2013-10-23 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ipa-inline.c
blob90b2a13fce9d58c5f4a1734118ee554df68ada9e
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "tree-inline.h"
98 #include "langhooks.h"
99 #include "flags.h"
100 #include "cgraph.h"
101 #include "diagnostic.h"
102 #include "gimple-pretty-print.h"
103 #include "params.h"
104 #include "fibheap.h"
105 #include "intl.h"
106 #include "tree-pass.h"
107 #include "coverage.h"
108 #include "ggc.h"
109 #include "rtl.h"
110 #include "tree-flow.h"
111 #include "ipa-prop.h"
112 #include "except.h"
113 #include "target.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
117 /* Statistics we collect about inlining algorithm. */
118 static int overall_size;
119 static gcov_type max_count;
121 /* Return false when inlining edge E would lead to violating
122 limits on function unit growth or stack usage growth.
124 The relative function body growth limit is present generally
125 to avoid problems with non-linear behavior of the compiler.
126 To allow inlining huge functions into tiny wrapper, the limit
127 is always based on the bigger of the two functions considered.
129 For stack growth limits we always base the growth in stack usage
130 of the callers. We want to prevent applications from segfaulting
131 on stack overflow when functions with huge stack frames gets
132 inlined. */
134 static bool
135 caller_growth_limits (struct cgraph_edge *e)
137 struct cgraph_node *to = e->caller;
138 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
139 int newsize;
140 int limit = 0;
141 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
142 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
144 /* Look for function e->caller is inlined to. While doing
145 so work out the largest function body on the way. As
146 described above, we want to base our function growth
147 limits based on that. Not on the self size of the
148 outer function, not on the self size of inline code
149 we immediately inline to. This is the most relaxed
150 interpretation of the rule "do not grow large functions
151 too much in order to prevent compiler from exploding". */
152 while (true)
154 info = inline_summary (to);
155 if (limit < info->self_size)
156 limit = info->self_size;
157 if (stack_size_limit < info->estimated_self_stack_size)
158 stack_size_limit = info->estimated_self_stack_size;
159 if (to->global.inlined_to)
160 to = to->callers->caller;
161 else
162 break;
165 what_info = inline_summary (what);
167 if (limit < what_info->self_size)
168 limit = what_info->self_size;
170 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
172 /* Check the size after inlining against the function limits. But allow
173 the function to shrink if it went over the limits by forced inlining. */
174 newsize = estimate_size_after_inlining (to, e);
175 if (newsize >= info->size
176 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
177 && newsize > limit)
179 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
180 return false;
183 if (!what_info->estimated_stack_size)
184 return true;
186 /* FIXME: Stack size limit often prevents inlining in Fortran programs
187 due to large i/o datastructures used by the Fortran front-end.
188 We ought to ignore this limit when we know that the edge is executed
189 on every invocation of the caller (i.e. its call statement dominates
190 exit block). We do not track this information, yet. */
191 stack_size_limit += ((gcov_type)stack_size_limit
192 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
194 inlined_stack = (outer_info->stack_frame_offset
195 + outer_info->estimated_self_stack_size
196 + what_info->estimated_stack_size);
197 /* Check new stack consumption with stack consumption at the place
198 stack is used. */
199 if (inlined_stack > stack_size_limit
200 /* If function already has large stack usage from sibling
201 inline call, we can inline, too.
202 This bit overoptimistically assume that we are good at stack
203 packing. */
204 && inlined_stack > info->estimated_stack_size
205 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
207 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
208 return false;
210 return true;
213 /* Dump info about why inlining has failed. */
215 static void
216 report_inline_failed_reason (struct cgraph_edge *e)
218 if (dump_file)
220 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
221 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
222 xstrdup (cgraph_node_name (e->callee)), e->callee->uid,
223 cgraph_inline_failed_string (e->inline_failed));
227 /* Decide if we can inline the edge and possibly update
228 inline_failed reason.
229 We check whether inlining is possible at all and whether
230 caller growth limits allow doing so.
232 if REPORT is true, output reason to the dump file. */
234 static bool
235 can_inline_edge_p (struct cgraph_edge *e, bool report)
237 bool inlinable = true;
238 enum availability avail;
239 struct cgraph_node *callee
240 = cgraph_function_or_thunk_node (e->callee, &avail);
241 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
242 tree callee_tree
243 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
244 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
245 struct function *callee_cfun
246 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
248 if (!caller_cfun && e->caller->clone_of)
249 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
251 if (!callee_cfun && callee && callee->clone_of)
252 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
254 gcc_assert (e->inline_failed);
256 if (!callee || !callee->analyzed)
258 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
259 inlinable = false;
261 else if (!inline_summary (callee)->inlinable)
263 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
264 inlinable = false;
266 else if (avail <= AVAIL_OVERWRITABLE)
268 e->inline_failed = CIF_OVERWRITABLE;
269 return false;
271 else if (e->call_stmt_cannot_inline_p)
273 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
274 inlinable = false;
276 /* Don't inline if the functions have different EH personalities. */
277 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
278 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
279 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
280 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
282 e->inline_failed = CIF_EH_PERSONALITY;
283 inlinable = false;
285 /* TM pure functions should not be inlined into non-TM_pure
286 functions. */
287 else if (is_tm_pure (callee->symbol.decl)
288 && !is_tm_pure (e->caller->symbol.decl))
290 e->inline_failed = CIF_UNSPECIFIED;
291 inlinable = false;
293 /* Don't inline if the callee can throw non-call exceptions but the
294 caller cannot.
295 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
296 Move the flag into cgraph node or mirror it in the inline summary. */
297 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
298 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
300 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
301 inlinable = false;
303 /* Check compatibility of target optimization options. */
304 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
305 callee->symbol.decl))
307 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
308 inlinable = false;
310 /* Check if caller growth allows the inlining. */
311 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
312 && !lookup_attribute ("flatten",
313 DECL_ATTRIBUTES
314 (e->caller->global.inlined_to
315 ? e->caller->global.inlined_to->symbol.decl
316 : e->caller->symbol.decl))
317 && !caller_growth_limits (e))
318 inlinable = false;
319 /* Don't inline a function with a higher optimization level than the
320 caller. FIXME: this is really just tip of iceberg of handling
321 optimization attribute. */
322 else if (caller_tree != callee_tree)
324 struct cl_optimization *caller_opt
325 = TREE_OPTIMIZATION ((caller_tree)
326 ? caller_tree
327 : optimization_default_node);
329 struct cl_optimization *callee_opt
330 = TREE_OPTIMIZATION ((callee_tree)
331 ? callee_tree
332 : optimization_default_node);
334 if (((caller_opt->x_optimize > callee_opt->x_optimize)
335 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
336 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
337 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
339 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
340 inlinable = false;
344 if (!inlinable && report)
345 report_inline_failed_reason (e);
346 return inlinable;
350 /* Return true if the edge E is inlinable during early inlining. */
352 static bool
353 can_early_inline_edge_p (struct cgraph_edge *e)
355 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
356 NULL);
357 /* Early inliner might get called at WPA stage when IPA pass adds new
358 function. In this case we can not really do any of early inlining
359 because function bodies are missing. */
360 if (!gimple_has_body_p (callee->symbol.decl))
362 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
363 return false;
365 /* In early inliner some of callees may not be in SSA form yet
366 (i.e. the callgraph is cyclic and we did not process
367 the callee by early inliner, yet). We don't have CIF code for this
368 case; later we will re-do the decision in the real inliner. */
369 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
370 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
372 if (dump_file)
373 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
374 return false;
376 if (!can_inline_edge_p (e, true))
377 return false;
378 return true;
382 /* Return number of calls in N. Ignore cheap builtins. */
384 static int
385 num_calls (struct cgraph_node *n)
387 struct cgraph_edge *e;
388 int num = 0;
390 for (e = n->callees; e; e = e->next_callee)
391 if (!is_inexpensive_builtin (e->callee->symbol.decl))
392 num++;
393 return num;
397 /* Return true if we are interested in inlining small function. */
399 static bool
400 want_early_inline_function_p (struct cgraph_edge *e)
402 bool want_inline = true;
403 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
405 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
407 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
408 && !flag_inline_small_functions)
410 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
411 report_inline_failed_reason (e);
412 want_inline = false;
414 else
416 int growth = estimate_edge_growth (e);
417 int n;
419 if (growth <= 0)
421 else if (!cgraph_maybe_hot_edge_p (e)
422 && growth > 0)
424 if (dump_file)
425 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
426 "call is cold and code would grow by %i\n",
427 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
428 xstrdup (cgraph_node_name (callee)), callee->uid,
429 growth);
430 want_inline = false;
432 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
434 if (dump_file)
435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
436 "growth %i exceeds --param early-inlining-insns\n",
437 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
438 xstrdup (cgraph_node_name (callee)), callee->uid,
439 growth);
440 want_inline = false;
442 else if ((n = num_calls (callee)) != 0
443 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
445 if (dump_file)
446 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
447 "growth %i exceeds --param early-inlining-insns "
448 "divided by number of calls\n",
449 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
450 xstrdup (cgraph_node_name (callee)), callee->uid,
451 growth);
452 want_inline = false;
455 return want_inline;
458 /* Compute time of the edge->caller + edge->callee execution when inlining
459 does not happen. */
461 inline gcov_type
462 compute_uninlined_call_time (struct inline_summary *callee_info,
463 struct cgraph_edge *edge)
465 gcov_type uninlined_call_time =
466 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
467 CGRAPH_FREQ_BASE);
468 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
469 ? edge->caller->global.inlined_to
470 : edge->caller)->time;
471 return uninlined_call_time + caller_time;
474 /* Same as compute_uinlined_call_time but compute time when inlining
475 does happen. */
477 inline gcov_type
478 compute_inlined_call_time (struct cgraph_edge *edge,
479 int edge_time)
481 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
482 ? edge->caller->global.inlined_to
483 : edge->caller)->time;
484 gcov_type time = (caller_time
485 + RDIV (((gcov_type) edge_time
486 - inline_edge_summary (edge)->call_stmt_time)
487 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
488 /* Possible one roundoff error, but watch for overflows. */
489 gcc_checking_assert (time >= INT_MIN / 2);
490 if (time < 0)
491 time = 0;
492 return time;
495 /* Return true if the speedup for inlining E is bigger than
496 PARAM_MAX_INLINE_MIN_SPEEDUP. */
498 static bool
499 big_speedup_p (struct cgraph_edge *e)
501 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
503 gcov_type inlined_time = compute_inlined_call_time (e,
504 estimate_edge_time (e));
505 if (time - inlined_time
506 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
507 return true;
508 return false;
511 /* Return true if we are interested in inlining small function.
512 When REPORT is true, report reason to dump file. */
514 static bool
515 want_inline_small_function_p (struct cgraph_edge *e, bool report)
517 bool want_inline = true;
518 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
520 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
522 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
523 && !flag_inline_small_functions)
525 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
526 want_inline = false;
528 else
530 int growth = estimate_edge_growth (e);
531 inline_hints hints = estimate_edge_hints (e);
532 bool big_speedup = big_speedup_p (e);
534 if (growth <= 0)
536 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
537 hints suggests that inlining given function is very profitable. */
538 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
539 && growth >= MAX_INLINE_INSNS_SINGLE
540 && !big_speedup
541 && !(hints & (INLINE_HINT_indirect_call
542 | INLINE_HINT_loop_iterations
543 | INLINE_HINT_array_index
544 | INLINE_HINT_loop_stride)))
546 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
547 want_inline = false;
549 /* Before giving up based on fact that caller size will grow, allow
550 functions that are called few times and eliminating the offline
551 copy will lead to overall code size reduction.
552 Not all of these will be handled by subsequent inlining of functions
553 called once: in particular weak functions are not handled or funcitons
554 that inline to multiple calls but a lot of bodies is optimized out.
555 Finally we want to inline earlier to allow inlining of callbacks.
557 This is slightly wrong on aggressive side: it is entirely possible
558 that function is called many times with a context where inlining
559 reduces code size and few times with a context where inlining increase
560 code size. Resoluting growth estimate will be negative even if it
561 would make more sense to keep offline copy and do not inline into the
562 call sites that makes the code size grow.
564 When badness orders the calls in a way that code reducing calls come
565 first, this situation is not a problem at all: after inlining all
566 "good" calls, we will realize that keeping the function around is
567 better. */
568 else if (growth <= MAX_INLINE_INSNS_SINGLE
569 /* Unlike for functions called once, we play unsafe with
570 COMDATs. We can allow that since we know functions
571 in consideration are small (and thus risk is small) and
572 moreover grow estimates already accounts that COMDAT
573 functions may or may not disappear when eliminated from
574 current unit. With good probability making aggressive
575 choice in all units is going to make overall program
576 smaller.
578 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
579 instead of
580 cgraph_will_be_removed_from_program_if_no_direct_calls */
581 && !DECL_EXTERNAL (callee->symbol.decl)
582 && cgraph_can_remove_if_no_direct_calls_p (callee)
583 && estimate_growth (callee) <= 0)
585 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
586 && !flag_inline_functions)
588 e->inline_failed = CIF_NOT_DECLARED_INLINED;
589 want_inline = false;
591 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
592 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
593 inlining given function is very profitable. */
594 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
595 && !big_speedup
596 && growth >= ((hints & (INLINE_HINT_indirect_call
597 | INLINE_HINT_loop_iterations
598 | INLINE_HINT_array_index
599 | INLINE_HINT_loop_stride))
600 ? MAX (MAX_INLINE_INSNS_AUTO,
601 MAX_INLINE_INSNS_SINGLE)
602 : MAX_INLINE_INSNS_AUTO))
604 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
605 want_inline = false;
607 /* If call is cold, do not inline when function body would grow. */
608 else if (!cgraph_maybe_hot_edge_p (e))
610 e->inline_failed = CIF_UNLIKELY_CALL;
611 want_inline = false;
614 if (!want_inline && report)
615 report_inline_failed_reason (e);
616 return want_inline;
619 /* EDGE is self recursive edge.
620 We hand two cases - when function A is inlining into itself
621 or when function A is being inlined into another inliner copy of function
622 A within function B.
624 In first case OUTER_NODE points to the toplevel copy of A, while
625 in the second case OUTER_NODE points to the outermost copy of A in B.
627 In both cases we want to be extra selective since
628 inlining the call will just introduce new recursive calls to appear. */
630 static bool
631 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
632 struct cgraph_node *outer_node,
633 bool peeling,
634 int depth)
636 char const *reason = NULL;
637 bool want_inline = true;
638 int caller_freq = CGRAPH_FREQ_BASE;
639 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
641 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
642 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
644 if (!cgraph_maybe_hot_edge_p (edge))
646 reason = "recursive call is cold";
647 want_inline = false;
649 else if (max_count && !outer_node->count)
651 reason = "not executed in profile";
652 want_inline = false;
654 else if (depth > max_depth)
656 reason = "--param max-inline-recursive-depth exceeded.";
657 want_inline = false;
660 if (outer_node->global.inlined_to)
661 caller_freq = outer_node->callers->frequency;
663 if (!want_inline)
665 /* Inlining of self recursive function into copy of itself within other function
666 is transformation similar to loop peeling.
668 Peeling is profitable if we can inline enough copies to make probability
669 of actual call to the self recursive function very small. Be sure that
670 the probability of recursion is small.
672 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
673 This way the expected number of recision is at most max_depth. */
674 else if (peeling)
676 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
677 / max_depth);
678 int i;
679 for (i = 1; i < depth; i++)
680 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
681 if (max_count
682 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
683 >= max_prob))
685 reason = "profile of recursive call is too large";
686 want_inline = false;
688 if (!max_count
689 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
690 >= max_prob))
692 reason = "frequency of recursive call is too large";
693 want_inline = false;
696 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
697 depth is large. We reduce function call overhead and increase chances that
698 things fit in hardware return predictor.
700 Recursive inlining might however increase cost of stack frame setup
701 actually slowing down functions whose recursion tree is wide rather than
702 deep.
704 Deciding reliably on when to do recursive inlining without profile feedback
705 is tricky. For now we disable recursive inlining when probability of self
706 recursion is low.
708 Recursive inlining of self recursive call within loop also results in large loop
709 depths that generally optimize badly. We may want to throttle down inlining
710 in those cases. In particular this seems to happen in one of libstdc++ rb tree
711 methods. */
712 else
714 if (max_count
715 && (edge->count * 100 / outer_node->count
716 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
718 reason = "profile of recursive call is too small";
719 want_inline = false;
721 else if (!max_count
722 && (edge->frequency * 100 / caller_freq
723 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
725 reason = "frequency of recursive call is too small";
726 want_inline = false;
729 if (!want_inline && dump_file)
730 fprintf (dump_file, " not inlining recursively: %s\n", reason);
731 return want_inline;
734 /* Return true when NODE has caller other than EDGE.
735 Worker for cgraph_for_node_and_aliases. */
737 static bool
738 check_caller_edge (struct cgraph_node *node, void *edge)
740 return (node->callers
741 && node->callers != edge);
745 /* Decide if inlining NODE would reduce unit size by eliminating
746 the offline copy of function.
747 When COLD is true the cold calls are considered, too. */
749 static bool
750 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
752 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
753 struct cgraph_edge *e;
754 bool has_hot_call = false;
756 /* Does it have callers? */
757 if (!node->callers)
758 return false;
759 /* Already inlined? */
760 if (function->global.inlined_to)
761 return false;
762 if (cgraph_function_or_thunk_node (node, NULL) != node)
763 return false;
764 /* Inlining into all callers would increase size? */
765 if (estimate_growth (node) > 0)
766 return false;
767 /* Maybe other aliases has more direct calls. */
768 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
769 return false;
770 /* All inlines must be possible. */
771 for (e = node->callers; e; e = e->next_caller)
773 if (!can_inline_edge_p (e, true))
774 return false;
775 if (!has_hot_call && cgraph_maybe_hot_edge_p (e))
776 has_hot_call = 1;
779 if (!cold && !has_hot_call)
780 return false;
781 return true;
784 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
786 /* Return relative time improvement for inlining EDGE in range
787 1...RELATIVE_TIME_BENEFIT_RANGE */
789 static inline int
790 relative_time_benefit (struct inline_summary *callee_info,
791 struct cgraph_edge *edge,
792 int edge_time)
794 gcov_type relbenefit;
795 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
796 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
798 /* Inlining into extern inline function is not a win. */
799 if (DECL_EXTERNAL (edge->caller->global.inlined_to
800 ? edge->caller->global.inlined_to->symbol.decl
801 : edge->caller->symbol.decl))
802 return 1;
804 /* Watch overflows. */
805 gcc_checking_assert (uninlined_call_time >= 0);
806 gcc_checking_assert (inlined_call_time >= 0);
807 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
809 /* Compute relative time benefit, i.e. how much the call becomes faster.
810 ??? perhaps computing how much the caller+calle together become faster
811 would lead to more realistic results. */
812 if (!uninlined_call_time)
813 uninlined_call_time = 1;
814 relbenefit =
815 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
816 uninlined_call_time);
817 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
818 gcc_checking_assert (relbenefit >= 0);
819 relbenefit = MAX (relbenefit, 1);
820 return relbenefit;
824 /* A cost model driving the inlining heuristics in a way so the edges with
825 smallest badness are inlined first. After each inlining is performed
826 the costs of all caller edges of nodes affected are recomputed so the
827 metrics may accurately depend on values such as number of inlinable callers
828 of the function or function body size. */
830 static int
831 edge_badness (struct cgraph_edge *edge, bool dump)
833 gcov_type badness;
834 int growth, edge_time;
835 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
836 NULL);
837 struct inline_summary *callee_info = inline_summary (callee);
838 inline_hints hints;
840 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
841 return INT_MIN;
843 growth = estimate_edge_growth (edge);
844 edge_time = estimate_edge_time (edge);
845 hints = estimate_edge_hints (edge);
846 gcc_checking_assert (edge_time >= 0);
847 gcc_checking_assert (edge_time <= callee_info->time);
848 gcc_checking_assert (growth <= callee_info->size);
850 if (dump)
852 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
853 xstrdup (cgraph_node_name (edge->caller)),
854 edge->caller->uid,
855 xstrdup (cgraph_node_name (callee)),
856 edge->callee->uid);
857 fprintf (dump_file, " size growth %i, time %i ",
858 growth,
859 edge_time);
860 dump_inline_hints (dump_file, hints);
861 if (big_speedup_p (edge))
862 fprintf (dump_file, " big_speedup");
863 fprintf (dump_file, "\n");
866 /* Always prefer inlining saving code size. */
867 if (growth <= 0)
869 badness = INT_MIN / 2 + growth;
870 if (dump)
871 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
872 growth);
875 /* When profiling is available, compute badness as:
877 relative_edge_count * relative_time_benefit
878 goodness = -------------------------------------------
879 growth_f_caller
880 badness = -goodness
882 The fraction is upside down, because on edge counts and time beneits
883 the bounds are known. Edge growth is essentially unlimited. */
885 else if (max_count)
887 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
888 badness =
889 ((int)
890 ((double) edge->count * INT_MIN / 2 / max_count / RELATIVE_TIME_BENEFIT_RANGE) *
891 relbenefit) / growth;
893 /* Be sure that insanity of the profile won't lead to increasing counts
894 in the scalling and thus to overflow in the computation above. */
895 gcc_assert (max_count >= edge->count);
896 if (dump)
898 fprintf (dump_file,
899 " %i (relative %f): profile info. Relative count %f"
900 " * Relative benefit %f\n",
901 (int) badness, (double) badness / INT_MIN,
902 (double) edge->count / max_count,
903 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
907 /* When function local profile is available. Compute badness as:
909 relative_time_benefit
910 goodness = ---------------------------------
911 growth_of_caller * overall_growth
913 badness = - goodness
915 compensated by the inline hints.
917 else if (flag_guess_branch_prob)
919 badness = (relative_time_benefit (callee_info, edge, edge_time)
920 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
921 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
922 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
923 if ((hints & (INLINE_HINT_indirect_call
924 | INLINE_HINT_loop_iterations
925 | INLINE_HINT_array_index
926 | INLINE_HINT_loop_stride))
927 || callee_info->growth <= 0)
928 badness *= 8;
929 if (hints & (INLINE_HINT_same_scc))
930 badness /= 16;
931 else if (hints & (INLINE_HINT_in_scc))
932 badness /= 8;
933 else if (hints & (INLINE_HINT_cross_module))
934 badness /= 2;
935 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
936 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
937 badness *= 16;
938 if (dump)
940 fprintf (dump_file,
941 " %i: guessed profile. frequency %f,"
942 " benefit %f%%, time w/o inlining %i, time w inlining %i"
943 " overall growth %i (current) %i (original)\n",
944 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
945 relative_time_benefit (callee_info, edge, edge_time) * 100.0
946 / RELATIVE_TIME_BENEFIT_RANGE,
947 (int)compute_uninlined_call_time (callee_info, edge),
948 (int)compute_inlined_call_time (edge, edge_time),
949 estimate_growth (callee),
950 callee_info->growth);
953 /* When function local profile is not available or it does not give
954 useful information (ie frequency is zero), base the cost on
955 loop nest and overall size growth, so we optimize for overall number
956 of functions fully inlined in program. */
957 else
959 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
960 badness = growth * 256;
962 /* Decrease badness if call is nested. */
963 if (badness > 0)
964 badness >>= nest;
965 else
967 badness <<= nest;
969 if (dump)
970 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
971 nest);
974 /* Ensure that we did not overflow in all the fixed point math above. */
975 gcc_assert (badness >= INT_MIN);
976 gcc_assert (badness <= INT_MAX - 1);
977 /* Make recursive inlining happen always after other inlining is done. */
978 if (cgraph_edge_recursive_p (edge))
979 return badness + 1;
980 else
981 return badness;
984 /* Recompute badness of EDGE and update its key in HEAP if needed. */
985 static inline void
986 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
988 int badness = edge_badness (edge, false);
989 if (edge->aux)
991 fibnode_t n = (fibnode_t) edge->aux;
992 gcc_checking_assert (n->data == edge);
994 /* fibheap_replace_key only decrease the keys.
995 When we increase the key we do not update heap
996 and instead re-insert the element once it becomes
997 a minimum of heap. */
998 if (badness < n->key)
1000 if (dump_file && (dump_flags & TDF_DETAILS))
1002 fprintf (dump_file,
1003 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1004 xstrdup (cgraph_node_name (edge->caller)),
1005 edge->caller->uid,
1006 xstrdup (cgraph_node_name (edge->callee)),
1007 edge->callee->uid,
1008 (int)n->key,
1009 badness);
1011 fibheap_replace_key (heap, n, badness);
1012 gcc_checking_assert (n->key == badness);
1015 else
1017 if (dump_file && (dump_flags & TDF_DETAILS))
1019 fprintf (dump_file,
1020 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1021 xstrdup (cgraph_node_name (edge->caller)),
1022 edge->caller->uid,
1023 xstrdup (cgraph_node_name (edge->callee)),
1024 edge->callee->uid,
1025 badness);
1027 edge->aux = fibheap_insert (heap, badness, edge);
1032 /* NODE was inlined.
1033 All caller edges needs to be resetted because
1034 size estimates change. Similarly callees needs reset
1035 because better context may be known. */
1037 static void
1038 reset_edge_caches (struct cgraph_node *node)
1040 struct cgraph_edge *edge;
1041 struct cgraph_edge *e = node->callees;
1042 struct cgraph_node *where = node;
1043 int i;
1044 struct ipa_ref *ref;
1046 if (where->global.inlined_to)
1047 where = where->global.inlined_to;
1049 /* WHERE body size has changed, the cached growth is invalid. */
1050 reset_node_growth_cache (where);
1052 for (edge = where->callers; edge; edge = edge->next_caller)
1053 if (edge->inline_failed)
1054 reset_edge_growth_cache (edge);
1055 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
1056 i, ref); i++)
1057 if (ref->use == IPA_REF_ALIAS)
1058 reset_edge_caches (ipa_ref_referring_node (ref));
1060 if (!e)
1061 return;
1063 while (true)
1064 if (!e->inline_failed && e->callee->callees)
1065 e = e->callee->callees;
1066 else
1068 if (e->inline_failed)
1069 reset_edge_growth_cache (e);
1070 if (e->next_callee)
1071 e = e->next_callee;
1072 else
1076 if (e->caller == node)
1077 return;
1078 e = e->caller->callers;
1080 while (!e->next_callee);
1081 e = e->next_callee;
1086 /* Recompute HEAP nodes for each of caller of NODE.
1087 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1088 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1089 it is inlinable. Otherwise check all edges. */
1091 static void
1092 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1093 bitmap updated_nodes,
1094 struct cgraph_edge *check_inlinablity_for)
1096 struct cgraph_edge *edge;
1097 int i;
1098 struct ipa_ref *ref;
1100 if ((!node->alias && !inline_summary (node)->inlinable)
1101 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1102 || node->global.inlined_to)
1103 return;
1104 if (!bitmap_set_bit (updated_nodes, node->uid))
1105 return;
1107 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1108 i, ref); i++)
1109 if (ref->use == IPA_REF_ALIAS)
1111 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1112 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1115 for (edge = node->callers; edge; edge = edge->next_caller)
1116 if (edge->inline_failed)
1118 if (!check_inlinablity_for
1119 || check_inlinablity_for == edge)
1121 if (can_inline_edge_p (edge, false)
1122 && want_inline_small_function_p (edge, false))
1123 update_edge_key (heap, edge);
1124 else if (edge->aux)
1126 report_inline_failed_reason (edge);
1127 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1128 edge->aux = NULL;
1131 else if (edge->aux)
1132 update_edge_key (heap, edge);
1136 /* Recompute HEAP nodes for each uninlined call in NODE.
1137 This is used when we know that edge badnesses are going only to increase
1138 (we introduced new call site) and thus all we need is to insert newly
1139 created edges into heap. */
1141 static void
1142 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1143 bitmap updated_nodes)
1145 struct cgraph_edge *e = node->callees;
1147 if (!e)
1148 return;
1149 while (true)
1150 if (!e->inline_failed && e->callee->callees)
1151 e = e->callee->callees;
1152 else
1154 enum availability avail;
1155 struct cgraph_node *callee;
1156 /* We do not reset callee growth cache here. Since we added a new call,
1157 growth chould have just increased and consequentely badness metric
1158 don't need updating. */
1159 if (e->inline_failed
1160 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1161 && inline_summary (callee)->inlinable
1162 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1163 && !bitmap_bit_p (updated_nodes, callee->uid))
1165 if (can_inline_edge_p (e, false)
1166 && want_inline_small_function_p (e, false))
1167 update_edge_key (heap, e);
1168 else if (e->aux)
1170 report_inline_failed_reason (e);
1171 fibheap_delete_node (heap, (fibnode_t) e->aux);
1172 e->aux = NULL;
1175 if (e->next_callee)
1176 e = e->next_callee;
1177 else
1181 if (e->caller == node)
1182 return;
1183 e = e->caller->callers;
1185 while (!e->next_callee);
1186 e = e->next_callee;
1191 /* Enqueue all recursive calls from NODE into priority queue depending on
1192 how likely we want to recursively inline the call. */
1194 static void
1195 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1196 fibheap_t heap)
1198 struct cgraph_edge *e;
1199 enum availability avail;
1201 for (e = where->callees; e; e = e->next_callee)
1202 if (e->callee == node
1203 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1204 && avail > AVAIL_OVERWRITABLE))
1206 /* When profile feedback is available, prioritize by expected number
1207 of calls. */
1208 fibheap_insert (heap,
1209 !max_count ? -e->frequency
1210 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1213 for (e = where->callees; e; e = e->next_callee)
1214 if (!e->inline_failed)
1215 lookup_recursive_calls (node, e->callee, heap);
1218 /* Decide on recursive inlining: in the case function has recursive calls,
1219 inline until body size reaches given argument. If any new indirect edges
1220 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1221 is NULL. */
1223 static bool
1224 recursive_inlining (struct cgraph_edge *edge,
1225 vec<cgraph_edge_p> *new_edges)
1227 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1228 fibheap_t heap;
1229 struct cgraph_node *node;
1230 struct cgraph_edge *e;
1231 struct cgraph_node *master_clone = NULL, *next;
1232 int depth = 0;
1233 int n = 0;
1235 node = edge->caller;
1236 if (node->global.inlined_to)
1237 node = node->global.inlined_to;
1239 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1240 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1242 /* Make sure that function is small enough to be considered for inlining. */
1243 if (estimate_size_after_inlining (node, edge) >= limit)
1244 return false;
1245 heap = fibheap_new ();
1246 lookup_recursive_calls (node, node, heap);
1247 if (fibheap_empty (heap))
1249 fibheap_delete (heap);
1250 return false;
1253 if (dump_file)
1254 fprintf (dump_file,
1255 " Performing recursive inlining on %s\n",
1256 cgraph_node_name (node));
1258 /* Do the inlining and update list of recursive call during process. */
1259 while (!fibheap_empty (heap))
1261 struct cgraph_edge *curr
1262 = (struct cgraph_edge *) fibheap_extract_min (heap);
1263 struct cgraph_node *cnode, *dest = curr->callee;
1265 if (!can_inline_edge_p (curr, true))
1266 continue;
1268 /* MASTER_CLONE is produced in the case we already started modified
1269 the function. Be sure to redirect edge to the original body before
1270 estimating growths otherwise we will be seeing growths after inlining
1271 the already modified body. */
1272 if (master_clone)
1274 cgraph_redirect_edge_callee (curr, master_clone);
1275 reset_edge_growth_cache (curr);
1278 if (estimate_size_after_inlining (node, curr) > limit)
1280 cgraph_redirect_edge_callee (curr, dest);
1281 reset_edge_growth_cache (curr);
1282 break;
1285 depth = 1;
1286 for (cnode = curr->caller;
1287 cnode->global.inlined_to; cnode = cnode->callers->caller)
1288 if (node->symbol.decl
1289 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1290 depth++;
1292 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1294 cgraph_redirect_edge_callee (curr, dest);
1295 reset_edge_growth_cache (curr);
1296 continue;
1299 if (dump_file)
1301 fprintf (dump_file,
1302 " Inlining call of depth %i", depth);
1303 if (node->count)
1305 fprintf (dump_file, " called approx. %.2f times per call",
1306 (double)curr->count / node->count);
1308 fprintf (dump_file, "\n");
1310 if (!master_clone)
1312 /* We need original clone to copy around. */
1313 master_clone = cgraph_clone_node (node, node->symbol.decl,
1314 node->count, CGRAPH_FREQ_BASE,
1315 false, vNULL, true);
1316 for (e = master_clone->callees; e; e = e->next_callee)
1317 if (!e->inline_failed)
1318 clone_inlined_nodes (e, true, false, NULL);
1319 cgraph_redirect_edge_callee (curr, master_clone);
1320 reset_edge_growth_cache (curr);
1323 inline_call (curr, false, new_edges, &overall_size, true);
1324 lookup_recursive_calls (node, curr->callee, heap);
1325 n++;
1328 if (!fibheap_empty (heap) && dump_file)
1329 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1330 fibheap_delete (heap);
1332 if (!master_clone)
1333 return false;
1335 if (dump_file)
1336 fprintf (dump_file,
1337 "\n Inlined %i times, "
1338 "body grown from size %i to %i, time %i to %i\n", n,
1339 inline_summary (master_clone)->size, inline_summary (node)->size,
1340 inline_summary (master_clone)->time, inline_summary (node)->time);
1342 /* Remove master clone we used for inlining. We rely that clones inlined
1343 into master clone gets queued just before master clone so we don't
1344 need recursion. */
1345 for (node = cgraph_first_function (); node != master_clone;
1346 node = next)
1348 next = cgraph_next_function (node);
1349 if (node->global.inlined_to == master_clone)
1350 cgraph_remove_node (node);
1352 cgraph_remove_node (master_clone);
1353 return true;
1357 /* Given whole compilation unit estimate of INSNS, compute how large we can
1358 allow the unit to grow. */
1360 static int
1361 compute_max_insns (int insns)
1363 int max_insns = insns;
1364 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1365 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1367 return ((HOST_WIDEST_INT) max_insns
1368 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1372 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1374 static void
1375 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1377 while (new_edges.length () > 0)
1379 struct cgraph_edge *edge = new_edges.pop ();
1381 gcc_assert (!edge->aux);
1382 if (edge->inline_failed
1383 && can_inline_edge_p (edge, true)
1384 && want_inline_small_function_p (edge, true))
1385 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1390 /* We use greedy algorithm for inlining of small functions:
1391 All inline candidates are put into prioritized heap ordered in
1392 increasing badness.
1394 The inlining of small functions is bounded by unit growth parameters. */
1396 static void
1397 inline_small_functions (void)
1399 struct cgraph_node *node;
1400 struct cgraph_edge *edge;
1401 fibheap_t edge_heap = fibheap_new ();
1402 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1403 int min_size, max_size;
1404 vec<cgraph_edge_p> new_indirect_edges = vNULL;
1405 int initial_size = 0;
1406 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1408 if (flag_indirect_inlining)
1409 new_indirect_edges.create (8);
1411 /* Compute overall unit size and other global parameters used by badness
1412 metrics. */
1414 max_count = 0;
1415 ipa_reduced_postorder (order, true, true, NULL);
1416 free (order);
1418 FOR_EACH_DEFINED_FUNCTION (node)
1419 if (!node->global.inlined_to)
1421 if (cgraph_function_with_gimple_body_p (node)
1422 || node->thunk.thunk_p)
1424 struct inline_summary *info = inline_summary (node);
1425 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux;
1427 if (!DECL_EXTERNAL (node->symbol.decl))
1428 initial_size += info->size;
1429 info->growth = estimate_growth (node);
1430 if (dfs && dfs->next_cycle)
1432 struct cgraph_node *n2;
1433 int id = dfs->scc_no + 1;
1434 for (n2 = node; n2;
1435 n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle)
1437 struct inline_summary *info2 = inline_summary (n2);
1438 if (info2->scc_no)
1439 break;
1440 info2->scc_no = id;
1445 for (edge = node->callers; edge; edge = edge->next_caller)
1446 if (max_count < edge->count)
1447 max_count = edge->count;
1449 ipa_free_postorder_info ();
1450 initialize_growth_caches ();
1452 if (dump_file)
1453 fprintf (dump_file,
1454 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1455 initial_size);
1457 overall_size = initial_size;
1458 max_size = compute_max_insns (overall_size);
1459 min_size = overall_size;
1461 /* Populate the heeap with all edges we might inline. */
1463 FOR_EACH_DEFINED_FUNCTION (node)
1464 if (!node->global.inlined_to)
1466 if (dump_file)
1467 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1468 cgraph_node_name (node), node->uid);
1470 for (edge = node->callers; edge; edge = edge->next_caller)
1471 if (edge->inline_failed
1472 && can_inline_edge_p (edge, true)
1473 && want_inline_small_function_p (edge, true)
1474 && edge->inline_failed)
1476 gcc_assert (!edge->aux);
1477 update_edge_key (edge_heap, edge);
1481 gcc_assert (in_lto_p
1482 || !max_count
1483 || (profile_info && flag_branch_probabilities));
1485 while (!fibheap_empty (edge_heap))
1487 int old_size = overall_size;
1488 struct cgraph_node *where, *callee;
1489 int badness = fibheap_min_key (edge_heap);
1490 int current_badness;
1491 int cached_badness;
1492 int growth;
1494 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1495 gcc_assert (edge->aux);
1496 edge->aux = NULL;
1497 if (!edge->inline_failed)
1498 continue;
1500 /* Be sure that caches are maintained consistent.
1501 We can not make this ENABLE_CHECKING only because it cause different
1502 updates of the fibheap queue. */
1503 cached_badness = edge_badness (edge, false);
1504 reset_edge_growth_cache (edge);
1505 reset_node_growth_cache (edge->callee);
1507 /* When updating the edge costs, we only decrease badness in the keys.
1508 Increases of badness are handled lazilly; when we see key with out
1509 of date value on it, we re-insert it now. */
1510 current_badness = edge_badness (edge, false);
1511 gcc_assert (cached_badness == current_badness);
1512 gcc_assert (current_badness >= badness);
1513 if (current_badness != badness)
1515 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1516 continue;
1519 if (!can_inline_edge_p (edge, true))
1520 continue;
1522 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1523 growth = estimate_edge_growth (edge);
1524 if (dump_file)
1526 fprintf (dump_file,
1527 "\nConsidering %s with %i size\n",
1528 cgraph_node_name (callee),
1529 inline_summary (callee)->size);
1530 fprintf (dump_file,
1531 " to be inlined into %s in %s:%i\n"
1532 " Estimated growth after inlined into all is %+i insns.\n"
1533 " Estimated badness is %i, frequency %.2f.\n",
1534 cgraph_node_name (edge->caller),
1535 flag_wpa ? "unknown"
1536 : gimple_filename ((const_gimple) edge->call_stmt),
1537 flag_wpa ? -1
1538 : gimple_lineno ((const_gimple) edge->call_stmt),
1539 estimate_growth (callee),
1540 badness,
1541 edge->frequency / (double)CGRAPH_FREQ_BASE);
1542 if (edge->count)
1543 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1544 edge->count);
1545 if (dump_flags & TDF_DETAILS)
1546 edge_badness (edge, true);
1549 if (overall_size + growth > max_size
1550 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1552 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1553 report_inline_failed_reason (edge);
1554 continue;
1557 if (!want_inline_small_function_p (edge, true))
1558 continue;
1560 /* Heuristics for inlining small functions works poorly for
1561 recursive calls where we do efect similar to loop unrolling.
1562 When inliing such edge seems profitable, leave decision on
1563 specific inliner. */
1564 if (cgraph_edge_recursive_p (edge))
1566 where = edge->caller;
1567 if (where->global.inlined_to)
1568 where = where->global.inlined_to;
1569 if (!recursive_inlining (edge,
1570 flag_indirect_inlining
1571 ? &new_indirect_edges : NULL))
1573 edge->inline_failed = CIF_RECURSIVE_INLINING;
1574 continue;
1576 reset_edge_caches (where);
1577 /* Recursive inliner inlines all recursive calls of the function
1578 at once. Consequently we need to update all callee keys. */
1579 if (flag_indirect_inlining)
1580 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1581 update_callee_keys (edge_heap, where, updated_nodes);
1583 else
1585 struct cgraph_node *outer_node = NULL;
1586 int depth = 0;
1588 /* Consider the case where self recursive function A is inlined into B.
1589 This is desired optimization in some cases, since it leads to effect
1590 similar of loop peeling and we might completely optimize out the
1591 recursive call. However we must be extra selective. */
1593 where = edge->caller;
1594 while (where->global.inlined_to)
1596 if (where->symbol.decl == callee->symbol.decl)
1597 outer_node = where, depth++;
1598 where = where->callers->caller;
1600 if (outer_node
1601 && !want_inline_self_recursive_call_p (edge, outer_node,
1602 true, depth))
1604 edge->inline_failed
1605 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1606 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1607 continue;
1609 else if (depth && dump_file)
1610 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1612 gcc_checking_assert (!callee->global.inlined_to);
1613 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1614 if (flag_indirect_inlining)
1615 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1617 reset_edge_caches (edge->callee);
1618 reset_node_growth_cache (callee);
1620 update_callee_keys (edge_heap, where, updated_nodes);
1622 where = edge->caller;
1623 if (where->global.inlined_to)
1624 where = where->global.inlined_to;
1626 /* Our profitability metric can depend on local properties
1627 such as number of inlinable calls and size of the function body.
1628 After inlining these properties might change for the function we
1629 inlined into (since it's body size changed) and for the functions
1630 called by function we inlined (since number of it inlinable callers
1631 might change). */
1632 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1633 bitmap_clear (updated_nodes);
1635 if (dump_file)
1637 fprintf (dump_file,
1638 " Inlined into %s which now has time %i and size %i,"
1639 "net change of %+i.\n",
1640 cgraph_node_name (edge->caller),
1641 inline_summary (edge->caller)->time,
1642 inline_summary (edge->caller)->size,
1643 overall_size - old_size);
1645 if (min_size > overall_size)
1647 min_size = overall_size;
1648 max_size = compute_max_insns (min_size);
1650 if (dump_file)
1651 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1655 free_growth_caches ();
1656 new_indirect_edges.release ();
1657 fibheap_delete (edge_heap);
1658 if (dump_file)
1659 fprintf (dump_file,
1660 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1661 initial_size, overall_size,
1662 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1663 BITMAP_FREE (updated_nodes);
1666 /* Flatten NODE. Performed both during early inlining and
1667 at IPA inlining time. */
1669 static void
1670 flatten_function (struct cgraph_node *node, bool early)
1672 struct cgraph_edge *e;
1674 /* We shouldn't be called recursively when we are being processed. */
1675 gcc_assert (node->symbol.aux == NULL);
1677 node->symbol.aux = (void *) node;
1679 for (e = node->callees; e; e = e->next_callee)
1681 struct cgraph_node *orig_callee;
1682 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1684 /* We've hit cycle? It is time to give up. */
1685 if (callee->symbol.aux)
1687 if (dump_file)
1688 fprintf (dump_file,
1689 "Not inlining %s into %s to avoid cycle.\n",
1690 xstrdup (cgraph_node_name (callee)),
1691 xstrdup (cgraph_node_name (e->caller)));
1692 e->inline_failed = CIF_RECURSIVE_INLINING;
1693 continue;
1696 /* When the edge is already inlined, we just need to recurse into
1697 it in order to fully flatten the leaves. */
1698 if (!e->inline_failed)
1700 flatten_function (callee, early);
1701 continue;
1704 /* Flatten attribute needs to be processed during late inlining. For
1705 extra code quality we however do flattening during early optimization,
1706 too. */
1707 if (!early
1708 ? !can_inline_edge_p (e, true)
1709 : !can_early_inline_edge_p (e))
1710 continue;
1712 if (cgraph_edge_recursive_p (e))
1714 if (dump_file)
1715 fprintf (dump_file, "Not inlining: recursive call.\n");
1716 continue;
1719 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1720 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1722 if (dump_file)
1723 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1724 continue;
1727 /* Inline the edge and flatten the inline clone. Avoid
1728 recursing through the original node if the node was cloned. */
1729 if (dump_file)
1730 fprintf (dump_file, " Inlining %s into %s.\n",
1731 xstrdup (cgraph_node_name (callee)),
1732 xstrdup (cgraph_node_name (e->caller)));
1733 orig_callee = callee;
1734 inline_call (e, true, NULL, NULL, false);
1735 if (e->callee != orig_callee)
1736 orig_callee->symbol.aux = (void *) node;
1737 flatten_function (e->callee, early);
1738 if (e->callee != orig_callee)
1739 orig_callee->symbol.aux = NULL;
1742 node->symbol.aux = NULL;
1743 if (!node->global.inlined_to)
1744 inline_update_overall_summary (node);
1747 /* Decide on the inlining. We do so in the topological order to avoid
1748 expenses on updating data structures. */
1750 static unsigned int
1751 ipa_inline (void)
1753 struct cgraph_node *node;
1754 int nnodes;
1755 struct cgraph_node **order =
1756 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1757 int i;
1759 if (in_lto_p && optimize)
1760 ipa_update_after_lto_read ();
1762 if (dump_file)
1763 dump_inline_summaries (dump_file);
1765 nnodes = ipa_reverse_postorder (order);
1767 FOR_EACH_FUNCTION (node)
1768 node->symbol.aux = 0;
1770 if (dump_file)
1771 fprintf (dump_file, "\nFlattening functions:\n");
1773 /* In the first pass handle functions to be flattened. Do this with
1774 a priority so none of our later choices will make this impossible. */
1775 for (i = nnodes - 1; i >= 0; i--)
1777 node = order[i];
1779 /* Handle nodes to be flattened.
1780 Ideally when processing callees we stop inlining at the
1781 entry of cycles, possibly cloning that entry point and
1782 try to flatten itself turning it into a self-recursive
1783 function. */
1784 if (lookup_attribute ("flatten",
1785 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1787 if (dump_file)
1788 fprintf (dump_file,
1789 "Flattening %s\n", cgraph_node_name (node));
1790 flatten_function (node, false);
1794 inline_small_functions ();
1795 symtab_remove_unreachable_nodes (false, dump_file);
1796 free (order);
1798 /* Inline functions with a property that after inlining into all callers the
1799 code size will shrink because the out-of-line copy is eliminated.
1800 We do this regardless on the callee size as long as function growth limits
1801 are met. */
1802 if (flag_inline_functions_called_once)
1804 int cold;
1805 if (dump_file)
1806 fprintf (dump_file,
1807 "\nDeciding on functions to be inlined into all callers:\n");
1809 /* Inlining one function called once has good chance of preventing
1810 inlining other function into the same callee. Ideally we should
1811 work in priority order, but probably inlining hot functions first
1812 is good cut without the extra pain of maintaining the queue.
1814 ??? this is not really fitting the bill perfectly: inlining function
1815 into callee often leads to better optimization of callee due to
1816 increased context for optimization.
1817 For example if main() function calls a function that outputs help
1818 and then function that does the main optmization, we should inline
1819 the second with priority even if both calls are cold by themselves.
1821 We probably want to implement new predicate replacing our use of
1822 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1823 to be hot. */
1824 for (cold = 0; cold <= 1; cold ++)
1826 FOR_EACH_DEFINED_FUNCTION (node)
1828 if (want_inline_function_to_all_callers_p (node, cold))
1830 int num_calls = 0;
1831 struct cgraph_edge *e;
1832 for (e = node->callers; e; e = e->next_caller)
1833 num_calls++;
1834 while (node->callers && !node->global.inlined_to)
1836 struct cgraph_node *caller = node->callers->caller;
1838 if (dump_file)
1840 fprintf (dump_file,
1841 "\nInlining %s size %i.\n",
1842 cgraph_node_name (node),
1843 inline_summary (node)->size);
1844 fprintf (dump_file,
1845 " Called once from %s %i insns.\n",
1846 cgraph_node_name (node->callers->caller),
1847 inline_summary (node->callers->caller)->size);
1850 inline_call (node->callers, true, NULL, NULL, true);
1851 if (dump_file)
1852 fprintf (dump_file,
1853 " Inlined into %s which now has %i size\n",
1854 cgraph_node_name (caller),
1855 inline_summary (caller)->size);
1856 if (!num_calls--)
1858 if (dump_file)
1859 fprintf (dump_file, "New calls found; giving up.\n");
1860 break;
1868 /* Free ipa-prop structures if they are no longer needed. */
1869 if (optimize)
1870 ipa_free_all_structures_after_iinln ();
1872 if (dump_file)
1873 fprintf (dump_file,
1874 "\nInlined %i calls, eliminated %i functions\n\n",
1875 ncalls_inlined, nfunctions_inlined);
1877 if (dump_file)
1878 dump_inline_summaries (dump_file);
1879 /* In WPA we use inline summaries for partitioning process. */
1880 if (!flag_wpa)
1881 inline_free_summary ();
1882 return 0;
1885 /* Inline always-inline function calls in NODE. */
1887 static bool
1888 inline_always_inline_functions (struct cgraph_node *node)
1890 struct cgraph_edge *e;
1891 bool inlined = false;
1893 for (e = node->callees; e; e = e->next_callee)
1895 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1896 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1897 continue;
1899 if (cgraph_edge_recursive_p (e))
1901 if (dump_file)
1902 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1903 cgraph_node_name (e->callee));
1904 e->inline_failed = CIF_RECURSIVE_INLINING;
1905 continue;
1908 if (!can_early_inline_edge_p (e))
1909 continue;
1911 if (dump_file)
1912 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1913 xstrdup (cgraph_node_name (e->callee)),
1914 xstrdup (cgraph_node_name (e->caller)));
1915 inline_call (e, true, NULL, NULL, false);
1916 inlined = true;
1918 if (inlined)
1919 inline_update_overall_summary (node);
1921 return inlined;
1924 /* Decide on the inlining. We do so in the topological order to avoid
1925 expenses on updating data structures. */
1927 static bool
1928 early_inline_small_functions (struct cgraph_node *node)
1930 struct cgraph_edge *e;
1931 bool inlined = false;
1933 for (e = node->callees; e; e = e->next_callee)
1935 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1936 if (!inline_summary (callee)->inlinable
1937 || !e->inline_failed)
1938 continue;
1940 /* Do not consider functions not declared inline. */
1941 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
1942 && !flag_inline_small_functions
1943 && !flag_inline_functions)
1944 continue;
1946 if (dump_file)
1947 fprintf (dump_file, "Considering inline candidate %s.\n",
1948 cgraph_node_name (callee));
1950 if (!can_early_inline_edge_p (e))
1951 continue;
1953 if (cgraph_edge_recursive_p (e))
1955 if (dump_file)
1956 fprintf (dump_file, " Not inlining: recursive call.\n");
1957 continue;
1960 if (!want_early_inline_function_p (e))
1961 continue;
1963 if (dump_file)
1964 fprintf (dump_file, " Inlining %s into %s.\n",
1965 xstrdup (cgraph_node_name (callee)),
1966 xstrdup (cgraph_node_name (e->caller)));
1967 inline_call (e, true, NULL, NULL, true);
1968 inlined = true;
1971 return inlined;
1974 /* Do inlining of small functions. Doing so early helps profiling and other
1975 passes to be somewhat more effective and avoids some code duplication in
1976 later real inlining pass for testcases with very many function calls. */
1977 static unsigned int
1978 early_inliner (void)
1980 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1981 struct cgraph_edge *edge;
1982 unsigned int todo = 0;
1983 int iterations = 0;
1984 bool inlined = false;
1986 if (seen_error ())
1987 return 0;
1989 /* Do nothing if datastructures for ipa-inliner are already computed. This
1990 happens when some pass decides to construct new function and
1991 cgraph_add_new_function calls lowering passes and early optimization on
1992 it. This may confuse ourself when early inliner decide to inline call to
1993 function clone, because function clones don't have parameter list in
1994 ipa-prop matching their signature. */
1995 if (ipa_node_params_vector.exists ())
1996 return 0;
1998 #ifdef ENABLE_CHECKING
1999 verify_cgraph_node (node);
2000 #endif
2002 /* Even when not optimizing or not inlining inline always-inline
2003 functions. */
2004 inlined = inline_always_inline_functions (node);
2006 if (!optimize
2007 || flag_no_inline
2008 || !flag_early_inlining
2009 /* Never inline regular functions into always-inline functions
2010 during incremental inlining. This sucks as functions calling
2011 always inline functions will get less optimized, but at the
2012 same time inlining of functions calling always inline
2013 function into an always inline function might introduce
2014 cycles of edges to be always inlined in the callgraph.
2016 We might want to be smarter and just avoid this type of inlining. */
2017 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
2019 else if (lookup_attribute ("flatten",
2020 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2022 /* When the function is marked to be flattened, recursively inline
2023 all calls in it. */
2024 if (dump_file)
2025 fprintf (dump_file,
2026 "Flattening %s\n", cgraph_node_name (node));
2027 flatten_function (node, true);
2028 inlined = true;
2030 else
2032 /* We iterate incremental inlining to get trivial cases of indirect
2033 inlining. */
2034 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2035 && early_inline_small_functions (node))
2037 timevar_push (TV_INTEGRATION);
2038 todo |= optimize_inline_calls (current_function_decl);
2040 /* Technically we ought to recompute inline parameters so the new
2041 iteration of early inliner works as expected. We however have
2042 values approximately right and thus we only need to update edge
2043 info that might be cleared out for newly discovered edges. */
2044 for (edge = node->callees; edge; edge = edge->next_callee)
2046 struct inline_edge_summary *es = inline_edge_summary (edge);
2047 es->call_stmt_size
2048 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2049 es->call_stmt_time
2050 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2051 if (edge->callee->symbol.decl
2052 && !gimple_check_call_matching_types (edge->call_stmt,
2053 edge->callee->symbol.decl))
2054 edge->call_stmt_cannot_inline_p = true;
2056 timevar_pop (TV_INTEGRATION);
2057 iterations++;
2058 inlined = false;
2060 if (dump_file)
2061 fprintf (dump_file, "Iterations: %i\n", iterations);
2064 if (inlined)
2066 timevar_push (TV_INTEGRATION);
2067 todo |= optimize_inline_calls (current_function_decl);
2068 timevar_pop (TV_INTEGRATION);
2071 cfun->always_inline_functions_inlined = true;
2073 return todo;
2076 struct gimple_opt_pass pass_early_inline =
2079 GIMPLE_PASS,
2080 "einline", /* name */
2081 OPTGROUP_INLINE, /* optinfo_flags */
2082 NULL, /* gate */
2083 early_inliner, /* execute */
2084 NULL, /* sub */
2085 NULL, /* next */
2086 0, /* static_pass_number */
2087 TV_EARLY_INLINING, /* tv_id */
2088 PROP_ssa, /* properties_required */
2089 0, /* properties_provided */
2090 0, /* properties_destroyed */
2091 0, /* todo_flags_start */
2092 0 /* todo_flags_finish */
2097 /* When to run IPA inlining. Inlining of always-inline functions
2098 happens during early inlining.
2100 Enable inlining unconditoinally at -flto. We need size estimates to
2101 drive partitioning. */
2103 static bool
2104 gate_ipa_inline (void)
2106 return optimize || flag_lto || flag_wpa;
2109 struct ipa_opt_pass_d pass_ipa_inline =
2112 IPA_PASS,
2113 "inline", /* name */
2114 OPTGROUP_INLINE, /* optinfo_flags */
2115 gate_ipa_inline, /* gate */
2116 ipa_inline, /* execute */
2117 NULL, /* sub */
2118 NULL, /* next */
2119 0, /* static_pass_number */
2120 TV_IPA_INLINING, /* tv_id */
2121 0, /* properties_required */
2122 0, /* properties_provided */
2123 0, /* properties_destroyed */
2124 TODO_remove_functions, /* todo_flags_finish */
2125 TODO_dump_symtab
2126 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2128 inline_generate_summary, /* generate_summary */
2129 inline_write_summary, /* write_summary */
2130 inline_read_summary, /* read_summary */
2131 NULL, /* write_optimization_summary */
2132 NULL, /* read_optimization_summary */
2133 NULL, /* stmt_fixup */
2134 0, /* TODOs */
2135 inline_transform, /* function_transform */
2136 NULL, /* variable_transform */