2011-09-15 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / doc / loop.texi
blob980c1f79042de1e7d0af3efc46dffd92604591b2
1 @c Copyright (c) 2006, 2007, 2008 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @c ---------------------------------------------------------------------
7 @c Loop Representation
8 @c ---------------------------------------------------------------------
10 @node Loop Analysis and Representation
11 @chapter Analysis and Representation of Loops
13 GCC provides extensive infrastructure for work with natural loops, i.e.,
14 strongly connected components of CFG with only one entry block.  This
15 chapter describes representation of loops in GCC, both on GIMPLE and in
16 RTL, as well as the interfaces to loop-related analyses (induction
17 variable analysis and number of iterations analysis).
19 @menu
20 * Loop representation::         Representation and analysis of loops.
21 * Loop querying::               Getting information about loops.
22 * Loop manipulation::           Loop manipulation functions.
23 * LCSSA::                       Loop-closed SSA form.
24 * Scalar evolutions::           Induction variables on GIMPLE.
25 * loop-iv::                     Induction variables on RTL.
26 * Number of iterations::        Number of iterations analysis.
27 * Dependency analysis::         Data dependency analysis.
28 * Lambda::                      Linear loop transformations framework.
29 * Omega::                       A solver for linear programming problems.
30 @end menu
32 @node Loop representation
33 @section Loop representation
34 @cindex Loop representation
35 @cindex Loop analysis
37 This chapter describes the representation of loops in GCC, and functions
38 that can be used to build, modify and analyze this representation.  Most
39 of the interfaces and data structures are declared in @file{cfgloop.h}.
40 At the moment, loop structures are analyzed and this information is
41 updated only by the optimization passes that deal with loops, but some
42 efforts are being made to make it available throughout most of the
43 optimization passes.
45 In general, a natural loop has one entry block (header) and possibly
46 several back edges (latches) leading to the header from the inside of
47 the loop.  Loops with several latches may appear if several loops share
48 a single header, or if there is a branching in the middle of the loop.
49 The representation of loops in GCC however allows only loops with a
50 single latch.  During loop analysis, headers of such loops are split and
51 forwarder blocks are created in order to disambiguate their structures.
52 Heuristic based on profile information and structure of the induction
53 variables in the loops is used to determine whether the latches
54 correspond to sub-loops or to control flow in a single loop.  This means
55 that the analysis sometimes changes the CFG, and if you run it in the
56 middle of an optimization pass, you must be able to deal with the new
57 blocks.  You may avoid CFG changes by passing
58 @code{LOOPS_MAY_HAVE_MULTIPLE_LATCHES} flag to the loop discovery,
59 note however that most other loop manipulation functions will not work
60 correctly for loops with multiple latch edges (the functions that only
61 query membership of blocks to loops and subloop relationships, or
62 enumerate and test loop exits, can be expected to work).
64 Body of the loop is the set of blocks that are dominated by its header,
65 and reachable from its latch against the direction of edges in CFG@.  The
66 loops are organized in a containment hierarchy (tree) such that all the
67 loops immediately contained inside loop L are the children of L in the
68 tree.  This tree is represented by the @code{struct loops} structure.
69 The root of this tree is a fake loop that contains all blocks in the
70 function.  Each of the loops is represented in a @code{struct loop}
71 structure.  Each loop is assigned an index (@code{num} field of the
72 @code{struct loop} structure), and the pointer to the loop is stored in
73 the corresponding field of the @code{larray} vector in the loops
74 structure.  The indices do not have to be continuous, there may be
75 empty (@code{NULL}) entries in the @code{larray} created by deleting
76 loops.  Also, there is no guarantee on the relative order of a loop
77 and its subloops in the numbering.  The index of a loop never changes.
79 The entries of the @code{larray} field should not be accessed directly.
80 The function @code{get_loop} returns the loop description for a loop with
81 the given index.  @code{number_of_loops} function returns number of
82 loops in the function.  To traverse all loops, use @code{FOR_EACH_LOOP}
83 macro.  The @code{flags} argument of the macro is used to determine
84 the direction of traversal and the set of loops visited.  Each loop is
85 guaranteed to be visited exactly once, regardless of the changes to the
86 loop tree, and the loops may be removed during the traversal.  The newly
87 created loops are never traversed, if they need to be visited, this
88 must be done separately after their creation.  The @code{FOR_EACH_LOOP}
89 macro allocates temporary variables.  If the @code{FOR_EACH_LOOP} loop
90 were ended using break or goto, they would not be released;
91 @code{FOR_EACH_LOOP_BREAK} macro must be used instead.
93 Each basic block contains the reference to the innermost loop it belongs
94 to (@code{loop_father}).  For this reason, it is only possible to have
95 one @code{struct loops} structure initialized at the same time for each
96 CFG@.  The global variable @code{current_loops} contains the
97 @code{struct loops} structure.  Many of the loop manipulation functions
98 assume that dominance information is up-to-date.
100 The loops are analyzed through @code{loop_optimizer_init} function.  The
101 argument of this function is a set of flags represented in an integer
102 bitmask.  These flags specify what other properties of the loop
103 structures should be calculated/enforced and preserved later:
105 @itemize
106 @item @code{LOOPS_MAY_HAVE_MULTIPLE_LATCHES}: If this flag is set, no
107 changes to CFG will be performed in the loop analysis, in particular,
108 loops with multiple latch edges will not be disambiguated.  If a loop
109 has multiple latches, its latch block is set to NULL@.  Most of
110 the loop manipulation functions will not work for loops in this shape.
111 No other flags that require CFG changes can be passed to
112 loop_optimizer_init.
113 @item @code{LOOPS_HAVE_PREHEADERS}: Forwarder blocks are created in such
114 a way that each loop has only one entry edge, and additionally, the
115 source block of this entry edge has only one successor.  This creates a
116 natural place where the code can be moved out of the loop, and ensures
117 that the entry edge of the loop leads from its immediate super-loop.
118 @item @code{LOOPS_HAVE_SIMPLE_LATCHES}: Forwarder blocks are created to
119 force the latch block of each loop to have only one successor.  This
120 ensures that the latch of the loop does not belong to any of its
121 sub-loops, and makes manipulation with the loops significantly easier.
122 Most of the loop manipulation functions assume that the loops are in
123 this shape.  Note that with this flag, the ``normal'' loop without any
124 control flow inside and with one exit consists of two basic blocks.
125 @item @code{LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS}: Basic blocks and
126 edges in the strongly connected components that are not natural loops
127 (have more than one entry block) are marked with
128 @code{BB_IRREDUCIBLE_LOOP} and @code{EDGE_IRREDUCIBLE_LOOP} flags.  The
129 flag is not set for blocks and edges that belong to natural loops that
130 are in such an irreducible region (but it is set for the entry and exit
131 edges of such a loop, if they lead to/from this region).
132 @item @code{LOOPS_HAVE_RECORDED_EXITS}: The lists of exits are recorded
133 and updated for each loop.  This makes some functions (e.g.,
134 @code{get_loop_exit_edges}) more efficient.  Some functions (e.g.,
135 @code{single_exit}) can be used only if the lists of exits are
136 recorded.
137 @end itemize
139 These properties may also be computed/enforced later, using functions
140 @code{create_preheaders}, @code{force_single_succ_latches},
141 @code{mark_irreducible_loops} and @code{record_loop_exits}.
143 The memory occupied by the loops structures should be freed with
144 @code{loop_optimizer_finalize} function.
146 The CFG manipulation functions in general do not update loop structures.
147 Specialized versions that additionally do so are provided for the most
148 common tasks.  On GIMPLE, @code{cleanup_tree_cfg_loop} function can be
149 used to cleanup CFG while updating the loops structures if
150 @code{current_loops} is set.
152 @node Loop querying
153 @section Loop querying
154 @cindex Loop querying
156 The functions to query the information about loops are declared in
157 @file{cfgloop.h}.  Some of the information can be taken directly from
158 the structures.  @code{loop_father} field of each basic block contains
159 the innermost loop to that the block belongs.  The most useful fields of
160 loop structure (that are kept up-to-date at all times) are:
162 @itemize
163 @item @code{header}, @code{latch}: Header and latch basic blocks of the
164 loop.
165 @item @code{num_nodes}: Number of basic blocks in the loop (including
166 the basic blocks of the sub-loops).
167 @item @code{depth}: The depth of the loop in the loops tree, i.e., the
168 number of super-loops of the loop.
169 @item @code{outer}, @code{inner}, @code{next}: The super-loop, the first
170 sub-loop, and the sibling of the loop in the loops tree.
171 @end itemize
173 There are other fields in the loop structures, many of them used only by
174 some of the passes, or not updated during CFG changes; in general, they
175 should not be accessed directly.
177 The most important functions to query loop structures are:
179 @itemize
180 @item @code{flow_loops_dump}: Dumps the information about loops to a
181 file.
182 @item @code{verify_loop_structure}: Checks consistency of the loop
183 structures.
184 @item @code{loop_latch_edge}: Returns the latch edge of a loop.
185 @item @code{loop_preheader_edge}: If loops have preheaders, returns
186 the preheader edge of a loop.
187 @item @code{flow_loop_nested_p}: Tests whether loop is a sub-loop of
188 another loop.
189 @item @code{flow_bb_inside_loop_p}: Tests whether a basic block belongs
190 to a loop (including its sub-loops).
191 @item @code{find_common_loop}: Finds the common super-loop of two loops.
192 @item @code{superloop_at_depth}: Returns the super-loop of a loop with
193 the given depth.
194 @item @code{tree_num_loop_insns}, @code{num_loop_insns}: Estimates the
195 number of insns in the loop, on GIMPLE and on RTL.
196 @item @code{loop_exit_edge_p}: Tests whether edge is an exit from a
197 loop.
198 @item @code{mark_loop_exit_edges}: Marks all exit edges of all loops
199 with @code{EDGE_LOOP_EXIT} flag.
200 @item @code{get_loop_body}, @code{get_loop_body_in_dom_order},
201 @code{get_loop_body_in_bfs_order}: Enumerates the basic blocks in the
202 loop in depth-first search order in reversed CFG, ordered by dominance
203 relation, and breath-first search order, respectively.
204 @item @code{single_exit}: Returns the single exit edge of the loop, or
205 @code{NULL} if the loop has more than one exit.  You can only use this
206 function if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used.
207 @item @code{get_loop_exit_edges}: Enumerates the exit edges of a loop.
208 @item @code{just_once_each_iteration_p}: Returns true if the basic block
209 is executed exactly once during each iteration of a loop (that is, it
210 does not belong to a sub-loop, and it dominates the latch of the loop).
211 @end itemize
213 @node Loop manipulation
214 @section Loop manipulation
215 @cindex Loop manipulation
217 The loops tree can be manipulated using the following functions:
219 @itemize
220 @item @code{flow_loop_tree_node_add}: Adds a node to the tree.
221 @item @code{flow_loop_tree_node_remove}: Removes a node from the tree.
222 @item @code{add_bb_to_loop}: Adds a basic block to a loop.
223 @item @code{remove_bb_from_loops}: Removes a basic block from loops.
224 @end itemize
226 Most low-level CFG functions update loops automatically.  The following
227 functions handle some more complicated cases of CFG manipulations:
229 @itemize
230 @item @code{remove_path}: Removes an edge and all blocks it dominates.
231 @item @code{split_loop_exit_edge}: Splits exit edge of the loop,
232 ensuring that PHI node arguments remain in the loop (this ensures that
233 loop-closed SSA form is preserved).  Only useful on GIMPLE.
234 @end itemize
236 Finally, there are some higher-level loop transformations implemented.
237 While some of them are written so that they should work on non-innermost
238 loops, they are mostly untested in that case, and at the moment, they
239 are only reliable for the innermost loops:
241 @itemize
242 @item @code{create_iv}: Creates a new induction variable.  Only works on
243 GIMPLE@.  @code{standard_iv_increment_position} can be used to find a
244 suitable place for the iv increment.
245 @item @code{duplicate_loop_to_header_edge},
246 @code{tree_duplicate_loop_to_header_edge}: These functions (on RTL and
247 on GIMPLE) duplicate the body of the loop prescribed number of times on
248 one of the edges entering loop header, thus performing either loop
249 unrolling or loop peeling.  @code{can_duplicate_loop_p}
250 (@code{can_unroll_loop_p} on GIMPLE) must be true for the duplicated
251 loop.
252 @item @code{loop_version}, @code{tree_ssa_loop_version}: These function
253 create a copy of a loop, and a branch before them that selects one of
254 them depending on the prescribed condition.  This is useful for
255 optimizations that need to verify some assumptions in runtime (one of
256 the copies of the loop is usually left unchanged, while the other one is
257 transformed in some way).
258 @item @code{tree_unroll_loop}: Unrolls the loop, including peeling the
259 extra iterations to make the number of iterations divisible by unroll
260 factor, updating the exit condition, and removing the exits that now
261 cannot be taken.  Works only on GIMPLE.
262 @end itemize
264 @node LCSSA
265 @section Loop-closed SSA form
266 @cindex LCSSA
267 @cindex Loop-closed SSA form
269 Throughout the loop optimizations on tree level, one extra condition is
270 enforced on the SSA form:  No SSA name is used outside of the loop in
271 that it is defined.  The SSA form satisfying this condition is called
272 ``loop-closed SSA form'' -- LCSSA@.  To enforce LCSSA, PHI nodes must be
273 created at the exits of the loops for the SSA names that are used
274 outside of them.  Only the real operands (not virtual SSA names) are
275 held in LCSSA, in order to save memory.
277 There are various benefits of LCSSA:
279 @itemize
280 @item Many optimizations (value range analysis, final value
281 replacement) are interested in the values that are defined in the loop
282 and used outside of it, i.e., exactly those for that we create new PHI
283 nodes.
284 @item In induction variable analysis, it is not necessary to specify the
285 loop in that the analysis should be performed -- the scalar evolution
286 analysis always returns the results with respect to the loop in that the
287 SSA name is defined.
288 @item It makes updating of SSA form during loop transformations simpler.
289 Without LCSSA, operations like loop unrolling may force creation of PHI
290 nodes arbitrarily far from the loop, while in LCSSA, the SSA form can be
291 updated locally.  However, since we only keep real operands in LCSSA, we
292 cannot use this advantage (we could have local updating of real
293 operands, but it is not much more efficient than to use generic SSA form
294 updating for it as well; the amount of changes to SSA is the same).
295 @end itemize
297 However, it also means LCSSA must be updated.  This is usually
298 straightforward, unless you create a new value in loop and use it
299 outside, or unless you manipulate loop exit edges (functions are
300 provided to make these manipulations simple).
301 @code{rewrite_into_loop_closed_ssa} is used to rewrite SSA form to
302 LCSSA, and @code{verify_loop_closed_ssa} to check that the invariant of
303 LCSSA is preserved.
305 @node Scalar evolutions
306 @section Scalar evolutions
307 @cindex Scalar evolutions
308 @cindex IV analysis on GIMPLE
310 Scalar evolutions (SCEV) are used to represent results of induction
311 variable analysis on GIMPLE@.  They enable us to represent variables with
312 complicated behavior in a simple and consistent way (we only use it to
313 express values of polynomial induction variables, but it is possible to
314 extend it).  The interfaces to SCEV analysis are declared in
315 @file{tree-scalar-evolution.h}.  To use scalar evolutions analysis,
316 @code{scev_initialize} must be used.  To stop using SCEV,
317 @code{scev_finalize} should be used.  SCEV analysis caches results in
318 order to save time and memory.  This cache however is made invalid by
319 most of the loop transformations, including removal of code.  If such a
320 transformation is performed, @code{scev_reset} must be called to clean
321 the caches.
323 Given an SSA name, its behavior in loops can be analyzed using the
324 @code{analyze_scalar_evolution} function.  The returned SCEV however
325 does not have to be fully analyzed and it may contain references to
326 other SSA names defined in the loop.  To resolve these (potentially
327 recursive) references, @code{instantiate_parameters} or
328 @code{resolve_mixers} functions must be used.
329 @code{instantiate_parameters} is useful when you use the results of SCEV
330 only for some analysis, and when you work with whole nest of loops at
331 once.  It will try replacing all SSA names by their SCEV in all loops,
332 including the super-loops of the current loop, thus providing a complete
333 information about the behavior of the variable in the loop nest.
334 @code{resolve_mixers} is useful if you work with only one loop at a
335 time, and if you possibly need to create code based on the value of the
336 induction variable.  It will only resolve the SSA names defined in the
337 current loop, leaving the SSA names defined outside unchanged, even if
338 their evolution in the outer loops is known.
340 The SCEV is a normal tree expression, except for the fact that it may
341 contain several special tree nodes.  One of them is
342 @code{SCEV_NOT_KNOWN}, used for SSA names whose value cannot be
343 expressed.  The other one is @code{POLYNOMIAL_CHREC}.  Polynomial chrec
344 has three arguments -- base, step and loop (both base and step may
345 contain further polynomial chrecs).  Type of the expression and of base
346 and step must be the same.  A variable has evolution
347 @code{POLYNOMIAL_CHREC(base, step, loop)} if it is (in the specified
348 loop) equivalent to @code{x_1} in the following example
350 @smallexample
351 while (@dots{})
352   @{
353     x_1 = phi (base, x_2);
354     x_2 = x_1 + step;
355   @}
356 @end smallexample
358 Note that this includes the language restrictions on the operations.
359 For example, if we compile C code and @code{x} has signed type, then the
360 overflow in addition would cause undefined behavior, and we may assume
361 that this does not happen.  Hence, the value with this SCEV cannot
362 overflow (which restricts the number of iterations of such a loop).
364 In many cases, one wants to restrict the attention just to affine
365 induction variables.  In this case, the extra expressive power of SCEV
366 is not useful, and may complicate the optimizations.  In this case,
367 @code{simple_iv} function may be used to analyze a value -- the result
368 is a loop-invariant base and step.
370 @node loop-iv
371 @section IV analysis on RTL
372 @cindex IV analysis on RTL
374 The induction variable on RTL is simple and only allows analysis of
375 affine induction variables, and only in one loop at once.  The interface
376 is declared in @file{cfgloop.h}.  Before analyzing induction variables
377 in a loop L, @code{iv_analysis_loop_init} function must be called on L.
378 After the analysis (possibly calling @code{iv_analysis_loop_init} for
379 several loops) is finished, @code{iv_analysis_done} should be called.
380 The following functions can be used to access the results of the
381 analysis:
383 @itemize
384 @item @code{iv_analyze}: Analyzes a single register used in the given
385 insn.  If no use of the register in this insn is found, the following
386 insns are scanned, so that this function can be called on the insn
387 returned by get_condition.
388 @item @code{iv_analyze_result}: Analyzes result of the assignment in the
389 given insn.
390 @item @code{iv_analyze_expr}: Analyzes a more complicated expression.
391 All its operands are analyzed by @code{iv_analyze}, and hence they must
392 be used in the specified insn or one of the following insns.
393 @end itemize
395 The description of the induction variable is provided in @code{struct
396 rtx_iv}.  In order to handle subregs, the representation is a bit
397 complicated; if the value of the @code{extend} field is not
398 @code{UNKNOWN}, the value of the induction variable in the i-th
399 iteration is
401 @smallexample
402 delta + mult * extend_@{extend_mode@} (subreg_@{mode@} (base + i * step)),
403 @end smallexample
405 with the following exception:  if @code{first_special} is true, then the
406 value in the first iteration (when @code{i} is zero) is @code{delta +
407 mult * base}.  However, if @code{extend} is equal to @code{UNKNOWN},
408 then @code{first_special} must be false, @code{delta} 0, @code{mult} 1
409 and the value in the i-th iteration is
411 @smallexample
412 subreg_@{mode@} (base + i * step)
413 @end smallexample
415 The function @code{get_iv_value} can be used to perform these
416 calculations.
418 @node Number of iterations
419 @section Number of iterations analysis
420 @cindex Number of iterations analysis
422 Both on GIMPLE and on RTL, there are functions available to determine
423 the number of iterations of a loop, with a similar interface.  The
424 number of iterations of a loop in GCC is defined as the number of
425 executions of the loop latch.  In many cases, it is not possible to
426 determine the number of iterations unconditionally -- the determined
427 number is correct only if some assumptions are satisfied.  The analysis
428 tries to verify these conditions using the information contained in the
429 program; if it fails, the conditions are returned together with the
430 result.  The following information and conditions are provided by the
431 analysis:
433 @itemize
434 @item @code{assumptions}: If this condition is false, the rest of
435 the information is invalid.
436 @item @code{noloop_assumptions} on RTL, @code{may_be_zero} on GIMPLE: If
437 this condition is true, the loop exits in the first iteration.
438 @item @code{infinite}: If this condition is true, the loop is infinite.
439 This condition is only available on RTL@.  On GIMPLE, conditions for
440 finiteness of the loop are included in @code{assumptions}.
441 @item @code{niter_expr} on RTL, @code{niter} on GIMPLE: The expression
442 that gives number of iterations.  The number of iterations is defined as
443 the number of executions of the loop latch.
444 @end itemize
446 Both on GIMPLE and on RTL, it necessary for the induction variable
447 analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL).
448 On GIMPLE, the results are stored to @code{struct tree_niter_desc}
449 structure.  Number of iterations before the loop is exited through a
450 given exit can be determined using @code{number_of_iterations_exit}
451 function.  On RTL, the results are returned in @code{struct niter_desc}
452 structure.  The corresponding function is named
453 @code{check_simple_exit}.  There are also functions that pass through
454 all the exits of a loop and try to find one with easy to determine
455 number of iterations -- @code{find_loop_niter} on GIMPLE and
456 @code{find_simple_exit} on RTL@.  Finally, there are functions that
457 provide the same information, but additionally cache it, so that
458 repeated calls to number of iterations are not so costly --
459 @code{number_of_latch_executions} on GIMPLE and @code{get_simple_loop_desc}
460 on RTL.
462 Note that some of these functions may behave slightly differently than
463 others -- some of them return only the expression for the number of
464 iterations, and fail if there are some assumptions.  The function
465 @code{number_of_latch_executions} works only for single-exit loops.
466 The function @code{number_of_cond_exit_executions} can be used to
467 determine number of executions of the exit condition of a single-exit
468 loop (i.e., the @code{number_of_latch_executions} increased by one).
470 @node Dependency analysis
471 @section Data Dependency Analysis
472 @cindex Data Dependency Analysis
474 The code for the data dependence analysis can be found in
475 @file{tree-data-ref.c} and its interface and data structures are
476 described in @file{tree-data-ref.h}.  The function that computes the
477 data dependences for all the array and pointer references for a given
478 loop is @code{compute_data_dependences_for_loop}.  This function is
479 currently used by the linear loop transform and the vectorization
480 passes.  Before calling this function, one has to allocate two vectors:
481 a first vector will contain the set of data references that are
482 contained in the analyzed loop body, and the second vector will contain
483 the dependence relations between the data references.  Thus if the
484 vector of data references is of size @code{n}, the vector containing the
485 dependence relations will contain @code{n*n} elements.  However if the
486 analyzed loop contains side effects, such as calls that potentially can
487 interfere with the data references in the current analyzed loop, the
488 analysis stops while scanning the loop body for data references, and
489 inserts a single @code{chrec_dont_know} in the dependence relation
490 array.
492 The data references are discovered in a particular order during the
493 scanning of the loop body: the loop body is analyzed in execution order,
494 and the data references of each statement are pushed at the end of the
495 data reference array.  Two data references syntactically occur in the
496 program in the same order as in the array of data references.  This
497 syntactic order is important in some classical data dependence tests,
498 and mapping this order to the elements of this array avoids costly
499 queries to the loop body representation.
501 Three types of data references are currently handled: ARRAY_REF,
502 INDIRECT_REF and COMPONENT_REF@. The data structure for the data reference
503 is @code{data_reference}, where @code{data_reference_p} is a name of a
504 pointer to the data reference structure. The structure contains the
505 following elements:
507 @itemize
508 @item @code{base_object_info}: Provides information about the base object
509 of the data reference and its access functions. These access functions
510 represent the evolution of the data reference in the loop relative to
511 its base, in keeping with the classical meaning of the data reference
512 access function for the support of arrays. For example, for a reference
513 @code{a.b[i][j]}, the base object is @code{a.b} and the access functions,
514 one for each array subscript, are:
515 @code{@{i_init, + i_step@}_1, @{j_init, +, j_step@}_2}.
517 @item @code{first_location_in_loop}: Provides information about the first
518 location accessed by the data reference in the loop and about the access
519 function used to represent evolution relative to this location. This data
520 is used to support pointers, and is not used for arrays (for which we
521 have base objects). Pointer accesses are represented as a one-dimensional
522 access that starts from the first location accessed in the loop. For
523 example:
525 @smallexample
526       for1 i
527          for2 j
528           *((int *)p + i + j) = a[i][j];
529 @end smallexample
531 The access function of the pointer access is @code{@{0, + 4B@}_for2}
532 relative to @code{p + i}. The access functions of the array are
533 @code{@{i_init, + i_step@}_for1} and @code{@{j_init, +, j_step@}_for2}
534 relative to @code{a}.
536 Usually, the object the pointer refers to is either unknown, or we can't
537 prove that the access is confined to the boundaries of a certain object.
539 Two data references can be compared only if at least one of these two
540 representations has all its fields filled for both data references.
542 The current strategy for data dependence tests is as follows:
543 If both @code{a} and @code{b} are represented as arrays, compare
544 @code{a.base_object} and @code{b.base_object};
545 if they are equal, apply dependence tests (use access functions based on
546 base_objects).
547 Else if both @code{a} and @code{b} are represented as pointers, compare
548 @code{a.first_location} and @code{b.first_location};
549 if they are equal, apply dependence tests (use access functions based on
550 first location).
551 However, if @code{a} and @code{b} are represented differently, only try
552 to prove that the bases are definitely different.
554 @item Aliasing information.
555 @item Alignment information.
556 @end itemize
558 The structure describing the relation between two data references is
559 @code{data_dependence_relation} and the shorter name for a pointer to
560 such a structure is @code{ddr_p}.  This structure contains:
562 @itemize
563 @item a pointer to each data reference,
564 @item a tree node @code{are_dependent} that is set to @code{chrec_known}
565 if the analysis has proved that there is no dependence between these two
566 data references, @code{chrec_dont_know} if the analysis was not able to
567 determine any useful result and potentially there could exist a
568 dependence between these data references, and @code{are_dependent} is
569 set to @code{NULL_TREE} if there exist a dependence relation between the
570 data references, and the description of this dependence relation is
571 given in the @code{subscripts}, @code{dir_vects}, and @code{dist_vects}
572 arrays,
573 @item a boolean that determines whether the dependence relation can be
574 represented by a classical distance vector,
575 @item an array @code{subscripts} that contains a description of each
576 subscript of the data references.  Given two array accesses a
577 subscript is the tuple composed of the access functions for a given
578 dimension.  For example, given @code{A[f1][f2][f3]} and
579 @code{B[g1][g2][g3]}, there are three subscripts: @code{(f1, g1), (f2,
580 g2), (f3, g3)}.
581 @item two arrays @code{dir_vects} and @code{dist_vects} that contain
582 classical representations of the data dependences under the form of
583 direction and distance dependence vectors,
584 @item an array of loops @code{loop_nest} that contains the loops to
585 which the distance and direction vectors refer to.
586 @end itemize
588 Several functions for pretty printing the information extracted by the
589 data dependence analysis are available: @code{dump_ddrs} prints with a
590 maximum verbosity the details of a data dependence relations array,
591 @code{dump_dist_dir_vectors} prints only the classical distance and
592 direction vectors for a data dependence relations array, and
593 @code{dump_data_references} prints the details of the data references
594 contained in a data reference array.
596 @node Lambda
597 @section Linear loop transformations framework
598 @cindex Linear loop transformations framework
600 Lambda is a framework that allows transformations of loops using
601 non-singular matrix based transformations of the iteration space and
602 loop bounds. This allows compositions of skewing, scaling, interchange,
603 and reversal transformations.  These transformations are often used to
604 improve cache behavior or remove inner loop dependencies to allow
605 parallelization and vectorization to take place.
607 To perform these transformations, Lambda requires that the loopnest be
608 converted into an internal form that can be matrix transformed easily.
609 To do this conversion, the function
610 @code{gcc_loopnest_to_lambda_loopnest} is provided.  If the loop cannot
611 be transformed using lambda, this function will return NULL.
613 Once a @code{lambda_loopnest} is obtained from the conversion function,
614 it can be transformed by using @code{lambda_loopnest_transform}, which
615 takes a transformation matrix to apply.  Note that it is up to the
616 caller to verify that the transformation matrix is legal to apply to the
617 loop (dependence respecting, etc).  Lambda simply applies whatever
618 matrix it is told to provide.  It can be extended to make legal matrices
619 out of any non-singular matrix, but this is not currently implemented.
620 Legality of a matrix for a given loopnest can be verified using
621 @code{lambda_transform_legal_p}.
623 Given a transformed loopnest, conversion back into gcc IR is done by
624 @code{lambda_loopnest_to_gcc_loopnest}.  This function will modify the
625 loops so that they match the transformed loopnest.
628 @node Omega
629 @section Omega a solver for linear programming problems
630 @cindex Omega a solver for linear programming problems
632 The data dependence analysis contains several solvers triggered
633 sequentially from the less complex ones to the more sophisticated.
634 For ensuring the consistency of the results of these solvers, a data
635 dependence check pass has been implemented based on two different
636 solvers.  The second method that has been integrated to GCC is based
637 on the Omega dependence solver, written in the 1990's by William Pugh
638 and David Wonnacott.  Data dependence tests can be formulated using a
639 subset of the Presburger arithmetics that can be translated to linear
640 constraint systems.  These linear constraint systems can then be
641 solved using the Omega solver.
643 The Omega solver is using Fourier-Motzkin's algorithm for variable
644 elimination: a linear constraint system containing @code{n} variables
645 is reduced to a linear constraint system with @code{n-1} variables.
646 The Omega solver can also be used for solving other problems that can
647 be expressed under the form of a system of linear equalities and
648 inequalities.  The Omega solver is known to have an exponential worst
649 case, also known under the name of ``omega nightmare'' in the
650 literature, but in practice, the omega test is known to be efficient
651 for the common data dependence tests.
653 The interface used by the Omega solver for describing the linear
654 programming problems is described in @file{omega.h}, and the solver is
655 @code{omega_solve_problem}.