* team.c (gomp_team_end): Free team immediately if it has
[official-gcc.git] / gcc / vec.h
blobc07ee221584e2af763704b21f73a85ceb3970348
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VEC_H
22 #define GCC_VEC_H
24 /* The macros here implement a set of templated vector types and
25 associated interfaces. These templates are implemented with
26 macros, as we're not in C++ land. The interface functions are
27 typesafe and use static inline functions, sometimes backed by
28 out-of-line generic functions. The vectors are designed to
29 interoperate with the GTY machinery.
31 Because of the different behavior of structure objects, scalar
32 objects and of pointers, there are three flavors, one for each of
33 these variants. Both the structure object and pointer variants
34 pass pointers to objects around -- in the former case the pointers
35 are stored into the vector and in the latter case the pointers are
36 dereferenced and the objects copied into the vector. The scalar
37 object variant is suitable for int-like objects, and the vector
38 elements are returned by value.
40 There are both 'index' and 'iterate' accessors. The iterator
41 returns a boolean iteration condition and updates the iteration
42 variable passed by reference. Because the iterator will be
43 inlined, the address-of can be optimized away.
45 The vectors are implemented using the trailing array idiom, thus
46 they are not resizeable without changing the address of the vector
47 object itself. This means you cannot have variables or fields of
48 vector type -- always use a pointer to a vector. The one exception
49 is the final field of a structure, which could be a vector type.
50 You will have to use the embedded_size & embedded_init calls to
51 create such objects, and they will probably not be resizeable (so
52 don't use the 'safe' allocation variants). The trailing array
53 idiom is used (rather than a pointer to an array of data), because,
54 if we allow NULL to also represent an empty vector, empty vectors
55 occupy minimal space in the structure containing them.
57 Each operation that increases the number of active elements is
58 available in 'quick' and 'safe' variants. The former presumes that
59 there is sufficient allocated space for the operation to succeed
60 (it dies if there is not). The latter will reallocate the
61 vector, if needed. Reallocation causes an exponential increase in
62 vector size. If you know you will be adding N elements, it would
63 be more efficient to use the reserve operation before adding the
64 elements with the 'quick' operation. This will ensure there are at
65 least as many elements as you ask for, it will exponentially
66 increase if there are too few spare slots. If you want reserve a
67 specific number of slots, but do not want the exponential increase
68 (for instance, you know this is the last allocation), use the
69 reserve_exact operation. You can also create a vector of a
70 specific size from the get go.
72 You should prefer the push and pop operations, as they append and
73 remove from the end of the vector. If you need to remove several
74 items in one go, use the truncate operation. The insert and remove
75 operations allow you to change elements in the middle of the
76 vector. There are two remove operations, one which preserves the
77 element ordering 'ordered_remove', and one which does not
78 'unordered_remove'. The latter function copies the end element
79 into the removed slot, rather than invoke a memmove operation. The
80 'lower_bound' function will determine where to place an item in the
81 array using insert that will maintain sorted order.
83 When a vector type is defined, first a non-memory managed version
84 is created. You can then define either or both garbage collected
85 and heap allocated versions. The allocation mechanism is specified
86 when the type is defined, and is therefore part of the type. If
87 you need both gc'd and heap allocated versions, you still must have
88 *exactly* one definition of the common non-memory managed base vector.
90 If you need to directly manipulate a vector, then the 'address'
91 accessor will return the address of the start of the vector. Also
92 the 'space' predicate will tell you whether there is spare capacity
93 in the vector. You will not normally need to use these two functions.
95 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
96 get the non-memory allocation version, and then a
97 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
98 vectors. Variables of vector type are declared using a
99 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
100 allocation strategy, and can be either 'gc' or 'heap' for garbage
101 collected and heap allocated respectively. It can be 'none' to get
102 a vector that must be explicitly allocated (for instance as a
103 trailing array of another structure). The characters O, P and I
104 indicate whether TYPEDEF is a pointer (P), object (O) or integral
105 (I) type. Be careful to pick the correct one, as you'll get an
106 awkward and inefficient API if you use the wrong one. There is a
107 check, which results in a compile-time warning, for the P and I
108 versions, but there is no check for the O versions, as that is not
109 possible in plain C. Due to the way GTY works, you must annotate
110 any structures you wish to insert or reference from a vector with a
111 GTY(()) tag. You need to do this even if you never declare the GC
112 allocated variants.
114 An example of their use would be,
116 DEF_VEC_P(tree); // non-managed tree vector.
117 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
118 // appear at file scope.
120 struct my_struct {
121 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
124 struct my_struct *s;
126 if (VEC_length(tree,s->v)) { we have some contents }
127 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
128 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
129 { do something with elt }
133 /* Macros to invoke API calls. A single macro works for both pointer
134 and object vectors, but the argument and return types might well be
135 different. In each macro, T is the typedef of the vector elements,
136 and A is the allocation strategy. The allocation strategy is only
137 present when it is required. Some of these macros pass the vector,
138 V, by reference (by taking its address), this is noted in the
139 descriptions. */
141 /* Length of vector
142 unsigned VEC_T_length(const VEC(T) *v);
144 Return the number of active elements in V. V can be NULL, in which
145 case zero is returned. */
147 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
150 /* Check if vector is empty
151 int VEC_T_empty(const VEC(T) *v);
153 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
155 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
158 /* Get the final element of the vector.
159 T VEC_T_last(VEC(T) *v); // Integer
160 T VEC_T_last(VEC(T) *v); // Pointer
161 T *VEC_T_last(VEC(T) *v); // Object
163 Return the final element. V must not be empty. */
165 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167 /* Index into vector
168 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
170 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172 Return the IX'th element. If IX must be in the domain of V. */
174 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176 /* Iterate over vector
177 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181 Return iteration condition and update PTR to point to the IX'th
182 element. At the end of iteration, sets PTR to NULL. Use this to
183 iterate over the elements of a vector as follows,
185 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
186 continue; */
188 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190 /* Allocate new vector.
191 VEC(T,A) *VEC_T_A_alloc(int reserve);
193 Allocate a new vector with space for RESERVE objects. If RESERVE
194 is zero, NO vector is created. */
196 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198 /* Free a vector.
199 void VEC_T_A_free(VEC(T,A) *&);
201 Free a vector and set it to NULL. */
203 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
205 /* Use these to determine the required size and initialization of a
206 vector embedded within another structure (as the final member).
208 size_t VEC_T_embedded_size(int reserve);
209 void VEC_T_embedded_init(VEC(T) *v, int reserve);
211 These allow the caller to perform the memory allocation. */
213 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
214 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216 /* Copy a vector.
217 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219 Copy the live elements of a vector into a new vector. The new and
220 old vectors need not be allocated by the same mechanism. */
222 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224 /* Determine if a vector has additional capacity.
226 int VEC_T_space (VEC(T) *v,int reserve)
228 If V has space for RESERVE additional entries, return nonzero. You
229 usually only need to use this if you are doing your own vector
230 reallocation, for instance on an embedded vector. This returns
231 nonzero in exactly the same circumstances that VEC_T_reserve
232 will. */
234 #define VEC_space(T,V,R) \
235 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237 /* Reserve space.
238 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240 Ensure that V has at least RESERVE slots available. This will
241 create additional headroom. Note this can cause V to be
242 reallocated. Returns nonzero iff reallocation actually
243 occurred. */
245 #define VEC_reserve(T,A,V,R) \
246 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248 /* Reserve space exactly.
249 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251 Ensure that V has at least RESERVE slots available. This will not
252 create additional headroom. Note this can cause V to be
253 reallocated. Returns nonzero iff reallocation actually
254 occurred. */
256 #define VEC_reserve_exact(T,A,V,R) \
257 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259 /* Push object with no reallocation
260 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
261 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
262 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264 Push a new element onto the end, returns a pointer to the slot
265 filled in. For object vectors, the new value can be NULL, in which
266 case NO initialization is performed. There must
267 be sufficient space in the vector. */
269 #define VEC_quick_push(T,V,O) \
270 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272 /* Push object with reallocation
273 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
274 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
275 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277 Push a new element onto the end, returns a pointer to the slot
278 filled in. For object vectors, the new value can be NULL, in which
279 case NO initialization is performed. Reallocates V, if needed. */
281 #define VEC_safe_push(T,A,V,O) \
282 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284 /* Pop element off end
285 T VEC_T_pop (VEC(T) *v); // Integer
286 T VEC_T_pop (VEC(T) *v); // Pointer
287 void VEC_T_pop (VEC(T) *v); // Object
289 Pop the last element off the end. Returns the element popped, for
290 pointer vectors. */
292 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294 /* Truncate to specific length
295 void VEC_T_truncate (VEC(T) *v, unsigned len);
297 Set the length as specified. The new length must be less than or
298 equal to the current length. This is an O(1) operation. */
300 #define VEC_truncate(T,V,I) \
301 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303 /* Grow to a specific length.
304 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306 Grow the vector to a specific length. The LEN must be as
307 long or longer than the current length. The new elements are
308 uninitialized. */
310 #define VEC_safe_grow(T,A,V,I) \
311 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313 /* Grow to a specific length.
314 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
316 Grow the vector to a specific length. The LEN must be as
317 long or longer than the current length. The new elements are
318 initialized to zero. */
320 #define VEC_safe_grow_cleared(T,A,V,I) \
321 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
323 /* Replace element
324 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
325 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
326 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
328 Replace the IXth element of V with a new value, VAL. For pointer
329 vectors returns the original value. For object vectors returns a
330 pointer to the new value. For object vectors the new value can be
331 NULL, in which case no overwriting of the slot is actually
332 performed. */
334 #define VEC_replace(T,V,I,O) \
335 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
337 /* Insert object with no reallocation
338 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
339 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
340 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
342 Insert an element, VAL, at the IXth position of V. Return a pointer
343 to the slot created. For vectors of object, the new value can be
344 NULL, in which case no initialization of the inserted slot takes
345 place. There must be sufficient space. */
347 #define VEC_quick_insert(T,V,I,O) \
348 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
350 /* Insert object with reallocation
351 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
352 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
353 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
355 Insert an element, VAL, at the IXth position of V. Return a pointer
356 to the slot created. For vectors of object, the new value can be
357 NULL, in which case no initialization of the inserted slot takes
358 place. Reallocate V, if necessary. */
360 #define VEC_safe_insert(T,A,V,I,O) \
361 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
363 /* Remove element retaining order
364 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
365 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
366 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
368 Remove an element from the IXth position of V. Ordering of
369 remaining elements is preserved. For pointer vectors returns the
370 removed object. This is an O(N) operation due to a memmove. */
372 #define VEC_ordered_remove(T,V,I) \
373 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
375 /* Remove element destroying order
376 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
377 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
378 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
380 Remove an element from the IXth position of V. Ordering of
381 remaining elements is destroyed. For pointer vectors returns the
382 removed object. This is an O(1) operation. */
384 #define VEC_unordered_remove(T,V,I) \
385 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
387 /* Remove a block of elements
388 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
390 Remove LEN elements starting at the IXth. Ordering is retained.
391 This is an O(1) operation. */
393 #define VEC_block_remove(T,V,I,L) \
394 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
396 /* Get the address of the array of elements
397 T *VEC_T_address (VEC(T) v)
399 If you need to directly manipulate the array (for instance, you
400 want to feed it to qsort), use this accessor. */
402 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
404 /* Find the first index in the vector not less than the object.
405 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
406 bool (*lessthan) (const T, const T)); // Integer
407 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
408 bool (*lessthan) (const T, const T)); // Pointer
409 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
410 bool (*lessthan) (const T*, const T*)); // Object
412 Find the first position in which VAL could be inserted without
413 changing the ordering of V. LESSTHAN is a function that returns
414 true if the first argument is strictly less than the second. */
416 #define VEC_lower_bound(T,V,O,LT) \
417 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
419 /* Reallocate an array of elements with prefix. */
420 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
421 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
422 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
423 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
424 MEM_STAT_DECL);
425 extern void ggc_free (void *);
426 #define vec_gc_free(V) ggc_free (V)
427 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
428 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
429 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
430 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
431 MEM_STAT_DECL);
432 #define vec_heap_free(V) free (V)
434 #if ENABLE_CHECKING
435 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
436 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
437 #define VEC_CHECK_PASS ,file_,line_,function_
439 #define VEC_ASSERT(EXPR,OP,T,A) \
440 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
442 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
443 ATTRIBUTE_NORETURN;
444 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
445 #else
446 #define VEC_CHECK_INFO
447 #define VEC_CHECK_DECL
448 #define VEC_CHECK_PASS
449 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
450 #endif
452 /* Note: gengtype has hardwired knowledge of the expansions of the
453 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the
454 expansions of these macros you may need to change gengtype too. */
456 #define VEC(T,A) VEC_##T##_##A
457 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
459 /* Base of vector type, not user visible. */
460 #define VEC_T(T,B) \
461 typedef struct VEC(T,B) \
463 unsigned num; \
464 unsigned alloc; \
465 T vec[1]; \
466 } VEC(T,B)
468 #define VEC_T_GTY(T,B) \
469 typedef struct VEC(T,B) GTY(()) \
471 unsigned num; \
472 unsigned alloc; \
473 T GTY ((length ("%h.num"))) vec[1]; \
474 } VEC(T,B)
476 /* Derived vector type, user visible. */
477 #define VEC_TA_GTY(T,B,A,GTY) \
478 typedef struct VEC(T,A) GTY \
480 VEC(T,B) base; \
481 } VEC(T,A)
483 #define VEC_TA(T,B,A) \
484 typedef struct VEC(T,A) \
486 VEC(T,B) base; \
487 } VEC(T,A)
489 /* Convert to base type. */
490 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
492 /* Vector of integer-like object. */
493 #define DEF_VEC_I(T) \
494 static inline void VEC_OP (T,must_be,integral_type) (void) \
496 (void)~(T)0; \
499 VEC_T(T,base); \
500 VEC_TA(T,base,none); \
501 DEF_VEC_FUNC_P(T) \
502 struct vec_swallow_trailing_semi
503 #define DEF_VEC_ALLOC_I(T,A) \
504 VEC_TA(T,base,A); \
505 DEF_VEC_ALLOC_FUNC_I(T,A) \
506 struct vec_swallow_trailing_semi
508 /* Vector of pointer to object. */
509 #define DEF_VEC_P(T) \
510 static inline void VEC_OP (T,must_be,pointer_type) (void) \
512 (void)((T)1 == (void *)1); \
515 VEC_T_GTY(T,base); \
516 VEC_TA(T,base,none); \
517 DEF_VEC_FUNC_P(T) \
518 struct vec_swallow_trailing_semi
519 #define DEF_VEC_ALLOC_P(T,A) \
520 VEC_TA(T,base,A); \
521 DEF_VEC_ALLOC_FUNC_P(T,A) \
522 struct vec_swallow_trailing_semi
524 #define DEF_VEC_FUNC_P(T) \
525 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
527 return vec_ ? vec_->num : 0; \
530 static inline T VEC_OP (T,base,last) \
531 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
533 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
535 return vec_->vec[vec_->num - 1]; \
538 static inline T VEC_OP (T,base,index) \
539 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
541 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
543 return vec_->vec[ix_]; \
546 static inline int VEC_OP (T,base,iterate) \
547 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
549 if (vec_ && ix_ < vec_->num) \
551 *ptr = vec_->vec[ix_]; \
552 return 1; \
554 else \
556 *ptr = 0; \
557 return 0; \
561 static inline size_t VEC_OP (T,base,embedded_size) \
562 (int alloc_) \
564 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
567 static inline void VEC_OP (T,base,embedded_init) \
568 (VEC(T,base) *vec_, int alloc_) \
570 vec_->num = 0; \
571 vec_->alloc = alloc_; \
574 static inline int VEC_OP (T,base,space) \
575 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
577 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
578 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
581 static inline T *VEC_OP (T,base,quick_push) \
582 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
584 T *slot_; \
586 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
587 slot_ = &vec_->vec[vec_->num++]; \
588 *slot_ = obj_; \
590 return slot_; \
593 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
595 T obj_; \
597 VEC_ASSERT (vec_->num, "pop", T, base); \
598 obj_ = vec_->vec[--vec_->num]; \
600 return obj_; \
603 static inline void VEC_OP (T,base,truncate) \
604 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
606 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
607 if (vec_) \
608 vec_->num = size_; \
611 static inline T VEC_OP (T,base,replace) \
612 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
614 T old_obj_; \
616 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
617 old_obj_ = vec_->vec[ix_]; \
618 vec_->vec[ix_] = obj_; \
620 return old_obj_; \
623 static inline T *VEC_OP (T,base,quick_insert) \
624 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
626 T *slot_; \
628 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
629 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
630 slot_ = &vec_->vec[ix_]; \
631 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
632 *slot_ = obj_; \
634 return slot_; \
637 static inline T VEC_OP (T,base,ordered_remove) \
638 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
640 T *slot_; \
641 T obj_; \
643 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
644 slot_ = &vec_->vec[ix_]; \
645 obj_ = *slot_; \
646 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
648 return obj_; \
651 static inline T VEC_OP (T,base,unordered_remove) \
652 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
654 T *slot_; \
655 T obj_; \
657 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
658 slot_ = &vec_->vec[ix_]; \
659 obj_ = *slot_; \
660 *slot_ = vec_->vec[--vec_->num]; \
662 return obj_; \
665 static inline void VEC_OP (T,base,block_remove) \
666 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
668 T *slot_; \
670 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
671 slot_ = &vec_->vec[ix_]; \
672 vec_->num -= len_; \
673 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
676 static inline T *VEC_OP (T,base,address) \
677 (VEC(T,base) *vec_) \
679 return vec_ ? vec_->vec : 0; \
682 static inline unsigned VEC_OP (T,base,lower_bound) \
683 (VEC(T,base) *vec_, const T obj_, \
684 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
686 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
687 unsigned int half_, middle_; \
688 unsigned int first_ = 0; \
689 while (len_ > 0) \
691 T middle_elem_; \
692 half_ = len_ >> 1; \
693 middle_ = first_; \
694 middle_ += half_; \
695 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
696 if (lessthan_ (middle_elem_, obj_)) \
698 first_ = middle_; \
699 ++first_; \
700 len_ = len_ - half_ - 1; \
702 else \
703 len_ = half_; \
705 return first_; \
708 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
709 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
710 (int alloc_ MEM_STAT_DECL) \
712 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \
713 PASS_MEM_STAT); \
716 static inline void VEC_OP (T,A,free) \
717 (VEC(T,A) **vec_) \
719 if (*vec_) \
720 vec_##A##_free (*vec_); \
721 *vec_ = NULL; \
724 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
726 size_t len_ = vec_ ? vec_->num : 0; \
727 VEC (T,A) *new_vec_ = NULL; \
729 if (len_) \
731 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \
732 (NULL, len_ PASS_MEM_STAT)); \
734 new_vec_->base.num = len_; \
735 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
737 return new_vec_; \
740 static inline int VEC_OP (T,A,reserve) \
741 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
743 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
744 VEC_CHECK_PASS); \
746 if (extend) \
747 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
749 return extend; \
752 static inline int VEC_OP (T,A,reserve_exact) \
753 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
755 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
756 VEC_CHECK_PASS); \
758 if (extend) \
759 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \
760 PASS_MEM_STAT); \
762 return extend; \
765 static inline void VEC_OP (T,A,safe_grow) \
766 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
768 VEC_ASSERT (size_ >= 0 \
769 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
770 "grow", T, A); \
771 VEC_OP (T,A,reserve_exact) (vec_, \
772 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
773 VEC_CHECK_PASS PASS_MEM_STAT); \
774 VEC_BASE (*vec_)->num = size_; \
777 static inline void VEC_OP (T,A,safe_grow_cleared) \
778 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
780 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
781 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
782 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
783 sizeof (T) * (size_ - oldsize)); \
786 static inline T *VEC_OP (T,A,safe_push) \
787 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
789 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
791 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
794 static inline T *VEC_OP (T,A,safe_insert) \
795 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
797 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
799 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
800 VEC_CHECK_PASS); \
803 /* Vector of object. */
804 #define DEF_VEC_O(T) \
805 VEC_T_GTY(T,base); \
806 VEC_TA(T,base,none); \
807 DEF_VEC_FUNC_O(T) \
808 struct vec_swallow_trailing_semi
809 #define DEF_VEC_ALLOC_O(T,A) \
810 VEC_TA(T,base,A); \
811 DEF_VEC_ALLOC_FUNC_O(T,A) \
812 struct vec_swallow_trailing_semi
814 #define DEF_VEC_FUNC_O(T) \
815 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
817 return vec_ ? vec_->num : 0; \
820 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
822 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
824 return &vec_->vec[vec_->num - 1]; \
827 static inline T *VEC_OP (T,base,index) \
828 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
830 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
832 return &vec_->vec[ix_]; \
835 static inline int VEC_OP (T,base,iterate) \
836 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
838 if (vec_ && ix_ < vec_->num) \
840 *ptr = &vec_->vec[ix_]; \
841 return 1; \
843 else \
845 *ptr = 0; \
846 return 0; \
850 static inline size_t VEC_OP (T,base,embedded_size) \
851 (int alloc_) \
853 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
856 static inline void VEC_OP (T,base,embedded_init) \
857 (VEC(T,base) *vec_, int alloc_) \
859 vec_->num = 0; \
860 vec_->alloc = alloc_; \
863 static inline int VEC_OP (T,base,space) \
864 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
866 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
867 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
870 static inline T *VEC_OP (T,base,quick_push) \
871 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
873 T *slot_; \
875 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
876 slot_ = &vec_->vec[vec_->num++]; \
877 if (obj_) \
878 *slot_ = *obj_; \
880 return slot_; \
883 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
885 VEC_ASSERT (vec_->num, "pop", T, base); \
886 --vec_->num; \
889 static inline void VEC_OP (T,base,truncate) \
890 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
892 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
893 if (vec_) \
894 vec_->num = size_; \
897 static inline T *VEC_OP (T,base,replace) \
898 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
900 T *slot_; \
902 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
903 slot_ = &vec_->vec[ix_]; \
904 if (obj_) \
905 *slot_ = *obj_; \
907 return slot_; \
910 static inline T *VEC_OP (T,base,quick_insert) \
911 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
913 T *slot_; \
915 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
916 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
917 slot_ = &vec_->vec[ix_]; \
918 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
919 if (obj_) \
920 *slot_ = *obj_; \
922 return slot_; \
925 static inline void VEC_OP (T,base,ordered_remove) \
926 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
928 T *slot_; \
930 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
931 slot_ = &vec_->vec[ix_]; \
932 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
935 static inline void VEC_OP (T,base,unordered_remove) \
936 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
938 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
939 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
942 static inline void VEC_OP (T,base,block_remove) \
943 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
945 T *slot_; \
947 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
948 slot_ = &vec_->vec[ix_]; \
949 vec_->num -= len_; \
950 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
953 static inline T *VEC_OP (T,base,address) \
954 (VEC(T,base) *vec_) \
956 return vec_ ? vec_->vec : 0; \
959 static inline unsigned VEC_OP (T,base,lower_bound) \
960 (VEC(T,base) *vec_, const T *obj_, \
961 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
963 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
964 unsigned int half_, middle_; \
965 unsigned int first_ = 0; \
966 while (len_ > 0) \
968 T *middle_elem_; \
969 half_ = len_ >> 1; \
970 middle_ = first_; \
971 middle_ += half_; \
972 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
973 if (lessthan_ (middle_elem_, obj_)) \
975 first_ = middle_; \
976 ++first_; \
977 len_ = len_ - half_ - 1; \
979 else \
980 len_ = half_; \
982 return first_; \
985 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
986 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
987 (int alloc_ MEM_STAT_DECL) \
989 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \
990 offsetof (VEC(T,A),base.vec), \
991 sizeof (T) \
992 PASS_MEM_STAT); \
995 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
997 size_t len_ = vec_ ? vec_->num : 0; \
998 VEC (T,A) *new_vec_ = NULL; \
1000 if (len_) \
1002 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1003 (NULL, len_, \
1004 offsetof (VEC(T,A),base.vec), sizeof (T) \
1005 PASS_MEM_STAT)); \
1007 new_vec_->base.num = len_; \
1008 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1010 return new_vec_; \
1013 static inline void VEC_OP (T,A,free) \
1014 (VEC(T,A) **vec_) \
1016 if (*vec_) \
1017 vec_##A##_free (*vec_); \
1018 *vec_ = NULL; \
1021 static inline int VEC_OP (T,A,reserve) \
1022 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1024 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1025 VEC_CHECK_PASS); \
1027 if (extend) \
1028 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1029 offsetof (VEC(T,A),base.vec),\
1030 sizeof (T) \
1031 PASS_MEM_STAT); \
1033 return extend; \
1036 static inline int VEC_OP (T,A,reserve_exact) \
1037 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1039 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1040 VEC_CHECK_PASS); \
1042 if (extend) \
1043 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1044 (*vec_, alloc_, \
1045 offsetof (VEC(T,A),base.vec), \
1046 sizeof (T) PASS_MEM_STAT); \
1048 return extend; \
1051 static inline void VEC_OP (T,A,safe_grow) \
1052 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1054 VEC_ASSERT (size_ >= 0 \
1055 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1056 "grow", T, A); \
1057 VEC_OP (T,A,reserve_exact) (vec_, \
1058 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1059 VEC_CHECK_PASS PASS_MEM_STAT); \
1060 VEC_BASE (*vec_)->num = size_; \
1063 static inline void VEC_OP (T,A,safe_grow_cleared) \
1064 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1066 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1067 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1068 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1069 sizeof (T) * (size_ - oldsize)); \
1072 static inline T *VEC_OP (T,A,safe_push) \
1073 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1075 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1077 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1080 static inline T *VEC_OP (T,A,safe_insert) \
1081 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1082 VEC_CHECK_DECL MEM_STAT_DECL) \
1084 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1086 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1087 VEC_CHECK_PASS); \
1090 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1091 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1092 (int alloc_ MEM_STAT_DECL) \
1094 return (VEC(T,A) *) vec_##A##_o_reserve_exact \
1095 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \
1096 sizeof (T) PASS_MEM_STAT); \
1099 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1101 size_t len_ = vec_ ? vec_->num : 0; \
1102 VEC (T,A) *new_vec_ = NULL; \
1104 if (len_) \
1106 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1107 (NULL, len_, \
1108 offsetof (VEC(T,A),base.vec), sizeof (T) \
1109 PASS_MEM_STAT)); \
1111 new_vec_->base.num = len_; \
1112 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1114 return new_vec_; \
1117 static inline void VEC_OP (T,A,free) \
1118 (VEC(T,A) **vec_) \
1120 if (*vec_) \
1121 vec_##A##_free (*vec_); \
1122 *vec_ = NULL; \
1125 static inline int VEC_OP (T,A,reserve) \
1126 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1128 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1129 VEC_CHECK_PASS); \
1131 if (extend) \
1132 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1133 offsetof (VEC(T,A),base.vec),\
1134 sizeof (T) \
1135 PASS_MEM_STAT); \
1137 return extend; \
1140 static inline int VEC_OP (T,A,reserve_exact) \
1141 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1143 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1144 VEC_CHECK_PASS); \
1146 if (extend) \
1147 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1148 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \
1149 sizeof (T) PASS_MEM_STAT); \
1151 return extend; \
1154 static inline void VEC_OP (T,A,safe_grow) \
1155 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1157 VEC_ASSERT (size_ >= 0 \
1158 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1159 "grow", T, A); \
1160 VEC_OP (T,A,reserve_exact) (vec_, \
1161 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1162 VEC_CHECK_PASS PASS_MEM_STAT); \
1163 VEC_BASE (*vec_)->num = size_; \
1166 static inline void VEC_OP (T,A,safe_grow_cleared) \
1167 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1169 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1170 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1171 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1172 sizeof (T) * (size_ - oldsize)); \
1175 static inline T *VEC_OP (T,A,safe_push) \
1176 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1178 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1180 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1183 static inline T *VEC_OP (T,A,safe_insert) \
1184 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1185 VEC_CHECK_DECL MEM_STAT_DECL) \
1187 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1189 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1190 VEC_CHECK_PASS); \
1193 #endif /* GCC_VEC_H */