* simplify-rtx.c (simplify_unary_operation,
[official-gcc.git] / gcc / cp / init.c
blobc2661e8fa1fd0541d0373c481736bf339f051912
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 PARAMS ((tree, tree, tree, tree, int));
40 static void expand_default_init PARAMS ((tree, tree, tree, tree, int));
41 static tree build_vec_delete_1 PARAMS ((tree, tree, tree, special_function_kind, int));
42 static void perform_member_init (tree, tree);
43 static tree build_builtin_delete_call PARAMS ((tree));
44 static int member_init_ok_or_else PARAMS ((tree, tree, tree));
45 static void expand_virtual_init PARAMS ((tree, tree));
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context PARAMS ((tree));
48 static void expand_cleanup_for_base PARAMS ((tree, tree));
49 static tree get_temp_regvar PARAMS ((tree, tree));
50 static tree dfs_initialize_vtbl_ptrs PARAMS ((tree, void *));
51 static tree build_default_init PARAMS ((tree));
52 static tree build_new_1 PARAMS ((tree));
53 static tree get_cookie_size PARAMS ((tree));
54 static tree build_dtor_call PARAMS ((tree, special_function_kind, int));
55 static tree build_field_list PARAMS ((tree, tree, int *));
56 static tree build_vtbl_address PARAMS ((tree));
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 void
68 begin_init_stmts (stmt_expr_p, compound_stmt_p)
69 tree *stmt_expr_p;
70 tree *compound_stmt_p;
72 if (building_stmt_tree ())
73 *stmt_expr_p = begin_stmt_expr ();
74 else
75 *stmt_expr_p = begin_global_stmt_expr ();
77 if (building_stmt_tree ())
78 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/1);
81 /* Finish out the statement-expression begun by the previous call to
82 begin_init_stmts. Returns the statement-expression itself. */
84 tree
85 finish_init_stmts (stmt_expr, compound_stmt)
86 tree stmt_expr;
87 tree compound_stmt;
90 if (building_stmt_tree ())
91 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
93 if (building_stmt_tree ())
95 stmt_expr = finish_stmt_expr (stmt_expr);
96 STMT_EXPR_NO_SCOPE (stmt_expr) = true;
98 else
99 stmt_expr = finish_global_stmt_expr (stmt_expr);
101 /* To avoid spurious warnings about unused values, we set
102 TREE_USED. */
103 if (stmt_expr)
104 TREE_USED (stmt_expr) = 1;
106 return stmt_expr;
109 /* Constructors */
111 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
112 which we want to initialize the vtable pointer for, DATA is
113 TREE_LIST whose TREE_VALUE is the this ptr expression. */
115 static tree
116 dfs_initialize_vtbl_ptrs (binfo, data)
117 tree binfo;
118 void *data;
120 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
121 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
123 tree base_ptr = TREE_VALUE ((tree) data);
125 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
127 expand_virtual_init (binfo, base_ptr);
130 SET_BINFO_MARKED (binfo);
132 return NULL_TREE;
135 /* Initialize all the vtable pointers in the object pointed to by
136 ADDR. */
138 void
139 initialize_vtbl_ptrs (addr)
140 tree addr;
142 tree list;
143 tree type;
145 type = TREE_TYPE (TREE_TYPE (addr));
146 list = build_tree_list (type, addr);
148 /* Walk through the hierarchy, initializing the vptr in each base
149 class. We do these in pre-order because can't find the virtual
150 bases for a class until we've initialized the vtbl for that
151 class. */
152 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
153 NULL, dfs_unmarked_real_bases_queue_p, list);
154 dfs_walk (TYPE_BINFO (type), dfs_unmark,
155 dfs_marked_real_bases_queue_p, type);
158 /* Return an expression for the zero-initialization of an object with
159 type T. This expression will either be a constant (in the case
160 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
161 aggregate). In either case, the value can be used as DECL_INITIAL
162 for a decl of the indicated TYPE; it is a valid static initializer.
163 If STATIC_STORAGE_P is TRUE, initializers are only generated for
164 entities for which zero-initialization does not simply mean filling
165 the storage with zero bytes. */
167 tree
168 build_zero_init (tree type, bool static_storage_p)
170 tree init = NULL_TREE;
172 /* [dcl.init]
174 To zero-initialization storage for an object of type T means:
176 -- if T is a scalar type, the storage is set to the value of zero
177 converted to T.
179 -- if T is a non-union class type, the storage for each nonstatic
180 data member and each base-class subobject is zero-initialized.
182 -- if T is a union type, the storage for its first data member is
183 zero-initialized.
185 -- if T is an array type, the storage for each element is
186 zero-initialized.
188 -- if T is a reference type, no initialization is performed. */
190 if (type == error_mark_node)
192 else if (static_storage_p && zero_init_p (type))
193 /* In order to save space, we do not explicitly build initializers
194 for items that do not need them. GCC's semantics are that
195 items with static storage duration that are not otherwise
196 initialized are initialized to zero. */
198 else if (SCALAR_TYPE_P (type))
199 init = convert (type, integer_zero_node);
200 else if (CLASS_TYPE_P (type))
202 tree field;
203 tree inits;
205 /* Build a constructor to contain the initializations. */
206 init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
207 /* Iterate over the fields, building initializations. */
208 inits = NULL_TREE;
209 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
211 if (TREE_CODE (field) != FIELD_DECL)
212 continue;
214 /* Note that for class types there will be FIELD_DECLs
215 corresponding to base classes as well. Thus, iterating
216 over TYPE_FIELDs will result in correct initialization of
217 all of the subobjects. */
218 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
219 inits = tree_cons (field,
220 build_zero_init (TREE_TYPE (field),
221 static_storage_p),
222 inits);
224 /* For unions, only the first field is initialized. */
225 if (TREE_CODE (type) == UNION_TYPE)
226 break;
228 CONSTRUCTOR_ELTS (init) = nreverse (inits);
230 else if (TREE_CODE (type) == ARRAY_TYPE)
232 tree index;
233 tree max_index;
234 tree inits;
236 /* Build a constructor to contain the initializations. */
237 init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
238 /* Iterate over the array elements, building initializations. */
239 inits = NULL_TREE;
240 for (index = size_zero_node, max_index = array_type_nelts (type);
241 !tree_int_cst_lt (max_index, index);
242 index = size_binop (PLUS_EXPR, index, size_one_node))
243 inits = tree_cons (index,
244 build_zero_init (TREE_TYPE (type),
245 static_storage_p),
246 inits);
247 CONSTRUCTOR_ELTS (init) = nreverse (inits);
249 else if (TREE_CODE (type) == REFERENCE_TYPE)
251 else
252 abort ();
254 /* In all cases, the initializer is a constant. */
255 if (init)
256 TREE_CONSTANT (init) = 1;
258 return init;
261 /* Build an expression for the default-initialization of an object
262 with type T. If initialization T requires calling constructors,
263 this function returns NULL_TREE; the caller is responsible for
264 arranging for the constructors to be called. */
266 static tree
267 build_default_init (type)
268 tree type;
270 /* [dcl.init]:
272 To default-initialize an object of type T means:
274 --if T is a non-POD class type (clause _class_), the default construc-
275 tor for T is called (and the initialization is ill-formed if T has
276 no accessible default constructor);
278 --if T is an array type, each element is default-initialized;
280 --otherwise, the storage for the object is zero-initialized.
282 A program that calls for default-initialization of an entity of refer-
283 ence type is ill-formed. */
285 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
286 performing the initialization. This is confusing in that some
287 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
288 a class with a pointer-to-data member as a non-static data member
289 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
290 passing non-PODs to build_zero_init below, which is contrary to
291 the semantics quoted above from [dcl.init].
293 It happens, however, that the behavior of the constructor the
294 standard says we should have generated would be precisely the
295 same as that obtained by calling build_zero_init below, so things
296 work out OK. */
297 if (TYPE_NEEDS_CONSTRUCTING (type))
298 return NULL_TREE;
300 /* At this point, TYPE is either a POD class type, an array of POD
301 classes, or something even more inoccuous. */
302 return build_zero_init (type, /*static_storage_p=*/false);
305 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
306 arguments. If TREE_LIST is void_type_node, an empty initializer
307 list was given; if NULL_TREE no initializer was given. */
309 static void
310 perform_member_init (tree member, tree init)
312 tree decl;
313 tree type = TREE_TYPE (member);
314 bool explicit;
316 explicit = (init != NULL_TREE);
318 /* Effective C++ rule 12 requires that all data members be
319 initialized. */
320 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
321 warning ("`%D' should be initialized in the member initialization "
322 "list",
323 member);
325 if (init == void_type_node)
326 init = NULL_TREE;
328 /* Get an lvalue for the data member. */
329 decl = build_class_member_access_expr (current_class_ref, member,
330 /*access_path=*/NULL_TREE,
331 /*preserve_reference=*/true);
332 if (decl == error_mark_node)
333 return;
335 /* Deal with this here, as we will get confused if we try to call the
336 assignment op for an anonymous union. This can happen in a
337 synthesized copy constructor. */
338 if (ANON_AGGR_TYPE_P (type))
340 if (init)
342 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
343 finish_expr_stmt (init);
346 else if (TYPE_NEEDS_CONSTRUCTING (type)
347 || (init && TYPE_HAS_CONSTRUCTOR (type)))
349 if (explicit
350 && TREE_CODE (type) == ARRAY_TYPE
351 && init != NULL_TREE
352 && TREE_CHAIN (init) == NULL_TREE
353 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
355 /* Initialization of one array from another. */
356 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
357 /* from_array=*/1));
359 else
360 finish_expr_stmt (build_aggr_init (decl, init, 0));
362 else
364 if (init == NULL_TREE)
366 if (explicit)
368 init = build_default_init (type);
369 if (TREE_CODE (type) == REFERENCE_TYPE)
370 warning
371 ("default-initialization of `%#D', which has reference type",
372 member);
374 /* member traversal: note it leaves init NULL */
375 else if (TREE_CODE (type) == REFERENCE_TYPE)
376 pedwarn ("uninitialized reference member `%D'", member);
378 else if (TREE_CODE (init) == TREE_LIST)
380 /* There was an explicit member initialization. Do some
381 work in that case. */
382 if (TREE_CHAIN (init))
384 warning ("initializer list treated as compound expression");
385 init = build_compound_expr (init);
387 else
388 init = TREE_VALUE (init);
391 if (init)
392 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
395 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
397 tree expr;
399 expr = build_class_member_access_expr (current_class_ref, member,
400 /*access_path=*/NULL_TREE,
401 /*preserve_reference=*/false);
402 expr = build_delete (type, expr, sfk_complete_destructor,
403 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
405 if (expr != error_mark_node)
406 finish_eh_cleanup (expr);
410 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
411 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
413 static tree
414 build_field_list (t, list, uses_unions_p)
415 tree t;
416 tree list;
417 int *uses_unions_p;
419 tree fields;
421 *uses_unions_p = 0;
423 /* Note whether or not T is a union. */
424 if (TREE_CODE (t) == UNION_TYPE)
425 *uses_unions_p = 1;
427 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
429 /* Skip CONST_DECLs for enumeration constants and so forth. */
430 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
431 continue;
433 /* Keep track of whether or not any fields are unions. */
434 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
435 *uses_unions_p = 1;
437 /* For an anonymous struct or union, we must recursively
438 consider the fields of the anonymous type. They can be
439 directly initialized from the constructor. */
440 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
442 /* Add this field itself. Synthesized copy constructors
443 initialize the entire aggregate. */
444 list = tree_cons (fields, NULL_TREE, list);
445 /* And now add the fields in the anonymous aggregate. */
446 list = build_field_list (TREE_TYPE (fields), list,
447 uses_unions_p);
449 /* Add this field. */
450 else if (DECL_NAME (fields))
451 list = tree_cons (fields, NULL_TREE, list);
454 return list;
457 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
458 a FIELD_DECL or BINFO in T that needs initialization. The
459 TREE_VALUE gives the initializer, or list of initializer arguments.
461 Return a TREE_LIST containing all of the initializations required
462 for T, in the order in which they should be performed. The output
463 list has the same format as the input. */
465 static tree
466 sort_mem_initializers (tree t, tree mem_inits)
468 tree init;
469 tree base;
470 tree sorted_inits;
471 tree next_subobject;
472 int i;
473 int uses_unions_p;
475 /* Build up a list of initializations. The TREE_PURPOSE of entry
476 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
477 TREE_VALUE will be the constructor arguments, or NULL if no
478 explicit initialization was provided. */
479 sorted_inits = NULL_TREE;
480 /* Process the virtual bases. */
481 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
482 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
483 /* Process the direct bases. */
484 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
486 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
487 if (!TREE_VIA_VIRTUAL (base))
488 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
490 /* Process the non-static data members. */
491 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
492 /* Reverse the entire list of initializations, so that they are in
493 the order that they will actually be performed. */
494 sorted_inits = nreverse (sorted_inits);
496 /* If the user presented the initializers in an order different from
497 that in which they will actually occur, we issue a warning. Keep
498 track of the next subobject which can be explicitly initialized
499 without issuing a warning. */
500 next_subobject = sorted_inits;
502 /* Go through the explicit initializers, filling in TREE_PURPOSE in
503 the SORTED_INITS. */
504 for (init = mem_inits; init; init = TREE_CHAIN (init))
506 tree subobject;
507 tree subobject_init;
509 subobject = TREE_PURPOSE (init);
511 /* If the explicit initializers are in sorted order, then
512 SUBOBJECT will be NEXT_SUBOBJECT, or something following
513 it. */
514 for (subobject_init = next_subobject;
515 subobject_init;
516 subobject_init = TREE_CHAIN (subobject_init))
517 if (TREE_PURPOSE (subobject_init) == subobject)
518 break;
520 /* Issue a warning if the explicit initializer order does not
521 match that which will actually occur. */
522 if (warn_reorder && !subobject_init)
524 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
525 cp_warning_at ("`%D' will be initialized after",
526 TREE_PURPOSE (next_subobject));
527 else
528 warning ("base `%T' will be initialized after",
529 TREE_PURPOSE (next_subobject));
530 if (TREE_CODE (subobject) == FIELD_DECL)
531 cp_warning_at (" `%#D'", subobject);
532 else
533 warning (" base `%T'", subobject);
536 /* Look again, from the beginning of the list. */
537 if (!subobject_init)
539 subobject_init = sorted_inits;
540 while (TREE_PURPOSE (subobject_init) != subobject)
541 subobject_init = TREE_CHAIN (subobject_init);
544 /* It is invalid to initialize the same subobject more than
545 once. */
546 if (TREE_VALUE (subobject_init))
548 if (TREE_CODE (subobject) == FIELD_DECL)
549 error ("multiple initializations given for `%D'", subobject);
550 else
551 error ("multiple initializations given for base `%T'",
552 subobject);
555 /* Record the initialization. */
556 TREE_VALUE (subobject_init) = TREE_VALUE (init);
557 next_subobject = subobject_init;
560 /* [class.base.init]
562 If a ctor-initializer specifies more than one mem-initializer for
563 multiple members of the same union (including members of
564 anonymous unions), the ctor-initializer is ill-formed. */
565 if (uses_unions_p)
567 tree last_field = NULL_TREE;
568 for (init = sorted_inits; init; init = TREE_CHAIN (init))
570 tree field;
571 tree field_type;
572 int done;
574 /* Skip uninitialized members and base classes. */
575 if (!TREE_VALUE (init)
576 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
577 continue;
578 /* See if this field is a member of a union, or a member of a
579 structure contained in a union, etc. */
580 field = TREE_PURPOSE (init);
581 for (field_type = DECL_CONTEXT (field);
582 !same_type_p (field_type, t);
583 field_type = TYPE_CONTEXT (field_type))
584 if (TREE_CODE (field_type) == UNION_TYPE)
585 break;
586 /* If this field is not a member of a union, skip it. */
587 if (TREE_CODE (field_type) != UNION_TYPE)
588 continue;
590 /* It's only an error if we have two initializers for the same
591 union type. */
592 if (!last_field)
594 last_field = field;
595 continue;
598 /* See if LAST_FIELD and the field initialized by INIT are
599 members of the same union. If so, there's a problem,
600 unless they're actually members of the same structure
601 which is itself a member of a union. For example, given:
603 union { struct { int i; int j; }; };
605 initializing both `i' and `j' makes sense. */
606 field_type = DECL_CONTEXT (field);
607 done = 0;
610 tree last_field_type;
612 last_field_type = DECL_CONTEXT (last_field);
613 while (1)
615 if (same_type_p (last_field_type, field_type))
617 if (TREE_CODE (field_type) == UNION_TYPE)
618 error ("initializations for multiple members of `%T'",
619 last_field_type);
620 done = 1;
621 break;
624 if (same_type_p (last_field_type, t))
625 break;
627 last_field_type = TYPE_CONTEXT (last_field_type);
630 /* If we've reached the outermost class, then we're
631 done. */
632 if (same_type_p (field_type, t))
633 break;
635 field_type = TYPE_CONTEXT (field_type);
637 while (!done);
639 last_field = field;
643 return sorted_inits;
646 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
647 is a TREE_LIST giving the explicit mem-initializer-list for the
648 constructor. The TREE_PURPOSE of each entry is a subobject (a
649 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
650 is a TREE_LIST giving the arguments to the constructor or
651 void_type_node for an empty list of arguments. */
653 void
654 emit_mem_initializers (tree mem_inits)
656 /* Sort the mem-initializers into the order in which the
657 initializations should be performed. */
658 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
660 /* Initialize base classes. */
661 while (mem_inits
662 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
664 tree subobject = TREE_PURPOSE (mem_inits);
665 tree arguments = TREE_VALUE (mem_inits);
667 /* If these initializations are taking place in a copy
668 constructor, the base class should probably be explicitly
669 initialized. */
670 if (extra_warnings && !arguments
671 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
672 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
673 warning ("base class `%#T' should be explicitly initialized in the "
674 "copy constructor",
675 BINFO_TYPE (subobject));
677 /* If an explicit -- but empty -- initializer list was present,
678 treat it just like default initialization at this point. */
679 if (arguments == void_type_node)
680 arguments = NULL_TREE;
682 /* Initialize the base. */
683 if (TREE_VIA_VIRTUAL (subobject))
684 construct_virtual_base (subobject, arguments);
685 else
687 tree base_addr;
689 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
690 subobject, 1);
691 expand_aggr_init_1 (subobject, NULL_TREE,
692 build_indirect_ref (base_addr, NULL),
693 arguments,
694 LOOKUP_NORMAL);
695 expand_cleanup_for_base (subobject, NULL_TREE);
698 mem_inits = TREE_CHAIN (mem_inits);
701 /* Initialize the vptrs. */
702 initialize_vtbl_ptrs (current_class_ptr);
704 /* Initialize the data members. */
705 while (mem_inits)
707 perform_member_init (TREE_PURPOSE (mem_inits),
708 TREE_VALUE (mem_inits));
709 mem_inits = TREE_CHAIN (mem_inits);
713 /* Returns the address of the vtable (i.e., the value that should be
714 assigned to the vptr) for BINFO. */
716 static tree
717 build_vtbl_address (binfo)
718 tree binfo;
720 tree binfo_for = binfo;
721 tree vtbl;
723 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
724 && BINFO_PRIMARY_P (binfo))
725 /* If this is a virtual primary base, then the vtable we want to store
726 is that for the base this is being used as the primary base of. We
727 can't simply skip the initialization, because we may be expanding the
728 inits of a subobject constructor where the virtual base layout
729 can be different. */
730 while (BINFO_PRIMARY_BASE_OF (binfo_for))
731 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
733 /* Figure out what vtable BINFO's vtable is based on, and mark it as
734 used. */
735 vtbl = get_vtbl_decl_for_binfo (binfo_for);
736 assemble_external (vtbl);
737 TREE_USED (vtbl) = 1;
739 /* Now compute the address to use when initializing the vptr. */
740 vtbl = BINFO_VTABLE (binfo_for);
741 if (TREE_CODE (vtbl) == VAR_DECL)
743 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
744 TREE_CONSTANT (vtbl) = 1;
747 return vtbl;
750 /* This code sets up the virtual function tables appropriate for
751 the pointer DECL. It is a one-ply initialization.
753 BINFO is the exact type that DECL is supposed to be. In
754 multiple inheritance, this might mean "C's A" if C : A, B. */
756 static void
757 expand_virtual_init (binfo, decl)
758 tree binfo, decl;
760 tree vtbl, vtbl_ptr;
761 tree vtt_index;
763 /* Compute the initializer for vptr. */
764 vtbl = build_vtbl_address (binfo);
766 /* We may get this vptr from a VTT, if this is a subobject
767 constructor or subobject destructor. */
768 vtt_index = BINFO_VPTR_INDEX (binfo);
769 if (vtt_index)
771 tree vtbl2;
772 tree vtt_parm;
774 /* Compute the value to use, when there's a VTT. */
775 vtt_parm = current_vtt_parm;
776 vtbl2 = build (PLUS_EXPR,
777 TREE_TYPE (vtt_parm),
778 vtt_parm,
779 vtt_index);
780 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
782 /* The actual initializer is the VTT value only in the subobject
783 constructor. In maybe_clone_body we'll substitute NULL for
784 the vtt_parm in the case of the non-subobject constructor. */
785 vtbl = build (COND_EXPR,
786 TREE_TYPE (vtbl),
787 build (EQ_EXPR, boolean_type_node,
788 current_in_charge_parm, integer_zero_node),
789 vtbl2,
790 vtbl);
793 /* Compute the location of the vtpr. */
794 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
795 TREE_TYPE (binfo));
796 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
798 /* Assign the vtable to the vptr. */
799 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
800 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
803 /* If an exception is thrown in a constructor, those base classes already
804 constructed must be destroyed. This function creates the cleanup
805 for BINFO, which has just been constructed. If FLAG is non-NULL,
806 it is a DECL which is nonzero when this base needs to be
807 destroyed. */
809 static void
810 expand_cleanup_for_base (binfo, flag)
811 tree binfo;
812 tree flag;
814 tree expr;
816 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
817 return;
819 /* Call the destructor. */
820 expr = build_special_member_call (current_class_ref,
821 base_dtor_identifier,
822 NULL_TREE,
823 binfo,
824 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
825 if (flag)
826 expr = fold (build (COND_EXPR, void_type_node,
827 c_common_truthvalue_conversion (flag),
828 expr, integer_zero_node));
830 finish_eh_cleanup (expr);
833 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
834 constructor. */
836 static void
837 construct_virtual_base (tree vbase, tree arguments)
839 tree inner_if_stmt;
840 tree compound_stmt;
841 tree exp;
842 tree flag;
844 /* If there are virtual base classes with destructors, we need to
845 emit cleanups to destroy them if an exception is thrown during
846 the construction process. These exception regions (i.e., the
847 period during which the cleanups must occur) begin from the time
848 the construction is complete to the end of the function. If we
849 create a conditional block in which to initialize the
850 base-classes, then the cleanup region for the virtual base begins
851 inside a block, and ends outside of that block. This situation
852 confuses the sjlj exception-handling code. Therefore, we do not
853 create a single conditional block, but one for each
854 initialization. (That way the cleanup regions always begin
855 in the outer block.) We trust the back-end to figure out
856 that the FLAG will not change across initializations, and
857 avoid doing multiple tests. */
858 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
859 inner_if_stmt = begin_if_stmt ();
860 finish_if_stmt_cond (flag, inner_if_stmt);
861 compound_stmt = begin_compound_stmt (/*has_no_scope=*/1);
863 /* Compute the location of the virtual base. If we're
864 constructing virtual bases, then we must be the most derived
865 class. Therefore, we don't have to look up the virtual base;
866 we already know where it is. */
867 exp = build (PLUS_EXPR,
868 TREE_TYPE (current_class_ptr),
869 current_class_ptr,
870 fold (build1 (NOP_EXPR, TREE_TYPE (current_class_ptr),
871 BINFO_OFFSET (vbase))));
872 exp = build1 (NOP_EXPR,
873 build_pointer_type (BINFO_TYPE (vbase)),
874 exp);
875 exp = build1 (INDIRECT_REF, BINFO_TYPE (vbase), exp);
877 expand_aggr_init_1 (vbase, current_class_ref, exp,
878 arguments, LOOKUP_COMPLAIN);
879 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
880 finish_then_clause (inner_if_stmt);
881 finish_if_stmt ();
883 expand_cleanup_for_base (vbase, flag);
886 /* Find the context in which this FIELD can be initialized. */
888 static tree
889 initializing_context (field)
890 tree field;
892 tree t = DECL_CONTEXT (field);
894 /* Anonymous union members can be initialized in the first enclosing
895 non-anonymous union context. */
896 while (t && ANON_AGGR_TYPE_P (t))
897 t = TYPE_CONTEXT (t);
898 return t;
901 /* Function to give error message if member initialization specification
902 is erroneous. FIELD is the member we decided to initialize.
903 TYPE is the type for which the initialization is being performed.
904 FIELD must be a member of TYPE.
906 MEMBER_NAME is the name of the member. */
908 static int
909 member_init_ok_or_else (field, type, member_name)
910 tree field;
911 tree type;
912 tree member_name;
914 if (field == error_mark_node)
915 return 0;
916 if (!field)
918 error ("class `%T' does not have any field named `%D'", type,
919 member_name);
920 return 0;
922 if (TREE_CODE (field) == VAR_DECL)
924 error ("`%#D' is a static data member; it can only be "
925 "initialized at its definition",
926 field);
927 return 0;
929 if (TREE_CODE (field) != FIELD_DECL)
931 error ("`%#D' is not a non-static data member of `%T'",
932 field, type);
933 return 0;
935 if (initializing_context (field) != type)
937 error ("class `%T' does not have any field named `%D'", type,
938 member_name);
939 return 0;
942 return 1;
945 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
946 is a _TYPE node or TYPE_DECL which names a base for that type.
947 INIT is a parameter list for that field's or base's constructor.
948 Check the validity of NAME, and return a TREE_LIST of the base
949 _TYPE or FIELD_DECL and the INIT. If NAME is invalid, return
950 NULL_TREE and issue a diagnostic.
952 An old style unnamed direct single base construction is permitted,
953 where NAME is NULL. */
955 tree
956 expand_member_init (tree name, tree init)
958 tree basetype;
959 tree field;
961 if (!current_class_ref)
962 return NULL_TREE;
964 if (!name)
966 /* This is an obsolete unnamed base class initializer. The
967 parser will already have warned about its use. */
968 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
970 case 0:
971 error ("unnamed initializer for `%T', which has no base classes",
972 current_class_type);
973 return NULL_TREE;
974 case 1:
975 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
976 break;
977 default:
978 error ("unnamed initializer for `%T', which uses multiple inheritance",
979 current_class_type);
980 return NULL_TREE;
983 else if (TYPE_P (name))
985 basetype = TYPE_MAIN_VARIANT (name);
986 name = TYPE_NAME (name);
988 else if (TREE_CODE (name) == TYPE_DECL)
989 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
990 else
991 basetype = NULL_TREE;
993 my_friendly_assert (init != NULL_TREE, 0);
995 if (basetype)
997 tree binfo;
999 if (current_template_parms)
1000 return build_tree_list (basetype, init);
1002 binfo = lookup_base (current_class_type, basetype,
1003 ba_ignore, NULL);
1004 if (binfo)
1006 if (TREE_VIA_VIRTUAL (binfo))
1007 binfo = binfo_for_vbase (basetype, current_class_type);
1008 else if (BINFO_INHERITANCE_CHAIN (binfo)
1009 != TYPE_BINFO (current_class_type))
1010 binfo = NULL_TREE;
1012 if (!binfo)
1014 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1015 error ("type `%D' is not a direct or virtual base of `%T'",
1016 name, current_class_type);
1017 else
1018 error ("type `%D' is not a direct base of `%T'",
1019 name, current_class_type);
1020 return NULL_TREE;
1023 if (binfo)
1024 return build_tree_list (binfo, init);
1026 else
1028 if (TREE_CODE (name) == IDENTIFIER_NODE)
1029 field = lookup_field (current_class_type, name, 1, 0);
1030 else
1031 field = name;
1033 if (member_init_ok_or_else (field, current_class_type, name))
1034 return build_tree_list (field, init);
1037 return NULL_TREE;
1040 /* This is like `expand_member_init', only it stores one aggregate
1041 value into another.
1043 INIT comes in two flavors: it is either a value which
1044 is to be stored in EXP, or it is a parameter list
1045 to go to a constructor, which will operate on EXP.
1046 If INIT is not a parameter list for a constructor, then set
1047 LOOKUP_ONLYCONVERTING.
1048 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1049 the initializer, if FLAGS is 0, then it is the (init) form.
1050 If `init' is a CONSTRUCTOR, then we emit a warning message,
1051 explaining that such initializations are invalid.
1053 If INIT resolves to a CALL_EXPR which happens to return
1054 something of the type we are looking for, then we know
1055 that we can safely use that call to perform the
1056 initialization.
1058 The virtual function table pointer cannot be set up here, because
1059 we do not really know its type.
1061 This never calls operator=().
1063 When initializing, nothing is CONST.
1065 A default copy constructor may have to be used to perform the
1066 initialization.
1068 A constructor or a conversion operator may have to be used to
1069 perform the initialization, but not both, as it would be ambiguous. */
1071 tree
1072 build_aggr_init (exp, init, flags)
1073 tree exp, init;
1074 int flags;
1076 tree stmt_expr;
1077 tree compound_stmt;
1078 int destroy_temps;
1079 tree type = TREE_TYPE (exp);
1080 int was_const = TREE_READONLY (exp);
1081 int was_volatile = TREE_THIS_VOLATILE (exp);
1083 if (init == error_mark_node)
1084 return error_mark_node;
1086 TREE_READONLY (exp) = 0;
1087 TREE_THIS_VOLATILE (exp) = 0;
1089 if (init && TREE_CODE (init) != TREE_LIST)
1090 flags |= LOOKUP_ONLYCONVERTING;
1092 if (TREE_CODE (type) == ARRAY_TYPE)
1094 /* Must arrange to initialize each element of EXP
1095 from elements of INIT. */
1096 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1098 if (init && !itype)
1100 /* Handle bad initializers like:
1101 class COMPLEX {
1102 public:
1103 double re, im;
1104 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1105 ~COMPLEX() {};
1108 int main(int argc, char **argv) {
1109 COMPLEX zees(1.0, 0.0)[10];
1112 error ("bad array initializer");
1113 return error_mark_node;
1115 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1116 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1117 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1118 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1119 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1120 init && same_type_p (TREE_TYPE (init),
1121 TREE_TYPE (exp)));
1122 TREE_READONLY (exp) = was_const;
1123 TREE_THIS_VOLATILE (exp) = was_volatile;
1124 TREE_TYPE (exp) = type;
1125 if (init)
1126 TREE_TYPE (init) = itype;
1127 return stmt_expr;
1130 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1131 /* just know that we've seen something for this node */
1132 TREE_USED (exp) = 1;
1134 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1135 begin_init_stmts (&stmt_expr, &compound_stmt);
1136 destroy_temps = stmts_are_full_exprs_p ();
1137 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1138 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1139 init, LOOKUP_NORMAL|flags);
1140 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
1141 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1142 TREE_TYPE (exp) = type;
1143 TREE_READONLY (exp) = was_const;
1144 TREE_THIS_VOLATILE (exp) = was_volatile;
1146 return stmt_expr;
1149 /* Like build_aggr_init, but not just for aggregates. */
1151 tree
1152 build_init (decl, init, flags)
1153 tree decl, init;
1154 int flags;
1156 tree expr;
1158 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1159 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1160 expr = build_aggr_init (decl, init, flags);
1161 else
1162 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1164 return expr;
1167 static void
1168 expand_default_init (binfo, true_exp, exp, init, flags)
1169 tree binfo;
1170 tree true_exp, exp;
1171 tree init;
1172 int flags;
1174 tree type = TREE_TYPE (exp);
1175 tree ctor_name;
1177 /* It fails because there may not be a constructor which takes
1178 its own type as the first (or only parameter), but which does
1179 take other types via a conversion. So, if the thing initializing
1180 the expression is a unit element of type X, first try X(X&),
1181 followed by initialization by X. If neither of these work
1182 out, then look hard. */
1183 tree rval;
1184 tree parms;
1186 if (init && TREE_CODE (init) != TREE_LIST
1187 && (flags & LOOKUP_ONLYCONVERTING))
1189 /* Base subobjects should only get direct-initialization. */
1190 if (true_exp != exp)
1191 abort ();
1193 if (flags & DIRECT_BIND)
1194 /* Do nothing. We hit this in two cases: Reference initialization,
1195 where we aren't initializing a real variable, so we don't want
1196 to run a new constructor; and catching an exception, where we
1197 have already built up the constructor call so we could wrap it
1198 in an exception region. */;
1199 else if (TREE_CODE (init) == CONSTRUCTOR
1200 && TREE_HAS_CONSTRUCTOR (init))
1202 /* A brace-enclosed initializer for an aggregate. */
1203 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1204 init = digest_init (type, init, (tree *)NULL);
1206 else
1207 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1209 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1210 /* We need to protect the initialization of a catch parm with a
1211 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1212 around the TARGET_EXPR for the copy constructor. See
1213 initialize_handler_parm. */
1215 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1216 TREE_OPERAND (init, 0));
1217 TREE_TYPE (init) = void_type_node;
1219 else
1220 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1221 TREE_SIDE_EFFECTS (init) = 1;
1222 finish_expr_stmt (init);
1223 return;
1226 if (init == NULL_TREE
1227 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1229 parms = init;
1230 if (parms)
1231 init = TREE_VALUE (parms);
1233 else
1234 parms = build_tree_list (NULL_TREE, init);
1236 if (true_exp == exp)
1237 ctor_name = complete_ctor_identifier;
1238 else
1239 ctor_name = base_ctor_identifier;
1241 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1242 if (TREE_SIDE_EFFECTS (rval))
1244 if (building_stmt_tree ())
1245 finish_expr_stmt (rval);
1246 else
1247 genrtl_expr_stmt (rval);
1251 /* This function is responsible for initializing EXP with INIT
1252 (if any).
1254 BINFO is the binfo of the type for who we are performing the
1255 initialization. For example, if W is a virtual base class of A and B,
1256 and C : A, B.
1257 If we are initializing B, then W must contain B's W vtable, whereas
1258 were we initializing C, W must contain C's W vtable.
1260 TRUE_EXP is nonzero if it is the true expression being initialized.
1261 In this case, it may be EXP, or may just contain EXP. The reason we
1262 need this is because if EXP is a base element of TRUE_EXP, we
1263 don't necessarily know by looking at EXP where its virtual
1264 baseclass fields should really be pointing. But we do know
1265 from TRUE_EXP. In constructors, we don't know anything about
1266 the value being initialized.
1268 FLAGS is just passes to `build_method_call'. See that function for
1269 its description. */
1271 static void
1272 expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
1273 tree binfo;
1274 tree true_exp, exp;
1275 tree init;
1276 int flags;
1278 tree type = TREE_TYPE (exp);
1280 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1281 my_friendly_assert (building_stmt_tree (), 20021010);
1283 /* Use a function returning the desired type to initialize EXP for us.
1284 If the function is a constructor, and its first argument is
1285 NULL_TREE, know that it was meant for us--just slide exp on
1286 in and expand the constructor. Constructors now come
1287 as TARGET_EXPRs. */
1289 if (init && TREE_CODE (exp) == VAR_DECL
1290 && TREE_CODE (init) == CONSTRUCTOR
1291 && TREE_HAS_CONSTRUCTOR (init))
1293 /* If store_init_value returns NULL_TREE, the INIT has been
1294 record in the DECL_INITIAL for EXP. That means there's
1295 nothing more we have to do. */
1296 if (store_init_value (exp, init))
1297 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1298 return;
1301 /* We know that expand_default_init can handle everything we want
1302 at this point. */
1303 expand_default_init (binfo, true_exp, exp, init, flags);
1306 /* Report an error if TYPE is not a user-defined, aggregate type. If
1307 OR_ELSE is nonzero, give an error message. */
1310 is_aggr_type (type, or_else)
1311 tree type;
1312 int or_else;
1314 if (type == error_mark_node)
1315 return 0;
1317 if (! IS_AGGR_TYPE (type)
1318 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1319 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1321 if (or_else)
1322 error ("`%T' is not an aggregate type", type);
1323 return 0;
1325 return 1;
1328 /* Like is_aggr_typedef, but returns typedef if successful. */
1330 tree
1331 get_aggr_from_typedef (name, or_else)
1332 tree name;
1333 int or_else;
1335 tree type;
1337 if (name == error_mark_node)
1338 return NULL_TREE;
1340 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1341 type = IDENTIFIER_TYPE_VALUE (name);
1342 else
1344 if (or_else)
1345 error ("`%T' fails to be an aggregate typedef", name);
1346 return NULL_TREE;
1349 if (! IS_AGGR_TYPE (type)
1350 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1351 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1353 if (or_else)
1354 error ("type `%T' is of non-aggregate type", type);
1355 return NULL_TREE;
1357 return type;
1360 tree
1361 get_type_value (name)
1362 tree name;
1364 if (name == error_mark_node)
1365 return NULL_TREE;
1367 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1368 return IDENTIFIER_TYPE_VALUE (name);
1369 else
1370 return NULL_TREE;
1374 /* This code could just as well go in `class.c', but is placed here for
1375 modularity. */
1377 /* For an expression of the form TYPE :: NAME (PARMLIST), build
1378 the appropriate function call. */
1380 tree
1381 build_member_call (type, name, parmlist)
1382 tree type, name, parmlist;
1384 tree t;
1385 tree method_name;
1386 tree fns;
1387 int dtor = 0;
1388 tree basetype_path, decl;
1390 if (TREE_CODE (name) == TEMPLATE_ID_EXPR
1391 && TREE_CODE (type) == NAMESPACE_DECL)
1393 /* 'name' already refers to the decls from the namespace, since we
1394 hit do_identifier for template_ids. */
1395 method_name = TREE_OPERAND (name, 0);
1396 /* FIXME: Since we don't do independent names right yet, the
1397 name might also be a LOOKUP_EXPR. Once we resolve this to a
1398 real decl earlier, this can go. This may happen during
1399 tsubst'ing. */
1400 if (TREE_CODE (method_name) == LOOKUP_EXPR)
1402 method_name = lookup_namespace_name
1403 (type, TREE_OPERAND (method_name, 0));
1404 TREE_OPERAND (name, 0) = method_name;
1406 my_friendly_assert (is_overloaded_fn (method_name), 980519);
1407 return finish_call_expr (name, parmlist, /*disallow_virtual=*/true);
1410 if (DECL_P (name))
1411 name = DECL_NAME (name);
1413 if (TREE_CODE (type) == NAMESPACE_DECL)
1414 return finish_call_expr (lookup_namespace_name (type, name),
1415 parmlist,
1416 /*disallow_virtual=*/true);
1418 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1420 method_name = TREE_OPERAND (name, 0);
1421 if (TREE_CODE (method_name) == COMPONENT_REF)
1422 method_name = TREE_OPERAND (method_name, 1);
1423 if (is_overloaded_fn (method_name))
1424 method_name = DECL_NAME (OVL_CURRENT (method_name));
1425 TREE_OPERAND (name, 0) = method_name;
1427 else
1428 method_name = name;
1430 if (TREE_CODE (method_name) == BIT_NOT_EXPR)
1432 method_name = TREE_OPERAND (method_name, 0);
1433 dtor = 1;
1436 /* This shouldn't be here, and build_member_call shouldn't appear in
1437 parse.y! (mrs) */
1438 if (type && TREE_CODE (type) == IDENTIFIER_NODE
1439 && get_aggr_from_typedef (type, 0) == 0)
1441 tree ns = lookup_name (type, 0);
1442 if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
1443 return finish_call_expr (lookup_namespace_name (ns, name),
1444 parmlist,
1445 /*disallow_virtual=*/true);
1448 if (type == NULL_TREE || ! is_aggr_type (type, 1))
1449 return error_mark_node;
1451 /* An operator we did not like. */
1452 if (name == NULL_TREE)
1453 return error_mark_node;
1455 if (dtor)
1457 error ("cannot call destructor `%T::~%T' without object", type,
1458 method_name);
1459 return error_mark_node;
1462 decl = maybe_dummy_object (type, &basetype_path);
1464 fns = lookup_fnfields (basetype_path, method_name, 0);
1465 if (fns)
1467 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1468 BASELINK_FUNCTIONS (fns) = build_nt (TEMPLATE_ID_EXPR,
1469 BASELINK_FUNCTIONS (fns),
1470 TREE_OPERAND (name, 1));
1471 return build_new_method_call (decl, fns, parmlist,
1472 /*conversion_path=*/NULL_TREE,
1473 LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
1476 /* Convert 'this' to the specified type to disambiguate conversion
1477 to the function's context. */
1478 if (decl == current_class_ref
1479 /* ??? this is wrong, but if this conversion is invalid we need to
1480 defer it until we know whether we are calling a static or
1481 non-static member function. Be conservative for now. */
1482 && ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
1484 basetype_path = NULL_TREE;
1485 decl = build_scoped_ref (decl, type, &basetype_path);
1486 if (decl == error_mark_node)
1487 return error_mark_node;
1490 if (constructor_name_p (method_name, type))
1491 return build_functional_cast (type, parmlist);
1492 if (TREE_CODE (name) == IDENTIFIER_NODE
1493 && ((t = lookup_field (TYPE_BINFO (type), name, 1, 0))))
1495 if (t == error_mark_node)
1496 return error_mark_node;
1497 if (TREE_CODE (t) == FIELD_DECL)
1499 if (is_dummy_object (decl))
1501 error ("invalid use of non-static field `%D'", t);
1502 return error_mark_node;
1504 decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
1506 else if (TREE_CODE (t) == VAR_DECL)
1507 decl = t;
1508 else
1510 error ("invalid use of member `%D'", t);
1511 return error_mark_node;
1513 if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
1514 return build_new_op (CALL_EXPR, LOOKUP_NORMAL, decl,
1515 parmlist, NULL_TREE);
1516 return build_function_call (decl, parmlist);
1518 else
1520 error ("no method `%T::%D'", type, name);
1521 return error_mark_node;
1525 /* Build a reference to a member of an aggregate. This is not a
1526 C++ `&', but really something which can have its address taken,
1527 and then act as a pointer to member, for example TYPE :: FIELD
1528 can have its address taken by saying & TYPE :: FIELD.
1530 @@ Prints out lousy diagnostics for operator <typename>
1531 @@ fields.
1533 @@ This function should be rewritten and placed in search.c. */
1535 tree
1536 build_offset_ref (type, name)
1537 tree type, name;
1539 tree decl, t = error_mark_node;
1540 tree member;
1541 tree basebinfo = NULL_TREE;
1542 tree orig_name = name;
1544 /* class templates can come in as TEMPLATE_DECLs here. */
1545 if (TREE_CODE (name) == TEMPLATE_DECL)
1546 return name;
1548 if (processing_template_decl || uses_template_parms (type))
1549 return build_min_nt (SCOPE_REF, type, name);
1551 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1553 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1554 something like `a.template f<int>' or the like. For the most
1555 part, we treat this just like a.f. We do remember, however,
1556 the template-id that was used. */
1557 name = TREE_OPERAND (orig_name, 0);
1559 if (DECL_P (name))
1560 name = DECL_NAME (name);
1561 else
1563 if (TREE_CODE (name) == LOOKUP_EXPR)
1564 /* This can happen during tsubst'ing. */
1565 name = TREE_OPERAND (name, 0);
1566 else
1568 if (TREE_CODE (name) == COMPONENT_REF)
1569 name = TREE_OPERAND (name, 1);
1570 if (TREE_CODE (name) == OVERLOAD)
1571 name = DECL_NAME (OVL_CURRENT (name));
1575 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1578 if (type == NULL_TREE)
1579 return error_mark_node;
1581 /* Handle namespace names fully here. */
1582 if (TREE_CODE (type) == NAMESPACE_DECL)
1584 t = lookup_namespace_name (type, name);
1585 if (t == error_mark_node)
1586 return t;
1587 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1588 /* Reconstruct the TEMPLATE_ID_EXPR. */
1589 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1590 t, TREE_OPERAND (orig_name, 1));
1591 if (! type_unknown_p (t))
1593 mark_used (t);
1594 t = convert_from_reference (t);
1596 return t;
1599 if (! is_aggr_type (type, 1))
1600 return error_mark_node;
1602 if (TREE_CODE (name) == BIT_NOT_EXPR)
1604 if (! check_dtor_name (type, name))
1605 error ("qualified type `%T' does not match destructor name `~%T'",
1606 type, TREE_OPERAND (name, 0));
1607 name = dtor_identifier;
1610 if (!COMPLETE_TYPE_P (complete_type (type))
1611 && !TYPE_BEING_DEFINED (type))
1613 error ("incomplete type `%T' does not have member `%D'", type,
1614 name);
1615 return error_mark_node;
1618 decl = maybe_dummy_object (type, &basebinfo);
1620 if (BASELINK_P (name) || DECL_P (name))
1621 member = name;
1622 else
1624 member = lookup_member (basebinfo, name, 1, 0);
1626 if (member == error_mark_node)
1627 return error_mark_node;
1630 /* A lot of this logic is now handled in lookup_member. */
1631 if (member && BASELINK_P (member))
1633 /* Go from the TREE_BASELINK to the member function info. */
1634 tree fnfields = member;
1635 t = BASELINK_FUNCTIONS (fnfields);
1637 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1639 /* The FNFIELDS are going to contain functions that aren't
1640 necessarily templates, and templates that don't
1641 necessarily match the explicit template parameters. We
1642 save all the functions, and the explicit parameters, and
1643 then figure out exactly what to instantiate with what
1644 arguments in instantiate_type. */
1646 if (TREE_CODE (t) != OVERLOAD)
1647 /* The code in instantiate_type which will process this
1648 expects to encounter OVERLOADs, not raw functions. */
1649 t = ovl_cons (t, NULL_TREE);
1651 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1652 TREE_OPERAND (orig_name, 1));
1653 t = build (OFFSET_REF, unknown_type_node, decl, t);
1655 PTRMEM_OK_P (t) = 1;
1657 return t;
1660 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1662 /* Get rid of a potential OVERLOAD around it */
1663 t = OVL_CURRENT (t);
1665 /* unique functions are handled easily. */
1666 if (!enforce_access (basebinfo, t))
1667 return error_mark_node;
1668 mark_used (t);
1669 if (DECL_STATIC_FUNCTION_P (t))
1670 return t;
1671 t = build (OFFSET_REF, TREE_TYPE (t), decl, t);
1672 PTRMEM_OK_P (t) = 1;
1673 return t;
1676 TREE_TYPE (fnfields) = unknown_type_node;
1678 t = build (OFFSET_REF, unknown_type_node, decl, fnfields);
1679 PTRMEM_OK_P (t) = 1;
1680 return t;
1683 t = member;
1685 if (t == NULL_TREE)
1687 error ("`%D' is not a member of type `%T'", name, type);
1688 return error_mark_node;
1691 if (TREE_CODE (t) == TYPE_DECL)
1693 TREE_USED (t) = 1;
1694 return t;
1696 /* static class members and class-specific enum
1697 values can be returned without further ado. */
1698 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
1700 mark_used (t);
1701 return convert_from_reference (t);
1704 if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
1706 error ("invalid pointer to bit-field `%D'", t);
1707 return error_mark_node;
1710 /* static class functions too. */
1711 if (TREE_CODE (t) == FUNCTION_DECL
1712 && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
1713 abort ();
1715 /* In member functions, the form `type::name' is no longer
1716 equivalent to `this->type::name', at least not until
1717 resolve_offset_ref. */
1718 t = build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
1719 PTRMEM_OK_P (t) = 1;
1720 return t;
1723 /* If a OFFSET_REF made it through to here, then it did
1724 not have its address taken. */
1726 tree
1727 resolve_offset_ref (exp)
1728 tree exp;
1730 tree type = TREE_TYPE (exp);
1731 tree base = NULL_TREE;
1732 tree member;
1733 tree basetype, addr;
1735 if (TREE_CODE (exp) == OFFSET_REF)
1737 member = TREE_OPERAND (exp, 1);
1738 base = TREE_OPERAND (exp, 0);
1740 else
1742 my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
1743 if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
1745 error ("object missing in use of pointer-to-member construct");
1746 return error_mark_node;
1748 member = exp;
1749 type = TREE_TYPE (type);
1750 base = current_class_ref;
1753 if (BASELINK_P (member) || TREE_CODE (member) == TEMPLATE_ID_EXPR)
1754 return build_unary_op (ADDR_EXPR, exp, 0);
1756 if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
1758 if (!flag_ms_extensions)
1759 /* A single non-static member, make sure we don't allow a
1760 pointer-to-member. */
1761 exp = ovl_cons (member, NULL_TREE);
1763 return build_unary_op (ADDR_EXPR, exp, 0);
1766 if ((TREE_CODE (member) == VAR_DECL
1767 && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
1768 && ! TYPE_PTRMEM_P (TREE_TYPE (member)))
1769 || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
1771 /* These were static members. */
1772 if (!cxx_mark_addressable (member))
1773 return error_mark_node;
1774 return member;
1777 if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
1778 && TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
1779 return member;
1781 /* Syntax error can cause a member which should
1782 have been seen as static to be grok'd as non-static. */
1783 if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
1785 cp_error_at ("member `%D' is non-static but referenced as a static member",
1786 member);
1787 error ("at this point in file");
1788 return error_mark_node;
1791 /* The first case is really just a reference to a member of `this'. */
1792 if (TREE_CODE (member) == FIELD_DECL
1793 && (base == current_class_ref || is_dummy_object (base)))
1795 tree binfo = NULL_TREE;
1797 /* Try to get to basetype from 'this'; if that doesn't work,
1798 nothing will. */
1799 base = current_class_ref;
1801 /* First convert to the intermediate base specified, if appropriate. */
1802 if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
1803 base = build_scoped_ref (base, TYPE_OFFSET_BASETYPE (type), &binfo);
1805 return build_class_member_access_expr (base, member,
1806 /*access_path=*/NULL_TREE,
1807 /*preserve_reference=*/false);
1810 /* Ensure that we have an object. */
1811 if (is_dummy_object (base))
1812 addr = error_mark_node;
1813 else
1814 /* If this is a reference to a member function, then return the
1815 address of the member function (which may involve going
1816 through the object's vtable), otherwise, return an expression
1817 for the dereferenced pointer-to-member construct. */
1818 addr = build_unary_op (ADDR_EXPR, base, 0);
1820 if (TYPE_PTRMEM_P (TREE_TYPE (member)))
1822 if (addr == error_mark_node)
1824 error ("object missing in `%E'", exp);
1825 return error_mark_node;
1828 basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
1829 basetype = lookup_base (TREE_TYPE (TREE_TYPE (addr)),
1830 basetype, ba_check, NULL);
1831 addr = build_base_path (PLUS_EXPR, addr, basetype, 1);
1833 member = cp_convert (ptrdiff_type_node, member);
1835 addr = build (PLUS_EXPR, build_pointer_type (type), addr, member);
1836 return build_indirect_ref (addr, 0);
1838 else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
1840 return get_member_function_from_ptrfunc (&addr, member);
1842 abort ();
1843 /* NOTREACHED */
1844 return NULL_TREE;
1847 /* If DECL is a `const' declaration, and its value is a known
1848 constant, then return that value. */
1850 tree
1851 decl_constant_value (decl)
1852 tree decl;
1854 if (TREE_READONLY_DECL_P (decl)
1855 && ! TREE_THIS_VOLATILE (decl)
1856 && DECL_INITIAL (decl)
1857 && DECL_INITIAL (decl) != error_mark_node
1858 /* This is invalid if initial value is not constant.
1859 If it has either a function call, a memory reference,
1860 or a variable, then re-evaluating it could give different results. */
1861 && TREE_CONSTANT (DECL_INITIAL (decl))
1862 /* Check for cases where this is sub-optimal, even though valid. */
1863 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1864 return DECL_INITIAL (decl);
1865 return decl;
1868 /* Common subroutines of build_new and build_vec_delete. */
1870 /* Call the global __builtin_delete to delete ADDR. */
1872 static tree
1873 build_builtin_delete_call (addr)
1874 tree addr;
1876 mark_used (global_delete_fndecl);
1877 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1880 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1881 (which needs to go through some sort of groktypename) or it
1882 is the name of the class we are newing. INIT is an initialization value.
1883 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1884 If INIT is void_type_node, it means do *not* call a constructor
1885 for this instance.
1887 For types with constructors, the data returned is initialized
1888 by the appropriate constructor.
1890 Whether the type has a constructor or not, if it has a pointer
1891 to a virtual function table, then that pointer is set up
1892 here.
1894 Unless I am mistaken, a call to new () will return initialized
1895 data regardless of whether the constructor itself is private or
1896 not. NOPE; new fails if the constructor is private (jcm).
1898 Note that build_new does nothing to assure that any special
1899 alignment requirements of the type are met. Rather, it leaves
1900 it up to malloc to do the right thing. Otherwise, folding to
1901 the right alignment cal cause problems if the user tries to later
1902 free the memory returned by `new'.
1904 PLACEMENT is the `placement' list for user-defined operator new (). */
1906 tree
1907 build_new (placement, decl, init, use_global_new)
1908 tree placement;
1909 tree decl, init;
1910 int use_global_new;
1912 tree type, rval;
1913 tree nelts = NULL_TREE, t;
1914 int has_array = 0;
1916 if (decl == error_mark_node)
1917 return error_mark_node;
1919 if (TREE_CODE (decl) == TREE_LIST)
1921 tree absdcl = TREE_VALUE (decl);
1922 tree last_absdcl = NULL_TREE;
1924 if (current_function_decl
1925 && DECL_CONSTRUCTOR_P (current_function_decl))
1926 my_friendly_assert (immediate_size_expand == 0, 19990926);
1928 nelts = integer_one_node;
1930 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1931 abort ();
1932 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1934 last_absdcl = absdcl;
1935 absdcl = TREE_OPERAND (absdcl, 0);
1938 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1940 /* probably meant to be a vec new */
1941 tree this_nelts;
1943 while (TREE_OPERAND (absdcl, 0)
1944 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1946 last_absdcl = absdcl;
1947 absdcl = TREE_OPERAND (absdcl, 0);
1950 has_array = 1;
1951 this_nelts = TREE_OPERAND (absdcl, 1);
1952 if (this_nelts != error_mark_node)
1954 if (this_nelts == NULL_TREE)
1955 error ("new of array type fails to specify size");
1956 else if (processing_template_decl)
1958 nelts = this_nelts;
1959 absdcl = TREE_OPERAND (absdcl, 0);
1961 else
1963 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1964 this_nelts, false)
1965 == NULL_TREE)
1966 pedwarn ("size in array new must have integral type");
1968 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1969 absdcl = TREE_OPERAND (absdcl, 0);
1970 if (this_nelts == integer_zero_node)
1972 warning ("zero size array reserves no space");
1973 nelts = integer_zero_node;
1975 else
1976 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1979 else
1980 nelts = integer_zero_node;
1983 if (last_absdcl)
1984 TREE_OPERAND (last_absdcl, 0) = absdcl;
1985 else
1986 TREE_VALUE (decl) = absdcl;
1988 type = groktypename (decl);
1989 if (! type || type == error_mark_node)
1990 return error_mark_node;
1992 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1994 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1996 /* An aggregate type. */
1997 type = IDENTIFIER_TYPE_VALUE (decl);
1998 decl = TYPE_MAIN_DECL (type);
2000 else
2002 /* A builtin type. */
2003 decl = lookup_name (decl, 1);
2004 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
2005 type = TREE_TYPE (decl);
2008 else if (TREE_CODE (decl) == TYPE_DECL)
2010 type = TREE_TYPE (decl);
2012 else
2014 type = decl;
2015 decl = TYPE_MAIN_DECL (type);
2018 if (processing_template_decl)
2020 if (has_array)
2021 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
2022 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
2023 NULL_TREE);
2024 else
2025 t = type;
2027 rval = build_min (NEW_EXPR, build_pointer_type (type),
2028 placement, t, init);
2029 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2030 return rval;
2033 /* ``A reference cannot be created by the new operator. A reference
2034 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2035 returned by new.'' ARM 5.3.3 */
2036 if (TREE_CODE (type) == REFERENCE_TYPE)
2038 error ("new cannot be applied to a reference type");
2039 type = TREE_TYPE (type);
2042 if (TREE_CODE (type) == FUNCTION_TYPE)
2044 error ("new cannot be applied to a function type");
2045 return error_mark_node;
2048 /* When the object being created is an array, the new-expression yields a
2049 pointer to the initial element (if any) of the array. For example,
2050 both new int and new int[10] return an int*. 5.3.4. */
2051 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
2053 nelts = array_type_nelts_top (type);
2054 has_array = 1;
2055 type = TREE_TYPE (type);
2058 if (has_array)
2059 t = build_nt (ARRAY_REF, type, nelts);
2060 else
2061 t = type;
2063 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
2064 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2065 TREE_SIDE_EFFECTS (rval) = 1;
2066 rval = build_new_1 (rval);
2067 if (rval == error_mark_node)
2068 return error_mark_node;
2070 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2071 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2072 TREE_NO_UNUSED_WARNING (rval) = 1;
2074 return rval;
2077 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2079 tree
2080 build_java_class_ref (type)
2081 tree type;
2083 tree name = NULL_TREE, class_decl;
2084 static tree CL_suffix = NULL_TREE;
2085 if (CL_suffix == NULL_TREE)
2086 CL_suffix = get_identifier("class$");
2087 if (jclass_node == NULL_TREE)
2089 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2090 if (jclass_node == NULL_TREE)
2091 fatal_error ("call to Java constructor, while `jclass' undefined");
2093 jclass_node = TREE_TYPE (jclass_node);
2096 /* Mangle the class$ field */
2098 tree field;
2099 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2100 if (DECL_NAME (field) == CL_suffix)
2102 mangle_decl (field);
2103 name = DECL_ASSEMBLER_NAME (field);
2104 break;
2106 if (!field)
2107 internal_error ("can't find class$");
2110 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2111 if (class_decl == NULL_TREE)
2113 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2114 TREE_STATIC (class_decl) = 1;
2115 DECL_EXTERNAL (class_decl) = 1;
2116 TREE_PUBLIC (class_decl) = 1;
2117 DECL_ARTIFICIAL (class_decl) = 1;
2118 DECL_IGNORED_P (class_decl) = 1;
2119 pushdecl_top_level (class_decl);
2120 make_decl_rtl (class_decl, NULL);
2122 return class_decl;
2125 /* Returns the size of the cookie to use when allocating an array
2126 whose elements have the indicated TYPE. Assumes that it is already
2127 known that a cookie is needed. */
2129 static tree
2130 get_cookie_size (type)
2131 tree type;
2133 tree cookie_size;
2135 /* We need to allocate an additional max (sizeof (size_t), alignof
2136 (true_type)) bytes. */
2137 tree sizetype_size;
2138 tree type_align;
2140 sizetype_size = size_in_bytes (sizetype);
2141 type_align = size_int (TYPE_ALIGN_UNIT (type));
2142 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
2143 cookie_size = sizetype_size;
2144 else
2145 cookie_size = type_align;
2147 return cookie_size;
2150 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
2151 value is immediately handed to expand_expr. */
2153 static tree
2154 build_new_1 (exp)
2155 tree exp;
2157 tree placement, init;
2158 tree type, true_type, size, rval, t;
2159 tree full_type;
2160 tree outer_nelts = NULL_TREE;
2161 tree nelts = NULL_TREE;
2162 tree alloc_call, alloc_expr, alloc_node;
2163 tree alloc_fn;
2164 tree cookie_expr, init_expr;
2165 int has_array = 0;
2166 enum tree_code code;
2167 int use_cookie, nothrow, check_new;
2168 /* Nonzero if the user wrote `::new' rather than just `new'. */
2169 int globally_qualified_p;
2170 /* Nonzero if we're going to call a global operator new, rather than
2171 a class-specific version. */
2172 int use_global_new;
2173 int use_java_new = 0;
2174 /* If non-NULL, the number of extra bytes to allocate at the
2175 beginning of the storage allocated for an array-new expression in
2176 order to store the number of elements. */
2177 tree cookie_size = NULL_TREE;
2178 /* True if the function we are calling is a placement allocation
2179 function. */
2180 bool placement_allocation_fn_p;
2182 placement = TREE_OPERAND (exp, 0);
2183 type = TREE_OPERAND (exp, 1);
2184 init = TREE_OPERAND (exp, 2);
2185 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
2187 if (TREE_CODE (type) == ARRAY_REF)
2189 has_array = 1;
2190 nelts = outer_nelts = TREE_OPERAND (type, 1);
2191 type = TREE_OPERAND (type, 0);
2193 /* Use an incomplete array type to avoid VLA headaches. */
2194 full_type = build_cplus_array_type (type, NULL_TREE);
2196 else
2197 full_type = type;
2199 true_type = type;
2201 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
2203 /* If our base type is an array, then make sure we know how many elements
2204 it has. */
2205 while (TREE_CODE (true_type) == ARRAY_TYPE)
2207 tree this_nelts = array_type_nelts_top (true_type);
2208 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2209 true_type = TREE_TYPE (true_type);
2212 if (!complete_type_or_else (true_type, exp))
2213 return error_mark_node;
2215 size = size_in_bytes (true_type);
2216 if (has_array)
2217 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2219 if (TREE_CODE (true_type) == VOID_TYPE)
2221 error ("invalid type `void' for new");
2222 return error_mark_node;
2225 if (abstract_virtuals_error (NULL_TREE, true_type))
2226 return error_mark_node;
2228 /* Figure out whether or not we're going to use the global operator
2229 new. */
2230 if (!globally_qualified_p
2231 && IS_AGGR_TYPE (true_type)
2232 && (has_array
2233 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2234 : TYPE_HAS_NEW_OPERATOR (true_type)))
2235 use_global_new = 0;
2236 else
2237 use_global_new = 1;
2239 /* We only need cookies for arrays containing types for which we
2240 need cookies. */
2241 if (!has_array || !TYPE_VEC_NEW_USES_COOKIE (true_type))
2242 use_cookie = 0;
2243 /* When using placement new, users may not realize that they need
2244 the extra storage. We require that the operator called be
2245 the global placement operator new[]. */
2246 else if (placement && !TREE_CHAIN (placement)
2247 && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2248 ptr_type_node))
2249 use_cookie = !use_global_new;
2250 /* Otherwise, we need the cookie. */
2251 else
2252 use_cookie = 1;
2254 /* Compute the number of extra bytes to allocate, now that we know
2255 whether or not we need the cookie. */
2256 if (use_cookie)
2258 cookie_size = get_cookie_size (true_type);
2259 size = size_binop (PLUS_EXPR, size, cookie_size);
2262 /* Allocate the object. */
2264 if (! placement && TYPE_FOR_JAVA (true_type))
2266 tree class_addr, alloc_decl;
2267 tree class_decl = build_java_class_ref (true_type);
2268 tree class_size = size_in_bytes (true_type);
2269 static const char alloc_name[] = "_Jv_AllocObject";
2270 use_java_new = 1;
2271 alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2272 if (alloc_decl == NULL_TREE)
2273 fatal_error ("call to Java constructor with `%s' undefined",
2274 alloc_name);
2276 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2277 alloc_call = (build_function_call
2278 (alloc_decl,
2279 tree_cons (NULL_TREE, class_addr,
2280 build_tree_list (NULL_TREE, class_size))));
2282 else
2284 tree fnname;
2285 tree args;
2287 args = tree_cons (NULL_TREE, size, placement);
2288 fnname = ansi_opname (code);
2290 if (use_global_new)
2291 alloc_call = (build_new_function_call
2292 (lookup_function_nonclass (fnname, args),
2293 args));
2294 else
2295 alloc_call = build_method_call (build_dummy_object (true_type),
2296 fnname, args,
2297 TYPE_BINFO (true_type),
2298 LOOKUP_NORMAL);
2301 if (alloc_call == error_mark_node)
2302 return error_mark_node;
2304 /* The ALLOC_CALL should be a CALL_EXPR -- or a COMPOUND_EXPR whose
2305 right-hand-side is ultimately a CALL_EXPR -- and the first
2306 operand should be the address of a known FUNCTION_DECL. */
2307 t = alloc_call;
2308 while (TREE_CODE (t) == COMPOUND_EXPR)
2309 t = TREE_OPERAND (t, 1);
2310 alloc_fn = get_callee_fndecl (t);
2311 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2312 /* Now, check to see if this function is actually a placement
2313 allocation function. This can happen even when PLACEMENT is NULL
2314 because we might have something like:
2316 struct S { void* operator new (size_t, int i = 0); };
2318 A call to `new S' will get this allocation function, even though
2319 there is no explicit placement argument. If there is more than
2320 one argument, or there are variable arguments, then this is a
2321 placement allocation function. */
2322 placement_allocation_fn_p
2323 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2324 || varargs_function_p (alloc_fn));
2326 /* unless an allocation function is declared with an empty excep-
2327 tion-specification (_except.spec_), throw(), it indicates failure to
2328 allocate storage by throwing a bad_alloc exception (clause _except_,
2329 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2330 cation function is declared with an empty exception-specification,
2331 throw(), it returns null to indicate failure to allocate storage and a
2332 non-null pointer otherwise.
2334 So check for a null exception spec on the op new we just called. */
2336 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2337 check_new = (flag_check_new || nothrow) && ! use_java_new;
2339 alloc_expr = alloc_call;
2341 if (use_cookie)
2342 /* Adjust so we're pointing to the start of the object. */
2343 alloc_expr = build (PLUS_EXPR, TREE_TYPE (alloc_expr),
2344 alloc_expr, cookie_size);
2346 /* While we're working, use a pointer to the type we've actually
2347 allocated. */
2348 alloc_expr = convert (build_pointer_type (full_type), alloc_expr);
2350 /* Now save the allocation expression so we only evaluate it once. */
2351 alloc_expr = get_target_expr (alloc_expr);
2352 alloc_node = TREE_OPERAND (alloc_expr, 0);
2354 /* Now initialize the cookie. */
2355 if (use_cookie)
2357 tree cookie;
2359 /* Store the number of bytes allocated so that we can know how
2360 many elements to destroy later. We use the last sizeof
2361 (size_t) bytes to store the number of elements. */
2362 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2363 alloc_node, size_in_bytes (sizetype));
2364 cookie = build_indirect_ref (cookie, NULL);
2366 cookie_expr = build (MODIFY_EXPR, void_type_node, cookie, nelts);
2367 TREE_SIDE_EFFECTS (cookie_expr) = 1;
2369 else
2370 cookie_expr = NULL_TREE;
2372 /* Now initialize the allocated object. */
2373 init_expr = NULL_TREE;
2374 if (TYPE_NEEDS_CONSTRUCTING (type) || init)
2376 init_expr = build_indirect_ref (alloc_node, NULL);
2378 if (init == void_zero_node)
2379 init = build_default_init (full_type);
2380 else if (init && pedantic && has_array)
2381 pedwarn ("ISO C++ forbids initialization in array new");
2383 if (has_array)
2384 init_expr
2385 = build_vec_init (init_expr,
2386 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2387 integer_one_node),
2388 init, /*from_array=*/0);
2389 else if (TYPE_NEEDS_CONSTRUCTING (type))
2390 init_expr = build_special_member_call (init_expr,
2391 complete_ctor_identifier,
2392 init, TYPE_BINFO (true_type),
2393 LOOKUP_NORMAL);
2394 else
2396 /* We are processing something like `new int (10)', which
2397 means allocate an int, and initialize it with 10. */
2399 if (TREE_CODE (init) == TREE_LIST)
2401 if (TREE_CHAIN (init) != NULL_TREE)
2402 pedwarn
2403 ("initializer list being treated as compound expression");
2404 init = build_compound_expr (init);
2406 else if (TREE_CODE (init) == CONSTRUCTOR
2407 && TREE_TYPE (init) == NULL_TREE)
2409 pedwarn ("ISO C++ forbids aggregate initializer to new");
2410 init = digest_init (type, init, 0);
2413 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2416 if (init_expr == error_mark_node)
2417 return error_mark_node;
2419 /* If any part of the object initialization terminates by throwing an
2420 exception and a suitable deallocation function can be found, the
2421 deallocation function is called to free the memory in which the
2422 object was being constructed, after which the exception continues
2423 to propagate in the context of the new-expression. If no
2424 unambiguous matching deallocation function can be found,
2425 propagating the exception does not cause the object's memory to be
2426 freed. */
2427 if (flag_exceptions && ! use_java_new)
2429 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2430 tree cleanup;
2431 int flags = (LOOKUP_NORMAL
2432 | (globally_qualified_p * LOOKUP_GLOBAL));
2433 tree delete_node;
2435 if (use_cookie)
2436 /* Subtract the padding back out to get to the pointer returned
2437 from operator new. */
2438 delete_node = fold (build (MINUS_EXPR, TREE_TYPE (alloc_node),
2439 alloc_node, cookie_size));
2440 else
2441 delete_node = alloc_node;
2443 /* The Standard is unclear here, but the right thing to do
2444 is to use the same method for finding deallocation
2445 functions that we use for finding allocation functions. */
2446 flags |= LOOKUP_SPECULATIVELY;
2448 cleanup = build_op_delete_call (dcode, delete_node, size, flags,
2449 (placement_allocation_fn_p
2450 ? alloc_call : NULL_TREE));
2452 /* Ack! First we allocate the memory. Then we set our sentry
2453 variable to true, and expand a cleanup that deletes the memory
2454 if sentry is true. Then we run the constructor, and finally
2455 clear the sentry.
2457 It would be nice to be able to handle this without the sentry
2458 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2459 work. We allocate the space first, so if there are any
2460 temporaries with cleanups in the constructor args we need this
2461 EH region to extend until end of full-expression to preserve
2462 nesting.
2464 If the backend had some mechanism so that we could force the
2465 allocation to be expanded after all the other args to the
2466 constructor, that would fix the nesting problem and we could
2467 do away with this complexity. But that would complicate other
2468 things; in particular, it would make it difficult to bail out
2469 if the allocation function returns null. Er, no, it wouldn't;
2470 we just don't run the constructor. The standard says it's
2471 unspecified whether or not the args are evaluated.
2473 FIXME FIXME FIXME inline invisible refs as refs. That way we
2474 can preevaluate value parameters. */
2476 if (cleanup)
2478 tree end, sentry, begin;
2480 begin = get_target_expr (boolean_true_node);
2481 CLEANUP_EH_ONLY (begin) = 1;
2483 sentry = TARGET_EXPR_SLOT (begin);
2485 TARGET_EXPR_CLEANUP (begin)
2486 = build (COND_EXPR, void_type_node, sentry,
2487 cleanup, void_zero_node);
2489 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2490 sentry, boolean_false_node);
2492 init_expr
2493 = build (COMPOUND_EXPR, void_type_node, begin,
2494 build (COMPOUND_EXPR, void_type_node, init_expr,
2495 end));
2499 else if (CP_TYPE_CONST_P (true_type))
2500 error ("uninitialized const in `new' of `%#T'", true_type);
2502 /* Now build up the return value in reverse order. */
2504 rval = alloc_node;
2506 if (init_expr)
2507 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2508 if (cookie_expr)
2509 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2511 if (rval == alloc_node)
2512 /* If we didn't modify anything, strip the TARGET_EXPR and return the
2513 (adjusted) call. */
2514 rval = TREE_OPERAND (alloc_expr, 1);
2515 else
2517 if (check_new)
2519 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2520 integer_zero_node);
2521 rval = build_conditional_expr (ifexp, rval, alloc_node);
2524 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2527 /* Now strip the outer ARRAY_TYPE, so we return a pointer to the first
2528 element. */
2529 rval = convert (build_pointer_type (type), rval);
2531 return rval;
2534 static tree
2535 build_vec_delete_1 (base, maxindex, type, auto_delete_vec, use_global_delete)
2536 tree base, maxindex, type;
2537 special_function_kind auto_delete_vec;
2538 int use_global_delete;
2540 tree virtual_size;
2541 tree ptype = build_pointer_type (type = complete_type (type));
2542 tree size_exp = size_in_bytes (type);
2544 /* Temporary variables used by the loop. */
2545 tree tbase, tbase_init;
2547 /* This is the body of the loop that implements the deletion of a
2548 single element, and moves temp variables to next elements. */
2549 tree body;
2551 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2552 tree loop;
2554 /* This is the thing that governs what to do after the loop has run. */
2555 tree deallocate_expr = 0;
2557 /* This is the BIND_EXPR which holds the outermost iterator of the
2558 loop. It is convenient to set this variable up and test it before
2559 executing any other code in the loop.
2560 This is also the containing expression returned by this function. */
2561 tree controller = NULL_TREE;
2563 /* We should only have 1-D arrays here. */
2564 if (TREE_CODE (type) == ARRAY_TYPE)
2565 abort ();
2567 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2569 loop = integer_zero_node;
2570 goto no_destructor;
2573 /* The below is short by the cookie size. */
2574 virtual_size = size_binop (MULT_EXPR, size_exp,
2575 convert (sizetype, maxindex));
2577 tbase = create_temporary_var (ptype);
2578 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2579 fold (build (PLUS_EXPR, ptype,
2580 base,
2581 virtual_size)));
2582 DECL_REGISTER (tbase) = 1;
2583 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2584 TREE_SIDE_EFFECTS (controller) = 1;
2586 body = NULL_TREE;
2588 body = tree_cons (NULL_TREE,
2589 build_delete (ptype, tbase, sfk_complete_destructor,
2590 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
2591 body);
2593 body = tree_cons (NULL_TREE,
2594 build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
2595 body);
2597 body = tree_cons (NULL_TREE,
2598 build (EXIT_EXPR, void_type_node,
2599 build (EQ_EXPR, boolean_type_node, base, tbase)),
2600 body);
2602 loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
2604 loop = tree_cons (NULL_TREE, tbase_init,
2605 tree_cons (NULL_TREE, loop, NULL_TREE));
2606 loop = build_compound_expr (loop);
2608 no_destructor:
2609 /* If the delete flag is one, or anything else with the low bit set,
2610 delete the storage. */
2611 deallocate_expr = integer_zero_node;
2612 if (auto_delete_vec != sfk_base_destructor)
2614 tree base_tbd;
2616 /* The below is short by the cookie size. */
2617 virtual_size = size_binop (MULT_EXPR, size_exp,
2618 convert (sizetype, maxindex));
2620 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2621 /* no header */
2622 base_tbd = base;
2623 else
2625 tree cookie_size;
2627 cookie_size = get_cookie_size (type);
2628 base_tbd
2629 = cp_convert (ptype,
2630 cp_build_binary_op (MINUS_EXPR,
2631 cp_convert (string_type_node,
2632 base),
2633 cookie_size));
2634 /* True size with header. */
2635 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2638 if (auto_delete_vec == sfk_deleting_destructor)
2639 deallocate_expr = build_x_delete (base_tbd,
2640 2 | use_global_delete,
2641 virtual_size);
2644 if (loop && deallocate_expr != integer_zero_node)
2646 body = tree_cons (NULL_TREE, loop,
2647 tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
2648 body = build_compound_expr (body);
2650 else
2651 body = loop;
2653 /* Outermost wrapper: If pointer is null, punt. */
2654 body = fold (build (COND_EXPR, void_type_node,
2655 fold (build (NE_EXPR, boolean_type_node, base,
2656 integer_zero_node)),
2657 body, integer_zero_node));
2658 body = build1 (NOP_EXPR, void_type_node, body);
2660 if (controller)
2662 TREE_OPERAND (controller, 1) = body;
2663 body = controller;
2666 if (TREE_CODE (base) == SAVE_EXPR)
2667 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2668 body = build (COMPOUND_EXPR, void_type_node, base, body);
2670 return cp_convert (void_type_node, body);
2673 /* Create an unnamed variable of the indicated TYPE. */
2675 tree
2676 create_temporary_var (type)
2677 tree type;
2679 tree decl;
2681 decl = build_decl (VAR_DECL, NULL_TREE, type);
2682 TREE_USED (decl) = 1;
2683 DECL_ARTIFICIAL (decl) = 1;
2684 DECL_SOURCE_FILE (decl) = input_filename;
2685 DECL_SOURCE_LINE (decl) = lineno;
2686 DECL_IGNORED_P (decl) = 1;
2687 DECL_CONTEXT (decl) = current_function_decl;
2689 return decl;
2692 /* Create a new temporary variable of the indicated TYPE, initialized
2693 to INIT.
2695 It is not entered into current_binding_level, because that breaks
2696 things when it comes time to do final cleanups (which take place
2697 "outside" the binding contour of the function). */
2699 static tree
2700 get_temp_regvar (type, init)
2701 tree type, init;
2703 tree decl;
2705 decl = create_temporary_var (type);
2706 if (building_stmt_tree ())
2707 add_decl_stmt (decl);
2708 else
2709 SET_DECL_RTL (decl, assign_temp (type, 2, 0, 1));
2710 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2712 return decl;
2715 /* `build_vec_init' returns tree structure that performs
2716 initialization of a vector of aggregate types.
2718 BASE is a reference to the vector, of ARRAY_TYPE.
2719 MAXINDEX is the maximum index of the array (one less than the
2720 number of elements). It is only used if
2721 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2722 INIT is the (possibly NULL) initializer.
2724 FROM_ARRAY is 0 if we should init everything with INIT
2725 (i.e., every element initialized from INIT).
2726 FROM_ARRAY is 1 if we should index into INIT in parallel
2727 with initialization of DECL.
2728 FROM_ARRAY is 2 if we should index into INIT in parallel,
2729 but use assignment instead of initialization. */
2731 tree
2732 build_vec_init (base, maxindex, init, from_array)
2733 tree base, init, maxindex;
2734 int from_array;
2736 tree rval;
2737 tree base2 = NULL_TREE;
2738 tree size;
2739 tree itype = NULL_TREE;
2740 tree iterator;
2741 /* The type of the array. */
2742 tree atype = TREE_TYPE (base);
2743 /* The type of an element in the array. */
2744 tree type = TREE_TYPE (atype);
2745 /* The type of a pointer to an element in the array. */
2746 tree ptype;
2747 tree stmt_expr;
2748 tree compound_stmt;
2749 int destroy_temps;
2750 tree try_block = NULL_TREE;
2751 tree try_body = NULL_TREE;
2752 int num_initialized_elts = 0;
2754 if (TYPE_DOMAIN (atype))
2755 maxindex = array_type_nelts (atype);
2757 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2758 return error_mark_node;
2760 if (init
2761 && (from_array == 2
2762 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2763 : !TYPE_NEEDS_CONSTRUCTING (type))
2764 && ((TREE_CODE (init) == CONSTRUCTOR
2765 /* Don't do this if the CONSTRUCTOR might contain something
2766 that might throw and require us to clean up. */
2767 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2768 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2769 || from_array))
2771 /* Do non-default initialization of POD arrays resulting from
2772 brace-enclosed initializers. In this case, digest_init and
2773 store_constructor will handle the semantics for us. */
2775 stmt_expr = build (INIT_EXPR, atype, base, init);
2776 return stmt_expr;
2779 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2780 ptype = build_pointer_type (type);
2781 size = size_in_bytes (type);
2782 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2783 base = cp_convert (ptype, default_conversion (base));
2785 /* The code we are generating looks like:
2787 T* t1 = (T*) base;
2788 T* rval = t1;
2789 ptrdiff_t iterator = maxindex;
2790 try {
2791 for (; iterator != -1; --iterator) {
2792 ... initialize *t1 ...
2793 ++t1;
2795 } catch (...) {
2796 ... destroy elements that were constructed ...
2798 return rval;
2800 We can omit the try and catch blocks if we know that the
2801 initialization will never throw an exception, or if the array
2802 elements do not have destructors. We can omit the loop completely if
2803 the elements of the array do not have constructors.
2805 We actually wrap the entire body of the above in a STMT_EXPR, for
2806 tidiness.
2808 When copying from array to another, when the array elements have
2809 only trivial copy constructors, we should use __builtin_memcpy
2810 rather than generating a loop. That way, we could take advantage
2811 of whatever cleverness the back-end has for dealing with copies
2812 of blocks of memory. */
2814 begin_init_stmts (&stmt_expr, &compound_stmt);
2815 destroy_temps = stmts_are_full_exprs_p ();
2816 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2817 rval = get_temp_regvar (ptype, base);
2818 base = get_temp_regvar (ptype, rval);
2819 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2821 /* Protect the entire array initialization so that we can destroy
2822 the partially constructed array if an exception is thrown.
2823 But don't do this if we're assigning. */
2824 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2825 && from_array != 2)
2827 try_block = begin_try_block ();
2828 try_body = begin_compound_stmt (/*has_no_scope=*/1);
2831 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2833 /* Do non-default initialization of non-POD arrays resulting from
2834 brace-enclosed initializers. */
2836 tree elts;
2837 from_array = 0;
2839 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2841 tree elt = TREE_VALUE (elts);
2842 tree baseref = build1 (INDIRECT_REF, type, base);
2844 num_initialized_elts++;
2846 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2847 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2848 else
2849 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2850 elt));
2852 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2853 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2856 /* Clear out INIT so that we don't get confused below. */
2857 init = NULL_TREE;
2859 else if (from_array)
2861 /* If initializing one array from another, initialize element by
2862 element. We rely upon the below calls the do argument
2863 checking. */
2864 if (init)
2866 base2 = default_conversion (init);
2867 itype = TREE_TYPE (base2);
2868 base2 = get_temp_regvar (itype, base2);
2869 itype = TREE_TYPE (itype);
2871 else if (TYPE_LANG_SPECIFIC (type)
2872 && TYPE_NEEDS_CONSTRUCTING (type)
2873 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2875 error ("initializer ends prematurely");
2876 return error_mark_node;
2880 /* Now, default-initialize any remaining elements. We don't need to
2881 do that if a) the type does not need constructing, or b) we've
2882 already initialized all the elements.
2884 We do need to keep going if we're copying an array. */
2886 if (from_array
2887 || (TYPE_NEEDS_CONSTRUCTING (type)
2888 && ! (host_integerp (maxindex, 0)
2889 && (num_initialized_elts
2890 == tree_low_cst (maxindex, 0) + 1))))
2892 /* If the ITERATOR is equal to -1, then we don't have to loop;
2893 we've already initialized all the elements. */
2894 tree for_stmt;
2895 tree for_body;
2896 tree elt_init;
2898 for_stmt = begin_for_stmt ();
2899 finish_for_init_stmt (for_stmt);
2900 finish_for_cond (build (NE_EXPR, boolean_type_node,
2901 iterator, integer_minus_one_node),
2902 for_stmt);
2903 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2904 for_stmt);
2906 /* Otherwise, loop through the elements. */
2907 for_body = begin_compound_stmt (/*has_no_scope=*/1);
2909 /* When we're not building a statement-tree, things are a little
2910 complicated. If, when we recursively call build_aggr_init,
2911 an expression containing a TARGET_EXPR is expanded, then it
2912 may get a cleanup. Then, the result of that expression is
2913 passed to finish_expr_stmt, which will call
2914 expand_start_target_temps/expand_end_target_temps. However,
2915 the latter call will not cause the cleanup to run because
2916 that block will still be on the block stack. So, we call
2917 expand_start_target_temps here manually; the corresponding
2918 call to expand_end_target_temps below will cause the cleanup
2919 to be performed. */
2920 if (!building_stmt_tree ())
2921 expand_start_target_temps ();
2923 if (from_array)
2925 tree to = build1 (INDIRECT_REF, type, base);
2926 tree from;
2928 if (base2)
2929 from = build1 (INDIRECT_REF, itype, base2);
2930 else
2931 from = NULL_TREE;
2933 if (from_array == 2)
2934 elt_init = build_modify_expr (to, NOP_EXPR, from);
2935 else if (TYPE_NEEDS_CONSTRUCTING (type))
2936 elt_init = build_aggr_init (to, from, 0);
2937 else if (from)
2938 elt_init = build_modify_expr (to, NOP_EXPR, from);
2939 else
2940 abort ();
2942 else if (TREE_CODE (type) == ARRAY_TYPE)
2944 if (init != 0)
2945 sorry
2946 ("cannot initialize multi-dimensional array with initializer");
2947 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2948 0, 0, 0);
2950 else
2951 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2952 init, 0);
2954 /* The initialization of each array element is a
2955 full-expression, as per core issue 124. */
2956 if (!building_stmt_tree ())
2958 genrtl_expr_stmt (elt_init);
2959 expand_end_target_temps ();
2961 else
2963 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2964 finish_expr_stmt (elt_init);
2965 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2968 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2969 if (base2)
2970 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2972 finish_compound_stmt (/*has_no_scope=*/1, for_body);
2973 finish_for_stmt (for_stmt);
2976 /* Make sure to cleanup any partially constructed elements. */
2977 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2978 && from_array != 2)
2980 tree e;
2981 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2983 /* Flatten multi-dimensional array since build_vec_delete only
2984 expects one-dimensional array. */
2985 if (TREE_CODE (type) == ARRAY_TYPE)
2987 m = cp_build_binary_op (MULT_EXPR, m,
2988 array_type_nelts_total (type));
2989 type = strip_array_types (type);
2992 finish_compound_stmt (/*has_no_scope=*/1, try_body);
2993 finish_cleanup_try_block (try_block);
2994 e = build_vec_delete_1 (rval, m,
2995 type,
2996 sfk_base_destructor,
2997 /*use_global_delete=*/0);
2998 finish_cleanup (e, try_block);
3001 /* The value of the array initialization is the address of the
3002 first element in the array. */
3003 finish_expr_stmt (rval);
3005 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
3006 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3007 return stmt_expr;
3010 /* Free up storage of type TYPE, at address ADDR.
3012 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
3013 of pointer.
3015 VIRTUAL_SIZE is the amount of storage that was allocated, and is
3016 used as the second argument to operator delete. It can include
3017 things like padding and magic size cookies. It has virtual in it,
3018 because if you have a base pointer and you delete through a virtual
3019 destructor, it should be the size of the dynamic object, not the
3020 static object, see Free Store 12.5 ISO C++.
3022 This does not call any destructors. */
3024 tree
3025 build_x_delete (addr, which_delete, virtual_size)
3026 tree addr;
3027 int which_delete;
3028 tree virtual_size;
3030 int use_global_delete = which_delete & 1;
3031 int use_vec_delete = !!(which_delete & 2);
3032 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
3033 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
3035 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
3038 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3039 build_delete. */
3041 static tree
3042 build_dtor_call (exp, dtor_kind, flags)
3043 tree exp;
3044 special_function_kind dtor_kind;
3045 int flags;
3047 tree name;
3049 switch (dtor_kind)
3051 case sfk_complete_destructor:
3052 name = complete_dtor_identifier;
3053 break;
3055 case sfk_base_destructor:
3056 name = base_dtor_identifier;
3057 break;
3059 case sfk_deleting_destructor:
3060 name = deleting_dtor_identifier;
3061 break;
3063 default:
3064 abort ();
3066 return build_method_call (exp, name, NULL_TREE,
3067 TYPE_BINFO (TREE_TYPE (exp)), flags);
3070 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3071 ADDR is an expression which yields the store to be destroyed.
3072 AUTO_DELETE is the name of the destructor to call, i.e., either
3073 sfk_complete_destructor, sfk_base_destructor, or
3074 sfk_deleting_destructor.
3076 FLAGS is the logical disjunction of zero or more LOOKUP_
3077 flags. See cp-tree.h for more info. */
3079 tree
3080 build_delete (type, addr, auto_delete, flags, use_global_delete)
3081 tree type, addr;
3082 special_function_kind auto_delete;
3083 int flags;
3084 int use_global_delete;
3086 tree expr;
3088 if (addr == error_mark_node)
3089 return error_mark_node;
3091 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3092 set to `error_mark_node' before it gets properly cleaned up. */
3093 if (type == error_mark_node)
3094 return error_mark_node;
3096 type = TYPE_MAIN_VARIANT (type);
3098 if (TREE_CODE (type) == POINTER_TYPE)
3100 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3101 if (TREE_CODE (type) == ARRAY_TYPE)
3102 goto handle_array;
3104 if (VOID_TYPE_P (type)
3105 /* We don't want to warn about delete of void*, only other
3106 incomplete types. Deleting other incomplete types
3107 invokes undefined behavior, but it is not ill-formed, so
3108 compile to something that would even do The Right Thing
3109 (TM) should the type have a trivial dtor and no delete
3110 operator. */
3111 || !complete_type_or_diagnostic (type, addr, 1)
3112 || !IS_AGGR_TYPE (type))
3114 /* Call the builtin operator delete. */
3115 return build_builtin_delete_call (addr);
3117 if (TREE_SIDE_EFFECTS (addr))
3118 addr = save_expr (addr);
3120 /* throw away const and volatile on target type of addr */
3121 addr = convert_force (build_pointer_type (type), addr, 0);
3123 else if (TREE_CODE (type) == ARRAY_TYPE)
3125 handle_array:
3127 if (TYPE_DOMAIN (type) == NULL_TREE)
3129 error ("unknown array size in delete");
3130 return error_mark_node;
3132 return build_vec_delete (addr, array_type_nelts (type),
3133 auto_delete, use_global_delete);
3135 else
3137 /* Don't check PROTECT here; leave that decision to the
3138 destructor. If the destructor is accessible, call it,
3139 else report error. */
3140 addr = build_unary_op (ADDR_EXPR, addr, 0);
3141 if (TREE_SIDE_EFFECTS (addr))
3142 addr = save_expr (addr);
3144 addr = convert_force (build_pointer_type (type), addr, 0);
3147 my_friendly_assert (IS_AGGR_TYPE (type), 220);
3149 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3151 if (auto_delete != sfk_deleting_destructor)
3152 return void_zero_node;
3154 return build_op_delete_call
3155 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3156 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
3157 NULL_TREE);
3159 else
3161 tree do_delete = NULL_TREE;
3162 tree ifexp;
3164 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
3166 /* For `::delete x', we must not use the deleting destructor
3167 since then we would not be sure to get the global `operator
3168 delete'. */
3169 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3171 /* We will use ADDR multiple times so we must save it. */
3172 addr = save_expr (addr);
3173 /* Delete the object. */
3174 do_delete = build_builtin_delete_call (addr);
3175 /* Otherwise, treat this like a complete object destructor
3176 call. */
3177 auto_delete = sfk_complete_destructor;
3179 /* If the destructor is non-virtual, there is no deleting
3180 variant. Instead, we must explicitly call the appropriate
3181 `operator delete' here. */
3182 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3183 && auto_delete == sfk_deleting_destructor)
3185 /* We will use ADDR multiple times so we must save it. */
3186 addr = save_expr (addr);
3187 /* Build the call. */
3188 do_delete = build_op_delete_call (DELETE_EXPR,
3189 addr,
3190 cxx_sizeof_nowarn (type),
3191 LOOKUP_NORMAL,
3192 NULL_TREE);
3193 /* Call the complete object destructor. */
3194 auto_delete = sfk_complete_destructor;
3196 else if (auto_delete == sfk_deleting_destructor
3197 && TYPE_GETS_REG_DELETE (type))
3199 /* Make sure we have access to the member op delete, even though
3200 we'll actually be calling it from the destructor. */
3201 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3202 LOOKUP_NORMAL, NULL_TREE);
3205 expr = build_dtor_call (build_indirect_ref (addr, NULL),
3206 auto_delete, flags);
3207 if (do_delete)
3208 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
3210 if (flags & LOOKUP_DESTRUCTOR)
3211 /* Explicit destructor call; don't check for null pointer. */
3212 ifexp = integer_one_node;
3213 else
3214 /* Handle deleting a null pointer. */
3215 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
3217 if (ifexp != integer_one_node)
3218 expr = build (COND_EXPR, void_type_node,
3219 ifexp, expr, void_zero_node);
3221 return expr;
3225 /* At the beginning of a destructor, push cleanups that will call the
3226 destructors for our base classes and members.
3228 Called from begin_destructor_body. */
3230 void
3231 push_base_cleanups ()
3233 tree binfos;
3234 int i, n_baseclasses;
3235 tree member;
3236 tree expr;
3238 /* Run destructors for all virtual baseclasses. */
3239 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
3241 tree vbases;
3242 tree cond = (condition_conversion
3243 (build (BIT_AND_EXPR, integer_type_node,
3244 current_in_charge_parm,
3245 integer_two_node)));
3247 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
3248 /* The CLASSTYPE_VBASECLASSES list is in initialization
3249 order, which is also the right order for pushing cleanups. */
3250 for (; vbases;
3251 vbases = TREE_CHAIN (vbases))
3253 tree vbase = TREE_VALUE (vbases);
3254 tree base_type = BINFO_TYPE (vbase);
3256 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
3258 expr = build_special_member_call (current_class_ref,
3259 base_dtor_identifier,
3260 NULL_TREE,
3261 vbase,
3262 (LOOKUP_NORMAL
3263 | LOOKUP_NONVIRTUAL));
3264 expr = build (COND_EXPR, void_type_node, cond,
3265 expr, void_zero_node);
3266 finish_decl_cleanup (NULL_TREE, expr);
3271 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3272 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3274 /* Take care of the remaining baseclasses. */
3275 for (i = 0; i < n_baseclasses; i++)
3277 tree base_binfo = TREE_VEC_ELT (binfos, i);
3278 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3279 || TREE_VIA_VIRTUAL (base_binfo))
3280 continue;
3282 expr = build_special_member_call (current_class_ref,
3283 base_dtor_identifier,
3284 NULL_TREE, base_binfo,
3285 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3286 finish_decl_cleanup (NULL_TREE, expr);
3289 for (member = TYPE_FIELDS (current_class_type); member;
3290 member = TREE_CHAIN (member))
3292 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3293 continue;
3294 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3296 tree this_member = (build_class_member_access_expr
3297 (current_class_ref, member,
3298 /*access_path=*/NULL_TREE,
3299 /*preserve_reference=*/false));
3300 tree this_type = TREE_TYPE (member);
3301 expr = build_delete (this_type, this_member,
3302 sfk_complete_destructor,
3303 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3305 finish_decl_cleanup (NULL_TREE, expr);
3310 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3312 tree
3313 build_vbase_delete (type, decl)
3314 tree type, decl;
3316 tree vbases = CLASSTYPE_VBASECLASSES (type);
3317 tree result = NULL_TREE;
3318 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3320 my_friendly_assert (addr != error_mark_node, 222);
3322 while (vbases)
3324 tree this_addr
3325 = convert_force (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))),
3326 addr, 0);
3327 result = tree_cons (NULL_TREE,
3328 build_delete (TREE_TYPE (this_addr), this_addr,
3329 sfk_base_destructor,
3330 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
3331 result);
3332 vbases = TREE_CHAIN (vbases);
3334 return build_compound_expr (nreverse (result));
3337 /* Build a C++ vector delete expression.
3338 MAXINDEX is the number of elements to be deleted.
3339 ELT_SIZE is the nominal size of each element in the vector.
3340 BASE is the expression that should yield the store to be deleted.
3341 This function expands (or synthesizes) these calls itself.
3342 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3344 This also calls delete for virtual baseclasses of elements of the vector.
3346 Update: MAXINDEX is no longer needed. The size can be extracted from the
3347 start of the vector for pointers, and from the type for arrays. We still
3348 use MAXINDEX for arrays because it happens to already have one of the
3349 values we'd have to extract. (We could use MAXINDEX with pointers to
3350 confirm the size, and trap if the numbers differ; not clear that it'd
3351 be worth bothering.) */
3353 tree
3354 build_vec_delete (base, maxindex, auto_delete_vec, use_global_delete)
3355 tree base, maxindex;
3356 special_function_kind auto_delete_vec;
3357 int use_global_delete;
3359 tree type;
3361 if (TREE_CODE (base) == OFFSET_REF)
3362 base = resolve_offset_ref (base);
3364 type = TREE_TYPE (base);
3366 base = stabilize_reference (base);
3368 if (TREE_CODE (type) == POINTER_TYPE)
3370 /* Step back one from start of vector, and read dimension. */
3371 tree cookie_addr;
3373 if (TREE_SIDE_EFFECTS (base))
3374 base = save_expr (base);
3375 type = strip_array_types (TREE_TYPE (type));
3376 cookie_addr = build (MINUS_EXPR,
3377 build_pointer_type (sizetype),
3378 base,
3379 TYPE_SIZE_UNIT (sizetype));
3380 maxindex = build_indirect_ref (cookie_addr, NULL);
3382 else if (TREE_CODE (type) == ARRAY_TYPE)
3384 /* get the total number of things in the array, maxindex is a bad name */
3385 maxindex = array_type_nelts_total (type);
3386 type = strip_array_types (type);
3387 base = build_unary_op (ADDR_EXPR, base, 1);
3388 if (TREE_SIDE_EFFECTS (base))
3389 base = save_expr (base);
3391 else
3393 if (base != error_mark_node)
3394 error ("type to vector delete is neither pointer or array type");
3395 return error_mark_node;
3398 return build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3399 use_global_delete);