Make Linaro GCC4.9-2015.06.
[official-gcc.git] / gcc-4_9-branch / gcc / jump.c
blobd41373b94069063d474c39154880535759ca607e
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
65 static void init_label_info (rtx);
66 static void mark_all_labels (rtx);
67 static void mark_jump_label_1 (rtx, rtx, bool, bool);
68 static void mark_jump_label_asm (rtx, rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int invert_exp_1 (rtx, rtx);
71 static int returnjump_p_1 (rtx *, void *);
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx f, bool count_forced)
77 rtx insn;
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
89 if (LABEL_P (XEXP (insn, 0)))
90 LABEL_NUSES (XEXP (insn, 0))++;
91 timevar_pop (TV_REBUILD_JUMP);
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx f)
101 rebuild_jump_labels_1 (f, true);
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx chain)
110 rebuild_jump_labels_1 (chain, false);
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
121 static unsigned int
122 cleanup_barriers (void)
124 rtx insn, next, prev;
125 for (insn = get_insns (); insn; insn = next)
127 next = NEXT_INSN (insn);
128 if (BARRIER_P (insn))
130 prev = prev_nonnote_insn (insn);
131 if (!prev)
132 continue;
133 if (BARRIER_P (prev))
134 delete_insn (insn);
135 else if (prev != PREV_INSN (insn))
137 basic_block bb = BLOCK_FOR_INSN (prev);
138 rtx end = PREV_INSN (insn);
139 reorder_insns_nobb (insn, insn, prev);
140 if (bb)
142 /* If the backend called in machine reorg compute_bb_for_insn
143 and didn't free_bb_for_insn again, preserve basic block
144 boundaries. Move the end of basic block to PREV since
145 it is followed by a barrier now, and clear BLOCK_FOR_INSN
146 on the following notes.
147 ??? Maybe the proper solution for the targets that have
148 cfg around after machine reorg is not to run cleanup_barriers
149 pass at all. */
150 BB_END (bb) = prev;
153 prev = NEXT_INSN (prev);
154 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
155 BLOCK_FOR_INSN (prev) = NULL;
157 while (prev != end);
162 return 0;
165 namespace {
167 const pass_data pass_data_cleanup_barriers =
169 RTL_PASS, /* type */
170 "barriers", /* name */
171 OPTGROUP_NONE, /* optinfo_flags */
172 false, /* has_gate */
173 true, /* has_execute */
174 TV_NONE, /* tv_id */
175 0, /* properties_required */
176 0, /* properties_provided */
177 0, /* properties_destroyed */
178 0, /* todo_flags_start */
179 0, /* todo_flags_finish */
182 class pass_cleanup_barriers : public rtl_opt_pass
184 public:
185 pass_cleanup_barriers (gcc::context *ctxt)
186 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
189 /* opt_pass methods: */
190 unsigned int execute () { return cleanup_barriers (); }
192 }; // class pass_cleanup_barriers
194 } // anon namespace
196 rtl_opt_pass *
197 make_pass_cleanup_barriers (gcc::context *ctxt)
199 return new pass_cleanup_barriers (ctxt);
203 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
204 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
205 notes whose labels don't occur in the insn any more. */
207 static void
208 init_label_info (rtx f)
210 rtx insn;
212 for (insn = f; insn; insn = NEXT_INSN (insn))
214 if (LABEL_P (insn))
215 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
217 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
218 sticky and not reset here; that way we won't lose association
219 with a label when e.g. the source for a target register
220 disappears out of reach for targets that may use jump-target
221 registers. Jump transformations are supposed to transform
222 any REG_LABEL_TARGET notes. The target label reference in a
223 branch may disappear from the branch (and from the
224 instruction before it) for other reasons, like register
225 allocation. */
227 if (INSN_P (insn))
229 rtx note, next;
231 for (note = REG_NOTES (insn); note; note = next)
233 next = XEXP (note, 1);
234 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
235 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
236 remove_note (insn, note);
242 /* A subroutine of mark_all_labels. Trivially propagate a simple label
243 load into a jump_insn that uses it. */
245 static void
246 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
248 rtx label_note, pc, pc_src;
250 pc = pc_set (jump_insn);
251 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
252 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
254 /* If the previous non-jump insn sets something to a label,
255 something that this jump insn uses, make that label the primary
256 target of this insn if we don't yet have any. That previous
257 insn must be a single_set and not refer to more than one label.
258 The jump insn must not refer to other labels as jump targets
259 and must be a plain (set (pc) ...), maybe in a parallel, and
260 may refer to the item being set only directly or as one of the
261 arms in an IF_THEN_ELSE. */
263 if (label_note != NULL && pc_src != NULL)
265 rtx label_set = single_set (prev_nonjump_insn);
266 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
268 if (label_set != NULL
269 /* The source must be the direct LABEL_REF, not a
270 PLUS, UNSPEC, IF_THEN_ELSE etc. */
271 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
272 && (rtx_equal_p (label_dest, pc_src)
273 || (GET_CODE (pc_src) == IF_THEN_ELSE
274 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
275 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
277 /* The CODE_LABEL referred to in the note must be the
278 CODE_LABEL in the LABEL_REF of the "set". We can
279 conveniently use it for the marker function, which
280 requires a LABEL_REF wrapping. */
281 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
283 mark_jump_label_1 (label_set, jump_insn, false, true);
285 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
290 /* Mark the label each jump jumps to.
291 Combine consecutive labels, and count uses of labels. */
293 static void
294 mark_all_labels (rtx f)
296 rtx insn;
298 if (current_ir_type () == IR_RTL_CFGLAYOUT)
300 basic_block bb;
301 FOR_EACH_BB_FN (bb, cfun)
303 /* In cfglayout mode, we don't bother with trivial next-insn
304 propagation of LABEL_REFs into JUMP_LABEL. This will be
305 handled by other optimizers using better algorithms. */
306 FOR_BB_INSNS (bb, insn)
308 gcc_assert (! INSN_DELETED_P (insn));
309 if (NONDEBUG_INSN_P (insn))
310 mark_jump_label (PATTERN (insn), insn, 0);
313 /* In cfglayout mode, there may be non-insns between the
314 basic blocks. If those non-insns represent tablejump data,
315 they contain label references that we must record. */
316 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
317 if (JUMP_TABLE_DATA_P (insn))
318 mark_jump_label (PATTERN (insn), insn, 0);
319 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
320 if (JUMP_TABLE_DATA_P (insn))
321 mark_jump_label (PATTERN (insn), insn, 0);
324 else
326 rtx prev_nonjump_insn = NULL;
327 for (insn = f; insn; insn = NEXT_INSN (insn))
329 if (INSN_DELETED_P (insn))
331 else if (LABEL_P (insn))
332 prev_nonjump_insn = NULL;
333 else if (JUMP_TABLE_DATA_P (insn))
334 mark_jump_label (PATTERN (insn), insn, 0);
335 else if (NONDEBUG_INSN_P (insn))
337 mark_jump_label (PATTERN (insn), insn, 0);
338 if (JUMP_P (insn))
340 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
341 maybe_propagate_label_ref (insn, prev_nonjump_insn);
343 else
344 prev_nonjump_insn = insn;
350 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
351 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
352 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
353 know whether it's source is floating point or integer comparison. Machine
354 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
355 to help this function avoid overhead in these cases. */
356 enum rtx_code
357 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
358 const_rtx arg1, const_rtx insn)
360 enum machine_mode mode;
362 /* If this is not actually a comparison, we can't reverse it. */
363 if (GET_RTX_CLASS (code) != RTX_COMPARE
364 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
365 return UNKNOWN;
367 mode = GET_MODE (arg0);
368 if (mode == VOIDmode)
369 mode = GET_MODE (arg1);
371 /* First see if machine description supplies us way to reverse the
372 comparison. Give it priority over everything else to allow
373 machine description to do tricks. */
374 if (GET_MODE_CLASS (mode) == MODE_CC
375 && REVERSIBLE_CC_MODE (mode))
377 #ifdef REVERSE_CONDITION
378 return REVERSE_CONDITION (code, mode);
379 #else
380 return reverse_condition (code);
381 #endif
384 /* Try a few special cases based on the comparison code. */
385 switch (code)
387 case GEU:
388 case GTU:
389 case LEU:
390 case LTU:
391 case NE:
392 case EQ:
393 /* It is always safe to reverse EQ and NE, even for the floating
394 point. Similarly the unsigned comparisons are never used for
395 floating point so we can reverse them in the default way. */
396 return reverse_condition (code);
397 case ORDERED:
398 case UNORDERED:
399 case LTGT:
400 case UNEQ:
401 /* In case we already see unordered comparison, we can be sure to
402 be dealing with floating point so we don't need any more tests. */
403 return reverse_condition_maybe_unordered (code);
404 case UNLT:
405 case UNLE:
406 case UNGT:
407 case UNGE:
408 /* We don't have safe way to reverse these yet. */
409 return UNKNOWN;
410 default:
411 break;
414 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
416 const_rtx prev;
417 /* Try to search for the comparison to determine the real mode.
418 This code is expensive, but with sane machine description it
419 will be never used, since REVERSIBLE_CC_MODE will return true
420 in all cases. */
421 if (! insn)
422 return UNKNOWN;
424 /* These CONST_CAST's are okay because prev_nonnote_insn just
425 returns its argument and we assign it to a const_rtx
426 variable. */
427 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
428 prev != 0 && !LABEL_P (prev);
429 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
431 const_rtx set = set_of (arg0, prev);
432 if (set && GET_CODE (set) == SET
433 && rtx_equal_p (SET_DEST (set), arg0))
435 rtx src = SET_SRC (set);
437 if (GET_CODE (src) == COMPARE)
439 rtx comparison = src;
440 arg0 = XEXP (src, 0);
441 mode = GET_MODE (arg0);
442 if (mode == VOIDmode)
443 mode = GET_MODE (XEXP (comparison, 1));
444 break;
446 /* We can get past reg-reg moves. This may be useful for model
447 of i387 comparisons that first move flag registers around. */
448 if (REG_P (src))
450 arg0 = src;
451 continue;
454 /* If register is clobbered in some ununderstandable way,
455 give up. */
456 if (set)
457 return UNKNOWN;
461 /* Test for an integer condition, or a floating-point comparison
462 in which NaNs can be ignored. */
463 if (CONST_INT_P (arg0)
464 || (GET_MODE (arg0) != VOIDmode
465 && GET_MODE_CLASS (mode) != MODE_CC
466 && !HONOR_NANS (mode)))
467 return reverse_condition (code);
469 return UNKNOWN;
472 /* A wrapper around the previous function to take COMPARISON as rtx
473 expression. This simplifies many callers. */
474 enum rtx_code
475 reversed_comparison_code (const_rtx comparison, const_rtx insn)
477 if (!COMPARISON_P (comparison))
478 return UNKNOWN;
479 return reversed_comparison_code_parts (GET_CODE (comparison),
480 XEXP (comparison, 0),
481 XEXP (comparison, 1), insn);
484 /* Return comparison with reversed code of EXP.
485 Return NULL_RTX in case we fail to do the reversal. */
487 reversed_comparison (const_rtx exp, enum machine_mode mode)
489 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
490 if (reversed_code == UNKNOWN)
491 return NULL_RTX;
492 else
493 return simplify_gen_relational (reversed_code, mode, VOIDmode,
494 XEXP (exp, 0), XEXP (exp, 1));
498 /* Given an rtx-code for a comparison, return the code for the negated
499 comparison. If no such code exists, return UNKNOWN.
501 WATCH OUT! reverse_condition is not safe to use on a jump that might
502 be acting on the results of an IEEE floating point comparison, because
503 of the special treatment of non-signaling nans in comparisons.
504 Use reversed_comparison_code instead. */
506 enum rtx_code
507 reverse_condition (enum rtx_code code)
509 switch (code)
511 case EQ:
512 return NE;
513 case NE:
514 return EQ;
515 case GT:
516 return LE;
517 case GE:
518 return LT;
519 case LT:
520 return GE;
521 case LE:
522 return GT;
523 case GTU:
524 return LEU;
525 case GEU:
526 return LTU;
527 case LTU:
528 return GEU;
529 case LEU:
530 return GTU;
531 case UNORDERED:
532 return ORDERED;
533 case ORDERED:
534 return UNORDERED;
536 case UNLT:
537 case UNLE:
538 case UNGT:
539 case UNGE:
540 case UNEQ:
541 case LTGT:
542 return UNKNOWN;
544 default:
545 gcc_unreachable ();
549 /* Similar, but we're allowed to generate unordered comparisons, which
550 makes it safe for IEEE floating-point. Of course, we have to recognize
551 that the target will support them too... */
553 enum rtx_code
554 reverse_condition_maybe_unordered (enum rtx_code code)
556 switch (code)
558 case EQ:
559 return NE;
560 case NE:
561 return EQ;
562 case GT:
563 return UNLE;
564 case GE:
565 return UNLT;
566 case LT:
567 return UNGE;
568 case LE:
569 return UNGT;
570 case LTGT:
571 return UNEQ;
572 case UNORDERED:
573 return ORDERED;
574 case ORDERED:
575 return UNORDERED;
576 case UNLT:
577 return GE;
578 case UNLE:
579 return GT;
580 case UNGT:
581 return LE;
582 case UNGE:
583 return LT;
584 case UNEQ:
585 return LTGT;
587 default:
588 gcc_unreachable ();
592 /* Similar, but return the code when two operands of a comparison are swapped.
593 This IS safe for IEEE floating-point. */
595 enum rtx_code
596 swap_condition (enum rtx_code code)
598 switch (code)
600 case EQ:
601 case NE:
602 case UNORDERED:
603 case ORDERED:
604 case UNEQ:
605 case LTGT:
606 return code;
608 case GT:
609 return LT;
610 case GE:
611 return LE;
612 case LT:
613 return GT;
614 case LE:
615 return GE;
616 case GTU:
617 return LTU;
618 case GEU:
619 return LEU;
620 case LTU:
621 return GTU;
622 case LEU:
623 return GEU;
624 case UNLT:
625 return UNGT;
626 case UNLE:
627 return UNGE;
628 case UNGT:
629 return UNLT;
630 case UNGE:
631 return UNLE;
633 default:
634 gcc_unreachable ();
638 /* Given a comparison CODE, return the corresponding unsigned comparison.
639 If CODE is an equality comparison or already an unsigned comparison,
640 CODE is returned. */
642 enum rtx_code
643 unsigned_condition (enum rtx_code code)
645 switch (code)
647 case EQ:
648 case NE:
649 case GTU:
650 case GEU:
651 case LTU:
652 case LEU:
653 return code;
655 case GT:
656 return GTU;
657 case GE:
658 return GEU;
659 case LT:
660 return LTU;
661 case LE:
662 return LEU;
664 default:
665 gcc_unreachable ();
669 /* Similarly, return the signed version of a comparison. */
671 enum rtx_code
672 signed_condition (enum rtx_code code)
674 switch (code)
676 case EQ:
677 case NE:
678 case GT:
679 case GE:
680 case LT:
681 case LE:
682 return code;
684 case GTU:
685 return GT;
686 case GEU:
687 return GE;
688 case LTU:
689 return LT;
690 case LEU:
691 return LE;
693 default:
694 gcc_unreachable ();
698 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
699 truth of CODE1 implies the truth of CODE2. */
702 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
704 /* UNKNOWN comparison codes can happen as a result of trying to revert
705 comparison codes.
706 They can't match anything, so we have to reject them here. */
707 if (code1 == UNKNOWN || code2 == UNKNOWN)
708 return 0;
710 if (code1 == code2)
711 return 1;
713 switch (code1)
715 case UNEQ:
716 if (code2 == UNLE || code2 == UNGE)
717 return 1;
718 break;
720 case EQ:
721 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
722 || code2 == ORDERED)
723 return 1;
724 break;
726 case UNLT:
727 if (code2 == UNLE || code2 == NE)
728 return 1;
729 break;
731 case LT:
732 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
733 return 1;
734 break;
736 case UNGT:
737 if (code2 == UNGE || code2 == NE)
738 return 1;
739 break;
741 case GT:
742 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
743 return 1;
744 break;
746 case GE:
747 case LE:
748 if (code2 == ORDERED)
749 return 1;
750 break;
752 case LTGT:
753 if (code2 == NE || code2 == ORDERED)
754 return 1;
755 break;
757 case LTU:
758 if (code2 == LEU || code2 == NE)
759 return 1;
760 break;
762 case GTU:
763 if (code2 == GEU || code2 == NE)
764 return 1;
765 break;
767 case UNORDERED:
768 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
769 || code2 == UNGE || code2 == UNGT)
770 return 1;
771 break;
773 default:
774 break;
777 return 0;
780 /* Return 1 if INSN is an unconditional jump and nothing else. */
783 simplejump_p (const_rtx insn)
785 return (JUMP_P (insn)
786 && GET_CODE (PATTERN (insn)) == SET
787 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
788 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
791 /* Return nonzero if INSN is a (possibly) conditional jump
792 and nothing more.
794 Use of this function is deprecated, since we need to support combined
795 branch and compare insns. Use any_condjump_p instead whenever possible. */
798 condjump_p (const_rtx insn)
800 const_rtx x = PATTERN (insn);
802 if (GET_CODE (x) != SET
803 || GET_CODE (SET_DEST (x)) != PC)
804 return 0;
806 x = SET_SRC (x);
807 if (GET_CODE (x) == LABEL_REF)
808 return 1;
809 else
810 return (GET_CODE (x) == IF_THEN_ELSE
811 && ((GET_CODE (XEXP (x, 2)) == PC
812 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
813 || ANY_RETURN_P (XEXP (x, 1))))
814 || (GET_CODE (XEXP (x, 1)) == PC
815 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
816 || ANY_RETURN_P (XEXP (x, 2))))));
819 /* Return nonzero if INSN is a (possibly) conditional jump inside a
820 PARALLEL.
822 Use this function is deprecated, since we need to support combined
823 branch and compare insns. Use any_condjump_p instead whenever possible. */
826 condjump_in_parallel_p (const_rtx insn)
828 const_rtx x = PATTERN (insn);
830 if (GET_CODE (x) != PARALLEL)
831 return 0;
832 else
833 x = XVECEXP (x, 0, 0);
835 if (GET_CODE (x) != SET)
836 return 0;
837 if (GET_CODE (SET_DEST (x)) != PC)
838 return 0;
839 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
840 return 1;
841 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
842 return 0;
843 if (XEXP (SET_SRC (x), 2) == pc_rtx
844 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
845 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
846 return 1;
847 if (XEXP (SET_SRC (x), 1) == pc_rtx
848 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
849 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
850 return 1;
851 return 0;
854 /* Return set of PC, otherwise NULL. */
857 pc_set (const_rtx insn)
859 rtx pat;
860 if (!JUMP_P (insn))
861 return NULL_RTX;
862 pat = PATTERN (insn);
864 /* The set is allowed to appear either as the insn pattern or
865 the first set in a PARALLEL. */
866 if (GET_CODE (pat) == PARALLEL)
867 pat = XVECEXP (pat, 0, 0);
868 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
869 return pat;
871 return NULL_RTX;
874 /* Return true when insn is an unconditional direct jump,
875 possibly bundled inside a PARALLEL. */
878 any_uncondjump_p (const_rtx insn)
880 const_rtx x = pc_set (insn);
881 if (!x)
882 return 0;
883 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
884 return 0;
885 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
886 return 0;
887 return 1;
890 /* Return true when insn is a conditional jump. This function works for
891 instructions containing PC sets in PARALLELs. The instruction may have
892 various other effects so before removing the jump you must verify
893 onlyjump_p.
895 Note that unlike condjump_p it returns false for unconditional jumps. */
898 any_condjump_p (const_rtx insn)
900 const_rtx x = pc_set (insn);
901 enum rtx_code a, b;
903 if (!x)
904 return 0;
905 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
906 return 0;
908 a = GET_CODE (XEXP (SET_SRC (x), 1));
909 b = GET_CODE (XEXP (SET_SRC (x), 2));
911 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
912 || (a == PC
913 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
916 /* Return the label of a conditional jump. */
919 condjump_label (const_rtx insn)
921 rtx x = pc_set (insn);
923 if (!x)
924 return NULL_RTX;
925 x = SET_SRC (x);
926 if (GET_CODE (x) == LABEL_REF)
927 return x;
928 if (GET_CODE (x) != IF_THEN_ELSE)
929 return NULL_RTX;
930 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
931 return XEXP (x, 1);
932 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
933 return XEXP (x, 2);
934 return NULL_RTX;
937 /* Return true if INSN is a (possibly conditional) return insn. */
939 static int
940 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
942 rtx x = *loc;
944 if (x == NULL)
945 return false;
947 switch (GET_CODE (x))
949 case RETURN:
950 case SIMPLE_RETURN:
951 case EH_RETURN:
952 return true;
954 case SET:
955 return SET_IS_RETURN_P (x);
957 default:
958 return false;
962 /* Return TRUE if INSN is a return jump. */
965 returnjump_p (rtx insn)
967 if (!JUMP_P (insn))
968 return 0;
969 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
972 /* Return true if INSN is a (possibly conditional) return insn. */
974 static int
975 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
977 return *loc && GET_CODE (*loc) == EH_RETURN;
981 eh_returnjump_p (rtx insn)
983 if (!JUMP_P (insn))
984 return 0;
985 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
988 /* Return true if INSN is a jump that only transfers control and
989 nothing more. */
992 onlyjump_p (const_rtx insn)
994 rtx set;
996 if (!JUMP_P (insn))
997 return 0;
999 set = single_set (insn);
1000 if (set == NULL)
1001 return 0;
1002 if (GET_CODE (SET_DEST (set)) != PC)
1003 return 0;
1004 if (side_effects_p (SET_SRC (set)))
1005 return 0;
1007 return 1;
1010 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1011 NULL or a return. */
1012 bool
1013 jump_to_label_p (rtx insn)
1015 return (JUMP_P (insn)
1016 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1019 #ifdef HAVE_cc0
1021 /* Return nonzero if X is an RTX that only sets the condition codes
1022 and has no side effects. */
1025 only_sets_cc0_p (const_rtx x)
1027 if (! x)
1028 return 0;
1030 if (INSN_P (x))
1031 x = PATTERN (x);
1033 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1036 /* Return 1 if X is an RTX that does nothing but set the condition codes
1037 and CLOBBER or USE registers.
1038 Return -1 if X does explicitly set the condition codes,
1039 but also does other things. */
1042 sets_cc0_p (const_rtx x)
1044 if (! x)
1045 return 0;
1047 if (INSN_P (x))
1048 x = PATTERN (x);
1050 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1051 return 1;
1052 if (GET_CODE (x) == PARALLEL)
1054 int i;
1055 int sets_cc0 = 0;
1056 int other_things = 0;
1057 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1059 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1060 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1061 sets_cc0 = 1;
1062 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1063 other_things = 1;
1065 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1067 return 0;
1069 #endif
1071 /* Find all CODE_LABELs referred to in X, and increment their use
1072 counts. If INSN is a JUMP_INSN and there is at least one
1073 CODE_LABEL referenced in INSN as a jump target, then store the last
1074 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1075 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1076 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1077 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1078 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1079 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1081 Note that two labels separated by a loop-beginning note
1082 must be kept distinct if we have not yet done loop-optimization,
1083 because the gap between them is where loop-optimize
1084 will want to move invariant code to. CROSS_JUMP tells us
1085 that loop-optimization is done with. */
1087 void
1088 mark_jump_label (rtx x, rtx insn, int in_mem)
1090 rtx asmop = extract_asm_operands (x);
1091 if (asmop)
1092 mark_jump_label_asm (asmop, insn);
1093 else
1094 mark_jump_label_1 (x, insn, in_mem != 0,
1095 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1098 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1099 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1100 jump-target; when the JUMP_LABEL field of INSN should be set or a
1101 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1102 note. */
1104 static void
1105 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1107 RTX_CODE code = GET_CODE (x);
1108 int i;
1109 const char *fmt;
1111 switch (code)
1113 case PC:
1114 case CC0:
1115 case REG:
1116 case CLOBBER:
1117 case CALL:
1118 return;
1120 case RETURN:
1121 case SIMPLE_RETURN:
1122 if (is_target)
1124 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1125 JUMP_LABEL (insn) = x;
1127 return;
1129 case MEM:
1130 in_mem = true;
1131 break;
1133 case SEQUENCE:
1134 for (i = 0; i < XVECLEN (x, 0); i++)
1135 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1136 XVECEXP (x, 0, i), 0);
1137 return;
1139 case SYMBOL_REF:
1140 if (!in_mem)
1141 return;
1143 /* If this is a constant-pool reference, see if it is a label. */
1144 if (CONSTANT_POOL_ADDRESS_P (x))
1145 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1146 break;
1148 /* Handle operands in the condition of an if-then-else as for a
1149 non-jump insn. */
1150 case IF_THEN_ELSE:
1151 if (!is_target)
1152 break;
1153 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1154 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1155 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1156 return;
1158 case LABEL_REF:
1160 rtx label = XEXP (x, 0);
1162 /* Ignore remaining references to unreachable labels that
1163 have been deleted. */
1164 if (NOTE_P (label)
1165 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1166 break;
1168 gcc_assert (LABEL_P (label));
1170 /* Ignore references to labels of containing functions. */
1171 if (LABEL_REF_NONLOCAL_P (x))
1172 break;
1174 XEXP (x, 0) = label;
1175 if (! insn || ! INSN_DELETED_P (insn))
1176 ++LABEL_NUSES (label);
1178 if (insn)
1180 if (is_target
1181 /* Do not change a previous setting of JUMP_LABEL. If the
1182 JUMP_LABEL slot is occupied by a different label,
1183 create a note for this label. */
1184 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1185 JUMP_LABEL (insn) = label;
1186 else
1188 enum reg_note kind
1189 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1191 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1192 for LABEL unless there already is one. All uses of
1193 a label, except for the primary target of a jump,
1194 must have such a note. */
1195 if (! find_reg_note (insn, kind, label))
1196 add_reg_note (insn, kind, label);
1199 return;
1202 /* Do walk the labels in a vector, but not the first operand of an
1203 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1204 case ADDR_VEC:
1205 case ADDR_DIFF_VEC:
1206 if (! INSN_DELETED_P (insn))
1208 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1210 for (i = 0; i < XVECLEN (x, eltnum); i++)
1211 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1212 is_target);
1214 return;
1216 default:
1217 break;
1220 fmt = GET_RTX_FORMAT (code);
1222 /* The primary target of a tablejump is the label of the ADDR_VEC,
1223 which is canonically mentioned *last* in the insn. To get it
1224 marked as JUMP_LABEL, we iterate over items in reverse order. */
1225 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1227 if (fmt[i] == 'e')
1228 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1229 else if (fmt[i] == 'E')
1231 int j;
1233 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1234 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1235 is_target);
1240 /* Worker function for mark_jump_label. Handle asm insns specially.
1241 In particular, output operands need not be considered so we can
1242 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1243 need to be considered targets. */
1245 static void
1246 mark_jump_label_asm (rtx asmop, rtx insn)
1248 int i;
1250 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1251 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1253 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1254 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1257 /* Delete insn INSN from the chain of insns and update label ref counts
1258 and delete insns now unreachable.
1260 Returns the first insn after INSN that was not deleted.
1262 Usage of this instruction is deprecated. Use delete_insn instead and
1263 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1266 delete_related_insns (rtx insn)
1268 int was_code_label = (LABEL_P (insn));
1269 rtx note;
1270 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1272 while (next && INSN_DELETED_P (next))
1273 next = NEXT_INSN (next);
1275 /* This insn is already deleted => return first following nondeleted. */
1276 if (INSN_DELETED_P (insn))
1277 return next;
1279 delete_insn (insn);
1281 /* If instruction is followed by a barrier,
1282 delete the barrier too. */
1284 if (next != 0 && BARRIER_P (next))
1285 delete_insn (next);
1287 /* If this is a call, then we have to remove the var tracking note
1288 for the call arguments. */
1290 if (CALL_P (insn)
1291 || (NONJUMP_INSN_P (insn)
1292 && GET_CODE (PATTERN (insn)) == SEQUENCE
1293 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1295 rtx p;
1297 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1298 p && NOTE_P (p);
1299 p = NEXT_INSN (p))
1300 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1302 remove_insn (p);
1303 break;
1307 /* If deleting a jump, decrement the count of the label,
1308 and delete the label if it is now unused. */
1310 if (jump_to_label_p (insn))
1312 rtx lab = JUMP_LABEL (insn), lab_next;
1314 if (LABEL_NUSES (lab) == 0)
1315 /* This can delete NEXT or PREV,
1316 either directly if NEXT is JUMP_LABEL (INSN),
1317 or indirectly through more levels of jumps. */
1318 delete_related_insns (lab);
1319 else if (tablejump_p (insn, NULL, &lab_next))
1321 /* If we're deleting the tablejump, delete the dispatch table.
1322 We may not be able to kill the label immediately preceding
1323 just yet, as it might be referenced in code leading up to
1324 the tablejump. */
1325 delete_related_insns (lab_next);
1329 /* Likewise if we're deleting a dispatch table. */
1331 if (JUMP_TABLE_DATA_P (insn))
1333 rtx pat = PATTERN (insn);
1334 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1335 int len = XVECLEN (pat, diff_vec_p);
1337 for (i = 0; i < len; i++)
1338 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1339 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1340 while (next && INSN_DELETED_P (next))
1341 next = NEXT_INSN (next);
1342 return next;
1345 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1346 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1347 if (INSN_P (insn))
1348 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1349 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1350 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1351 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1352 && LABEL_P (XEXP (note, 0)))
1353 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1354 delete_related_insns (XEXP (note, 0));
1356 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1357 prev = PREV_INSN (prev);
1359 /* If INSN was a label and a dispatch table follows it,
1360 delete the dispatch table. The tablejump must have gone already.
1361 It isn't useful to fall through into a table. */
1363 if (was_code_label
1364 && NEXT_INSN (insn) != 0
1365 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1366 next = delete_related_insns (NEXT_INSN (insn));
1368 /* If INSN was a label, delete insns following it if now unreachable. */
1370 if (was_code_label && prev && BARRIER_P (prev))
1372 enum rtx_code code;
1373 while (next)
1375 code = GET_CODE (next);
1376 if (code == NOTE)
1377 next = NEXT_INSN (next);
1378 /* Keep going past other deleted labels to delete what follows. */
1379 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1380 next = NEXT_INSN (next);
1381 /* Keep the (use (insn))s created by dbr_schedule, which needs
1382 them in order to track liveness relative to a previous
1383 barrier. */
1384 else if (INSN_P (next)
1385 && GET_CODE (PATTERN (next)) == USE
1386 && INSN_P (XEXP (PATTERN (next), 0)))
1387 next = NEXT_INSN (next);
1388 else if (code == BARRIER || INSN_P (next))
1389 /* Note: if this deletes a jump, it can cause more
1390 deletion of unreachable code, after a different label.
1391 As long as the value from this recursive call is correct,
1392 this invocation functions correctly. */
1393 next = delete_related_insns (next);
1394 else
1395 break;
1399 /* I feel a little doubtful about this loop,
1400 but I see no clean and sure alternative way
1401 to find the first insn after INSN that is not now deleted.
1402 I hope this works. */
1403 while (next && INSN_DELETED_P (next))
1404 next = NEXT_INSN (next);
1405 return next;
1408 /* Delete a range of insns from FROM to TO, inclusive.
1409 This is for the sake of peephole optimization, so assume
1410 that whatever these insns do will still be done by a new
1411 peephole insn that will replace them. */
1413 void
1414 delete_for_peephole (rtx from, rtx to)
1416 rtx insn = from;
1418 while (1)
1420 rtx next = NEXT_INSN (insn);
1421 rtx prev = PREV_INSN (insn);
1423 if (!NOTE_P (insn))
1425 INSN_DELETED_P (insn) = 1;
1427 /* Patch this insn out of the chain. */
1428 /* We don't do this all at once, because we
1429 must preserve all NOTEs. */
1430 if (prev)
1431 NEXT_INSN (prev) = next;
1433 if (next)
1434 PREV_INSN (next) = prev;
1437 if (insn == to)
1438 break;
1439 insn = next;
1442 /* Note that if TO is an unconditional jump
1443 we *do not* delete the BARRIER that follows,
1444 since the peephole that replaces this sequence
1445 is also an unconditional jump in that case. */
1448 /* A helper function for redirect_exp_1; examines its input X and returns
1449 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1450 static rtx
1451 redirect_target (rtx x)
1453 if (x == NULL_RTX)
1454 return ret_rtx;
1455 if (!ANY_RETURN_P (x))
1456 return gen_rtx_LABEL_REF (Pmode, x);
1457 return x;
1460 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1461 NLABEL as a return. Accrue modifications into the change group. */
1463 static void
1464 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1466 rtx x = *loc;
1467 RTX_CODE code = GET_CODE (x);
1468 int i;
1469 const char *fmt;
1471 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1472 || x == olabel)
1474 x = redirect_target (nlabel);
1475 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1476 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1477 validate_change (insn, loc, x, 1);
1478 return;
1481 if (code == SET && SET_DEST (x) == pc_rtx
1482 && ANY_RETURN_P (nlabel)
1483 && GET_CODE (SET_SRC (x)) == LABEL_REF
1484 && XEXP (SET_SRC (x), 0) == olabel)
1486 validate_change (insn, loc, nlabel, 1);
1487 return;
1490 if (code == IF_THEN_ELSE)
1492 /* Skip the condition of an IF_THEN_ELSE. We only want to
1493 change jump destinations, not eventual label comparisons. */
1494 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1495 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1496 return;
1499 fmt = GET_RTX_FORMAT (code);
1500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1502 if (fmt[i] == 'e')
1503 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1504 else if (fmt[i] == 'E')
1506 int j;
1507 for (j = 0; j < XVECLEN (x, i); j++)
1508 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1513 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1514 the modifications into the change group. Return false if we did
1515 not see how to do that. */
1518 redirect_jump_1 (rtx jump, rtx nlabel)
1520 int ochanges = num_validated_changes ();
1521 rtx *loc, asmop;
1523 gcc_assert (nlabel != NULL_RTX);
1524 asmop = extract_asm_operands (PATTERN (jump));
1525 if (asmop)
1527 if (nlabel == NULL)
1528 return 0;
1529 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1530 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1532 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1533 loc = &XVECEXP (PATTERN (jump), 0, 0);
1534 else
1535 loc = &PATTERN (jump);
1537 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1538 return num_validated_changes () > ochanges;
1541 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1542 jump target label is unused as a result, it and the code following
1543 it may be deleted.
1545 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1546 in that case we are to turn the jump into a (possibly conditional)
1547 return insn.
1549 The return value will be 1 if the change was made, 0 if it wasn't
1550 (this can only occur when trying to produce return insns). */
1553 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1555 rtx olabel = JUMP_LABEL (jump);
1557 if (!nlabel)
1559 /* If there is no label, we are asked to redirect to the EXIT block.
1560 When before the epilogue is emitted, return/simple_return cannot be
1561 created so we return 0 immediately. After the epilogue is emitted,
1562 we always expect a label, either a non-null label, or a
1563 return/simple_return RTX. */
1565 if (!epilogue_completed)
1566 return 0;
1567 gcc_unreachable ();
1570 if (nlabel == olabel)
1571 return 1;
1573 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1574 return 0;
1576 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1577 return 1;
1580 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1581 NLABEL in JUMP.
1582 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1583 count has dropped to zero. */
1584 void
1585 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1586 int invert)
1588 rtx note;
1590 gcc_assert (JUMP_LABEL (jump) == olabel);
1592 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1593 moving FUNCTION_END note. Just sanity check that no user still worry
1594 about this. */
1595 gcc_assert (delete_unused >= 0);
1596 JUMP_LABEL (jump) = nlabel;
1597 if (!ANY_RETURN_P (nlabel))
1598 ++LABEL_NUSES (nlabel);
1600 /* Update labels in any REG_EQUAL note. */
1601 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1603 if (ANY_RETURN_P (nlabel)
1604 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1605 remove_note (jump, note);
1606 else
1608 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1609 confirm_change_group ();
1613 /* Handle the case where we had a conditional crossing jump to a return
1614 label and are now changing it into a direct conditional return.
1615 The jump is no longer crossing in that case. */
1616 if (ANY_RETURN_P (nlabel))
1618 note = find_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
1619 if (note)
1620 remove_note (jump, note);
1623 if (!ANY_RETURN_P (olabel)
1624 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1625 /* Undefined labels will remain outside the insn stream. */
1626 && INSN_UID (olabel))
1627 delete_related_insns (olabel);
1628 if (invert)
1629 invert_br_probabilities (jump);
1632 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1633 modifications into the change group. Return nonzero for success. */
1634 static int
1635 invert_exp_1 (rtx x, rtx insn)
1637 RTX_CODE code = GET_CODE (x);
1639 if (code == IF_THEN_ELSE)
1641 rtx comp = XEXP (x, 0);
1642 rtx tem;
1643 enum rtx_code reversed_code;
1645 /* We can do this in two ways: The preferable way, which can only
1646 be done if this is not an integer comparison, is to reverse
1647 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1648 of the IF_THEN_ELSE. If we can't do either, fail. */
1650 reversed_code = reversed_comparison_code (comp, insn);
1652 if (reversed_code != UNKNOWN)
1654 validate_change (insn, &XEXP (x, 0),
1655 gen_rtx_fmt_ee (reversed_code,
1656 GET_MODE (comp), XEXP (comp, 0),
1657 XEXP (comp, 1)),
1659 return 1;
1662 tem = XEXP (x, 1);
1663 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1664 validate_change (insn, &XEXP (x, 2), tem, 1);
1665 return 1;
1667 else
1668 return 0;
1671 /* Invert the condition of the jump JUMP, and make it jump to label
1672 NLABEL instead of where it jumps now. Accrue changes into the
1673 change group. Return false if we didn't see how to perform the
1674 inversion and redirection. */
1677 invert_jump_1 (rtx jump, rtx nlabel)
1679 rtx x = pc_set (jump);
1680 int ochanges;
1681 int ok;
1683 ochanges = num_validated_changes ();
1684 if (x == NULL)
1685 return 0;
1686 ok = invert_exp_1 (SET_SRC (x), jump);
1687 gcc_assert (ok);
1689 if (num_validated_changes () == ochanges)
1690 return 0;
1692 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1693 in Pmode, so checking this is not merely an optimization. */
1694 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1697 /* Invert the condition of the jump JUMP, and make it jump to label
1698 NLABEL instead of where it jumps now. Return true if successful. */
1701 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1703 rtx olabel = JUMP_LABEL (jump);
1705 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1707 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1708 return 1;
1710 cancel_changes (0);
1711 return 0;
1715 /* Like rtx_equal_p except that it considers two REGs as equal
1716 if they renumber to the same value and considers two commutative
1717 operations to be the same if the order of the operands has been
1718 reversed. */
1721 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1723 int i;
1724 const enum rtx_code code = GET_CODE (x);
1725 const char *fmt;
1727 if (x == y)
1728 return 1;
1730 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1731 && (REG_P (y) || (GET_CODE (y) == SUBREG
1732 && REG_P (SUBREG_REG (y)))))
1734 int reg_x = -1, reg_y = -1;
1735 int byte_x = 0, byte_y = 0;
1736 struct subreg_info info;
1738 if (GET_MODE (x) != GET_MODE (y))
1739 return 0;
1741 /* If we haven't done any renumbering, don't
1742 make any assumptions. */
1743 if (reg_renumber == 0)
1744 return rtx_equal_p (x, y);
1746 if (code == SUBREG)
1748 reg_x = REGNO (SUBREG_REG (x));
1749 byte_x = SUBREG_BYTE (x);
1751 if (reg_renumber[reg_x] >= 0)
1753 subreg_get_info (reg_renumber[reg_x],
1754 GET_MODE (SUBREG_REG (x)), byte_x,
1755 GET_MODE (x), &info);
1756 if (!info.representable_p)
1757 return 0;
1758 reg_x = info.offset;
1759 byte_x = 0;
1762 else
1764 reg_x = REGNO (x);
1765 if (reg_renumber[reg_x] >= 0)
1766 reg_x = reg_renumber[reg_x];
1769 if (GET_CODE (y) == SUBREG)
1771 reg_y = REGNO (SUBREG_REG (y));
1772 byte_y = SUBREG_BYTE (y);
1774 if (reg_renumber[reg_y] >= 0)
1776 subreg_get_info (reg_renumber[reg_y],
1777 GET_MODE (SUBREG_REG (y)), byte_y,
1778 GET_MODE (y), &info);
1779 if (!info.representable_p)
1780 return 0;
1781 reg_y = info.offset;
1782 byte_y = 0;
1785 else
1787 reg_y = REGNO (y);
1788 if (reg_renumber[reg_y] >= 0)
1789 reg_y = reg_renumber[reg_y];
1792 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1795 /* Now we have disposed of all the cases
1796 in which different rtx codes can match. */
1797 if (code != GET_CODE (y))
1798 return 0;
1800 switch (code)
1802 case PC:
1803 case CC0:
1804 case ADDR_VEC:
1805 case ADDR_DIFF_VEC:
1806 CASE_CONST_UNIQUE:
1807 return 0;
1809 case LABEL_REF:
1810 /* We can't assume nonlocal labels have their following insns yet. */
1811 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1812 return XEXP (x, 0) == XEXP (y, 0);
1814 /* Two label-refs are equivalent if they point at labels
1815 in the same position in the instruction stream. */
1816 return (next_real_insn (XEXP (x, 0))
1817 == next_real_insn (XEXP (y, 0)));
1819 case SYMBOL_REF:
1820 return XSTR (x, 0) == XSTR (y, 0);
1822 case CODE_LABEL:
1823 /* If we didn't match EQ equality above, they aren't the same. */
1824 return 0;
1826 default:
1827 break;
1830 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1832 if (GET_MODE (x) != GET_MODE (y))
1833 return 0;
1835 /* MEMs referring to different address space are not equivalent. */
1836 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1837 return 0;
1839 /* For commutative operations, the RTX match if the operand match in any
1840 order. Also handle the simple binary and unary cases without a loop. */
1841 if (targetm.commutative_p (x, UNKNOWN))
1842 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1843 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1844 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1846 else if (NON_COMMUTATIVE_P (x))
1847 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1848 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1849 else if (UNARY_P (x))
1850 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1852 /* Compare the elements. If any pair of corresponding elements
1853 fail to match, return 0 for the whole things. */
1855 fmt = GET_RTX_FORMAT (code);
1856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1858 int j;
1859 switch (fmt[i])
1861 case 'w':
1862 if (XWINT (x, i) != XWINT (y, i))
1863 return 0;
1864 break;
1866 case 'i':
1867 if (XINT (x, i) != XINT (y, i))
1869 if (((code == ASM_OPERANDS && i == 6)
1870 || (code == ASM_INPUT && i == 1)))
1871 break;
1872 return 0;
1874 break;
1876 case 't':
1877 if (XTREE (x, i) != XTREE (y, i))
1878 return 0;
1879 break;
1881 case 's':
1882 if (strcmp (XSTR (x, i), XSTR (y, i)))
1883 return 0;
1884 break;
1886 case 'e':
1887 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1888 return 0;
1889 break;
1891 case 'u':
1892 if (XEXP (x, i) != XEXP (y, i))
1893 return 0;
1894 /* Fall through. */
1895 case '0':
1896 break;
1898 case 'E':
1899 if (XVECLEN (x, i) != XVECLEN (y, i))
1900 return 0;
1901 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1902 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1903 return 0;
1904 break;
1906 default:
1907 gcc_unreachable ();
1910 return 1;
1913 /* If X is a hard register or equivalent to one or a subregister of one,
1914 return the hard register number. If X is a pseudo register that was not
1915 assigned a hard register, return the pseudo register number. Otherwise,
1916 return -1. Any rtx is valid for X. */
1919 true_regnum (const_rtx x)
1921 if (REG_P (x))
1923 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1924 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1925 return reg_renumber[REGNO (x)];
1926 return REGNO (x);
1928 if (GET_CODE (x) == SUBREG)
1930 int base = true_regnum (SUBREG_REG (x));
1931 if (base >= 0
1932 && base < FIRST_PSEUDO_REGISTER)
1934 struct subreg_info info;
1936 subreg_get_info (lra_in_progress
1937 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1938 GET_MODE (SUBREG_REG (x)),
1939 SUBREG_BYTE (x), GET_MODE (x), &info);
1941 if (info.representable_p)
1942 return base + info.offset;
1945 return -1;
1948 /* Return regno of the register REG and handle subregs too. */
1949 unsigned int
1950 reg_or_subregno (const_rtx reg)
1952 if (GET_CODE (reg) == SUBREG)
1953 reg = SUBREG_REG (reg);
1954 gcc_assert (REG_P (reg));
1955 return REGNO (reg);