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2687 inside a PHI node. */
2689 static tree
2690 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2692 tree t = *tp, x;
2694 if (TYPE_P (t))
2695 *walk_subtrees = 0;
2697 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2698 #define CHECK_OP(N, MSG) \
2699 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2700 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2702 switch (TREE_CODE (t))
2704 case SSA_NAME:
2705 if (SSA_NAME_IN_FREE_LIST (t))
2707 error ("SSA name in freelist but still referenced");
2708 return *tp;
2710 break;
2712 case INDIRECT_REF:
2713 error ("INDIRECT_REF in gimple IL");
2714 return t;
2716 case MEM_REF:
2717 x = TREE_OPERAND (t, 0);
2718 if (!POINTER_TYPE_P (TREE_TYPE (x))
2719 || !is_gimple_mem_ref_addr (x))
2721 error ("invalid first operand of MEM_REF");
2722 return x;
2724 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2725 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2727 error ("invalid offset operand of MEM_REF");
2728 return TREE_OPERAND (t, 1);
2730 if (TREE_CODE (x) == ADDR_EXPR
2731 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2732 return x;
2733 *walk_subtrees = 0;
2734 break;
2736 case ASSERT_EXPR:
2737 x = fold (ASSERT_EXPR_COND (t));
2738 if (x == boolean_false_node)
2740 error ("ASSERT_EXPR with an always-false condition");
2741 return *tp;
2743 break;
2745 case MODIFY_EXPR:
2746 error ("MODIFY_EXPR not expected while having tuples");
2747 return *tp;
2749 case ADDR_EXPR:
2751 tree tem;
2753 gcc_assert (is_gimple_address (t));
2755 /* Skip any references (they will be checked when we recurse down the
2756 tree) and ensure that any variable used as a prefix is marked
2757 addressable. */
2758 for (x = TREE_OPERAND (t, 0);
2759 handled_component_p (x);
2760 x = TREE_OPERAND (x, 0))
2763 if ((tem = verify_address (t, x)))
2764 return tem;
2766 if (!(TREE_CODE (x) == VAR_DECL
2767 || TREE_CODE (x) == PARM_DECL
2768 || TREE_CODE (x) == RESULT_DECL))
2769 return NULL;
2771 if (!TREE_ADDRESSABLE (x))
2773 error ("address taken, but ADDRESSABLE bit not set");
2774 return x;
2777 break;
2780 case COND_EXPR:
2781 x = COND_EXPR_COND (t);
2782 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2784 error ("non-integral used in condition");
2785 return x;
2787 if (!is_gimple_condexpr (x))
2789 error ("invalid conditional operand");
2790 return x;
2792 break;
2794 case NON_LVALUE_EXPR:
2795 case TRUTH_NOT_EXPR:
2796 gcc_unreachable ();
2798 CASE_CONVERT:
2799 case FIX_TRUNC_EXPR:
2800 case FLOAT_EXPR:
2801 case NEGATE_EXPR:
2802 case ABS_EXPR:
2803 case BIT_NOT_EXPR:
2804 CHECK_OP (0, "invalid operand to unary operator");
2805 break;
2807 case REALPART_EXPR:
2808 case IMAGPART_EXPR:
2809 case BIT_FIELD_REF:
2810 if (!is_gimple_reg_type (TREE_TYPE (t)))
2812 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2813 return t;
2816 if (TREE_CODE (t) == BIT_FIELD_REF)
2818 tree t0 = TREE_OPERAND (t, 0);
2819 tree t1 = TREE_OPERAND (t, 1);
2820 tree t2 = TREE_OPERAND (t, 2);
2821 if (!tree_fits_uhwi_p (t1)
2822 || !tree_fits_uhwi_p (t2))
2824 error ("invalid position or size operand to BIT_FIELD_REF");
2825 return t;
2827 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2828 && (TYPE_PRECISION (TREE_TYPE (t))
2829 != tree_to_uhwi (t1)))
2831 error ("integral result type precision does not match "
2832 "field size of BIT_FIELD_REF");
2833 return t;
2835 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2836 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2837 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2838 != tree_to_uhwi (t1)))
2840 error ("mode precision of non-integral result does not "
2841 "match field size of BIT_FIELD_REF");
2842 return t;
2844 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2845 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2846 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2848 error ("position plus size exceeds size of referenced object in "
2849 "BIT_FIELD_REF");
2850 return t;
2853 t = TREE_OPERAND (t, 0);
2855 /* Fall-through. */
2856 case COMPONENT_REF:
2857 case ARRAY_REF:
2858 case ARRAY_RANGE_REF:
2859 case VIEW_CONVERT_EXPR:
2860 /* We have a nest of references. Verify that each of the operands
2861 that determine where to reference is either a constant or a variable,
2862 verify that the base is valid, and then show we've already checked
2863 the subtrees. */
2864 while (handled_component_p (t))
2866 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2867 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2868 else if (TREE_CODE (t) == ARRAY_REF
2869 || TREE_CODE (t) == ARRAY_RANGE_REF)
2871 CHECK_OP (1, "invalid array index");
2872 if (TREE_OPERAND (t, 2))
2873 CHECK_OP (2, "invalid array lower bound");
2874 if (TREE_OPERAND (t, 3))
2875 CHECK_OP (3, "invalid array stride");
2877 else if (TREE_CODE (t) == BIT_FIELD_REF
2878 || TREE_CODE (t) == REALPART_EXPR
2879 || TREE_CODE (t) == IMAGPART_EXPR)
2881 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2882 "REALPART_EXPR");
2883 return t;
2886 t = TREE_OPERAND (t, 0);
2889 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2891 error ("invalid reference prefix");
2892 return t;
2894 *walk_subtrees = 0;
2895 break;
2896 case PLUS_EXPR:
2897 case MINUS_EXPR:
2898 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2899 POINTER_PLUS_EXPR. */
2900 if (POINTER_TYPE_P (TREE_TYPE (t)))
2902 error ("invalid operand to plus/minus, type is a pointer");
2903 return t;
2905 CHECK_OP (0, "invalid operand to binary operator");
2906 CHECK_OP (1, "invalid operand to binary operator");
2907 break;
2909 case POINTER_PLUS_EXPR:
2910 /* Check to make sure the first operand is a pointer or reference type. */
2911 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2913 error ("invalid operand to pointer plus, first operand is not a pointer");
2914 return t;
2916 /* Check to make sure the second operand is a ptrofftype. */
2917 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2919 error ("invalid operand to pointer plus, second operand is not an "
2920 "integer type of appropriate width");
2921 return t;
2923 /* FALLTHROUGH */
2924 case LT_EXPR:
2925 case LE_EXPR:
2926 case GT_EXPR:
2927 case GE_EXPR:
2928 case EQ_EXPR:
2929 case NE_EXPR:
2930 case UNORDERED_EXPR:
2931 case ORDERED_EXPR:
2932 case UNLT_EXPR:
2933 case UNLE_EXPR:
2934 case UNGT_EXPR:
2935 case UNGE_EXPR:
2936 case UNEQ_EXPR:
2937 case LTGT_EXPR:
2938 case MULT_EXPR:
2939 case TRUNC_DIV_EXPR:
2940 case CEIL_DIV_EXPR:
2941 case FLOOR_DIV_EXPR:
2942 case ROUND_DIV_EXPR:
2943 case TRUNC_MOD_EXPR:
2944 case CEIL_MOD_EXPR:
2945 case FLOOR_MOD_EXPR:
2946 case ROUND_MOD_EXPR:
2947 case RDIV_EXPR:
2948 case EXACT_DIV_EXPR:
2949 case MIN_EXPR:
2950 case MAX_EXPR:
2951 case LSHIFT_EXPR:
2952 case RSHIFT_EXPR:
2953 case LROTATE_EXPR:
2954 case RROTATE_EXPR:
2955 case BIT_IOR_EXPR:
2956 case BIT_XOR_EXPR:
2957 case BIT_AND_EXPR:
2958 CHECK_OP (0, "invalid operand to binary operator");
2959 CHECK_OP (1, "invalid operand to binary operator");
2960 break;
2962 case CONSTRUCTOR:
2963 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2964 *walk_subtrees = 0;
2965 break;
2967 case CASE_LABEL_EXPR:
2968 if (CASE_CHAIN (t))
2970 error ("invalid CASE_CHAIN");
2971 return t;
2973 break;
2975 default:
2976 break;
2978 return NULL;
2980 #undef CHECK_OP
2984 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2985 Returns true if there is an error, otherwise false. */
2987 static bool
2988 verify_types_in_gimple_min_lval (tree expr)
2990 tree op;
2992 if (is_gimple_id (expr))
2993 return false;
2995 if (TREE_CODE (expr) != TARGET_MEM_REF
2996 && TREE_CODE (expr) != MEM_REF)
2998 error ("invalid expression for min lvalue");
2999 return true;
3002 /* TARGET_MEM_REFs are strange beasts. */
3003 if (TREE_CODE (expr) == TARGET_MEM_REF)
3004 return false;
3006 op = TREE_OPERAND (expr, 0);
3007 if (!is_gimple_val (op))
3009 error ("invalid operand in indirect reference");
3010 debug_generic_stmt (op);
3011 return true;
3013 /* Memory references now generally can involve a value conversion. */
3015 return false;
3018 /* Verify if EXPR is a valid GIMPLE reference expression. If
3019 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3020 if there is an error, otherwise false. */
3022 static bool
3023 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3025 while (handled_component_p (expr))
3027 tree op = TREE_OPERAND (expr, 0);
3029 if (TREE_CODE (expr) == ARRAY_REF
3030 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3032 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3033 || (TREE_OPERAND (expr, 2)
3034 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3035 || (TREE_OPERAND (expr, 3)
3036 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3038 error ("invalid operands to array reference");
3039 debug_generic_stmt (expr);
3040 return true;
3044 /* Verify if the reference array element types are compatible. */
3045 if (TREE_CODE (expr) == ARRAY_REF
3046 && !useless_type_conversion_p (TREE_TYPE (expr),
3047 TREE_TYPE (TREE_TYPE (op))))
3049 error ("type mismatch in array reference");
3050 debug_generic_stmt (TREE_TYPE (expr));
3051 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3052 return true;
3054 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3055 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3056 TREE_TYPE (TREE_TYPE (op))))
3058 error ("type mismatch in array range reference");
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3060 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3061 return true;
3064 if ((TREE_CODE (expr) == REALPART_EXPR
3065 || TREE_CODE (expr) == IMAGPART_EXPR)
3066 && !useless_type_conversion_p (TREE_TYPE (expr),
3067 TREE_TYPE (TREE_TYPE (op))))
3069 error ("type mismatch in real/imagpart reference");
3070 debug_generic_stmt (TREE_TYPE (expr));
3071 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3072 return true;
3075 if (TREE_CODE (expr) == COMPONENT_REF
3076 && !useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_OPERAND (expr, 1))))
3079 error ("type mismatch in component reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3082 return true;
3085 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3087 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3088 that their operand is not an SSA name or an invariant when
3089 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3090 bug). Otherwise there is nothing to verify, gross mismatches at
3091 most invoke undefined behavior. */
3092 if (require_lvalue
3093 && (TREE_CODE (op) == SSA_NAME
3094 || is_gimple_min_invariant (op)))
3096 error ("conversion of an SSA_NAME on the left hand side");
3097 debug_generic_stmt (expr);
3098 return true;
3100 else if (TREE_CODE (op) == SSA_NAME
3101 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3103 error ("conversion of register to a different size");
3104 debug_generic_stmt (expr);
3105 return true;
3107 else if (!handled_component_p (op))
3108 return false;
3111 expr = op;
3114 if (TREE_CODE (expr) == MEM_REF)
3116 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3118 error ("invalid address operand in MEM_REF");
3119 debug_generic_stmt (expr);
3120 return true;
3122 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3123 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3125 error ("invalid offset operand in MEM_REF");
3126 debug_generic_stmt (expr);
3127 return true;
3130 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3132 if (!TMR_BASE (expr)
3133 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3135 error ("invalid address operand in TARGET_MEM_REF");
3136 return true;
3138 if (!TMR_OFFSET (expr)
3139 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3140 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3142 error ("invalid offset operand in TARGET_MEM_REF");
3143 debug_generic_stmt (expr);
3144 return true;
3148 return ((require_lvalue || !is_gimple_min_invariant (expr))
3149 && verify_types_in_gimple_min_lval (expr));
3152 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3153 list of pointer-to types that is trivially convertible to DEST. */
3155 static bool
3156 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3158 tree src;
3160 if (!TYPE_POINTER_TO (src_obj))
3161 return true;
3163 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3164 if (useless_type_conversion_p (dest, src))
3165 return true;
3167 return false;
3170 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3171 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3173 static bool
3174 valid_fixed_convert_types_p (tree type1, tree type2)
3176 return (FIXED_POINT_TYPE_P (type1)
3177 && (INTEGRAL_TYPE_P (type2)
3178 || SCALAR_FLOAT_TYPE_P (type2)
3179 || FIXED_POINT_TYPE_P (type2)));
3182 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3183 is a problem, otherwise false. */
3185 static bool
3186 verify_gimple_call (gimple stmt)
3188 tree fn = gimple_call_fn (stmt);
3189 tree fntype, fndecl;
3190 unsigned i;
3192 if (gimple_call_internal_p (stmt))
3194 if (fn)
3196 error ("gimple call has two targets");
3197 debug_generic_stmt (fn);
3198 return true;
3201 else
3203 if (!fn)
3205 error ("gimple call has no target");
3206 return true;
3210 if (fn && !is_gimple_call_addr (fn))
3212 error ("invalid function in gimple call");
3213 debug_generic_stmt (fn);
3214 return true;
3217 if (fn
3218 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3219 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3220 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3222 error ("non-function in gimple call");
3223 return true;
3226 fndecl = gimple_call_fndecl (stmt);
3227 if (fndecl
3228 && TREE_CODE (fndecl) == FUNCTION_DECL
3229 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3230 && !DECL_PURE_P (fndecl)
3231 && !TREE_READONLY (fndecl))
3233 error ("invalid pure const state for function");
3234 return true;
3237 if (gimple_call_lhs (stmt)
3238 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3239 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3241 error ("invalid LHS in gimple call");
3242 return true;
3245 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3247 error ("LHS in noreturn call");
3248 return true;
3251 fntype = gimple_call_fntype (stmt);
3252 if (fntype
3253 && gimple_call_lhs (stmt)
3254 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3255 TREE_TYPE (fntype))
3256 /* ??? At least C++ misses conversions at assignments from
3257 void * call results.
3258 ??? Java is completely off. Especially with functions
3259 returning java.lang.Object.
3260 For now simply allow arbitrary pointer type conversions. */
3261 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3262 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3264 error ("invalid conversion in gimple call");
3265 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3266 debug_generic_stmt (TREE_TYPE (fntype));
3267 return true;
3270 if (gimple_call_chain (stmt)
3271 && !is_gimple_val (gimple_call_chain (stmt)))
3273 error ("invalid static chain in gimple call");
3274 debug_generic_stmt (gimple_call_chain (stmt));
3275 return true;
3278 /* If there is a static chain argument, this should not be an indirect
3279 call, and the decl should have DECL_STATIC_CHAIN set. */
3280 if (gimple_call_chain (stmt))
3282 if (!gimple_call_fndecl (stmt))
3284 error ("static chain in indirect gimple call");
3285 return true;
3287 fn = TREE_OPERAND (fn, 0);
3289 if (!DECL_STATIC_CHAIN (fn))
3291 error ("static chain with function that doesn%'t use one");
3292 return true;
3296 /* ??? The C frontend passes unpromoted arguments in case it
3297 didn't see a function declaration before the call. So for now
3298 leave the call arguments mostly unverified. Once we gimplify
3299 unit-at-a-time we have a chance to fix this. */
3301 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3303 tree arg = gimple_call_arg (stmt, i);
3304 if ((is_gimple_reg_type (TREE_TYPE (arg))
3305 && !is_gimple_val (arg))
3306 || (!is_gimple_reg_type (TREE_TYPE (arg))
3307 && !is_gimple_lvalue (arg)))
3309 error ("invalid argument to gimple call");
3310 debug_generic_expr (arg);
3311 return true;
3315 return false;
3318 /* Verifies the gimple comparison with the result type TYPE and
3319 the operands OP0 and OP1. */
3321 static bool
3322 verify_gimple_comparison (tree type, tree op0, tree op1)
3324 tree op0_type = TREE_TYPE (op0);
3325 tree op1_type = TREE_TYPE (op1);
3327 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3329 error ("invalid operands in gimple comparison");
3330 return true;
3333 /* For comparisons we do not have the operations type as the
3334 effective type the comparison is carried out in. Instead
3335 we require that either the first operand is trivially
3336 convertible into the second, or the other way around.
3337 Because we special-case pointers to void we allow
3338 comparisons of pointers with the same mode as well. */
3339 if (!useless_type_conversion_p (op0_type, op1_type)
3340 && !useless_type_conversion_p (op1_type, op0_type)
3341 && (!POINTER_TYPE_P (op0_type)
3342 || !POINTER_TYPE_P (op1_type)
3343 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3345 error ("mismatching comparison operand types");
3346 debug_generic_expr (op0_type);
3347 debug_generic_expr (op1_type);
3348 return true;
3351 /* The resulting type of a comparison may be an effective boolean type. */
3352 if (INTEGRAL_TYPE_P (type)
3353 && (TREE_CODE (type) == BOOLEAN_TYPE
3354 || TYPE_PRECISION (type) == 1))
3356 if (TREE_CODE (op0_type) == VECTOR_TYPE
3357 || TREE_CODE (op1_type) == VECTOR_TYPE)
3359 error ("vector comparison returning a boolean");
3360 debug_generic_expr (op0_type);
3361 debug_generic_expr (op1_type);
3362 return true;
3365 /* Or an integer vector type with the same size and element count
3366 as the comparison operand types. */
3367 else if (TREE_CODE (type) == VECTOR_TYPE
3368 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3370 if (TREE_CODE (op0_type) != VECTOR_TYPE
3371 || TREE_CODE (op1_type) != VECTOR_TYPE)
3373 error ("non-vector operands in vector comparison");
3374 debug_generic_expr (op0_type);
3375 debug_generic_expr (op1_type);
3376 return true;
3379 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3380 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3381 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3382 /* The result of a vector comparison is of signed
3383 integral type. */
3384 || TYPE_UNSIGNED (TREE_TYPE (type)))
3386 error ("invalid vector comparison resulting type");
3387 debug_generic_expr (type);
3388 return true;
3391 else
3393 error ("bogus comparison result type");
3394 debug_generic_expr (type);
3395 return true;
3398 return false;
3401 /* Verify a gimple assignment statement STMT with an unary rhs.
3402 Returns true if anything is wrong. */
3404 static bool
3405 verify_gimple_assign_unary (gimple stmt)
3407 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3408 tree lhs = gimple_assign_lhs (stmt);
3409 tree lhs_type = TREE_TYPE (lhs);
3410 tree rhs1 = gimple_assign_rhs1 (stmt);
3411 tree rhs1_type = TREE_TYPE (rhs1);
3413 if (!is_gimple_reg (lhs))
3415 error ("non-register as LHS of unary operation");
3416 return true;
3419 if (!is_gimple_val (rhs1))
3421 error ("invalid operand in unary operation");
3422 return true;
3425 /* First handle conversions. */
3426 switch (rhs_code)
3428 CASE_CONVERT:
3430 /* Allow conversions from pointer type to integral type only if
3431 there is no sign or zero extension involved.
3432 For targets were the precision of ptrofftype doesn't match that
3433 of pointers we need to allow arbitrary conversions to ptrofftype. */
3434 if ((POINTER_TYPE_P (lhs_type)
3435 && INTEGRAL_TYPE_P (rhs1_type))
3436 || (POINTER_TYPE_P (rhs1_type)
3437 && INTEGRAL_TYPE_P (lhs_type)
3438 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3439 || ptrofftype_p (sizetype))))
3440 return false;
3442 /* Allow conversion from integral to offset type and vice versa. */
3443 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3444 && INTEGRAL_TYPE_P (rhs1_type))
3445 || (INTEGRAL_TYPE_P (lhs_type)
3446 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3447 return false;
3449 /* Otherwise assert we are converting between types of the
3450 same kind. */
3451 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3453 error ("invalid types in nop conversion");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 return true;
3459 return false;
3462 case ADDR_SPACE_CONVERT_EXPR:
3464 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3465 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3466 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3468 error ("invalid types in address space conversion");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 return true;
3474 return false;
3477 case FIXED_CONVERT_EXPR:
3479 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3480 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3482 error ("invalid types in fixed-point conversion");
3483 debug_generic_expr (lhs_type);
3484 debug_generic_expr (rhs1_type);
3485 return true;
3488 return false;
3491 case FLOAT_EXPR:
3493 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3494 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3495 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3497 error ("invalid types in conversion to floating point");
3498 debug_generic_expr (lhs_type);
3499 debug_generic_expr (rhs1_type);
3500 return true;
3503 return false;
3506 case FIX_TRUNC_EXPR:
3508 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3509 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3510 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3512 error ("invalid types in conversion to integer");
3513 debug_generic_expr (lhs_type);
3514 debug_generic_expr (rhs1_type);
3515 return true;
3518 return false;
3520 case REDUC_MAX_EXPR:
3521 case REDUC_MIN_EXPR:
3522 case REDUC_PLUS_EXPR:
3523 if (!VECTOR_TYPE_P (rhs1_type)
3524 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3526 error ("reduction should convert from vector to element type");
3527 debug_generic_expr (lhs_type);
3528 debug_generic_expr (rhs1_type);
3529 return true;
3531 return false;
3533 case VEC_UNPACK_HI_EXPR:
3534 case VEC_UNPACK_LO_EXPR:
3535 case VEC_UNPACK_FLOAT_HI_EXPR:
3536 case VEC_UNPACK_FLOAT_LO_EXPR:
3537 /* FIXME. */
3538 return false;
3540 case NEGATE_EXPR:
3541 case ABS_EXPR:
3542 case BIT_NOT_EXPR:
3543 case PAREN_EXPR:
3544 case NON_LVALUE_EXPR:
3545 case CONJ_EXPR:
3546 break;
3548 default:
3549 gcc_unreachable ();
3552 /* For the remaining codes assert there is no conversion involved. */
3553 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3555 error ("non-trivial conversion in unary operation");
3556 debug_generic_expr (lhs_type);
3557 debug_generic_expr (rhs1_type);
3558 return true;
3561 return false;
3564 /* Verify a gimple assignment statement STMT with a binary rhs.
3565 Returns true if anything is wrong. */
3567 static bool
3568 verify_gimple_assign_binary (gimple stmt)
3570 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3571 tree lhs = gimple_assign_lhs (stmt);
3572 tree lhs_type = TREE_TYPE (lhs);
3573 tree rhs1 = gimple_assign_rhs1 (stmt);
3574 tree rhs1_type = TREE_TYPE (rhs1);
3575 tree rhs2 = gimple_assign_rhs2 (stmt);
3576 tree rhs2_type = TREE_TYPE (rhs2);
3578 if (!is_gimple_reg (lhs))
3580 error ("non-register as LHS of binary operation");
3581 return true;
3584 if (!is_gimple_val (rhs1)
3585 || !is_gimple_val (rhs2))
3587 error ("invalid operands in binary operation");
3588 return true;
3591 /* First handle operations that involve different types. */
3592 switch (rhs_code)
3594 case COMPLEX_EXPR:
3596 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3597 || !(INTEGRAL_TYPE_P (rhs1_type)
3598 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3599 || !(INTEGRAL_TYPE_P (rhs2_type)
3600 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3602 error ("type mismatch in complex expression");
3603 debug_generic_expr (lhs_type);
3604 debug_generic_expr (rhs1_type);
3605 debug_generic_expr (rhs2_type);
3606 return true;
3609 return false;
3612 case LSHIFT_EXPR:
3613 case RSHIFT_EXPR:
3614 case LROTATE_EXPR:
3615 case RROTATE_EXPR:
3617 /* Shifts and rotates are ok on integral types, fixed point
3618 types and integer vector types. */
3619 if ((!INTEGRAL_TYPE_P (rhs1_type)
3620 && !FIXED_POINT_TYPE_P (rhs1_type)
3621 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3622 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3623 || (!INTEGRAL_TYPE_P (rhs2_type)
3624 /* Vector shifts of vectors are also ok. */
3625 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3626 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3627 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3628 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3629 || !useless_type_conversion_p (lhs_type, rhs1_type))
3631 error ("type mismatch in shift expression");
3632 debug_generic_expr (lhs_type);
3633 debug_generic_expr (rhs1_type);
3634 debug_generic_expr (rhs2_type);
3635 return true;
3638 return false;
3641 case VEC_RSHIFT_EXPR:
3643 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3644 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3645 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3646 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3647 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3648 || (!INTEGRAL_TYPE_P (rhs2_type)
3649 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3650 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3651 || !useless_type_conversion_p (lhs_type, rhs1_type))
3653 error ("type mismatch in vector shift expression");
3654 debug_generic_expr (lhs_type);
3655 debug_generic_expr (rhs1_type);
3656 debug_generic_expr (rhs2_type);
3657 return true;
3659 /* For shifting a vector of non-integral components we
3660 only allow shifting by a constant multiple of the element size. */
3661 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3662 && (TREE_CODE (rhs2) != INTEGER_CST
3663 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3664 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3666 error ("non-element sized vector shift of floating point vector");
3667 return true;
3670 return false;
3673 case WIDEN_LSHIFT_EXPR:
3675 if (!INTEGRAL_TYPE_P (lhs_type)
3676 || !INTEGRAL_TYPE_P (rhs1_type)
3677 || TREE_CODE (rhs2) != INTEGER_CST
3678 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3680 error ("type mismatch in widening vector shift expression");
3681 debug_generic_expr (lhs_type);
3682 debug_generic_expr (rhs1_type);
3683 debug_generic_expr (rhs2_type);
3684 return true;
3687 return false;
3690 case VEC_WIDEN_LSHIFT_HI_EXPR:
3691 case VEC_WIDEN_LSHIFT_LO_EXPR:
3693 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3694 || TREE_CODE (lhs_type) != VECTOR_TYPE
3695 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3696 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3697 || TREE_CODE (rhs2) != INTEGER_CST
3698 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3699 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3701 error ("type mismatch in widening vector shift expression");
3702 debug_generic_expr (lhs_type);
3703 debug_generic_expr (rhs1_type);
3704 debug_generic_expr (rhs2_type);
3705 return true;
3708 return false;
3711 case PLUS_EXPR:
3712 case MINUS_EXPR:
3714 tree lhs_etype = lhs_type;
3715 tree rhs1_etype = rhs1_type;
3716 tree rhs2_etype = rhs2_type;
3717 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3719 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3720 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3722 error ("invalid non-vector operands to vector valued plus");
3723 return true;
3725 lhs_etype = TREE_TYPE (lhs_type);
3726 rhs1_etype = TREE_TYPE (rhs1_type);
3727 rhs2_etype = TREE_TYPE (rhs2_type);
3729 if (POINTER_TYPE_P (lhs_etype)
3730 || POINTER_TYPE_P (rhs1_etype)
3731 || POINTER_TYPE_P (rhs2_etype))
3733 error ("invalid (pointer) operands to plus/minus");
3734 return true;
3737 /* Continue with generic binary expression handling. */
3738 break;
3741 case POINTER_PLUS_EXPR:
3743 if (!POINTER_TYPE_P (rhs1_type)
3744 || !useless_type_conversion_p (lhs_type, rhs1_type)
3745 || !ptrofftype_p (rhs2_type))
3747 error ("type mismatch in pointer plus expression");
3748 debug_generic_stmt (lhs_type);
3749 debug_generic_stmt (rhs1_type);
3750 debug_generic_stmt (rhs2_type);
3751 return true;
3754 return false;
3757 case TRUTH_ANDIF_EXPR:
3758 case TRUTH_ORIF_EXPR:
3759 case TRUTH_AND_EXPR:
3760 case TRUTH_OR_EXPR:
3761 case TRUTH_XOR_EXPR:
3763 gcc_unreachable ();
3765 case LT_EXPR:
3766 case LE_EXPR:
3767 case GT_EXPR:
3768 case GE_EXPR:
3769 case EQ_EXPR:
3770 case NE_EXPR:
3771 case UNORDERED_EXPR:
3772 case ORDERED_EXPR:
3773 case UNLT_EXPR:
3774 case UNLE_EXPR:
3775 case UNGT_EXPR:
3776 case UNGE_EXPR:
3777 case UNEQ_EXPR:
3778 case LTGT_EXPR:
3779 /* Comparisons are also binary, but the result type is not
3780 connected to the operand types. */
3781 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3783 case WIDEN_MULT_EXPR:
3784 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3785 return true;
3786 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3787 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3789 case WIDEN_SUM_EXPR:
3790 case VEC_WIDEN_MULT_HI_EXPR:
3791 case VEC_WIDEN_MULT_LO_EXPR:
3792 case VEC_WIDEN_MULT_EVEN_EXPR:
3793 case VEC_WIDEN_MULT_ODD_EXPR:
3794 case VEC_PACK_TRUNC_EXPR:
3795 case VEC_PACK_SAT_EXPR:
3796 case VEC_PACK_FIX_TRUNC_EXPR:
3797 /* FIXME. */
3798 return false;
3800 case MULT_EXPR:
3801 case MULT_HIGHPART_EXPR:
3802 case TRUNC_DIV_EXPR:
3803 case CEIL_DIV_EXPR:
3804 case FLOOR_DIV_EXPR:
3805 case ROUND_DIV_EXPR:
3806 case TRUNC_MOD_EXPR:
3807 case CEIL_MOD_EXPR:
3808 case FLOOR_MOD_EXPR:
3809 case ROUND_MOD_EXPR:
3810 case RDIV_EXPR:
3811 case EXACT_DIV_EXPR:
3812 case MIN_EXPR:
3813 case MAX_EXPR:
3814 case BIT_IOR_EXPR:
3815 case BIT_XOR_EXPR:
3816 case BIT_AND_EXPR:
3817 /* Continue with generic binary expression handling. */
3818 break;
3820 default:
3821 gcc_unreachable ();
3824 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3825 || !useless_type_conversion_p (lhs_type, rhs2_type))
3827 error ("type mismatch in binary expression");
3828 debug_generic_stmt (lhs_type);
3829 debug_generic_stmt (rhs1_type);
3830 debug_generic_stmt (rhs2_type);
3831 return true;
3834 return false;
3837 /* Verify a gimple assignment statement STMT with a ternary rhs.
3838 Returns true if anything is wrong. */
3840 static bool
3841 verify_gimple_assign_ternary (gimple stmt)
3843 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3844 tree lhs = gimple_assign_lhs (stmt);
3845 tree lhs_type = TREE_TYPE (lhs);
3846 tree rhs1 = gimple_assign_rhs1 (stmt);
3847 tree rhs1_type = TREE_TYPE (rhs1);
3848 tree rhs2 = gimple_assign_rhs2 (stmt);
3849 tree rhs2_type = TREE_TYPE (rhs2);
3850 tree rhs3 = gimple_assign_rhs3 (stmt);
3851 tree rhs3_type = TREE_TYPE (rhs3);
3853 if (!is_gimple_reg (lhs))
3855 error ("non-register as LHS of ternary operation");
3856 return true;
3859 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3860 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3861 || !is_gimple_val (rhs2)
3862 || !is_gimple_val (rhs3))
3864 error ("invalid operands in ternary operation");
3865 return true;
3868 /* First handle operations that involve different types. */
3869 switch (rhs_code)
3871 case WIDEN_MULT_PLUS_EXPR:
3872 case WIDEN_MULT_MINUS_EXPR:
3873 if ((!INTEGRAL_TYPE_P (rhs1_type)
3874 && !FIXED_POINT_TYPE_P (rhs1_type))
3875 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3876 || !useless_type_conversion_p (lhs_type, rhs3_type)
3877 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3878 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3880 error ("type mismatch in widening multiply-accumulate expression");
3881 debug_generic_expr (lhs_type);
3882 debug_generic_expr (rhs1_type);
3883 debug_generic_expr (rhs2_type);
3884 debug_generic_expr (rhs3_type);
3885 return true;
3887 break;
3889 case FMA_EXPR:
3890 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3891 || !useless_type_conversion_p (lhs_type, rhs2_type)
3892 || !useless_type_conversion_p (lhs_type, rhs3_type))
3894 error ("type mismatch in fused multiply-add expression");
3895 debug_generic_expr (lhs_type);
3896 debug_generic_expr (rhs1_type);
3897 debug_generic_expr (rhs2_type);
3898 debug_generic_expr (rhs3_type);
3899 return true;
3901 break;
3903 case COND_EXPR:
3904 case VEC_COND_EXPR:
3905 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3906 || !useless_type_conversion_p (lhs_type, rhs3_type))
3908 error ("type mismatch in conditional expression");
3909 debug_generic_expr (lhs_type);
3910 debug_generic_expr (rhs2_type);
3911 debug_generic_expr (rhs3_type);
3912 return true;
3914 break;
3916 case VEC_PERM_EXPR:
3917 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3918 || !useless_type_conversion_p (lhs_type, rhs2_type))
3920 error ("type mismatch in vector permute expression");
3921 debug_generic_expr (lhs_type);
3922 debug_generic_expr (rhs1_type);
3923 debug_generic_expr (rhs2_type);
3924 debug_generic_expr (rhs3_type);
3925 return true;
3928 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3929 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3930 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3932 error ("vector types expected in vector permute expression");
3933 debug_generic_expr (lhs_type);
3934 debug_generic_expr (rhs1_type);
3935 debug_generic_expr (rhs2_type);
3936 debug_generic_expr (rhs3_type);
3937 return true;
3940 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3941 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3942 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3943 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3944 != TYPE_VECTOR_SUBPARTS (lhs_type))
3946 error ("vectors with different element number found "
3947 "in vector permute expression");
3948 debug_generic_expr (lhs_type);
3949 debug_generic_expr (rhs1_type);
3950 debug_generic_expr (rhs2_type);
3951 debug_generic_expr (rhs3_type);
3952 return true;
3955 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3956 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3957 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3959 error ("invalid mask type in vector permute expression");
3960 debug_generic_expr (lhs_type);
3961 debug_generic_expr (rhs1_type);
3962 debug_generic_expr (rhs2_type);
3963 debug_generic_expr (rhs3_type);
3964 return true;
3967 return false;
3969 case DOT_PROD_EXPR:
3970 case REALIGN_LOAD_EXPR:
3971 /* FIXME. */
3972 return false;
3974 default:
3975 gcc_unreachable ();
3977 return false;
3980 /* Verify a gimple assignment statement STMT with a single rhs.
3981 Returns true if anything is wrong. */
3983 static bool
3984 verify_gimple_assign_single (gimple stmt)
3986 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3987 tree lhs = gimple_assign_lhs (stmt);
3988 tree lhs_type = TREE_TYPE (lhs);
3989 tree rhs1 = gimple_assign_rhs1 (stmt);
3990 tree rhs1_type = TREE_TYPE (rhs1);
3991 bool res = false;
3993 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3995 error ("non-trivial conversion at assignment");
3996 debug_generic_expr (lhs_type);
3997 debug_generic_expr (rhs1_type);
3998 return true;
4001 if (gimple_clobber_p (stmt)
4002 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4004 error ("non-decl/MEM_REF LHS in clobber statement");
4005 debug_generic_expr (lhs);
4006 return true;
4009 if (handled_component_p (lhs)
4010 || TREE_CODE (lhs) == MEM_REF
4011 || TREE_CODE (lhs) == TARGET_MEM_REF)
4012 res |= verify_types_in_gimple_reference (lhs, true);
4014 /* Special codes we cannot handle via their class. */
4015 switch (rhs_code)
4017 case ADDR_EXPR:
4019 tree op = TREE_OPERAND (rhs1, 0);
4020 if (!is_gimple_addressable (op))
4022 error ("invalid operand in unary expression");
4023 return true;
4026 /* Technically there is no longer a need for matching types, but
4027 gimple hygiene asks for this check. In LTO we can end up
4028 combining incompatible units and thus end up with addresses
4029 of globals that change their type to a common one. */
4030 if (!in_lto_p
4031 && !types_compatible_p (TREE_TYPE (op),
4032 TREE_TYPE (TREE_TYPE (rhs1)))
4033 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4034 TREE_TYPE (op)))
4036 error ("type mismatch in address expression");
4037 debug_generic_stmt (TREE_TYPE (rhs1));
4038 debug_generic_stmt (TREE_TYPE (op));
4039 return true;
4042 return verify_types_in_gimple_reference (op, true);
4045 /* tcc_reference */
4046 case INDIRECT_REF:
4047 error ("INDIRECT_REF in gimple IL");
4048 return true;
4050 case COMPONENT_REF:
4051 case BIT_FIELD_REF:
4052 case ARRAY_REF:
4053 case ARRAY_RANGE_REF:
4054 case VIEW_CONVERT_EXPR:
4055 case REALPART_EXPR:
4056 case IMAGPART_EXPR:
4057 case TARGET_MEM_REF:
4058 case MEM_REF:
4059 if (!is_gimple_reg (lhs)
4060 && is_gimple_reg_type (TREE_TYPE (lhs)))
4062 error ("invalid rhs for gimple memory store");
4063 debug_generic_stmt (lhs);
4064 debug_generic_stmt (rhs1);
4065 return true;
4067 return res || verify_types_in_gimple_reference (rhs1, false);
4069 /* tcc_constant */
4070 case SSA_NAME:
4071 case INTEGER_CST:
4072 case REAL_CST:
4073 case FIXED_CST:
4074 case COMPLEX_CST:
4075 case VECTOR_CST:
4076 case STRING_CST:
4077 return res;
4079 /* tcc_declaration */
4080 case CONST_DECL:
4081 return res;
4082 case VAR_DECL:
4083 case PARM_DECL:
4084 if (!is_gimple_reg (lhs)
4085 && !is_gimple_reg (rhs1)
4086 && is_gimple_reg_type (TREE_TYPE (lhs)))
4088 error ("invalid rhs for gimple memory store");
4089 debug_generic_stmt (lhs);
4090 debug_generic_stmt (rhs1);
4091 return true;
4093 return res;
4095 case CONSTRUCTOR:
4096 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4098 unsigned int i;
4099 tree elt_i, elt_v, elt_t = NULL_TREE;
4101 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4102 return res;
4103 /* For vector CONSTRUCTORs we require that either it is empty
4104 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4105 (then the element count must be correct to cover the whole
4106 outer vector and index must be NULL on all elements, or it is
4107 a CONSTRUCTOR of scalar elements, where we as an exception allow
4108 smaller number of elements (assuming zero filling) and
4109 consecutive indexes as compared to NULL indexes (such
4110 CONSTRUCTORs can appear in the IL from FEs). */
4111 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4113 if (elt_t == NULL_TREE)
4115 elt_t = TREE_TYPE (elt_v);
4116 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4118 tree elt_t = TREE_TYPE (elt_v);
4119 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4120 TREE_TYPE (elt_t)))
4122 error ("incorrect type of vector CONSTRUCTOR"
4123 " elements");
4124 debug_generic_stmt (rhs1);
4125 return true;
4127 else if (CONSTRUCTOR_NELTS (rhs1)
4128 * TYPE_VECTOR_SUBPARTS (elt_t)
4129 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4131 error ("incorrect number of vector CONSTRUCTOR"
4132 " elements");
4133 debug_generic_stmt (rhs1);
4134 return true;
4137 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4138 elt_t))
4140 error ("incorrect type of vector CONSTRUCTOR elements");
4141 debug_generic_stmt (rhs1);
4142 return true;
4144 else if (CONSTRUCTOR_NELTS (rhs1)
4145 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4147 error ("incorrect number of vector CONSTRUCTOR elements");
4148 debug_generic_stmt (rhs1);
4149 return true;
4152 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4154 error ("incorrect type of vector CONSTRUCTOR elements");
4155 debug_generic_stmt (rhs1);
4156 return true;
4158 if (elt_i != NULL_TREE
4159 && (TREE_CODE (elt_t) == VECTOR_TYPE
4160 || TREE_CODE (elt_i) != INTEGER_CST
4161 || compare_tree_int (elt_i, i) != 0))
4163 error ("vector CONSTRUCTOR with non-NULL element index");
4164 debug_generic_stmt (rhs1);
4165 return true;
4169 return res;
4170 case OBJ_TYPE_REF:
4171 case ASSERT_EXPR:
4172 case WITH_SIZE_EXPR:
4173 /* FIXME. */
4174 return res;
4176 default:;
4179 return res;
4182 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4183 is a problem, otherwise false. */
4185 static bool
4186 verify_gimple_assign (gimple stmt)
4188 switch (gimple_assign_rhs_class (stmt))
4190 case GIMPLE_SINGLE_RHS:
4191 return verify_gimple_assign_single (stmt);
4193 case GIMPLE_UNARY_RHS:
4194 return verify_gimple_assign_unary (stmt);
4196 case GIMPLE_BINARY_RHS:
4197 return verify_gimple_assign_binary (stmt);
4199 case GIMPLE_TERNARY_RHS:
4200 return verify_gimple_assign_ternary (stmt);
4202 default:
4203 gcc_unreachable ();
4207 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4208 is a problem, otherwise false. */
4210 static bool
4211 verify_gimple_return (gimple stmt)
4213 tree op = gimple_return_retval (stmt);
4214 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4216 /* We cannot test for present return values as we do not fix up missing
4217 return values from the original source. */
4218 if (op == NULL)
4219 return false;
4221 if (!is_gimple_val (op)
4222 && TREE_CODE (op) != RESULT_DECL)
4224 error ("invalid operand in return statement");
4225 debug_generic_stmt (op);
4226 return true;
4229 if ((TREE_CODE (op) == RESULT_DECL
4230 && DECL_BY_REFERENCE (op))
4231 || (TREE_CODE (op) == SSA_NAME
4232 && SSA_NAME_VAR (op)
4233 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4234 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4235 op = TREE_TYPE (op);
4237 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4239 error ("invalid conversion in return statement");
4240 debug_generic_stmt (restype);
4241 debug_generic_stmt (TREE_TYPE (op));
4242 return true;
4245 return false;
4249 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4250 is a problem, otherwise false. */
4252 static bool
4253 verify_gimple_goto (gimple stmt)
4255 tree dest = gimple_goto_dest (stmt);
4257 /* ??? We have two canonical forms of direct goto destinations, a
4258 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4259 if (TREE_CODE (dest) != LABEL_DECL
4260 && (!is_gimple_val (dest)
4261 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4263 error ("goto destination is neither a label nor a pointer");
4264 return true;
4267 return false;
4270 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4271 is a problem, otherwise false. */
4273 static bool
4274 verify_gimple_switch (gimple stmt)
4276 unsigned int i, n;
4277 tree elt, prev_upper_bound = NULL_TREE;
4278 tree index_type, elt_type = NULL_TREE;
4280 if (!is_gimple_val (gimple_switch_index (stmt)))
4282 error ("invalid operand to switch statement");
4283 debug_generic_stmt (gimple_switch_index (stmt));
4284 return true;
4287 index_type = TREE_TYPE (gimple_switch_index (stmt));
4288 if (! INTEGRAL_TYPE_P (index_type))
4290 error ("non-integral type switch statement");
4291 debug_generic_expr (index_type);
4292 return true;
4295 elt = gimple_switch_label (stmt, 0);
4296 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4298 error ("invalid default case label in switch statement");
4299 debug_generic_expr (elt);
4300 return true;
4303 n = gimple_switch_num_labels (stmt);
4304 for (i = 1; i < n; i++)
4306 elt = gimple_switch_label (stmt, i);
4308 if (! CASE_LOW (elt))
4310 error ("invalid case label in switch statement");
4311 debug_generic_expr (elt);
4312 return true;
4314 if (CASE_HIGH (elt)
4315 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4317 error ("invalid case range in switch statement");
4318 debug_generic_expr (elt);
4319 return true;
4322 if (elt_type)
4324 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4325 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4327 error ("type mismatch for case label in switch statement");
4328 debug_generic_expr (elt);
4329 return true;
4332 else
4334 elt_type = TREE_TYPE (CASE_LOW (elt));
4335 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4337 error ("type precision mismatch in switch statement");
4338 return true;
4342 if (prev_upper_bound)
4344 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4346 error ("case labels not sorted in switch statement");
4347 return true;
4351 prev_upper_bound = CASE_HIGH (elt);
4352 if (! prev_upper_bound)
4353 prev_upper_bound = CASE_LOW (elt);
4356 return false;
4359 /* Verify a gimple debug statement STMT.
4360 Returns true if anything is wrong. */
4362 static bool
4363 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4365 /* There isn't much that could be wrong in a gimple debug stmt. A
4366 gimple debug bind stmt, for example, maps a tree, that's usually
4367 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4368 component or member of an aggregate type, to another tree, that
4369 can be an arbitrary expression. These stmts expand into debug
4370 insns, and are converted to debug notes by var-tracking.c. */
4371 return false;
4374 /* Verify a gimple label statement STMT.
4375 Returns true if anything is wrong. */
4377 static bool
4378 verify_gimple_label (gimple stmt)
4380 tree decl = gimple_label_label (stmt);
4381 int uid;
4382 bool err = false;
4384 if (TREE_CODE (decl) != LABEL_DECL)
4385 return true;
4386 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4387 && DECL_CONTEXT (decl) != current_function_decl)
4389 error ("label's context is not the current function decl");
4390 err |= true;
4393 uid = LABEL_DECL_UID (decl);
4394 if (cfun->cfg
4395 && (uid == -1
4396 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4398 error ("incorrect entry in label_to_block_map");
4399 err |= true;
4402 uid = EH_LANDING_PAD_NR (decl);
4403 if (uid)
4405 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4406 if (decl != lp->post_landing_pad)
4408 error ("incorrect setting of landing pad number");
4409 err |= true;
4413 return err;
4416 /* Verify the GIMPLE statement STMT. Returns true if there is an
4417 error, otherwise false. */
4419 static bool
4420 verify_gimple_stmt (gimple stmt)
4422 switch (gimple_code (stmt))
4424 case GIMPLE_ASSIGN:
4425 return verify_gimple_assign (stmt);
4427 case GIMPLE_LABEL:
4428 return verify_gimple_label (stmt);
4430 case GIMPLE_CALL:
4431 return verify_gimple_call (stmt);
4433 case GIMPLE_COND:
4434 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4436 error ("invalid comparison code in gimple cond");
4437 return true;
4439 if (!(!gimple_cond_true_label (stmt)
4440 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4441 || !(!gimple_cond_false_label (stmt)
4442 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4444 error ("invalid labels in gimple cond");
4445 return true;
4448 return verify_gimple_comparison (boolean_type_node,
4449 gimple_cond_lhs (stmt),
4450 gimple_cond_rhs (stmt));
4452 case GIMPLE_GOTO:
4453 return verify_gimple_goto (stmt);
4455 case GIMPLE_SWITCH:
4456 return verify_gimple_switch (stmt);
4458 case GIMPLE_RETURN:
4459 return verify_gimple_return (stmt);
4461 case GIMPLE_ASM:
4462 return false;
4464 case GIMPLE_TRANSACTION:
4465 return verify_gimple_transaction (stmt);
4467 /* Tuples that do not have tree operands. */
4468 case GIMPLE_NOP:
4469 case GIMPLE_PREDICT:
4470 case GIMPLE_RESX:
4471 case GIMPLE_EH_DISPATCH:
4472 case GIMPLE_EH_MUST_NOT_THROW:
4473 return false;
4475 CASE_GIMPLE_OMP:
4476 /* OpenMP directives are validated by the FE and never operated
4477 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4478 non-gimple expressions when the main index variable has had
4479 its address taken. This does not affect the loop itself
4480 because the header of an GIMPLE_OMP_FOR is merely used to determine
4481 how to setup the parallel iteration. */
4482 return false;
4484 case GIMPLE_DEBUG:
4485 return verify_gimple_debug (stmt);
4487 default:
4488 gcc_unreachable ();
4492 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4493 and false otherwise. */
4495 static bool
4496 verify_gimple_phi (gimple phi)
4498 bool err = false;
4499 unsigned i;
4500 tree phi_result = gimple_phi_result (phi);
4501 bool virtual_p;
4503 if (!phi_result)
4505 error ("invalid PHI result");
4506 return true;
4509 virtual_p = virtual_operand_p (phi_result);
4510 if (TREE_CODE (phi_result) != SSA_NAME
4511 || (virtual_p
4512 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4514 error ("invalid PHI result");
4515 err = true;
4518 for (i = 0; i < gimple_phi_num_args (phi); i++)
4520 tree t = gimple_phi_arg_def (phi, i);
4522 if (!t)
4524 error ("missing PHI def");
4525 err |= true;
4526 continue;
4528 /* Addressable variables do have SSA_NAMEs but they
4529 are not considered gimple values. */
4530 else if ((TREE_CODE (t) == SSA_NAME
4531 && virtual_p != virtual_operand_p (t))
4532 || (virtual_p
4533 && (TREE_CODE (t) != SSA_NAME
4534 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4535 || (!virtual_p
4536 && !is_gimple_val (t)))
4538 error ("invalid PHI argument");
4539 debug_generic_expr (t);
4540 err |= true;
4542 #ifdef ENABLE_TYPES_CHECKING
4543 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4545 error ("incompatible types in PHI argument %u", i);
4546 debug_generic_stmt (TREE_TYPE (phi_result));
4547 debug_generic_stmt (TREE_TYPE (t));
4548 err |= true;
4550 #endif
4553 return err;
4556 /* Verify the GIMPLE statements inside the sequence STMTS. */
4558 static bool
4559 verify_gimple_in_seq_2 (gimple_seq stmts)
4561 gimple_stmt_iterator ittr;
4562 bool err = false;
4564 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4566 gimple stmt = gsi_stmt (ittr);
4568 switch (gimple_code (stmt))
4570 case GIMPLE_BIND:
4571 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4572 break;
4574 case GIMPLE_TRY:
4575 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4576 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4577 break;
4579 case GIMPLE_EH_FILTER:
4580 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4581 break;
4583 case GIMPLE_EH_ELSE:
4584 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4585 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4586 break;
4588 case GIMPLE_CATCH:
4589 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4590 break;
4592 case GIMPLE_TRANSACTION:
4593 err |= verify_gimple_transaction (stmt);
4594 break;
4596 default:
4598 bool err2 = verify_gimple_stmt (stmt);
4599 if (err2)
4600 debug_gimple_stmt (stmt);
4601 err |= err2;
4606 return err;
4609 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4610 is a problem, otherwise false. */
4612 static bool
4613 verify_gimple_transaction (gimple stmt)
4615 tree lab = gimple_transaction_label (stmt);
4616 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4617 return true;
4618 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4622 /* Verify the GIMPLE statements inside the statement list STMTS. */
4624 DEBUG_FUNCTION void
4625 verify_gimple_in_seq (gimple_seq stmts)
4627 timevar_push (TV_TREE_STMT_VERIFY);
4628 if (verify_gimple_in_seq_2 (stmts))
4629 internal_error ("verify_gimple failed");
4630 timevar_pop (TV_TREE_STMT_VERIFY);
4633 /* Return true when the T can be shared. */
4635 static bool
4636 tree_node_can_be_shared (tree t)
4638 if (IS_TYPE_OR_DECL_P (t)
4639 || is_gimple_min_invariant (t)
4640 || TREE_CODE (t) == SSA_NAME
4641 || t == error_mark_node
4642 || TREE_CODE (t) == IDENTIFIER_NODE)
4643 return true;
4645 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4646 return true;
4648 if (DECL_P (t))
4649 return true;
4651 return false;
4654 /* Called via walk_tree. Verify tree sharing. */
4656 static tree
4657 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4659 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4661 if (tree_node_can_be_shared (*tp))
4663 *walk_subtrees = false;
4664 return NULL;
4667 if (pointer_set_insert (visited, *tp))
4668 return *tp;
4670 return NULL;
4673 /* Called via walk_gimple_stmt. Verify tree sharing. */
4675 static tree
4676 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4678 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4679 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4682 static bool eh_error_found;
4683 static int
4684 verify_eh_throw_stmt_node (void **slot, void *data)
4686 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4687 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4689 if (!pointer_set_contains (visited, node->stmt))
4691 error ("dead STMT in EH table");
4692 debug_gimple_stmt (node->stmt);
4693 eh_error_found = true;
4695 return 1;
4698 /* Verify if the location LOCs block is in BLOCKS. */
4700 static bool
4701 verify_location (pointer_set_t *blocks, location_t loc)
4703 tree block = LOCATION_BLOCK (loc);
4704 if (block != NULL_TREE
4705 && !pointer_set_contains (blocks, block))
4707 error ("location references block not in block tree");
4708 return true;
4710 if (block != NULL_TREE)
4711 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4712 return false;
4715 /* Called via walk_tree. Verify that expressions have no blocks. */
4717 static tree
4718 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4720 if (!EXPR_P (*tp))
4722 *walk_subtrees = false;
4723 return NULL;
4726 location_t loc = EXPR_LOCATION (*tp);
4727 if (LOCATION_BLOCK (loc) != NULL)
4728 return *tp;
4730 return NULL;
4733 /* Called via walk_tree. Verify locations of expressions. */
4735 static tree
4736 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4738 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4740 if (TREE_CODE (*tp) == VAR_DECL
4741 && DECL_HAS_DEBUG_EXPR_P (*tp))
4743 tree t = DECL_DEBUG_EXPR (*tp);
4744 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4745 if (addr)
4746 return addr;
4748 if ((TREE_CODE (*tp) == VAR_DECL
4749 || TREE_CODE (*tp) == PARM_DECL
4750 || TREE_CODE (*tp) == RESULT_DECL)
4751 && DECL_HAS_VALUE_EXPR_P (*tp))
4753 tree t = DECL_VALUE_EXPR (*tp);
4754 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4755 if (addr)
4756 return addr;
4759 if (!EXPR_P (*tp))
4761 *walk_subtrees = false;
4762 return NULL;
4765 location_t loc = EXPR_LOCATION (*tp);
4766 if (verify_location (blocks, loc))
4767 return *tp;
4769 return NULL;
4772 /* Called via walk_gimple_op. Verify locations of expressions. */
4774 static tree
4775 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4777 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4778 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4781 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4783 static void
4784 collect_subblocks (pointer_set_t *blocks, tree block)
4786 tree t;
4787 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4789 pointer_set_insert (blocks, t);
4790 collect_subblocks (blocks, t);
4794 /* Verify the GIMPLE statements in the CFG of FN. */
4796 DEBUG_FUNCTION void
4797 verify_gimple_in_cfg (struct function *fn)
4799 basic_block bb;
4800 bool err = false;
4801 struct pointer_set_t *visited, *visited_stmts, *blocks;
4803 timevar_push (TV_TREE_STMT_VERIFY);
4804 visited = pointer_set_create ();
4805 visited_stmts = pointer_set_create ();
4807 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4808 blocks = pointer_set_create ();
4809 if (DECL_INITIAL (fn->decl))
4811 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4812 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4815 FOR_EACH_BB_FN (bb, fn)
4817 gimple_stmt_iterator gsi;
4819 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4821 gimple phi = gsi_stmt (gsi);
4822 bool err2 = false;
4823 unsigned i;
4825 pointer_set_insert (visited_stmts, phi);
4827 if (gimple_bb (phi) != bb)
4829 error ("gimple_bb (phi) is set to a wrong basic block");
4830 err2 = true;
4833 err2 |= verify_gimple_phi (phi);
4835 /* Only PHI arguments have locations. */
4836 if (gimple_location (phi) != UNKNOWN_LOCATION)
4838 error ("PHI node with location");
4839 err2 = true;
4842 for (i = 0; i < gimple_phi_num_args (phi); i++)
4844 tree arg = gimple_phi_arg_def (phi, i);
4845 tree addr = walk_tree (&arg, verify_node_sharing_1,
4846 visited, NULL);
4847 if (addr)
4849 error ("incorrect sharing of tree nodes");
4850 debug_generic_expr (addr);
4851 err2 |= true;
4853 location_t loc = gimple_phi_arg_location (phi, i);
4854 if (virtual_operand_p (gimple_phi_result (phi))
4855 && loc != UNKNOWN_LOCATION)
4857 error ("virtual PHI with argument locations");
4858 err2 = true;
4860 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4861 if (addr)
4863 debug_generic_expr (addr);
4864 err2 = true;
4866 err2 |= verify_location (blocks, loc);
4869 if (err2)
4870 debug_gimple_stmt (phi);
4871 err |= err2;
4874 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4876 gimple stmt = gsi_stmt (gsi);
4877 bool err2 = false;
4878 struct walk_stmt_info wi;
4879 tree addr;
4880 int lp_nr;
4882 pointer_set_insert (visited_stmts, stmt);
4884 if (gimple_bb (stmt) != bb)
4886 error ("gimple_bb (stmt) is set to a wrong basic block");
4887 err2 = true;
4890 err2 |= verify_gimple_stmt (stmt);
4891 err2 |= verify_location (blocks, gimple_location (stmt));
4893 memset (&wi, 0, sizeof (wi));
4894 wi.info = (void *) visited;
4895 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4896 if (addr)
4898 error ("incorrect sharing of tree nodes");
4899 debug_generic_expr (addr);
4900 err2 |= true;
4903 memset (&wi, 0, sizeof (wi));
4904 wi.info = (void *) blocks;
4905 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4906 if (addr)
4908 debug_generic_expr (addr);
4909 err2 |= true;
4912 /* ??? Instead of not checking these stmts at all the walker
4913 should know its context via wi. */
4914 if (!is_gimple_debug (stmt)
4915 && !is_gimple_omp (stmt))
4917 memset (&wi, 0, sizeof (wi));
4918 addr = walk_gimple_op (stmt, verify_expr, &wi);
4919 if (addr)
4921 debug_generic_expr (addr);
4922 inform (gimple_location (stmt), "in statement");
4923 err2 |= true;
4927 /* If the statement is marked as part of an EH region, then it is
4928 expected that the statement could throw. Verify that when we
4929 have optimizations that simplify statements such that we prove
4930 that they cannot throw, that we update other data structures
4931 to match. */
4932 lp_nr = lookup_stmt_eh_lp (stmt);
4933 if (lp_nr != 0)
4935 if (!stmt_could_throw_p (stmt))
4937 error ("statement marked for throw, but doesn%'t");
4938 err2 |= true;
4940 else if (lp_nr > 0
4941 && !gsi_one_before_end_p (gsi)
4942 && stmt_can_throw_internal (stmt))
4944 error ("statement marked for throw in middle of block");
4945 err2 |= true;
4949 if (err2)
4950 debug_gimple_stmt (stmt);
4951 err |= err2;
4955 eh_error_found = false;
4956 if (get_eh_throw_stmt_table (cfun))
4957 htab_traverse (get_eh_throw_stmt_table (cfun),
4958 verify_eh_throw_stmt_node,
4959 visited_stmts);
4961 if (err || eh_error_found)
4962 internal_error ("verify_gimple failed");
4964 pointer_set_destroy (visited);
4965 pointer_set_destroy (visited_stmts);
4966 pointer_set_destroy (blocks);
4967 verify_histograms ();
4968 timevar_pop (TV_TREE_STMT_VERIFY);
4972 /* Verifies that the flow information is OK. */
4974 static int
4975 gimple_verify_flow_info (void)
4977 int err = 0;
4978 basic_block bb;
4979 gimple_stmt_iterator gsi;
4980 gimple stmt;
4981 edge e;
4982 edge_iterator ei;
4984 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4985 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4987 error ("ENTRY_BLOCK has IL associated with it");
4988 err = 1;
4991 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4992 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4994 error ("EXIT_BLOCK has IL associated with it");
4995 err = 1;
4998 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4999 if (e->flags & EDGE_FALLTHRU)
5001 error ("fallthru to exit from bb %d", e->src->index);
5002 err = 1;
5005 FOR_EACH_BB_FN (bb, cfun)
5007 bool found_ctrl_stmt = false;
5009 stmt = NULL;
5011 /* Skip labels on the start of basic block. */
5012 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5014 tree label;
5015 gimple prev_stmt = stmt;
5017 stmt = gsi_stmt (gsi);
5019 if (gimple_code (stmt) != GIMPLE_LABEL)
5020 break;
5022 label = gimple_label_label (stmt);
5023 if (prev_stmt && DECL_NONLOCAL (label))
5025 error ("nonlocal label ");
5026 print_generic_expr (stderr, label, 0);
5027 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5028 bb->index);
5029 err = 1;
5032 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5034 error ("EH landing pad label ");
5035 print_generic_expr (stderr, label, 0);
5036 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5037 bb->index);
5038 err = 1;
5041 if (label_to_block (label) != bb)
5043 error ("label ");
5044 print_generic_expr (stderr, label, 0);
5045 fprintf (stderr, " to block does not match in bb %d",
5046 bb->index);
5047 err = 1;
5050 if (decl_function_context (label) != current_function_decl)
5052 error ("label ");
5053 print_generic_expr (stderr, label, 0);
5054 fprintf (stderr, " has incorrect context in bb %d",
5055 bb->index);
5056 err = 1;
5060 /* Verify that body of basic block BB is free of control flow. */
5061 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5063 gimple stmt = gsi_stmt (gsi);
5065 if (found_ctrl_stmt)
5067 error ("control flow in the middle of basic block %d",
5068 bb->index);
5069 err = 1;
5072 if (stmt_ends_bb_p (stmt))
5073 found_ctrl_stmt = true;
5075 if (gimple_code (stmt) == GIMPLE_LABEL)
5077 error ("label ");
5078 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5079 fprintf (stderr, " in the middle of basic block %d", bb->index);
5080 err = 1;
5084 gsi = gsi_last_bb (bb);
5085 if (gsi_end_p (gsi))
5086 continue;
5088 stmt = gsi_stmt (gsi);
5090 if (gimple_code (stmt) == GIMPLE_LABEL)
5091 continue;
5093 err |= verify_eh_edges (stmt);
5095 if (is_ctrl_stmt (stmt))
5097 FOR_EACH_EDGE (e, ei, bb->succs)
5098 if (e->flags & EDGE_FALLTHRU)
5100 error ("fallthru edge after a control statement in bb %d",
5101 bb->index);
5102 err = 1;
5106 if (gimple_code (stmt) != GIMPLE_COND)
5108 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5109 after anything else but if statement. */
5110 FOR_EACH_EDGE (e, ei, bb->succs)
5111 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5113 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5114 bb->index);
5115 err = 1;
5119 switch (gimple_code (stmt))
5121 case GIMPLE_COND:
5123 edge true_edge;
5124 edge false_edge;
5126 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5128 if (!true_edge
5129 || !false_edge
5130 || !(true_edge->flags & EDGE_TRUE_VALUE)
5131 || !(false_edge->flags & EDGE_FALSE_VALUE)
5132 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5133 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5134 || EDGE_COUNT (bb->succs) >= 3)
5136 error ("wrong outgoing edge flags at end of bb %d",
5137 bb->index);
5138 err = 1;
5141 break;
5143 case GIMPLE_GOTO:
5144 if (simple_goto_p (stmt))
5146 error ("explicit goto at end of bb %d", bb->index);
5147 err = 1;
5149 else
5151 /* FIXME. We should double check that the labels in the
5152 destination blocks have their address taken. */
5153 FOR_EACH_EDGE (e, ei, bb->succs)
5154 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5155 | EDGE_FALSE_VALUE))
5156 || !(e->flags & EDGE_ABNORMAL))
5158 error ("wrong outgoing edge flags at end of bb %d",
5159 bb->index);
5160 err = 1;
5163 break;
5165 case GIMPLE_CALL:
5166 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5167 break;
5168 /* ... fallthru ... */
5169 case GIMPLE_RETURN:
5170 if (!single_succ_p (bb)
5171 || (single_succ_edge (bb)->flags
5172 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5173 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5175 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5176 err = 1;
5178 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5180 error ("return edge does not point to exit in bb %d",
5181 bb->index);
5182 err = 1;
5184 break;
5186 case GIMPLE_SWITCH:
5188 tree prev;
5189 edge e;
5190 size_t i, n;
5192 n = gimple_switch_num_labels (stmt);
5194 /* Mark all the destination basic blocks. */
5195 for (i = 0; i < n; ++i)
5197 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5198 basic_block label_bb = label_to_block (lab);
5199 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5200 label_bb->aux = (void *)1;
5203 /* Verify that the case labels are sorted. */
5204 prev = gimple_switch_label (stmt, 0);
5205 for (i = 1; i < n; ++i)
5207 tree c = gimple_switch_label (stmt, i);
5208 if (!CASE_LOW (c))
5210 error ("found default case not at the start of "
5211 "case vector");
5212 err = 1;
5213 continue;
5215 if (CASE_LOW (prev)
5216 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5218 error ("case labels not sorted: ");
5219 print_generic_expr (stderr, prev, 0);
5220 fprintf (stderr," is greater than ");
5221 print_generic_expr (stderr, c, 0);
5222 fprintf (stderr," but comes before it.\n");
5223 err = 1;
5225 prev = c;
5227 /* VRP will remove the default case if it can prove it will
5228 never be executed. So do not verify there always exists
5229 a default case here. */
5231 FOR_EACH_EDGE (e, ei, bb->succs)
5233 if (!e->dest->aux)
5235 error ("extra outgoing edge %d->%d",
5236 bb->index, e->dest->index);
5237 err = 1;
5240 e->dest->aux = (void *)2;
5241 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5242 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5244 error ("wrong outgoing edge flags at end of bb %d",
5245 bb->index);
5246 err = 1;
5250 /* Check that we have all of them. */
5251 for (i = 0; i < n; ++i)
5253 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5254 basic_block label_bb = label_to_block (lab);
5256 if (label_bb->aux != (void *)2)
5258 error ("missing edge %i->%i", bb->index, label_bb->index);
5259 err = 1;
5263 FOR_EACH_EDGE (e, ei, bb->succs)
5264 e->dest->aux = (void *)0;
5266 break;
5268 case GIMPLE_EH_DISPATCH:
5269 err |= verify_eh_dispatch_edge (stmt);
5270 break;
5272 default:
5273 break;
5277 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5278 verify_dominators (CDI_DOMINATORS);
5280 return err;
5284 /* Updates phi nodes after creating a forwarder block joined
5285 by edge FALLTHRU. */
5287 static void
5288 gimple_make_forwarder_block (edge fallthru)
5290 edge e;
5291 edge_iterator ei;
5292 basic_block dummy, bb;
5293 tree var;
5294 gimple_stmt_iterator gsi;
5296 dummy = fallthru->src;
5297 bb = fallthru->dest;
5299 if (single_pred_p (bb))
5300 return;
5302 /* If we redirected a branch we must create new PHI nodes at the
5303 start of BB. */
5304 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5306 gimple phi, new_phi;
5308 phi = gsi_stmt (gsi);
5309 var = gimple_phi_result (phi);
5310 new_phi = create_phi_node (var, bb);
5311 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5312 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5313 UNKNOWN_LOCATION);
5316 /* Add the arguments we have stored on edges. */
5317 FOR_EACH_EDGE (e, ei, bb->preds)
5319 if (e == fallthru)
5320 continue;
5322 flush_pending_stmts (e);
5327 /* Return a non-special label in the head of basic block BLOCK.
5328 Create one if it doesn't exist. */
5330 tree
5331 gimple_block_label (basic_block bb)
5333 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5334 bool first = true;
5335 tree label;
5336 gimple stmt;
5338 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5340 stmt = gsi_stmt (i);
5341 if (gimple_code (stmt) != GIMPLE_LABEL)
5342 break;
5343 label = gimple_label_label (stmt);
5344 if (!DECL_NONLOCAL (label))
5346 if (!first)
5347 gsi_move_before (&i, &s);
5348 return label;
5352 label = create_artificial_label (UNKNOWN_LOCATION);
5353 stmt = gimple_build_label (label);
5354 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5355 return label;
5359 /* Attempt to perform edge redirection by replacing a possibly complex
5360 jump instruction by a goto or by removing the jump completely.
5361 This can apply only if all edges now point to the same block. The
5362 parameters and return values are equivalent to
5363 redirect_edge_and_branch. */
5365 static edge
5366 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5368 basic_block src = e->src;
5369 gimple_stmt_iterator i;
5370 gimple stmt;
5372 /* We can replace or remove a complex jump only when we have exactly
5373 two edges. */
5374 if (EDGE_COUNT (src->succs) != 2
5375 /* Verify that all targets will be TARGET. Specifically, the
5376 edge that is not E must also go to TARGET. */
5377 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5378 return NULL;
5380 i = gsi_last_bb (src);
5381 if (gsi_end_p (i))
5382 return NULL;
5384 stmt = gsi_stmt (i);
5386 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5388 gsi_remove (&i, true);
5389 e = ssa_redirect_edge (e, target);
5390 e->flags = EDGE_FALLTHRU;
5391 return e;
5394 return NULL;
5398 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5399 edge representing the redirected branch. */
5401 static edge
5402 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5404 basic_block bb = e->src;
5405 gimple_stmt_iterator gsi;
5406 edge ret;
5407 gimple stmt;
5409 if (e->flags & EDGE_ABNORMAL)
5410 return NULL;
5412 if (e->dest == dest)
5413 return NULL;
5415 if (e->flags & EDGE_EH)
5416 return redirect_eh_edge (e, dest);
5418 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5420 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5421 if (ret)
5422 return ret;
5425 gsi = gsi_last_bb (bb);
5426 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5428 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5430 case GIMPLE_COND:
5431 /* For COND_EXPR, we only need to redirect the edge. */
5432 break;
5434 case GIMPLE_GOTO:
5435 /* No non-abnormal edges should lead from a non-simple goto, and
5436 simple ones should be represented implicitly. */
5437 gcc_unreachable ();
5439 case GIMPLE_SWITCH:
5441 tree label = gimple_block_label (dest);
5442 tree cases = get_cases_for_edge (e, stmt);
5444 /* If we have a list of cases associated with E, then use it
5445 as it's a lot faster than walking the entire case vector. */
5446 if (cases)
5448 edge e2 = find_edge (e->src, dest);
5449 tree last, first;
5451 first = cases;
5452 while (cases)
5454 last = cases;
5455 CASE_LABEL (cases) = label;
5456 cases = CASE_CHAIN (cases);
5459 /* If there was already an edge in the CFG, then we need
5460 to move all the cases associated with E to E2. */
5461 if (e2)
5463 tree cases2 = get_cases_for_edge (e2, stmt);
5465 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5466 CASE_CHAIN (cases2) = first;
5468 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5470 else
5472 size_t i, n = gimple_switch_num_labels (stmt);
5474 for (i = 0; i < n; i++)
5476 tree elt = gimple_switch_label (stmt, i);
5477 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5478 CASE_LABEL (elt) = label;
5482 break;
5484 case GIMPLE_ASM:
5486 int i, n = gimple_asm_nlabels (stmt);
5487 tree label = NULL;
5489 for (i = 0; i < n; ++i)
5491 tree cons = gimple_asm_label_op (stmt, i);
5492 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5494 if (!label)
5495 label = gimple_block_label (dest);
5496 TREE_VALUE (cons) = label;
5500 /* If we didn't find any label matching the former edge in the
5501 asm labels, we must be redirecting the fallthrough
5502 edge. */
5503 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5505 break;
5507 case GIMPLE_RETURN:
5508 gsi_remove (&gsi, true);
5509 e->flags |= EDGE_FALLTHRU;
5510 break;
5512 case GIMPLE_OMP_RETURN:
5513 case GIMPLE_OMP_CONTINUE:
5514 case GIMPLE_OMP_SECTIONS_SWITCH:
5515 case GIMPLE_OMP_FOR:
5516 /* The edges from OMP constructs can be simply redirected. */
5517 break;
5519 case GIMPLE_EH_DISPATCH:
5520 if (!(e->flags & EDGE_FALLTHRU))
5521 redirect_eh_dispatch_edge (stmt, e, dest);
5522 break;
5524 case GIMPLE_TRANSACTION:
5525 /* The ABORT edge has a stored label associated with it, otherwise
5526 the edges are simply redirectable. */
5527 if (e->flags == 0)
5528 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5529 break;
5531 default:
5532 /* Otherwise it must be a fallthru edge, and we don't need to
5533 do anything besides redirecting it. */
5534 gcc_assert (e->flags & EDGE_FALLTHRU);
5535 break;
5538 /* Update/insert PHI nodes as necessary. */
5540 /* Now update the edges in the CFG. */
5541 e = ssa_redirect_edge (e, dest);
5543 return e;
5546 /* Returns true if it is possible to remove edge E by redirecting
5547 it to the destination of the other edge from E->src. */
5549 static bool
5550 gimple_can_remove_branch_p (const_edge e)
5552 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5553 return false;
5555 return true;
5558 /* Simple wrapper, as we can always redirect fallthru edges. */
5560 static basic_block
5561 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5563 e = gimple_redirect_edge_and_branch (e, dest);
5564 gcc_assert (e);
5566 return NULL;
5570 /* Splits basic block BB after statement STMT (but at least after the
5571 labels). If STMT is NULL, BB is split just after the labels. */
5573 static basic_block
5574 gimple_split_block (basic_block bb, void *stmt)
5576 gimple_stmt_iterator gsi;
5577 gimple_stmt_iterator gsi_tgt;
5578 gimple act;
5579 gimple_seq list;
5580 basic_block new_bb;
5581 edge e;
5582 edge_iterator ei;
5584 new_bb = create_empty_bb (bb);
5586 /* Redirect the outgoing edges. */
5587 new_bb->succs = bb->succs;
5588 bb->succs = NULL;
5589 FOR_EACH_EDGE (e, ei, new_bb->succs)
5590 e->src = new_bb;
5592 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5593 stmt = NULL;
5595 /* Move everything from GSI to the new basic block. */
5596 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5598 act = gsi_stmt (gsi);
5599 if (gimple_code (act) == GIMPLE_LABEL)
5600 continue;
5602 if (!stmt)
5603 break;
5605 if (stmt == act)
5607 gsi_next (&gsi);
5608 break;
5612 if (gsi_end_p (gsi))
5613 return new_bb;
5615 /* Split the statement list - avoid re-creating new containers as this
5616 brings ugly quadratic memory consumption in the inliner.
5617 (We are still quadratic since we need to update stmt BB pointers,
5618 sadly.) */
5619 gsi_split_seq_before (&gsi, &list);
5620 set_bb_seq (new_bb, list);
5621 for (gsi_tgt = gsi_start (list);
5622 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5623 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5625 return new_bb;
5629 /* Moves basic block BB after block AFTER. */
5631 static bool
5632 gimple_move_block_after (basic_block bb, basic_block after)
5634 if (bb->prev_bb == after)
5635 return true;
5637 unlink_block (bb);
5638 link_block (bb, after);
5640 return true;
5644 /* Return TRUE if block BB has no executable statements, otherwise return
5645 FALSE. */
5647 static bool
5648 gimple_empty_block_p (basic_block bb)
5650 /* BB must have no executable statements. */
5651 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5652 if (phi_nodes (bb))
5653 return false;
5654 if (gsi_end_p (gsi))
5655 return true;
5656 if (is_gimple_debug (gsi_stmt (gsi)))
5657 gsi_next_nondebug (&gsi);
5658 return gsi_end_p (gsi);
5662 /* Split a basic block if it ends with a conditional branch and if the
5663 other part of the block is not empty. */
5665 static basic_block
5666 gimple_split_block_before_cond_jump (basic_block bb)
5668 gimple last, split_point;
5669 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5670 if (gsi_end_p (gsi))
5671 return NULL;
5672 last = gsi_stmt (gsi);
5673 if (gimple_code (last) != GIMPLE_COND
5674 && gimple_code (last) != GIMPLE_SWITCH)
5675 return NULL;
5676 gsi_prev_nondebug (&gsi);
5677 split_point = gsi_stmt (gsi);
5678 return split_block (bb, split_point)->dest;
5682 /* Return true if basic_block can be duplicated. */
5684 static bool
5685 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5687 return true;
5690 /* Create a duplicate of the basic block BB. NOTE: This does not
5691 preserve SSA form. */
5693 static basic_block
5694 gimple_duplicate_bb (basic_block bb)
5696 basic_block new_bb;
5697 gimple_stmt_iterator gsi, gsi_tgt;
5698 gimple_seq phis = phi_nodes (bb);
5699 gimple phi, stmt, copy;
5701 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5703 /* Copy the PHI nodes. We ignore PHI node arguments here because
5704 the incoming edges have not been setup yet. */
5705 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5707 phi = gsi_stmt (gsi);
5708 copy = create_phi_node (NULL_TREE, new_bb);
5709 create_new_def_for (gimple_phi_result (phi), copy,
5710 gimple_phi_result_ptr (copy));
5711 gimple_set_uid (copy, gimple_uid (phi));
5714 gsi_tgt = gsi_start_bb (new_bb);
5715 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5717 def_operand_p def_p;
5718 ssa_op_iter op_iter;
5719 tree lhs;
5721 stmt = gsi_stmt (gsi);
5722 if (gimple_code (stmt) == GIMPLE_LABEL)
5723 continue;
5725 /* Don't duplicate label debug stmts. */
5726 if (gimple_debug_bind_p (stmt)
5727 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5728 == LABEL_DECL)
5729 continue;
5731 /* Create a new copy of STMT and duplicate STMT's virtual
5732 operands. */
5733 copy = gimple_copy (stmt);
5734 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5736 maybe_duplicate_eh_stmt (copy, stmt);
5737 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5739 /* When copying around a stmt writing into a local non-user
5740 aggregate, make sure it won't share stack slot with other
5741 vars. */
5742 lhs = gimple_get_lhs (stmt);
5743 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5745 tree base = get_base_address (lhs);
5746 if (base
5747 && (TREE_CODE (base) == VAR_DECL
5748 || TREE_CODE (base) == RESULT_DECL)
5749 && DECL_IGNORED_P (base)
5750 && !TREE_STATIC (base)
5751 && !DECL_EXTERNAL (base)
5752 && (TREE_CODE (base) != VAR_DECL
5753 || !DECL_HAS_VALUE_EXPR_P (base)))
5754 DECL_NONSHAREABLE (base) = 1;
5757 /* Create new names for all the definitions created by COPY and
5758 add replacement mappings for each new name. */
5759 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5760 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5763 return new_bb;
5766 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5768 static void
5769 add_phi_args_after_copy_edge (edge e_copy)
5771 basic_block bb, bb_copy = e_copy->src, dest;
5772 edge e;
5773 edge_iterator ei;
5774 gimple phi, phi_copy;
5775 tree def;
5776 gimple_stmt_iterator psi, psi_copy;
5778 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5779 return;
5781 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5783 if (e_copy->dest->flags & BB_DUPLICATED)
5784 dest = get_bb_original (e_copy->dest);
5785 else
5786 dest = e_copy->dest;
5788 e = find_edge (bb, dest);
5789 if (!e)
5791 /* During loop unrolling the target of the latch edge is copied.
5792 In this case we are not looking for edge to dest, but to
5793 duplicated block whose original was dest. */
5794 FOR_EACH_EDGE (e, ei, bb->succs)
5796 if ((e->dest->flags & BB_DUPLICATED)
5797 && get_bb_original (e->dest) == dest)
5798 break;
5801 gcc_assert (e != NULL);
5804 for (psi = gsi_start_phis (e->dest),
5805 psi_copy = gsi_start_phis (e_copy->dest);
5806 !gsi_end_p (psi);
5807 gsi_next (&psi), gsi_next (&psi_copy))
5809 phi = gsi_stmt (psi);
5810 phi_copy = gsi_stmt (psi_copy);
5811 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5812 add_phi_arg (phi_copy, def, e_copy,
5813 gimple_phi_arg_location_from_edge (phi, e));
5818 /* Basic block BB_COPY was created by code duplication. Add phi node
5819 arguments for edges going out of BB_COPY. The blocks that were
5820 duplicated have BB_DUPLICATED set. */
5822 void
5823 add_phi_args_after_copy_bb (basic_block bb_copy)
5825 edge e_copy;
5826 edge_iterator ei;
5828 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5830 add_phi_args_after_copy_edge (e_copy);
5834 /* Blocks in REGION_COPY array of length N_REGION were created by
5835 duplication of basic blocks. Add phi node arguments for edges
5836 going from these blocks. If E_COPY is not NULL, also add
5837 phi node arguments for its destination.*/
5839 void
5840 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5841 edge e_copy)
5843 unsigned i;
5845 for (i = 0; i < n_region; i++)
5846 region_copy[i]->flags |= BB_DUPLICATED;
5848 for (i = 0; i < n_region; i++)
5849 add_phi_args_after_copy_bb (region_copy[i]);
5850 if (e_copy)
5851 add_phi_args_after_copy_edge (e_copy);
5853 for (i = 0; i < n_region; i++)
5854 region_copy[i]->flags &= ~BB_DUPLICATED;
5857 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5858 important exit edge EXIT. By important we mean that no SSA name defined
5859 inside region is live over the other exit edges of the region. All entry
5860 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5861 to the duplicate of the region. Dominance and loop information is
5862 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5863 UPDATE_DOMINANCE is false then we assume that the caller will update the
5864 dominance information after calling this function. The new basic
5865 blocks are stored to REGION_COPY in the same order as they had in REGION,
5866 provided that REGION_COPY is not NULL.
5867 The function returns false if it is unable to copy the region,
5868 true otherwise. */
5870 bool
5871 gimple_duplicate_sese_region (edge entry, edge exit,
5872 basic_block *region, unsigned n_region,
5873 basic_block *region_copy,
5874 bool update_dominance)
5876 unsigned i;
5877 bool free_region_copy = false, copying_header = false;
5878 struct loop *loop = entry->dest->loop_father;
5879 edge exit_copy;
5880 vec<basic_block> doms;
5881 edge redirected;
5882 int total_freq = 0, entry_freq = 0;
5883 gcov_type total_count = 0, entry_count = 0;
5885 if (!can_copy_bbs_p (region, n_region))
5886 return false;
5888 /* Some sanity checking. Note that we do not check for all possible
5889 missuses of the functions. I.e. if you ask to copy something weird,
5890 it will work, but the state of structures probably will not be
5891 correct. */
5892 for (i = 0; i < n_region; i++)
5894 /* We do not handle subloops, i.e. all the blocks must belong to the
5895 same loop. */
5896 if (region[i]->loop_father != loop)
5897 return false;
5899 if (region[i] != entry->dest
5900 && region[i] == loop->header)
5901 return false;
5904 /* In case the function is used for loop header copying (which is the primary
5905 use), ensure that EXIT and its copy will be new latch and entry edges. */
5906 if (loop->header == entry->dest)
5908 copying_header = true;
5910 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5911 return false;
5913 for (i = 0; i < n_region; i++)
5914 if (region[i] != exit->src
5915 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5916 return false;
5919 initialize_original_copy_tables ();
5921 if (copying_header)
5922 set_loop_copy (loop, loop_outer (loop));
5923 else
5924 set_loop_copy (loop, loop);
5926 if (!region_copy)
5928 region_copy = XNEWVEC (basic_block, n_region);
5929 free_region_copy = true;
5932 /* Record blocks outside the region that are dominated by something
5933 inside. */
5934 if (update_dominance)
5936 doms.create (0);
5937 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5940 if (entry->dest->count)
5942 total_count = entry->dest->count;
5943 entry_count = entry->count;
5944 /* Fix up corner cases, to avoid division by zero or creation of negative
5945 frequencies. */
5946 if (entry_count > total_count)
5947 entry_count = total_count;
5949 else
5951 total_freq = entry->dest->frequency;
5952 entry_freq = EDGE_FREQUENCY (entry);
5953 /* Fix up corner cases, to avoid division by zero or creation of negative
5954 frequencies. */
5955 if (total_freq == 0)
5956 total_freq = 1;
5957 else if (entry_freq > total_freq)
5958 entry_freq = total_freq;
5961 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5962 split_edge_bb_loc (entry), update_dominance);
5963 if (total_count)
5965 scale_bbs_frequencies_gcov_type (region, n_region,
5966 total_count - entry_count,
5967 total_count);
5968 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5969 total_count);
5971 else
5973 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5974 total_freq);
5975 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5978 if (copying_header)
5980 loop->header = exit->dest;
5981 loop->latch = exit->src;
5984 /* Redirect the entry and add the phi node arguments. */
5985 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5986 gcc_assert (redirected != NULL);
5987 flush_pending_stmts (entry);
5989 /* Concerning updating of dominators: We must recount dominators
5990 for entry block and its copy. Anything that is outside of the
5991 region, but was dominated by something inside needs recounting as
5992 well. */
5993 if (update_dominance)
5995 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5996 doms.safe_push (get_bb_original (entry->dest));
5997 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5998 doms.release ();
6001 /* Add the other PHI node arguments. */
6002 add_phi_args_after_copy (region_copy, n_region, NULL);
6004 if (free_region_copy)
6005 free (region_copy);
6007 free_original_copy_tables ();
6008 return true;
6011 /* Checks if BB is part of the region defined by N_REGION BBS. */
6012 static bool
6013 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6015 unsigned int n;
6017 for (n = 0; n < n_region; n++)
6019 if (bb == bbs[n])
6020 return true;
6022 return false;
6025 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6026 are stored to REGION_COPY in the same order in that they appear
6027 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6028 the region, EXIT an exit from it. The condition guarding EXIT
6029 is moved to ENTRY. Returns true if duplication succeeds, false
6030 otherwise.
6032 For example,
6034 some_code;
6035 if (cond)
6037 else
6040 is transformed to
6042 if (cond)
6044 some_code;
6047 else
6049 some_code;
6054 bool
6055 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6056 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6057 basic_block *region_copy ATTRIBUTE_UNUSED)
6059 unsigned i;
6060 bool free_region_copy = false;
6061 struct loop *loop = exit->dest->loop_father;
6062 struct loop *orig_loop = entry->dest->loop_father;
6063 basic_block switch_bb, entry_bb, nentry_bb;
6064 vec<basic_block> doms;
6065 int total_freq = 0, exit_freq = 0;
6066 gcov_type total_count = 0, exit_count = 0;
6067 edge exits[2], nexits[2], e;
6068 gimple_stmt_iterator gsi;
6069 gimple cond_stmt;
6070 edge sorig, snew;
6071 basic_block exit_bb;
6072 gimple_stmt_iterator psi;
6073 gimple phi;
6074 tree def;
6075 struct loop *target, *aloop, *cloop;
6077 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6078 exits[0] = exit;
6079 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6081 if (!can_copy_bbs_p (region, n_region))
6082 return false;
6084 initialize_original_copy_tables ();
6085 set_loop_copy (orig_loop, loop);
6087 target= loop;
6088 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6090 if (bb_part_of_region_p (aloop->header, region, n_region))
6092 cloop = duplicate_loop (aloop, target);
6093 duplicate_subloops (aloop, cloop);
6097 if (!region_copy)
6099 region_copy = XNEWVEC (basic_block, n_region);
6100 free_region_copy = true;
6103 gcc_assert (!need_ssa_update_p (cfun));
6105 /* Record blocks outside the region that are dominated by something
6106 inside. */
6107 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6109 if (exit->src->count)
6111 total_count = exit->src->count;
6112 exit_count = exit->count;
6113 /* Fix up corner cases, to avoid division by zero or creation of negative
6114 frequencies. */
6115 if (exit_count > total_count)
6116 exit_count = total_count;
6118 else
6120 total_freq = exit->src->frequency;
6121 exit_freq = EDGE_FREQUENCY (exit);
6122 /* Fix up corner cases, to avoid division by zero or creation of negative
6123 frequencies. */
6124 if (total_freq == 0)
6125 total_freq = 1;
6126 if (exit_freq > total_freq)
6127 exit_freq = total_freq;
6130 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6131 split_edge_bb_loc (exit), true);
6132 if (total_count)
6134 scale_bbs_frequencies_gcov_type (region, n_region,
6135 total_count - exit_count,
6136 total_count);
6137 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6138 total_count);
6140 else
6142 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6143 total_freq);
6144 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6147 /* Create the switch block, and put the exit condition to it. */
6148 entry_bb = entry->dest;
6149 nentry_bb = get_bb_copy (entry_bb);
6150 if (!last_stmt (entry->src)
6151 || !stmt_ends_bb_p (last_stmt (entry->src)))
6152 switch_bb = entry->src;
6153 else
6154 switch_bb = split_edge (entry);
6155 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6157 gsi = gsi_last_bb (switch_bb);
6158 cond_stmt = last_stmt (exit->src);
6159 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6160 cond_stmt = gimple_copy (cond_stmt);
6162 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6164 sorig = single_succ_edge (switch_bb);
6165 sorig->flags = exits[1]->flags;
6166 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6168 /* Register the new edge from SWITCH_BB in loop exit lists. */
6169 rescan_loop_exit (snew, true, false);
6171 /* Add the PHI node arguments. */
6172 add_phi_args_after_copy (region_copy, n_region, snew);
6174 /* Get rid of now superfluous conditions and associated edges (and phi node
6175 arguments). */
6176 exit_bb = exit->dest;
6178 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6179 PENDING_STMT (e) = NULL;
6181 /* The latch of ORIG_LOOP was copied, and so was the backedge
6182 to the original header. We redirect this backedge to EXIT_BB. */
6183 for (i = 0; i < n_region; i++)
6184 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6186 gcc_assert (single_succ_edge (region_copy[i]));
6187 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6188 PENDING_STMT (e) = NULL;
6189 for (psi = gsi_start_phis (exit_bb);
6190 !gsi_end_p (psi);
6191 gsi_next (&psi))
6193 phi = gsi_stmt (psi);
6194 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6195 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6198 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6199 PENDING_STMT (e) = NULL;
6201 /* Anything that is outside of the region, but was dominated by something
6202 inside needs to update dominance info. */
6203 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6204 doms.release ();
6205 /* Update the SSA web. */
6206 update_ssa (TODO_update_ssa);
6208 if (free_region_copy)
6209 free (region_copy);
6211 free_original_copy_tables ();
6212 return true;
6215 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6216 adding blocks when the dominator traversal reaches EXIT. This
6217 function silently assumes that ENTRY strictly dominates EXIT. */
6219 void
6220 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6221 vec<basic_block> *bbs_p)
6223 basic_block son;
6225 for (son = first_dom_son (CDI_DOMINATORS, entry);
6226 son;
6227 son = next_dom_son (CDI_DOMINATORS, son))
6229 bbs_p->safe_push (son);
6230 if (son != exit)
6231 gather_blocks_in_sese_region (son, exit, bbs_p);
6235 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6236 The duplicates are recorded in VARS_MAP. */
6238 static void
6239 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6240 tree to_context)
6242 tree t = *tp, new_t;
6243 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6244 void **loc;
6246 if (DECL_CONTEXT (t) == to_context)
6247 return;
6249 loc = pointer_map_contains (vars_map, t);
6251 if (!loc)
6253 loc = pointer_map_insert (vars_map, t);
6255 if (SSA_VAR_P (t))
6257 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6258 add_local_decl (f, new_t);
6260 else
6262 gcc_assert (TREE_CODE (t) == CONST_DECL);
6263 new_t = copy_node (t);
6265 DECL_CONTEXT (new_t) = to_context;
6267 *loc = new_t;
6269 else
6270 new_t = (tree) *loc;
6272 *tp = new_t;
6276 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6277 VARS_MAP maps old ssa names and var_decls to the new ones. */
6279 static tree
6280 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6281 tree to_context)
6283 void **loc;
6284 tree new_name;
6286 gcc_assert (!virtual_operand_p (name));
6288 loc = pointer_map_contains (vars_map, name);
6290 if (!loc)
6292 tree decl = SSA_NAME_VAR (name);
6293 if (decl)
6295 replace_by_duplicate_decl (&decl, vars_map, to_context);
6296 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6297 decl, SSA_NAME_DEF_STMT (name));
6298 if (SSA_NAME_IS_DEFAULT_DEF (name))
6299 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6300 decl, new_name);
6302 else
6303 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6304 name, SSA_NAME_DEF_STMT (name));
6306 loc = pointer_map_insert (vars_map, name);
6307 *loc = new_name;
6309 else
6310 new_name = (tree) *loc;
6312 return new_name;
6315 struct move_stmt_d
6317 tree orig_block;
6318 tree new_block;
6319 tree from_context;
6320 tree to_context;
6321 struct pointer_map_t *vars_map;
6322 htab_t new_label_map;
6323 struct pointer_map_t *eh_map;
6324 bool remap_decls_p;
6327 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6328 contained in *TP if it has been ORIG_BLOCK previously and change the
6329 DECL_CONTEXT of every local variable referenced in *TP. */
6331 static tree
6332 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6334 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6335 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6336 tree t = *tp;
6338 if (EXPR_P (t))
6340 tree block = TREE_BLOCK (t);
6341 if (block == p->orig_block
6342 || (p->orig_block == NULL_TREE
6343 && block != NULL_TREE))
6344 TREE_SET_BLOCK (t, p->new_block);
6345 #ifdef ENABLE_CHECKING
6346 else if (block != NULL_TREE)
6348 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6349 block = BLOCK_SUPERCONTEXT (block);
6350 gcc_assert (block == p->orig_block);
6352 #endif
6354 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6356 if (TREE_CODE (t) == SSA_NAME)
6357 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6358 else if (TREE_CODE (t) == LABEL_DECL)
6360 if (p->new_label_map)
6362 struct tree_map in, *out;
6363 in.base.from = t;
6364 out = (struct tree_map *)
6365 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6366 if (out)
6367 *tp = t = out->to;
6370 DECL_CONTEXT (t) = p->to_context;
6372 else if (p->remap_decls_p)
6374 /* Replace T with its duplicate. T should no longer appear in the
6375 parent function, so this looks wasteful; however, it may appear
6376 in referenced_vars, and more importantly, as virtual operands of
6377 statements, and in alias lists of other variables. It would be
6378 quite difficult to expunge it from all those places. ??? It might
6379 suffice to do this for addressable variables. */
6380 if ((TREE_CODE (t) == VAR_DECL
6381 && !is_global_var (t))
6382 || TREE_CODE (t) == CONST_DECL)
6383 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6385 *walk_subtrees = 0;
6387 else if (TYPE_P (t))
6388 *walk_subtrees = 0;
6390 return NULL_TREE;
6393 /* Helper for move_stmt_r. Given an EH region number for the source
6394 function, map that to the duplicate EH regio number in the dest. */
6396 static int
6397 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6399 eh_region old_r, new_r;
6400 void **slot;
6402 old_r = get_eh_region_from_number (old_nr);
6403 slot = pointer_map_contains (p->eh_map, old_r);
6404 new_r = (eh_region) *slot;
6406 return new_r->index;
6409 /* Similar, but operate on INTEGER_CSTs. */
6411 static tree
6412 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6414 int old_nr, new_nr;
6416 old_nr = tree_to_shwi (old_t_nr);
6417 new_nr = move_stmt_eh_region_nr (old_nr, p);
6419 return build_int_cst (integer_type_node, new_nr);
6422 /* Like move_stmt_op, but for gimple statements.
6424 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6425 contained in the current statement in *GSI_P and change the
6426 DECL_CONTEXT of every local variable referenced in the current
6427 statement. */
6429 static tree
6430 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6431 struct walk_stmt_info *wi)
6433 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6434 gimple stmt = gsi_stmt (*gsi_p);
6435 tree block = gimple_block (stmt);
6437 if (block == p->orig_block
6438 || (p->orig_block == NULL_TREE
6439 && block != NULL_TREE))
6440 gimple_set_block (stmt, p->new_block);
6442 switch (gimple_code (stmt))
6444 case GIMPLE_CALL:
6445 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6447 tree r, fndecl = gimple_call_fndecl (stmt);
6448 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6449 switch (DECL_FUNCTION_CODE (fndecl))
6451 case BUILT_IN_EH_COPY_VALUES:
6452 r = gimple_call_arg (stmt, 1);
6453 r = move_stmt_eh_region_tree_nr (r, p);
6454 gimple_call_set_arg (stmt, 1, r);
6455 /* FALLTHRU */
6457 case BUILT_IN_EH_POINTER:
6458 case BUILT_IN_EH_FILTER:
6459 r = gimple_call_arg (stmt, 0);
6460 r = move_stmt_eh_region_tree_nr (r, p);
6461 gimple_call_set_arg (stmt, 0, r);
6462 break;
6464 default:
6465 break;
6468 break;
6470 case GIMPLE_RESX:
6472 int r = gimple_resx_region (stmt);
6473 r = move_stmt_eh_region_nr (r, p);
6474 gimple_resx_set_region (stmt, r);
6476 break;
6478 case GIMPLE_EH_DISPATCH:
6480 int r = gimple_eh_dispatch_region (stmt);
6481 r = move_stmt_eh_region_nr (r, p);
6482 gimple_eh_dispatch_set_region (stmt, r);
6484 break;
6486 case GIMPLE_OMP_RETURN:
6487 case GIMPLE_OMP_CONTINUE:
6488 break;
6489 default:
6490 if (is_gimple_omp (stmt))
6492 /* Do not remap variables inside OMP directives. Variables
6493 referenced in clauses and directive header belong to the
6494 parent function and should not be moved into the child
6495 function. */
6496 bool save_remap_decls_p = p->remap_decls_p;
6497 p->remap_decls_p = false;
6498 *handled_ops_p = true;
6500 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6501 move_stmt_op, wi);
6503 p->remap_decls_p = save_remap_decls_p;
6505 break;
6508 return NULL_TREE;
6511 /* Move basic block BB from function CFUN to function DEST_FN. The
6512 block is moved out of the original linked list and placed after
6513 block AFTER in the new list. Also, the block is removed from the
6514 original array of blocks and placed in DEST_FN's array of blocks.
6515 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6516 updated to reflect the moved edges.
6518 The local variables are remapped to new instances, VARS_MAP is used
6519 to record the mapping. */
6521 static void
6522 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6523 basic_block after, bool update_edge_count_p,
6524 struct move_stmt_d *d)
6526 struct control_flow_graph *cfg;
6527 edge_iterator ei;
6528 edge e;
6529 gimple_stmt_iterator si;
6530 unsigned old_len, new_len;
6532 /* Remove BB from dominance structures. */
6533 delete_from_dominance_info (CDI_DOMINATORS, bb);
6535 /* Move BB from its current loop to the copy in the new function. */
6536 if (current_loops)
6538 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6539 if (new_loop)
6540 bb->loop_father = new_loop;
6543 /* Link BB to the new linked list. */
6544 move_block_after (bb, after);
6546 /* Update the edge count in the corresponding flowgraphs. */
6547 if (update_edge_count_p)
6548 FOR_EACH_EDGE (e, ei, bb->succs)
6550 cfun->cfg->x_n_edges--;
6551 dest_cfun->cfg->x_n_edges++;
6554 /* Remove BB from the original basic block array. */
6555 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6556 cfun->cfg->x_n_basic_blocks--;
6558 /* Grow DEST_CFUN's basic block array if needed. */
6559 cfg = dest_cfun->cfg;
6560 cfg->x_n_basic_blocks++;
6561 if (bb->index >= cfg->x_last_basic_block)
6562 cfg->x_last_basic_block = bb->index + 1;
6564 old_len = vec_safe_length (cfg->x_basic_block_info);
6565 if ((unsigned) cfg->x_last_basic_block >= old_len)
6567 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6568 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6571 (*cfg->x_basic_block_info)[bb->index] = bb;
6573 /* Remap the variables in phi nodes. */
6574 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6576 gimple phi = gsi_stmt (si);
6577 use_operand_p use;
6578 tree op = PHI_RESULT (phi);
6579 ssa_op_iter oi;
6580 unsigned i;
6582 if (virtual_operand_p (op))
6584 /* Remove the phi nodes for virtual operands (alias analysis will be
6585 run for the new function, anyway). */
6586 remove_phi_node (&si, true);
6587 continue;
6590 SET_PHI_RESULT (phi,
6591 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6592 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6594 op = USE_FROM_PTR (use);
6595 if (TREE_CODE (op) == SSA_NAME)
6596 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6599 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6601 location_t locus = gimple_phi_arg_location (phi, i);
6602 tree block = LOCATION_BLOCK (locus);
6604 if (locus == UNKNOWN_LOCATION)
6605 continue;
6606 if (d->orig_block == NULL_TREE || block == d->orig_block)
6608 if (d->new_block == NULL_TREE)
6609 locus = LOCATION_LOCUS (locus);
6610 else
6611 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6612 gimple_phi_arg_set_location (phi, i, locus);
6616 gsi_next (&si);
6619 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6621 gimple stmt = gsi_stmt (si);
6622 struct walk_stmt_info wi;
6624 memset (&wi, 0, sizeof (wi));
6625 wi.info = d;
6626 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6628 if (gimple_code (stmt) == GIMPLE_LABEL)
6630 tree label = gimple_label_label (stmt);
6631 int uid = LABEL_DECL_UID (label);
6633 gcc_assert (uid > -1);
6635 old_len = vec_safe_length (cfg->x_label_to_block_map);
6636 if (old_len <= (unsigned) uid)
6638 new_len = 3 * uid / 2 + 1;
6639 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6642 (*cfg->x_label_to_block_map)[uid] = bb;
6643 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6645 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6647 if (uid >= dest_cfun->cfg->last_label_uid)
6648 dest_cfun->cfg->last_label_uid = uid + 1;
6651 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6652 remove_stmt_from_eh_lp_fn (cfun, stmt);
6654 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6655 gimple_remove_stmt_histograms (cfun, stmt);
6657 /* We cannot leave any operands allocated from the operand caches of
6658 the current function. */
6659 free_stmt_operands (cfun, stmt);
6660 push_cfun (dest_cfun);
6661 update_stmt (stmt);
6662 pop_cfun ();
6665 FOR_EACH_EDGE (e, ei, bb->succs)
6666 if (e->goto_locus != UNKNOWN_LOCATION)
6668 tree block = LOCATION_BLOCK (e->goto_locus);
6669 if (d->orig_block == NULL_TREE
6670 || block == d->orig_block)
6671 e->goto_locus = d->new_block ?
6672 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6673 LOCATION_LOCUS (e->goto_locus);
6677 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6678 the outermost EH region. Use REGION as the incoming base EH region. */
6680 static eh_region
6681 find_outermost_region_in_block (struct function *src_cfun,
6682 basic_block bb, eh_region region)
6684 gimple_stmt_iterator si;
6686 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6688 gimple stmt = gsi_stmt (si);
6689 eh_region stmt_region;
6690 int lp_nr;
6692 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6693 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6694 if (stmt_region)
6696 if (region == NULL)
6697 region = stmt_region;
6698 else if (stmt_region != region)
6700 region = eh_region_outermost (src_cfun, stmt_region, region);
6701 gcc_assert (region != NULL);
6706 return region;
6709 static tree
6710 new_label_mapper (tree decl, void *data)
6712 htab_t hash = (htab_t) data;
6713 struct tree_map *m;
6714 void **slot;
6716 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6718 m = XNEW (struct tree_map);
6719 m->hash = DECL_UID (decl);
6720 m->base.from = decl;
6721 m->to = create_artificial_label (UNKNOWN_LOCATION);
6722 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6723 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6724 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6726 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6727 gcc_assert (*slot == NULL);
6729 *slot = m;
6731 return m->to;
6734 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6735 subblocks. */
6737 static void
6738 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6739 tree to_context)
6741 tree *tp, t;
6743 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6745 t = *tp;
6746 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6747 continue;
6748 replace_by_duplicate_decl (&t, vars_map, to_context);
6749 if (t != *tp)
6751 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6753 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6754 DECL_HAS_VALUE_EXPR_P (t) = 1;
6756 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6757 *tp = t;
6761 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6762 replace_block_vars_by_duplicates (block, vars_map, to_context);
6765 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6766 from FN1 to FN2. */
6768 static void
6769 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6770 struct loop *loop)
6772 /* Discard it from the old loop array. */
6773 (*get_loops (fn1))[loop->num] = NULL;
6775 /* Place it in the new loop array, assigning it a new number. */
6776 loop->num = number_of_loops (fn2);
6777 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6779 /* Recurse to children. */
6780 for (loop = loop->inner; loop; loop = loop->next)
6781 fixup_loop_arrays_after_move (fn1, fn2, loop);
6784 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6785 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6786 single basic block in the original CFG and the new basic block is
6787 returned. DEST_CFUN must not have a CFG yet.
6789 Note that the region need not be a pure SESE region. Blocks inside
6790 the region may contain calls to abort/exit. The only restriction
6791 is that ENTRY_BB should be the only entry point and it must
6792 dominate EXIT_BB.
6794 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6795 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6796 to the new function.
6798 All local variables referenced in the region are assumed to be in
6799 the corresponding BLOCK_VARS and unexpanded variable lists
6800 associated with DEST_CFUN. */
6802 basic_block
6803 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6804 basic_block exit_bb, tree orig_block)
6806 vec<basic_block> bbs, dom_bbs;
6807 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6808 basic_block after, bb, *entry_pred, *exit_succ, abb;
6809 struct function *saved_cfun = cfun;
6810 int *entry_flag, *exit_flag;
6811 unsigned *entry_prob, *exit_prob;
6812 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6813 edge e;
6814 edge_iterator ei;
6815 htab_t new_label_map;
6816 struct pointer_map_t *vars_map, *eh_map;
6817 struct loop *loop = entry_bb->loop_father;
6818 struct loop *loop0 = get_loop (saved_cfun, 0);
6819 struct move_stmt_d d;
6821 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6822 region. */
6823 gcc_assert (entry_bb != exit_bb
6824 && (!exit_bb
6825 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6827 /* Collect all the blocks in the region. Manually add ENTRY_BB
6828 because it won't be added by dfs_enumerate_from. */
6829 bbs.create (0);
6830 bbs.safe_push (entry_bb);
6831 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6833 /* The blocks that used to be dominated by something in BBS will now be
6834 dominated by the new block. */
6835 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6836 bbs.address (),
6837 bbs.length ());
6839 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6840 the predecessor edges to ENTRY_BB and the successor edges to
6841 EXIT_BB so that we can re-attach them to the new basic block that
6842 will replace the region. */
6843 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6844 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6845 entry_flag = XNEWVEC (int, num_entry_edges);
6846 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6847 i = 0;
6848 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6850 entry_prob[i] = e->probability;
6851 entry_flag[i] = e->flags;
6852 entry_pred[i++] = e->src;
6853 remove_edge (e);
6856 if (exit_bb)
6858 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6859 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6860 exit_flag = XNEWVEC (int, num_exit_edges);
6861 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6862 i = 0;
6863 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6865 exit_prob[i] = e->probability;
6866 exit_flag[i] = e->flags;
6867 exit_succ[i++] = e->dest;
6868 remove_edge (e);
6871 else
6873 num_exit_edges = 0;
6874 exit_succ = NULL;
6875 exit_flag = NULL;
6876 exit_prob = NULL;
6879 /* Switch context to the child function to initialize DEST_FN's CFG. */
6880 gcc_assert (dest_cfun->cfg == NULL);
6881 push_cfun (dest_cfun);
6883 init_empty_tree_cfg ();
6885 /* Initialize EH information for the new function. */
6886 eh_map = NULL;
6887 new_label_map = NULL;
6888 if (saved_cfun->eh)
6890 eh_region region = NULL;
6892 FOR_EACH_VEC_ELT (bbs, i, bb)
6893 region = find_outermost_region_in_block (saved_cfun, bb, region);
6895 init_eh_for_function ();
6896 if (region != NULL)
6898 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6899 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6900 new_label_mapper, new_label_map);
6904 /* Initialize an empty loop tree. */
6905 struct loops *loops = ggc_alloc_cleared_loops ();
6906 init_loops_structure (dest_cfun, loops, 1);
6907 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6908 set_loops_for_fn (dest_cfun, loops);
6910 /* Move the outlined loop tree part. */
6911 num_nodes = bbs.length ();
6912 FOR_EACH_VEC_ELT (bbs, i, bb)
6914 if (bb->loop_father->header == bb)
6916 struct loop *this_loop = bb->loop_father;
6917 struct loop *outer = loop_outer (this_loop);
6918 if (outer == loop
6919 /* If the SESE region contains some bbs ending with
6920 a noreturn call, those are considered to belong
6921 to the outermost loop in saved_cfun, rather than
6922 the entry_bb's loop_father. */
6923 || outer == loop0)
6925 if (outer != loop)
6926 num_nodes -= this_loop->num_nodes;
6927 flow_loop_tree_node_remove (bb->loop_father);
6928 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6929 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6932 else if (bb->loop_father == loop0 && loop0 != loop)
6933 num_nodes--;
6935 /* Remove loop exits from the outlined region. */
6936 if (loops_for_fn (saved_cfun)->exits)
6937 FOR_EACH_EDGE (e, ei, bb->succs)
6939 void **slot = htab_find_slot_with_hash
6940 (loops_for_fn (saved_cfun)->exits, e,
6941 htab_hash_pointer (e), NO_INSERT);
6942 if (slot)
6943 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6948 /* Adjust the number of blocks in the tree root of the outlined part. */
6949 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6951 /* Setup a mapping to be used by move_block_to_fn. */
6952 loop->aux = current_loops->tree_root;
6953 loop0->aux = current_loops->tree_root;
6955 pop_cfun ();
6957 /* Move blocks from BBS into DEST_CFUN. */
6958 gcc_assert (bbs.length () >= 2);
6959 after = dest_cfun->cfg->x_entry_block_ptr;
6960 vars_map = pointer_map_create ();
6962 memset (&d, 0, sizeof (d));
6963 d.orig_block = orig_block;
6964 d.new_block = DECL_INITIAL (dest_cfun->decl);
6965 d.from_context = cfun->decl;
6966 d.to_context = dest_cfun->decl;
6967 d.vars_map = vars_map;
6968 d.new_label_map = new_label_map;
6969 d.eh_map = eh_map;
6970 d.remap_decls_p = true;
6972 FOR_EACH_VEC_ELT (bbs, i, bb)
6974 /* No need to update edge counts on the last block. It has
6975 already been updated earlier when we detached the region from
6976 the original CFG. */
6977 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6978 after = bb;
6981 loop->aux = NULL;
6982 loop0->aux = NULL;
6983 /* Loop sizes are no longer correct, fix them up. */
6984 loop->num_nodes -= num_nodes;
6985 for (struct loop *outer = loop_outer (loop);
6986 outer; outer = loop_outer (outer))
6987 outer->num_nodes -= num_nodes;
6988 loop0->num_nodes -= bbs.length () - num_nodes;
6990 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6992 struct loop *aloop;
6993 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6994 if (aloop != NULL)
6996 if (aloop->simduid)
6998 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6999 d.to_context);
7000 dest_cfun->has_simduid_loops = true;
7002 if (aloop->force_vect)
7003 dest_cfun->has_force_vect_loops = true;
7007 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7008 if (orig_block)
7010 tree block;
7011 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7012 == NULL_TREE);
7013 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7014 = BLOCK_SUBBLOCKS (orig_block);
7015 for (block = BLOCK_SUBBLOCKS (orig_block);
7016 block; block = BLOCK_CHAIN (block))
7017 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7018 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7021 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7022 vars_map, dest_cfun->decl);
7024 if (new_label_map)
7025 htab_delete (new_label_map);
7026 if (eh_map)
7027 pointer_map_destroy (eh_map);
7028 pointer_map_destroy (vars_map);
7030 /* Rewire the entry and exit blocks. The successor to the entry
7031 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7032 the child function. Similarly, the predecessor of DEST_FN's
7033 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7034 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7035 various CFG manipulation function get to the right CFG.
7037 FIXME, this is silly. The CFG ought to become a parameter to
7038 these helpers. */
7039 push_cfun (dest_cfun);
7040 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7041 if (exit_bb)
7042 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7043 pop_cfun ();
7045 /* Back in the original function, the SESE region has disappeared,
7046 create a new basic block in its place. */
7047 bb = create_empty_bb (entry_pred[0]);
7048 if (current_loops)
7049 add_bb_to_loop (bb, loop);
7050 for (i = 0; i < num_entry_edges; i++)
7052 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7053 e->probability = entry_prob[i];
7056 for (i = 0; i < num_exit_edges; i++)
7058 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7059 e->probability = exit_prob[i];
7062 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7063 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7064 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7065 dom_bbs.release ();
7067 if (exit_bb)
7069 free (exit_prob);
7070 free (exit_flag);
7071 free (exit_succ);
7073 free (entry_prob);
7074 free (entry_flag);
7075 free (entry_pred);
7076 bbs.release ();
7078 return bb;
7082 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7085 void
7086 dump_function_to_file (tree fndecl, FILE *file, int flags)
7088 tree arg, var, old_current_fndecl = current_function_decl;
7089 struct function *dsf;
7090 bool ignore_topmost_bind = false, any_var = false;
7091 basic_block bb;
7092 tree chain;
7093 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7094 && decl_is_tm_clone (fndecl));
7095 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7097 current_function_decl = fndecl;
7098 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7100 arg = DECL_ARGUMENTS (fndecl);
7101 while (arg)
7103 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7104 fprintf (file, " ");
7105 print_generic_expr (file, arg, dump_flags);
7106 if (flags & TDF_VERBOSE)
7107 print_node (file, "", arg, 4);
7108 if (DECL_CHAIN (arg))
7109 fprintf (file, ", ");
7110 arg = DECL_CHAIN (arg);
7112 fprintf (file, ")\n");
7114 if (flags & TDF_VERBOSE)
7115 print_node (file, "", fndecl, 2);
7117 dsf = DECL_STRUCT_FUNCTION (fndecl);
7118 if (dsf && (flags & TDF_EH))
7119 dump_eh_tree (file, dsf);
7121 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7123 dump_node (fndecl, TDF_SLIM | flags, file);
7124 current_function_decl = old_current_fndecl;
7125 return;
7128 /* When GIMPLE is lowered, the variables are no longer available in
7129 BIND_EXPRs, so display them separately. */
7130 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7132 unsigned ix;
7133 ignore_topmost_bind = true;
7135 fprintf (file, "{\n");
7136 if (!vec_safe_is_empty (fun->local_decls))
7137 FOR_EACH_LOCAL_DECL (fun, ix, var)
7139 print_generic_decl (file, var, flags);
7140 if (flags & TDF_VERBOSE)
7141 print_node (file, "", var, 4);
7142 fprintf (file, "\n");
7144 any_var = true;
7146 if (gimple_in_ssa_p (cfun))
7147 for (ix = 1; ix < num_ssa_names; ++ix)
7149 tree name = ssa_name (ix);
7150 if (name && !SSA_NAME_VAR (name))
7152 fprintf (file, " ");
7153 print_generic_expr (file, TREE_TYPE (name), flags);
7154 fprintf (file, " ");
7155 print_generic_expr (file, name, flags);
7156 fprintf (file, ";\n");
7158 any_var = true;
7163 if (fun && fun->decl == fndecl
7164 && fun->cfg
7165 && basic_block_info_for_fn (fun))
7167 /* If the CFG has been built, emit a CFG-based dump. */
7168 if (!ignore_topmost_bind)
7169 fprintf (file, "{\n");
7171 if (any_var && n_basic_blocks_for_fn (fun))
7172 fprintf (file, "\n");
7174 FOR_EACH_BB_FN (bb, fun)
7175 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7177 fprintf (file, "}\n");
7179 else if (DECL_SAVED_TREE (fndecl) == NULL)
7181 /* The function is now in GIMPLE form but the CFG has not been
7182 built yet. Emit the single sequence of GIMPLE statements
7183 that make up its body. */
7184 gimple_seq body = gimple_body (fndecl);
7186 if (gimple_seq_first_stmt (body)
7187 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7188 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7189 print_gimple_seq (file, body, 0, flags);
7190 else
7192 if (!ignore_topmost_bind)
7193 fprintf (file, "{\n");
7195 if (any_var)
7196 fprintf (file, "\n");
7198 print_gimple_seq (file, body, 2, flags);
7199 fprintf (file, "}\n");
7202 else
7204 int indent;
7206 /* Make a tree based dump. */
7207 chain = DECL_SAVED_TREE (fndecl);
7208 if (chain && TREE_CODE (chain) == BIND_EXPR)
7210 if (ignore_topmost_bind)
7212 chain = BIND_EXPR_BODY (chain);
7213 indent = 2;
7215 else
7216 indent = 0;
7218 else
7220 if (!ignore_topmost_bind)
7221 fprintf (file, "{\n");
7222 indent = 2;
7225 if (any_var)
7226 fprintf (file, "\n");
7228 print_generic_stmt_indented (file, chain, flags, indent);
7229 if (ignore_topmost_bind)
7230 fprintf (file, "}\n");
7233 if (flags & TDF_ENUMERATE_LOCALS)
7234 dump_enumerated_decls (file, flags);
7235 fprintf (file, "\n\n");
7237 current_function_decl = old_current_fndecl;
7240 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7242 DEBUG_FUNCTION void
7243 debug_function (tree fn, int flags)
7245 dump_function_to_file (fn, stderr, flags);
7249 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7251 static void
7252 print_pred_bbs (FILE *file, basic_block bb)
7254 edge e;
7255 edge_iterator ei;
7257 FOR_EACH_EDGE (e, ei, bb->preds)
7258 fprintf (file, "bb_%d ", e->src->index);
7262 /* Print on FILE the indexes for the successors of basic_block BB. */
7264 static void
7265 print_succ_bbs (FILE *file, basic_block bb)
7267 edge e;
7268 edge_iterator ei;
7270 FOR_EACH_EDGE (e, ei, bb->succs)
7271 fprintf (file, "bb_%d ", e->dest->index);
7274 /* Print to FILE the basic block BB following the VERBOSITY level. */
7276 void
7277 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7279 char *s_indent = (char *) alloca ((size_t) indent + 1);
7280 memset ((void *) s_indent, ' ', (size_t) indent);
7281 s_indent[indent] = '\0';
7283 /* Print basic_block's header. */
7284 if (verbosity >= 2)
7286 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7287 print_pred_bbs (file, bb);
7288 fprintf (file, "}, succs = {");
7289 print_succ_bbs (file, bb);
7290 fprintf (file, "})\n");
7293 /* Print basic_block's body. */
7294 if (verbosity >= 3)
7296 fprintf (file, "%s {\n", s_indent);
7297 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7298 fprintf (file, "%s }\n", s_indent);
7302 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7304 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7305 VERBOSITY level this outputs the contents of the loop, or just its
7306 structure. */
7308 static void
7309 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7311 char *s_indent;
7312 basic_block bb;
7314 if (loop == NULL)
7315 return;
7317 s_indent = (char *) alloca ((size_t) indent + 1);
7318 memset ((void *) s_indent, ' ', (size_t) indent);
7319 s_indent[indent] = '\0';
7321 /* Print loop's header. */
7322 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7323 if (loop->header)
7324 fprintf (file, "header = %d", loop->header->index);
7325 else
7327 fprintf (file, "deleted)\n");
7328 return;
7330 if (loop->latch)
7331 fprintf (file, ", latch = %d", loop->latch->index);
7332 else
7333 fprintf (file, ", multiple latches");
7334 fprintf (file, ", niter = ");
7335 print_generic_expr (file, loop->nb_iterations, 0);
7337 if (loop->any_upper_bound)
7339 fprintf (file, ", upper_bound = ");
7340 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7343 if (loop->any_estimate)
7345 fprintf (file, ", estimate = ");
7346 dump_double_int (file, loop->nb_iterations_estimate, true);
7348 fprintf (file, ")\n");
7350 /* Print loop's body. */
7351 if (verbosity >= 1)
7353 fprintf (file, "%s{\n", s_indent);
7354 FOR_EACH_BB_FN (bb, cfun)
7355 if (bb->loop_father == loop)
7356 print_loops_bb (file, bb, indent, verbosity);
7358 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7359 fprintf (file, "%s}\n", s_indent);
7363 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7364 spaces. Following VERBOSITY level this outputs the contents of the
7365 loop, or just its structure. */
7367 static void
7368 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7369 int verbosity)
7371 if (loop == NULL)
7372 return;
7374 print_loop (file, loop, indent, verbosity);
7375 print_loop_and_siblings (file, loop->next, indent, verbosity);
7378 /* Follow a CFG edge from the entry point of the program, and on entry
7379 of a loop, pretty print the loop structure on FILE. */
7381 void
7382 print_loops (FILE *file, int verbosity)
7384 basic_block bb;
7386 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7387 if (bb && bb->loop_father)
7388 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7391 /* Dump a loop. */
7393 DEBUG_FUNCTION void
7394 debug (struct loop &ref)
7396 print_loop (stderr, &ref, 0, /*verbosity*/0);
7399 DEBUG_FUNCTION void
7400 debug (struct loop *ptr)
7402 if (ptr)
7403 debug (*ptr);
7404 else
7405 fprintf (stderr, "<nil>\n");
7408 /* Dump a loop verbosely. */
7410 DEBUG_FUNCTION void
7411 debug_verbose (struct loop &ref)
7413 print_loop (stderr, &ref, 0, /*verbosity*/3);
7416 DEBUG_FUNCTION void
7417 debug_verbose (struct loop *ptr)
7419 if (ptr)
7420 debug (*ptr);
7421 else
7422 fprintf (stderr, "<nil>\n");
7426 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7428 DEBUG_FUNCTION void
7429 debug_loops (int verbosity)
7431 print_loops (stderr, verbosity);
7434 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7436 DEBUG_FUNCTION void
7437 debug_loop (struct loop *loop, int verbosity)
7439 print_loop (stderr, loop, 0, verbosity);
7442 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7443 level. */
7445 DEBUG_FUNCTION void
7446 debug_loop_num (unsigned num, int verbosity)
7448 debug_loop (get_loop (cfun, num), verbosity);
7451 /* Return true if BB ends with a call, possibly followed by some
7452 instructions that must stay with the call. Return false,
7453 otherwise. */
7455 static bool
7456 gimple_block_ends_with_call_p (basic_block bb)
7458 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7459 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7463 /* Return true if BB ends with a conditional branch. Return false,
7464 otherwise. */
7466 static bool
7467 gimple_block_ends_with_condjump_p (const_basic_block bb)
7469 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7470 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7474 /* Return true if we need to add fake edge to exit at statement T.
7475 Helper function for gimple_flow_call_edges_add. */
7477 static bool
7478 need_fake_edge_p (gimple t)
7480 tree fndecl = NULL_TREE;
7481 int call_flags = 0;
7483 /* NORETURN and LONGJMP calls already have an edge to exit.
7484 CONST and PURE calls do not need one.
7485 We don't currently check for CONST and PURE here, although
7486 it would be a good idea, because those attributes are
7487 figured out from the RTL in mark_constant_function, and
7488 the counter incrementation code from -fprofile-arcs
7489 leads to different results from -fbranch-probabilities. */
7490 if (is_gimple_call (t))
7492 fndecl = gimple_call_fndecl (t);
7493 call_flags = gimple_call_flags (t);
7496 if (is_gimple_call (t)
7497 && fndecl
7498 && DECL_BUILT_IN (fndecl)
7499 && (call_flags & ECF_NOTHROW)
7500 && !(call_flags & ECF_RETURNS_TWICE)
7501 /* fork() doesn't really return twice, but the effect of
7502 wrapping it in __gcov_fork() which calls __gcov_flush()
7503 and clears the counters before forking has the same
7504 effect as returning twice. Force a fake edge. */
7505 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7506 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7507 return false;
7509 if (is_gimple_call (t))
7511 edge_iterator ei;
7512 edge e;
7513 basic_block bb;
7515 if (!(call_flags & ECF_NORETURN))
7516 return true;
7518 bb = gimple_bb (t);
7519 FOR_EACH_EDGE (e, ei, bb->succs)
7520 if ((e->flags & EDGE_FAKE) == 0)
7521 return true;
7524 if (gimple_code (t) == GIMPLE_ASM
7525 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7526 return true;
7528 return false;
7532 /* Add fake edges to the function exit for any non constant and non
7533 noreturn calls (or noreturn calls with EH/abnormal edges),
7534 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7535 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7536 that were split.
7538 The goal is to expose cases in which entering a basic block does
7539 not imply that all subsequent instructions must be executed. */
7541 static int
7542 gimple_flow_call_edges_add (sbitmap blocks)
7544 int i;
7545 int blocks_split = 0;
7546 int last_bb = last_basic_block_for_fn (cfun);
7547 bool check_last_block = false;
7549 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7550 return 0;
7552 if (! blocks)
7553 check_last_block = true;
7554 else
7555 check_last_block = bitmap_bit_p (blocks,
7556 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7558 /* In the last basic block, before epilogue generation, there will be
7559 a fallthru edge to EXIT. Special care is required if the last insn
7560 of the last basic block is a call because make_edge folds duplicate
7561 edges, which would result in the fallthru edge also being marked
7562 fake, which would result in the fallthru edge being removed by
7563 remove_fake_edges, which would result in an invalid CFG.
7565 Moreover, we can't elide the outgoing fake edge, since the block
7566 profiler needs to take this into account in order to solve the minimal
7567 spanning tree in the case that the call doesn't return.
7569 Handle this by adding a dummy instruction in a new last basic block. */
7570 if (check_last_block)
7572 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7573 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7574 gimple t = NULL;
7576 if (!gsi_end_p (gsi))
7577 t = gsi_stmt (gsi);
7579 if (t && need_fake_edge_p (t))
7581 edge e;
7583 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7584 if (e)
7586 gsi_insert_on_edge (e, gimple_build_nop ());
7587 gsi_commit_edge_inserts ();
7592 /* Now add fake edges to the function exit for any non constant
7593 calls since there is no way that we can determine if they will
7594 return or not... */
7595 for (i = 0; i < last_bb; i++)
7597 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7598 gimple_stmt_iterator gsi;
7599 gimple stmt, last_stmt;
7601 if (!bb)
7602 continue;
7604 if (blocks && !bitmap_bit_p (blocks, i))
7605 continue;
7607 gsi = gsi_last_nondebug_bb (bb);
7608 if (!gsi_end_p (gsi))
7610 last_stmt = gsi_stmt (gsi);
7613 stmt = gsi_stmt (gsi);
7614 if (need_fake_edge_p (stmt))
7616 edge e;
7618 /* The handling above of the final block before the
7619 epilogue should be enough to verify that there is
7620 no edge to the exit block in CFG already.
7621 Calling make_edge in such case would cause us to
7622 mark that edge as fake and remove it later. */
7623 #ifdef ENABLE_CHECKING
7624 if (stmt == last_stmt)
7626 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7627 gcc_assert (e == NULL);
7629 #endif
7631 /* Note that the following may create a new basic block
7632 and renumber the existing basic blocks. */
7633 if (stmt != last_stmt)
7635 e = split_block (bb, stmt);
7636 if (e)
7637 blocks_split++;
7639 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7641 gsi_prev (&gsi);
7643 while (!gsi_end_p (gsi));
7647 if (blocks_split)
7648 verify_flow_info ();
7650 return blocks_split;
7653 /* Removes edge E and all the blocks dominated by it, and updates dominance
7654 information. The IL in E->src needs to be updated separately.
7655 If dominance info is not available, only the edge E is removed.*/
7657 void
7658 remove_edge_and_dominated_blocks (edge e)
7660 vec<basic_block> bbs_to_remove = vNULL;
7661 vec<basic_block> bbs_to_fix_dom = vNULL;
7662 bitmap df, df_idom;
7663 edge f;
7664 edge_iterator ei;
7665 bool none_removed = false;
7666 unsigned i;
7667 basic_block bb, dbb;
7668 bitmap_iterator bi;
7670 if (!dom_info_available_p (CDI_DOMINATORS))
7672 remove_edge (e);
7673 return;
7676 /* No updating is needed for edges to exit. */
7677 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7679 if (cfgcleanup_altered_bbs)
7680 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7681 remove_edge (e);
7682 return;
7685 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7686 that is not dominated by E->dest, then this set is empty. Otherwise,
7687 all the basic blocks dominated by E->dest are removed.
7689 Also, to DF_IDOM we store the immediate dominators of the blocks in
7690 the dominance frontier of E (i.e., of the successors of the
7691 removed blocks, if there are any, and of E->dest otherwise). */
7692 FOR_EACH_EDGE (f, ei, e->dest->preds)
7694 if (f == e)
7695 continue;
7697 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7699 none_removed = true;
7700 break;
7704 df = BITMAP_ALLOC (NULL);
7705 df_idom = BITMAP_ALLOC (NULL);
7707 if (none_removed)
7708 bitmap_set_bit (df_idom,
7709 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7710 else
7712 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7713 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7715 FOR_EACH_EDGE (f, ei, bb->succs)
7717 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7718 bitmap_set_bit (df, f->dest->index);
7721 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7722 bitmap_clear_bit (df, bb->index);
7724 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7726 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7727 bitmap_set_bit (df_idom,
7728 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7732 if (cfgcleanup_altered_bbs)
7734 /* Record the set of the altered basic blocks. */
7735 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7736 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7739 /* Remove E and the cancelled blocks. */
7740 if (none_removed)
7741 remove_edge (e);
7742 else
7744 /* Walk backwards so as to get a chance to substitute all
7745 released DEFs into debug stmts. See
7746 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7747 details. */
7748 for (i = bbs_to_remove.length (); i-- > 0; )
7749 delete_basic_block (bbs_to_remove[i]);
7752 /* Update the dominance information. The immediate dominator may change only
7753 for blocks whose immediate dominator belongs to DF_IDOM:
7755 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7756 removal. Let Z the arbitrary block such that idom(Z) = Y and
7757 Z dominates X after the removal. Before removal, there exists a path P
7758 from Y to X that avoids Z. Let F be the last edge on P that is
7759 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7760 dominates W, and because of P, Z does not dominate W), and W belongs to
7761 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7762 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7764 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7765 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7766 dbb;
7767 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7768 bbs_to_fix_dom.safe_push (dbb);
7771 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7773 BITMAP_FREE (df);
7774 BITMAP_FREE (df_idom);
7775 bbs_to_remove.release ();
7776 bbs_to_fix_dom.release ();
7779 /* Purge dead EH edges from basic block BB. */
7781 bool
7782 gimple_purge_dead_eh_edges (basic_block bb)
7784 bool changed = false;
7785 edge e;
7786 edge_iterator ei;
7787 gimple stmt = last_stmt (bb);
7789 if (stmt && stmt_can_throw_internal (stmt))
7790 return false;
7792 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7794 if (e->flags & EDGE_EH)
7796 remove_edge_and_dominated_blocks (e);
7797 changed = true;
7799 else
7800 ei_next (&ei);
7803 return changed;
7806 /* Purge dead EH edges from basic block listed in BLOCKS. */
7808 bool
7809 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7811 bool changed = false;
7812 unsigned i;
7813 bitmap_iterator bi;
7815 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7817 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7819 /* Earlier gimple_purge_dead_eh_edges could have removed
7820 this basic block already. */
7821 gcc_assert (bb || changed);
7822 if (bb != NULL)
7823 changed |= gimple_purge_dead_eh_edges (bb);
7826 return changed;
7829 /* Purge dead abnormal call edges from basic block BB. */
7831 bool
7832 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7834 bool changed = false;
7835 edge e;
7836 edge_iterator ei;
7837 gimple stmt = last_stmt (bb);
7839 if (!cfun->has_nonlocal_label
7840 && !cfun->calls_setjmp)
7841 return false;
7843 if (stmt && stmt_can_make_abnormal_goto (stmt))
7844 return false;
7846 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7848 if (e->flags & EDGE_ABNORMAL)
7850 if (e->flags & EDGE_FALLTHRU)
7851 e->flags &= ~EDGE_ABNORMAL;
7852 else
7853 remove_edge_and_dominated_blocks (e);
7854 changed = true;
7856 else
7857 ei_next (&ei);
7860 return changed;
7863 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7865 bool
7866 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7868 bool changed = false;
7869 unsigned i;
7870 bitmap_iterator bi;
7872 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7874 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7876 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7877 this basic block already. */
7878 gcc_assert (bb || changed);
7879 if (bb != NULL)
7880 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7883 return changed;
7886 /* This function is called whenever a new edge is created or
7887 redirected. */
7889 static void
7890 gimple_execute_on_growing_pred (edge e)
7892 basic_block bb = e->dest;
7894 if (!gimple_seq_empty_p (phi_nodes (bb)))
7895 reserve_phi_args_for_new_edge (bb);
7898 /* This function is called immediately before edge E is removed from
7899 the edge vector E->dest->preds. */
7901 static void
7902 gimple_execute_on_shrinking_pred (edge e)
7904 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7905 remove_phi_args (e);
7908 /*---------------------------------------------------------------------------
7909 Helper functions for Loop versioning
7910 ---------------------------------------------------------------------------*/
7912 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7913 of 'first'. Both of them are dominated by 'new_head' basic block. When
7914 'new_head' was created by 'second's incoming edge it received phi arguments
7915 on the edge by split_edge(). Later, additional edge 'e' was created to
7916 connect 'new_head' and 'first'. Now this routine adds phi args on this
7917 additional edge 'e' that new_head to second edge received as part of edge
7918 splitting. */
7920 static void
7921 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7922 basic_block new_head, edge e)
7924 gimple phi1, phi2;
7925 gimple_stmt_iterator psi1, psi2;
7926 tree def;
7927 edge e2 = find_edge (new_head, second);
7929 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7930 edge, we should always have an edge from NEW_HEAD to SECOND. */
7931 gcc_assert (e2 != NULL);
7933 /* Browse all 'second' basic block phi nodes and add phi args to
7934 edge 'e' for 'first' head. PHI args are always in correct order. */
7936 for (psi2 = gsi_start_phis (second),
7937 psi1 = gsi_start_phis (first);
7938 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7939 gsi_next (&psi2), gsi_next (&psi1))
7941 phi1 = gsi_stmt (psi1);
7942 phi2 = gsi_stmt (psi2);
7943 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7944 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7949 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7950 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7951 the destination of the ELSE part. */
7953 static void
7954 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7955 basic_block second_head ATTRIBUTE_UNUSED,
7956 basic_block cond_bb, void *cond_e)
7958 gimple_stmt_iterator gsi;
7959 gimple new_cond_expr;
7960 tree cond_expr = (tree) cond_e;
7961 edge e0;
7963 /* Build new conditional expr */
7964 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7965 NULL_TREE, NULL_TREE);
7967 /* Add new cond in cond_bb. */
7968 gsi = gsi_last_bb (cond_bb);
7969 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7971 /* Adjust edges appropriately to connect new head with first head
7972 as well as second head. */
7973 e0 = single_succ_edge (cond_bb);
7974 e0->flags &= ~EDGE_FALLTHRU;
7975 e0->flags |= EDGE_FALSE_VALUE;
7979 /* Do book-keeping of basic block BB for the profile consistency checker.
7980 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7981 then do post-pass accounting. Store the counting in RECORD. */
7982 static void
7983 gimple_account_profile_record (basic_block bb, int after_pass,
7984 struct profile_record *record)
7986 gimple_stmt_iterator i;
7987 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7989 record->size[after_pass]
7990 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7991 if (profile_status_for_fn (cfun) == PROFILE_READ)
7992 record->time[after_pass]
7993 += estimate_num_insns (gsi_stmt (i),
7994 &eni_time_weights) * bb->count;
7995 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7996 record->time[after_pass]
7997 += estimate_num_insns (gsi_stmt (i),
7998 &eni_time_weights) * bb->frequency;
8002 struct cfg_hooks gimple_cfg_hooks = {
8003 "gimple",
8004 gimple_verify_flow_info,
8005 gimple_dump_bb, /* dump_bb */
8006 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8007 create_bb, /* create_basic_block */
8008 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8009 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8010 gimple_can_remove_branch_p, /* can_remove_branch_p */
8011 remove_bb, /* delete_basic_block */
8012 gimple_split_block, /* split_block */
8013 gimple_move_block_after, /* move_block_after */
8014 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8015 gimple_merge_blocks, /* merge_blocks */
8016 gimple_predict_edge, /* predict_edge */
8017 gimple_predicted_by_p, /* predicted_by_p */
8018 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8019 gimple_duplicate_bb, /* duplicate_block */
8020 gimple_split_edge, /* split_edge */
8021 gimple_make_forwarder_block, /* make_forward_block */
8022 NULL, /* tidy_fallthru_edge */
8023 NULL, /* force_nonfallthru */
8024 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8025 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8026 gimple_flow_call_edges_add, /* flow_call_edges_add */
8027 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8028 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8029 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8030 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8031 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8032 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8033 flush_pending_stmts, /* flush_pending_stmts */
8034 gimple_empty_block_p, /* block_empty_p */
8035 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8036 gimple_account_profile_record,
8040 /* Split all critical edges. */
8042 unsigned int
8043 split_critical_edges (void)
8045 basic_block bb;
8046 edge e;
8047 edge_iterator ei;
8049 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8050 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8051 mappings around the calls to split_edge. */
8052 start_recording_case_labels ();
8053 FOR_ALL_BB_FN (bb, cfun)
8055 FOR_EACH_EDGE (e, ei, bb->succs)
8057 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8058 split_edge (e);
8059 /* PRE inserts statements to edges and expects that
8060 since split_critical_edges was done beforehand, committing edge
8061 insertions will not split more edges. In addition to critical
8062 edges we must split edges that have multiple successors and
8063 end by control flow statements, such as RESX.
8064 Go ahead and split them too. This matches the logic in
8065 gimple_find_edge_insert_loc. */
8066 else if ((!single_pred_p (e->dest)
8067 || !gimple_seq_empty_p (phi_nodes (e->dest))
8068 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8069 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8070 && !(e->flags & EDGE_ABNORMAL))
8072 gimple_stmt_iterator gsi;
8074 gsi = gsi_last_bb (e->src);
8075 if (!gsi_end_p (gsi)
8076 && stmt_ends_bb_p (gsi_stmt (gsi))
8077 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8078 && !gimple_call_builtin_p (gsi_stmt (gsi),
8079 BUILT_IN_RETURN)))
8080 split_edge (e);
8084 end_recording_case_labels ();
8085 return 0;
8088 namespace {
8090 const pass_data pass_data_split_crit_edges =
8092 GIMPLE_PASS, /* type */
8093 "crited", /* name */
8094 OPTGROUP_NONE, /* optinfo_flags */
8095 false, /* has_gate */
8096 true, /* has_execute */
8097 TV_TREE_SPLIT_EDGES, /* tv_id */
8098 PROP_cfg, /* properties_required */
8099 PROP_no_crit_edges, /* properties_provided */
8100 0, /* properties_destroyed */
8101 0, /* todo_flags_start */
8102 TODO_verify_flow, /* todo_flags_finish */
8105 class pass_split_crit_edges : public gimple_opt_pass
8107 public:
8108 pass_split_crit_edges (gcc::context *ctxt)
8109 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8112 /* opt_pass methods: */
8113 unsigned int execute () { return split_critical_edges (); }
8115 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8116 }; // class pass_split_crit_edges
8118 } // anon namespace
8120 gimple_opt_pass *
8121 make_pass_split_crit_edges (gcc::context *ctxt)
8123 return new pass_split_crit_edges (ctxt);
8127 /* Build a ternary operation and gimplify it. Emit code before GSI.
8128 Return the gimple_val holding the result. */
8130 tree
8131 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8132 tree type, tree a, tree b, tree c)
8134 tree ret;
8135 location_t loc = gimple_location (gsi_stmt (*gsi));
8137 ret = fold_build3_loc (loc, code, type, a, b, c);
8138 STRIP_NOPS (ret);
8140 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8141 GSI_SAME_STMT);
8144 /* Build a binary operation and gimplify it. Emit code before GSI.
8145 Return the gimple_val holding the result. */
8147 tree
8148 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8149 tree type, tree a, tree b)
8151 tree ret;
8153 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8154 STRIP_NOPS (ret);
8156 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8157 GSI_SAME_STMT);
8160 /* Build a unary operation and gimplify it. Emit code before GSI.
8161 Return the gimple_val holding the result. */
8163 tree
8164 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8165 tree a)
8167 tree ret;
8169 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8170 STRIP_NOPS (ret);
8172 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8173 GSI_SAME_STMT);
8178 /* Emit return warnings. */
8180 static unsigned int
8181 execute_warn_function_return (void)
8183 source_location location;
8184 gimple last;
8185 edge e;
8186 edge_iterator ei;
8188 if (!targetm.warn_func_return (cfun->decl))
8189 return 0;
8191 /* If we have a path to EXIT, then we do return. */
8192 if (TREE_THIS_VOLATILE (cfun->decl)
8193 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8195 location = UNKNOWN_LOCATION;
8196 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8198 last = last_stmt (e->src);
8199 if ((gimple_code (last) == GIMPLE_RETURN
8200 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8201 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8202 break;
8204 if (location == UNKNOWN_LOCATION)
8205 location = cfun->function_end_locus;
8206 warning_at (location, 0, "%<noreturn%> function does return");
8209 /* If we see "return;" in some basic block, then we do reach the end
8210 without returning a value. */
8211 else if (warn_return_type
8212 && !TREE_NO_WARNING (cfun->decl)
8213 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8214 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8216 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8218 gimple last = last_stmt (e->src);
8219 if (gimple_code (last) == GIMPLE_RETURN
8220 && gimple_return_retval (last) == NULL
8221 && !gimple_no_warning_p (last))
8223 location = gimple_location (last);
8224 if (location == UNKNOWN_LOCATION)
8225 location = cfun->function_end_locus;
8226 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8227 TREE_NO_WARNING (cfun->decl) = 1;
8228 break;
8232 return 0;
8236 /* Given a basic block B which ends with a conditional and has
8237 precisely two successors, determine which of the edges is taken if
8238 the conditional is true and which is taken if the conditional is
8239 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8241 void
8242 extract_true_false_edges_from_block (basic_block b,
8243 edge *true_edge,
8244 edge *false_edge)
8246 edge e = EDGE_SUCC (b, 0);
8248 if (e->flags & EDGE_TRUE_VALUE)
8250 *true_edge = e;
8251 *false_edge = EDGE_SUCC (b, 1);
8253 else
8255 *false_edge = e;
8256 *true_edge = EDGE_SUCC (b, 1);
8260 namespace {
8262 const pass_data pass_data_warn_function_return =
8264 GIMPLE_PASS, /* type */
8265 "*warn_function_return", /* name */
8266 OPTGROUP_NONE, /* optinfo_flags */
8267 false, /* has_gate */
8268 true, /* has_execute */
8269 TV_NONE, /* tv_id */
8270 PROP_cfg, /* properties_required */
8271 0, /* properties_provided */
8272 0, /* properties_destroyed */
8273 0, /* todo_flags_start */
8274 0, /* todo_flags_finish */
8277 class pass_warn_function_return : public gimple_opt_pass
8279 public:
8280 pass_warn_function_return (gcc::context *ctxt)
8281 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8284 /* opt_pass methods: */
8285 unsigned int execute () { return execute_warn_function_return (); }
8287 }; // class pass_warn_function_return
8289 } // anon namespace
8291 gimple_opt_pass *
8292 make_pass_warn_function_return (gcc::context *ctxt)
8294 return new pass_warn_function_return (ctxt);
8297 /* Walk a gimplified function and warn for functions whose return value is
8298 ignored and attribute((warn_unused_result)) is set. This is done before
8299 inlining, so we don't have to worry about that. */
8301 static void
8302 do_warn_unused_result (gimple_seq seq)
8304 tree fdecl, ftype;
8305 gimple_stmt_iterator i;
8307 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8309 gimple g = gsi_stmt (i);
8311 switch (gimple_code (g))
8313 case GIMPLE_BIND:
8314 do_warn_unused_result (gimple_bind_body (g));
8315 break;
8316 case GIMPLE_TRY:
8317 do_warn_unused_result (gimple_try_eval (g));
8318 do_warn_unused_result (gimple_try_cleanup (g));
8319 break;
8320 case GIMPLE_CATCH:
8321 do_warn_unused_result (gimple_catch_handler (g));
8322 break;
8323 case GIMPLE_EH_FILTER:
8324 do_warn_unused_result (gimple_eh_filter_failure (g));
8325 break;
8327 case GIMPLE_CALL:
8328 if (gimple_call_lhs (g))
8329 break;
8330 if (gimple_call_internal_p (g))
8331 break;
8333 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8334 LHS. All calls whose value is ignored should be
8335 represented like this. Look for the attribute. */
8336 fdecl = gimple_call_fndecl (g);
8337 ftype = gimple_call_fntype (g);
8339 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8341 location_t loc = gimple_location (g);
8343 if (fdecl)
8344 warning_at (loc, OPT_Wunused_result,
8345 "ignoring return value of %qD, "
8346 "declared with attribute warn_unused_result",
8347 fdecl);
8348 else
8349 warning_at (loc, OPT_Wunused_result,
8350 "ignoring return value of function "
8351 "declared with attribute warn_unused_result");
8353 break;
8355 default:
8356 /* Not a container, not a call, or a call whose value is used. */
8357 break;
8362 static unsigned int
8363 run_warn_unused_result (void)
8365 do_warn_unused_result (gimple_body (current_function_decl));
8366 return 0;
8369 static bool
8370 gate_warn_unused_result (void)
8372 return flag_warn_unused_result;
8375 namespace {
8377 const pass_data pass_data_warn_unused_result =
8379 GIMPLE_PASS, /* type */
8380 "*warn_unused_result", /* name */
8381 OPTGROUP_NONE, /* optinfo_flags */
8382 true, /* has_gate */
8383 true, /* has_execute */
8384 TV_NONE, /* tv_id */
8385 PROP_gimple_any, /* properties_required */
8386 0, /* properties_provided */
8387 0, /* properties_destroyed */
8388 0, /* todo_flags_start */
8389 0, /* todo_flags_finish */
8392 class pass_warn_unused_result : public gimple_opt_pass
8394 public:
8395 pass_warn_unused_result (gcc::context *ctxt)
8396 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8399 /* opt_pass methods: */
8400 bool gate () { return gate_warn_unused_result (); }
8401 unsigned int execute () { return run_warn_unused_result (); }
8403 }; // class pass_warn_unused_result
8405 } // anon namespace
8407 gimple_opt_pass *
8408 make_pass_warn_unused_result (gcc::context *ctxt)
8410 return new pass_warn_unused_result (ctxt);
8413 /* IPA passes, compilation of earlier functions or inlining
8414 might have changed some properties, such as marked functions nothrow,
8415 pure, const or noreturn.
8416 Remove redundant edges and basic blocks, and create new ones if necessary.
8418 This pass can't be executed as stand alone pass from pass manager, because
8419 in between inlining and this fixup the verify_flow_info would fail. */
8421 unsigned int
8422 execute_fixup_cfg (void)
8424 basic_block bb;
8425 gimple_stmt_iterator gsi;
8426 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8427 gcov_type count_scale;
8428 edge e;
8429 edge_iterator ei;
8431 count_scale
8432 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8433 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8435 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8436 cgraph_get_node (current_function_decl)->count;
8437 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8438 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8439 count_scale);
8441 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8442 e->count = apply_scale (e->count, count_scale);
8444 FOR_EACH_BB_FN (bb, cfun)
8446 bb->count = apply_scale (bb->count, count_scale);
8447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8449 gimple stmt = gsi_stmt (gsi);
8450 tree decl = is_gimple_call (stmt)
8451 ? gimple_call_fndecl (stmt)
8452 : NULL;
8453 if (decl)
8455 int flags = gimple_call_flags (stmt);
8456 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8458 if (gimple_purge_dead_abnormal_call_edges (bb))
8459 todo |= TODO_cleanup_cfg;
8461 if (gimple_in_ssa_p (cfun))
8463 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8464 update_stmt (stmt);
8468 if (flags & ECF_NORETURN
8469 && fixup_noreturn_call (stmt))
8470 todo |= TODO_cleanup_cfg;
8473 if (maybe_clean_eh_stmt (stmt)
8474 && gimple_purge_dead_eh_edges (bb))
8475 todo |= TODO_cleanup_cfg;
8478 FOR_EACH_EDGE (e, ei, bb->succs)
8479 e->count = apply_scale (e->count, count_scale);
8481 /* If we have a basic block with no successors that does not
8482 end with a control statement or a noreturn call end it with
8483 a call to __builtin_unreachable. This situation can occur
8484 when inlining a noreturn call that does in fact return. */
8485 if (EDGE_COUNT (bb->succs) == 0)
8487 gimple stmt = last_stmt (bb);
8488 if (!stmt
8489 || (!is_ctrl_stmt (stmt)
8490 && (!is_gimple_call (stmt)
8491 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8493 if (stmt && is_gimple_call (stmt))
8494 gimple_call_set_ctrl_altering (stmt, false);
8495 stmt = gimple_build_call
8496 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8497 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8498 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8502 if (count_scale != REG_BR_PROB_BASE)
8503 compute_function_frequency ();
8505 /* Dump a textual representation of the flowgraph. */
8506 if (dump_file)
8507 gimple_dump_cfg (dump_file, dump_flags);
8509 if (current_loops
8510 && (todo & TODO_cleanup_cfg))
8511 loops_state_set (LOOPS_NEED_FIXUP);
8513 return todo;
8516 namespace {
8518 const pass_data pass_data_fixup_cfg =
8520 GIMPLE_PASS, /* type */
8521 "*free_cfg_annotations", /* name */
8522 OPTGROUP_NONE, /* optinfo_flags */
8523 false, /* has_gate */
8524 true, /* has_execute */
8525 TV_NONE, /* tv_id */
8526 PROP_cfg, /* properties_required */
8527 0, /* properties_provided */
8528 0, /* properties_destroyed */
8529 0, /* todo_flags_start */
8530 0, /* todo_flags_finish */
8533 class pass_fixup_cfg : public gimple_opt_pass
8535 public:
8536 pass_fixup_cfg (gcc::context *ctxt)
8537 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8540 /* opt_pass methods: */
8541 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8542 unsigned int execute () { return execute_fixup_cfg (); }
8544 }; // class pass_fixup_cfg
8546 } // anon namespace
8548 gimple_opt_pass *
8549 make_pass_fixup_cfg (gcc::context *ctxt)
8551 return new pass_fixup_cfg (ctxt);
8554 /* Garbage collection support for edge_def. */
8556 extern void gt_ggc_mx (tree&);
8557 extern void gt_ggc_mx (gimple&);
8558 extern void gt_ggc_mx (rtx&);
8559 extern void gt_ggc_mx (basic_block&);
8561 void
8562 gt_ggc_mx (edge_def *e)
8564 tree block = LOCATION_BLOCK (e->goto_locus);
8565 gt_ggc_mx (e->src);
8566 gt_ggc_mx (e->dest);
8567 if (current_ir_type () == IR_GIMPLE)
8568 gt_ggc_mx (e->insns.g);
8569 else
8570 gt_ggc_mx (e->insns.r);
8571 gt_ggc_mx (block);
8574 /* PCH support for edge_def. */
8576 extern void gt_pch_nx (tree&);
8577 extern void gt_pch_nx (gimple&);
8578 extern void gt_pch_nx (rtx&);
8579 extern void gt_pch_nx (basic_block&);
8581 void
8582 gt_pch_nx (edge_def *e)
8584 tree block = LOCATION_BLOCK (e->goto_locus);
8585 gt_pch_nx (e->src);
8586 gt_pch_nx (e->dest);
8587 if (current_ir_type () == IR_GIMPLE)
8588 gt_pch_nx (e->insns.g);
8589 else
8590 gt_pch_nx (e->insns.r);
8591 gt_pch_nx (block);
8594 void
8595 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8597 tree block = LOCATION_BLOCK (e->goto_locus);
8598 op (&(e->src), cookie);
8599 op (&(e->dest), cookie);
8600 if (current_ir_type () == IR_GIMPLE)
8601 op (&(e->insns.g), cookie);
8602 else
8603 op (&(e->insns.r), cookie);
8604 op (&(block), cookie);